1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> EnableStrictReductions(
336     "enable-strict-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Fix a first-order recurrence. This is the second phase of vectorizing
594   /// this phi node.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return EnableStrictReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements =
4053             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4056         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4057         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4058       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4059         auto Elements =
4060             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4061         auto *O0 = B.CreateZExtOrTrunc(
4062             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4063         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4064       } else {
4065         // If we don't know what to do, be conservative and don't do anything.
4066         continue;
4067       }
4068 
4069       // Lastly, extend the result.
4070       NewI->takeName(cast<Instruction>(I));
4071       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4072       I->replaceAllUsesWith(Res);
4073       cast<Instruction>(I)->eraseFromParent();
4074       Erased.insert(I);
4075       State.reset(Def, Res, Part);
4076     }
4077   }
4078 
4079   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4080   for (const auto &KV : Cost->getMinimalBitwidths()) {
4081     // If the value wasn't vectorized, we must maintain the original scalar
4082     // type. The absence of the value from State indicates that it
4083     // wasn't vectorized.
4084     VPValue *Def = State.Plan->getVPValue(KV.first);
4085     if (!State.hasAnyVectorValue(Def))
4086       continue;
4087     for (unsigned Part = 0; Part < UF; ++Part) {
4088       Value *I = State.get(Def, Part);
4089       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4090       if (Inst && Inst->use_empty()) {
4091         Value *NewI = Inst->getOperand(0);
4092         Inst->eraseFromParent();
4093         State.reset(Def, NewI, Part);
4094       }
4095     }
4096   }
4097 }
4098 
4099 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4100   // Insert truncates and extends for any truncated instructions as hints to
4101   // InstCombine.
4102   if (VF.isVector())
4103     truncateToMinimalBitwidths(State);
4104 
4105   // Fix widened non-induction PHIs by setting up the PHI operands.
4106   if (OrigPHIsToFix.size()) {
4107     assert(EnableVPlanNativePath &&
4108            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4109     fixNonInductionPHIs(State);
4110   }
4111 
4112   // At this point every instruction in the original loop is widened to a
4113   // vector form. Now we need to fix the recurrences in the loop. These PHI
4114   // nodes are currently empty because we did not want to introduce cycles.
4115   // This is the second stage of vectorizing recurrences.
4116   fixCrossIterationPHIs(State);
4117 
4118   // Forget the original basic block.
4119   PSE.getSE()->forgetLoop(OrigLoop);
4120 
4121   // If we inserted an edge from the middle block to the unique exit block,
4122   // update uses outside the loop (phis) to account for the newly inserted
4123   // edge.
4124   if (!Cost->requiresScalarEpilogue(VF)) {
4125     // Fix-up external users of the induction variables.
4126     for (auto &Entry : Legal->getInductionVars())
4127       fixupIVUsers(Entry.first, Entry.second,
4128                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4129                    IVEndValues[Entry.first], LoopMiddleBlock);
4130 
4131     fixLCSSAPHIs(State);
4132   }
4133 
4134   for (Instruction *PI : PredicatedInstructions)
4135     sinkScalarOperands(&*PI);
4136 
4137   // Remove redundant induction instructions.
4138   cse(LoopVectorBody);
4139 
4140   // Set/update profile weights for the vector and remainder loops as original
4141   // loop iterations are now distributed among them. Note that original loop
4142   // represented by LoopScalarBody becomes remainder loop after vectorization.
4143   //
4144   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4145   // end up getting slightly roughened result but that should be OK since
4146   // profile is not inherently precise anyway. Note also possible bypass of
4147   // vector code caused by legality checks is ignored, assigning all the weight
4148   // to the vector loop, optimistically.
4149   //
4150   // For scalable vectorization we can't know at compile time how many iterations
4151   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4152   // vscale of '1'.
4153   setProfileInfoAfterUnrolling(
4154       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4155       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4156 }
4157 
4158 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4159   // In order to support recurrences we need to be able to vectorize Phi nodes.
4160   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4161   // stage #2: We now need to fix the recurrences by adding incoming edges to
4162   // the currently empty PHI nodes. At this point every instruction in the
4163   // original loop is widened to a vector form so we can use them to construct
4164   // the incoming edges.
4165   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4166   for (VPRecipeBase &R : Header->phis()) {
4167     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4168       fixReduction(ReductionPhi, State);
4169     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4170       fixFirstOrderRecurrence(FOR, State);
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4175                                                   VPTransformState &State) {
4176   // This is the second phase of vectorizing first-order recurrences. An
4177   // overview of the transformation is described below. Suppose we have the
4178   // following loop.
4179   //
4180   //   for (int i = 0; i < n; ++i)
4181   //     b[i] = a[i] - a[i - 1];
4182   //
4183   // There is a first-order recurrence on "a". For this loop, the shorthand
4184   // scalar IR looks like:
4185   //
4186   //   scalar.ph:
4187   //     s_init = a[-1]
4188   //     br scalar.body
4189   //
4190   //   scalar.body:
4191   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4192   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4193   //     s2 = a[i]
4194   //     b[i] = s2 - s1
4195   //     br cond, scalar.body, ...
4196   //
4197   // In this example, s1 is a recurrence because it's value depends on the
4198   // previous iteration. In the first phase of vectorization, we created a
4199   // vector phi v1 for s1. We now complete the vectorization and produce the
4200   // shorthand vector IR shown below (for VF = 4, UF = 1).
4201   //
4202   //   vector.ph:
4203   //     v_init = vector(..., ..., ..., a[-1])
4204   //     br vector.body
4205   //
4206   //   vector.body
4207   //     i = phi [0, vector.ph], [i+4, vector.body]
4208   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4209   //     v2 = a[i, i+1, i+2, i+3];
4210   //     v3 = vector(v1(3), v2(0, 1, 2))
4211   //     b[i, i+1, i+2, i+3] = v2 - v3
4212   //     br cond, vector.body, middle.block
4213   //
4214   //   middle.block:
4215   //     x = v2(3)
4216   //     br scalar.ph
4217   //
4218   //   scalar.ph:
4219   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4220   //     br scalar.body
4221   //
4222   // After execution completes the vector loop, we extract the next value of
4223   // the recurrence (x) to use as the initial value in the scalar loop.
4224 
4225   auto *IdxTy = Builder.getInt32Ty();
4226   auto *VecPhi = cast<PHINode>(State.get(PhiR, 0));
4227 
4228   // Fix the latch value of the new recurrence in the vector loop.
4229   VPValue *PreviousDef = PhiR->getBackedgeValue();
4230   Value *Incoming = State.get(PreviousDef, UF - 1);
4231   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4232 
4233   // Extract the last vector element in the middle block. This will be the
4234   // initial value for the recurrence when jumping to the scalar loop.
4235   auto *ExtractForScalar = Incoming;
4236   if (VF.isVector()) {
4237     auto *One = ConstantInt::get(IdxTy, 1);
4238     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4239     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4240     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4241     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4242                                                     "vector.recur.extract");
4243   }
4244   // Extract the second last element in the middle block if the
4245   // Phi is used outside the loop. We need to extract the phi itself
4246   // and not the last element (the phi update in the current iteration). This
4247   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4248   // when the scalar loop is not run at all.
4249   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4250   if (VF.isVector()) {
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4253     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4254         Incoming, Idx, "vector.recur.extract.for.phi");
4255   } else if (UF > 1)
4256     // When loop is unrolled without vectorizing, initialize
4257     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4258     // of `Incoming`. This is analogous to the vectorized case above: extracting
4259     // the second last element when VF > 1.
4260     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4261 
4262   // Fix the initial value of the original recurrence in the scalar loop.
4263   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4264   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4265   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4266   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4267   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4268     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4269     Start->addIncoming(Incoming, BB);
4270   }
4271 
4272   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4273   Phi->setName("scalar.recur");
4274 
4275   // Finally, fix users of the recurrence outside the loop. The users will need
4276   // either the last value of the scalar recurrence or the last value of the
4277   // vector recurrence we extracted in the middle block. Since the loop is in
4278   // LCSSA form, we just need to find all the phi nodes for the original scalar
4279   // recurrence in the exit block, and then add an edge for the middle block.
4280   // Note that LCSSA does not imply single entry when the original scalar loop
4281   // had multiple exiting edges (as we always run the last iteration in the
4282   // scalar epilogue); in that case, there is no edge from middle to exit and
4283   // and thus no phis which needed updated.
4284   if (!Cost->requiresScalarEpilogue(VF))
4285     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4286       if (any_of(LCSSAPhi.incoming_values(),
4287                  [Phi](Value *V) { return V == Phi; }))
4288         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4289 }
4290 
4291 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4292                                        VPTransformState &State) {
4293   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4294   // Get it's reduction variable descriptor.
4295   assert(Legal->isReductionVariable(OrigPhi) &&
4296          "Unable to find the reduction variable");
4297   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4298 
4299   RecurKind RK = RdxDesc.getRecurrenceKind();
4300   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4301   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4302   setDebugLocFromInst(ReductionStartValue);
4303 
4304   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4305   // This is the vector-clone of the value that leaves the loop.
4306   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4307 
4308   // Wrap flags are in general invalid after vectorization, clear them.
4309   clearReductionWrapFlags(RdxDesc, State);
4310 
4311   // Fix the vector-loop phi.
4312 
4313   // Reductions do not have to start at zero. They can start with
4314   // any loop invariant values.
4315   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4316 
4317   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4318   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4319     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4320     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4321     if (PhiR->isOrdered())
4322       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4323 
4324     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4325   }
4326 
4327   // Before each round, move the insertion point right between
4328   // the PHIs and the values we are going to write.
4329   // This allows us to write both PHINodes and the extractelement
4330   // instructions.
4331   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4332 
4333   setDebugLocFromInst(LoopExitInst);
4334 
4335   Type *PhiTy = OrigPhi->getType();
4336   // If tail is folded by masking, the vector value to leave the loop should be
4337   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4338   // instead of the former. For an inloop reduction the reduction will already
4339   // be predicated, and does not need to be handled here.
4340   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4341     for (unsigned Part = 0; Part < UF; ++Part) {
4342       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4343       Value *Sel = nullptr;
4344       for (User *U : VecLoopExitInst->users()) {
4345         if (isa<SelectInst>(U)) {
4346           assert(!Sel && "Reduction exit feeding two selects");
4347           Sel = U;
4348         } else
4349           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4350       }
4351       assert(Sel && "Reduction exit feeds no select");
4352       State.reset(LoopExitInstDef, Sel, Part);
4353 
4354       // If the target can create a predicated operator for the reduction at no
4355       // extra cost in the loop (for example a predicated vadd), it can be
4356       // cheaper for the select to remain in the loop than be sunk out of it,
4357       // and so use the select value for the phi instead of the old
4358       // LoopExitValue.
4359       if (PreferPredicatedReductionSelect ||
4360           TTI->preferPredicatedReductionSelect(
4361               RdxDesc.getOpcode(), PhiTy,
4362               TargetTransformInfo::ReductionFlags())) {
4363         auto *VecRdxPhi =
4364             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4365         VecRdxPhi->setIncomingValueForBlock(
4366             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4367       }
4368     }
4369   }
4370 
4371   // If the vector reduction can be performed in a smaller type, we truncate
4372   // then extend the loop exit value to enable InstCombine to evaluate the
4373   // entire expression in the smaller type.
4374   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4375     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4376     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4377     Builder.SetInsertPoint(
4378         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4379     VectorParts RdxParts(UF);
4380     for (unsigned Part = 0; Part < UF; ++Part) {
4381       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4382       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4383       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4384                                         : Builder.CreateZExt(Trunc, VecTy);
4385       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4386            UI != RdxParts[Part]->user_end();)
4387         if (*UI != Trunc) {
4388           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4389           RdxParts[Part] = Extnd;
4390         } else {
4391           ++UI;
4392         }
4393     }
4394     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4395     for (unsigned Part = 0; Part < UF; ++Part) {
4396       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4397       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4398     }
4399   }
4400 
4401   // Reduce all of the unrolled parts into a single vector.
4402   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4403   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4404 
4405   // The middle block terminator has already been assigned a DebugLoc here (the
4406   // OrigLoop's single latch terminator). We want the whole middle block to
4407   // appear to execute on this line because: (a) it is all compiler generated,
4408   // (b) these instructions are always executed after evaluating the latch
4409   // conditional branch, and (c) other passes may add new predecessors which
4410   // terminate on this line. This is the easiest way to ensure we don't
4411   // accidentally cause an extra step back into the loop while debugging.
4412   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4413   if (PhiR->isOrdered())
4414     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4415   else {
4416     // Floating-point operations should have some FMF to enable the reduction.
4417     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4418     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4419     for (unsigned Part = 1; Part < UF; ++Part) {
4420       Value *RdxPart = State.get(LoopExitInstDef, Part);
4421       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4422         ReducedPartRdx = Builder.CreateBinOp(
4423             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4424       } else {
4425         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4426       }
4427     }
4428   }
4429 
4430   // Create the reduction after the loop. Note that inloop reductions create the
4431   // target reduction in the loop using a Reduction recipe.
4432   if (VF.isVector() && !PhiR->isInLoop()) {
4433     ReducedPartRdx =
4434         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4435     // If the reduction can be performed in a smaller type, we need to extend
4436     // the reduction to the wider type before we branch to the original loop.
4437     if (PhiTy != RdxDesc.getRecurrenceType())
4438       ReducedPartRdx = RdxDesc.isSigned()
4439                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4440                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4441   }
4442 
4443   // Create a phi node that merges control-flow from the backedge-taken check
4444   // block and the middle block.
4445   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4446                                         LoopScalarPreHeader->getTerminator());
4447   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4448     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4449   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4450 
4451   // Now, we need to fix the users of the reduction variable
4452   // inside and outside of the scalar remainder loop.
4453 
4454   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4455   // in the exit blocks.  See comment on analogous loop in
4456   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4457   if (!Cost->requiresScalarEpilogue(VF))
4458     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4459       if (any_of(LCSSAPhi.incoming_values(),
4460                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4461         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4462 
4463   // Fix the scalar loop reduction variable with the incoming reduction sum
4464   // from the vector body and from the backedge value.
4465   int IncomingEdgeBlockIdx =
4466       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4467   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4468   // Pick the other block.
4469   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4470   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4471   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4472 }
4473 
4474 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4475                                                   VPTransformState &State) {
4476   RecurKind RK = RdxDesc.getRecurrenceKind();
4477   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4478     return;
4479 
4480   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4481   assert(LoopExitInstr && "null loop exit instruction");
4482   SmallVector<Instruction *, 8> Worklist;
4483   SmallPtrSet<Instruction *, 8> Visited;
4484   Worklist.push_back(LoopExitInstr);
4485   Visited.insert(LoopExitInstr);
4486 
4487   while (!Worklist.empty()) {
4488     Instruction *Cur = Worklist.pop_back_val();
4489     if (isa<OverflowingBinaryOperator>(Cur))
4490       for (unsigned Part = 0; Part < UF; ++Part) {
4491         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4492         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4493       }
4494 
4495     for (User *U : Cur->users()) {
4496       Instruction *UI = cast<Instruction>(U);
4497       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4498           Visited.insert(UI).second)
4499         Worklist.push_back(UI);
4500     }
4501   }
4502 }
4503 
4504 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4505   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4506     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4507       // Some phis were already hand updated by the reduction and recurrence
4508       // code above, leave them alone.
4509       continue;
4510 
4511     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4512     // Non-instruction incoming values will have only one value.
4513 
4514     VPLane Lane = VPLane::getFirstLane();
4515     if (isa<Instruction>(IncomingValue) &&
4516         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4517                                            VF))
4518       Lane = VPLane::getLastLaneForVF(VF);
4519 
4520     // Can be a loop invariant incoming value or the last scalar value to be
4521     // extracted from the vectorized loop.
4522     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4523     Value *lastIncomingValue =
4524         OrigLoop->isLoopInvariant(IncomingValue)
4525             ? IncomingValue
4526             : State.get(State.Plan->getVPValue(IncomingValue),
4527                         VPIteration(UF - 1, Lane));
4528     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4529   }
4530 }
4531 
4532 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4533   // The basic block and loop containing the predicated instruction.
4534   auto *PredBB = PredInst->getParent();
4535   auto *VectorLoop = LI->getLoopFor(PredBB);
4536 
4537   // Initialize a worklist with the operands of the predicated instruction.
4538   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4539 
4540   // Holds instructions that we need to analyze again. An instruction may be
4541   // reanalyzed if we don't yet know if we can sink it or not.
4542   SmallVector<Instruction *, 8> InstsToReanalyze;
4543 
4544   // Returns true if a given use occurs in the predicated block. Phi nodes use
4545   // their operands in their corresponding predecessor blocks.
4546   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4547     auto *I = cast<Instruction>(U.getUser());
4548     BasicBlock *BB = I->getParent();
4549     if (auto *Phi = dyn_cast<PHINode>(I))
4550       BB = Phi->getIncomingBlock(
4551           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4552     return BB == PredBB;
4553   };
4554 
4555   // Iteratively sink the scalarized operands of the predicated instruction
4556   // into the block we created for it. When an instruction is sunk, it's
4557   // operands are then added to the worklist. The algorithm ends after one pass
4558   // through the worklist doesn't sink a single instruction.
4559   bool Changed;
4560   do {
4561     // Add the instructions that need to be reanalyzed to the worklist, and
4562     // reset the changed indicator.
4563     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4564     InstsToReanalyze.clear();
4565     Changed = false;
4566 
4567     while (!Worklist.empty()) {
4568       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4569 
4570       // We can't sink an instruction if it is a phi node, is not in the loop,
4571       // or may have side effects.
4572       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4573           I->mayHaveSideEffects())
4574         continue;
4575 
4576       // If the instruction is already in PredBB, check if we can sink its
4577       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4578       // sinking the scalar instruction I, hence it appears in PredBB; but it
4579       // may have failed to sink I's operands (recursively), which we try
4580       // (again) here.
4581       if (I->getParent() == PredBB) {
4582         Worklist.insert(I->op_begin(), I->op_end());
4583         continue;
4584       }
4585 
4586       // It's legal to sink the instruction if all its uses occur in the
4587       // predicated block. Otherwise, there's nothing to do yet, and we may
4588       // need to reanalyze the instruction.
4589       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4590         InstsToReanalyze.push_back(I);
4591         continue;
4592       }
4593 
4594       // Move the instruction to the beginning of the predicated block, and add
4595       // it's operands to the worklist.
4596       I->moveBefore(&*PredBB->getFirstInsertionPt());
4597       Worklist.insert(I->op_begin(), I->op_end());
4598 
4599       // The sinking may have enabled other instructions to be sunk, so we will
4600       // need to iterate.
4601       Changed = true;
4602     }
4603   } while (Changed);
4604 }
4605 
4606 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4607   for (PHINode *OrigPhi : OrigPHIsToFix) {
4608     VPWidenPHIRecipe *VPPhi =
4609         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4610     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4611     // Make sure the builder has a valid insert point.
4612     Builder.SetInsertPoint(NewPhi);
4613     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4614       VPValue *Inc = VPPhi->getIncomingValue(i);
4615       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4616       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4617     }
4618   }
4619 }
4620 
4621 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4622   return Cost->useOrderedReductions(RdxDesc);
4623 }
4624 
4625 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4626                                    VPUser &Operands, unsigned UF,
4627                                    ElementCount VF, bool IsPtrLoopInvariant,
4628                                    SmallBitVector &IsIndexLoopInvariant,
4629                                    VPTransformState &State) {
4630   // Construct a vector GEP by widening the operands of the scalar GEP as
4631   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4632   // results in a vector of pointers when at least one operand of the GEP
4633   // is vector-typed. Thus, to keep the representation compact, we only use
4634   // vector-typed operands for loop-varying values.
4635 
4636   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4637     // If we are vectorizing, but the GEP has only loop-invariant operands,
4638     // the GEP we build (by only using vector-typed operands for
4639     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4640     // produce a vector of pointers, we need to either arbitrarily pick an
4641     // operand to broadcast, or broadcast a clone of the original GEP.
4642     // Here, we broadcast a clone of the original.
4643     //
4644     // TODO: If at some point we decide to scalarize instructions having
4645     //       loop-invariant operands, this special case will no longer be
4646     //       required. We would add the scalarization decision to
4647     //       collectLoopScalars() and teach getVectorValue() to broadcast
4648     //       the lane-zero scalar value.
4649     auto *Clone = Builder.Insert(GEP->clone());
4650     for (unsigned Part = 0; Part < UF; ++Part) {
4651       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4652       State.set(VPDef, EntryPart, Part);
4653       addMetadata(EntryPart, GEP);
4654     }
4655   } else {
4656     // If the GEP has at least one loop-varying operand, we are sure to
4657     // produce a vector of pointers. But if we are only unrolling, we want
4658     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4659     // produce with the code below will be scalar (if VF == 1) or vector
4660     // (otherwise). Note that for the unroll-only case, we still maintain
4661     // values in the vector mapping with initVector, as we do for other
4662     // instructions.
4663     for (unsigned Part = 0; Part < UF; ++Part) {
4664       // The pointer operand of the new GEP. If it's loop-invariant, we
4665       // won't broadcast it.
4666       auto *Ptr = IsPtrLoopInvariant
4667                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4668                       : State.get(Operands.getOperand(0), Part);
4669 
4670       // Collect all the indices for the new GEP. If any index is
4671       // loop-invariant, we won't broadcast it.
4672       SmallVector<Value *, 4> Indices;
4673       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4674         VPValue *Operand = Operands.getOperand(I);
4675         if (IsIndexLoopInvariant[I - 1])
4676           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4677         else
4678           Indices.push_back(State.get(Operand, Part));
4679       }
4680 
4681       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4682       // but it should be a vector, otherwise.
4683       auto *NewGEP =
4684           GEP->isInBounds()
4685               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4686                                           Indices)
4687               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4688       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4689              "NewGEP is not a pointer vector");
4690       State.set(VPDef, NewGEP, Part);
4691       addMetadata(NewGEP, GEP);
4692     }
4693   }
4694 }
4695 
4696 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4697                                               VPWidenPHIRecipe *PhiR,
4698                                               VPTransformState &State) {
4699   PHINode *P = cast<PHINode>(PN);
4700   if (EnableVPlanNativePath) {
4701     // Currently we enter here in the VPlan-native path for non-induction
4702     // PHIs where all control flow is uniform. We simply widen these PHIs.
4703     // Create a vector phi with no operands - the vector phi operands will be
4704     // set at the end of vector code generation.
4705     Type *VecTy = (State.VF.isScalar())
4706                       ? PN->getType()
4707                       : VectorType::get(PN->getType(), State.VF);
4708     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4709     State.set(PhiR, VecPhi, 0);
4710     OrigPHIsToFix.push_back(P);
4711 
4712     return;
4713   }
4714 
4715   assert(PN->getParent() == OrigLoop->getHeader() &&
4716          "Non-header phis should have been handled elsewhere");
4717 
4718   // In order to support recurrences we need to be able to vectorize Phi nodes.
4719   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4720   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4721   // this value when we vectorize all of the instructions that use the PHI.
4722 
4723   assert(!Legal->isReductionVariable(P) &&
4724          "reductions should be handled elsewhere");
4725 
4726   setDebugLocFromInst(P);
4727 
4728   // This PHINode must be an induction variable.
4729   // Make sure that we know about it.
4730   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4731 
4732   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4733   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4734 
4735   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4736   // which can be found from the original scalar operations.
4737   switch (II.getKind()) {
4738   case InductionDescriptor::IK_NoInduction:
4739     llvm_unreachable("Unknown induction");
4740   case InductionDescriptor::IK_IntInduction:
4741   case InductionDescriptor::IK_FpInduction:
4742     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4743   case InductionDescriptor::IK_PtrInduction: {
4744     // Handle the pointer induction variable case.
4745     assert(P->getType()->isPointerTy() && "Unexpected type.");
4746 
4747     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4748       // This is the normalized GEP that starts counting at zero.
4749       Value *PtrInd =
4750           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4751       // Determine the number of scalars we need to generate for each unroll
4752       // iteration. If the instruction is uniform, we only need to generate the
4753       // first lane. Otherwise, we generate all VF values.
4754       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4755       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4756 
4757       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4758       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4759       if (NeedsVectorIndex) {
4760         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4761         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4762         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4763       }
4764 
4765       for (unsigned Part = 0; Part < UF; ++Part) {
4766         Value *PartStart = createStepForVF(
4767             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4768 
4769         if (NeedsVectorIndex) {
4770           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4771           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4772           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4773           Value *SclrGep =
4774               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4775           SclrGep->setName("next.gep");
4776           State.set(PhiR, SclrGep, Part);
4777           // We've cached the whole vector, which means we can support the
4778           // extraction of any lane.
4779           continue;
4780         }
4781 
4782         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4783           Value *Idx = Builder.CreateAdd(
4784               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4785           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4786           Value *SclrGep =
4787               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4788           SclrGep->setName("next.gep");
4789           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4790         }
4791       }
4792       return;
4793     }
4794     assert(isa<SCEVConstant>(II.getStep()) &&
4795            "Induction step not a SCEV constant!");
4796     Type *PhiType = II.getStep()->getType();
4797 
4798     // Build a pointer phi
4799     Value *ScalarStartValue = II.getStartValue();
4800     Type *ScStValueType = ScalarStartValue->getType();
4801     PHINode *NewPointerPhi =
4802         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4803     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4804 
4805     // A pointer induction, performed by using a gep
4806     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4807     Instruction *InductionLoc = LoopLatch->getTerminator();
4808     const SCEV *ScalarStep = II.getStep();
4809     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4810     Value *ScalarStepValue =
4811         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4812     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4813     Value *NumUnrolledElems =
4814         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4815     Value *InductionGEP = GetElementPtrInst::Create(
4816         ScStValueType->getPointerElementType(), NewPointerPhi,
4817         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4818         InductionLoc);
4819     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4820 
4821     // Create UF many actual address geps that use the pointer
4822     // phi as base and a vectorized version of the step value
4823     // (<step*0, ..., step*N>) as offset.
4824     for (unsigned Part = 0; Part < State.UF; ++Part) {
4825       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4826       Value *StartOffsetScalar =
4827           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4828       Value *StartOffset =
4829           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4830       // Create a vector of consecutive numbers from zero to VF.
4831       StartOffset =
4832           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4833 
4834       Value *GEP = Builder.CreateGEP(
4835           ScStValueType->getPointerElementType(), NewPointerPhi,
4836           Builder.CreateMul(
4837               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4838               "vector.gep"));
4839       State.set(PhiR, GEP, Part);
4840     }
4841   }
4842   }
4843 }
4844 
4845 /// A helper function for checking whether an integer division-related
4846 /// instruction may divide by zero (in which case it must be predicated if
4847 /// executed conditionally in the scalar code).
4848 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4849 /// Non-zero divisors that are non compile-time constants will not be
4850 /// converted into multiplication, so we will still end up scalarizing
4851 /// the division, but can do so w/o predication.
4852 static bool mayDivideByZero(Instruction &I) {
4853   assert((I.getOpcode() == Instruction::UDiv ||
4854           I.getOpcode() == Instruction::SDiv ||
4855           I.getOpcode() == Instruction::URem ||
4856           I.getOpcode() == Instruction::SRem) &&
4857          "Unexpected instruction");
4858   Value *Divisor = I.getOperand(1);
4859   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4860   return !CInt || CInt->isZero();
4861 }
4862 
4863 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4864                                            VPUser &User,
4865                                            VPTransformState &State) {
4866   switch (I.getOpcode()) {
4867   case Instruction::Call:
4868   case Instruction::Br:
4869   case Instruction::PHI:
4870   case Instruction::GetElementPtr:
4871   case Instruction::Select:
4872     llvm_unreachable("This instruction is handled by a different recipe.");
4873   case Instruction::UDiv:
4874   case Instruction::SDiv:
4875   case Instruction::SRem:
4876   case Instruction::URem:
4877   case Instruction::Add:
4878   case Instruction::FAdd:
4879   case Instruction::Sub:
4880   case Instruction::FSub:
4881   case Instruction::FNeg:
4882   case Instruction::Mul:
4883   case Instruction::FMul:
4884   case Instruction::FDiv:
4885   case Instruction::FRem:
4886   case Instruction::Shl:
4887   case Instruction::LShr:
4888   case Instruction::AShr:
4889   case Instruction::And:
4890   case Instruction::Or:
4891   case Instruction::Xor: {
4892     // Just widen unops and binops.
4893     setDebugLocFromInst(&I);
4894 
4895     for (unsigned Part = 0; Part < UF; ++Part) {
4896       SmallVector<Value *, 2> Ops;
4897       for (VPValue *VPOp : User.operands())
4898         Ops.push_back(State.get(VPOp, Part));
4899 
4900       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4901 
4902       if (auto *VecOp = dyn_cast<Instruction>(V))
4903         VecOp->copyIRFlags(&I);
4904 
4905       // Use this vector value for all users of the original instruction.
4906       State.set(Def, V, Part);
4907       addMetadata(V, &I);
4908     }
4909 
4910     break;
4911   }
4912   case Instruction::ICmp:
4913   case Instruction::FCmp: {
4914     // Widen compares. Generate vector compares.
4915     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4916     auto *Cmp = cast<CmpInst>(&I);
4917     setDebugLocFromInst(Cmp);
4918     for (unsigned Part = 0; Part < UF; ++Part) {
4919       Value *A = State.get(User.getOperand(0), Part);
4920       Value *B = State.get(User.getOperand(1), Part);
4921       Value *C = nullptr;
4922       if (FCmp) {
4923         // Propagate fast math flags.
4924         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4925         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4926         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4927       } else {
4928         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4929       }
4930       State.set(Def, C, Part);
4931       addMetadata(C, &I);
4932     }
4933 
4934     break;
4935   }
4936 
4937   case Instruction::ZExt:
4938   case Instruction::SExt:
4939   case Instruction::FPToUI:
4940   case Instruction::FPToSI:
4941   case Instruction::FPExt:
4942   case Instruction::PtrToInt:
4943   case Instruction::IntToPtr:
4944   case Instruction::SIToFP:
4945   case Instruction::UIToFP:
4946   case Instruction::Trunc:
4947   case Instruction::FPTrunc:
4948   case Instruction::BitCast: {
4949     auto *CI = cast<CastInst>(&I);
4950     setDebugLocFromInst(CI);
4951 
4952     /// Vectorize casts.
4953     Type *DestTy =
4954         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4955 
4956     for (unsigned Part = 0; Part < UF; ++Part) {
4957       Value *A = State.get(User.getOperand(0), Part);
4958       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4959       State.set(Def, Cast, Part);
4960       addMetadata(Cast, &I);
4961     }
4962     break;
4963   }
4964   default:
4965     // This instruction is not vectorized by simple widening.
4966     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4967     llvm_unreachable("Unhandled instruction!");
4968   } // end of switch.
4969 }
4970 
4971 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4972                                                VPUser &ArgOperands,
4973                                                VPTransformState &State) {
4974   assert(!isa<DbgInfoIntrinsic>(I) &&
4975          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4976   setDebugLocFromInst(&I);
4977 
4978   Module *M = I.getParent()->getParent()->getParent();
4979   auto *CI = cast<CallInst>(&I);
4980 
4981   SmallVector<Type *, 4> Tys;
4982   for (Value *ArgOperand : CI->arg_operands())
4983     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4984 
4985   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4986 
4987   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4988   // version of the instruction.
4989   // Is it beneficial to perform intrinsic call compared to lib call?
4990   bool NeedToScalarize = false;
4991   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4992   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4993   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4994   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4995          "Instruction should be scalarized elsewhere.");
4996   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4997          "Either the intrinsic cost or vector call cost must be valid");
4998 
4999   for (unsigned Part = 0; Part < UF; ++Part) {
5000     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5001     SmallVector<Value *, 4> Args;
5002     for (auto &I : enumerate(ArgOperands.operands())) {
5003       // Some intrinsics have a scalar argument - don't replace it with a
5004       // vector.
5005       Value *Arg;
5006       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5007         Arg = State.get(I.value(), Part);
5008       else {
5009         Arg = State.get(I.value(), VPIteration(0, 0));
5010         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5011           TysForDecl.push_back(Arg->getType());
5012       }
5013       Args.push_back(Arg);
5014     }
5015 
5016     Function *VectorF;
5017     if (UseVectorIntrinsic) {
5018       // Use vector version of the intrinsic.
5019       if (VF.isVector())
5020         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5021       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5022       assert(VectorF && "Can't retrieve vector intrinsic.");
5023     } else {
5024       // Use vector version of the function call.
5025       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5026 #ifndef NDEBUG
5027       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5028              "Can't create vector function.");
5029 #endif
5030         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5031     }
5032       SmallVector<OperandBundleDef, 1> OpBundles;
5033       CI->getOperandBundlesAsDefs(OpBundles);
5034       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5035 
5036       if (isa<FPMathOperator>(V))
5037         V->copyFastMathFlags(CI);
5038 
5039       State.set(Def, V, Part);
5040       addMetadata(V, &I);
5041   }
5042 }
5043 
5044 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5045                                                  VPUser &Operands,
5046                                                  bool InvariantCond,
5047                                                  VPTransformState &State) {
5048   setDebugLocFromInst(&I);
5049 
5050   // The condition can be loop invariant  but still defined inside the
5051   // loop. This means that we can't just use the original 'cond' value.
5052   // We have to take the 'vectorized' value and pick the first lane.
5053   // Instcombine will make this a no-op.
5054   auto *InvarCond = InvariantCond
5055                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5056                         : nullptr;
5057 
5058   for (unsigned Part = 0; Part < UF; ++Part) {
5059     Value *Cond =
5060         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5061     Value *Op0 = State.get(Operands.getOperand(1), Part);
5062     Value *Op1 = State.get(Operands.getOperand(2), Part);
5063     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5064     State.set(VPDef, Sel, Part);
5065     addMetadata(Sel, &I);
5066   }
5067 }
5068 
5069 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5070   // We should not collect Scalars more than once per VF. Right now, this
5071   // function is called from collectUniformsAndScalars(), which already does
5072   // this check. Collecting Scalars for VF=1 does not make any sense.
5073   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5074          "This function should not be visited twice for the same VF");
5075 
5076   SmallSetVector<Instruction *, 8> Worklist;
5077 
5078   // These sets are used to seed the analysis with pointers used by memory
5079   // accesses that will remain scalar.
5080   SmallSetVector<Instruction *, 8> ScalarPtrs;
5081   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5082   auto *Latch = TheLoop->getLoopLatch();
5083 
5084   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5085   // The pointer operands of loads and stores will be scalar as long as the
5086   // memory access is not a gather or scatter operation. The value operand of a
5087   // store will remain scalar if the store is scalarized.
5088   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5089     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5090     assert(WideningDecision != CM_Unknown &&
5091            "Widening decision should be ready at this moment");
5092     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5093       if (Ptr == Store->getValueOperand())
5094         return WideningDecision == CM_Scalarize;
5095     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5096            "Ptr is neither a value or pointer operand");
5097     return WideningDecision != CM_GatherScatter;
5098   };
5099 
5100   // A helper that returns true if the given value is a bitcast or
5101   // getelementptr instruction contained in the loop.
5102   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5103     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5104             isa<GetElementPtrInst>(V)) &&
5105            !TheLoop->isLoopInvariant(V);
5106   };
5107 
5108   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5109     if (!isa<PHINode>(Ptr) ||
5110         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5111       return false;
5112     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5113     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5114       return false;
5115     return isScalarUse(MemAccess, Ptr);
5116   };
5117 
5118   // A helper that evaluates a memory access's use of a pointer. If the
5119   // pointer is actually the pointer induction of a loop, it is being
5120   // inserted into Worklist. If the use will be a scalar use, and the
5121   // pointer is only used by memory accesses, we place the pointer in
5122   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5123   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5124     if (isScalarPtrInduction(MemAccess, Ptr)) {
5125       Worklist.insert(cast<Instruction>(Ptr));
5126       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5127                         << "\n");
5128 
5129       Instruction *Update = cast<Instruction>(
5130           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5131       ScalarPtrs.insert(Update);
5132       return;
5133     }
5134     // We only care about bitcast and getelementptr instructions contained in
5135     // the loop.
5136     if (!isLoopVaryingBitCastOrGEP(Ptr))
5137       return;
5138 
5139     // If the pointer has already been identified as scalar (e.g., if it was
5140     // also identified as uniform), there's nothing to do.
5141     auto *I = cast<Instruction>(Ptr);
5142     if (Worklist.count(I))
5143       return;
5144 
5145     // If all users of the pointer will be memory accesses and scalar, place the
5146     // pointer in ScalarPtrs. Otherwise, place the pointer in
5147     // PossibleNonScalarPtrs.
5148     if (llvm::all_of(I->users(), [&](User *U) {
5149           return (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
5150                  isScalarUse(cast<Instruction>(U), Ptr);
5151         }))
5152       ScalarPtrs.insert(I);
5153     else
5154       PossibleNonScalarPtrs.insert(I);
5155   };
5156 
5157   // We seed the scalars analysis with three classes of instructions: (1)
5158   // instructions marked uniform-after-vectorization and (2) bitcast,
5159   // getelementptr and (pointer) phi instructions used by memory accesses
5160   // requiring a scalar use.
5161   //
5162   // (1) Add to the worklist all instructions that have been identified as
5163   // uniform-after-vectorization.
5164   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5165 
5166   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5167   // memory accesses requiring a scalar use. The pointer operands of loads and
5168   // stores will be scalar as long as the memory accesses is not a gather or
5169   // scatter operation. The value operand of a store will remain scalar if the
5170   // store is scalarized.
5171   for (auto *BB : TheLoop->blocks())
5172     for (auto &I : *BB) {
5173       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5174         evaluatePtrUse(Load, Load->getPointerOperand());
5175       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5176         evaluatePtrUse(Store, Store->getPointerOperand());
5177         evaluatePtrUse(Store, Store->getValueOperand());
5178       }
5179     }
5180   for (auto *I : ScalarPtrs)
5181     if (!PossibleNonScalarPtrs.count(I)) {
5182       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5183       Worklist.insert(I);
5184     }
5185 
5186   // Insert the forced scalars.
5187   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5188   // induction variable when the PHI user is scalarized.
5189   auto ForcedScalar = ForcedScalars.find(VF);
5190   if (ForcedScalar != ForcedScalars.end())
5191     for (auto *I : ForcedScalar->second)
5192       Worklist.insert(I);
5193 
5194   // Expand the worklist by looking through any bitcasts and getelementptr
5195   // instructions we've already identified as scalar. This is similar to the
5196   // expansion step in collectLoopUniforms(); however, here we're only
5197   // expanding to include additional bitcasts and getelementptr instructions.
5198   unsigned Idx = 0;
5199   while (Idx != Worklist.size()) {
5200     Instruction *Dst = Worklist[Idx++];
5201     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5202       continue;
5203     auto *Src = cast<Instruction>(Dst->getOperand(0));
5204     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5205           auto *J = cast<Instruction>(U);
5206           return !TheLoop->contains(J) || Worklist.count(J) ||
5207                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5208                   isScalarUse(J, Src));
5209         })) {
5210       Worklist.insert(Src);
5211       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5212     }
5213   }
5214 
5215   // An induction variable will remain scalar if all users of the induction
5216   // variable and induction variable update remain scalar.
5217   for (auto &Induction : Legal->getInductionVars()) {
5218     auto *Ind = Induction.first;
5219     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5220 
5221     // If tail-folding is applied, the primary induction variable will be used
5222     // to feed a vector compare.
5223     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5224       continue;
5225 
5226     // Determine if all users of the induction variable are scalar after
5227     // vectorization.
5228     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5229       auto *I = cast<Instruction>(U);
5230       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5231     });
5232     if (!ScalarInd)
5233       continue;
5234 
5235     // Determine if all users of the induction variable update instruction are
5236     // scalar after vectorization.
5237     auto ScalarIndUpdate =
5238         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5239           auto *I = cast<Instruction>(U);
5240           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5241         });
5242     if (!ScalarIndUpdate)
5243       continue;
5244 
5245     // The induction variable and its update instruction will remain scalar.
5246     Worklist.insert(Ind);
5247     Worklist.insert(IndUpdate);
5248     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5250                       << "\n");
5251   }
5252 
5253   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5254 }
5255 
5256 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5257   if (!blockNeedsPredication(I->getParent()))
5258     return false;
5259   switch(I->getOpcode()) {
5260   default:
5261     break;
5262   case Instruction::Load:
5263   case Instruction::Store: {
5264     if (!Legal->isMaskRequired(I))
5265       return false;
5266     auto *Ptr = getLoadStorePointerOperand(I);
5267     auto *Ty = getLoadStoreType(I);
5268     const Align Alignment = getLoadStoreAlignment(I);
5269     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5270                                 TTI.isLegalMaskedGather(Ty, Alignment))
5271                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5273   }
5274   case Instruction::UDiv:
5275   case Instruction::SDiv:
5276   case Instruction::SRem:
5277   case Instruction::URem:
5278     return mayDivideByZero(*I);
5279   }
5280   return false;
5281 }
5282 
5283 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5284     Instruction *I, ElementCount VF) {
5285   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5286   assert(getWideningDecision(I, VF) == CM_Unknown &&
5287          "Decision should not be set yet.");
5288   auto *Group = getInterleavedAccessGroup(I);
5289   assert(Group && "Must have a group.");
5290 
5291   // If the instruction's allocated size doesn't equal it's type size, it
5292   // requires padding and will be scalarized.
5293   auto &DL = I->getModule()->getDataLayout();
5294   auto *ScalarTy = getLoadStoreType(I);
5295   if (hasIrregularType(ScalarTy, DL))
5296     return false;
5297 
5298   // Check if masking is required.
5299   // A Group may need masking for one of two reasons: it resides in a block that
5300   // needs predication, or it was decided to use masking to deal with gaps.
5301   bool PredicatedAccessRequiresMasking =
5302       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5303   bool AccessWithGapsRequiresMasking =
5304       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5305   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5306     return true;
5307 
5308   // If masked interleaving is required, we expect that the user/target had
5309   // enabled it, because otherwise it either wouldn't have been created or
5310   // it should have been invalidated by the CostModel.
5311   assert(useMaskedInterleavedAccesses(TTI) &&
5312          "Masked interleave-groups for predicated accesses are not enabled.");
5313 
5314   auto *Ty = getLoadStoreType(I);
5315   const Align Alignment = getLoadStoreAlignment(I);
5316   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5317                           : TTI.isLegalMaskedStore(Ty, Alignment);
5318 }
5319 
5320 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5321     Instruction *I, ElementCount VF) {
5322   // Get and ensure we have a valid memory instruction.
5323   LoadInst *LI = dyn_cast<LoadInst>(I);
5324   StoreInst *SI = dyn_cast<StoreInst>(I);
5325   assert((LI || SI) && "Invalid memory instruction");
5326 
5327   auto *Ptr = getLoadStorePointerOperand(I);
5328 
5329   // In order to be widened, the pointer should be consecutive, first of all.
5330   if (!Legal->isConsecutivePtr(Ptr))
5331     return false;
5332 
5333   // If the instruction is a store located in a predicated block, it will be
5334   // scalarized.
5335   if (isScalarWithPredication(I))
5336     return false;
5337 
5338   // If the instruction's allocated size doesn't equal it's type size, it
5339   // requires padding and will be scalarized.
5340   auto &DL = I->getModule()->getDataLayout();
5341   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5342   if (hasIrregularType(ScalarTy, DL))
5343     return false;
5344 
5345   return true;
5346 }
5347 
5348 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5349   // We should not collect Uniforms more than once per VF. Right now,
5350   // this function is called from collectUniformsAndScalars(), which
5351   // already does this check. Collecting Uniforms for VF=1 does not make any
5352   // sense.
5353 
5354   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5355          "This function should not be visited twice for the same VF");
5356 
5357   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5358   // not analyze again.  Uniforms.count(VF) will return 1.
5359   Uniforms[VF].clear();
5360 
5361   // We now know that the loop is vectorizable!
5362   // Collect instructions inside the loop that will remain uniform after
5363   // vectorization.
5364 
5365   // Global values, params and instructions outside of current loop are out of
5366   // scope.
5367   auto isOutOfScope = [&](Value *V) -> bool {
5368     Instruction *I = dyn_cast<Instruction>(V);
5369     return (!I || !TheLoop->contains(I));
5370   };
5371 
5372   SetVector<Instruction *> Worklist;
5373   BasicBlock *Latch = TheLoop->getLoopLatch();
5374 
5375   // Instructions that are scalar with predication must not be considered
5376   // uniform after vectorization, because that would create an erroneous
5377   // replicating region where only a single instance out of VF should be formed.
5378   // TODO: optimize such seldom cases if found important, see PR40816.
5379   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5380     if (isOutOfScope(I)) {
5381       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5382                         << *I << "\n");
5383       return;
5384     }
5385     if (isScalarWithPredication(I)) {
5386       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5387                         << *I << "\n");
5388       return;
5389     }
5390     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5391     Worklist.insert(I);
5392   };
5393 
5394   // Start with the conditional branch. If the branch condition is an
5395   // instruction contained in the loop that is only used by the branch, it is
5396   // uniform.
5397   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5398   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5399     addToWorklistIfAllowed(Cmp);
5400 
5401   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5402     InstWidening WideningDecision = getWideningDecision(I, VF);
5403     assert(WideningDecision != CM_Unknown &&
5404            "Widening decision should be ready at this moment");
5405 
5406     // A uniform memory op is itself uniform.  We exclude uniform stores
5407     // here as they demand the last lane, not the first one.
5408     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5409       assert(WideningDecision == CM_Scalarize);
5410       return true;
5411     }
5412 
5413     return (WideningDecision == CM_Widen ||
5414             WideningDecision == CM_Widen_Reverse ||
5415             WideningDecision == CM_Interleave);
5416   };
5417 
5418 
5419   // Returns true if Ptr is the pointer operand of a memory access instruction
5420   // I, and I is known to not require scalarization.
5421   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5422     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5423   };
5424 
5425   // Holds a list of values which are known to have at least one uniform use.
5426   // Note that there may be other uses which aren't uniform.  A "uniform use"
5427   // here is something which only demands lane 0 of the unrolled iterations;
5428   // it does not imply that all lanes produce the same value (e.g. this is not
5429   // the usual meaning of uniform)
5430   SetVector<Value *> HasUniformUse;
5431 
5432   // Scan the loop for instructions which are either a) known to have only
5433   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5434   for (auto *BB : TheLoop->blocks())
5435     for (auto &I : *BB) {
5436       // If there's no pointer operand, there's nothing to do.
5437       auto *Ptr = getLoadStorePointerOperand(&I);
5438       if (!Ptr)
5439         continue;
5440 
5441       // A uniform memory op is itself uniform.  We exclude uniform stores
5442       // here as they demand the last lane, not the first one.
5443       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5444         addToWorklistIfAllowed(&I);
5445 
5446       if (isUniformDecision(&I, VF)) {
5447         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5448         HasUniformUse.insert(Ptr);
5449       }
5450     }
5451 
5452   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5453   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5454   // disallows uses outside the loop as well.
5455   for (auto *V : HasUniformUse) {
5456     if (isOutOfScope(V))
5457       continue;
5458     auto *I = cast<Instruction>(V);
5459     auto UsersAreMemAccesses =
5460       llvm::all_of(I->users(), [&](User *U) -> bool {
5461         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5462       });
5463     if (UsersAreMemAccesses)
5464       addToWorklistIfAllowed(I);
5465   }
5466 
5467   // Expand Worklist in topological order: whenever a new instruction
5468   // is added , its users should be already inside Worklist.  It ensures
5469   // a uniform instruction will only be used by uniform instructions.
5470   unsigned idx = 0;
5471   while (idx != Worklist.size()) {
5472     Instruction *I = Worklist[idx++];
5473 
5474     for (auto OV : I->operand_values()) {
5475       // isOutOfScope operands cannot be uniform instructions.
5476       if (isOutOfScope(OV))
5477         continue;
5478       // First order recurrence Phi's should typically be considered
5479       // non-uniform.
5480       auto *OP = dyn_cast<PHINode>(OV);
5481       if (OP && Legal->isFirstOrderRecurrence(OP))
5482         continue;
5483       // If all the users of the operand are uniform, then add the
5484       // operand into the uniform worklist.
5485       auto *OI = cast<Instruction>(OV);
5486       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5487             auto *J = cast<Instruction>(U);
5488             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5489           }))
5490         addToWorklistIfAllowed(OI);
5491     }
5492   }
5493 
5494   // For an instruction to be added into Worklist above, all its users inside
5495   // the loop should also be in Worklist. However, this condition cannot be
5496   // true for phi nodes that form a cyclic dependence. We must process phi
5497   // nodes separately. An induction variable will remain uniform if all users
5498   // of the induction variable and induction variable update remain uniform.
5499   // The code below handles both pointer and non-pointer induction variables.
5500   for (auto &Induction : Legal->getInductionVars()) {
5501     auto *Ind = Induction.first;
5502     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5503 
5504     // Determine if all users of the induction variable are uniform after
5505     // vectorization.
5506     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5507       auto *I = cast<Instruction>(U);
5508       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5509              isVectorizedMemAccessUse(I, Ind);
5510     });
5511     if (!UniformInd)
5512       continue;
5513 
5514     // Determine if all users of the induction variable update instruction are
5515     // uniform after vectorization.
5516     auto UniformIndUpdate =
5517         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5518           auto *I = cast<Instruction>(U);
5519           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5520                  isVectorizedMemAccessUse(I, IndUpdate);
5521         });
5522     if (!UniformIndUpdate)
5523       continue;
5524 
5525     // The induction variable and its update instruction will remain uniform.
5526     addToWorklistIfAllowed(Ind);
5527     addToWorklistIfAllowed(IndUpdate);
5528   }
5529 
5530   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5531 }
5532 
5533 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5534   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5535 
5536   if (Legal->getRuntimePointerChecking()->Need) {
5537     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5538         "runtime pointer checks needed. Enable vectorization of this "
5539         "loop with '#pragma clang loop vectorize(enable)' when "
5540         "compiling with -Os/-Oz",
5541         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5542     return true;
5543   }
5544 
5545   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5546     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5547         "runtime SCEV checks needed. Enable vectorization of this "
5548         "loop with '#pragma clang loop vectorize(enable)' when "
5549         "compiling with -Os/-Oz",
5550         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5551     return true;
5552   }
5553 
5554   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5555   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5556     reportVectorizationFailure("Runtime stride check for small trip count",
5557         "runtime stride == 1 checks needed. Enable vectorization of "
5558         "this loop without such check by compiling with -Os/-Oz",
5559         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5560     return true;
5561   }
5562 
5563   return false;
5564 }
5565 
5566 ElementCount
5567 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5568   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5569     reportVectorizationInfo(
5570         "Disabling scalable vectorization, because target does not "
5571         "support scalable vectors.",
5572         "ScalableVectorsUnsupported", ORE, TheLoop);
5573     return ElementCount::getScalable(0);
5574   }
5575 
5576   if (Hints->isScalableVectorizationDisabled()) {
5577     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5578                             "ScalableVectorizationDisabled", ORE, TheLoop);
5579     return ElementCount::getScalable(0);
5580   }
5581 
5582   auto MaxScalableVF = ElementCount::getScalable(
5583       std::numeric_limits<ElementCount::ScalarTy>::max());
5584 
5585   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5586   // FIXME: While for scalable vectors this is currently sufficient, this should
5587   // be replaced by a more detailed mechanism that filters out specific VFs,
5588   // instead of invalidating vectorization for a whole set of VFs based on the
5589   // MaxVF.
5590 
5591   // Disable scalable vectorization if the loop contains unsupported reductions.
5592   if (!canVectorizeReductions(MaxScalableVF)) {
5593     reportVectorizationInfo(
5594         "Scalable vectorization not supported for the reduction "
5595         "operations found in this loop.",
5596         "ScalableVFUnfeasible", ORE, TheLoop);
5597     return ElementCount::getScalable(0);
5598   }
5599 
5600   // Disable scalable vectorization if the loop contains any instructions
5601   // with element types not supported for scalable vectors.
5602   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5603         return !Ty->isVoidTy() &&
5604                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5605       })) {
5606     reportVectorizationInfo("Scalable vectorization is not supported "
5607                             "for all element types found in this loop.",
5608                             "ScalableVFUnfeasible", ORE, TheLoop);
5609     return ElementCount::getScalable(0);
5610   }
5611 
5612   if (Legal->isSafeForAnyVectorWidth())
5613     return MaxScalableVF;
5614 
5615   // Limit MaxScalableVF by the maximum safe dependence distance.
5616   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5617   MaxScalableVF = ElementCount::getScalable(
5618       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5619   if (!MaxScalableVF)
5620     reportVectorizationInfo(
5621         "Max legal vector width too small, scalable vectorization "
5622         "unfeasible.",
5623         "ScalableVFUnfeasible", ORE, TheLoop);
5624 
5625   return MaxScalableVF;
5626 }
5627 
5628 FixedScalableVFPair
5629 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5630                                                  ElementCount UserVF) {
5631   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5632   unsigned SmallestType, WidestType;
5633   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5634 
5635   // Get the maximum safe dependence distance in bits computed by LAA.
5636   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5637   // the memory accesses that is most restrictive (involved in the smallest
5638   // dependence distance).
5639   unsigned MaxSafeElements =
5640       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5641 
5642   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5643   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5644 
5645   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5646                     << ".\n");
5647   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5648                     << ".\n");
5649 
5650   // First analyze the UserVF, fall back if the UserVF should be ignored.
5651   if (UserVF) {
5652     auto MaxSafeUserVF =
5653         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5654 
5655     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5656       // If `VF=vscale x N` is safe, then so is `VF=N`
5657       if (UserVF.isScalable())
5658         return FixedScalableVFPair(
5659             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5660       else
5661         return UserVF;
5662     }
5663 
5664     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5665 
5666     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5667     // is better to ignore the hint and let the compiler choose a suitable VF.
5668     if (!UserVF.isScalable()) {
5669       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5670                         << " is unsafe, clamping to max safe VF="
5671                         << MaxSafeFixedVF << ".\n");
5672       ORE->emit([&]() {
5673         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5674                                           TheLoop->getStartLoc(),
5675                                           TheLoop->getHeader())
5676                << "User-specified vectorization factor "
5677                << ore::NV("UserVectorizationFactor", UserVF)
5678                << " is unsafe, clamping to maximum safe vectorization factor "
5679                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5680       });
5681       return MaxSafeFixedVF;
5682     }
5683 
5684     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5685                       << " is unsafe. Ignoring scalable UserVF.\n");
5686     ORE->emit([&]() {
5687       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5688                                         TheLoop->getStartLoc(),
5689                                         TheLoop->getHeader())
5690              << "User-specified vectorization factor "
5691              << ore::NV("UserVectorizationFactor", UserVF)
5692              << " is unsafe. Ignoring the hint to let the compiler pick a "
5693                 "suitable VF.";
5694     });
5695   }
5696 
5697   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5698                     << " / " << WidestType << " bits.\n");
5699 
5700   FixedScalableVFPair Result(ElementCount::getFixed(1),
5701                              ElementCount::getScalable(0));
5702   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5703                                            WidestType, MaxSafeFixedVF))
5704     Result.FixedVF = MaxVF;
5705 
5706   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5707                                            WidestType, MaxSafeScalableVF))
5708     if (MaxVF.isScalable()) {
5709       Result.ScalableVF = MaxVF;
5710       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5711                         << "\n");
5712     }
5713 
5714   return Result;
5715 }
5716 
5717 FixedScalableVFPair
5718 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5719   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5720     // TODO: It may by useful to do since it's still likely to be dynamically
5721     // uniform if the target can skip.
5722     reportVectorizationFailure(
5723         "Not inserting runtime ptr check for divergent target",
5724         "runtime pointer checks needed. Not enabled for divergent target",
5725         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5726     return FixedScalableVFPair::getNone();
5727   }
5728 
5729   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5730   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5731   if (TC == 1) {
5732     reportVectorizationFailure("Single iteration (non) loop",
5733         "loop trip count is one, irrelevant for vectorization",
5734         "SingleIterationLoop", ORE, TheLoop);
5735     return FixedScalableVFPair::getNone();
5736   }
5737 
5738   switch (ScalarEpilogueStatus) {
5739   case CM_ScalarEpilogueAllowed:
5740     return computeFeasibleMaxVF(TC, UserVF);
5741   case CM_ScalarEpilogueNotAllowedUsePredicate:
5742     LLVM_FALLTHROUGH;
5743   case CM_ScalarEpilogueNotNeededUsePredicate:
5744     LLVM_DEBUG(
5745         dbgs() << "LV: vector predicate hint/switch found.\n"
5746                << "LV: Not allowing scalar epilogue, creating predicated "
5747                << "vector loop.\n");
5748     break;
5749   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5750     // fallthrough as a special case of OptForSize
5751   case CM_ScalarEpilogueNotAllowedOptSize:
5752     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5753       LLVM_DEBUG(
5754           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5755     else
5756       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5757                         << "count.\n");
5758 
5759     // Bail if runtime checks are required, which are not good when optimising
5760     // for size.
5761     if (runtimeChecksRequired())
5762       return FixedScalableVFPair::getNone();
5763 
5764     break;
5765   }
5766 
5767   // The only loops we can vectorize without a scalar epilogue, are loops with
5768   // a bottom-test and a single exiting block. We'd have to handle the fact
5769   // that not every instruction executes on the last iteration.  This will
5770   // require a lane mask which varies through the vector loop body.  (TODO)
5771   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5772     // If there was a tail-folding hint/switch, but we can't fold the tail by
5773     // masking, fallback to a vectorization with a scalar epilogue.
5774     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5775       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5776                            "scalar epilogue instead.\n");
5777       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5778       return computeFeasibleMaxVF(TC, UserVF);
5779     }
5780     return FixedScalableVFPair::getNone();
5781   }
5782 
5783   // Now try the tail folding
5784 
5785   // Invalidate interleave groups that require an epilogue if we can't mask
5786   // the interleave-group.
5787   if (!useMaskedInterleavedAccesses(TTI)) {
5788     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5789            "No decisions should have been taken at this point");
5790     // Note: There is no need to invalidate any cost modeling decisions here, as
5791     // non where taken so far.
5792     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5793   }
5794 
5795   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5796   // Avoid tail folding if the trip count is known to be a multiple of any VF
5797   // we chose.
5798   // FIXME: The condition below pessimises the case for fixed-width vectors,
5799   // when scalable VFs are also candidates for vectorization.
5800   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5801     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5802     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5803            "MaxFixedVF must be a power of 2");
5804     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5805                                    : MaxFixedVF.getFixedValue();
5806     ScalarEvolution *SE = PSE.getSE();
5807     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5808     const SCEV *ExitCount = SE->getAddExpr(
5809         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5810     const SCEV *Rem = SE->getURemExpr(
5811         SE->applyLoopGuards(ExitCount, TheLoop),
5812         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5813     if (Rem->isZero()) {
5814       // Accept MaxFixedVF if we do not have a tail.
5815       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5816       return MaxFactors;
5817     }
5818   }
5819 
5820   // If we don't know the precise trip count, or if the trip count that we
5821   // found modulo the vectorization factor is not zero, try to fold the tail
5822   // by masking.
5823   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5824   if (Legal->prepareToFoldTailByMasking()) {
5825     FoldTailByMasking = true;
5826     return MaxFactors;
5827   }
5828 
5829   // If there was a tail-folding hint/switch, but we can't fold the tail by
5830   // masking, fallback to a vectorization with a scalar epilogue.
5831   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5832     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5833                          "scalar epilogue instead.\n");
5834     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5835     return MaxFactors;
5836   }
5837 
5838   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5839     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5840     return FixedScalableVFPair::getNone();
5841   }
5842 
5843   if (TC == 0) {
5844     reportVectorizationFailure(
5845         "Unable to calculate the loop count due to complex control flow",
5846         "unable to calculate the loop count due to complex control flow",
5847         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5848     return FixedScalableVFPair::getNone();
5849   }
5850 
5851   reportVectorizationFailure(
5852       "Cannot optimize for size and vectorize at the same time.",
5853       "cannot optimize for size and vectorize at the same time. "
5854       "Enable vectorization of this loop with '#pragma clang loop "
5855       "vectorize(enable)' when compiling with -Os/-Oz",
5856       "NoTailLoopWithOptForSize", ORE, TheLoop);
5857   return FixedScalableVFPair::getNone();
5858 }
5859 
5860 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5861     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5862     const ElementCount &MaxSafeVF) {
5863   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5864   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5865       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5866                            : TargetTransformInfo::RGK_FixedWidthVector);
5867 
5868   // Convenience function to return the minimum of two ElementCounts.
5869   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5870     assert((LHS.isScalable() == RHS.isScalable()) &&
5871            "Scalable flags must match");
5872     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5873   };
5874 
5875   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5876   // Note that both WidestRegister and WidestType may not be a powers of 2.
5877   auto MaxVectorElementCount = ElementCount::get(
5878       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5879       ComputeScalableMaxVF);
5880   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5881   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5882                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5883 
5884   if (!MaxVectorElementCount) {
5885     LLVM_DEBUG(dbgs() << "LV: The target has no "
5886                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5887                       << " vector registers.\n");
5888     return ElementCount::getFixed(1);
5889   }
5890 
5891   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5892   if (ConstTripCount &&
5893       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5894       isPowerOf2_32(ConstTripCount)) {
5895     // We need to clamp the VF to be the ConstTripCount. There is no point in
5896     // choosing a higher viable VF as done in the loop below. If
5897     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5898     // the TC is less than or equal to the known number of lanes.
5899     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5900                       << ConstTripCount << "\n");
5901     return TripCountEC;
5902   }
5903 
5904   ElementCount MaxVF = MaxVectorElementCount;
5905   if (TTI.shouldMaximizeVectorBandwidth() ||
5906       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5907     auto MaxVectorElementCountMaxBW = ElementCount::get(
5908         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5909         ComputeScalableMaxVF);
5910     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5911 
5912     // Collect all viable vectorization factors larger than the default MaxVF
5913     // (i.e. MaxVectorElementCount).
5914     SmallVector<ElementCount, 8> VFs;
5915     for (ElementCount VS = MaxVectorElementCount * 2;
5916          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5917       VFs.push_back(VS);
5918 
5919     // For each VF calculate its register usage.
5920     auto RUs = calculateRegisterUsage(VFs);
5921 
5922     // Select the largest VF which doesn't require more registers than existing
5923     // ones.
5924     for (int i = RUs.size() - 1; i >= 0; --i) {
5925       bool Selected = true;
5926       for (auto &pair : RUs[i].MaxLocalUsers) {
5927         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5928         if (pair.second > TargetNumRegisters)
5929           Selected = false;
5930       }
5931       if (Selected) {
5932         MaxVF = VFs[i];
5933         break;
5934       }
5935     }
5936     if (ElementCount MinVF =
5937             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5938       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5939         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5940                           << ") with target's minimum: " << MinVF << '\n');
5941         MaxVF = MinVF;
5942       }
5943     }
5944   }
5945   return MaxVF;
5946 }
5947 
5948 bool LoopVectorizationCostModel::isMoreProfitable(
5949     const VectorizationFactor &A, const VectorizationFactor &B) const {
5950   InstructionCost CostA = A.Cost;
5951   InstructionCost CostB = B.Cost;
5952 
5953   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5954 
5955   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5956       MaxTripCount) {
5957     // If we are folding the tail and the trip count is a known (possibly small)
5958     // constant, the trip count will be rounded up to an integer number of
5959     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5960     // which we compare directly. When not folding the tail, the total cost will
5961     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5962     // approximated with the per-lane cost below instead of using the tripcount
5963     // as here.
5964     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5965     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5966     return RTCostA < RTCostB;
5967   }
5968 
5969   // When set to preferred, for now assume vscale may be larger than 1, so
5970   // that scalable vectorization is slightly favorable over fixed-width
5971   // vectorization.
5972   if (Hints->isScalableVectorizationPreferred())
5973     if (A.Width.isScalable() && !B.Width.isScalable())
5974       return (CostA * B.Width.getKnownMinValue()) <=
5975              (CostB * A.Width.getKnownMinValue());
5976 
5977   // To avoid the need for FP division:
5978   //      (CostA / A.Width) < (CostB / B.Width)
5979   // <=>  (CostA * B.Width) < (CostB * A.Width)
5980   return (CostA * B.Width.getKnownMinValue()) <
5981          (CostB * A.Width.getKnownMinValue());
5982 }
5983 
5984 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5985     const ElementCountSet &VFCandidates) {
5986   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5987   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5988   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5989   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5990          "Expected Scalar VF to be a candidate");
5991 
5992   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5993   VectorizationFactor ChosenFactor = ScalarCost;
5994 
5995   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5996   if (ForceVectorization && VFCandidates.size() > 1) {
5997     // Ignore scalar width, because the user explicitly wants vectorization.
5998     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5999     // evaluation.
6000     ChosenFactor.Cost = InstructionCost::getMax();
6001   }
6002 
6003   SmallVector<InstructionVFPair> InvalidCosts;
6004   for (const auto &i : VFCandidates) {
6005     // The cost for scalar VF=1 is already calculated, so ignore it.
6006     if (i.isScalar())
6007       continue;
6008 
6009     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6010     VectorizationFactor Candidate(i, C.first);
6011     LLVM_DEBUG(
6012         dbgs() << "LV: Vector loop of width " << i << " costs: "
6013                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6014                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6015                << ".\n");
6016 
6017     if (!C.second && !ForceVectorization) {
6018       LLVM_DEBUG(
6019           dbgs() << "LV: Not considering vector loop of width " << i
6020                  << " because it will not generate any vector instructions.\n");
6021       continue;
6022     }
6023 
6024     // If profitable add it to ProfitableVF list.
6025     if (isMoreProfitable(Candidate, ScalarCost))
6026       ProfitableVFs.push_back(Candidate);
6027 
6028     if (isMoreProfitable(Candidate, ChosenFactor))
6029       ChosenFactor = Candidate;
6030   }
6031 
6032   // Emit a report of VFs with invalid costs in the loop.
6033   if (!InvalidCosts.empty()) {
6034     // Group the remarks per instruction, keeping the instruction order from
6035     // InvalidCosts.
6036     std::map<Instruction *, unsigned> Numbering;
6037     unsigned I = 0;
6038     for (auto &Pair : InvalidCosts)
6039       if (!Numbering.count(Pair.first))
6040         Numbering[Pair.first] = I++;
6041 
6042     // Sort the list, first on instruction(number) then on VF.
6043     llvm::sort(InvalidCosts,
6044                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6045                  if (Numbering[A.first] != Numbering[B.first])
6046                    return Numbering[A.first] < Numbering[B.first];
6047                  ElementCountComparator ECC;
6048                  return ECC(A.second, B.second);
6049                });
6050 
6051     // For a list of ordered instruction-vf pairs:
6052     //   [(load, vf1), (load, vf2), (store, vf1)]
6053     // Group the instructions together to emit separate remarks for:
6054     //   load  (vf1, vf2)
6055     //   store (vf1)
6056     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6057     auto Subset = ArrayRef<InstructionVFPair>();
6058     do {
6059       if (Subset.empty())
6060         Subset = Tail.take_front(1);
6061 
6062       Instruction *I = Subset.front().first;
6063 
6064       // If the next instruction is different, or if there are no other pairs,
6065       // emit a remark for the collated subset. e.g.
6066       //   [(load, vf1), (load, vf2))]
6067       // to emit:
6068       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6069       if (Subset == Tail || Tail[Subset.size()].first != I) {
6070         std::string OutString;
6071         raw_string_ostream OS(OutString);
6072         assert(!Subset.empty() && "Unexpected empty range");
6073         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6074         for (auto &Pair : Subset)
6075           OS << (Pair.second == Subset.front().second ? "" : ", ")
6076              << Pair.second;
6077         OS << "):";
6078         if (auto *CI = dyn_cast<CallInst>(I))
6079           OS << " call to " << CI->getCalledFunction()->getName();
6080         else
6081           OS << " " << I->getOpcodeName();
6082         OS.flush();
6083         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6084         Tail = Tail.drop_front(Subset.size());
6085         Subset = {};
6086       } else
6087         // Grow the subset by one element
6088         Subset = Tail.take_front(Subset.size() + 1);
6089     } while (!Tail.empty());
6090   }
6091 
6092   if (!EnableCondStoresVectorization && NumPredStores) {
6093     reportVectorizationFailure("There are conditional stores.",
6094         "store that is conditionally executed prevents vectorization",
6095         "ConditionalStore", ORE, TheLoop);
6096     ChosenFactor = ScalarCost;
6097   }
6098 
6099   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6100                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6101              << "LV: Vectorization seems to be not beneficial, "
6102              << "but was forced by a user.\n");
6103   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6104   return ChosenFactor;
6105 }
6106 
6107 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6108     const Loop &L, ElementCount VF) const {
6109   // Cross iteration phis such as reductions need special handling and are
6110   // currently unsupported.
6111   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6112         return Legal->isFirstOrderRecurrence(&Phi) ||
6113                Legal->isReductionVariable(&Phi);
6114       }))
6115     return false;
6116 
6117   // Phis with uses outside of the loop require special handling and are
6118   // currently unsupported.
6119   for (auto &Entry : Legal->getInductionVars()) {
6120     // Look for uses of the value of the induction at the last iteration.
6121     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6122     for (User *U : PostInc->users())
6123       if (!L.contains(cast<Instruction>(U)))
6124         return false;
6125     // Look for uses of penultimate value of the induction.
6126     for (User *U : Entry.first->users())
6127       if (!L.contains(cast<Instruction>(U)))
6128         return false;
6129   }
6130 
6131   // Induction variables that are widened require special handling that is
6132   // currently not supported.
6133   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6134         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6135                  this->isProfitableToScalarize(Entry.first, VF));
6136       }))
6137     return false;
6138 
6139   // Epilogue vectorization code has not been auditted to ensure it handles
6140   // non-latch exits properly.  It may be fine, but it needs auditted and
6141   // tested.
6142   if (L.getExitingBlock() != L.getLoopLatch())
6143     return false;
6144 
6145   return true;
6146 }
6147 
6148 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6149     const ElementCount VF) const {
6150   // FIXME: We need a much better cost-model to take different parameters such
6151   // as register pressure, code size increase and cost of extra branches into
6152   // account. For now we apply a very crude heuristic and only consider loops
6153   // with vectorization factors larger than a certain value.
6154   // We also consider epilogue vectorization unprofitable for targets that don't
6155   // consider interleaving beneficial (eg. MVE).
6156   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6157     return false;
6158   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6159     return true;
6160   return false;
6161 }
6162 
6163 VectorizationFactor
6164 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6165     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6166   VectorizationFactor Result = VectorizationFactor::Disabled();
6167   if (!EnableEpilogueVectorization) {
6168     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6169     return Result;
6170   }
6171 
6172   if (!isScalarEpilogueAllowed()) {
6173     LLVM_DEBUG(
6174         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6175                   "allowed.\n";);
6176     return Result;
6177   }
6178 
6179   // FIXME: This can be fixed for scalable vectors later, because at this stage
6180   // the LoopVectorizer will only consider vectorizing a loop with scalable
6181   // vectors when the loop has a hint to enable vectorization for a given VF.
6182   if (MainLoopVF.isScalable()) {
6183     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6184                          "yet supported.\n");
6185     return Result;
6186   }
6187 
6188   // Not really a cost consideration, but check for unsupported cases here to
6189   // simplify the logic.
6190   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6191     LLVM_DEBUG(
6192         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6193                   "not a supported candidate.\n";);
6194     return Result;
6195   }
6196 
6197   if (EpilogueVectorizationForceVF > 1) {
6198     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6199     if (LVP.hasPlanWithVFs(
6200             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6201       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6202     else {
6203       LLVM_DEBUG(
6204           dbgs()
6205               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6206       return Result;
6207     }
6208   }
6209 
6210   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6211       TheLoop->getHeader()->getParent()->hasMinSize()) {
6212     LLVM_DEBUG(
6213         dbgs()
6214             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6215     return Result;
6216   }
6217 
6218   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6219     return Result;
6220 
6221   for (auto &NextVF : ProfitableVFs)
6222     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6223         (Result.Width.getFixedValue() == 1 ||
6224          isMoreProfitable(NextVF, Result)) &&
6225         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6226       Result = NextVF;
6227 
6228   if (Result != VectorizationFactor::Disabled())
6229     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6230                       << Result.Width.getFixedValue() << "\n";);
6231   return Result;
6232 }
6233 
6234 std::pair<unsigned, unsigned>
6235 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6236   unsigned MinWidth = -1U;
6237   unsigned MaxWidth = 8;
6238   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6239   for (Type *T : ElementTypesInLoop) {
6240     MinWidth = std::min<unsigned>(
6241         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6242     MaxWidth = std::max<unsigned>(
6243         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6244   }
6245   return {MinWidth, MaxWidth};
6246 }
6247 
6248 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6249   ElementTypesInLoop.clear();
6250   // For each block.
6251   for (BasicBlock *BB : TheLoop->blocks()) {
6252     // For each instruction in the loop.
6253     for (Instruction &I : BB->instructionsWithoutDebug()) {
6254       Type *T = I.getType();
6255 
6256       // Skip ignored values.
6257       if (ValuesToIgnore.count(&I))
6258         continue;
6259 
6260       // Only examine Loads, Stores and PHINodes.
6261       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6262         continue;
6263 
6264       // Examine PHI nodes that are reduction variables. Update the type to
6265       // account for the recurrence type.
6266       if (auto *PN = dyn_cast<PHINode>(&I)) {
6267         if (!Legal->isReductionVariable(PN))
6268           continue;
6269         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6270         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6271             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6272                                       RdxDesc.getRecurrenceType(),
6273                                       TargetTransformInfo::ReductionFlags()))
6274           continue;
6275         T = RdxDesc.getRecurrenceType();
6276       }
6277 
6278       // Examine the stored values.
6279       if (auto *ST = dyn_cast<StoreInst>(&I))
6280         T = ST->getValueOperand()->getType();
6281 
6282       // Ignore loaded pointer types and stored pointer types that are not
6283       // vectorizable.
6284       //
6285       // FIXME: The check here attempts to predict whether a load or store will
6286       //        be vectorized. We only know this for certain after a VF has
6287       //        been selected. Here, we assume that if an access can be
6288       //        vectorized, it will be. We should also look at extending this
6289       //        optimization to non-pointer types.
6290       //
6291       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6292           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6293         continue;
6294 
6295       ElementTypesInLoop.insert(T);
6296     }
6297   }
6298 }
6299 
6300 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6301                                                            unsigned LoopCost) {
6302   // -- The interleave heuristics --
6303   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6304   // There are many micro-architectural considerations that we can't predict
6305   // at this level. For example, frontend pressure (on decode or fetch) due to
6306   // code size, or the number and capabilities of the execution ports.
6307   //
6308   // We use the following heuristics to select the interleave count:
6309   // 1. If the code has reductions, then we interleave to break the cross
6310   // iteration dependency.
6311   // 2. If the loop is really small, then we interleave to reduce the loop
6312   // overhead.
6313   // 3. We don't interleave if we think that we will spill registers to memory
6314   // due to the increased register pressure.
6315 
6316   if (!isScalarEpilogueAllowed())
6317     return 1;
6318 
6319   // We used the distance for the interleave count.
6320   if (Legal->getMaxSafeDepDistBytes() != -1U)
6321     return 1;
6322 
6323   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6324   const bool HasReductions = !Legal->getReductionVars().empty();
6325   // Do not interleave loops with a relatively small known or estimated trip
6326   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6327   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6328   // because with the above conditions interleaving can expose ILP and break
6329   // cross iteration dependences for reductions.
6330   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6331       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6332     return 1;
6333 
6334   RegisterUsage R = calculateRegisterUsage({VF})[0];
6335   // We divide by these constants so assume that we have at least one
6336   // instruction that uses at least one register.
6337   for (auto& pair : R.MaxLocalUsers) {
6338     pair.second = std::max(pair.second, 1U);
6339   }
6340 
6341   // We calculate the interleave count using the following formula.
6342   // Subtract the number of loop invariants from the number of available
6343   // registers. These registers are used by all of the interleaved instances.
6344   // Next, divide the remaining registers by the number of registers that is
6345   // required by the loop, in order to estimate how many parallel instances
6346   // fit without causing spills. All of this is rounded down if necessary to be
6347   // a power of two. We want power of two interleave count to simplify any
6348   // addressing operations or alignment considerations.
6349   // We also want power of two interleave counts to ensure that the induction
6350   // variable of the vector loop wraps to zero, when tail is folded by masking;
6351   // this currently happens when OptForSize, in which case IC is set to 1 above.
6352   unsigned IC = UINT_MAX;
6353 
6354   for (auto& pair : R.MaxLocalUsers) {
6355     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6356     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6357                       << " registers of "
6358                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6359     if (VF.isScalar()) {
6360       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6361         TargetNumRegisters = ForceTargetNumScalarRegs;
6362     } else {
6363       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6364         TargetNumRegisters = ForceTargetNumVectorRegs;
6365     }
6366     unsigned MaxLocalUsers = pair.second;
6367     unsigned LoopInvariantRegs = 0;
6368     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6369       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6370 
6371     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6372     // Don't count the induction variable as interleaved.
6373     if (EnableIndVarRegisterHeur) {
6374       TmpIC =
6375           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6376                         std::max(1U, (MaxLocalUsers - 1)));
6377     }
6378 
6379     IC = std::min(IC, TmpIC);
6380   }
6381 
6382   // Clamp the interleave ranges to reasonable counts.
6383   unsigned MaxInterleaveCount =
6384       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6385 
6386   // Check if the user has overridden the max.
6387   if (VF.isScalar()) {
6388     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6389       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6390   } else {
6391     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6392       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6393   }
6394 
6395   // If trip count is known or estimated compile time constant, limit the
6396   // interleave count to be less than the trip count divided by VF, provided it
6397   // is at least 1.
6398   //
6399   // For scalable vectors we can't know if interleaving is beneficial. It may
6400   // not be beneficial for small loops if none of the lanes in the second vector
6401   // iterations is enabled. However, for larger loops, there is likely to be a
6402   // similar benefit as for fixed-width vectors. For now, we choose to leave
6403   // the InterleaveCount as if vscale is '1', although if some information about
6404   // the vector is known (e.g. min vector size), we can make a better decision.
6405   if (BestKnownTC) {
6406     MaxInterleaveCount =
6407         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6408     // Make sure MaxInterleaveCount is greater than 0.
6409     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6410   }
6411 
6412   assert(MaxInterleaveCount > 0 &&
6413          "Maximum interleave count must be greater than 0");
6414 
6415   // Clamp the calculated IC to be between the 1 and the max interleave count
6416   // that the target and trip count allows.
6417   if (IC > MaxInterleaveCount)
6418     IC = MaxInterleaveCount;
6419   else
6420     // Make sure IC is greater than 0.
6421     IC = std::max(1u, IC);
6422 
6423   assert(IC > 0 && "Interleave count must be greater than 0.");
6424 
6425   // If we did not calculate the cost for VF (because the user selected the VF)
6426   // then we calculate the cost of VF here.
6427   if (LoopCost == 0) {
6428     InstructionCost C = expectedCost(VF).first;
6429     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6430     LoopCost = *C.getValue();
6431   }
6432 
6433   assert(LoopCost && "Non-zero loop cost expected");
6434 
6435   // Interleave if we vectorized this loop and there is a reduction that could
6436   // benefit from interleaving.
6437   if (VF.isVector() && HasReductions) {
6438     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6439     return IC;
6440   }
6441 
6442   // Note that if we've already vectorized the loop we will have done the
6443   // runtime check and so interleaving won't require further checks.
6444   bool InterleavingRequiresRuntimePointerCheck =
6445       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6446 
6447   // We want to interleave small loops in order to reduce the loop overhead and
6448   // potentially expose ILP opportunities.
6449   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6450                     << "LV: IC is " << IC << '\n'
6451                     << "LV: VF is " << VF << '\n');
6452   const bool AggressivelyInterleaveReductions =
6453       TTI.enableAggressiveInterleaving(HasReductions);
6454   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6455     // We assume that the cost overhead is 1 and we use the cost model
6456     // to estimate the cost of the loop and interleave until the cost of the
6457     // loop overhead is about 5% of the cost of the loop.
6458     unsigned SmallIC =
6459         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6460 
6461     // Interleave until store/load ports (estimated by max interleave count) are
6462     // saturated.
6463     unsigned NumStores = Legal->getNumStores();
6464     unsigned NumLoads = Legal->getNumLoads();
6465     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6466     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6467 
6468     // If we have a scalar reduction (vector reductions are already dealt with
6469     // by this point), we can increase the critical path length if the loop
6470     // we're interleaving is inside another loop. Limit, by default to 2, so the
6471     // critical path only gets increased by one reduction operation.
6472     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6473       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6474       SmallIC = std::min(SmallIC, F);
6475       StoresIC = std::min(StoresIC, F);
6476       LoadsIC = std::min(LoadsIC, F);
6477     }
6478 
6479     if (EnableLoadStoreRuntimeInterleave &&
6480         std::max(StoresIC, LoadsIC) > SmallIC) {
6481       LLVM_DEBUG(
6482           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6483       return std::max(StoresIC, LoadsIC);
6484     }
6485 
6486     // If there are scalar reductions and TTI has enabled aggressive
6487     // interleaving for reductions, we will interleave to expose ILP.
6488     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6489         AggressivelyInterleaveReductions) {
6490       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6491       // Interleave no less than SmallIC but not as aggressive as the normal IC
6492       // to satisfy the rare situation when resources are too limited.
6493       return std::max(IC / 2, SmallIC);
6494     } else {
6495       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6496       return SmallIC;
6497     }
6498   }
6499 
6500   // Interleave if this is a large loop (small loops are already dealt with by
6501   // this point) that could benefit from interleaving.
6502   if (AggressivelyInterleaveReductions) {
6503     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6504     return IC;
6505   }
6506 
6507   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6508   return 1;
6509 }
6510 
6511 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6512 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6513   // This function calculates the register usage by measuring the highest number
6514   // of values that are alive at a single location. Obviously, this is a very
6515   // rough estimation. We scan the loop in a topological order in order and
6516   // assign a number to each instruction. We use RPO to ensure that defs are
6517   // met before their users. We assume that each instruction that has in-loop
6518   // users starts an interval. We record every time that an in-loop value is
6519   // used, so we have a list of the first and last occurrences of each
6520   // instruction. Next, we transpose this data structure into a multi map that
6521   // holds the list of intervals that *end* at a specific location. This multi
6522   // map allows us to perform a linear search. We scan the instructions linearly
6523   // and record each time that a new interval starts, by placing it in a set.
6524   // If we find this value in the multi-map then we remove it from the set.
6525   // The max register usage is the maximum size of the set.
6526   // We also search for instructions that are defined outside the loop, but are
6527   // used inside the loop. We need this number separately from the max-interval
6528   // usage number because when we unroll, loop-invariant values do not take
6529   // more register.
6530   LoopBlocksDFS DFS(TheLoop);
6531   DFS.perform(LI);
6532 
6533   RegisterUsage RU;
6534 
6535   // Each 'key' in the map opens a new interval. The values
6536   // of the map are the index of the 'last seen' usage of the
6537   // instruction that is the key.
6538   using IntervalMap = DenseMap<Instruction *, unsigned>;
6539 
6540   // Maps instruction to its index.
6541   SmallVector<Instruction *, 64> IdxToInstr;
6542   // Marks the end of each interval.
6543   IntervalMap EndPoint;
6544   // Saves the list of instruction indices that are used in the loop.
6545   SmallPtrSet<Instruction *, 8> Ends;
6546   // Saves the list of values that are used in the loop but are
6547   // defined outside the loop, such as arguments and constants.
6548   SmallPtrSet<Value *, 8> LoopInvariants;
6549 
6550   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6551     for (Instruction &I : BB->instructionsWithoutDebug()) {
6552       IdxToInstr.push_back(&I);
6553 
6554       // Save the end location of each USE.
6555       for (Value *U : I.operands()) {
6556         auto *Instr = dyn_cast<Instruction>(U);
6557 
6558         // Ignore non-instruction values such as arguments, constants, etc.
6559         if (!Instr)
6560           continue;
6561 
6562         // If this instruction is outside the loop then record it and continue.
6563         if (!TheLoop->contains(Instr)) {
6564           LoopInvariants.insert(Instr);
6565           continue;
6566         }
6567 
6568         // Overwrite previous end points.
6569         EndPoint[Instr] = IdxToInstr.size();
6570         Ends.insert(Instr);
6571       }
6572     }
6573   }
6574 
6575   // Saves the list of intervals that end with the index in 'key'.
6576   using InstrList = SmallVector<Instruction *, 2>;
6577   DenseMap<unsigned, InstrList> TransposeEnds;
6578 
6579   // Transpose the EndPoints to a list of values that end at each index.
6580   for (auto &Interval : EndPoint)
6581     TransposeEnds[Interval.second].push_back(Interval.first);
6582 
6583   SmallPtrSet<Instruction *, 8> OpenIntervals;
6584   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6585   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6586 
6587   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6588 
6589   // A lambda that gets the register usage for the given type and VF.
6590   const auto &TTICapture = TTI;
6591   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6592     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6593       return 0;
6594     InstructionCost::CostType RegUsage =
6595         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6596     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6597            "Nonsensical values for register usage.");
6598     return RegUsage;
6599   };
6600 
6601   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6602     Instruction *I = IdxToInstr[i];
6603 
6604     // Remove all of the instructions that end at this location.
6605     InstrList &List = TransposeEnds[i];
6606     for (Instruction *ToRemove : List)
6607       OpenIntervals.erase(ToRemove);
6608 
6609     // Ignore instructions that are never used within the loop.
6610     if (!Ends.count(I))
6611       continue;
6612 
6613     // Skip ignored values.
6614     if (ValuesToIgnore.count(I))
6615       continue;
6616 
6617     // For each VF find the maximum usage of registers.
6618     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6619       // Count the number of live intervals.
6620       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6621 
6622       if (VFs[j].isScalar()) {
6623         for (auto Inst : OpenIntervals) {
6624           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6625           if (RegUsage.find(ClassID) == RegUsage.end())
6626             RegUsage[ClassID] = 1;
6627           else
6628             RegUsage[ClassID] += 1;
6629         }
6630       } else {
6631         collectUniformsAndScalars(VFs[j]);
6632         for (auto Inst : OpenIntervals) {
6633           // Skip ignored values for VF > 1.
6634           if (VecValuesToIgnore.count(Inst))
6635             continue;
6636           if (isScalarAfterVectorization(Inst, VFs[j])) {
6637             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6638             if (RegUsage.find(ClassID) == RegUsage.end())
6639               RegUsage[ClassID] = 1;
6640             else
6641               RegUsage[ClassID] += 1;
6642           } else {
6643             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6644             if (RegUsage.find(ClassID) == RegUsage.end())
6645               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6646             else
6647               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6648           }
6649         }
6650       }
6651 
6652       for (auto& pair : RegUsage) {
6653         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6654           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6655         else
6656           MaxUsages[j][pair.first] = pair.second;
6657       }
6658     }
6659 
6660     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6661                       << OpenIntervals.size() << '\n');
6662 
6663     // Add the current instruction to the list of open intervals.
6664     OpenIntervals.insert(I);
6665   }
6666 
6667   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6668     SmallMapVector<unsigned, unsigned, 4> Invariant;
6669 
6670     for (auto Inst : LoopInvariants) {
6671       unsigned Usage =
6672           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6673       unsigned ClassID =
6674           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6675       if (Invariant.find(ClassID) == Invariant.end())
6676         Invariant[ClassID] = Usage;
6677       else
6678         Invariant[ClassID] += Usage;
6679     }
6680 
6681     LLVM_DEBUG({
6682       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6683       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6684              << " item\n";
6685       for (const auto &pair : MaxUsages[i]) {
6686         dbgs() << "LV(REG): RegisterClass: "
6687                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6688                << " registers\n";
6689       }
6690       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6691              << " item\n";
6692       for (const auto &pair : Invariant) {
6693         dbgs() << "LV(REG): RegisterClass: "
6694                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6695                << " registers\n";
6696       }
6697     });
6698 
6699     RU.LoopInvariantRegs = Invariant;
6700     RU.MaxLocalUsers = MaxUsages[i];
6701     RUs[i] = RU;
6702   }
6703 
6704   return RUs;
6705 }
6706 
6707 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6708   // TODO: Cost model for emulated masked load/store is completely
6709   // broken. This hack guides the cost model to use an artificially
6710   // high enough value to practically disable vectorization with such
6711   // operations, except where previously deployed legality hack allowed
6712   // using very low cost values. This is to avoid regressions coming simply
6713   // from moving "masked load/store" check from legality to cost model.
6714   // Masked Load/Gather emulation was previously never allowed.
6715   // Limited number of Masked Store/Scatter emulation was allowed.
6716   assert(isPredicatedInst(I) &&
6717          "Expecting a scalar emulated instruction");
6718   return isa<LoadInst>(I) ||
6719          (isa<StoreInst>(I) &&
6720           NumPredStores > NumberOfStoresToPredicate);
6721 }
6722 
6723 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6724   // If we aren't vectorizing the loop, or if we've already collected the
6725   // instructions to scalarize, there's nothing to do. Collection may already
6726   // have occurred if we have a user-selected VF and are now computing the
6727   // expected cost for interleaving.
6728   if (VF.isScalar() || VF.isZero() ||
6729       InstsToScalarize.find(VF) != InstsToScalarize.end())
6730     return;
6731 
6732   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6733   // not profitable to scalarize any instructions, the presence of VF in the
6734   // map will indicate that we've analyzed it already.
6735   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6736 
6737   // Find all the instructions that are scalar with predication in the loop and
6738   // determine if it would be better to not if-convert the blocks they are in.
6739   // If so, we also record the instructions to scalarize.
6740   for (BasicBlock *BB : TheLoop->blocks()) {
6741     if (!blockNeedsPredication(BB))
6742       continue;
6743     for (Instruction &I : *BB)
6744       if (isScalarWithPredication(&I)) {
6745         ScalarCostsTy ScalarCosts;
6746         // Do not apply discount if scalable, because that would lead to
6747         // invalid scalarization costs.
6748         // Do not apply discount logic if hacked cost is needed
6749         // for emulated masked memrefs.
6750         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6751             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6752           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6753         // Remember that BB will remain after vectorization.
6754         PredicatedBBsAfterVectorization.insert(BB);
6755       }
6756   }
6757 }
6758 
6759 int LoopVectorizationCostModel::computePredInstDiscount(
6760     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6761   assert(!isUniformAfterVectorization(PredInst, VF) &&
6762          "Instruction marked uniform-after-vectorization will be predicated");
6763 
6764   // Initialize the discount to zero, meaning that the scalar version and the
6765   // vector version cost the same.
6766   InstructionCost Discount = 0;
6767 
6768   // Holds instructions to analyze. The instructions we visit are mapped in
6769   // ScalarCosts. Those instructions are the ones that would be scalarized if
6770   // we find that the scalar version costs less.
6771   SmallVector<Instruction *, 8> Worklist;
6772 
6773   // Returns true if the given instruction can be scalarized.
6774   auto canBeScalarized = [&](Instruction *I) -> bool {
6775     // We only attempt to scalarize instructions forming a single-use chain
6776     // from the original predicated block that would otherwise be vectorized.
6777     // Although not strictly necessary, we give up on instructions we know will
6778     // already be scalar to avoid traversing chains that are unlikely to be
6779     // beneficial.
6780     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6781         isScalarAfterVectorization(I, VF))
6782       return false;
6783 
6784     // If the instruction is scalar with predication, it will be analyzed
6785     // separately. We ignore it within the context of PredInst.
6786     if (isScalarWithPredication(I))
6787       return false;
6788 
6789     // If any of the instruction's operands are uniform after vectorization,
6790     // the instruction cannot be scalarized. This prevents, for example, a
6791     // masked load from being scalarized.
6792     //
6793     // We assume we will only emit a value for lane zero of an instruction
6794     // marked uniform after vectorization, rather than VF identical values.
6795     // Thus, if we scalarize an instruction that uses a uniform, we would
6796     // create uses of values corresponding to the lanes we aren't emitting code
6797     // for. This behavior can be changed by allowing getScalarValue to clone
6798     // the lane zero values for uniforms rather than asserting.
6799     for (Use &U : I->operands())
6800       if (auto *J = dyn_cast<Instruction>(U.get()))
6801         if (isUniformAfterVectorization(J, VF))
6802           return false;
6803 
6804     // Otherwise, we can scalarize the instruction.
6805     return true;
6806   };
6807 
6808   // Compute the expected cost discount from scalarizing the entire expression
6809   // feeding the predicated instruction. We currently only consider expressions
6810   // that are single-use instruction chains.
6811   Worklist.push_back(PredInst);
6812   while (!Worklist.empty()) {
6813     Instruction *I = Worklist.pop_back_val();
6814 
6815     // If we've already analyzed the instruction, there's nothing to do.
6816     if (ScalarCosts.find(I) != ScalarCosts.end())
6817       continue;
6818 
6819     // Compute the cost of the vector instruction. Note that this cost already
6820     // includes the scalarization overhead of the predicated instruction.
6821     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6822 
6823     // Compute the cost of the scalarized instruction. This cost is the cost of
6824     // the instruction as if it wasn't if-converted and instead remained in the
6825     // predicated block. We will scale this cost by block probability after
6826     // computing the scalarization overhead.
6827     InstructionCost ScalarCost =
6828         VF.getFixedValue() *
6829         getInstructionCost(I, ElementCount::getFixed(1)).first;
6830 
6831     // Compute the scalarization overhead of needed insertelement instructions
6832     // and phi nodes.
6833     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6834       ScalarCost += TTI.getScalarizationOverhead(
6835           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6836           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6837       ScalarCost +=
6838           VF.getFixedValue() *
6839           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6840     }
6841 
6842     // Compute the scalarization overhead of needed extractelement
6843     // instructions. For each of the instruction's operands, if the operand can
6844     // be scalarized, add it to the worklist; otherwise, account for the
6845     // overhead.
6846     for (Use &U : I->operands())
6847       if (auto *J = dyn_cast<Instruction>(U.get())) {
6848         assert(VectorType::isValidElementType(J->getType()) &&
6849                "Instruction has non-scalar type");
6850         if (canBeScalarized(J))
6851           Worklist.push_back(J);
6852         else if (needsExtract(J, VF)) {
6853           ScalarCost += TTI.getScalarizationOverhead(
6854               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6855               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6856         }
6857       }
6858 
6859     // Scale the total scalar cost by block probability.
6860     ScalarCost /= getReciprocalPredBlockProb();
6861 
6862     // Compute the discount. A non-negative discount means the vector version
6863     // of the instruction costs more, and scalarizing would be beneficial.
6864     Discount += VectorCost - ScalarCost;
6865     ScalarCosts[I] = ScalarCost;
6866   }
6867 
6868   return *Discount.getValue();
6869 }
6870 
6871 LoopVectorizationCostModel::VectorizationCostTy
6872 LoopVectorizationCostModel::expectedCost(
6873     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6874   VectorizationCostTy Cost;
6875 
6876   // For each block.
6877   for (BasicBlock *BB : TheLoop->blocks()) {
6878     VectorizationCostTy BlockCost;
6879 
6880     // For each instruction in the old loop.
6881     for (Instruction &I : BB->instructionsWithoutDebug()) {
6882       // Skip ignored values.
6883       if (ValuesToIgnore.count(&I) ||
6884           (VF.isVector() && VecValuesToIgnore.count(&I)))
6885         continue;
6886 
6887       VectorizationCostTy C = getInstructionCost(&I, VF);
6888 
6889       // Check if we should override the cost.
6890       if (C.first.isValid() &&
6891           ForceTargetInstructionCost.getNumOccurrences() > 0)
6892         C.first = InstructionCost(ForceTargetInstructionCost);
6893 
6894       // Keep a list of instructions with invalid costs.
6895       if (Invalid && !C.first.isValid())
6896         Invalid->emplace_back(&I, VF);
6897 
6898       BlockCost.first += C.first;
6899       BlockCost.second |= C.second;
6900       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6901                         << " for VF " << VF << " For instruction: " << I
6902                         << '\n');
6903     }
6904 
6905     // If we are vectorizing a predicated block, it will have been
6906     // if-converted. This means that the block's instructions (aside from
6907     // stores and instructions that may divide by zero) will now be
6908     // unconditionally executed. For the scalar case, we may not always execute
6909     // the predicated block, if it is an if-else block. Thus, scale the block's
6910     // cost by the probability of executing it. blockNeedsPredication from
6911     // Legal is used so as to not include all blocks in tail folded loops.
6912     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6913       BlockCost.first /= getReciprocalPredBlockProb();
6914 
6915     Cost.first += BlockCost.first;
6916     Cost.second |= BlockCost.second;
6917   }
6918 
6919   return Cost;
6920 }
6921 
6922 /// Gets Address Access SCEV after verifying that the access pattern
6923 /// is loop invariant except the induction variable dependence.
6924 ///
6925 /// This SCEV can be sent to the Target in order to estimate the address
6926 /// calculation cost.
6927 static const SCEV *getAddressAccessSCEV(
6928               Value *Ptr,
6929               LoopVectorizationLegality *Legal,
6930               PredicatedScalarEvolution &PSE,
6931               const Loop *TheLoop) {
6932 
6933   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6934   if (!Gep)
6935     return nullptr;
6936 
6937   // We are looking for a gep with all loop invariant indices except for one
6938   // which should be an induction variable.
6939   auto SE = PSE.getSE();
6940   unsigned NumOperands = Gep->getNumOperands();
6941   for (unsigned i = 1; i < NumOperands; ++i) {
6942     Value *Opd = Gep->getOperand(i);
6943     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6944         !Legal->isInductionVariable(Opd))
6945       return nullptr;
6946   }
6947 
6948   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6949   return PSE.getSCEV(Ptr);
6950 }
6951 
6952 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6953   return Legal->hasStride(I->getOperand(0)) ||
6954          Legal->hasStride(I->getOperand(1));
6955 }
6956 
6957 InstructionCost
6958 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6959                                                         ElementCount VF) {
6960   assert(VF.isVector() &&
6961          "Scalarization cost of instruction implies vectorization.");
6962   if (VF.isScalable())
6963     return InstructionCost::getInvalid();
6964 
6965   Type *ValTy = getLoadStoreType(I);
6966   auto SE = PSE.getSE();
6967 
6968   unsigned AS = getLoadStoreAddressSpace(I);
6969   Value *Ptr = getLoadStorePointerOperand(I);
6970   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6971 
6972   // Figure out whether the access is strided and get the stride value
6973   // if it's known in compile time
6974   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6975 
6976   // Get the cost of the scalar memory instruction and address computation.
6977   InstructionCost Cost =
6978       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6979 
6980   // Don't pass *I here, since it is scalar but will actually be part of a
6981   // vectorized loop where the user of it is a vectorized instruction.
6982   const Align Alignment = getLoadStoreAlignment(I);
6983   Cost += VF.getKnownMinValue() *
6984           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6985                               AS, TTI::TCK_RecipThroughput);
6986 
6987   // Get the overhead of the extractelement and insertelement instructions
6988   // we might create due to scalarization.
6989   Cost += getScalarizationOverhead(I, VF);
6990 
6991   // If we have a predicated load/store, it will need extra i1 extracts and
6992   // conditional branches, but may not be executed for each vector lane. Scale
6993   // the cost by the probability of executing the predicated block.
6994   if (isPredicatedInst(I)) {
6995     Cost /= getReciprocalPredBlockProb();
6996 
6997     // Add the cost of an i1 extract and a branch
6998     auto *Vec_i1Ty =
6999         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7000     Cost += TTI.getScalarizationOverhead(
7001         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7002         /*Insert=*/false, /*Extract=*/true);
7003     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7004 
7005     if (useEmulatedMaskMemRefHack(I))
7006       // Artificially setting to a high enough value to practically disable
7007       // vectorization with such operations.
7008       Cost = 3000000;
7009   }
7010 
7011   return Cost;
7012 }
7013 
7014 InstructionCost
7015 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7016                                                     ElementCount VF) {
7017   Type *ValTy = getLoadStoreType(I);
7018   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7019   Value *Ptr = getLoadStorePointerOperand(I);
7020   unsigned AS = getLoadStoreAddressSpace(I);
7021   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7022   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7023 
7024   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7025          "Stride should be 1 or -1 for consecutive memory access");
7026   const Align Alignment = getLoadStoreAlignment(I);
7027   InstructionCost Cost = 0;
7028   if (Legal->isMaskRequired(I))
7029     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7030                                       CostKind);
7031   else
7032     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7033                                 CostKind, I);
7034 
7035   bool Reverse = ConsecutiveStride < 0;
7036   if (Reverse)
7037     Cost +=
7038         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7039   return Cost;
7040 }
7041 
7042 InstructionCost
7043 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7044                                                 ElementCount VF) {
7045   assert(Legal->isUniformMemOp(*I));
7046 
7047   Type *ValTy = getLoadStoreType(I);
7048   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7049   const Align Alignment = getLoadStoreAlignment(I);
7050   unsigned AS = getLoadStoreAddressSpace(I);
7051   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7052   if (isa<LoadInst>(I)) {
7053     return TTI.getAddressComputationCost(ValTy) +
7054            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7055                                CostKind) +
7056            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7057   }
7058   StoreInst *SI = cast<StoreInst>(I);
7059 
7060   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7061   return TTI.getAddressComputationCost(ValTy) +
7062          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7063                              CostKind) +
7064          (isLoopInvariantStoreValue
7065               ? 0
7066               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7067                                        VF.getKnownMinValue() - 1));
7068 }
7069 
7070 InstructionCost
7071 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7072                                                  ElementCount VF) {
7073   Type *ValTy = getLoadStoreType(I);
7074   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7075   const Align Alignment = getLoadStoreAlignment(I);
7076   const Value *Ptr = getLoadStorePointerOperand(I);
7077 
7078   return TTI.getAddressComputationCost(VectorTy) +
7079          TTI.getGatherScatterOpCost(
7080              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7081              TargetTransformInfo::TCK_RecipThroughput, I);
7082 }
7083 
7084 InstructionCost
7085 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7086                                                    ElementCount VF) {
7087   // TODO: Once we have support for interleaving with scalable vectors
7088   // we can calculate the cost properly here.
7089   if (VF.isScalable())
7090     return InstructionCost::getInvalid();
7091 
7092   Type *ValTy = getLoadStoreType(I);
7093   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7094   unsigned AS = getLoadStoreAddressSpace(I);
7095 
7096   auto Group = getInterleavedAccessGroup(I);
7097   assert(Group && "Fail to get an interleaved access group.");
7098 
7099   unsigned InterleaveFactor = Group->getFactor();
7100   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7101 
7102   // Holds the indices of existing members in an interleaved load group.
7103   // An interleaved store group doesn't need this as it doesn't allow gaps.
7104   SmallVector<unsigned, 4> Indices;
7105   if (isa<LoadInst>(I)) {
7106     for (unsigned i = 0; i < InterleaveFactor; i++)
7107       if (Group->getMember(i))
7108         Indices.push_back(i);
7109   }
7110 
7111   // Calculate the cost of the whole interleaved group.
7112   bool UseMaskForGaps =
7113       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7114   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7115       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7116       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7117 
7118   if (Group->isReverse()) {
7119     // TODO: Add support for reversed masked interleaved access.
7120     assert(!Legal->isMaskRequired(I) &&
7121            "Reverse masked interleaved access not supported.");
7122     Cost +=
7123         Group->getNumMembers() *
7124         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7125   }
7126   return Cost;
7127 }
7128 
7129 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7130     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7131   using namespace llvm::PatternMatch;
7132   // Early exit for no inloop reductions
7133   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7134     return None;
7135   auto *VectorTy = cast<VectorType>(Ty);
7136 
7137   // We are looking for a pattern of, and finding the minimal acceptable cost:
7138   //  reduce(mul(ext(A), ext(B))) or
7139   //  reduce(mul(A, B)) or
7140   //  reduce(ext(A)) or
7141   //  reduce(A).
7142   // The basic idea is that we walk down the tree to do that, finding the root
7143   // reduction instruction in InLoopReductionImmediateChains. From there we find
7144   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7145   // of the components. If the reduction cost is lower then we return it for the
7146   // reduction instruction and 0 for the other instructions in the pattern. If
7147   // it is not we return an invalid cost specifying the orignal cost method
7148   // should be used.
7149   Instruction *RetI = I;
7150   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7151     if (!RetI->hasOneUser())
7152       return None;
7153     RetI = RetI->user_back();
7154   }
7155   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7156       RetI->user_back()->getOpcode() == Instruction::Add) {
7157     if (!RetI->hasOneUser())
7158       return None;
7159     RetI = RetI->user_back();
7160   }
7161 
7162   // Test if the found instruction is a reduction, and if not return an invalid
7163   // cost specifying the parent to use the original cost modelling.
7164   if (!InLoopReductionImmediateChains.count(RetI))
7165     return None;
7166 
7167   // Find the reduction this chain is a part of and calculate the basic cost of
7168   // the reduction on its own.
7169   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7170   Instruction *ReductionPhi = LastChain;
7171   while (!isa<PHINode>(ReductionPhi))
7172     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7173 
7174   const RecurrenceDescriptor &RdxDesc =
7175       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7176 
7177   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7178       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7179 
7180   // If we're using ordered reductions then we can just return the base cost
7181   // here, since getArithmeticReductionCost calculates the full ordered
7182   // reduction cost when FP reassociation is not allowed.
7183   if (useOrderedReductions(RdxDesc))
7184     return BaseCost;
7185 
7186   // Get the operand that was not the reduction chain and match it to one of the
7187   // patterns, returning the better cost if it is found.
7188   Instruction *RedOp = RetI->getOperand(1) == LastChain
7189                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7190                            : dyn_cast<Instruction>(RetI->getOperand(1));
7191 
7192   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7193 
7194   Instruction *Op0, *Op1;
7195   if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7196       !TheLoop->isLoopInvariant(RedOp)) {
7197     // Matched reduce(ext(A))
7198     bool IsUnsigned = isa<ZExtInst>(RedOp);
7199     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7200     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7201         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7202         CostKind);
7203 
7204     InstructionCost ExtCost =
7205         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7206                              TTI::CastContextHint::None, CostKind, RedOp);
7207     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7208       return I == RetI ? RedCost : 0;
7209   } else if (RedOp &&
7210              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7211     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7212         Op0->getOpcode() == Op1->getOpcode() &&
7213         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7214         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7215       bool IsUnsigned = isa<ZExtInst>(Op0);
7216       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7217       // Matched reduce(mul(ext, ext))
7218       InstructionCost ExtCost =
7219           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7220                                TTI::CastContextHint::None, CostKind, Op0);
7221       InstructionCost MulCost =
7222           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7223 
7224       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7225           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7226           CostKind);
7227 
7228       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7229         return I == RetI ? RedCost : 0;
7230     } else {
7231       // Matched reduce(mul())
7232       InstructionCost MulCost =
7233           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7234 
7235       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7236           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7237           CostKind);
7238 
7239       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7240         return I == RetI ? RedCost : 0;
7241     }
7242   }
7243 
7244   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7245 }
7246 
7247 InstructionCost
7248 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7249                                                      ElementCount VF) {
7250   // Calculate scalar cost only. Vectorization cost should be ready at this
7251   // moment.
7252   if (VF.isScalar()) {
7253     Type *ValTy = getLoadStoreType(I);
7254     const Align Alignment = getLoadStoreAlignment(I);
7255     unsigned AS = getLoadStoreAddressSpace(I);
7256 
7257     return TTI.getAddressComputationCost(ValTy) +
7258            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7259                                TTI::TCK_RecipThroughput, I);
7260   }
7261   return getWideningCost(I, VF);
7262 }
7263 
7264 LoopVectorizationCostModel::VectorizationCostTy
7265 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7266                                                ElementCount VF) {
7267   // If we know that this instruction will remain uniform, check the cost of
7268   // the scalar version.
7269   if (isUniformAfterVectorization(I, VF))
7270     VF = ElementCount::getFixed(1);
7271 
7272   if (VF.isVector() && isProfitableToScalarize(I, VF))
7273     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7274 
7275   // Forced scalars do not have any scalarization overhead.
7276   auto ForcedScalar = ForcedScalars.find(VF);
7277   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7278     auto InstSet = ForcedScalar->second;
7279     if (InstSet.count(I))
7280       return VectorizationCostTy(
7281           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7282            VF.getKnownMinValue()),
7283           false);
7284   }
7285 
7286   Type *VectorTy;
7287   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7288 
7289   bool TypeNotScalarized =
7290       VF.isVector() && VectorTy->isVectorTy() &&
7291       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7292   return VectorizationCostTy(C, TypeNotScalarized);
7293 }
7294 
7295 InstructionCost
7296 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7297                                                      ElementCount VF) const {
7298 
7299   // There is no mechanism yet to create a scalable scalarization loop,
7300   // so this is currently Invalid.
7301   if (VF.isScalable())
7302     return InstructionCost::getInvalid();
7303 
7304   if (VF.isScalar())
7305     return 0;
7306 
7307   InstructionCost Cost = 0;
7308   Type *RetTy = ToVectorTy(I->getType(), VF);
7309   if (!RetTy->isVoidTy() &&
7310       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7311     Cost += TTI.getScalarizationOverhead(
7312         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7313         true, false);
7314 
7315   // Some targets keep addresses scalar.
7316   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7317     return Cost;
7318 
7319   // Some targets support efficient element stores.
7320   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7321     return Cost;
7322 
7323   // Collect operands to consider.
7324   CallInst *CI = dyn_cast<CallInst>(I);
7325   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7326 
7327   // Skip operands that do not require extraction/scalarization and do not incur
7328   // any overhead.
7329   SmallVector<Type *> Tys;
7330   for (auto *V : filterExtractingOperands(Ops, VF))
7331     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7332   return Cost + TTI.getOperandsScalarizationOverhead(
7333                     filterExtractingOperands(Ops, VF), Tys);
7334 }
7335 
7336 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7337   if (VF.isScalar())
7338     return;
7339   NumPredStores = 0;
7340   for (BasicBlock *BB : TheLoop->blocks()) {
7341     // For each instruction in the old loop.
7342     for (Instruction &I : *BB) {
7343       Value *Ptr =  getLoadStorePointerOperand(&I);
7344       if (!Ptr)
7345         continue;
7346 
7347       // TODO: We should generate better code and update the cost model for
7348       // predicated uniform stores. Today they are treated as any other
7349       // predicated store (see added test cases in
7350       // invariant-store-vectorization.ll).
7351       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7352         NumPredStores++;
7353 
7354       if (Legal->isUniformMemOp(I)) {
7355         // TODO: Avoid replicating loads and stores instead of
7356         // relying on instcombine to remove them.
7357         // Load: Scalar load + broadcast
7358         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7359         InstructionCost Cost;
7360         if (isa<StoreInst>(&I) && VF.isScalable() &&
7361             isLegalGatherOrScatter(&I)) {
7362           Cost = getGatherScatterCost(&I, VF);
7363           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7364         } else {
7365           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7366                  "Cannot yet scalarize uniform stores");
7367           Cost = getUniformMemOpCost(&I, VF);
7368           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7369         }
7370         continue;
7371       }
7372 
7373       // We assume that widening is the best solution when possible.
7374       if (memoryInstructionCanBeWidened(&I, VF)) {
7375         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7376         int ConsecutiveStride =
7377                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7378         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7379                "Expected consecutive stride.");
7380         InstWidening Decision =
7381             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7382         setWideningDecision(&I, VF, Decision, Cost);
7383         continue;
7384       }
7385 
7386       // Choose between Interleaving, Gather/Scatter or Scalarization.
7387       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7388       unsigned NumAccesses = 1;
7389       if (isAccessInterleaved(&I)) {
7390         auto Group = getInterleavedAccessGroup(&I);
7391         assert(Group && "Fail to get an interleaved access group.");
7392 
7393         // Make one decision for the whole group.
7394         if (getWideningDecision(&I, VF) != CM_Unknown)
7395           continue;
7396 
7397         NumAccesses = Group->getNumMembers();
7398         if (interleavedAccessCanBeWidened(&I, VF))
7399           InterleaveCost = getInterleaveGroupCost(&I, VF);
7400       }
7401 
7402       InstructionCost GatherScatterCost =
7403           isLegalGatherOrScatter(&I)
7404               ? getGatherScatterCost(&I, VF) * NumAccesses
7405               : InstructionCost::getInvalid();
7406 
7407       InstructionCost ScalarizationCost =
7408           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7409 
7410       // Choose better solution for the current VF,
7411       // write down this decision and use it during vectorization.
7412       InstructionCost Cost;
7413       InstWidening Decision;
7414       if (InterleaveCost <= GatherScatterCost &&
7415           InterleaveCost < ScalarizationCost) {
7416         Decision = CM_Interleave;
7417         Cost = InterleaveCost;
7418       } else if (GatherScatterCost < ScalarizationCost) {
7419         Decision = CM_GatherScatter;
7420         Cost = GatherScatterCost;
7421       } else {
7422         Decision = CM_Scalarize;
7423         Cost = ScalarizationCost;
7424       }
7425       // If the instructions belongs to an interleave group, the whole group
7426       // receives the same decision. The whole group receives the cost, but
7427       // the cost will actually be assigned to one instruction.
7428       if (auto Group = getInterleavedAccessGroup(&I))
7429         setWideningDecision(Group, VF, Decision, Cost);
7430       else
7431         setWideningDecision(&I, VF, Decision, Cost);
7432     }
7433   }
7434 
7435   // Make sure that any load of address and any other address computation
7436   // remains scalar unless there is gather/scatter support. This avoids
7437   // inevitable extracts into address registers, and also has the benefit of
7438   // activating LSR more, since that pass can't optimize vectorized
7439   // addresses.
7440   if (TTI.prefersVectorizedAddressing())
7441     return;
7442 
7443   // Start with all scalar pointer uses.
7444   SmallPtrSet<Instruction *, 8> AddrDefs;
7445   for (BasicBlock *BB : TheLoop->blocks())
7446     for (Instruction &I : *BB) {
7447       Instruction *PtrDef =
7448         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7449       if (PtrDef && TheLoop->contains(PtrDef) &&
7450           getWideningDecision(&I, VF) != CM_GatherScatter)
7451         AddrDefs.insert(PtrDef);
7452     }
7453 
7454   // Add all instructions used to generate the addresses.
7455   SmallVector<Instruction *, 4> Worklist;
7456   append_range(Worklist, AddrDefs);
7457   while (!Worklist.empty()) {
7458     Instruction *I = Worklist.pop_back_val();
7459     for (auto &Op : I->operands())
7460       if (auto *InstOp = dyn_cast<Instruction>(Op))
7461         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7462             AddrDefs.insert(InstOp).second)
7463           Worklist.push_back(InstOp);
7464   }
7465 
7466   for (auto *I : AddrDefs) {
7467     if (isa<LoadInst>(I)) {
7468       // Setting the desired widening decision should ideally be handled in
7469       // by cost functions, but since this involves the task of finding out
7470       // if the loaded register is involved in an address computation, it is
7471       // instead changed here when we know this is the case.
7472       InstWidening Decision = getWideningDecision(I, VF);
7473       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7474         // Scalarize a widened load of address.
7475         setWideningDecision(
7476             I, VF, CM_Scalarize,
7477             (VF.getKnownMinValue() *
7478              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7479       else if (auto Group = getInterleavedAccessGroup(I)) {
7480         // Scalarize an interleave group of address loads.
7481         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7482           if (Instruction *Member = Group->getMember(I))
7483             setWideningDecision(
7484                 Member, VF, CM_Scalarize,
7485                 (VF.getKnownMinValue() *
7486                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7487         }
7488       }
7489     } else
7490       // Make sure I gets scalarized and a cost estimate without
7491       // scalarization overhead.
7492       ForcedScalars[VF].insert(I);
7493   }
7494 }
7495 
7496 InstructionCost
7497 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7498                                                Type *&VectorTy) {
7499   Type *RetTy = I->getType();
7500   if (canTruncateToMinimalBitwidth(I, VF))
7501     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7502   auto SE = PSE.getSE();
7503   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7504 
7505   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7506                                                 ElementCount VF) -> bool {
7507     if (VF.isScalar())
7508       return true;
7509 
7510     auto Scalarized = InstsToScalarize.find(VF);
7511     assert(Scalarized != InstsToScalarize.end() &&
7512            "VF not yet analyzed for scalarization profitability");
7513     return !Scalarized->second.count(I) &&
7514            llvm::all_of(I->users(), [&](User *U) {
7515              auto *UI = cast<Instruction>(U);
7516              return !Scalarized->second.count(UI);
7517            });
7518   };
7519   (void) hasSingleCopyAfterVectorization;
7520 
7521   if (isScalarAfterVectorization(I, VF)) {
7522     // With the exception of GEPs and PHIs, after scalarization there should
7523     // only be one copy of the instruction generated in the loop. This is
7524     // because the VF is either 1, or any instructions that need scalarizing
7525     // have already been dealt with by the the time we get here. As a result,
7526     // it means we don't have to multiply the instruction cost by VF.
7527     assert(I->getOpcode() == Instruction::GetElementPtr ||
7528            I->getOpcode() == Instruction::PHI ||
7529            (I->getOpcode() == Instruction::BitCast &&
7530             I->getType()->isPointerTy()) ||
7531            hasSingleCopyAfterVectorization(I, VF));
7532     VectorTy = RetTy;
7533   } else
7534     VectorTy = ToVectorTy(RetTy, VF);
7535 
7536   // TODO: We need to estimate the cost of intrinsic calls.
7537   switch (I->getOpcode()) {
7538   case Instruction::GetElementPtr:
7539     // We mark this instruction as zero-cost because the cost of GEPs in
7540     // vectorized code depends on whether the corresponding memory instruction
7541     // is scalarized or not. Therefore, we handle GEPs with the memory
7542     // instruction cost.
7543     return 0;
7544   case Instruction::Br: {
7545     // In cases of scalarized and predicated instructions, there will be VF
7546     // predicated blocks in the vectorized loop. Each branch around these
7547     // blocks requires also an extract of its vector compare i1 element.
7548     bool ScalarPredicatedBB = false;
7549     BranchInst *BI = cast<BranchInst>(I);
7550     if (VF.isVector() && BI->isConditional() &&
7551         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7552          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7553       ScalarPredicatedBB = true;
7554 
7555     if (ScalarPredicatedBB) {
7556       // Not possible to scalarize scalable vector with predicated instructions.
7557       if (VF.isScalable())
7558         return InstructionCost::getInvalid();
7559       // Return cost for branches around scalarized and predicated blocks.
7560       auto *Vec_i1Ty =
7561           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7562       return (
7563           TTI.getScalarizationOverhead(
7564               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7565               true) +
7566           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7567     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7568       // The back-edge branch will remain, as will all scalar branches.
7569       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7570     else
7571       // This branch will be eliminated by if-conversion.
7572       return 0;
7573     // Note: We currently assume zero cost for an unconditional branch inside
7574     // a predicated block since it will become a fall-through, although we
7575     // may decide in the future to call TTI for all branches.
7576   }
7577   case Instruction::PHI: {
7578     auto *Phi = cast<PHINode>(I);
7579 
7580     // First-order recurrences are replaced by vector shuffles inside the loop.
7581     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7582     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7583       return TTI.getShuffleCost(
7584           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7585           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7586 
7587     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7588     // converted into select instructions. We require N - 1 selects per phi
7589     // node, where N is the number of incoming values.
7590     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7591       return (Phi->getNumIncomingValues() - 1) *
7592              TTI.getCmpSelInstrCost(
7593                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7594                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7595                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7596 
7597     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7598   }
7599   case Instruction::UDiv:
7600   case Instruction::SDiv:
7601   case Instruction::URem:
7602   case Instruction::SRem:
7603     // If we have a predicated instruction, it may not be executed for each
7604     // vector lane. Get the scalarization cost and scale this amount by the
7605     // probability of executing the predicated block. If the instruction is not
7606     // predicated, we fall through to the next case.
7607     if (VF.isVector() && isScalarWithPredication(I)) {
7608       InstructionCost Cost = 0;
7609 
7610       // These instructions have a non-void type, so account for the phi nodes
7611       // that we will create. This cost is likely to be zero. The phi node
7612       // cost, if any, should be scaled by the block probability because it
7613       // models a copy at the end of each predicated block.
7614       Cost += VF.getKnownMinValue() *
7615               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7616 
7617       // The cost of the non-predicated instruction.
7618       Cost += VF.getKnownMinValue() *
7619               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7620 
7621       // The cost of insertelement and extractelement instructions needed for
7622       // scalarization.
7623       Cost += getScalarizationOverhead(I, VF);
7624 
7625       // Scale the cost by the probability of executing the predicated blocks.
7626       // This assumes the predicated block for each vector lane is equally
7627       // likely.
7628       return Cost / getReciprocalPredBlockProb();
7629     }
7630     LLVM_FALLTHROUGH;
7631   case Instruction::Add:
7632   case Instruction::FAdd:
7633   case Instruction::Sub:
7634   case Instruction::FSub:
7635   case Instruction::Mul:
7636   case Instruction::FMul:
7637   case Instruction::FDiv:
7638   case Instruction::FRem:
7639   case Instruction::Shl:
7640   case Instruction::LShr:
7641   case Instruction::AShr:
7642   case Instruction::And:
7643   case Instruction::Or:
7644   case Instruction::Xor: {
7645     // Since we will replace the stride by 1 the multiplication should go away.
7646     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7647       return 0;
7648 
7649     // Detect reduction patterns
7650     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7651       return *RedCost;
7652 
7653     // Certain instructions can be cheaper to vectorize if they have a constant
7654     // second vector operand. One example of this are shifts on x86.
7655     Value *Op2 = I->getOperand(1);
7656     TargetTransformInfo::OperandValueProperties Op2VP;
7657     TargetTransformInfo::OperandValueKind Op2VK =
7658         TTI.getOperandInfo(Op2, Op2VP);
7659     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7660       Op2VK = TargetTransformInfo::OK_UniformValue;
7661 
7662     SmallVector<const Value *, 4> Operands(I->operand_values());
7663     return TTI.getArithmeticInstrCost(
7664         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7665         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7666   }
7667   case Instruction::FNeg: {
7668     return TTI.getArithmeticInstrCost(
7669         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7670         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7671         TargetTransformInfo::OP_None, I->getOperand(0), I);
7672   }
7673   case Instruction::Select: {
7674     SelectInst *SI = cast<SelectInst>(I);
7675     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7676     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7677 
7678     const Value *Op0, *Op1;
7679     using namespace llvm::PatternMatch;
7680     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7681                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7682       // select x, y, false --> x & y
7683       // select x, true, y --> x | y
7684       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7685       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7686       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7687       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7688       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7689               Op1->getType()->getScalarSizeInBits() == 1);
7690 
7691       SmallVector<const Value *, 2> Operands{Op0, Op1};
7692       return TTI.getArithmeticInstrCost(
7693           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7694           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7695     }
7696 
7697     Type *CondTy = SI->getCondition()->getType();
7698     if (!ScalarCond)
7699       CondTy = VectorType::get(CondTy, VF);
7700     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7701                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7702   }
7703   case Instruction::ICmp:
7704   case Instruction::FCmp: {
7705     Type *ValTy = I->getOperand(0)->getType();
7706     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7707     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7708       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7709     VectorTy = ToVectorTy(ValTy, VF);
7710     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7711                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7712   }
7713   case Instruction::Store:
7714   case Instruction::Load: {
7715     ElementCount Width = VF;
7716     if (Width.isVector()) {
7717       InstWidening Decision = getWideningDecision(I, Width);
7718       assert(Decision != CM_Unknown &&
7719              "CM decision should be taken at this point");
7720       if (Decision == CM_Scalarize)
7721         Width = ElementCount::getFixed(1);
7722     }
7723     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7724     return getMemoryInstructionCost(I, VF);
7725   }
7726   case Instruction::BitCast:
7727     if (I->getType()->isPointerTy())
7728       return 0;
7729     LLVM_FALLTHROUGH;
7730   case Instruction::ZExt:
7731   case Instruction::SExt:
7732   case Instruction::FPToUI:
7733   case Instruction::FPToSI:
7734   case Instruction::FPExt:
7735   case Instruction::PtrToInt:
7736   case Instruction::IntToPtr:
7737   case Instruction::SIToFP:
7738   case Instruction::UIToFP:
7739   case Instruction::Trunc:
7740   case Instruction::FPTrunc: {
7741     // Computes the CastContextHint from a Load/Store instruction.
7742     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7743       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7744              "Expected a load or a store!");
7745 
7746       if (VF.isScalar() || !TheLoop->contains(I))
7747         return TTI::CastContextHint::Normal;
7748 
7749       switch (getWideningDecision(I, VF)) {
7750       case LoopVectorizationCostModel::CM_GatherScatter:
7751         return TTI::CastContextHint::GatherScatter;
7752       case LoopVectorizationCostModel::CM_Interleave:
7753         return TTI::CastContextHint::Interleave;
7754       case LoopVectorizationCostModel::CM_Scalarize:
7755       case LoopVectorizationCostModel::CM_Widen:
7756         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7757                                         : TTI::CastContextHint::Normal;
7758       case LoopVectorizationCostModel::CM_Widen_Reverse:
7759         return TTI::CastContextHint::Reversed;
7760       case LoopVectorizationCostModel::CM_Unknown:
7761         llvm_unreachable("Instr did not go through cost modelling?");
7762       }
7763 
7764       llvm_unreachable("Unhandled case!");
7765     };
7766 
7767     unsigned Opcode = I->getOpcode();
7768     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7769     // For Trunc, the context is the only user, which must be a StoreInst.
7770     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7771       if (I->hasOneUse())
7772         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7773           CCH = ComputeCCH(Store);
7774     }
7775     // For Z/Sext, the context is the operand, which must be a LoadInst.
7776     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7777              Opcode == Instruction::FPExt) {
7778       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7779         CCH = ComputeCCH(Load);
7780     }
7781 
7782     // We optimize the truncation of induction variables having constant
7783     // integer steps. The cost of these truncations is the same as the scalar
7784     // operation.
7785     if (isOptimizableIVTruncate(I, VF)) {
7786       auto *Trunc = cast<TruncInst>(I);
7787       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7788                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7789     }
7790 
7791     // Detect reduction patterns
7792     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7793       return *RedCost;
7794 
7795     Type *SrcScalarTy = I->getOperand(0)->getType();
7796     Type *SrcVecTy =
7797         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7798     if (canTruncateToMinimalBitwidth(I, VF)) {
7799       // This cast is going to be shrunk. This may remove the cast or it might
7800       // turn it into slightly different cast. For example, if MinBW == 16,
7801       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7802       //
7803       // Calculate the modified src and dest types.
7804       Type *MinVecTy = VectorTy;
7805       if (Opcode == Instruction::Trunc) {
7806         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7807         VectorTy =
7808             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7809       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7810         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7811         VectorTy =
7812             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7813       }
7814     }
7815 
7816     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7817   }
7818   case Instruction::Call: {
7819     bool NeedToScalarize;
7820     CallInst *CI = cast<CallInst>(I);
7821     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7822     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7823       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7824       return std::min(CallCost, IntrinsicCost);
7825     }
7826     return CallCost;
7827   }
7828   case Instruction::ExtractValue:
7829     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7830   case Instruction::Alloca:
7831     // We cannot easily widen alloca to a scalable alloca, as
7832     // the result would need to be a vector of pointers.
7833     if (VF.isScalable())
7834       return InstructionCost::getInvalid();
7835     LLVM_FALLTHROUGH;
7836   default:
7837     // This opcode is unknown. Assume that it is the same as 'mul'.
7838     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7839   } // end of switch.
7840 }
7841 
7842 char LoopVectorize::ID = 0;
7843 
7844 static const char lv_name[] = "Loop Vectorization";
7845 
7846 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7847 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7848 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7849 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7850 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7851 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7852 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7853 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7854 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7855 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7856 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7857 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7858 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7859 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7860 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7861 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7862 
7863 namespace llvm {
7864 
7865 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7866 
7867 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7868                               bool VectorizeOnlyWhenForced) {
7869   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7870 }
7871 
7872 } // end namespace llvm
7873 
7874 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7875   // Check if the pointer operand of a load or store instruction is
7876   // consecutive.
7877   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7878     return Legal->isConsecutivePtr(Ptr);
7879   return false;
7880 }
7881 
7882 void LoopVectorizationCostModel::collectValuesToIgnore() {
7883   // Ignore ephemeral values.
7884   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7885 
7886   // Ignore type-promoting instructions we identified during reduction
7887   // detection.
7888   for (auto &Reduction : Legal->getReductionVars()) {
7889     RecurrenceDescriptor &RedDes = Reduction.second;
7890     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7891     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7892   }
7893   // Ignore type-casting instructions we identified during induction
7894   // detection.
7895   for (auto &Induction : Legal->getInductionVars()) {
7896     InductionDescriptor &IndDes = Induction.second;
7897     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7898     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7899   }
7900 }
7901 
7902 void LoopVectorizationCostModel::collectInLoopReductions() {
7903   for (auto &Reduction : Legal->getReductionVars()) {
7904     PHINode *Phi = Reduction.first;
7905     RecurrenceDescriptor &RdxDesc = Reduction.second;
7906 
7907     // We don't collect reductions that are type promoted (yet).
7908     if (RdxDesc.getRecurrenceType() != Phi->getType())
7909       continue;
7910 
7911     // If the target would prefer this reduction to happen "in-loop", then we
7912     // want to record it as such.
7913     unsigned Opcode = RdxDesc.getOpcode();
7914     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7915         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7916                                    TargetTransformInfo::ReductionFlags()))
7917       continue;
7918 
7919     // Check that we can correctly put the reductions into the loop, by
7920     // finding the chain of operations that leads from the phi to the loop
7921     // exit value.
7922     SmallVector<Instruction *, 4> ReductionOperations =
7923         RdxDesc.getReductionOpChain(Phi, TheLoop);
7924     bool InLoop = !ReductionOperations.empty();
7925     if (InLoop) {
7926       InLoopReductionChains[Phi] = ReductionOperations;
7927       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7928       Instruction *LastChain = Phi;
7929       for (auto *I : ReductionOperations) {
7930         InLoopReductionImmediateChains[I] = LastChain;
7931         LastChain = I;
7932       }
7933     }
7934     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7935                       << " reduction for phi: " << *Phi << "\n");
7936   }
7937 }
7938 
7939 // TODO: we could return a pair of values that specify the max VF and
7940 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7941 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7942 // doesn't have a cost model that can choose which plan to execute if
7943 // more than one is generated.
7944 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7945                                  LoopVectorizationCostModel &CM) {
7946   unsigned WidestType;
7947   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7948   return WidestVectorRegBits / WidestType;
7949 }
7950 
7951 VectorizationFactor
7952 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7953   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7954   ElementCount VF = UserVF;
7955   // Outer loop handling: They may require CFG and instruction level
7956   // transformations before even evaluating whether vectorization is profitable.
7957   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7958   // the vectorization pipeline.
7959   if (!OrigLoop->isInnermost()) {
7960     // If the user doesn't provide a vectorization factor, determine a
7961     // reasonable one.
7962     if (UserVF.isZero()) {
7963       VF = ElementCount::getFixed(determineVPlanVF(
7964           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7965               .getFixedSize(),
7966           CM));
7967       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7968 
7969       // Make sure we have a VF > 1 for stress testing.
7970       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7971         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7972                           << "overriding computed VF.\n");
7973         VF = ElementCount::getFixed(4);
7974       }
7975     }
7976     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7977     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7978            "VF needs to be a power of two");
7979     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7980                       << "VF " << VF << " to build VPlans.\n");
7981     buildVPlans(VF, VF);
7982 
7983     // For VPlan build stress testing, we bail out after VPlan construction.
7984     if (VPlanBuildStressTest)
7985       return VectorizationFactor::Disabled();
7986 
7987     return {VF, 0 /*Cost*/};
7988   }
7989 
7990   LLVM_DEBUG(
7991       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7992                 "VPlan-native path.\n");
7993   return VectorizationFactor::Disabled();
7994 }
7995 
7996 Optional<VectorizationFactor>
7997 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7998   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7999   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8000   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8001     return None;
8002 
8003   // Invalidate interleave groups if all blocks of loop will be predicated.
8004   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8005       !useMaskedInterleavedAccesses(*TTI)) {
8006     LLVM_DEBUG(
8007         dbgs()
8008         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8009            "which requires masked-interleaved support.\n");
8010     if (CM.InterleaveInfo.invalidateGroups())
8011       // Invalidating interleave groups also requires invalidating all decisions
8012       // based on them, which includes widening decisions and uniform and scalar
8013       // values.
8014       CM.invalidateCostModelingDecisions();
8015   }
8016 
8017   ElementCount MaxUserVF =
8018       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8019   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8020   if (!UserVF.isZero() && UserVFIsLegal) {
8021     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8022            "VF needs to be a power of two");
8023     // Collect the instructions (and their associated costs) that will be more
8024     // profitable to scalarize.
8025     if (CM.selectUserVectorizationFactor(UserVF)) {
8026       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8027       CM.collectInLoopReductions();
8028       buildVPlansWithVPRecipes(UserVF, UserVF);
8029       LLVM_DEBUG(printPlans(dbgs()));
8030       return {{UserVF, 0}};
8031     } else
8032       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8033                               "InvalidCost", ORE, OrigLoop);
8034   }
8035 
8036   // Populate the set of Vectorization Factor Candidates.
8037   ElementCountSet VFCandidates;
8038   for (auto VF = ElementCount::getFixed(1);
8039        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8040     VFCandidates.insert(VF);
8041   for (auto VF = ElementCount::getScalable(1);
8042        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8043     VFCandidates.insert(VF);
8044 
8045   for (const auto &VF : VFCandidates) {
8046     // Collect Uniform and Scalar instructions after vectorization with VF.
8047     CM.collectUniformsAndScalars(VF);
8048 
8049     // Collect the instructions (and their associated costs) that will be more
8050     // profitable to scalarize.
8051     if (VF.isVector())
8052       CM.collectInstsToScalarize(VF);
8053   }
8054 
8055   CM.collectInLoopReductions();
8056   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8057   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8058 
8059   LLVM_DEBUG(printPlans(dbgs()));
8060   if (!MaxFactors.hasVector())
8061     return VectorizationFactor::Disabled();
8062 
8063   // Select the optimal vectorization factor.
8064   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8065 
8066   // Check if it is profitable to vectorize with runtime checks.
8067   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8068   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8069     bool PragmaThresholdReached =
8070         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8071     bool ThresholdReached =
8072         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8073     if ((ThresholdReached && !Hints.allowReordering()) ||
8074         PragmaThresholdReached) {
8075       ORE->emit([&]() {
8076         return OptimizationRemarkAnalysisAliasing(
8077                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8078                    OrigLoop->getHeader())
8079                << "loop not vectorized: cannot prove it is safe to reorder "
8080                   "memory operations";
8081       });
8082       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8083       Hints.emitRemarkWithHints();
8084       return VectorizationFactor::Disabled();
8085     }
8086   }
8087   return SelectedVF;
8088 }
8089 
8090 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8091   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8092                     << '\n');
8093   BestVF = VF;
8094   BestUF = UF;
8095 
8096   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8097     return !Plan->hasVF(VF);
8098   });
8099   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8100 }
8101 
8102 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8103                                            DominatorTree *DT) {
8104   // Perform the actual loop transformation.
8105 
8106   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8107   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8108   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8109 
8110   VPTransformState State{
8111       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8112   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8113   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8114   State.CanonicalIV = ILV.Induction;
8115 
8116   ILV.printDebugTracesAtStart();
8117 
8118   //===------------------------------------------------===//
8119   //
8120   // Notice: any optimization or new instruction that go
8121   // into the code below should also be implemented in
8122   // the cost-model.
8123   //
8124   //===------------------------------------------------===//
8125 
8126   // 2. Copy and widen instructions from the old loop into the new loop.
8127   VPlans.front()->execute(&State);
8128 
8129   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8130   //    predication, updating analyses.
8131   ILV.fixVectorizedLoop(State);
8132 
8133   ILV.printDebugTracesAtEnd();
8134 }
8135 
8136 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8137 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8138   for (const auto &Plan : VPlans)
8139     if (PrintVPlansInDotFormat)
8140       Plan->printDOT(O);
8141     else
8142       Plan->print(O);
8143 }
8144 #endif
8145 
8146 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8147     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8148 
8149   // We create new control-flow for the vectorized loop, so the original exit
8150   // conditions will be dead after vectorization if it's only used by the
8151   // terminator
8152   SmallVector<BasicBlock*> ExitingBlocks;
8153   OrigLoop->getExitingBlocks(ExitingBlocks);
8154   for (auto *BB : ExitingBlocks) {
8155     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8156     if (!Cmp || !Cmp->hasOneUse())
8157       continue;
8158 
8159     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8160     if (!DeadInstructions.insert(Cmp).second)
8161       continue;
8162 
8163     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8164     // TODO: can recurse through operands in general
8165     for (Value *Op : Cmp->operands()) {
8166       if (isa<TruncInst>(Op) && Op->hasOneUse())
8167           DeadInstructions.insert(cast<Instruction>(Op));
8168     }
8169   }
8170 
8171   // We create new "steps" for induction variable updates to which the original
8172   // induction variables map. An original update instruction will be dead if
8173   // all its users except the induction variable are dead.
8174   auto *Latch = OrigLoop->getLoopLatch();
8175   for (auto &Induction : Legal->getInductionVars()) {
8176     PHINode *Ind = Induction.first;
8177     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8178 
8179     // If the tail is to be folded by masking, the primary induction variable,
8180     // if exists, isn't dead: it will be used for masking. Don't kill it.
8181     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8182       continue;
8183 
8184     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8185           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8186         }))
8187       DeadInstructions.insert(IndUpdate);
8188 
8189     // We record as "Dead" also the type-casting instructions we had identified
8190     // during induction analysis. We don't need any handling for them in the
8191     // vectorized loop because we have proven that, under a proper runtime
8192     // test guarding the vectorized loop, the value of the phi, and the casted
8193     // value of the phi, are the same. The last instruction in this casting chain
8194     // will get its scalar/vector/widened def from the scalar/vector/widened def
8195     // of the respective phi node. Any other casts in the induction def-use chain
8196     // have no other uses outside the phi update chain, and will be ignored.
8197     InductionDescriptor &IndDes = Induction.second;
8198     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8199     DeadInstructions.insert(Casts.begin(), Casts.end());
8200   }
8201 }
8202 
8203 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8204 
8205 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8206 
8207 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8208                                         Instruction::BinaryOps BinOp) {
8209   // When unrolling and the VF is 1, we only need to add a simple scalar.
8210   Type *Ty = Val->getType();
8211   assert(!Ty->isVectorTy() && "Val must be a scalar");
8212 
8213   if (Ty->isFloatingPointTy()) {
8214     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8215 
8216     // Floating-point operations inherit FMF via the builder's flags.
8217     Value *MulOp = Builder.CreateFMul(C, Step);
8218     return Builder.CreateBinOp(BinOp, Val, MulOp);
8219   }
8220   Constant *C = ConstantInt::get(Ty, StartIdx);
8221   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8222 }
8223 
8224 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8225   SmallVector<Metadata *, 4> MDs;
8226   // Reserve first location for self reference to the LoopID metadata node.
8227   MDs.push_back(nullptr);
8228   bool IsUnrollMetadata = false;
8229   MDNode *LoopID = L->getLoopID();
8230   if (LoopID) {
8231     // First find existing loop unrolling disable metadata.
8232     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8233       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8234       if (MD) {
8235         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8236         IsUnrollMetadata =
8237             S && S->getString().startswith("llvm.loop.unroll.disable");
8238       }
8239       MDs.push_back(LoopID->getOperand(i));
8240     }
8241   }
8242 
8243   if (!IsUnrollMetadata) {
8244     // Add runtime unroll disable metadata.
8245     LLVMContext &Context = L->getHeader()->getContext();
8246     SmallVector<Metadata *, 1> DisableOperands;
8247     DisableOperands.push_back(
8248         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8249     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8250     MDs.push_back(DisableNode);
8251     MDNode *NewLoopID = MDNode::get(Context, MDs);
8252     // Set operand 0 to refer to the loop id itself.
8253     NewLoopID->replaceOperandWith(0, NewLoopID);
8254     L->setLoopID(NewLoopID);
8255   }
8256 }
8257 
8258 //===--------------------------------------------------------------------===//
8259 // EpilogueVectorizerMainLoop
8260 //===--------------------------------------------------------------------===//
8261 
8262 /// This function is partially responsible for generating the control flow
8263 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8264 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8265   MDNode *OrigLoopID = OrigLoop->getLoopID();
8266   Loop *Lp = createVectorLoopSkeleton("");
8267 
8268   // Generate the code to check the minimum iteration count of the vector
8269   // epilogue (see below).
8270   EPI.EpilogueIterationCountCheck =
8271       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8272   EPI.EpilogueIterationCountCheck->setName("iter.check");
8273 
8274   // Generate the code to check any assumptions that we've made for SCEV
8275   // expressions.
8276   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8277 
8278   // Generate the code that checks at runtime if arrays overlap. We put the
8279   // checks into a separate block to make the more common case of few elements
8280   // faster.
8281   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8282 
8283   // Generate the iteration count check for the main loop, *after* the check
8284   // for the epilogue loop, so that the path-length is shorter for the case
8285   // that goes directly through the vector epilogue. The longer-path length for
8286   // the main loop is compensated for, by the gain from vectorizing the larger
8287   // trip count. Note: the branch will get updated later on when we vectorize
8288   // the epilogue.
8289   EPI.MainLoopIterationCountCheck =
8290       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8291 
8292   // Generate the induction variable.
8293   OldInduction = Legal->getPrimaryInduction();
8294   Type *IdxTy = Legal->getWidestInductionType();
8295   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8296   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8297   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8298   EPI.VectorTripCount = CountRoundDown;
8299   Induction =
8300       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8301                               getDebugLocFromInstOrOperands(OldInduction));
8302 
8303   // Skip induction resume value creation here because they will be created in
8304   // the second pass. If we created them here, they wouldn't be used anyway,
8305   // because the vplan in the second pass still contains the inductions from the
8306   // original loop.
8307 
8308   return completeLoopSkeleton(Lp, OrigLoopID);
8309 }
8310 
8311 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8312   LLVM_DEBUG({
8313     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8314            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8315            << ", Main Loop UF:" << EPI.MainLoopUF
8316            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8317            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8318   });
8319 }
8320 
8321 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8322   DEBUG_WITH_TYPE(VerboseDebug, {
8323     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8324   });
8325 }
8326 
8327 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8328     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8329   assert(L && "Expected valid Loop.");
8330   assert(Bypass && "Expected valid bypass basic block.");
8331   unsigned VFactor =
8332       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8333   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8334   Value *Count = getOrCreateTripCount(L);
8335   // Reuse existing vector loop preheader for TC checks.
8336   // Note that new preheader block is generated for vector loop.
8337   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8338   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8339 
8340   // Generate code to check if the loop's trip count is less than VF * UF of the
8341   // main vector loop.
8342   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8343       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8344 
8345   Value *CheckMinIters = Builder.CreateICmp(
8346       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8347       "min.iters.check");
8348 
8349   if (!ForEpilogue)
8350     TCCheckBlock->setName("vector.main.loop.iter.check");
8351 
8352   // Create new preheader for vector loop.
8353   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8354                                    DT, LI, nullptr, "vector.ph");
8355 
8356   if (ForEpilogue) {
8357     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8358                                  DT->getNode(Bypass)->getIDom()) &&
8359            "TC check is expected to dominate Bypass");
8360 
8361     // Update dominator for Bypass & LoopExit.
8362     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8363     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8364       // For loops with multiple exits, there's no edge from the middle block
8365       // to exit blocks (as the epilogue must run) and thus no need to update
8366       // the immediate dominator of the exit blocks.
8367       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8368 
8369     LoopBypassBlocks.push_back(TCCheckBlock);
8370 
8371     // Save the trip count so we don't have to regenerate it in the
8372     // vec.epilog.iter.check. This is safe to do because the trip count
8373     // generated here dominates the vector epilog iter check.
8374     EPI.TripCount = Count;
8375   }
8376 
8377   ReplaceInstWithInst(
8378       TCCheckBlock->getTerminator(),
8379       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8380 
8381   return TCCheckBlock;
8382 }
8383 
8384 //===--------------------------------------------------------------------===//
8385 // EpilogueVectorizerEpilogueLoop
8386 //===--------------------------------------------------------------------===//
8387 
8388 /// This function is partially responsible for generating the control flow
8389 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8390 BasicBlock *
8391 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8392   MDNode *OrigLoopID = OrigLoop->getLoopID();
8393   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8394 
8395   // Now, compare the remaining count and if there aren't enough iterations to
8396   // execute the vectorized epilogue skip to the scalar part.
8397   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8398   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8399   LoopVectorPreHeader =
8400       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8401                  LI, nullptr, "vec.epilog.ph");
8402   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8403                                           VecEpilogueIterationCountCheck);
8404 
8405   // Adjust the control flow taking the state info from the main loop
8406   // vectorization into account.
8407   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8408          "expected this to be saved from the previous pass.");
8409   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8410       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8411 
8412   DT->changeImmediateDominator(LoopVectorPreHeader,
8413                                EPI.MainLoopIterationCountCheck);
8414 
8415   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8416       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8417 
8418   if (EPI.SCEVSafetyCheck)
8419     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8420         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8421   if (EPI.MemSafetyCheck)
8422     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8423         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8424 
8425   DT->changeImmediateDominator(
8426       VecEpilogueIterationCountCheck,
8427       VecEpilogueIterationCountCheck->getSinglePredecessor());
8428 
8429   DT->changeImmediateDominator(LoopScalarPreHeader,
8430                                EPI.EpilogueIterationCountCheck);
8431   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8432     // If there is an epilogue which must run, there's no edge from the
8433     // middle block to exit blocks  and thus no need to update the immediate
8434     // dominator of the exit blocks.
8435     DT->changeImmediateDominator(LoopExitBlock,
8436                                  EPI.EpilogueIterationCountCheck);
8437 
8438   // Keep track of bypass blocks, as they feed start values to the induction
8439   // phis in the scalar loop preheader.
8440   if (EPI.SCEVSafetyCheck)
8441     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8442   if (EPI.MemSafetyCheck)
8443     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8444   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8445 
8446   // Generate a resume induction for the vector epilogue and put it in the
8447   // vector epilogue preheader
8448   Type *IdxTy = Legal->getWidestInductionType();
8449   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8450                                          LoopVectorPreHeader->getFirstNonPHI());
8451   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8452   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8453                            EPI.MainLoopIterationCountCheck);
8454 
8455   // Generate the induction variable.
8456   OldInduction = Legal->getPrimaryInduction();
8457   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8458   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8459   Value *StartIdx = EPResumeVal;
8460   Induction =
8461       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8462                               getDebugLocFromInstOrOperands(OldInduction));
8463 
8464   // Generate induction resume values. These variables save the new starting
8465   // indexes for the scalar loop. They are used to test if there are any tail
8466   // iterations left once the vector loop has completed.
8467   // Note that when the vectorized epilogue is skipped due to iteration count
8468   // check, then the resume value for the induction variable comes from
8469   // the trip count of the main vector loop, hence passing the AdditionalBypass
8470   // argument.
8471   createInductionResumeValues(Lp, CountRoundDown,
8472                               {VecEpilogueIterationCountCheck,
8473                                EPI.VectorTripCount} /* AdditionalBypass */);
8474 
8475   AddRuntimeUnrollDisableMetaData(Lp);
8476   return completeLoopSkeleton(Lp, OrigLoopID);
8477 }
8478 
8479 BasicBlock *
8480 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8481     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8482 
8483   assert(EPI.TripCount &&
8484          "Expected trip count to have been safed in the first pass.");
8485   assert(
8486       (!isa<Instruction>(EPI.TripCount) ||
8487        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8488       "saved trip count does not dominate insertion point.");
8489   Value *TC = EPI.TripCount;
8490   IRBuilder<> Builder(Insert->getTerminator());
8491   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8492 
8493   // Generate code to check if the loop's trip count is less than VF * UF of the
8494   // vector epilogue loop.
8495   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8496       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8497 
8498   Value *CheckMinIters = Builder.CreateICmp(
8499       P, Count,
8500       ConstantInt::get(Count->getType(),
8501                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8502       "min.epilog.iters.check");
8503 
8504   ReplaceInstWithInst(
8505       Insert->getTerminator(),
8506       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8507 
8508   LoopBypassBlocks.push_back(Insert);
8509   return Insert;
8510 }
8511 
8512 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8513   LLVM_DEBUG({
8514     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8515            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8516            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8517   });
8518 }
8519 
8520 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8521   DEBUG_WITH_TYPE(VerboseDebug, {
8522     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8523   });
8524 }
8525 
8526 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8527     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8528   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8529   bool PredicateAtRangeStart = Predicate(Range.Start);
8530 
8531   for (ElementCount TmpVF = Range.Start * 2;
8532        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8533     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8534       Range.End = TmpVF;
8535       break;
8536     }
8537 
8538   return PredicateAtRangeStart;
8539 }
8540 
8541 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8542 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8543 /// of VF's starting at a given VF and extending it as much as possible. Each
8544 /// vectorization decision can potentially shorten this sub-range during
8545 /// buildVPlan().
8546 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8547                                            ElementCount MaxVF) {
8548   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8549   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8550     VFRange SubRange = {VF, MaxVFPlusOne};
8551     VPlans.push_back(buildVPlan(SubRange));
8552     VF = SubRange.End;
8553   }
8554 }
8555 
8556 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8557                                          VPlanPtr &Plan) {
8558   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8559 
8560   // Look for cached value.
8561   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8562   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8563   if (ECEntryIt != EdgeMaskCache.end())
8564     return ECEntryIt->second;
8565 
8566   VPValue *SrcMask = createBlockInMask(Src, Plan);
8567 
8568   // The terminator has to be a branch inst!
8569   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8570   assert(BI && "Unexpected terminator found");
8571 
8572   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8573     return EdgeMaskCache[Edge] = SrcMask;
8574 
8575   // If source is an exiting block, we know the exit edge is dynamically dead
8576   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8577   // adding uses of an otherwise potentially dead instruction.
8578   if (OrigLoop->isLoopExiting(Src))
8579     return EdgeMaskCache[Edge] = SrcMask;
8580 
8581   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8582   assert(EdgeMask && "No Edge Mask found for condition");
8583 
8584   if (BI->getSuccessor(0) != Dst)
8585     EdgeMask = Builder.createNot(EdgeMask);
8586 
8587   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8588     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8589     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8590     // The select version does not introduce new UB if SrcMask is false and
8591     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8592     VPValue *False = Plan->getOrAddVPValue(
8593         ConstantInt::getFalse(BI->getCondition()->getType()));
8594     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8595   }
8596 
8597   return EdgeMaskCache[Edge] = EdgeMask;
8598 }
8599 
8600 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8601   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8602 
8603   // Look for cached value.
8604   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8605   if (BCEntryIt != BlockMaskCache.end())
8606     return BCEntryIt->second;
8607 
8608   // All-one mask is modelled as no-mask following the convention for masked
8609   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8610   VPValue *BlockMask = nullptr;
8611 
8612   if (OrigLoop->getHeader() == BB) {
8613     if (!CM.blockNeedsPredication(BB))
8614       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8615 
8616     // Create the block in mask as the first non-phi instruction in the block.
8617     VPBuilder::InsertPointGuard Guard(Builder);
8618     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8619     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8620 
8621     // Introduce the early-exit compare IV <= BTC to form header block mask.
8622     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8623     // Start by constructing the desired canonical IV.
8624     VPValue *IV = nullptr;
8625     if (Legal->getPrimaryInduction())
8626       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8627     else {
8628       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8629       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8630       IV = IVRecipe->getVPSingleValue();
8631     }
8632     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8633     bool TailFolded = !CM.isScalarEpilogueAllowed();
8634 
8635     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8636       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8637       // as a second argument, we only pass the IV here and extract the
8638       // tripcount from the transform state where codegen of the VP instructions
8639       // happen.
8640       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8641     } else {
8642       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8643     }
8644     return BlockMaskCache[BB] = BlockMask;
8645   }
8646 
8647   // This is the block mask. We OR all incoming edges.
8648   for (auto *Predecessor : predecessors(BB)) {
8649     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8650     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8651       return BlockMaskCache[BB] = EdgeMask;
8652 
8653     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8654       BlockMask = EdgeMask;
8655       continue;
8656     }
8657 
8658     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8659   }
8660 
8661   return BlockMaskCache[BB] = BlockMask;
8662 }
8663 
8664 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8665                                                 ArrayRef<VPValue *> Operands,
8666                                                 VFRange &Range,
8667                                                 VPlanPtr &Plan) {
8668   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8669          "Must be called with either a load or store");
8670 
8671   auto willWiden = [&](ElementCount VF) -> bool {
8672     if (VF.isScalar())
8673       return false;
8674     LoopVectorizationCostModel::InstWidening Decision =
8675         CM.getWideningDecision(I, VF);
8676     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8677            "CM decision should be taken at this point.");
8678     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8679       return true;
8680     if (CM.isScalarAfterVectorization(I, VF) ||
8681         CM.isProfitableToScalarize(I, VF))
8682       return false;
8683     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8684   };
8685 
8686   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8687     return nullptr;
8688 
8689   VPValue *Mask = nullptr;
8690   if (Legal->isMaskRequired(I))
8691     Mask = createBlockInMask(I->getParent(), Plan);
8692 
8693   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8694     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8695 
8696   StoreInst *Store = cast<StoreInst>(I);
8697   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8698                                             Mask);
8699 }
8700 
8701 VPWidenIntOrFpInductionRecipe *
8702 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8703                                            ArrayRef<VPValue *> Operands) const {
8704   // Check if this is an integer or fp induction. If so, build the recipe that
8705   // produces its scalar and vector values.
8706   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8707   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8708       II.getKind() == InductionDescriptor::IK_FpInduction) {
8709     assert(II.getStartValue() ==
8710            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8711     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8712     return new VPWidenIntOrFpInductionRecipe(
8713         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8714   }
8715 
8716   return nullptr;
8717 }
8718 
8719 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8720     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8721     VPlan &Plan) const {
8722   // Optimize the special case where the source is a constant integer
8723   // induction variable. Notice that we can only optimize the 'trunc' case
8724   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8725   // (c) other casts depend on pointer size.
8726 
8727   // Determine whether \p K is a truncation based on an induction variable that
8728   // can be optimized.
8729   auto isOptimizableIVTruncate =
8730       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8731     return [=](ElementCount VF) -> bool {
8732       return CM.isOptimizableIVTruncate(K, VF);
8733     };
8734   };
8735 
8736   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8737           isOptimizableIVTruncate(I), Range)) {
8738 
8739     InductionDescriptor II =
8740         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8741     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8742     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8743                                              Start, nullptr, I);
8744   }
8745   return nullptr;
8746 }
8747 
8748 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8749                                                 ArrayRef<VPValue *> Operands,
8750                                                 VPlanPtr &Plan) {
8751   // If all incoming values are equal, the incoming VPValue can be used directly
8752   // instead of creating a new VPBlendRecipe.
8753   VPValue *FirstIncoming = Operands[0];
8754   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8755         return FirstIncoming == Inc;
8756       })) {
8757     return Operands[0];
8758   }
8759 
8760   // We know that all PHIs in non-header blocks are converted into selects, so
8761   // we don't have to worry about the insertion order and we can just use the
8762   // builder. At this point we generate the predication tree. There may be
8763   // duplications since this is a simple recursive scan, but future
8764   // optimizations will clean it up.
8765   SmallVector<VPValue *, 2> OperandsWithMask;
8766   unsigned NumIncoming = Phi->getNumIncomingValues();
8767 
8768   for (unsigned In = 0; In < NumIncoming; In++) {
8769     VPValue *EdgeMask =
8770       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8771     assert((EdgeMask || NumIncoming == 1) &&
8772            "Multiple predecessors with one having a full mask");
8773     OperandsWithMask.push_back(Operands[In]);
8774     if (EdgeMask)
8775       OperandsWithMask.push_back(EdgeMask);
8776   }
8777   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8778 }
8779 
8780 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8781                                                    ArrayRef<VPValue *> Operands,
8782                                                    VFRange &Range) const {
8783 
8784   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8785       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8786       Range);
8787 
8788   if (IsPredicated)
8789     return nullptr;
8790 
8791   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8792   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8793              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8794              ID == Intrinsic::pseudoprobe ||
8795              ID == Intrinsic::experimental_noalias_scope_decl))
8796     return nullptr;
8797 
8798   auto willWiden = [&](ElementCount VF) -> bool {
8799     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8800     // The following case may be scalarized depending on the VF.
8801     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8802     // version of the instruction.
8803     // Is it beneficial to perform intrinsic call compared to lib call?
8804     bool NeedToScalarize = false;
8805     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8806     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8807     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8808     return UseVectorIntrinsic || !NeedToScalarize;
8809   };
8810 
8811   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8812     return nullptr;
8813 
8814   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8815   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8816 }
8817 
8818 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8819   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8820          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8821   // Instruction should be widened, unless it is scalar after vectorization,
8822   // scalarization is profitable or it is predicated.
8823   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8824     return CM.isScalarAfterVectorization(I, VF) ||
8825            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8826   };
8827   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8828                                                              Range);
8829 }
8830 
8831 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8832                                            ArrayRef<VPValue *> Operands) const {
8833   auto IsVectorizableOpcode = [](unsigned Opcode) {
8834     switch (Opcode) {
8835     case Instruction::Add:
8836     case Instruction::And:
8837     case Instruction::AShr:
8838     case Instruction::BitCast:
8839     case Instruction::FAdd:
8840     case Instruction::FCmp:
8841     case Instruction::FDiv:
8842     case Instruction::FMul:
8843     case Instruction::FNeg:
8844     case Instruction::FPExt:
8845     case Instruction::FPToSI:
8846     case Instruction::FPToUI:
8847     case Instruction::FPTrunc:
8848     case Instruction::FRem:
8849     case Instruction::FSub:
8850     case Instruction::ICmp:
8851     case Instruction::IntToPtr:
8852     case Instruction::LShr:
8853     case Instruction::Mul:
8854     case Instruction::Or:
8855     case Instruction::PtrToInt:
8856     case Instruction::SDiv:
8857     case Instruction::Select:
8858     case Instruction::SExt:
8859     case Instruction::Shl:
8860     case Instruction::SIToFP:
8861     case Instruction::SRem:
8862     case Instruction::Sub:
8863     case Instruction::Trunc:
8864     case Instruction::UDiv:
8865     case Instruction::UIToFP:
8866     case Instruction::URem:
8867     case Instruction::Xor:
8868     case Instruction::ZExt:
8869       return true;
8870     }
8871     return false;
8872   };
8873 
8874   if (!IsVectorizableOpcode(I->getOpcode()))
8875     return nullptr;
8876 
8877   // Success: widen this instruction.
8878   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8879 }
8880 
8881 void VPRecipeBuilder::fixHeaderPhis() {
8882   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8883   for (VPWidenPHIRecipe *R : PhisToFix) {
8884     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8885     VPRecipeBase *IncR =
8886         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8887     R->addOperand(IncR->getVPSingleValue());
8888   }
8889 }
8890 
8891 VPBasicBlock *VPRecipeBuilder::handleReplication(
8892     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8893     VPlanPtr &Plan) {
8894   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8895       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8896       Range);
8897 
8898   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8899       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8900 
8901   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8902                                        IsUniform, IsPredicated);
8903   setRecipe(I, Recipe);
8904   Plan->addVPValue(I, Recipe);
8905 
8906   // Find if I uses a predicated instruction. If so, it will use its scalar
8907   // value. Avoid hoisting the insert-element which packs the scalar value into
8908   // a vector value, as that happens iff all users use the vector value.
8909   for (VPValue *Op : Recipe->operands()) {
8910     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8911     if (!PredR)
8912       continue;
8913     auto *RepR =
8914         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8915     assert(RepR->isPredicated() &&
8916            "expected Replicate recipe to be predicated");
8917     RepR->setAlsoPack(false);
8918   }
8919 
8920   // Finalize the recipe for Instr, first if it is not predicated.
8921   if (!IsPredicated) {
8922     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8923     VPBB->appendRecipe(Recipe);
8924     return VPBB;
8925   }
8926   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8927   assert(VPBB->getSuccessors().empty() &&
8928          "VPBB has successors when handling predicated replication.");
8929   // Record predicated instructions for above packing optimizations.
8930   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8931   VPBlockUtils::insertBlockAfter(Region, VPBB);
8932   auto *RegSucc = new VPBasicBlock();
8933   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8934   return RegSucc;
8935 }
8936 
8937 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8938                                                       VPRecipeBase *PredRecipe,
8939                                                       VPlanPtr &Plan) {
8940   // Instructions marked for predication are replicated and placed under an
8941   // if-then construct to prevent side-effects.
8942 
8943   // Generate recipes to compute the block mask for this region.
8944   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8945 
8946   // Build the triangular if-then region.
8947   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8948   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8949   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8950   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8951   auto *PHIRecipe = Instr->getType()->isVoidTy()
8952                         ? nullptr
8953                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8954   if (PHIRecipe) {
8955     Plan->removeVPValueFor(Instr);
8956     Plan->addVPValue(Instr, PHIRecipe);
8957   }
8958   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8959   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8960   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8961 
8962   // Note: first set Entry as region entry and then connect successors starting
8963   // from it in order, to propagate the "parent" of each VPBasicBlock.
8964   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8965   VPBlockUtils::connectBlocks(Pred, Exit);
8966 
8967   return Region;
8968 }
8969 
8970 VPRecipeOrVPValueTy
8971 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8972                                         ArrayRef<VPValue *> Operands,
8973                                         VFRange &Range, VPlanPtr &Plan) {
8974   // First, check for specific widening recipes that deal with calls, memory
8975   // operations, inductions and Phi nodes.
8976   if (auto *CI = dyn_cast<CallInst>(Instr))
8977     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8978 
8979   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8980     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8981 
8982   VPRecipeBase *Recipe;
8983   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8984     if (Phi->getParent() != OrigLoop->getHeader())
8985       return tryToBlend(Phi, Operands, Plan);
8986     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8987       return toVPRecipeResult(Recipe);
8988 
8989     VPWidenPHIRecipe *PhiRecipe = nullptr;
8990     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8991       VPValue *StartV = Operands[0];
8992       if (Legal->isReductionVariable(Phi)) {
8993         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8994         assert(RdxDesc.getRecurrenceStartValue() ==
8995                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8996         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8997                                              CM.isInLoopReduction(Phi),
8998                                              CM.useOrderedReductions(RdxDesc));
8999       } else {
9000         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9001       }
9002 
9003       // Record the incoming value from the backedge, so we can add the incoming
9004       // value from the backedge after all recipes have been created.
9005       recordRecipeOf(cast<Instruction>(
9006           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9007       PhisToFix.push_back(PhiRecipe);
9008     } else {
9009       // TODO: record start and backedge value for remaining pointer induction
9010       // phis.
9011       assert(Phi->getType()->isPointerTy() &&
9012              "only pointer phis should be handled here");
9013       PhiRecipe = new VPWidenPHIRecipe(Phi);
9014     }
9015 
9016     return toVPRecipeResult(PhiRecipe);
9017   }
9018 
9019   if (isa<TruncInst>(Instr) &&
9020       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9021                                                Range, *Plan)))
9022     return toVPRecipeResult(Recipe);
9023 
9024   if (!shouldWiden(Instr, Range))
9025     return nullptr;
9026 
9027   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9028     return toVPRecipeResult(new VPWidenGEPRecipe(
9029         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9030 
9031   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9032     bool InvariantCond =
9033         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9034     return toVPRecipeResult(new VPWidenSelectRecipe(
9035         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9036   }
9037 
9038   return toVPRecipeResult(tryToWiden(Instr, Operands));
9039 }
9040 
9041 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9042                                                         ElementCount MaxVF) {
9043   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9044 
9045   // Collect instructions from the original loop that will become trivially dead
9046   // in the vectorized loop. We don't need to vectorize these instructions. For
9047   // example, original induction update instructions can become dead because we
9048   // separately emit induction "steps" when generating code for the new loop.
9049   // Similarly, we create a new latch condition when setting up the structure
9050   // of the new loop, so the old one can become dead.
9051   SmallPtrSet<Instruction *, 4> DeadInstructions;
9052   collectTriviallyDeadInstructions(DeadInstructions);
9053 
9054   // Add assume instructions we need to drop to DeadInstructions, to prevent
9055   // them from being added to the VPlan.
9056   // TODO: We only need to drop assumes in blocks that get flattend. If the
9057   // control flow is preserved, we should keep them.
9058   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9059   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9060 
9061   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9062   // Dead instructions do not need sinking. Remove them from SinkAfter.
9063   for (Instruction *I : DeadInstructions)
9064     SinkAfter.erase(I);
9065 
9066   // Cannot sink instructions after dead instructions (there won't be any
9067   // recipes for them). Instead, find the first non-dead previous instruction.
9068   for (auto &P : Legal->getSinkAfter()) {
9069     Instruction *SinkTarget = P.second;
9070     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9071     (void)FirstInst;
9072     while (DeadInstructions.contains(SinkTarget)) {
9073       assert(
9074           SinkTarget != FirstInst &&
9075           "Must find a live instruction (at least the one feeding the "
9076           "first-order recurrence PHI) before reaching beginning of the block");
9077       SinkTarget = SinkTarget->getPrevNode();
9078       assert(SinkTarget != P.first &&
9079              "sink source equals target, no sinking required");
9080     }
9081     P.second = SinkTarget;
9082   }
9083 
9084   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9085   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9086     VFRange SubRange = {VF, MaxVFPlusOne};
9087     VPlans.push_back(
9088         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9089     VF = SubRange.End;
9090   }
9091 }
9092 
9093 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9094     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9095     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9096 
9097   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9098 
9099   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9100 
9101   // ---------------------------------------------------------------------------
9102   // Pre-construction: record ingredients whose recipes we'll need to further
9103   // process after constructing the initial VPlan.
9104   // ---------------------------------------------------------------------------
9105 
9106   // Mark instructions we'll need to sink later and their targets as
9107   // ingredients whose recipe we'll need to record.
9108   for (auto &Entry : SinkAfter) {
9109     RecipeBuilder.recordRecipeOf(Entry.first);
9110     RecipeBuilder.recordRecipeOf(Entry.second);
9111   }
9112   for (auto &Reduction : CM.getInLoopReductionChains()) {
9113     PHINode *Phi = Reduction.first;
9114     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9115     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9116 
9117     RecipeBuilder.recordRecipeOf(Phi);
9118     for (auto &R : ReductionOperations) {
9119       RecipeBuilder.recordRecipeOf(R);
9120       // For min/max reducitons, where we have a pair of icmp/select, we also
9121       // need to record the ICmp recipe, so it can be removed later.
9122       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9123         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9124     }
9125   }
9126 
9127   // For each interleave group which is relevant for this (possibly trimmed)
9128   // Range, add it to the set of groups to be later applied to the VPlan and add
9129   // placeholders for its members' Recipes which we'll be replacing with a
9130   // single VPInterleaveRecipe.
9131   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9132     auto applyIG = [IG, this](ElementCount VF) -> bool {
9133       return (VF.isVector() && // Query is illegal for VF == 1
9134               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9135                   LoopVectorizationCostModel::CM_Interleave);
9136     };
9137     if (!getDecisionAndClampRange(applyIG, Range))
9138       continue;
9139     InterleaveGroups.insert(IG);
9140     for (unsigned i = 0; i < IG->getFactor(); i++)
9141       if (Instruction *Member = IG->getMember(i))
9142         RecipeBuilder.recordRecipeOf(Member);
9143   };
9144 
9145   // ---------------------------------------------------------------------------
9146   // Build initial VPlan: Scan the body of the loop in a topological order to
9147   // visit each basic block after having visited its predecessor basic blocks.
9148   // ---------------------------------------------------------------------------
9149 
9150   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9151   auto Plan = std::make_unique<VPlan>();
9152   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9153   Plan->setEntry(VPBB);
9154 
9155   // Scan the body of the loop in a topological order to visit each basic block
9156   // after having visited its predecessor basic blocks.
9157   LoopBlocksDFS DFS(OrigLoop);
9158   DFS.perform(LI);
9159 
9160   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9161     // Relevant instructions from basic block BB will be grouped into VPRecipe
9162     // ingredients and fill a new VPBasicBlock.
9163     unsigned VPBBsForBB = 0;
9164     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9165     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9166     VPBB = FirstVPBBForBB;
9167     Builder.setInsertPoint(VPBB);
9168 
9169     // Introduce each ingredient into VPlan.
9170     // TODO: Model and preserve debug instrinsics in VPlan.
9171     for (Instruction &I : BB->instructionsWithoutDebug()) {
9172       Instruction *Instr = &I;
9173 
9174       // First filter out irrelevant instructions, to ensure no recipes are
9175       // built for them.
9176       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9177         continue;
9178 
9179       SmallVector<VPValue *, 4> Operands;
9180       auto *Phi = dyn_cast<PHINode>(Instr);
9181       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9182         Operands.push_back(Plan->getOrAddVPValue(
9183             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9184       } else {
9185         auto OpRange = Plan->mapToVPValues(Instr->operands());
9186         Operands = {OpRange.begin(), OpRange.end()};
9187       }
9188       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9189               Instr, Operands, Range, Plan)) {
9190         // If Instr can be simplified to an existing VPValue, use it.
9191         if (RecipeOrValue.is<VPValue *>()) {
9192           auto *VPV = RecipeOrValue.get<VPValue *>();
9193           Plan->addVPValue(Instr, VPV);
9194           // If the re-used value is a recipe, register the recipe for the
9195           // instruction, in case the recipe for Instr needs to be recorded.
9196           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9197             RecipeBuilder.setRecipe(Instr, R);
9198           continue;
9199         }
9200         // Otherwise, add the new recipe.
9201         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9202         for (auto *Def : Recipe->definedValues()) {
9203           auto *UV = Def->getUnderlyingValue();
9204           Plan->addVPValue(UV, Def);
9205         }
9206 
9207         RecipeBuilder.setRecipe(Instr, Recipe);
9208         VPBB->appendRecipe(Recipe);
9209         continue;
9210       }
9211 
9212       // Otherwise, if all widening options failed, Instruction is to be
9213       // replicated. This may create a successor for VPBB.
9214       VPBasicBlock *NextVPBB =
9215           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9216       if (NextVPBB != VPBB) {
9217         VPBB = NextVPBB;
9218         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9219                                     : "");
9220       }
9221     }
9222   }
9223 
9224   RecipeBuilder.fixHeaderPhis();
9225 
9226   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9227   // may also be empty, such as the last one VPBB, reflecting original
9228   // basic-blocks with no recipes.
9229   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9230   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9231   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9232   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9233   delete PreEntry;
9234 
9235   // ---------------------------------------------------------------------------
9236   // Transform initial VPlan: Apply previously taken decisions, in order, to
9237   // bring the VPlan to its final state.
9238   // ---------------------------------------------------------------------------
9239 
9240   // Apply Sink-After legal constraints.
9241   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9242     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9243     if (Region && Region->isReplicator()) {
9244       assert(Region->getNumSuccessors() == 1 &&
9245              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9246       assert(R->getParent()->size() == 1 &&
9247              "A recipe in an original replicator region must be the only "
9248              "recipe in its block");
9249       return Region;
9250     }
9251     return nullptr;
9252   };
9253   for (auto &Entry : SinkAfter) {
9254     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9255     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9256 
9257     auto *TargetRegion = GetReplicateRegion(Target);
9258     auto *SinkRegion = GetReplicateRegion(Sink);
9259     if (!SinkRegion) {
9260       // If the sink source is not a replicate region, sink the recipe directly.
9261       if (TargetRegion) {
9262         // The target is in a replication region, make sure to move Sink to
9263         // the block after it, not into the replication region itself.
9264         VPBasicBlock *NextBlock =
9265             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9266         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9267       } else
9268         Sink->moveAfter(Target);
9269       continue;
9270     }
9271 
9272     // The sink source is in a replicate region. Unhook the region from the CFG.
9273     auto *SinkPred = SinkRegion->getSinglePredecessor();
9274     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9275     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9276     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9277     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9278 
9279     if (TargetRegion) {
9280       // The target recipe is also in a replicate region, move the sink region
9281       // after the target region.
9282       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9283       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9284       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9285       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9286     } else {
9287       // The sink source is in a replicate region, we need to move the whole
9288       // replicate region, which should only contain a single recipe in the
9289       // main block.
9290       auto *SplitBlock =
9291           Target->getParent()->splitAt(std::next(Target->getIterator()));
9292 
9293       auto *SplitPred = SplitBlock->getSinglePredecessor();
9294 
9295       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9296       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9297       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9298       if (VPBB == SplitPred)
9299         VPBB = SplitBlock;
9300     }
9301   }
9302 
9303   // Introduce a recipe to combine the incoming and previous values of a
9304   // first-order recurrence.
9305   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9306     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9307     if (!RecurPhi)
9308       continue;
9309 
9310     auto *RecurSplice = cast<VPInstruction>(
9311         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9312                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9313 
9314     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9315     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9316       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9317       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9318     } else
9319       RecurSplice->moveAfter(PrevRecipe);
9320     RecurPhi->replaceAllUsesWith(RecurSplice);
9321     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9322     // all users.
9323     RecurSplice->setOperand(0, RecurPhi);
9324   }
9325 
9326   // Interleave memory: for each Interleave Group we marked earlier as relevant
9327   // for this VPlan, replace the Recipes widening its memory instructions with a
9328   // single VPInterleaveRecipe at its insertion point.
9329   for (auto IG : InterleaveGroups) {
9330     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9331         RecipeBuilder.getRecipe(IG->getInsertPos()));
9332     SmallVector<VPValue *, 4> StoredValues;
9333     for (unsigned i = 0; i < IG->getFactor(); ++i)
9334       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9335         auto *StoreR =
9336             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9337         StoredValues.push_back(StoreR->getStoredValue());
9338       }
9339 
9340     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9341                                         Recipe->getMask());
9342     VPIG->insertBefore(Recipe);
9343     unsigned J = 0;
9344     for (unsigned i = 0; i < IG->getFactor(); ++i)
9345       if (Instruction *Member = IG->getMember(i)) {
9346         if (!Member->getType()->isVoidTy()) {
9347           VPValue *OriginalV = Plan->getVPValue(Member);
9348           Plan->removeVPValueFor(Member);
9349           Plan->addVPValue(Member, VPIG->getVPValue(J));
9350           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9351           J++;
9352         }
9353         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9354       }
9355   }
9356 
9357   // Adjust the recipes for any inloop reductions.
9358   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9359 
9360   // Finally, if tail is folded by masking, introduce selects between the phi
9361   // and the live-out instruction of each reduction, at the end of the latch.
9362   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9363     Builder.setInsertPoint(VPBB);
9364     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9365     for (auto &Reduction : Legal->getReductionVars()) {
9366       if (CM.isInLoopReduction(Reduction.first))
9367         continue;
9368       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9369       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9370       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9371     }
9372   }
9373 
9374   VPlanTransforms::sinkScalarOperands(*Plan);
9375   VPlanTransforms::mergeReplicateRegions(*Plan);
9376 
9377   std::string PlanName;
9378   raw_string_ostream RSO(PlanName);
9379   ElementCount VF = Range.Start;
9380   Plan->addVF(VF);
9381   RSO << "Initial VPlan for VF={" << VF;
9382   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9383     Plan->addVF(VF);
9384     RSO << "," << VF;
9385   }
9386   RSO << "},UF>=1";
9387   RSO.flush();
9388   Plan->setName(PlanName);
9389 
9390   return Plan;
9391 }
9392 
9393 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9394   // Outer loop handling: They may require CFG and instruction level
9395   // transformations before even evaluating whether vectorization is profitable.
9396   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9397   // the vectorization pipeline.
9398   assert(!OrigLoop->isInnermost());
9399   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9400 
9401   // Create new empty VPlan
9402   auto Plan = std::make_unique<VPlan>();
9403 
9404   // Build hierarchical CFG
9405   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9406   HCFGBuilder.buildHierarchicalCFG();
9407 
9408   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9409        VF *= 2)
9410     Plan->addVF(VF);
9411 
9412   if (EnableVPlanPredication) {
9413     VPlanPredicator VPP(*Plan);
9414     VPP.predicate();
9415 
9416     // Avoid running transformation to recipes until masked code generation in
9417     // VPlan-native path is in place.
9418     return Plan;
9419   }
9420 
9421   SmallPtrSet<Instruction *, 1> DeadInstructions;
9422   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9423                                              Legal->getInductionVars(),
9424                                              DeadInstructions, *PSE.getSE());
9425   return Plan;
9426 }
9427 
9428 // Adjust the recipes for any inloop reductions. The chain of instructions
9429 // leading from the loop exit instr to the phi need to be converted to
9430 // reductions, with one operand being vector and the other being the scalar
9431 // reduction chain.
9432 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9433     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9434   for (auto &Reduction : CM.getInLoopReductionChains()) {
9435     PHINode *Phi = Reduction.first;
9436     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9437     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9438 
9439     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9440       continue;
9441 
9442     // ReductionOperations are orders top-down from the phi's use to the
9443     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9444     // which of the two operands will remain scalar and which will be reduced.
9445     // For minmax the chain will be the select instructions.
9446     Instruction *Chain = Phi;
9447     for (Instruction *R : ReductionOperations) {
9448       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9449       RecurKind Kind = RdxDesc.getRecurrenceKind();
9450 
9451       VPValue *ChainOp = Plan->getVPValue(Chain);
9452       unsigned FirstOpId;
9453       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9454         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9455                "Expected to replace a VPWidenSelectSC");
9456         FirstOpId = 1;
9457       } else {
9458         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9459                "Expected to replace a VPWidenSC");
9460         FirstOpId = 0;
9461       }
9462       unsigned VecOpId =
9463           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9464       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9465 
9466       auto *CondOp = CM.foldTailByMasking()
9467                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9468                          : nullptr;
9469       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9470           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9471       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9472       Plan->removeVPValueFor(R);
9473       Plan->addVPValue(R, RedRecipe);
9474       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9475       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9476       WidenRecipe->eraseFromParent();
9477 
9478       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9479         VPRecipeBase *CompareRecipe =
9480             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9481         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9482                "Expected to replace a VPWidenSC");
9483         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9484                "Expected no remaining users");
9485         CompareRecipe->eraseFromParent();
9486       }
9487       Chain = R;
9488     }
9489   }
9490 }
9491 
9492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9493 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9494                                VPSlotTracker &SlotTracker) const {
9495   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9496   IG->getInsertPos()->printAsOperand(O, false);
9497   O << ", ";
9498   getAddr()->printAsOperand(O, SlotTracker);
9499   VPValue *Mask = getMask();
9500   if (Mask) {
9501     O << ", ";
9502     Mask->printAsOperand(O, SlotTracker);
9503   }
9504   for (unsigned i = 0; i < IG->getFactor(); ++i)
9505     if (Instruction *I = IG->getMember(i))
9506       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9507 }
9508 #endif
9509 
9510 void VPWidenCallRecipe::execute(VPTransformState &State) {
9511   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9512                                   *this, State);
9513 }
9514 
9515 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9516   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9517                                     this, *this, InvariantCond, State);
9518 }
9519 
9520 void VPWidenRecipe::execute(VPTransformState &State) {
9521   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9522 }
9523 
9524 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9525   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9526                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9527                       IsIndexLoopInvariant, State);
9528 }
9529 
9530 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9531   assert(!State.Instance && "Int or FP induction being replicated.");
9532   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9533                                    getTruncInst(), getVPValue(0),
9534                                    getCastValue(), State);
9535 }
9536 
9537 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9538   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9539                                  State);
9540 }
9541 
9542 void VPBlendRecipe::execute(VPTransformState &State) {
9543   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9544   // We know that all PHIs in non-header blocks are converted into
9545   // selects, so we don't have to worry about the insertion order and we
9546   // can just use the builder.
9547   // At this point we generate the predication tree. There may be
9548   // duplications since this is a simple recursive scan, but future
9549   // optimizations will clean it up.
9550 
9551   unsigned NumIncoming = getNumIncomingValues();
9552 
9553   // Generate a sequence of selects of the form:
9554   // SELECT(Mask3, In3,
9555   //        SELECT(Mask2, In2,
9556   //               SELECT(Mask1, In1,
9557   //                      In0)))
9558   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9559   // are essentially undef are taken from In0.
9560   InnerLoopVectorizer::VectorParts Entry(State.UF);
9561   for (unsigned In = 0; In < NumIncoming; ++In) {
9562     for (unsigned Part = 0; Part < State.UF; ++Part) {
9563       // We might have single edge PHIs (blocks) - use an identity
9564       // 'select' for the first PHI operand.
9565       Value *In0 = State.get(getIncomingValue(In), Part);
9566       if (In == 0)
9567         Entry[Part] = In0; // Initialize with the first incoming value.
9568       else {
9569         // Select between the current value and the previous incoming edge
9570         // based on the incoming mask.
9571         Value *Cond = State.get(getMask(In), Part);
9572         Entry[Part] =
9573             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9574       }
9575     }
9576   }
9577   for (unsigned Part = 0; Part < State.UF; ++Part)
9578     State.set(this, Entry[Part], Part);
9579 }
9580 
9581 void VPInterleaveRecipe::execute(VPTransformState &State) {
9582   assert(!State.Instance && "Interleave group being replicated.");
9583   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9584                                       getStoredValues(), getMask());
9585 }
9586 
9587 void VPReductionRecipe::execute(VPTransformState &State) {
9588   assert(!State.Instance && "Reduction being replicated.");
9589   Value *PrevInChain = State.get(getChainOp(), 0);
9590   for (unsigned Part = 0; Part < State.UF; ++Part) {
9591     RecurKind Kind = RdxDesc->getRecurrenceKind();
9592     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9593     Value *NewVecOp = State.get(getVecOp(), Part);
9594     if (VPValue *Cond = getCondOp()) {
9595       Value *NewCond = State.get(Cond, Part);
9596       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9597       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9598           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9599       Constant *IdenVec =
9600           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9601       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9602       NewVecOp = Select;
9603     }
9604     Value *NewRed;
9605     Value *NextInChain;
9606     if (IsOrdered) {
9607       if (State.VF.isVector())
9608         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9609                                         PrevInChain);
9610       else
9611         NewRed = State.Builder.CreateBinOp(
9612             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9613             PrevInChain, NewVecOp);
9614       PrevInChain = NewRed;
9615     } else {
9616       PrevInChain = State.get(getChainOp(), Part);
9617       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9618     }
9619     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9620       NextInChain =
9621           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9622                          NewRed, PrevInChain);
9623     } else if (IsOrdered)
9624       NextInChain = NewRed;
9625     else {
9626       NextInChain = State.Builder.CreateBinOp(
9627           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9628           PrevInChain);
9629     }
9630     State.set(this, NextInChain, Part);
9631   }
9632 }
9633 
9634 void VPReplicateRecipe::execute(VPTransformState &State) {
9635   if (State.Instance) { // Generate a single instance.
9636     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9637     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9638                                     *State.Instance, IsPredicated, State);
9639     // Insert scalar instance packing it into a vector.
9640     if (AlsoPack && State.VF.isVector()) {
9641       // If we're constructing lane 0, initialize to start from poison.
9642       if (State.Instance->Lane.isFirstLane()) {
9643         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9644         Value *Poison = PoisonValue::get(
9645             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9646         State.set(this, Poison, State.Instance->Part);
9647       }
9648       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9649     }
9650     return;
9651   }
9652 
9653   // Generate scalar instances for all VF lanes of all UF parts, unless the
9654   // instruction is uniform inwhich case generate only the first lane for each
9655   // of the UF parts.
9656   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9657   assert((!State.VF.isScalable() || IsUniform) &&
9658          "Can't scalarize a scalable vector");
9659   for (unsigned Part = 0; Part < State.UF; ++Part)
9660     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9661       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9662                                       VPIteration(Part, Lane), IsPredicated,
9663                                       State);
9664 }
9665 
9666 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9667   assert(State.Instance && "Branch on Mask works only on single instance.");
9668 
9669   unsigned Part = State.Instance->Part;
9670   unsigned Lane = State.Instance->Lane.getKnownLane();
9671 
9672   Value *ConditionBit = nullptr;
9673   VPValue *BlockInMask = getMask();
9674   if (BlockInMask) {
9675     ConditionBit = State.get(BlockInMask, Part);
9676     if (ConditionBit->getType()->isVectorTy())
9677       ConditionBit = State.Builder.CreateExtractElement(
9678           ConditionBit, State.Builder.getInt32(Lane));
9679   } else // Block in mask is all-one.
9680     ConditionBit = State.Builder.getTrue();
9681 
9682   // Replace the temporary unreachable terminator with a new conditional branch,
9683   // whose two destinations will be set later when they are created.
9684   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9685   assert(isa<UnreachableInst>(CurrentTerminator) &&
9686          "Expected to replace unreachable terminator with conditional branch.");
9687   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9688   CondBr->setSuccessor(0, nullptr);
9689   ReplaceInstWithInst(CurrentTerminator, CondBr);
9690 }
9691 
9692 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9693   assert(State.Instance && "Predicated instruction PHI works per instance.");
9694   Instruction *ScalarPredInst =
9695       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9696   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9697   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9698   assert(PredicatingBB && "Predicated block has no single predecessor.");
9699   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9700          "operand must be VPReplicateRecipe");
9701 
9702   // By current pack/unpack logic we need to generate only a single phi node: if
9703   // a vector value for the predicated instruction exists at this point it means
9704   // the instruction has vector users only, and a phi for the vector value is
9705   // needed. In this case the recipe of the predicated instruction is marked to
9706   // also do that packing, thereby "hoisting" the insert-element sequence.
9707   // Otherwise, a phi node for the scalar value is needed.
9708   unsigned Part = State.Instance->Part;
9709   if (State.hasVectorValue(getOperand(0), Part)) {
9710     Value *VectorValue = State.get(getOperand(0), Part);
9711     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9712     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9713     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9714     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9715     if (State.hasVectorValue(this, Part))
9716       State.reset(this, VPhi, Part);
9717     else
9718       State.set(this, VPhi, Part);
9719     // NOTE: Currently we need to update the value of the operand, so the next
9720     // predicated iteration inserts its generated value in the correct vector.
9721     State.reset(getOperand(0), VPhi, Part);
9722   } else {
9723     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9724     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9725     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9726                      PredicatingBB);
9727     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9728     if (State.hasScalarValue(this, *State.Instance))
9729       State.reset(this, Phi, *State.Instance);
9730     else
9731       State.set(this, Phi, *State.Instance);
9732     // NOTE: Currently we need to update the value of the operand, so the next
9733     // predicated iteration inserts its generated value in the correct vector.
9734     State.reset(getOperand(0), Phi, *State.Instance);
9735   }
9736 }
9737 
9738 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9739   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9740   State.ILV->vectorizeMemoryInstruction(
9741       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9742       StoredValue, getMask());
9743 }
9744 
9745 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9746 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9747 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9748 // for predication.
9749 static ScalarEpilogueLowering getScalarEpilogueLowering(
9750     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9751     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9752     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9753     LoopVectorizationLegality &LVL) {
9754   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9755   // don't look at hints or options, and don't request a scalar epilogue.
9756   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9757   // LoopAccessInfo (due to code dependency and not being able to reliably get
9758   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9759   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9760   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9761   // back to the old way and vectorize with versioning when forced. See D81345.)
9762   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9763                                                       PGSOQueryType::IRPass) &&
9764                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9765     return CM_ScalarEpilogueNotAllowedOptSize;
9766 
9767   // 2) If set, obey the directives
9768   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9769     switch (PreferPredicateOverEpilogue) {
9770     case PreferPredicateTy::ScalarEpilogue:
9771       return CM_ScalarEpilogueAllowed;
9772     case PreferPredicateTy::PredicateElseScalarEpilogue:
9773       return CM_ScalarEpilogueNotNeededUsePredicate;
9774     case PreferPredicateTy::PredicateOrDontVectorize:
9775       return CM_ScalarEpilogueNotAllowedUsePredicate;
9776     };
9777   }
9778 
9779   // 3) If set, obey the hints
9780   switch (Hints.getPredicate()) {
9781   case LoopVectorizeHints::FK_Enabled:
9782     return CM_ScalarEpilogueNotNeededUsePredicate;
9783   case LoopVectorizeHints::FK_Disabled:
9784     return CM_ScalarEpilogueAllowed;
9785   };
9786 
9787   // 4) if the TTI hook indicates this is profitable, request predication.
9788   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9789                                        LVL.getLAI()))
9790     return CM_ScalarEpilogueNotNeededUsePredicate;
9791 
9792   return CM_ScalarEpilogueAllowed;
9793 }
9794 
9795 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9796   // If Values have been set for this Def return the one relevant for \p Part.
9797   if (hasVectorValue(Def, Part))
9798     return Data.PerPartOutput[Def][Part];
9799 
9800   if (!hasScalarValue(Def, {Part, 0})) {
9801     Value *IRV = Def->getLiveInIRValue();
9802     Value *B = ILV->getBroadcastInstrs(IRV);
9803     set(Def, B, Part);
9804     return B;
9805   }
9806 
9807   Value *ScalarValue = get(Def, {Part, 0});
9808   // If we aren't vectorizing, we can just copy the scalar map values over
9809   // to the vector map.
9810   if (VF.isScalar()) {
9811     set(Def, ScalarValue, Part);
9812     return ScalarValue;
9813   }
9814 
9815   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9816   bool IsUniform = RepR && RepR->isUniform();
9817 
9818   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9819   // Check if there is a scalar value for the selected lane.
9820   if (!hasScalarValue(Def, {Part, LastLane})) {
9821     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9822     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9823            "unexpected recipe found to be invariant");
9824     IsUniform = true;
9825     LastLane = 0;
9826   }
9827 
9828   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9829   // Set the insert point after the last scalarized instruction or after the
9830   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9831   // will directly follow the scalar definitions.
9832   auto OldIP = Builder.saveIP();
9833   auto NewIP =
9834       isa<PHINode>(LastInst)
9835           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9836           : std::next(BasicBlock::iterator(LastInst));
9837   Builder.SetInsertPoint(&*NewIP);
9838 
9839   // However, if we are vectorizing, we need to construct the vector values.
9840   // If the value is known to be uniform after vectorization, we can just
9841   // broadcast the scalar value corresponding to lane zero for each unroll
9842   // iteration. Otherwise, we construct the vector values using
9843   // insertelement instructions. Since the resulting vectors are stored in
9844   // State, we will only generate the insertelements once.
9845   Value *VectorValue = nullptr;
9846   if (IsUniform) {
9847     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9848     set(Def, VectorValue, Part);
9849   } else {
9850     // Initialize packing with insertelements to start from undef.
9851     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9852     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9853     set(Def, Undef, Part);
9854     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9855       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9856     VectorValue = get(Def, Part);
9857   }
9858   Builder.restoreIP(OldIP);
9859   return VectorValue;
9860 }
9861 
9862 // Process the loop in the VPlan-native vectorization path. This path builds
9863 // VPlan upfront in the vectorization pipeline, which allows to apply
9864 // VPlan-to-VPlan transformations from the very beginning without modifying the
9865 // input LLVM IR.
9866 static bool processLoopInVPlanNativePath(
9867     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9868     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9869     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9870     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9871     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9872     LoopVectorizationRequirements &Requirements) {
9873 
9874   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9875     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9876     return false;
9877   }
9878   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9879   Function *F = L->getHeader()->getParent();
9880   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9881 
9882   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9883       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9884 
9885   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9886                                 &Hints, IAI);
9887   // Use the planner for outer loop vectorization.
9888   // TODO: CM is not used at this point inside the planner. Turn CM into an
9889   // optional argument if we don't need it in the future.
9890   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9891                                Requirements, ORE);
9892 
9893   // Get user vectorization factor.
9894   ElementCount UserVF = Hints.getWidth();
9895 
9896   CM.collectElementTypesForWidening();
9897 
9898   // Plan how to best vectorize, return the best VF and its cost.
9899   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9900 
9901   // If we are stress testing VPlan builds, do not attempt to generate vector
9902   // code. Masked vector code generation support will follow soon.
9903   // Also, do not attempt to vectorize if no vector code will be produced.
9904   if (VPlanBuildStressTest || EnableVPlanPredication ||
9905       VectorizationFactor::Disabled() == VF)
9906     return false;
9907 
9908   LVP.setBestPlan(VF.Width, 1);
9909 
9910   {
9911     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9912                              F->getParent()->getDataLayout());
9913     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9914                            &CM, BFI, PSI, Checks);
9915     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9916                       << L->getHeader()->getParent()->getName() << "\"\n");
9917     LVP.executePlan(LB, DT);
9918   }
9919 
9920   // Mark the loop as already vectorized to avoid vectorizing again.
9921   Hints.setAlreadyVectorized();
9922   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9923   return true;
9924 }
9925 
9926 // Emit a remark if there are stores to floats that required a floating point
9927 // extension. If the vectorized loop was generated with floating point there
9928 // will be a performance penalty from the conversion overhead and the change in
9929 // the vector width.
9930 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9931   SmallVector<Instruction *, 4> Worklist;
9932   for (BasicBlock *BB : L->getBlocks()) {
9933     for (Instruction &Inst : *BB) {
9934       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9935         if (S->getValueOperand()->getType()->isFloatTy())
9936           Worklist.push_back(S);
9937       }
9938     }
9939   }
9940 
9941   // Traverse the floating point stores upwards searching, for floating point
9942   // conversions.
9943   SmallPtrSet<const Instruction *, 4> Visited;
9944   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9945   while (!Worklist.empty()) {
9946     auto *I = Worklist.pop_back_val();
9947     if (!L->contains(I))
9948       continue;
9949     if (!Visited.insert(I).second)
9950       continue;
9951 
9952     // Emit a remark if the floating point store required a floating
9953     // point conversion.
9954     // TODO: More work could be done to identify the root cause such as a
9955     // constant or a function return type and point the user to it.
9956     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9957       ORE->emit([&]() {
9958         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9959                                           I->getDebugLoc(), L->getHeader())
9960                << "floating point conversion changes vector width. "
9961                << "Mixed floating point precision requires an up/down "
9962                << "cast that will negatively impact performance.";
9963       });
9964 
9965     for (Use &Op : I->operands())
9966       if (auto *OpI = dyn_cast<Instruction>(Op))
9967         Worklist.push_back(OpI);
9968   }
9969 }
9970 
9971 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9972     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9973                                !EnableLoopInterleaving),
9974       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9975                               !EnableLoopVectorization) {}
9976 
9977 bool LoopVectorizePass::processLoop(Loop *L) {
9978   assert((EnableVPlanNativePath || L->isInnermost()) &&
9979          "VPlan-native path is not enabled. Only process inner loops.");
9980 
9981 #ifndef NDEBUG
9982   const std::string DebugLocStr = getDebugLocString(L);
9983 #endif /* NDEBUG */
9984 
9985   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9986                     << L->getHeader()->getParent()->getName() << "\" from "
9987                     << DebugLocStr << "\n");
9988 
9989   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9990 
9991   LLVM_DEBUG(
9992       dbgs() << "LV: Loop hints:"
9993              << " force="
9994              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9995                      ? "disabled"
9996                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9997                             ? "enabled"
9998                             : "?"))
9999              << " width=" << Hints.getWidth()
10000              << " interleave=" << Hints.getInterleave() << "\n");
10001 
10002   // Function containing loop
10003   Function *F = L->getHeader()->getParent();
10004 
10005   // Looking at the diagnostic output is the only way to determine if a loop
10006   // was vectorized (other than looking at the IR or machine code), so it
10007   // is important to generate an optimization remark for each loop. Most of
10008   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10009   // generated as OptimizationRemark and OptimizationRemarkMissed are
10010   // less verbose reporting vectorized loops and unvectorized loops that may
10011   // benefit from vectorization, respectively.
10012 
10013   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10014     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10015     return false;
10016   }
10017 
10018   PredicatedScalarEvolution PSE(*SE, *L);
10019 
10020   // Check if it is legal to vectorize the loop.
10021   LoopVectorizationRequirements Requirements;
10022   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10023                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10024   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10025     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10026     Hints.emitRemarkWithHints();
10027     return false;
10028   }
10029 
10030   // Check the function attributes and profiles to find out if this function
10031   // should be optimized for size.
10032   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10033       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10034 
10035   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10036   // here. They may require CFG and instruction level transformations before
10037   // even evaluating whether vectorization is profitable. Since we cannot modify
10038   // the incoming IR, we need to build VPlan upfront in the vectorization
10039   // pipeline.
10040   if (!L->isInnermost())
10041     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10042                                         ORE, BFI, PSI, Hints, Requirements);
10043 
10044   assert(L->isInnermost() && "Inner loop expected.");
10045 
10046   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10047   // count by optimizing for size, to minimize overheads.
10048   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10049   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10050     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10051                       << "This loop is worth vectorizing only if no scalar "
10052                       << "iteration overheads are incurred.");
10053     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10054       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10055     else {
10056       LLVM_DEBUG(dbgs() << "\n");
10057       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10058     }
10059   }
10060 
10061   // Check the function attributes to see if implicit floats are allowed.
10062   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10063   // an integer loop and the vector instructions selected are purely integer
10064   // vector instructions?
10065   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10066     reportVectorizationFailure(
10067         "Can't vectorize when the NoImplicitFloat attribute is used",
10068         "loop not vectorized due to NoImplicitFloat attribute",
10069         "NoImplicitFloat", ORE, L);
10070     Hints.emitRemarkWithHints();
10071     return false;
10072   }
10073 
10074   // Check if the target supports potentially unsafe FP vectorization.
10075   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10076   // for the target we're vectorizing for, to make sure none of the
10077   // additional fp-math flags can help.
10078   if (Hints.isPotentiallyUnsafe() &&
10079       TTI->isFPVectorizationPotentiallyUnsafe()) {
10080     reportVectorizationFailure(
10081         "Potentially unsafe FP op prevents vectorization",
10082         "loop not vectorized due to unsafe FP support.",
10083         "UnsafeFP", ORE, L);
10084     Hints.emitRemarkWithHints();
10085     return false;
10086   }
10087 
10088   if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
10089     ORE->emit([&]() {
10090       auto *ExactFPMathInst = Requirements.getExactFPInst();
10091       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10092                                                  ExactFPMathInst->getDebugLoc(),
10093                                                  ExactFPMathInst->getParent())
10094              << "loop not vectorized: cannot prove it is safe to reorder "
10095                 "floating-point operations";
10096     });
10097     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10098                          "reorder floating-point operations\n");
10099     Hints.emitRemarkWithHints();
10100     return false;
10101   }
10102 
10103   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10104   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10105 
10106   // If an override option has been passed in for interleaved accesses, use it.
10107   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10108     UseInterleaved = EnableInterleavedMemAccesses;
10109 
10110   // Analyze interleaved memory accesses.
10111   if (UseInterleaved) {
10112     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10113   }
10114 
10115   // Use the cost model.
10116   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10117                                 F, &Hints, IAI);
10118   CM.collectValuesToIgnore();
10119   CM.collectElementTypesForWidening();
10120 
10121   // Use the planner for vectorization.
10122   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10123                                Requirements, ORE);
10124 
10125   // Get user vectorization factor and interleave count.
10126   ElementCount UserVF = Hints.getWidth();
10127   unsigned UserIC = Hints.getInterleave();
10128 
10129   // Plan how to best vectorize, return the best VF and its cost.
10130   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10131 
10132   VectorizationFactor VF = VectorizationFactor::Disabled();
10133   unsigned IC = 1;
10134 
10135   if (MaybeVF) {
10136     VF = *MaybeVF;
10137     // Select the interleave count.
10138     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10139   }
10140 
10141   // Identify the diagnostic messages that should be produced.
10142   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10143   bool VectorizeLoop = true, InterleaveLoop = true;
10144   if (VF.Width.isScalar()) {
10145     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10146     VecDiagMsg = std::make_pair(
10147         "VectorizationNotBeneficial",
10148         "the cost-model indicates that vectorization is not beneficial");
10149     VectorizeLoop = false;
10150   }
10151 
10152   if (!MaybeVF && UserIC > 1) {
10153     // Tell the user interleaving was avoided up-front, despite being explicitly
10154     // requested.
10155     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10156                          "interleaving should be avoided up front\n");
10157     IntDiagMsg = std::make_pair(
10158         "InterleavingAvoided",
10159         "Ignoring UserIC, because interleaving was avoided up front");
10160     InterleaveLoop = false;
10161   } else if (IC == 1 && UserIC <= 1) {
10162     // Tell the user interleaving is not beneficial.
10163     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10164     IntDiagMsg = std::make_pair(
10165         "InterleavingNotBeneficial",
10166         "the cost-model indicates that interleaving is not beneficial");
10167     InterleaveLoop = false;
10168     if (UserIC == 1) {
10169       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10170       IntDiagMsg.second +=
10171           " and is explicitly disabled or interleave count is set to 1";
10172     }
10173   } else if (IC > 1 && UserIC == 1) {
10174     // Tell the user interleaving is beneficial, but it explicitly disabled.
10175     LLVM_DEBUG(
10176         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10177     IntDiagMsg = std::make_pair(
10178         "InterleavingBeneficialButDisabled",
10179         "the cost-model indicates that interleaving is beneficial "
10180         "but is explicitly disabled or interleave count is set to 1");
10181     InterleaveLoop = false;
10182   }
10183 
10184   // Override IC if user provided an interleave count.
10185   IC = UserIC > 0 ? UserIC : IC;
10186 
10187   // Emit diagnostic messages, if any.
10188   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10189   if (!VectorizeLoop && !InterleaveLoop) {
10190     // Do not vectorize or interleaving the loop.
10191     ORE->emit([&]() {
10192       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10193                                       L->getStartLoc(), L->getHeader())
10194              << VecDiagMsg.second;
10195     });
10196     ORE->emit([&]() {
10197       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10198                                       L->getStartLoc(), L->getHeader())
10199              << IntDiagMsg.second;
10200     });
10201     return false;
10202   } else if (!VectorizeLoop && InterleaveLoop) {
10203     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10204     ORE->emit([&]() {
10205       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10206                                         L->getStartLoc(), L->getHeader())
10207              << VecDiagMsg.second;
10208     });
10209   } else if (VectorizeLoop && !InterleaveLoop) {
10210     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10211                       << ") in " << DebugLocStr << '\n');
10212     ORE->emit([&]() {
10213       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10214                                         L->getStartLoc(), L->getHeader())
10215              << IntDiagMsg.second;
10216     });
10217   } else if (VectorizeLoop && InterleaveLoop) {
10218     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10219                       << ") in " << DebugLocStr << '\n');
10220     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10221   }
10222 
10223   bool DisableRuntimeUnroll = false;
10224   MDNode *OrigLoopID = L->getLoopID();
10225   {
10226     // Optimistically generate runtime checks. Drop them if they turn out to not
10227     // be profitable. Limit the scope of Checks, so the cleanup happens
10228     // immediately after vector codegeneration is done.
10229     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10230                              F->getParent()->getDataLayout());
10231     if (!VF.Width.isScalar() || IC > 1)
10232       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10233     LVP.setBestPlan(VF.Width, IC);
10234 
10235     using namespace ore;
10236     if (!VectorizeLoop) {
10237       assert(IC > 1 && "interleave count should not be 1 or 0");
10238       // If we decided that it is not legal to vectorize the loop, then
10239       // interleave it.
10240       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10241                                  &CM, BFI, PSI, Checks);
10242       LVP.executePlan(Unroller, DT);
10243 
10244       ORE->emit([&]() {
10245         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10246                                   L->getHeader())
10247                << "interleaved loop (interleaved count: "
10248                << NV("InterleaveCount", IC) << ")";
10249       });
10250     } else {
10251       // If we decided that it is *legal* to vectorize the loop, then do it.
10252 
10253       // Consider vectorizing the epilogue too if it's profitable.
10254       VectorizationFactor EpilogueVF =
10255           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10256       if (EpilogueVF.Width.isVector()) {
10257 
10258         // The first pass vectorizes the main loop and creates a scalar epilogue
10259         // to be vectorized by executing the plan (potentially with a different
10260         // factor) again shortly afterwards.
10261         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10262                                           EpilogueVF.Width.getKnownMinValue(),
10263                                           1);
10264         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10265                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10266 
10267         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10268         LVP.executePlan(MainILV, DT);
10269         ++LoopsVectorized;
10270 
10271         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10272         formLCSSARecursively(*L, *DT, LI, SE);
10273 
10274         // Second pass vectorizes the epilogue and adjusts the control flow
10275         // edges from the first pass.
10276         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10277         EPI.MainLoopVF = EPI.EpilogueVF;
10278         EPI.MainLoopUF = EPI.EpilogueUF;
10279         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10280                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10281                                                  Checks);
10282         LVP.executePlan(EpilogILV, DT);
10283         ++LoopsEpilogueVectorized;
10284 
10285         if (!MainILV.areSafetyChecksAdded())
10286           DisableRuntimeUnroll = true;
10287       } else {
10288         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10289                                &LVL, &CM, BFI, PSI, Checks);
10290         LVP.executePlan(LB, DT);
10291         ++LoopsVectorized;
10292 
10293         // Add metadata to disable runtime unrolling a scalar loop when there
10294         // are no runtime checks about strides and memory. A scalar loop that is
10295         // rarely used is not worth unrolling.
10296         if (!LB.areSafetyChecksAdded())
10297           DisableRuntimeUnroll = true;
10298       }
10299       // Report the vectorization decision.
10300       ORE->emit([&]() {
10301         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10302                                   L->getHeader())
10303                << "vectorized loop (vectorization width: "
10304                << NV("VectorizationFactor", VF.Width)
10305                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10306       });
10307     }
10308 
10309     if (ORE->allowExtraAnalysis(LV_NAME))
10310       checkMixedPrecision(L, ORE);
10311   }
10312 
10313   Optional<MDNode *> RemainderLoopID =
10314       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10315                                       LLVMLoopVectorizeFollowupEpilogue});
10316   if (RemainderLoopID.hasValue()) {
10317     L->setLoopID(RemainderLoopID.getValue());
10318   } else {
10319     if (DisableRuntimeUnroll)
10320       AddRuntimeUnrollDisableMetaData(L);
10321 
10322     // Mark the loop as already vectorized to avoid vectorizing again.
10323     Hints.setAlreadyVectorized();
10324   }
10325 
10326   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10327   return true;
10328 }
10329 
10330 LoopVectorizeResult LoopVectorizePass::runImpl(
10331     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10332     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10333     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10334     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10335     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10336   SE = &SE_;
10337   LI = &LI_;
10338   TTI = &TTI_;
10339   DT = &DT_;
10340   BFI = &BFI_;
10341   TLI = TLI_;
10342   AA = &AA_;
10343   AC = &AC_;
10344   GetLAA = &GetLAA_;
10345   DB = &DB_;
10346   ORE = &ORE_;
10347   PSI = PSI_;
10348 
10349   // Don't attempt if
10350   // 1. the target claims to have no vector registers, and
10351   // 2. interleaving won't help ILP.
10352   //
10353   // The second condition is necessary because, even if the target has no
10354   // vector registers, loop vectorization may still enable scalar
10355   // interleaving.
10356   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10357       TTI->getMaxInterleaveFactor(1) < 2)
10358     return LoopVectorizeResult(false, false);
10359 
10360   bool Changed = false, CFGChanged = false;
10361 
10362   // The vectorizer requires loops to be in simplified form.
10363   // Since simplification may add new inner loops, it has to run before the
10364   // legality and profitability checks. This means running the loop vectorizer
10365   // will simplify all loops, regardless of whether anything end up being
10366   // vectorized.
10367   for (auto &L : *LI)
10368     Changed |= CFGChanged |=
10369         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10370 
10371   // Build up a worklist of inner-loops to vectorize. This is necessary as
10372   // the act of vectorizing or partially unrolling a loop creates new loops
10373   // and can invalidate iterators across the loops.
10374   SmallVector<Loop *, 8> Worklist;
10375 
10376   for (Loop *L : *LI)
10377     collectSupportedLoops(*L, LI, ORE, Worklist);
10378 
10379   LoopsAnalyzed += Worklist.size();
10380 
10381   // Now walk the identified inner loops.
10382   while (!Worklist.empty()) {
10383     Loop *L = Worklist.pop_back_val();
10384 
10385     // For the inner loops we actually process, form LCSSA to simplify the
10386     // transform.
10387     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10388 
10389     Changed |= CFGChanged |= processLoop(L);
10390   }
10391 
10392   // Process each loop nest in the function.
10393   return LoopVectorizeResult(Changed, CFGChanged);
10394 }
10395 
10396 PreservedAnalyses LoopVectorizePass::run(Function &F,
10397                                          FunctionAnalysisManager &AM) {
10398     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10399     auto &LI = AM.getResult<LoopAnalysis>(F);
10400     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10401     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10402     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10403     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10404     auto &AA = AM.getResult<AAManager>(F);
10405     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10406     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10407     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10408     MemorySSA *MSSA = EnableMSSALoopDependency
10409                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10410                           : nullptr;
10411 
10412     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10413     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10414         [&](Loop &L) -> const LoopAccessInfo & {
10415       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10416                                         TLI, TTI, nullptr, MSSA};
10417       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10418     };
10419     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10420     ProfileSummaryInfo *PSI =
10421         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10422     LoopVectorizeResult Result =
10423         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10424     if (!Result.MadeAnyChange)
10425       return PreservedAnalyses::all();
10426     PreservedAnalyses PA;
10427 
10428     // We currently do not preserve loopinfo/dominator analyses with outer loop
10429     // vectorization. Until this is addressed, mark these analyses as preserved
10430     // only for non-VPlan-native path.
10431     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10432     if (!EnableVPlanNativePath) {
10433       PA.preserve<LoopAnalysis>();
10434       PA.preserve<DominatorTreeAnalysis>();
10435     }
10436     if (!Result.MadeCFGChange)
10437       PA.preserveSet<CFGAnalyses>();
10438     return PA;
10439 }
10440