1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201 // that predication is preferred, and this lists all options. I.e., the
202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
203 // and predicate the instructions accordingly. If tail-folding fails, there are
204 // different fallback strategies depending on these values:
205 namespace PreferPredicateTy {
206   enum Option {
207     ScalarEpilogue = 0,
208     PredicateElseScalarEpilogue,
209     PredicateOrDontVectorize
210   };
211 } // namespace PreferPredicateTy
212 
213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
214     "prefer-predicate-over-epilogue",
215     cl::init(PreferPredicateTy::ScalarEpilogue),
216     cl::Hidden,
217     cl::desc("Tail-folding and predication preferences over creating a scalar "
218              "epilogue loop."),
219     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
220                          "scalar-epilogue",
221                          "Don't tail-predicate loops, create scalar epilogue"),
222               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
223                          "predicate-else-scalar-epilogue",
224                          "prefer tail-folding, create scalar epilogue if tail "
225                          "folding fails."),
226               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
227                          "predicate-dont-vectorize",
228                          "prefers tail-folding, don't attempt vectorization if "
229                          "tail-folding fails.")));
230 
231 static cl::opt<bool> MaximizeBandwidth(
232     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
233     cl::desc("Maximize bandwidth when selecting vectorization factor which "
234              "will be determined by the smallest type in loop."));
235 
236 static cl::opt<bool> EnableInterleavedMemAccesses(
237     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
238     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
239 
240 /// An interleave-group may need masking if it resides in a block that needs
241 /// predication, or in order to mask away gaps.
242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
243     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
245 
246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
247     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
248     cl::desc("We don't interleave loops with a estimated constant trip count "
249              "below this number"));
250 
251 static cl::opt<unsigned> ForceTargetNumScalarRegs(
252     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
253     cl::desc("A flag that overrides the target's number of scalar registers."));
254 
255 static cl::opt<unsigned> ForceTargetNumVectorRegs(
256     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of vector registers."));
258 
259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
260     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's max interleave factor for "
262              "scalar loops."));
263 
264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
265     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "vectorized loops."));
268 
269 static cl::opt<unsigned> ForceTargetInstructionCost(
270     "force-target-instruction-cost", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's expected cost for "
272              "an instruction to a single constant value. Mostly "
273              "useful for getting consistent testing."));
274 
275 static cl::opt<bool> ForceTargetSupportsScalableVectors(
276     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
277     cl::desc(
278         "Pretend that scalable vectors are supported, even if the target does "
279         "not support them. This flag should only be used for testing."));
280 
281 static cl::opt<unsigned> SmallLoopCost(
282     "small-loop-cost", cl::init(20), cl::Hidden,
283     cl::desc(
284         "The cost of a loop that is considered 'small' by the interleaver."));
285 
286 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
287     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
288     cl::desc("Enable the use of the block frequency analysis to access PGO "
289              "heuristics minimizing code growth in cold regions and being more "
290              "aggressive in hot regions."));
291 
292 // Runtime interleave loops for load/store throughput.
293 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
294     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
295     cl::desc(
296         "Enable runtime interleaving until load/store ports are saturated"));
297 
298 /// Interleave small loops with scalar reductions.
299 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
300     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
301     cl::desc("Enable interleaving for loops with small iteration counts that "
302              "contain scalar reductions to expose ILP."));
303 
304 /// The number of stores in a loop that are allowed to need predication.
305 static cl::opt<unsigned> NumberOfStoresToPredicate(
306     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
307     cl::desc("Max number of stores to be predicated behind an if."));
308 
309 static cl::opt<bool> EnableIndVarRegisterHeur(
310     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
311     cl::desc("Count the induction variable only once when interleaving"));
312 
313 static cl::opt<bool> EnableCondStoresVectorization(
314     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
315     cl::desc("Enable if predication of stores during vectorization."));
316 
317 static cl::opt<unsigned> MaxNestedScalarReductionIC(
318     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
319     cl::desc("The maximum interleave count to use when interleaving a scalar "
320              "reduction in a nested loop."));
321 
322 static cl::opt<bool>
323     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
324                            cl::Hidden,
325                            cl::desc("Prefer in-loop vector reductions, "
326                                     "overriding the targets preference."));
327 
328 static cl::opt<bool> PreferPredicatedReductionSelect(
329     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
330     cl::desc(
331         "Prefer predicating a reduction operation over an after loop select."));
332 
333 cl::opt<bool> EnableVPlanNativePath(
334     "enable-vplan-native-path", cl::init(false), cl::Hidden,
335     cl::desc("Enable VPlan-native vectorization path with "
336              "support for outer loop vectorization."));
337 
338 // FIXME: Remove this switch once we have divergence analysis. Currently we
339 // assume divergent non-backedge branches when this switch is true.
340 cl::opt<bool> EnableVPlanPredication(
341     "enable-vplan-predication", cl::init(false), cl::Hidden,
342     cl::desc("Enable VPlan-native vectorization path predicator with "
343              "support for outer loop vectorization."));
344 
345 // This flag enables the stress testing of the VPlan H-CFG construction in the
346 // VPlan-native vectorization path. It must be used in conjuction with
347 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
348 // verification of the H-CFGs built.
349 static cl::opt<bool> VPlanBuildStressTest(
350     "vplan-build-stress-test", cl::init(false), cl::Hidden,
351     cl::desc(
352         "Build VPlan for every supported loop nest in the function and bail "
353         "out right after the build (stress test the VPlan H-CFG construction "
354         "in the VPlan-native vectorization path)."));
355 
356 cl::opt<bool> llvm::EnableLoopInterleaving(
357     "interleave-loops", cl::init(true), cl::Hidden,
358     cl::desc("Enable loop interleaving in Loop vectorization passes"));
359 cl::opt<bool> llvm::EnableLoopVectorization(
360     "vectorize-loops", cl::init(true), cl::Hidden,
361     cl::desc("Run the Loop vectorization passes"));
362 
363 cl::opt<bool> PrintVPlansInDotFormat(
364     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
365     cl::desc("Use dot format instead of plain text when dumping VPlans"));
366 
367 /// A helper function that returns the type of loaded or stored value.
368 static Type *getMemInstValueType(Value *I) {
369   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
370          "Expected Load or Store instruction");
371   if (auto *LI = dyn_cast<LoadInst>(I))
372     return LI->getType();
373   return cast<StoreInst>(I)->getValueOperand()->getType();
374 }
375 
376 /// A helper function that returns true if the given type is irregular. The
377 /// type is irregular if its allocated size doesn't equal the store size of an
378 /// element of the corresponding vector type.
379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
380   // Determine if an array of N elements of type Ty is "bitcast compatible"
381   // with a <N x Ty> vector.
382   // This is only true if there is no padding between the array elements.
383   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
384 }
385 
386 /// A helper function that returns the reciprocal of the block probability of
387 /// predicated blocks. If we return X, we are assuming the predicated block
388 /// will execute once for every X iterations of the loop header.
389 ///
390 /// TODO: We should use actual block probability here, if available. Currently,
391 ///       we always assume predicated blocks have a 50% chance of executing.
392 static unsigned getReciprocalPredBlockProb() { return 2; }
393 
394 /// A helper function that returns an integer or floating-point constant with
395 /// value C.
396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
397   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
398                            : ConstantFP::get(Ty, C);
399 }
400 
401 /// Returns "best known" trip count for the specified loop \p L as defined by
402 /// the following procedure:
403 ///   1) Returns exact trip count if it is known.
404 ///   2) Returns expected trip count according to profile data if any.
405 ///   3) Returns upper bound estimate if it is known.
406 ///   4) Returns None if all of the above failed.
407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
408   // Check if exact trip count is known.
409   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
410     return ExpectedTC;
411 
412   // Check if there is an expected trip count available from profile data.
413   if (LoopVectorizeWithBlockFrequency)
414     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
415       return EstimatedTC;
416 
417   // Check if upper bound estimate is known.
418   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
419     return ExpectedTC;
420 
421   return None;
422 }
423 
424 // Forward declare GeneratedRTChecks.
425 class GeneratedRTChecks;
426 
427 namespace llvm {
428 
429 /// InnerLoopVectorizer vectorizes loops which contain only one basic
430 /// block to a specified vectorization factor (VF).
431 /// This class performs the widening of scalars into vectors, or multiple
432 /// scalars. This class also implements the following features:
433 /// * It inserts an epilogue loop for handling loops that don't have iteration
434 ///   counts that are known to be a multiple of the vectorization factor.
435 /// * It handles the code generation for reduction variables.
436 /// * Scalarization (implementation using scalars) of un-vectorizable
437 ///   instructions.
438 /// InnerLoopVectorizer does not perform any vectorization-legality
439 /// checks, and relies on the caller to check for the different legality
440 /// aspects. The InnerLoopVectorizer relies on the
441 /// LoopVectorizationLegality class to provide information about the induction
442 /// and reduction variables that were found to a given vectorization factor.
443 class InnerLoopVectorizer {
444 public:
445   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
446                       LoopInfo *LI, DominatorTree *DT,
447                       const TargetLibraryInfo *TLI,
448                       const TargetTransformInfo *TTI, AssumptionCache *AC,
449                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
450                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
451                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
452                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
453       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
454         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
455         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
456         PSI(PSI), RTChecks(RTChecks) {
457     // Query this against the original loop and save it here because the profile
458     // of the original loop header may change as the transformation happens.
459     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
460         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
461   }
462 
463   virtual ~InnerLoopVectorizer() = default;
464 
465   /// Create a new empty loop that will contain vectorized instructions later
466   /// on, while the old loop will be used as the scalar remainder. Control flow
467   /// is generated around the vectorized (and scalar epilogue) loops consisting
468   /// of various checks and bypasses. Return the pre-header block of the new
469   /// loop.
470   /// In the case of epilogue vectorization, this function is overriden to
471   /// handle the more complex control flow around the loops.
472   virtual BasicBlock *createVectorizedLoopSkeleton();
473 
474   /// Widen a single instruction within the innermost loop.
475   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
476                         VPTransformState &State);
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Widen a single select instruction within the innermost loop.
483   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
484                               bool InvariantCond, VPTransformState &State);
485 
486   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
487   void fixVectorizedLoop(VPTransformState &State);
488 
489   // Return true if any runtime check is added.
490   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
491 
492   /// A type for vectorized values in the new loop. Each value from the
493   /// original loop, when vectorized, is represented by UF vector values in the
494   /// new unrolled loop, where UF is the unroll factor.
495   using VectorParts = SmallVector<Value *, 2>;
496 
497   /// Vectorize a single GetElementPtrInst based on information gathered and
498   /// decisions taken during planning.
499   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
500                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
501                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
502 
503   /// Vectorize a single PHINode in a block. This method handles the induction
504   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
505   /// arbitrary length vectors.
506   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
507                            VPValue *StartV, VPValue *Def,
508                            VPTransformState &State);
509 
510   /// A helper function to scalarize a single Instruction in the innermost loop.
511   /// Generates a sequence of scalar instances for each lane between \p MinLane
512   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
513   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
514   /// Instr's operands.
515   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
516                             const VPIteration &Instance, bool IfPredicateInstr,
517                             VPTransformState &State);
518 
519   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
520   /// is provided, the integer induction variable will first be truncated to
521   /// the corresponding type.
522   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
523                              VPValue *Def, VPValue *CastDef,
524                              VPTransformState &State);
525 
526   /// Construct the vector value of a scalarized value \p V one lane at a time.
527   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
528                                  VPTransformState &State);
529 
530   /// Try to vectorize interleaved access group \p Group with the base address
531   /// given in \p Addr, optionally masking the vector operations if \p
532   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
533   /// values in the vectorized loop.
534   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
535                                 ArrayRef<VPValue *> VPDefs,
536                                 VPTransformState &State, VPValue *Addr,
537                                 ArrayRef<VPValue *> StoredValues,
538                                 VPValue *BlockInMask = nullptr);
539 
540   /// Vectorize Load and Store instructions with the base address given in \p
541   /// Addr, optionally masking the vector operations if \p BlockInMask is
542   /// non-null. Use \p State to translate given VPValues to IR values in the
543   /// vectorized loop.
544   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
545                                   VPValue *Def, VPValue *Addr,
546                                   VPValue *StoredValue, VPValue *BlockInMask);
547 
548   /// Set the debug location in the builder using the debug location in
549   /// the instruction.
550   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
551 
552   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
553   void fixNonInductionPHIs(VPTransformState &State);
554 
555   /// Create a broadcast instruction. This method generates a broadcast
556   /// instruction (shuffle) for loop invariant values and for the induction
557   /// value. If this is the induction variable then we extend it to N, N+1, ...
558   /// this is needed because each iteration in the loop corresponds to a SIMD
559   /// element.
560   virtual Value *getBroadcastInstrs(Value *V);
561 
562 protected:
563   friend class LoopVectorizationPlanner;
564 
565   /// A small list of PHINodes.
566   using PhiVector = SmallVector<PHINode *, 4>;
567 
568   /// A type for scalarized values in the new loop. Each value from the
569   /// original loop, when scalarized, is represented by UF x VF scalar values
570   /// in the new unrolled loop, where UF is the unroll factor and VF is the
571   /// vectorization factor.
572   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
573 
574   /// Set up the values of the IVs correctly when exiting the vector loop.
575   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
576                     Value *CountRoundDown, Value *EndValue,
577                     BasicBlock *MiddleBlock);
578 
579   /// Create a new induction variable inside L.
580   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
581                                    Value *Step, Instruction *DL);
582 
583   /// Handle all cross-iteration phis in the header.
584   void fixCrossIterationPHIs(VPTransformState &State);
585 
586   /// Fix a first-order recurrence. This is the second phase of vectorizing
587   /// this phi node.
588   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
589 
590   /// Fix a reduction cross-iteration phi. This is the second phase of
591   /// vectorizing this phi node.
592   void fixReduction(PHINode *Phi, VPTransformState &State);
593 
594   /// Clear NSW/NUW flags from reduction instructions if necessary.
595   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
596                                VPTransformState &State);
597 
598   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
599   /// means we need to add the appropriate incoming value from the middle
600   /// block as exiting edges from the scalar epilogue loop (if present) are
601   /// already in place, and we exit the vector loop exclusively to the middle
602   /// block.
603   void fixLCSSAPHIs(VPTransformState &State);
604 
605   /// Iteratively sink the scalarized operands of a predicated instruction into
606   /// the block that was created for it.
607   void sinkScalarOperands(Instruction *PredInst);
608 
609   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
610   /// represented as.
611   void truncateToMinimalBitwidths(VPTransformState &State);
612 
613   /// This function adds
614   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
615   /// to each vector element of Val. The sequence starts at StartIndex.
616   /// \p Opcode is relevant for FP induction variable.
617   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
618                                Instruction::BinaryOps Opcode =
619                                Instruction::BinaryOpsEnd);
620 
621   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
622   /// variable on which to base the steps, \p Step is the size of the step, and
623   /// \p EntryVal is the value from the original loop that maps to the steps.
624   /// Note that \p EntryVal doesn't have to be an induction variable - it
625   /// can also be a truncate instruction.
626   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
627                         const InductionDescriptor &ID, VPValue *Def,
628                         VPValue *CastDef, VPTransformState &State);
629 
630   /// Create a vector induction phi node based on an existing scalar one. \p
631   /// EntryVal is the value from the original loop that maps to the vector phi
632   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
633   /// truncate instruction, instead of widening the original IV, we widen a
634   /// version of the IV truncated to \p EntryVal's type.
635   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
636                                        Value *Step, Value *Start,
637                                        Instruction *EntryVal, VPValue *Def,
638                                        VPValue *CastDef,
639                                        VPTransformState &State);
640 
641   /// Returns true if an instruction \p I should be scalarized instead of
642   /// vectorized for the chosen vectorization factor.
643   bool shouldScalarizeInstruction(Instruction *I) const;
644 
645   /// Returns true if we should generate a scalar version of \p IV.
646   bool needsScalarInduction(Instruction *IV) const;
647 
648   /// If there is a cast involved in the induction variable \p ID, which should
649   /// be ignored in the vectorized loop body, this function records the
650   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
651   /// cast. We had already proved that the casted Phi is equal to the uncasted
652   /// Phi in the vectorized loop (under a runtime guard), and therefore
653   /// there is no need to vectorize the cast - the same value can be used in the
654   /// vector loop for both the Phi and the cast.
655   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
656   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
657   ///
658   /// \p EntryVal is the value from the original loop that maps to the vector
659   /// phi node and is used to distinguish what is the IV currently being
660   /// processed - original one (if \p EntryVal is a phi corresponding to the
661   /// original IV) or the "newly-created" one based on the proof mentioned above
662   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
663   /// latter case \p EntryVal is a TruncInst and we must not record anything for
664   /// that IV, but it's error-prone to expect callers of this routine to care
665   /// about that, hence this explicit parameter.
666   void recordVectorLoopValueForInductionCast(
667       const InductionDescriptor &ID, const Instruction *EntryVal,
668       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
669       unsigned Part, unsigned Lane = UINT_MAX);
670 
671   /// Generate a shuffle sequence that will reverse the vector Vec.
672   virtual Value *reverseVector(Value *Vec);
673 
674   /// Returns (and creates if needed) the original loop trip count.
675   Value *getOrCreateTripCount(Loop *NewLoop);
676 
677   /// Returns (and creates if needed) the trip count of the widened loop.
678   Value *getOrCreateVectorTripCount(Loop *NewLoop);
679 
680   /// Returns a bitcasted value to the requested vector type.
681   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
682   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
683                                 const DataLayout &DL);
684 
685   /// Emit a bypass check to see if the vector trip count is zero, including if
686   /// it overflows.
687   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
688 
689   /// Emit a bypass check to see if all of the SCEV assumptions we've
690   /// had to make are correct. Returns the block containing the checks or
691   /// nullptr if no checks have been added.
692   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit bypass checks to check any memory assumptions we may have made.
695   /// Returns the block containing the checks or nullptr if no checks have been
696   /// added.
697   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Compute the transformed value of Index at offset StartValue using step
700   /// StepValue.
701   /// For integer induction, returns StartValue + Index * StepValue.
702   /// For pointer induction, returns StartValue[Index * StepValue].
703   /// FIXME: The newly created binary instructions should contain nsw/nuw
704   /// flags, which can be found from the original scalar operations.
705   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
706                               const DataLayout &DL,
707                               const InductionDescriptor &ID) const;
708 
709   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
710   /// vector loop preheader, middle block and scalar preheader. Also
711   /// allocate a loop object for the new vector loop and return it.
712   Loop *createVectorLoopSkeleton(StringRef Prefix);
713 
714   /// Create new phi nodes for the induction variables to resume iteration count
715   /// in the scalar epilogue, from where the vectorized loop left off (given by
716   /// \p VectorTripCount).
717   /// In cases where the loop skeleton is more complicated (eg. epilogue
718   /// vectorization) and the resume values can come from an additional bypass
719   /// block, the \p AdditionalBypass pair provides information about the bypass
720   /// block and the end value on the edge from bypass to this loop.
721   void createInductionResumeValues(
722       Loop *L, Value *VectorTripCount,
723       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
724 
725   /// Complete the loop skeleton by adding debug MDs, creating appropriate
726   /// conditional branches in the middle block, preparing the builder and
727   /// running the verifier. Take in the vector loop \p L as argument, and return
728   /// the preheader of the completed vector loop.
729   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
730 
731   /// Add additional metadata to \p To that was not present on \p Orig.
732   ///
733   /// Currently this is used to add the noalias annotations based on the
734   /// inserted memchecks.  Use this for instructions that are *cloned* into the
735   /// vector loop.
736   void addNewMetadata(Instruction *To, const Instruction *Orig);
737 
738   /// Add metadata from one instruction to another.
739   ///
740   /// This includes both the original MDs from \p From and additional ones (\see
741   /// addNewMetadata).  Use this for *newly created* instructions in the vector
742   /// loop.
743   void addMetadata(Instruction *To, Instruction *From);
744 
745   /// Similar to the previous function but it adds the metadata to a
746   /// vector of instructions.
747   void addMetadata(ArrayRef<Value *> To, Instruction *From);
748 
749   /// Allow subclasses to override and print debug traces before/after vplan
750   /// execution, when trace information is requested.
751   virtual void printDebugTracesAtStart(){};
752   virtual void printDebugTracesAtEnd(){};
753 
754   /// The original loop.
755   Loop *OrigLoop;
756 
757   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
758   /// dynamic knowledge to simplify SCEV expressions and converts them to a
759   /// more usable form.
760   PredicatedScalarEvolution &PSE;
761 
762   /// Loop Info.
763   LoopInfo *LI;
764 
765   /// Dominator Tree.
766   DominatorTree *DT;
767 
768   /// Alias Analysis.
769   AAResults *AA;
770 
771   /// Target Library Info.
772   const TargetLibraryInfo *TLI;
773 
774   /// Target Transform Info.
775   const TargetTransformInfo *TTI;
776 
777   /// Assumption Cache.
778   AssumptionCache *AC;
779 
780   /// Interface to emit optimization remarks.
781   OptimizationRemarkEmitter *ORE;
782 
783   /// LoopVersioning.  It's only set up (non-null) if memchecks were
784   /// used.
785   ///
786   /// This is currently only used to add no-alias metadata based on the
787   /// memchecks.  The actually versioning is performed manually.
788   std::unique_ptr<LoopVersioning> LVer;
789 
790   /// The vectorization SIMD factor to use. Each vector will have this many
791   /// vector elements.
792   ElementCount VF;
793 
794   /// The vectorization unroll factor to use. Each scalar is vectorized to this
795   /// many different vector instructions.
796   unsigned UF;
797 
798   /// The builder that we use
799   IRBuilder<> Builder;
800 
801   // --- Vectorization state ---
802 
803   /// The vector-loop preheader.
804   BasicBlock *LoopVectorPreHeader;
805 
806   /// The scalar-loop preheader.
807   BasicBlock *LoopScalarPreHeader;
808 
809   /// Middle Block between the vector and the scalar.
810   BasicBlock *LoopMiddleBlock;
811 
812   /// The (unique) ExitBlock of the scalar loop.  Note that
813   /// there can be multiple exiting edges reaching this block.
814   BasicBlock *LoopExitBlock;
815 
816   /// The vector loop body.
817   BasicBlock *LoopVectorBody;
818 
819   /// The scalar loop body.
820   BasicBlock *LoopScalarBody;
821 
822   /// A list of all bypass blocks. The first block is the entry of the loop.
823   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
824 
825   /// The new Induction variable which was added to the new block.
826   PHINode *Induction = nullptr;
827 
828   /// The induction variable of the old basic block.
829   PHINode *OldInduction = nullptr;
830 
831   /// Store instructions that were predicated.
832   SmallVector<Instruction *, 4> PredicatedInstructions;
833 
834   /// Trip count of the original loop.
835   Value *TripCount = nullptr;
836 
837   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
838   Value *VectorTripCount = nullptr;
839 
840   /// The legality analysis.
841   LoopVectorizationLegality *Legal;
842 
843   /// The profitablity analysis.
844   LoopVectorizationCostModel *Cost;
845 
846   // Record whether runtime checks are added.
847   bool AddedSafetyChecks = false;
848 
849   // Holds the end values for each induction variable. We save the end values
850   // so we can later fix-up the external users of the induction variables.
851   DenseMap<PHINode *, Value *> IVEndValues;
852 
853   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
854   // fixed up at the end of vector code generation.
855   SmallVector<PHINode *, 8> OrigPHIsToFix;
856 
857   /// BFI and PSI are used to check for profile guided size optimizations.
858   BlockFrequencyInfo *BFI;
859   ProfileSummaryInfo *PSI;
860 
861   // Whether this loop should be optimized for size based on profile guided size
862   // optimizatios.
863   bool OptForSizeBasedOnProfile;
864 
865   /// Structure to hold information about generated runtime checks, responsible
866   /// for cleaning the checks, if vectorization turns out unprofitable.
867   GeneratedRTChecks &RTChecks;
868 };
869 
870 class InnerLoopUnroller : public InnerLoopVectorizer {
871 public:
872   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
873                     LoopInfo *LI, DominatorTree *DT,
874                     const TargetLibraryInfo *TLI,
875                     const TargetTransformInfo *TTI, AssumptionCache *AC,
876                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
877                     LoopVectorizationLegality *LVL,
878                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
879                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
880       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
881                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
882                             BFI, PSI, Check) {}
883 
884 private:
885   Value *getBroadcastInstrs(Value *V) override;
886   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
887                        Instruction::BinaryOps Opcode =
888                        Instruction::BinaryOpsEnd) override;
889   Value *reverseVector(Value *Vec) override;
890 };
891 
892 /// Encapsulate information regarding vectorization of a loop and its epilogue.
893 /// This information is meant to be updated and used across two stages of
894 /// epilogue vectorization.
895 struct EpilogueLoopVectorizationInfo {
896   ElementCount MainLoopVF = ElementCount::getFixed(0);
897   unsigned MainLoopUF = 0;
898   ElementCount EpilogueVF = ElementCount::getFixed(0);
899   unsigned EpilogueUF = 0;
900   BasicBlock *MainLoopIterationCountCheck = nullptr;
901   BasicBlock *EpilogueIterationCountCheck = nullptr;
902   BasicBlock *SCEVSafetyCheck = nullptr;
903   BasicBlock *MemSafetyCheck = nullptr;
904   Value *TripCount = nullptr;
905   Value *VectorTripCount = nullptr;
906 
907   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
908                                 unsigned EUF)
909       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
910         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
911     assert(EUF == 1 &&
912            "A high UF for the epilogue loop is likely not beneficial.");
913   }
914 };
915 
916 /// An extension of the inner loop vectorizer that creates a skeleton for a
917 /// vectorized loop that has its epilogue (residual) also vectorized.
918 /// The idea is to run the vplan on a given loop twice, firstly to setup the
919 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
920 /// from the first step and vectorize the epilogue.  This is achieved by
921 /// deriving two concrete strategy classes from this base class and invoking
922 /// them in succession from the loop vectorizer planner.
923 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
924 public:
925   InnerLoopAndEpilogueVectorizer(
926       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
927       DominatorTree *DT, const TargetLibraryInfo *TLI,
928       const TargetTransformInfo *TTI, AssumptionCache *AC,
929       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
930       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
931       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
932       GeneratedRTChecks &Checks)
933       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
934                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
935                             Checks),
936         EPI(EPI) {}
937 
938   // Override this function to handle the more complex control flow around the
939   // three loops.
940   BasicBlock *createVectorizedLoopSkeleton() final override {
941     return createEpilogueVectorizedLoopSkeleton();
942   }
943 
944   /// The interface for creating a vectorized skeleton using one of two
945   /// different strategies, each corresponding to one execution of the vplan
946   /// as described above.
947   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
948 
949   /// Holds and updates state information required to vectorize the main loop
950   /// and its epilogue in two separate passes. This setup helps us avoid
951   /// regenerating and recomputing runtime safety checks. It also helps us to
952   /// shorten the iteration-count-check path length for the cases where the
953   /// iteration count of the loop is so small that the main vector loop is
954   /// completely skipped.
955   EpilogueLoopVectorizationInfo &EPI;
956 };
957 
958 /// A specialized derived class of inner loop vectorizer that performs
959 /// vectorization of *main* loops in the process of vectorizing loops and their
960 /// epilogues.
961 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
962 public:
963   EpilogueVectorizerMainLoop(
964       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
965       DominatorTree *DT, const TargetLibraryInfo *TLI,
966       const TargetTransformInfo *TTI, AssumptionCache *AC,
967       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
968       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
969       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
970       GeneratedRTChecks &Check)
971       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
972                                        EPI, LVL, CM, BFI, PSI, Check) {}
973   /// Implements the interface for creating a vectorized skeleton using the
974   /// *main loop* strategy (ie the first pass of vplan execution).
975   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
976 
977 protected:
978   /// Emits an iteration count bypass check once for the main loop (when \p
979   /// ForEpilogue is false) and once for the epilogue loop (when \p
980   /// ForEpilogue is true).
981   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
982                                              bool ForEpilogue);
983   void printDebugTracesAtStart() override;
984   void printDebugTracesAtEnd() override;
985 };
986 
987 // A specialized derived class of inner loop vectorizer that performs
988 // vectorization of *epilogue* loops in the process of vectorizing loops and
989 // their epilogues.
990 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
991 public:
992   EpilogueVectorizerEpilogueLoop(
993       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
994       DominatorTree *DT, const TargetLibraryInfo *TLI,
995       const TargetTransformInfo *TTI, AssumptionCache *AC,
996       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
997       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
998       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
999       GeneratedRTChecks &Checks)
1000       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1001                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1002   /// Implements the interface for creating a vectorized skeleton using the
1003   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1004   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1005 
1006 protected:
1007   /// Emits an iteration count bypass check after the main vector loop has
1008   /// finished to see if there are any iterations left to execute by either
1009   /// the vector epilogue or the scalar epilogue.
1010   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1011                                                       BasicBlock *Bypass,
1012                                                       BasicBlock *Insert);
1013   void printDebugTracesAtStart() override;
1014   void printDebugTracesAtEnd() override;
1015 };
1016 } // end namespace llvm
1017 
1018 /// Look for a meaningful debug location on the instruction or it's
1019 /// operands.
1020 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1021   if (!I)
1022     return I;
1023 
1024   DebugLoc Empty;
1025   if (I->getDebugLoc() != Empty)
1026     return I;
1027 
1028   for (Use &Op : I->operands()) {
1029     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1030       if (OpInst->getDebugLoc() != Empty)
1031         return OpInst;
1032   }
1033 
1034   return I;
1035 }
1036 
1037 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1038   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1039     const DILocation *DIL = Inst->getDebugLoc();
1040     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1041         !isa<DbgInfoIntrinsic>(Inst)) {
1042       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1043       auto NewDIL =
1044           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1045       if (NewDIL)
1046         B.SetCurrentDebugLocation(NewDIL.getValue());
1047       else
1048         LLVM_DEBUG(dbgs()
1049                    << "Failed to create new discriminator: "
1050                    << DIL->getFilename() << " Line: " << DIL->getLine());
1051     }
1052     else
1053       B.SetCurrentDebugLocation(DIL);
1054   } else
1055     B.SetCurrentDebugLocation(DebugLoc());
1056 }
1057 
1058 /// Write a record \p DebugMsg about vectorization failure to the debug
1059 /// output stream. If \p I is passed, it is an instruction that prevents
1060 /// vectorization.
1061 #ifndef NDEBUG
1062 static void debugVectorizationFailure(const StringRef DebugMsg,
1063     Instruction *I) {
1064   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1065   if (I != nullptr)
1066     dbgs() << " " << *I;
1067   else
1068     dbgs() << '.';
1069   dbgs() << '\n';
1070 }
1071 #endif
1072 
1073 /// Create an analysis remark that explains why vectorization failed
1074 ///
1075 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1076 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1077 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1078 /// the location of the remark.  \return the remark object that can be
1079 /// streamed to.
1080 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1081     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1082   Value *CodeRegion = TheLoop->getHeader();
1083   DebugLoc DL = TheLoop->getStartLoc();
1084 
1085   if (I) {
1086     CodeRegion = I->getParent();
1087     // If there is no debug location attached to the instruction, revert back to
1088     // using the loop's.
1089     if (I->getDebugLoc())
1090       DL = I->getDebugLoc();
1091   }
1092 
1093   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1094   R << "loop not vectorized: ";
1095   return R;
1096 }
1097 
1098 /// Return a value for Step multiplied by VF.
1099 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1100   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1101   Constant *StepVal = ConstantInt::get(
1102       Step->getType(),
1103       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1104   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1105 }
1106 
1107 namespace llvm {
1108 
1109 /// Return the runtime value for VF.
1110 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1111   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1112   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1113 }
1114 
1115 void reportVectorizationFailure(const StringRef DebugMsg,
1116     const StringRef OREMsg, const StringRef ORETag,
1117     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1118   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1119   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1120   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1121                 ORETag, TheLoop, I) << OREMsg);
1122 }
1123 
1124 } // end namespace llvm
1125 
1126 #ifndef NDEBUG
1127 /// \return string containing a file name and a line # for the given loop.
1128 static std::string getDebugLocString(const Loop *L) {
1129   std::string Result;
1130   if (L) {
1131     raw_string_ostream OS(Result);
1132     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1133       LoopDbgLoc.print(OS);
1134     else
1135       // Just print the module name.
1136       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1137     OS.flush();
1138   }
1139   return Result;
1140 }
1141 #endif
1142 
1143 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1144                                          const Instruction *Orig) {
1145   // If the loop was versioned with memchecks, add the corresponding no-alias
1146   // metadata.
1147   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1148     LVer->annotateInstWithNoAlias(To, Orig);
1149 }
1150 
1151 void InnerLoopVectorizer::addMetadata(Instruction *To,
1152                                       Instruction *From) {
1153   propagateMetadata(To, From);
1154   addNewMetadata(To, From);
1155 }
1156 
1157 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1158                                       Instruction *From) {
1159   for (Value *V : To) {
1160     if (Instruction *I = dyn_cast<Instruction>(V))
1161       addMetadata(I, From);
1162   }
1163 }
1164 
1165 namespace llvm {
1166 
1167 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1168 // lowered.
1169 enum ScalarEpilogueLowering {
1170 
1171   // The default: allowing scalar epilogues.
1172   CM_ScalarEpilogueAllowed,
1173 
1174   // Vectorization with OptForSize: don't allow epilogues.
1175   CM_ScalarEpilogueNotAllowedOptSize,
1176 
1177   // A special case of vectorisation with OptForSize: loops with a very small
1178   // trip count are considered for vectorization under OptForSize, thereby
1179   // making sure the cost of their loop body is dominant, free of runtime
1180   // guards and scalar iteration overheads.
1181   CM_ScalarEpilogueNotAllowedLowTripLoop,
1182 
1183   // Loop hint predicate indicating an epilogue is undesired.
1184   CM_ScalarEpilogueNotNeededUsePredicate,
1185 
1186   // Directive indicating we must either tail fold or not vectorize
1187   CM_ScalarEpilogueNotAllowedUsePredicate
1188 };
1189 
1190 /// LoopVectorizationCostModel - estimates the expected speedups due to
1191 /// vectorization.
1192 /// In many cases vectorization is not profitable. This can happen because of
1193 /// a number of reasons. In this class we mainly attempt to predict the
1194 /// expected speedup/slowdowns due to the supported instruction set. We use the
1195 /// TargetTransformInfo to query the different backends for the cost of
1196 /// different operations.
1197 class LoopVectorizationCostModel {
1198 public:
1199   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1200                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1201                              LoopVectorizationLegality *Legal,
1202                              const TargetTransformInfo &TTI,
1203                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1204                              AssumptionCache *AC,
1205                              OptimizationRemarkEmitter *ORE, const Function *F,
1206                              const LoopVectorizeHints *Hints,
1207                              InterleavedAccessInfo &IAI)
1208       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1209         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1210         Hints(Hints), InterleaveInfo(IAI) {}
1211 
1212   /// \return An upper bound for the vectorization factor, or None if
1213   /// vectorization and interleaving should be avoided up front.
1214   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1215 
1216   /// \return True if runtime checks are required for vectorization, and false
1217   /// otherwise.
1218   bool runtimeChecksRequired();
1219 
1220   /// \return The most profitable vectorization factor and the cost of that VF.
1221   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1222   /// then this vectorization factor will be selected if vectorization is
1223   /// possible.
1224   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1225   VectorizationFactor
1226   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1227                                     const LoopVectorizationPlanner &LVP);
1228 
1229   /// Setup cost-based decisions for user vectorization factor.
1230   void selectUserVectorizationFactor(ElementCount UserVF) {
1231     collectUniformsAndScalars(UserVF);
1232     collectInstsToScalarize(UserVF);
1233   }
1234 
1235   /// \return The size (in bits) of the smallest and widest types in the code
1236   /// that needs to be vectorized. We ignore values that remain scalar such as
1237   /// 64 bit loop indices.
1238   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1239 
1240   /// \return The desired interleave count.
1241   /// If interleave count has been specified by metadata it will be returned.
1242   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1243   /// are the selected vectorization factor and the cost of the selected VF.
1244   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1245 
1246   /// Memory access instruction may be vectorized in more than one way.
1247   /// Form of instruction after vectorization depends on cost.
1248   /// This function takes cost-based decisions for Load/Store instructions
1249   /// and collects them in a map. This decisions map is used for building
1250   /// the lists of loop-uniform and loop-scalar instructions.
1251   /// The calculated cost is saved with widening decision in order to
1252   /// avoid redundant calculations.
1253   void setCostBasedWideningDecision(ElementCount VF);
1254 
1255   /// A struct that represents some properties of the register usage
1256   /// of a loop.
1257   struct RegisterUsage {
1258     /// Holds the number of loop invariant values that are used in the loop.
1259     /// The key is ClassID of target-provided register class.
1260     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1261     /// Holds the maximum number of concurrent live intervals in the loop.
1262     /// The key is ClassID of target-provided register class.
1263     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1264   };
1265 
1266   /// \return Returns information about the register usages of the loop for the
1267   /// given vectorization factors.
1268   SmallVector<RegisterUsage, 8>
1269   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1270 
1271   /// Collect values we want to ignore in the cost model.
1272   void collectValuesToIgnore();
1273 
1274   /// Split reductions into those that happen in the loop, and those that happen
1275   /// outside. In loop reductions are collected into InLoopReductionChains.
1276   void collectInLoopReductions();
1277 
1278   /// \returns The smallest bitwidth each instruction can be represented with.
1279   /// The vector equivalents of these instructions should be truncated to this
1280   /// type.
1281   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1282     return MinBWs;
1283   }
1284 
1285   /// \returns True if it is more profitable to scalarize instruction \p I for
1286   /// vectorization factor \p VF.
1287   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1288     assert(VF.isVector() &&
1289            "Profitable to scalarize relevant only for VF > 1.");
1290 
1291     // Cost model is not run in the VPlan-native path - return conservative
1292     // result until this changes.
1293     if (EnableVPlanNativePath)
1294       return false;
1295 
1296     auto Scalars = InstsToScalarize.find(VF);
1297     assert(Scalars != InstsToScalarize.end() &&
1298            "VF not yet analyzed for scalarization profitability");
1299     return Scalars->second.find(I) != Scalars->second.end();
1300   }
1301 
1302   /// Returns true if \p I is known to be uniform after vectorization.
1303   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1304     if (VF.isScalar())
1305       return true;
1306 
1307     // Cost model is not run in the VPlan-native path - return conservative
1308     // result until this changes.
1309     if (EnableVPlanNativePath)
1310       return false;
1311 
1312     auto UniformsPerVF = Uniforms.find(VF);
1313     assert(UniformsPerVF != Uniforms.end() &&
1314            "VF not yet analyzed for uniformity");
1315     return UniformsPerVF->second.count(I);
1316   }
1317 
1318   /// Returns true if \p I is known to be scalar after vectorization.
1319   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1320     if (VF.isScalar())
1321       return true;
1322 
1323     // Cost model is not run in the VPlan-native path - return conservative
1324     // result until this changes.
1325     if (EnableVPlanNativePath)
1326       return false;
1327 
1328     auto ScalarsPerVF = Scalars.find(VF);
1329     assert(ScalarsPerVF != Scalars.end() &&
1330            "Scalar values are not calculated for VF");
1331     return ScalarsPerVF->second.count(I);
1332   }
1333 
1334   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1335   /// for vectorization factor \p VF.
1336   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1337     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1338            !isProfitableToScalarize(I, VF) &&
1339            !isScalarAfterVectorization(I, VF);
1340   }
1341 
1342   /// Decision that was taken during cost calculation for memory instruction.
1343   enum InstWidening {
1344     CM_Unknown,
1345     CM_Widen,         // For consecutive accesses with stride +1.
1346     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1347     CM_Interleave,
1348     CM_GatherScatter,
1349     CM_Scalarize
1350   };
1351 
1352   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1353   /// instruction \p I and vector width \p VF.
1354   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1355                            InstructionCost Cost) {
1356     assert(VF.isVector() && "Expected VF >=2");
1357     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1358   }
1359 
1360   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1361   /// interleaving group \p Grp and vector width \p VF.
1362   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1363                            ElementCount VF, InstWidening W,
1364                            InstructionCost Cost) {
1365     assert(VF.isVector() && "Expected VF >=2");
1366     /// Broadcast this decicion to all instructions inside the group.
1367     /// But the cost will be assigned to one instruction only.
1368     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1369       if (auto *I = Grp->getMember(i)) {
1370         if (Grp->getInsertPos() == I)
1371           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1372         else
1373           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1374       }
1375     }
1376   }
1377 
1378   /// Return the cost model decision for the given instruction \p I and vector
1379   /// width \p VF. Return CM_Unknown if this instruction did not pass
1380   /// through the cost modeling.
1381   InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
1382     assert(VF.isVector() && "Expected VF to be a vector VF");
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return CM_GatherScatter;
1387 
1388     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1389     auto Itr = WideningDecisions.find(InstOnVF);
1390     if (Itr == WideningDecisions.end())
1391       return CM_Unknown;
1392     return Itr->second.first;
1393   }
1394 
1395   /// Return the vectorization cost for the given instruction \p I and vector
1396   /// width \p VF.
1397   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1398     assert(VF.isVector() && "Expected VF >=2");
1399     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1400     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1401            "The cost is not calculated");
1402     return WideningDecisions[InstOnVF].second;
1403   }
1404 
1405   /// Return True if instruction \p I is an optimizable truncate whose operand
1406   /// is an induction variable. Such a truncate will be removed by adding a new
1407   /// induction variable with the destination type.
1408   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1409     // If the instruction is not a truncate, return false.
1410     auto *Trunc = dyn_cast<TruncInst>(I);
1411     if (!Trunc)
1412       return false;
1413 
1414     // Get the source and destination types of the truncate.
1415     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1416     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1417 
1418     // If the truncate is free for the given types, return false. Replacing a
1419     // free truncate with an induction variable would add an induction variable
1420     // update instruction to each iteration of the loop. We exclude from this
1421     // check the primary induction variable since it will need an update
1422     // instruction regardless.
1423     Value *Op = Trunc->getOperand(0);
1424     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1425       return false;
1426 
1427     // If the truncated value is not an induction variable, return false.
1428     return Legal->isInductionPhi(Op);
1429   }
1430 
1431   /// Collects the instructions to scalarize for each predicated instruction in
1432   /// the loop.
1433   void collectInstsToScalarize(ElementCount VF);
1434 
1435   /// Collect Uniform and Scalar values for the given \p VF.
1436   /// The sets depend on CM decision for Load/Store instructions
1437   /// that may be vectorized as interleave, gather-scatter or scalarized.
1438   void collectUniformsAndScalars(ElementCount VF) {
1439     // Do the analysis once.
1440     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1441       return;
1442     setCostBasedWideningDecision(VF);
1443     collectLoopUniforms(VF);
1444     collectLoopScalars(VF);
1445   }
1446 
1447   /// Returns true if the target machine supports masked store operation
1448   /// for the given \p DataType and kind of access to \p Ptr.
1449   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1450     return Legal->isConsecutivePtr(Ptr) &&
1451            TTI.isLegalMaskedStore(DataType, Alignment);
1452   }
1453 
1454   /// Returns true if the target machine supports masked load operation
1455   /// for the given \p DataType and kind of access to \p Ptr.
1456   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1457     return Legal->isConsecutivePtr(Ptr) &&
1458            TTI.isLegalMaskedLoad(DataType, Alignment);
1459   }
1460 
1461   /// Returns true if the target machine supports masked scatter operation
1462   /// for the given \p DataType.
1463   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1464     return TTI.isLegalMaskedScatter(DataType, Alignment);
1465   }
1466 
1467   /// Returns true if the target machine supports masked gather operation
1468   /// for the given \p DataType.
1469   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1470     return TTI.isLegalMaskedGather(DataType, Alignment);
1471   }
1472 
1473   /// Returns true if the target machine can represent \p V as a masked gather
1474   /// or scatter operation.
1475   bool isLegalGatherOrScatter(Value *V) {
1476     bool LI = isa<LoadInst>(V);
1477     bool SI = isa<StoreInst>(V);
1478     if (!LI && !SI)
1479       return false;
1480     auto *Ty = getMemInstValueType(V);
1481     Align Align = getLoadStoreAlignment(V);
1482     return (LI && isLegalMaskedGather(Ty, Align)) ||
1483            (SI && isLegalMaskedScatter(Ty, Align));
1484   }
1485 
1486   /// Returns true if the target machine supports all of the reduction
1487   /// variables found for the given VF.
1488   bool canVectorizeReductions(ElementCount VF) {
1489     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1490       RecurrenceDescriptor RdxDesc = Reduction.second;
1491       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1492     }));
1493   }
1494 
1495   /// Returns true if \p I is an instruction that will be scalarized with
1496   /// predication. Such instructions include conditional stores and
1497   /// instructions that may divide by zero.
1498   /// If a non-zero VF has been calculated, we check if I will be scalarized
1499   /// predication for that VF.
1500   bool isScalarWithPredication(Instruction *I,
1501                                ElementCount VF = ElementCount::getFixed(1));
1502 
1503   // Returns true if \p I is an instruction that will be predicated either
1504   // through scalar predication or masked load/store or masked gather/scatter.
1505   // Superset of instructions that return true for isScalarWithPredication.
1506   bool isPredicatedInst(Instruction *I) {
1507     if (!blockNeedsPredication(I->getParent()))
1508       return false;
1509     // Loads and stores that need some form of masked operation are predicated
1510     // instructions.
1511     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1512       return Legal->isMaskRequired(I);
1513     return isScalarWithPredication(I);
1514   }
1515 
1516   /// Returns true if \p I is a memory instruction with consecutive memory
1517   /// access that can be widened.
1518   bool
1519   memoryInstructionCanBeWidened(Instruction *I,
1520                                 ElementCount VF = ElementCount::getFixed(1));
1521 
1522   /// Returns true if \p I is a memory instruction in an interleaved-group
1523   /// of memory accesses that can be vectorized with wide vector loads/stores
1524   /// and shuffles.
1525   bool
1526   interleavedAccessCanBeWidened(Instruction *I,
1527                                 ElementCount VF = ElementCount::getFixed(1));
1528 
1529   /// Check if \p Instr belongs to any interleaved access group.
1530   bool isAccessInterleaved(Instruction *Instr) {
1531     return InterleaveInfo.isInterleaved(Instr);
1532   }
1533 
1534   /// Get the interleaved access group that \p Instr belongs to.
1535   const InterleaveGroup<Instruction> *
1536   getInterleavedAccessGroup(Instruction *Instr) {
1537     return InterleaveInfo.getInterleaveGroup(Instr);
1538   }
1539 
1540   /// Returns true if we're required to use a scalar epilogue for at least
1541   /// the final iteration of the original loop.
1542   bool requiresScalarEpilogue() const {
1543     if (!isScalarEpilogueAllowed())
1544       return false;
1545     // If we might exit from anywhere but the latch, must run the exiting
1546     // iteration in scalar form.
1547     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1548       return true;
1549     return InterleaveInfo.requiresScalarEpilogue();
1550   }
1551 
1552   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1553   /// loop hint annotation.
1554   bool isScalarEpilogueAllowed() const {
1555     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1556   }
1557 
1558   /// Returns true if all loop blocks should be masked to fold tail loop.
1559   bool foldTailByMasking() const { return FoldTailByMasking; }
1560 
1561   bool blockNeedsPredication(BasicBlock *BB) {
1562     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1563   }
1564 
1565   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1566   /// nodes to the chain of instructions representing the reductions. Uses a
1567   /// MapVector to ensure deterministic iteration order.
1568   using ReductionChainMap =
1569       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1570 
1571   /// Return the chain of instructions representing an inloop reduction.
1572   const ReductionChainMap &getInLoopReductionChains() const {
1573     return InLoopReductionChains;
1574   }
1575 
1576   /// Returns true if the Phi is part of an inloop reduction.
1577   bool isInLoopReduction(PHINode *Phi) const {
1578     return InLoopReductionChains.count(Phi);
1579   }
1580 
1581   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1582   /// with factor VF.  Return the cost of the instruction, including
1583   /// scalarization overhead if it's needed.
1584   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF);
1585 
1586   /// Estimate cost of a call instruction CI if it were vectorized with factor
1587   /// VF. Return the cost of the instruction, including scalarization overhead
1588   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1589   /// scalarized -
1590   /// i.e. either vector version isn't available, or is too expensive.
1591   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1592                                     bool &NeedToScalarize);
1593 
1594   /// Invalidates decisions already taken by the cost model.
1595   void invalidateCostModelingDecisions() {
1596     WideningDecisions.clear();
1597     Uniforms.clear();
1598     Scalars.clear();
1599   }
1600 
1601 private:
1602   unsigned NumPredStores = 0;
1603 
1604   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1605   /// than zero. One is returned if vectorization should best be avoided due
1606   /// to cost.
1607   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1608                                     ElementCount UserVF);
1609 
1610   /// The vectorization cost is a combination of the cost itself and a boolean
1611   /// indicating whether any of the contributing operations will actually
1612   /// operate on
1613   /// vector values after type legalization in the backend. If this latter value
1614   /// is
1615   /// false, then all operations will be scalarized (i.e. no vectorization has
1616   /// actually taken place).
1617   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1618 
1619   /// Returns the expected execution cost. The unit of the cost does
1620   /// not matter because we use the 'cost' units to compare different
1621   /// vector widths. The cost that is returned is *not* normalized by
1622   /// the factor width.
1623   VectorizationCostTy expectedCost(ElementCount VF);
1624 
1625   /// Returns the execution time cost of an instruction for a given vector
1626   /// width. Vector width of one means scalar.
1627   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1628 
1629   /// The cost-computation logic from getInstructionCost which provides
1630   /// the vector type as an output parameter.
1631   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1632                                      Type *&VectorTy);
1633 
1634   /// Return the cost of instructions in an inloop reduction pattern, if I is
1635   /// part of that pattern.
1636   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1637                                           Type *VectorTy,
1638                                           TTI::TargetCostKind CostKind);
1639 
1640   /// Calculate vectorization cost of memory instruction \p I.
1641   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1642 
1643   /// The cost computation for scalarized memory instruction.
1644   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1645 
1646   /// The cost computation for interleaving group of memory instructions.
1647   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1648 
1649   /// The cost computation for Gather/Scatter instruction.
1650   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1651 
1652   /// The cost computation for widening instruction \p I with consecutive
1653   /// memory access.
1654   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1655 
1656   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1657   /// Load: scalar load + broadcast.
1658   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1659   /// element)
1660   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1661 
1662   /// Estimate the overhead of scalarizing an instruction. This is a
1663   /// convenience wrapper for the type-based getScalarizationOverhead API.
1664   InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF);
1665 
1666   /// Returns whether the instruction is a load or store and will be a emitted
1667   /// as a vector operation.
1668   bool isConsecutiveLoadOrStore(Instruction *I);
1669 
1670   /// Returns true if an artificially high cost for emulated masked memrefs
1671   /// should be used.
1672   bool useEmulatedMaskMemRefHack(Instruction *I);
1673 
1674   /// Map of scalar integer values to the smallest bitwidth they can be legally
1675   /// represented as. The vector equivalents of these values should be truncated
1676   /// to this type.
1677   MapVector<Instruction *, uint64_t> MinBWs;
1678 
1679   /// A type representing the costs for instructions if they were to be
1680   /// scalarized rather than vectorized. The entries are Instruction-Cost
1681   /// pairs.
1682   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1683 
1684   /// A set containing all BasicBlocks that are known to present after
1685   /// vectorization as a predicated block.
1686   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1687 
1688   /// Records whether it is allowed to have the original scalar loop execute at
1689   /// least once. This may be needed as a fallback loop in case runtime
1690   /// aliasing/dependence checks fail, or to handle the tail/remainder
1691   /// iterations when the trip count is unknown or doesn't divide by the VF,
1692   /// or as a peel-loop to handle gaps in interleave-groups.
1693   /// Under optsize and when the trip count is very small we don't allow any
1694   /// iterations to execute in the scalar loop.
1695   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1696 
1697   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1698   bool FoldTailByMasking = false;
1699 
1700   /// A map holding scalar costs for different vectorization factors. The
1701   /// presence of a cost for an instruction in the mapping indicates that the
1702   /// instruction will be scalarized when vectorizing with the associated
1703   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1704   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1705 
1706   /// Holds the instructions known to be uniform after vectorization.
1707   /// The data is collected per VF.
1708   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1709 
1710   /// Holds the instructions known to be scalar after vectorization.
1711   /// The data is collected per VF.
1712   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1713 
1714   /// Holds the instructions (address computations) that are forced to be
1715   /// scalarized.
1716   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1717 
1718   /// PHINodes of the reductions that should be expanded in-loop along with
1719   /// their associated chains of reduction operations, in program order from top
1720   /// (PHI) to bottom
1721   ReductionChainMap InLoopReductionChains;
1722 
1723   /// A Map of inloop reduction operations and their immediate chain operand.
1724   /// FIXME: This can be removed once reductions can be costed correctly in
1725   /// vplan. This was added to allow quick lookup to the inloop operations,
1726   /// without having to loop through InLoopReductionChains.
1727   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1728 
1729   /// Returns the expected difference in cost from scalarizing the expression
1730   /// feeding a predicated instruction \p PredInst. The instructions to
1731   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1732   /// non-negative return value implies the expression will be scalarized.
1733   /// Currently, only single-use chains are considered for scalarization.
1734   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1735                               ElementCount VF);
1736 
1737   /// Collect the instructions that are uniform after vectorization. An
1738   /// instruction is uniform if we represent it with a single scalar value in
1739   /// the vectorized loop corresponding to each vector iteration. Examples of
1740   /// uniform instructions include pointer operands of consecutive or
1741   /// interleaved memory accesses. Note that although uniformity implies an
1742   /// instruction will be scalar, the reverse is not true. In general, a
1743   /// scalarized instruction will be represented by VF scalar values in the
1744   /// vectorized loop, each corresponding to an iteration of the original
1745   /// scalar loop.
1746   void collectLoopUniforms(ElementCount VF);
1747 
1748   /// Collect the instructions that are scalar after vectorization. An
1749   /// instruction is scalar if it is known to be uniform or will be scalarized
1750   /// during vectorization. Non-uniform scalarized instructions will be
1751   /// represented by VF values in the vectorized loop, each corresponding to an
1752   /// iteration of the original scalar loop.
1753   void collectLoopScalars(ElementCount VF);
1754 
1755   /// Keeps cost model vectorization decision and cost for instructions.
1756   /// Right now it is used for memory instructions only.
1757   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1758                                 std::pair<InstWidening, InstructionCost>>;
1759 
1760   DecisionList WideningDecisions;
1761 
1762   /// Returns true if \p V is expected to be vectorized and it needs to be
1763   /// extracted.
1764   bool needsExtract(Value *V, ElementCount VF) const {
1765     Instruction *I = dyn_cast<Instruction>(V);
1766     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1767         TheLoop->isLoopInvariant(I))
1768       return false;
1769 
1770     // Assume we can vectorize V (and hence we need extraction) if the
1771     // scalars are not computed yet. This can happen, because it is called
1772     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1773     // the scalars are collected. That should be a safe assumption in most
1774     // cases, because we check if the operands have vectorizable types
1775     // beforehand in LoopVectorizationLegality.
1776     return Scalars.find(VF) == Scalars.end() ||
1777            !isScalarAfterVectorization(I, VF);
1778   };
1779 
1780   /// Returns a range containing only operands needing to be extracted.
1781   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1782                                                    ElementCount VF) {
1783     return SmallVector<Value *, 4>(make_filter_range(
1784         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1785   }
1786 
1787   /// Determines if we have the infrastructure to vectorize loop \p L and its
1788   /// epilogue, assuming the main loop is vectorized by \p VF.
1789   bool isCandidateForEpilogueVectorization(const Loop &L,
1790                                            const ElementCount VF) const;
1791 
1792   /// Returns true if epilogue vectorization is considered profitable, and
1793   /// false otherwise.
1794   /// \p VF is the vectorization factor chosen for the original loop.
1795   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1796 
1797 public:
1798   /// The loop that we evaluate.
1799   Loop *TheLoop;
1800 
1801   /// Predicated scalar evolution analysis.
1802   PredicatedScalarEvolution &PSE;
1803 
1804   /// Loop Info analysis.
1805   LoopInfo *LI;
1806 
1807   /// Vectorization legality.
1808   LoopVectorizationLegality *Legal;
1809 
1810   /// Vector target information.
1811   const TargetTransformInfo &TTI;
1812 
1813   /// Target Library Info.
1814   const TargetLibraryInfo *TLI;
1815 
1816   /// Demanded bits analysis.
1817   DemandedBits *DB;
1818 
1819   /// Assumption cache.
1820   AssumptionCache *AC;
1821 
1822   /// Interface to emit optimization remarks.
1823   OptimizationRemarkEmitter *ORE;
1824 
1825   const Function *TheFunction;
1826 
1827   /// Loop Vectorize Hint.
1828   const LoopVectorizeHints *Hints;
1829 
1830   /// The interleave access information contains groups of interleaved accesses
1831   /// with the same stride and close to each other.
1832   InterleavedAccessInfo &InterleaveInfo;
1833 
1834   /// Values to ignore in the cost model.
1835   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1836 
1837   /// Values to ignore in the cost model when VF > 1.
1838   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1839 
1840   /// Profitable vector factors.
1841   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1842 };
1843 } // end namespace llvm
1844 
1845 /// Helper struct to manage generating runtime checks for vectorization.
1846 ///
1847 /// The runtime checks are created up-front in temporary blocks to allow better
1848 /// estimating the cost and un-linked from the existing IR. After deciding to
1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1850 /// temporary blocks are completely removed.
1851 class GeneratedRTChecks {
1852   /// Basic block which contains the generated SCEV checks, if any.
1853   BasicBlock *SCEVCheckBlock = nullptr;
1854 
1855   /// The value representing the result of the generated SCEV checks. If it is
1856   /// nullptr, either no SCEV checks have been generated or they have been used.
1857   Value *SCEVCheckCond = nullptr;
1858 
1859   /// Basic block which contains the generated memory runtime checks, if any.
1860   BasicBlock *MemCheckBlock = nullptr;
1861 
1862   /// The value representing the result of the generated memory runtime checks.
1863   /// If it is nullptr, either no memory runtime checks have been generated or
1864   /// they have been used.
1865   Instruction *MemRuntimeCheckCond = nullptr;
1866 
1867   DominatorTree *DT;
1868   LoopInfo *LI;
1869 
1870   SCEVExpander SCEVExp;
1871   SCEVExpander MemCheckExp;
1872 
1873 public:
1874   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1875                     const DataLayout &DL)
1876       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1877         MemCheckExp(SE, DL, "scev.check") {}
1878 
1879   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1880   /// accurately estimate the cost of the runtime checks. The blocks are
1881   /// un-linked from the IR and is added back during vector code generation. If
1882   /// there is no vector code generation, the check blocks are removed
1883   /// completely.
1884   void Create(Loop *L, const LoopAccessInfo &LAI,
1885               const SCEVUnionPredicate &UnionPred) {
1886 
1887     BasicBlock *LoopHeader = L->getHeader();
1888     BasicBlock *Preheader = L->getLoopPreheader();
1889 
1890     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1891     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1892     // may be used by SCEVExpander. The blocks will be un-linked from their
1893     // predecessors and removed from LI & DT at the end of the function.
1894     if (!UnionPred.isAlwaysTrue()) {
1895       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1896                                   nullptr, "vector.scevcheck");
1897 
1898       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1899           &UnionPred, SCEVCheckBlock->getTerminator());
1900     }
1901 
1902     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1903     if (RtPtrChecking.Need) {
1904       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1905       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1906                                  "vector.memcheck");
1907 
1908       std::tie(std::ignore, MemRuntimeCheckCond) =
1909           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1910                            RtPtrChecking.getChecks(), MemCheckExp);
1911       assert(MemRuntimeCheckCond &&
1912              "no RT checks generated although RtPtrChecking "
1913              "claimed checks are required");
1914     }
1915 
1916     if (!MemCheckBlock && !SCEVCheckBlock)
1917       return;
1918 
1919     // Unhook the temporary block with the checks, update various places
1920     // accordingly.
1921     if (SCEVCheckBlock)
1922       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1923     if (MemCheckBlock)
1924       MemCheckBlock->replaceAllUsesWith(Preheader);
1925 
1926     if (SCEVCheckBlock) {
1927       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1928       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1929       Preheader->getTerminator()->eraseFromParent();
1930     }
1931     if (MemCheckBlock) {
1932       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1933       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1934       Preheader->getTerminator()->eraseFromParent();
1935     }
1936 
1937     DT->changeImmediateDominator(LoopHeader, Preheader);
1938     if (MemCheckBlock) {
1939       DT->eraseNode(MemCheckBlock);
1940       LI->removeBlock(MemCheckBlock);
1941     }
1942     if (SCEVCheckBlock) {
1943       DT->eraseNode(SCEVCheckBlock);
1944       LI->removeBlock(SCEVCheckBlock);
1945     }
1946   }
1947 
1948   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1949   /// unused.
1950   ~GeneratedRTChecks() {
1951     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1952     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1953     if (!SCEVCheckCond)
1954       SCEVCleaner.markResultUsed();
1955 
1956     if (!MemRuntimeCheckCond)
1957       MemCheckCleaner.markResultUsed();
1958 
1959     if (MemRuntimeCheckCond) {
1960       auto &SE = *MemCheckExp.getSE();
1961       // Memory runtime check generation creates compares that use expanded
1962       // values. Remove them before running the SCEVExpanderCleaners.
1963       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1964         if (MemCheckExp.isInsertedInstruction(&I))
1965           continue;
1966         SE.forgetValue(&I);
1967         SE.eraseValueFromMap(&I);
1968         I.eraseFromParent();
1969       }
1970     }
1971     MemCheckCleaner.cleanup();
1972     SCEVCleaner.cleanup();
1973 
1974     if (SCEVCheckCond)
1975       SCEVCheckBlock->eraseFromParent();
1976     if (MemRuntimeCheckCond)
1977       MemCheckBlock->eraseFromParent();
1978   }
1979 
1980   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1981   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1982   /// depending on the generated condition.
1983   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
1984                              BasicBlock *LoopVectorPreHeader,
1985                              BasicBlock *LoopExitBlock) {
1986     if (!SCEVCheckCond)
1987       return nullptr;
1988     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
1989       if (C->isZero())
1990         return nullptr;
1991 
1992     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
1993 
1994     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
1995     // Create new preheader for vector loop.
1996     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
1997       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
1998 
1999     SCEVCheckBlock->getTerminator()->eraseFromParent();
2000     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2001     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2002                                                 SCEVCheckBlock);
2003 
2004     DT->addNewBlock(SCEVCheckBlock, Pred);
2005     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2006 
2007     ReplaceInstWithInst(
2008         SCEVCheckBlock->getTerminator(),
2009         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2010     // Mark the check as used, to prevent it from being removed during cleanup.
2011     SCEVCheckCond = nullptr;
2012     return SCEVCheckBlock;
2013   }
2014 
2015   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2016   /// the branches to branch to the vector preheader or \p Bypass, depending on
2017   /// the generated condition.
2018   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2019                                    BasicBlock *LoopVectorPreHeader) {
2020     // Check if we generated code that checks in runtime if arrays overlap.
2021     if (!MemRuntimeCheckCond)
2022       return nullptr;
2023 
2024     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2025     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2026                                                 MemCheckBlock);
2027 
2028     DT->addNewBlock(MemCheckBlock, Pred);
2029     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2030     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2031 
2032     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2033       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2034 
2035     ReplaceInstWithInst(
2036         MemCheckBlock->getTerminator(),
2037         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2038     MemCheckBlock->getTerminator()->setDebugLoc(
2039         Pred->getTerminator()->getDebugLoc());
2040 
2041     // Mark the check as used, to prevent it from being removed during cleanup.
2042     MemRuntimeCheckCond = nullptr;
2043     return MemCheckBlock;
2044   }
2045 };
2046 
2047 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2048 // vectorization. The loop needs to be annotated with #pragma omp simd
2049 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2050 // vector length information is not provided, vectorization is not considered
2051 // explicit. Interleave hints are not allowed either. These limitations will be
2052 // relaxed in the future.
2053 // Please, note that we are currently forced to abuse the pragma 'clang
2054 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2055 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2056 // provides *explicit vectorization hints* (LV can bypass legal checks and
2057 // assume that vectorization is legal). However, both hints are implemented
2058 // using the same metadata (llvm.loop.vectorize, processed by
2059 // LoopVectorizeHints). This will be fixed in the future when the native IR
2060 // representation for pragma 'omp simd' is introduced.
2061 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2062                                    OptimizationRemarkEmitter *ORE) {
2063   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2064   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2065 
2066   // Only outer loops with an explicit vectorization hint are supported.
2067   // Unannotated outer loops are ignored.
2068   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2069     return false;
2070 
2071   Function *Fn = OuterLp->getHeader()->getParent();
2072   if (!Hints.allowVectorization(Fn, OuterLp,
2073                                 true /*VectorizeOnlyWhenForced*/)) {
2074     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2075     return false;
2076   }
2077 
2078   if (Hints.getInterleave() > 1) {
2079     // TODO: Interleave support is future work.
2080     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2081                          "outer loops.\n");
2082     Hints.emitRemarkWithHints();
2083     return false;
2084   }
2085 
2086   return true;
2087 }
2088 
2089 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2090                                   OptimizationRemarkEmitter *ORE,
2091                                   SmallVectorImpl<Loop *> &V) {
2092   // Collect inner loops and outer loops without irreducible control flow. For
2093   // now, only collect outer loops that have explicit vectorization hints. If we
2094   // are stress testing the VPlan H-CFG construction, we collect the outermost
2095   // loop of every loop nest.
2096   if (L.isInnermost() || VPlanBuildStressTest ||
2097       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2098     LoopBlocksRPO RPOT(&L);
2099     RPOT.perform(LI);
2100     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2101       V.push_back(&L);
2102       // TODO: Collect inner loops inside marked outer loops in case
2103       // vectorization fails for the outer loop. Do not invoke
2104       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2105       // already known to be reducible. We can use an inherited attribute for
2106       // that.
2107       return;
2108     }
2109   }
2110   for (Loop *InnerL : L)
2111     collectSupportedLoops(*InnerL, LI, ORE, V);
2112 }
2113 
2114 namespace {
2115 
2116 /// The LoopVectorize Pass.
2117 struct LoopVectorize : public FunctionPass {
2118   /// Pass identification, replacement for typeid
2119   static char ID;
2120 
2121   LoopVectorizePass Impl;
2122 
2123   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2124                          bool VectorizeOnlyWhenForced = false)
2125       : FunctionPass(ID),
2126         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2127     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2128   }
2129 
2130   bool runOnFunction(Function &F) override {
2131     if (skipFunction(F))
2132       return false;
2133 
2134     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2135     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2136     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2137     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2138     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2139     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2140     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2141     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2142     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2143     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2144     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2145     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2146     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2147 
2148     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2149         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2150 
2151     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2152                         GetLAA, *ORE, PSI).MadeAnyChange;
2153   }
2154 
2155   void getAnalysisUsage(AnalysisUsage &AU) const override {
2156     AU.addRequired<AssumptionCacheTracker>();
2157     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2158     AU.addRequired<DominatorTreeWrapperPass>();
2159     AU.addRequired<LoopInfoWrapperPass>();
2160     AU.addRequired<ScalarEvolutionWrapperPass>();
2161     AU.addRequired<TargetTransformInfoWrapperPass>();
2162     AU.addRequired<AAResultsWrapperPass>();
2163     AU.addRequired<LoopAccessLegacyAnalysis>();
2164     AU.addRequired<DemandedBitsWrapperPass>();
2165     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2166     AU.addRequired<InjectTLIMappingsLegacy>();
2167 
2168     // We currently do not preserve loopinfo/dominator analyses with outer loop
2169     // vectorization. Until this is addressed, mark these analyses as preserved
2170     // only for non-VPlan-native path.
2171     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2172     if (!EnableVPlanNativePath) {
2173       AU.addPreserved<LoopInfoWrapperPass>();
2174       AU.addPreserved<DominatorTreeWrapperPass>();
2175     }
2176 
2177     AU.addPreserved<BasicAAWrapperPass>();
2178     AU.addPreserved<GlobalsAAWrapperPass>();
2179     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2180   }
2181 };
2182 
2183 } // end anonymous namespace
2184 
2185 //===----------------------------------------------------------------------===//
2186 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2187 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2188 //===----------------------------------------------------------------------===//
2189 
2190 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2191   // We need to place the broadcast of invariant variables outside the loop,
2192   // but only if it's proven safe to do so. Else, broadcast will be inside
2193   // vector loop body.
2194   Instruction *Instr = dyn_cast<Instruction>(V);
2195   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2196                      (!Instr ||
2197                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2198   // Place the code for broadcasting invariant variables in the new preheader.
2199   IRBuilder<>::InsertPointGuard Guard(Builder);
2200   if (SafeToHoist)
2201     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2202 
2203   // Broadcast the scalar into all locations in the vector.
2204   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2205 
2206   return Shuf;
2207 }
2208 
2209 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2210     const InductionDescriptor &II, Value *Step, Value *Start,
2211     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2212     VPTransformState &State) {
2213   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2214          "Expected either an induction phi-node or a truncate of it!");
2215 
2216   // Construct the initial value of the vector IV in the vector loop preheader
2217   auto CurrIP = Builder.saveIP();
2218   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2219   if (isa<TruncInst>(EntryVal)) {
2220     assert(Start->getType()->isIntegerTy() &&
2221            "Truncation requires an integer type");
2222     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2223     Step = Builder.CreateTrunc(Step, TruncType);
2224     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2225   }
2226   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2227   Value *SteppedStart =
2228       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2229 
2230   // We create vector phi nodes for both integer and floating-point induction
2231   // variables. Here, we determine the kind of arithmetic we will perform.
2232   Instruction::BinaryOps AddOp;
2233   Instruction::BinaryOps MulOp;
2234   if (Step->getType()->isIntegerTy()) {
2235     AddOp = Instruction::Add;
2236     MulOp = Instruction::Mul;
2237   } else {
2238     AddOp = II.getInductionOpcode();
2239     MulOp = Instruction::FMul;
2240   }
2241 
2242   // Multiply the vectorization factor by the step using integer or
2243   // floating-point arithmetic as appropriate.
2244   Value *ConstVF =
2245       getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue());
2246   Value *Mul = Builder.CreateBinOp(MulOp, Step, ConstVF);
2247 
2248   // Create a vector splat to use in the induction update.
2249   //
2250   // FIXME: If the step is non-constant, we create the vector splat with
2251   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2252   //        handle a constant vector splat.
2253   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2254   Value *SplatVF = isa<Constant>(Mul)
2255                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2256                        : Builder.CreateVectorSplat(VF, Mul);
2257   Builder.restoreIP(CurrIP);
2258 
2259   // We may need to add the step a number of times, depending on the unroll
2260   // factor. The last of those goes into the PHI.
2261   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2262                                     &*LoopVectorBody->getFirstInsertionPt());
2263   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2264   Instruction *LastInduction = VecInd;
2265   for (unsigned Part = 0; Part < UF; ++Part) {
2266     State.set(Def, LastInduction, Part);
2267 
2268     if (isa<TruncInst>(EntryVal))
2269       addMetadata(LastInduction, EntryVal);
2270     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2271                                           State, Part);
2272 
2273     LastInduction = cast<Instruction>(
2274         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2275     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2276   }
2277 
2278   // Move the last step to the end of the latch block. This ensures consistent
2279   // placement of all induction updates.
2280   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2281   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2282   auto *ICmp = cast<Instruction>(Br->getCondition());
2283   LastInduction->moveBefore(ICmp);
2284   LastInduction->setName("vec.ind.next");
2285 
2286   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2287   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2288 }
2289 
2290 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2291   return Cost->isScalarAfterVectorization(I, VF) ||
2292          Cost->isProfitableToScalarize(I, VF);
2293 }
2294 
2295 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2296   if (shouldScalarizeInstruction(IV))
2297     return true;
2298   auto isScalarInst = [&](User *U) -> bool {
2299     auto *I = cast<Instruction>(U);
2300     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2301   };
2302   return llvm::any_of(IV->users(), isScalarInst);
2303 }
2304 
2305 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2306     const InductionDescriptor &ID, const Instruction *EntryVal,
2307     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2308     unsigned Part, unsigned Lane) {
2309   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2310          "Expected either an induction phi-node or a truncate of it!");
2311 
2312   // This induction variable is not the phi from the original loop but the
2313   // newly-created IV based on the proof that casted Phi is equal to the
2314   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2315   // re-uses the same InductionDescriptor that original IV uses but we don't
2316   // have to do any recording in this case - that is done when original IV is
2317   // processed.
2318   if (isa<TruncInst>(EntryVal))
2319     return;
2320 
2321   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2322   if (Casts.empty())
2323     return;
2324   // Only the first Cast instruction in the Casts vector is of interest.
2325   // The rest of the Casts (if exist) have no uses outside the
2326   // induction update chain itself.
2327   if (Lane < UINT_MAX)
2328     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2329   else
2330     State.set(CastDef, VectorLoopVal, Part);
2331 }
2332 
2333 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2334                                                 TruncInst *Trunc, VPValue *Def,
2335                                                 VPValue *CastDef,
2336                                                 VPTransformState &State) {
2337   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2338          "Primary induction variable must have an integer type");
2339 
2340   auto II = Legal->getInductionVars().find(IV);
2341   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2342 
2343   auto ID = II->second;
2344   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2345 
2346   // The value from the original loop to which we are mapping the new induction
2347   // variable.
2348   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2349 
2350   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2351 
2352   // Generate code for the induction step. Note that induction steps are
2353   // required to be loop-invariant
2354   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2355     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2356            "Induction step should be loop invariant");
2357     if (PSE.getSE()->isSCEVable(IV->getType())) {
2358       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2359       return Exp.expandCodeFor(Step, Step->getType(),
2360                                LoopVectorPreHeader->getTerminator());
2361     }
2362     return cast<SCEVUnknown>(Step)->getValue();
2363   };
2364 
2365   // The scalar value to broadcast. This is derived from the canonical
2366   // induction variable. If a truncation type is given, truncate the canonical
2367   // induction variable and step. Otherwise, derive these values from the
2368   // induction descriptor.
2369   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2370     Value *ScalarIV = Induction;
2371     if (IV != OldInduction) {
2372       ScalarIV = IV->getType()->isIntegerTy()
2373                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2374                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2375                                           IV->getType());
2376       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2377       ScalarIV->setName("offset.idx");
2378     }
2379     if (Trunc) {
2380       auto *TruncType = cast<IntegerType>(Trunc->getType());
2381       assert(Step->getType()->isIntegerTy() &&
2382              "Truncation requires an integer step");
2383       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2384       Step = Builder.CreateTrunc(Step, TruncType);
2385     }
2386     return ScalarIV;
2387   };
2388 
2389   // Create the vector values from the scalar IV, in the absence of creating a
2390   // vector IV.
2391   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2392     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2393     for (unsigned Part = 0; Part < UF; ++Part) {
2394       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2395       Value *EntryPart =
2396           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2397                         ID.getInductionOpcode());
2398       State.set(Def, EntryPart, Part);
2399       if (Trunc)
2400         addMetadata(EntryPart, Trunc);
2401       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2402                                             State, Part);
2403     }
2404   };
2405 
2406   // Fast-math-flags propagate from the original induction instruction.
2407   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2408   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2409     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2410 
2411   // Now do the actual transformations, and start with creating the step value.
2412   Value *Step = CreateStepValue(ID.getStep());
2413   if (VF.isZero() || VF.isScalar()) {
2414     Value *ScalarIV = CreateScalarIV(Step);
2415     CreateSplatIV(ScalarIV, Step);
2416     return;
2417   }
2418 
2419   // Determine if we want a scalar version of the induction variable. This is
2420   // true if the induction variable itself is not widened, or if it has at
2421   // least one user in the loop that is not widened.
2422   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2423   if (!NeedsScalarIV) {
2424     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2425                                     State);
2426     return;
2427   }
2428 
2429   // Try to create a new independent vector induction variable. If we can't
2430   // create the phi node, we will splat the scalar induction variable in each
2431   // loop iteration.
2432   if (!shouldScalarizeInstruction(EntryVal)) {
2433     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2434                                     State);
2435     Value *ScalarIV = CreateScalarIV(Step);
2436     // Create scalar steps that can be used by instructions we will later
2437     // scalarize. Note that the addition of the scalar steps will not increase
2438     // the number of instructions in the loop in the common case prior to
2439     // InstCombine. We will be trading one vector extract for each scalar step.
2440     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2441     return;
2442   }
2443 
2444   // All IV users are scalar instructions, so only emit a scalar IV, not a
2445   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2446   // predicate used by the masked loads/stores.
2447   Value *ScalarIV = CreateScalarIV(Step);
2448   if (!Cost->isScalarEpilogueAllowed())
2449     CreateSplatIV(ScalarIV, Step);
2450   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2451 }
2452 
2453 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2454                                           Instruction::BinaryOps BinOp) {
2455   // Create and check the types.
2456   assert(isa<FixedVectorType>(Val->getType()) &&
2457          "Creation of scalable step vector not yet supported");
2458   auto *ValVTy = cast<VectorType>(Val->getType());
2459   ElementCount VLen = ValVTy->getElementCount();
2460 
2461   Type *STy = Val->getType()->getScalarType();
2462   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2463          "Induction Step must be an integer or FP");
2464   assert(Step->getType() == STy && "Step has wrong type");
2465 
2466   SmallVector<Constant *, 8> Indices;
2467 
2468   // Create a vector of consecutive numbers from zero to VF.
2469   VectorType *InitVecValVTy = ValVTy;
2470   Type *InitVecValSTy = STy;
2471   if (STy->isFloatingPointTy()) {
2472     InitVecValSTy =
2473         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2474     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2475   }
2476   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2477 
2478   // Add on StartIdx
2479   Value *StartIdxSplat = Builder.CreateVectorSplat(
2480       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2481   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2482 
2483   if (STy->isIntegerTy()) {
2484     Step = Builder.CreateVectorSplat(VLen, Step);
2485     assert(Step->getType() == Val->getType() && "Invalid step vec");
2486     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2487     // which can be found from the original scalar operations.
2488     Step = Builder.CreateMul(InitVec, Step);
2489     return Builder.CreateAdd(Val, Step, "induction");
2490   }
2491 
2492   // Floating point induction.
2493   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2494          "Binary Opcode should be specified for FP induction");
2495   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2496   Step = Builder.CreateVectorSplat(VLen, Step);
2497   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2498   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2499 }
2500 
2501 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2502                                            Instruction *EntryVal,
2503                                            const InductionDescriptor &ID,
2504                                            VPValue *Def, VPValue *CastDef,
2505                                            VPTransformState &State) {
2506   // We shouldn't have to build scalar steps if we aren't vectorizing.
2507   assert(VF.isVector() && "VF should be greater than one");
2508   // Get the value type and ensure it and the step have the same integer type.
2509   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2510   assert(ScalarIVTy == Step->getType() &&
2511          "Val and Step should have the same type");
2512 
2513   // We build scalar steps for both integer and floating-point induction
2514   // variables. Here, we determine the kind of arithmetic we will perform.
2515   Instruction::BinaryOps AddOp;
2516   Instruction::BinaryOps MulOp;
2517   if (ScalarIVTy->isIntegerTy()) {
2518     AddOp = Instruction::Add;
2519     MulOp = Instruction::Mul;
2520   } else {
2521     AddOp = ID.getInductionOpcode();
2522     MulOp = Instruction::FMul;
2523   }
2524 
2525   // Determine the number of scalars we need to generate for each unroll
2526   // iteration. If EntryVal is uniform, we only need to generate the first
2527   // lane. Otherwise, we generate all VF values.
2528   unsigned Lanes =
2529       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF)
2530           ? 1
2531           : VF.getKnownMinValue();
2532   assert((!VF.isScalable() || Lanes == 1) &&
2533          "Should never scalarize a scalable vector");
2534   // Compute the scalar steps and save the results in State.
2535   for (unsigned Part = 0; Part < UF; ++Part) {
2536     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2537       auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2538                                          ScalarIVTy->getScalarSizeInBits());
2539       Value *StartIdx =
2540           createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2541       if (ScalarIVTy->isFloatingPointTy())
2542         StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy);
2543       StartIdx = Builder.CreateBinOp(
2544           AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2545       // The step returned by `createStepForVF` is a runtime-evaluated value
2546       // when VF is scalable. Otherwise, it should be folded into a Constant.
2547       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2548              "Expected StartIdx to be folded to a constant when VF is not "
2549              "scalable");
2550       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2551       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2552       State.set(Def, Add, VPIteration(Part, Lane));
2553       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2554                                             Part, Lane);
2555     }
2556   }
2557 }
2558 
2559 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2560                                                     const VPIteration &Instance,
2561                                                     VPTransformState &State) {
2562   Value *ScalarInst = State.get(Def, Instance);
2563   Value *VectorValue = State.get(Def, Instance.Part);
2564   VectorValue = Builder.CreateInsertElement(
2565       VectorValue, ScalarInst,
2566       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2567   State.set(Def, VectorValue, Instance.Part);
2568 }
2569 
2570 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2571   assert(Vec->getType()->isVectorTy() && "Invalid type");
2572   return Builder.CreateVectorReverse(Vec, "reverse");
2573 }
2574 
2575 // Return whether we allow using masked interleave-groups (for dealing with
2576 // strided loads/stores that reside in predicated blocks, or for dealing
2577 // with gaps).
2578 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2579   // If an override option has been passed in for interleaved accesses, use it.
2580   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2581     return EnableMaskedInterleavedMemAccesses;
2582 
2583   return TTI.enableMaskedInterleavedAccessVectorization();
2584 }
2585 
2586 // Try to vectorize the interleave group that \p Instr belongs to.
2587 //
2588 // E.g. Translate following interleaved load group (factor = 3):
2589 //   for (i = 0; i < N; i+=3) {
2590 //     R = Pic[i];             // Member of index 0
2591 //     G = Pic[i+1];           // Member of index 1
2592 //     B = Pic[i+2];           // Member of index 2
2593 //     ... // do something to R, G, B
2594 //   }
2595 // To:
2596 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2597 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2598 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2599 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2600 //
2601 // Or translate following interleaved store group (factor = 3):
2602 //   for (i = 0; i < N; i+=3) {
2603 //     ... do something to R, G, B
2604 //     Pic[i]   = R;           // Member of index 0
2605 //     Pic[i+1] = G;           // Member of index 1
2606 //     Pic[i+2] = B;           // Member of index 2
2607 //   }
2608 // To:
2609 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2610 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2611 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2612 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2613 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2614 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2615     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2616     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2617     VPValue *BlockInMask) {
2618   Instruction *Instr = Group->getInsertPos();
2619   const DataLayout &DL = Instr->getModule()->getDataLayout();
2620 
2621   // Prepare for the vector type of the interleaved load/store.
2622   Type *ScalarTy = getMemInstValueType(Instr);
2623   unsigned InterleaveFactor = Group->getFactor();
2624   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2625   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2626 
2627   // Prepare for the new pointers.
2628   SmallVector<Value *, 2> AddrParts;
2629   unsigned Index = Group->getIndex(Instr);
2630 
2631   // TODO: extend the masked interleaved-group support to reversed access.
2632   assert((!BlockInMask || !Group->isReverse()) &&
2633          "Reversed masked interleave-group not supported.");
2634 
2635   // If the group is reverse, adjust the index to refer to the last vector lane
2636   // instead of the first. We adjust the index from the first vector lane,
2637   // rather than directly getting the pointer for lane VF - 1, because the
2638   // pointer operand of the interleaved access is supposed to be uniform. For
2639   // uniform instructions, we're only required to generate a value for the
2640   // first vector lane in each unroll iteration.
2641   assert(!VF.isScalable() &&
2642          "scalable vector reverse operation is not implemented");
2643   if (Group->isReverse())
2644     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2645 
2646   for (unsigned Part = 0; Part < UF; Part++) {
2647     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2648     setDebugLocFromInst(Builder, AddrPart);
2649 
2650     // Notice current instruction could be any index. Need to adjust the address
2651     // to the member of index 0.
2652     //
2653     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2654     //       b = A[i];       // Member of index 0
2655     // Current pointer is pointed to A[i+1], adjust it to A[i].
2656     //
2657     // E.g.  A[i+1] = a;     // Member of index 1
2658     //       A[i]   = b;     // Member of index 0
2659     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2660     // Current pointer is pointed to A[i+2], adjust it to A[i].
2661 
2662     bool InBounds = false;
2663     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2664       InBounds = gep->isInBounds();
2665     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2666     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2667 
2668     // Cast to the vector pointer type.
2669     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2670     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2671     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2672   }
2673 
2674   setDebugLocFromInst(Builder, Instr);
2675   Value *PoisonVec = PoisonValue::get(VecTy);
2676 
2677   Value *MaskForGaps = nullptr;
2678   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2679     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2680     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2681     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2682   }
2683 
2684   // Vectorize the interleaved load group.
2685   if (isa<LoadInst>(Instr)) {
2686     // For each unroll part, create a wide load for the group.
2687     SmallVector<Value *, 2> NewLoads;
2688     for (unsigned Part = 0; Part < UF; Part++) {
2689       Instruction *NewLoad;
2690       if (BlockInMask || MaskForGaps) {
2691         assert(useMaskedInterleavedAccesses(*TTI) &&
2692                "masked interleaved groups are not allowed.");
2693         Value *GroupMask = MaskForGaps;
2694         if (BlockInMask) {
2695           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2696           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2697           Value *ShuffledMask = Builder.CreateShuffleVector(
2698               BlockInMaskPart,
2699               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2700               "interleaved.mask");
2701           GroupMask = MaskForGaps
2702                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2703                                                 MaskForGaps)
2704                           : ShuffledMask;
2705         }
2706         NewLoad =
2707             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2708                                      GroupMask, PoisonVec, "wide.masked.vec");
2709       }
2710       else
2711         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2712                                             Group->getAlign(), "wide.vec");
2713       Group->addMetadata(NewLoad);
2714       NewLoads.push_back(NewLoad);
2715     }
2716 
2717     // For each member in the group, shuffle out the appropriate data from the
2718     // wide loads.
2719     unsigned J = 0;
2720     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2721       Instruction *Member = Group->getMember(I);
2722 
2723       // Skip the gaps in the group.
2724       if (!Member)
2725         continue;
2726 
2727       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2728       auto StrideMask =
2729           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2730       for (unsigned Part = 0; Part < UF; Part++) {
2731         Value *StridedVec = Builder.CreateShuffleVector(
2732             NewLoads[Part], StrideMask, "strided.vec");
2733 
2734         // If this member has different type, cast the result type.
2735         if (Member->getType() != ScalarTy) {
2736           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2737           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2738           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2739         }
2740 
2741         if (Group->isReverse())
2742           StridedVec = reverseVector(StridedVec);
2743 
2744         State.set(VPDefs[J], StridedVec, Part);
2745       }
2746       ++J;
2747     }
2748     return;
2749   }
2750 
2751   // The sub vector type for current instruction.
2752   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2753   auto *SubVT = VectorType::get(ScalarTy, VF);
2754 
2755   // Vectorize the interleaved store group.
2756   for (unsigned Part = 0; Part < UF; Part++) {
2757     // Collect the stored vector from each member.
2758     SmallVector<Value *, 4> StoredVecs;
2759     for (unsigned i = 0; i < InterleaveFactor; i++) {
2760       // Interleaved store group doesn't allow a gap, so each index has a member
2761       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2762 
2763       Value *StoredVec = State.get(StoredValues[i], Part);
2764 
2765       if (Group->isReverse())
2766         StoredVec = reverseVector(StoredVec);
2767 
2768       // If this member has different type, cast it to a unified type.
2769 
2770       if (StoredVec->getType() != SubVT)
2771         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2772 
2773       StoredVecs.push_back(StoredVec);
2774     }
2775 
2776     // Concatenate all vectors into a wide vector.
2777     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2778 
2779     // Interleave the elements in the wide vector.
2780     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2781     Value *IVec = Builder.CreateShuffleVector(
2782         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2783         "interleaved.vec");
2784 
2785     Instruction *NewStoreInstr;
2786     if (BlockInMask) {
2787       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2788       Value *ShuffledMask = Builder.CreateShuffleVector(
2789           BlockInMaskPart,
2790           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2791           "interleaved.mask");
2792       NewStoreInstr = Builder.CreateMaskedStore(
2793           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2794     }
2795     else
2796       NewStoreInstr =
2797           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2798 
2799     Group->addMetadata(NewStoreInstr);
2800   }
2801 }
2802 
2803 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2804     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2805     VPValue *StoredValue, VPValue *BlockInMask) {
2806   // Attempt to issue a wide load.
2807   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2808   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2809 
2810   assert((LI || SI) && "Invalid Load/Store instruction");
2811   assert((!SI || StoredValue) && "No stored value provided for widened store");
2812   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2813 
2814   LoopVectorizationCostModel::InstWidening Decision =
2815       Cost->getWideningDecision(Instr, VF);
2816   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2817           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2818           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2819          "CM decision is not to widen the memory instruction");
2820 
2821   Type *ScalarDataTy = getMemInstValueType(Instr);
2822 
2823   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2824   const Align Alignment = getLoadStoreAlignment(Instr);
2825 
2826   // Determine if the pointer operand of the access is either consecutive or
2827   // reverse consecutive.
2828   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2829   bool ConsecutiveStride =
2830       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2831   bool CreateGatherScatter =
2832       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2833 
2834   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2835   // gather/scatter. Otherwise Decision should have been to Scalarize.
2836   assert((ConsecutiveStride || CreateGatherScatter) &&
2837          "The instruction should be scalarized");
2838   (void)ConsecutiveStride;
2839 
2840   VectorParts BlockInMaskParts(UF);
2841   bool isMaskRequired = BlockInMask;
2842   if (isMaskRequired)
2843     for (unsigned Part = 0; Part < UF; ++Part)
2844       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2845 
2846   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2847     // Calculate the pointer for the specific unroll-part.
2848     GetElementPtrInst *PartPtr = nullptr;
2849 
2850     bool InBounds = false;
2851     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2852       InBounds = gep->isInBounds();
2853     if (Reverse) {
2854       // If the address is consecutive but reversed, then the
2855       // wide store needs to start at the last vector element.
2856       // RunTimeVF =  VScale * VF.getKnownMinValue()
2857       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2858       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2859       // NumElt = -Part * RunTimeVF
2860       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2861       // LastLane = 1 - RunTimeVF
2862       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2863       PartPtr =
2864           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2865       PartPtr->setIsInBounds(InBounds);
2866       PartPtr = cast<GetElementPtrInst>(
2867           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2868       PartPtr->setIsInBounds(InBounds);
2869       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2870         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2871     } else {
2872       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2873       PartPtr = cast<GetElementPtrInst>(
2874           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2875       PartPtr->setIsInBounds(InBounds);
2876     }
2877 
2878     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2879     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2880   };
2881 
2882   // Handle Stores:
2883   if (SI) {
2884     setDebugLocFromInst(Builder, SI);
2885 
2886     for (unsigned Part = 0; Part < UF; ++Part) {
2887       Instruction *NewSI = nullptr;
2888       Value *StoredVal = State.get(StoredValue, Part);
2889       if (CreateGatherScatter) {
2890         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2891         Value *VectorGep = State.get(Addr, Part);
2892         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2893                                             MaskPart);
2894       } else {
2895         if (Reverse) {
2896           // If we store to reverse consecutive memory locations, then we need
2897           // to reverse the order of elements in the stored value.
2898           StoredVal = reverseVector(StoredVal);
2899           // We don't want to update the value in the map as it might be used in
2900           // another expression. So don't call resetVectorValue(StoredVal).
2901         }
2902         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2903         if (isMaskRequired)
2904           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2905                                             BlockInMaskParts[Part]);
2906         else
2907           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2908       }
2909       addMetadata(NewSI, SI);
2910     }
2911     return;
2912   }
2913 
2914   // Handle loads.
2915   assert(LI && "Must have a load instruction");
2916   setDebugLocFromInst(Builder, LI);
2917   for (unsigned Part = 0; Part < UF; ++Part) {
2918     Value *NewLI;
2919     if (CreateGatherScatter) {
2920       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2921       Value *VectorGep = State.get(Addr, Part);
2922       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2923                                          nullptr, "wide.masked.gather");
2924       addMetadata(NewLI, LI);
2925     } else {
2926       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2927       if (isMaskRequired)
2928         NewLI = Builder.CreateMaskedLoad(
2929             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2930             "wide.masked.load");
2931       else
2932         NewLI =
2933             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2934 
2935       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2936       addMetadata(NewLI, LI);
2937       if (Reverse)
2938         NewLI = reverseVector(NewLI);
2939     }
2940 
2941     State.set(Def, NewLI, Part);
2942   }
2943 }
2944 
2945 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2946                                                VPUser &User,
2947                                                const VPIteration &Instance,
2948                                                bool IfPredicateInstr,
2949                                                VPTransformState &State) {
2950   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2951 
2952   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2953   // the first lane and part.
2954   if (isa<NoAliasScopeDeclInst>(Instr))
2955     if (!Instance.isFirstIteration())
2956       return;
2957 
2958   setDebugLocFromInst(Builder, Instr);
2959 
2960   // Does this instruction return a value ?
2961   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2962 
2963   Instruction *Cloned = Instr->clone();
2964   if (!IsVoidRetTy)
2965     Cloned->setName(Instr->getName() + ".cloned");
2966 
2967   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2968                                Builder.GetInsertPoint());
2969   // Replace the operands of the cloned instructions with their scalar
2970   // equivalents in the new loop.
2971   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2972     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
2973     auto InputInstance = Instance;
2974     if (!Operand || !OrigLoop->contains(Operand) ||
2975         (Cost->isUniformAfterVectorization(Operand, State.VF)))
2976       InputInstance.Lane = VPLane::getFirstLane();
2977     auto *NewOp = State.get(User.getOperand(op), InputInstance);
2978     Cloned->setOperand(op, NewOp);
2979   }
2980   addNewMetadata(Cloned, Instr);
2981 
2982   // Place the cloned scalar in the new loop.
2983   Builder.Insert(Cloned);
2984 
2985   State.set(Def, Cloned, Instance);
2986 
2987   // If we just cloned a new assumption, add it the assumption cache.
2988   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2989     if (II->getIntrinsicID() == Intrinsic::assume)
2990       AC->registerAssumption(II);
2991 
2992   // End if-block.
2993   if (IfPredicateInstr)
2994     PredicatedInstructions.push_back(Cloned);
2995 }
2996 
2997 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2998                                                       Value *End, Value *Step,
2999                                                       Instruction *DL) {
3000   BasicBlock *Header = L->getHeader();
3001   BasicBlock *Latch = L->getLoopLatch();
3002   // As we're just creating this loop, it's possible no latch exists
3003   // yet. If so, use the header as this will be a single block loop.
3004   if (!Latch)
3005     Latch = Header;
3006 
3007   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3008   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3009   setDebugLocFromInst(Builder, OldInst);
3010   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3011 
3012   Builder.SetInsertPoint(Latch->getTerminator());
3013   setDebugLocFromInst(Builder, OldInst);
3014 
3015   // Create i+1 and fill the PHINode.
3016   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3017   Induction->addIncoming(Start, L->getLoopPreheader());
3018   Induction->addIncoming(Next, Latch);
3019   // Create the compare.
3020   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3021   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3022 
3023   // Now we have two terminators. Remove the old one from the block.
3024   Latch->getTerminator()->eraseFromParent();
3025 
3026   return Induction;
3027 }
3028 
3029 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3030   if (TripCount)
3031     return TripCount;
3032 
3033   assert(L && "Create Trip Count for null loop.");
3034   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3035   // Find the loop boundaries.
3036   ScalarEvolution *SE = PSE.getSE();
3037   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3038   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3039          "Invalid loop count");
3040 
3041   Type *IdxTy = Legal->getWidestInductionType();
3042   assert(IdxTy && "No type for induction");
3043 
3044   // The exit count might have the type of i64 while the phi is i32. This can
3045   // happen if we have an induction variable that is sign extended before the
3046   // compare. The only way that we get a backedge taken count is that the
3047   // induction variable was signed and as such will not overflow. In such a case
3048   // truncation is legal.
3049   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3050       IdxTy->getPrimitiveSizeInBits())
3051     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3052   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3053 
3054   // Get the total trip count from the count by adding 1.
3055   const SCEV *ExitCount = SE->getAddExpr(
3056       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3057 
3058   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3059 
3060   // Expand the trip count and place the new instructions in the preheader.
3061   // Notice that the pre-header does not change, only the loop body.
3062   SCEVExpander Exp(*SE, DL, "induction");
3063 
3064   // Count holds the overall loop count (N).
3065   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3066                                 L->getLoopPreheader()->getTerminator());
3067 
3068   if (TripCount->getType()->isPointerTy())
3069     TripCount =
3070         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3071                                     L->getLoopPreheader()->getTerminator());
3072 
3073   return TripCount;
3074 }
3075 
3076 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3077   if (VectorTripCount)
3078     return VectorTripCount;
3079 
3080   Value *TC = getOrCreateTripCount(L);
3081   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3082 
3083   Type *Ty = TC->getType();
3084   // This is where we can make the step a runtime constant.
3085   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3086 
3087   // If the tail is to be folded by masking, round the number of iterations N
3088   // up to a multiple of Step instead of rounding down. This is done by first
3089   // adding Step-1 and then rounding down. Note that it's ok if this addition
3090   // overflows: the vector induction variable will eventually wrap to zero given
3091   // that it starts at zero and its Step is a power of two; the loop will then
3092   // exit, with the last early-exit vector comparison also producing all-true.
3093   if (Cost->foldTailByMasking()) {
3094     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3095            "VF*UF must be a power of 2 when folding tail by masking");
3096     assert(!VF.isScalable() &&
3097            "Tail folding not yet supported for scalable vectors");
3098     TC = Builder.CreateAdd(
3099         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3100   }
3101 
3102   // Now we need to generate the expression for the part of the loop that the
3103   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3104   // iterations are not required for correctness, or N - Step, otherwise. Step
3105   // is equal to the vectorization factor (number of SIMD elements) times the
3106   // unroll factor (number of SIMD instructions).
3107   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3108 
3109   // There are two cases where we need to ensure (at least) the last iteration
3110   // runs in the scalar remainder loop. Thus, if the step evenly divides
3111   // the trip count, we set the remainder to be equal to the step. If the step
3112   // does not evenly divide the trip count, no adjustment is necessary since
3113   // there will already be scalar iterations. Note that the minimum iterations
3114   // check ensures that N >= Step. The cases are:
3115   // 1) If there is a non-reversed interleaved group that may speculatively
3116   //    access memory out-of-bounds.
3117   // 2) If any instruction may follow a conditionally taken exit. That is, if
3118   //    the loop contains multiple exiting blocks, or a single exiting block
3119   //    which is not the latch.
3120   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3121     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3122     R = Builder.CreateSelect(IsZero, Step, R);
3123   }
3124 
3125   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3126 
3127   return VectorTripCount;
3128 }
3129 
3130 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3131                                                    const DataLayout &DL) {
3132   // Verify that V is a vector type with same number of elements as DstVTy.
3133   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3134   unsigned VF = DstFVTy->getNumElements();
3135   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3136   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3137   Type *SrcElemTy = SrcVecTy->getElementType();
3138   Type *DstElemTy = DstFVTy->getElementType();
3139   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3140          "Vector elements must have same size");
3141 
3142   // Do a direct cast if element types are castable.
3143   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3144     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3145   }
3146   // V cannot be directly casted to desired vector type.
3147   // May happen when V is a floating point vector but DstVTy is a vector of
3148   // pointers or vice-versa. Handle this using a two-step bitcast using an
3149   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3150   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3151          "Only one type should be a pointer type");
3152   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3153          "Only one type should be a floating point type");
3154   Type *IntTy =
3155       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3156   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3157   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3158   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3159 }
3160 
3161 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3162                                                          BasicBlock *Bypass) {
3163   Value *Count = getOrCreateTripCount(L);
3164   // Reuse existing vector loop preheader for TC checks.
3165   // Note that new preheader block is generated for vector loop.
3166   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3167   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3168 
3169   // Generate code to check if the loop's trip count is less than VF * UF, or
3170   // equal to it in case a scalar epilogue is required; this implies that the
3171   // vector trip count is zero. This check also covers the case where adding one
3172   // to the backedge-taken count overflowed leading to an incorrect trip count
3173   // of zero. In this case we will also jump to the scalar loop.
3174   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3175                                           : ICmpInst::ICMP_ULT;
3176 
3177   // If tail is to be folded, vector loop takes care of all iterations.
3178   Value *CheckMinIters = Builder.getFalse();
3179   if (!Cost->foldTailByMasking()) {
3180     Value *Step =
3181         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3182     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3183   }
3184   // Create new preheader for vector loop.
3185   LoopVectorPreHeader =
3186       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3187                  "vector.ph");
3188 
3189   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3190                                DT->getNode(Bypass)->getIDom()) &&
3191          "TC check is expected to dominate Bypass");
3192 
3193   // Update dominator for Bypass & LoopExit.
3194   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3195   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3196 
3197   ReplaceInstWithInst(
3198       TCCheckBlock->getTerminator(),
3199       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3200   LoopBypassBlocks.push_back(TCCheckBlock);
3201 }
3202 
3203 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3204 
3205   BasicBlock *const SCEVCheckBlock =
3206       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3207   if (!SCEVCheckBlock)
3208     return nullptr;
3209 
3210   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3211            (OptForSizeBasedOnProfile &&
3212             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3213          "Cannot SCEV check stride or overflow when optimizing for size");
3214 
3215 
3216   // Update dominator only if this is first RT check.
3217   if (LoopBypassBlocks.empty()) {
3218     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3219     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3220   }
3221 
3222   LoopBypassBlocks.push_back(SCEVCheckBlock);
3223   AddedSafetyChecks = true;
3224   return SCEVCheckBlock;
3225 }
3226 
3227 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3228                                                       BasicBlock *Bypass) {
3229   // VPlan-native path does not do any analysis for runtime checks currently.
3230   if (EnableVPlanNativePath)
3231     return nullptr;
3232 
3233   BasicBlock *const MemCheckBlock =
3234       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3235 
3236   // Check if we generated code that checks in runtime if arrays overlap. We put
3237   // the checks into a separate block to make the more common case of few
3238   // elements faster.
3239   if (!MemCheckBlock)
3240     return nullptr;
3241 
3242   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3243     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3244            "Cannot emit memory checks when optimizing for size, unless forced "
3245            "to vectorize.");
3246     ORE->emit([&]() {
3247       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3248                                         L->getStartLoc(), L->getHeader())
3249              << "Code-size may be reduced by not forcing "
3250                 "vectorization, or by source-code modifications "
3251                 "eliminating the need for runtime checks "
3252                 "(e.g., adding 'restrict').";
3253     });
3254   }
3255 
3256   LoopBypassBlocks.push_back(MemCheckBlock);
3257 
3258   AddedSafetyChecks = true;
3259 
3260   // We currently don't use LoopVersioning for the actual loop cloning but we
3261   // still use it to add the noalias metadata.
3262   LVer = std::make_unique<LoopVersioning>(
3263       *Legal->getLAI(),
3264       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3265       DT, PSE.getSE());
3266   LVer->prepareNoAliasMetadata();
3267   return MemCheckBlock;
3268 }
3269 
3270 Value *InnerLoopVectorizer::emitTransformedIndex(
3271     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3272     const InductionDescriptor &ID) const {
3273 
3274   SCEVExpander Exp(*SE, DL, "induction");
3275   auto Step = ID.getStep();
3276   auto StartValue = ID.getStartValue();
3277   assert(Index->getType() == Step->getType() &&
3278          "Index type does not match StepValue type");
3279 
3280   // Note: the IR at this point is broken. We cannot use SE to create any new
3281   // SCEV and then expand it, hoping that SCEV's simplification will give us
3282   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3283   // lead to various SCEV crashes. So all we can do is to use builder and rely
3284   // on InstCombine for future simplifications. Here we handle some trivial
3285   // cases only.
3286   auto CreateAdd = [&B](Value *X, Value *Y) {
3287     assert(X->getType() == Y->getType() && "Types don't match!");
3288     if (auto *CX = dyn_cast<ConstantInt>(X))
3289       if (CX->isZero())
3290         return Y;
3291     if (auto *CY = dyn_cast<ConstantInt>(Y))
3292       if (CY->isZero())
3293         return X;
3294     return B.CreateAdd(X, Y);
3295   };
3296 
3297   auto CreateMul = [&B](Value *X, Value *Y) {
3298     assert(X->getType() == Y->getType() && "Types don't match!");
3299     if (auto *CX = dyn_cast<ConstantInt>(X))
3300       if (CX->isOne())
3301         return Y;
3302     if (auto *CY = dyn_cast<ConstantInt>(Y))
3303       if (CY->isOne())
3304         return X;
3305     return B.CreateMul(X, Y);
3306   };
3307 
3308   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3309   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3310   // the DomTree is not kept up-to-date for additional blocks generated in the
3311   // vector loop. By using the header as insertion point, we guarantee that the
3312   // expanded instructions dominate all their uses.
3313   auto GetInsertPoint = [this, &B]() {
3314     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3315     if (InsertBB != LoopVectorBody &&
3316         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3317       return LoopVectorBody->getTerminator();
3318     return &*B.GetInsertPoint();
3319   };
3320 
3321   switch (ID.getKind()) {
3322   case InductionDescriptor::IK_IntInduction: {
3323     assert(Index->getType() == StartValue->getType() &&
3324            "Index type does not match StartValue type");
3325     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3326       return B.CreateSub(StartValue, Index);
3327     auto *Offset = CreateMul(
3328         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3329     return CreateAdd(StartValue, Offset);
3330   }
3331   case InductionDescriptor::IK_PtrInduction: {
3332     assert(isa<SCEVConstant>(Step) &&
3333            "Expected constant step for pointer induction");
3334     return B.CreateGEP(
3335         StartValue->getType()->getPointerElementType(), StartValue,
3336         CreateMul(Index,
3337                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3338   }
3339   case InductionDescriptor::IK_FpInduction: {
3340     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3341     auto InductionBinOp = ID.getInductionBinOp();
3342     assert(InductionBinOp &&
3343            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3344             InductionBinOp->getOpcode() == Instruction::FSub) &&
3345            "Original bin op should be defined for FP induction");
3346 
3347     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3348     Value *MulExp = B.CreateFMul(StepValue, Index);
3349     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3350                          "induction");
3351   }
3352   case InductionDescriptor::IK_NoInduction:
3353     return nullptr;
3354   }
3355   llvm_unreachable("invalid enum");
3356 }
3357 
3358 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3359   LoopScalarBody = OrigLoop->getHeader();
3360   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3361   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3362   assert(LoopExitBlock && "Must have an exit block");
3363   assert(LoopVectorPreHeader && "Invalid loop structure");
3364 
3365   LoopMiddleBlock =
3366       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3367                  LI, nullptr, Twine(Prefix) + "middle.block");
3368   LoopScalarPreHeader =
3369       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3370                  nullptr, Twine(Prefix) + "scalar.ph");
3371 
3372   // Set up branch from middle block to the exit and scalar preheader blocks.
3373   // completeLoopSkeleton will update the condition to use an iteration check,
3374   // if required to decide whether to execute the remainder.
3375   BranchInst *BrInst =
3376       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3377   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3378   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3379   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3380 
3381   // We intentionally don't let SplitBlock to update LoopInfo since
3382   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3383   // LoopVectorBody is explicitly added to the correct place few lines later.
3384   LoopVectorBody =
3385       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3386                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3387 
3388   // Update dominator for loop exit.
3389   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3390 
3391   // Create and register the new vector loop.
3392   Loop *Lp = LI->AllocateLoop();
3393   Loop *ParentLoop = OrigLoop->getParentLoop();
3394 
3395   // Insert the new loop into the loop nest and register the new basic blocks
3396   // before calling any utilities such as SCEV that require valid LoopInfo.
3397   if (ParentLoop) {
3398     ParentLoop->addChildLoop(Lp);
3399   } else {
3400     LI->addTopLevelLoop(Lp);
3401   }
3402   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3403   return Lp;
3404 }
3405 
3406 void InnerLoopVectorizer::createInductionResumeValues(
3407     Loop *L, Value *VectorTripCount,
3408     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3409   assert(VectorTripCount && L && "Expected valid arguments");
3410   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3411           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3412          "Inconsistent information about additional bypass.");
3413   // We are going to resume the execution of the scalar loop.
3414   // Go over all of the induction variables that we found and fix the
3415   // PHIs that are left in the scalar version of the loop.
3416   // The starting values of PHI nodes depend on the counter of the last
3417   // iteration in the vectorized loop.
3418   // If we come from a bypass edge then we need to start from the original
3419   // start value.
3420   for (auto &InductionEntry : Legal->getInductionVars()) {
3421     PHINode *OrigPhi = InductionEntry.first;
3422     InductionDescriptor II = InductionEntry.second;
3423 
3424     // Create phi nodes to merge from the  backedge-taken check block.
3425     PHINode *BCResumeVal =
3426         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3427                         LoopScalarPreHeader->getTerminator());
3428     // Copy original phi DL over to the new one.
3429     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3430     Value *&EndValue = IVEndValues[OrigPhi];
3431     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3432     if (OrigPhi == OldInduction) {
3433       // We know what the end value is.
3434       EndValue = VectorTripCount;
3435     } else {
3436       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3437 
3438       // Fast-math-flags propagate from the original induction instruction.
3439       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3440         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3441 
3442       Type *StepType = II.getStep()->getType();
3443       Instruction::CastOps CastOp =
3444           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3445       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3446       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3447       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3448       EndValue->setName("ind.end");
3449 
3450       // Compute the end value for the additional bypass (if applicable).
3451       if (AdditionalBypass.first) {
3452         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3453         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3454                                          StepType, true);
3455         CRD =
3456             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3457         EndValueFromAdditionalBypass =
3458             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3459         EndValueFromAdditionalBypass->setName("ind.end");
3460       }
3461     }
3462     // The new PHI merges the original incoming value, in case of a bypass,
3463     // or the value at the end of the vectorized loop.
3464     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3465 
3466     // Fix the scalar body counter (PHI node).
3467     // The old induction's phi node in the scalar body needs the truncated
3468     // value.
3469     for (BasicBlock *BB : LoopBypassBlocks)
3470       BCResumeVal->addIncoming(II.getStartValue(), BB);
3471 
3472     if (AdditionalBypass.first)
3473       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3474                                             EndValueFromAdditionalBypass);
3475 
3476     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3477   }
3478 }
3479 
3480 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3481                                                       MDNode *OrigLoopID) {
3482   assert(L && "Expected valid loop.");
3483 
3484   // The trip counts should be cached by now.
3485   Value *Count = getOrCreateTripCount(L);
3486   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3487 
3488   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3489 
3490   // Add a check in the middle block to see if we have completed
3491   // all of the iterations in the first vector loop.
3492   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3493   // If tail is to be folded, we know we don't need to run the remainder.
3494   if (!Cost->foldTailByMasking()) {
3495     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3496                                         Count, VectorTripCount, "cmp.n",
3497                                         LoopMiddleBlock->getTerminator());
3498 
3499     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3500     // of the corresponding compare because they may have ended up with
3501     // different line numbers and we want to avoid awkward line stepping while
3502     // debugging. Eg. if the compare has got a line number inside the loop.
3503     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3504     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3505   }
3506 
3507   // Get ready to start creating new instructions into the vectorized body.
3508   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3509          "Inconsistent vector loop preheader");
3510   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3511 
3512   Optional<MDNode *> VectorizedLoopID =
3513       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3514                                       LLVMLoopVectorizeFollowupVectorized});
3515   if (VectorizedLoopID.hasValue()) {
3516     L->setLoopID(VectorizedLoopID.getValue());
3517 
3518     // Do not setAlreadyVectorized if loop attributes have been defined
3519     // explicitly.
3520     return LoopVectorPreHeader;
3521   }
3522 
3523   // Keep all loop hints from the original loop on the vector loop (we'll
3524   // replace the vectorizer-specific hints below).
3525   if (MDNode *LID = OrigLoop->getLoopID())
3526     L->setLoopID(LID);
3527 
3528   LoopVectorizeHints Hints(L, true, *ORE);
3529   Hints.setAlreadyVectorized();
3530 
3531 #ifdef EXPENSIVE_CHECKS
3532   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3533   LI->verify(*DT);
3534 #endif
3535 
3536   return LoopVectorPreHeader;
3537 }
3538 
3539 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3540   /*
3541    In this function we generate a new loop. The new loop will contain
3542    the vectorized instructions while the old loop will continue to run the
3543    scalar remainder.
3544 
3545        [ ] <-- loop iteration number check.
3546     /   |
3547    /    v
3548   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3549   |  /  |
3550   | /   v
3551   ||   [ ]     <-- vector pre header.
3552   |/    |
3553   |     v
3554   |    [  ] \
3555   |    [  ]_|   <-- vector loop.
3556   |     |
3557   |     v
3558   |   -[ ]   <--- middle-block.
3559   |  /  |
3560   | /   v
3561   -|- >[ ]     <--- new preheader.
3562    |    |
3563    |    v
3564    |   [ ] \
3565    |   [ ]_|   <-- old scalar loop to handle remainder.
3566     \   |
3567      \  v
3568       >[ ]     <-- exit block.
3569    ...
3570    */
3571 
3572   // Get the metadata of the original loop before it gets modified.
3573   MDNode *OrigLoopID = OrigLoop->getLoopID();
3574 
3575   // Create an empty vector loop, and prepare basic blocks for the runtime
3576   // checks.
3577   Loop *Lp = createVectorLoopSkeleton("");
3578 
3579   // Now, compare the new count to zero. If it is zero skip the vector loop and
3580   // jump to the scalar loop. This check also covers the case where the
3581   // backedge-taken count is uint##_max: adding one to it will overflow leading
3582   // to an incorrect trip count of zero. In this (rare) case we will also jump
3583   // to the scalar loop.
3584   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3585 
3586   // Generate the code to check any assumptions that we've made for SCEV
3587   // expressions.
3588   emitSCEVChecks(Lp, LoopScalarPreHeader);
3589 
3590   // Generate the code that checks in runtime if arrays overlap. We put the
3591   // checks into a separate block to make the more common case of few elements
3592   // faster.
3593   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3594 
3595   // Some loops have a single integer induction variable, while other loops
3596   // don't. One example is c++ iterators that often have multiple pointer
3597   // induction variables. In the code below we also support a case where we
3598   // don't have a single induction variable.
3599   //
3600   // We try to obtain an induction variable from the original loop as hard
3601   // as possible. However if we don't find one that:
3602   //   - is an integer
3603   //   - counts from zero, stepping by one
3604   //   - is the size of the widest induction variable type
3605   // then we create a new one.
3606   OldInduction = Legal->getPrimaryInduction();
3607   Type *IdxTy = Legal->getWidestInductionType();
3608   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3609   // The loop step is equal to the vectorization factor (num of SIMD elements)
3610   // times the unroll factor (num of SIMD instructions).
3611   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3612   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3613   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3614   Induction =
3615       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3616                               getDebugLocFromInstOrOperands(OldInduction));
3617 
3618   // Emit phis for the new starting index of the scalar loop.
3619   createInductionResumeValues(Lp, CountRoundDown);
3620 
3621   return completeLoopSkeleton(Lp, OrigLoopID);
3622 }
3623 
3624 // Fix up external users of the induction variable. At this point, we are
3625 // in LCSSA form, with all external PHIs that use the IV having one input value,
3626 // coming from the remainder loop. We need those PHIs to also have a correct
3627 // value for the IV when arriving directly from the middle block.
3628 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3629                                        const InductionDescriptor &II,
3630                                        Value *CountRoundDown, Value *EndValue,
3631                                        BasicBlock *MiddleBlock) {
3632   // There are two kinds of external IV usages - those that use the value
3633   // computed in the last iteration (the PHI) and those that use the penultimate
3634   // value (the value that feeds into the phi from the loop latch).
3635   // We allow both, but they, obviously, have different values.
3636 
3637   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3638 
3639   DenseMap<Value *, Value *> MissingVals;
3640 
3641   // An external user of the last iteration's value should see the value that
3642   // the remainder loop uses to initialize its own IV.
3643   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3644   for (User *U : PostInc->users()) {
3645     Instruction *UI = cast<Instruction>(U);
3646     if (!OrigLoop->contains(UI)) {
3647       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3648       MissingVals[UI] = EndValue;
3649     }
3650   }
3651 
3652   // An external user of the penultimate value need to see EndValue - Step.
3653   // The simplest way to get this is to recompute it from the constituent SCEVs,
3654   // that is Start + (Step * (CRD - 1)).
3655   for (User *U : OrigPhi->users()) {
3656     auto *UI = cast<Instruction>(U);
3657     if (!OrigLoop->contains(UI)) {
3658       const DataLayout &DL =
3659           OrigLoop->getHeader()->getModule()->getDataLayout();
3660       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3661 
3662       IRBuilder<> B(MiddleBlock->getTerminator());
3663 
3664       // Fast-math-flags propagate from the original induction instruction.
3665       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3666         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3667 
3668       Value *CountMinusOne = B.CreateSub(
3669           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3670       Value *CMO =
3671           !II.getStep()->getType()->isIntegerTy()
3672               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3673                              II.getStep()->getType())
3674               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3675       CMO->setName("cast.cmo");
3676       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3677       Escape->setName("ind.escape");
3678       MissingVals[UI] = Escape;
3679     }
3680   }
3681 
3682   for (auto &I : MissingVals) {
3683     PHINode *PHI = cast<PHINode>(I.first);
3684     // One corner case we have to handle is two IVs "chasing" each-other,
3685     // that is %IV2 = phi [...], [ %IV1, %latch ]
3686     // In this case, if IV1 has an external use, we need to avoid adding both
3687     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3688     // don't already have an incoming value for the middle block.
3689     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3690       PHI->addIncoming(I.second, MiddleBlock);
3691   }
3692 }
3693 
3694 namespace {
3695 
3696 struct CSEDenseMapInfo {
3697   static bool canHandle(const Instruction *I) {
3698     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3699            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3700   }
3701 
3702   static inline Instruction *getEmptyKey() {
3703     return DenseMapInfo<Instruction *>::getEmptyKey();
3704   }
3705 
3706   static inline Instruction *getTombstoneKey() {
3707     return DenseMapInfo<Instruction *>::getTombstoneKey();
3708   }
3709 
3710   static unsigned getHashValue(const Instruction *I) {
3711     assert(canHandle(I) && "Unknown instruction!");
3712     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3713                                                            I->value_op_end()));
3714   }
3715 
3716   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3717     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3718         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3719       return LHS == RHS;
3720     return LHS->isIdenticalTo(RHS);
3721   }
3722 };
3723 
3724 } // end anonymous namespace
3725 
3726 ///Perform cse of induction variable instructions.
3727 static void cse(BasicBlock *BB) {
3728   // Perform simple cse.
3729   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3730   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3731     Instruction *In = &*I++;
3732 
3733     if (!CSEDenseMapInfo::canHandle(In))
3734       continue;
3735 
3736     // Check if we can replace this instruction with any of the
3737     // visited instructions.
3738     if (Instruction *V = CSEMap.lookup(In)) {
3739       In->replaceAllUsesWith(V);
3740       In->eraseFromParent();
3741       continue;
3742     }
3743 
3744     CSEMap[In] = In;
3745   }
3746 }
3747 
3748 InstructionCost
3749 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3750                                               bool &NeedToScalarize) {
3751   Function *F = CI->getCalledFunction();
3752   Type *ScalarRetTy = CI->getType();
3753   SmallVector<Type *, 4> Tys, ScalarTys;
3754   for (auto &ArgOp : CI->arg_operands())
3755     ScalarTys.push_back(ArgOp->getType());
3756 
3757   // Estimate cost of scalarized vector call. The source operands are assumed
3758   // to be vectors, so we need to extract individual elements from there,
3759   // execute VF scalar calls, and then gather the result into the vector return
3760   // value.
3761   InstructionCost ScalarCallCost =
3762       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3763   if (VF.isScalar())
3764     return ScalarCallCost;
3765 
3766   // Compute corresponding vector type for return value and arguments.
3767   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3768   for (Type *ScalarTy : ScalarTys)
3769     Tys.push_back(ToVectorTy(ScalarTy, VF));
3770 
3771   // Compute costs of unpacking argument values for the scalar calls and
3772   // packing the return values to a vector.
3773   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3774 
3775   InstructionCost Cost =
3776       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3777 
3778   // If we can't emit a vector call for this function, then the currently found
3779   // cost is the cost we need to return.
3780   NeedToScalarize = true;
3781   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3782   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3783 
3784   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3785     return Cost;
3786 
3787   // If the corresponding vector cost is cheaper, return its cost.
3788   InstructionCost VectorCallCost =
3789       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3790   if (VectorCallCost < Cost) {
3791     NeedToScalarize = false;
3792     Cost = VectorCallCost;
3793   }
3794   return Cost;
3795 }
3796 
3797 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3798   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3799     return Elt;
3800   return VectorType::get(Elt, VF);
3801 }
3802 
3803 InstructionCost
3804 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3805                                                    ElementCount VF) {
3806   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3807   assert(ID && "Expected intrinsic call!");
3808   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3809   FastMathFlags FMF;
3810   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3811     FMF = FPMO->getFastMathFlags();
3812 
3813   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3814   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3815   SmallVector<Type *> ParamTys;
3816   std::transform(FTy->param_begin(), FTy->param_end(),
3817                  std::back_inserter(ParamTys),
3818                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3819 
3820   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3821                                     dyn_cast<IntrinsicInst>(CI));
3822   return TTI.getIntrinsicInstrCost(CostAttrs,
3823                                    TargetTransformInfo::TCK_RecipThroughput);
3824 }
3825 
3826 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3827   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3828   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3829   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3830 }
3831 
3832 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3833   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3834   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3835   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3836 }
3837 
3838 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3839   // For every instruction `I` in MinBWs, truncate the operands, create a
3840   // truncated version of `I` and reextend its result. InstCombine runs
3841   // later and will remove any ext/trunc pairs.
3842   SmallPtrSet<Value *, 4> Erased;
3843   for (const auto &KV : Cost->getMinimalBitwidths()) {
3844     // If the value wasn't vectorized, we must maintain the original scalar
3845     // type. The absence of the value from State indicates that it
3846     // wasn't vectorized.
3847     VPValue *Def = State.Plan->getVPValue(KV.first);
3848     if (!State.hasAnyVectorValue(Def))
3849       continue;
3850     for (unsigned Part = 0; Part < UF; ++Part) {
3851       Value *I = State.get(Def, Part);
3852       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3853         continue;
3854       Type *OriginalTy = I->getType();
3855       Type *ScalarTruncatedTy =
3856           IntegerType::get(OriginalTy->getContext(), KV.second);
3857       auto *TruncatedTy = FixedVectorType::get(
3858           ScalarTruncatedTy,
3859           cast<FixedVectorType>(OriginalTy)->getNumElements());
3860       if (TruncatedTy == OriginalTy)
3861         continue;
3862 
3863       IRBuilder<> B(cast<Instruction>(I));
3864       auto ShrinkOperand = [&](Value *V) -> Value * {
3865         if (auto *ZI = dyn_cast<ZExtInst>(V))
3866           if (ZI->getSrcTy() == TruncatedTy)
3867             return ZI->getOperand(0);
3868         return B.CreateZExtOrTrunc(V, TruncatedTy);
3869       };
3870 
3871       // The actual instruction modification depends on the instruction type,
3872       // unfortunately.
3873       Value *NewI = nullptr;
3874       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3875         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3876                              ShrinkOperand(BO->getOperand(1)));
3877 
3878         // Any wrapping introduced by shrinking this operation shouldn't be
3879         // considered undefined behavior. So, we can't unconditionally copy
3880         // arithmetic wrapping flags to NewI.
3881         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3882       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3883         NewI =
3884             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3885                          ShrinkOperand(CI->getOperand(1)));
3886       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3887         NewI = B.CreateSelect(SI->getCondition(),
3888                               ShrinkOperand(SI->getTrueValue()),
3889                               ShrinkOperand(SI->getFalseValue()));
3890       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3891         switch (CI->getOpcode()) {
3892         default:
3893           llvm_unreachable("Unhandled cast!");
3894         case Instruction::Trunc:
3895           NewI = ShrinkOperand(CI->getOperand(0));
3896           break;
3897         case Instruction::SExt:
3898           NewI = B.CreateSExtOrTrunc(
3899               CI->getOperand(0),
3900               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3901           break;
3902         case Instruction::ZExt:
3903           NewI = B.CreateZExtOrTrunc(
3904               CI->getOperand(0),
3905               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3906           break;
3907         }
3908       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3909         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3910                              ->getNumElements();
3911         auto *O0 = B.CreateZExtOrTrunc(
3912             SI->getOperand(0),
3913             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3914         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3915                              ->getNumElements();
3916         auto *O1 = B.CreateZExtOrTrunc(
3917             SI->getOperand(1),
3918             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3919 
3920         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3921       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3922         // Don't do anything with the operands, just extend the result.
3923         continue;
3924       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3925         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3926                             ->getNumElements();
3927         auto *O0 = B.CreateZExtOrTrunc(
3928             IE->getOperand(0),
3929             FixedVectorType::get(ScalarTruncatedTy, Elements));
3930         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3931         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3932       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3933         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3934                             ->getNumElements();
3935         auto *O0 = B.CreateZExtOrTrunc(
3936             EE->getOperand(0),
3937             FixedVectorType::get(ScalarTruncatedTy, Elements));
3938         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3939       } else {
3940         // If we don't know what to do, be conservative and don't do anything.
3941         continue;
3942       }
3943 
3944       // Lastly, extend the result.
3945       NewI->takeName(cast<Instruction>(I));
3946       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3947       I->replaceAllUsesWith(Res);
3948       cast<Instruction>(I)->eraseFromParent();
3949       Erased.insert(I);
3950       State.reset(Def, Res, Part);
3951     }
3952   }
3953 
3954   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3955   for (const auto &KV : Cost->getMinimalBitwidths()) {
3956     // If the value wasn't vectorized, we must maintain the original scalar
3957     // type. The absence of the value from State indicates that it
3958     // wasn't vectorized.
3959     VPValue *Def = State.Plan->getVPValue(KV.first);
3960     if (!State.hasAnyVectorValue(Def))
3961       continue;
3962     for (unsigned Part = 0; Part < UF; ++Part) {
3963       Value *I = State.get(Def, Part);
3964       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3965       if (Inst && Inst->use_empty()) {
3966         Value *NewI = Inst->getOperand(0);
3967         Inst->eraseFromParent();
3968         State.reset(Def, NewI, Part);
3969       }
3970     }
3971   }
3972 }
3973 
3974 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3975   // Insert truncates and extends for any truncated instructions as hints to
3976   // InstCombine.
3977   if (VF.isVector())
3978     truncateToMinimalBitwidths(State);
3979 
3980   // Fix widened non-induction PHIs by setting up the PHI operands.
3981   if (OrigPHIsToFix.size()) {
3982     assert(EnableVPlanNativePath &&
3983            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3984     fixNonInductionPHIs(State);
3985   }
3986 
3987   // At this point every instruction in the original loop is widened to a
3988   // vector form. Now we need to fix the recurrences in the loop. These PHI
3989   // nodes are currently empty because we did not want to introduce cycles.
3990   // This is the second stage of vectorizing recurrences.
3991   fixCrossIterationPHIs(State);
3992 
3993   // Forget the original basic block.
3994   PSE.getSE()->forgetLoop(OrigLoop);
3995 
3996   // Fix-up external users of the induction variables.
3997   for (auto &Entry : Legal->getInductionVars())
3998     fixupIVUsers(Entry.first, Entry.second,
3999                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4000                  IVEndValues[Entry.first], LoopMiddleBlock);
4001 
4002   fixLCSSAPHIs(State);
4003   for (Instruction *PI : PredicatedInstructions)
4004     sinkScalarOperands(&*PI);
4005 
4006   // Remove redundant induction instructions.
4007   cse(LoopVectorBody);
4008 
4009   // Set/update profile weights for the vector and remainder loops as original
4010   // loop iterations are now distributed among them. Note that original loop
4011   // represented by LoopScalarBody becomes remainder loop after vectorization.
4012   //
4013   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4014   // end up getting slightly roughened result but that should be OK since
4015   // profile is not inherently precise anyway. Note also possible bypass of
4016   // vector code caused by legality checks is ignored, assigning all the weight
4017   // to the vector loop, optimistically.
4018   //
4019   // For scalable vectorization we can't know at compile time how many iterations
4020   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4021   // vscale of '1'.
4022   setProfileInfoAfterUnrolling(
4023       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4024       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4025 }
4026 
4027 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4028   // In order to support recurrences we need to be able to vectorize Phi nodes.
4029   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4030   // stage #2: We now need to fix the recurrences by adding incoming edges to
4031   // the currently empty PHI nodes. At this point every instruction in the
4032   // original loop is widened to a vector form so we can use them to construct
4033   // the incoming edges.
4034   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4035     // Handle first-order recurrences and reductions that need to be fixed.
4036     if (Legal->isFirstOrderRecurrence(&Phi))
4037       fixFirstOrderRecurrence(&Phi, State);
4038     else if (Legal->isReductionVariable(&Phi))
4039       fixReduction(&Phi, State);
4040   }
4041 }
4042 
4043 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4044                                                   VPTransformState &State) {
4045   // This is the second phase of vectorizing first-order recurrences. An
4046   // overview of the transformation is described below. Suppose we have the
4047   // following loop.
4048   //
4049   //   for (int i = 0; i < n; ++i)
4050   //     b[i] = a[i] - a[i - 1];
4051   //
4052   // There is a first-order recurrence on "a". For this loop, the shorthand
4053   // scalar IR looks like:
4054   //
4055   //   scalar.ph:
4056   //     s_init = a[-1]
4057   //     br scalar.body
4058   //
4059   //   scalar.body:
4060   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4061   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4062   //     s2 = a[i]
4063   //     b[i] = s2 - s1
4064   //     br cond, scalar.body, ...
4065   //
4066   // In this example, s1 is a recurrence because it's value depends on the
4067   // previous iteration. In the first phase of vectorization, we created a
4068   // temporary value for s1. We now complete the vectorization and produce the
4069   // shorthand vector IR shown below (for VF = 4, UF = 1).
4070   //
4071   //   vector.ph:
4072   //     v_init = vector(..., ..., ..., a[-1])
4073   //     br vector.body
4074   //
4075   //   vector.body
4076   //     i = phi [0, vector.ph], [i+4, vector.body]
4077   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4078   //     v2 = a[i, i+1, i+2, i+3];
4079   //     v3 = vector(v1(3), v2(0, 1, 2))
4080   //     b[i, i+1, i+2, i+3] = v2 - v3
4081   //     br cond, vector.body, middle.block
4082   //
4083   //   middle.block:
4084   //     x = v2(3)
4085   //     br scalar.ph
4086   //
4087   //   scalar.ph:
4088   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4089   //     br scalar.body
4090   //
4091   // After execution completes the vector loop, we extract the next value of
4092   // the recurrence (x) to use as the initial value in the scalar loop.
4093 
4094   // Get the original loop preheader and single loop latch.
4095   auto *Preheader = OrigLoop->getLoopPreheader();
4096   auto *Latch = OrigLoop->getLoopLatch();
4097 
4098   // Get the initial and previous values of the scalar recurrence.
4099   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4100   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4101 
4102   // Create a vector from the initial value.
4103   auto *VectorInit = ScalarInit;
4104   if (VF.isVector()) {
4105     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4106     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4107     VectorInit = Builder.CreateInsertElement(
4108         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4109         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4110   }
4111 
4112   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4113   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4114   // We constructed a temporary phi node in the first phase of vectorization.
4115   // This phi node will eventually be deleted.
4116   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4117 
4118   // Create a phi node for the new recurrence. The current value will either be
4119   // the initial value inserted into a vector or loop-varying vector value.
4120   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4121   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4122 
4123   // Get the vectorized previous value of the last part UF - 1. It appears last
4124   // among all unrolled iterations, due to the order of their construction.
4125   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4126 
4127   // Find and set the insertion point after the previous value if it is an
4128   // instruction.
4129   BasicBlock::iterator InsertPt;
4130   // Note that the previous value may have been constant-folded so it is not
4131   // guaranteed to be an instruction in the vector loop.
4132   // FIXME: Loop invariant values do not form recurrences. We should deal with
4133   //        them earlier.
4134   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4135     InsertPt = LoopVectorBody->getFirstInsertionPt();
4136   else {
4137     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4138     if (isa<PHINode>(PreviousLastPart))
4139       // If the previous value is a phi node, we should insert after all the phi
4140       // nodes in the block containing the PHI to avoid breaking basic block
4141       // verification. Note that the basic block may be different to
4142       // LoopVectorBody, in case we predicate the loop.
4143       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4144     else
4145       InsertPt = ++PreviousInst->getIterator();
4146   }
4147   Builder.SetInsertPoint(&*InsertPt);
4148 
4149   // We will construct a vector for the recurrence by combining the values for
4150   // the current and previous iterations. This is the required shuffle mask.
4151   assert(!VF.isScalable());
4152   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4153   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4154   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4155     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4156 
4157   // The vector from which to take the initial value for the current iteration
4158   // (actual or unrolled). Initially, this is the vector phi node.
4159   Value *Incoming = VecPhi;
4160 
4161   // Shuffle the current and previous vector and update the vector parts.
4162   for (unsigned Part = 0; Part < UF; ++Part) {
4163     Value *PreviousPart = State.get(PreviousDef, Part);
4164     Value *PhiPart = State.get(PhiDef, Part);
4165     auto *Shuffle =
4166         VF.isVector()
4167             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4168             : Incoming;
4169     PhiPart->replaceAllUsesWith(Shuffle);
4170     cast<Instruction>(PhiPart)->eraseFromParent();
4171     State.reset(PhiDef, Shuffle, Part);
4172     Incoming = PreviousPart;
4173   }
4174 
4175   // Fix the latch value of the new recurrence in the vector loop.
4176   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4177 
4178   // Extract the last vector element in the middle block. This will be the
4179   // initial value for the recurrence when jumping to the scalar loop.
4180   auto *ExtractForScalar = Incoming;
4181   if (VF.isVector()) {
4182     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4183     ExtractForScalar = Builder.CreateExtractElement(
4184         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4185         "vector.recur.extract");
4186   }
4187   // Extract the second last element in the middle block if the
4188   // Phi is used outside the loop. We need to extract the phi itself
4189   // and not the last element (the phi update in the current iteration). This
4190   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4191   // when the scalar loop is not run at all.
4192   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4193   if (VF.isVector())
4194     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4195         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4196         "vector.recur.extract.for.phi");
4197   // When loop is unrolled without vectorizing, initialize
4198   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4199   // `Incoming`. This is analogous to the vectorized case above: extracting the
4200   // second last element when VF > 1.
4201   else if (UF > 1)
4202     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4203 
4204   // Fix the initial value of the original recurrence in the scalar loop.
4205   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4206   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4207   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4208     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4209     Start->addIncoming(Incoming, BB);
4210   }
4211 
4212   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4213   Phi->setName("scalar.recur");
4214 
4215   // Finally, fix users of the recurrence outside the loop. The users will need
4216   // either the last value of the scalar recurrence or the last value of the
4217   // vector recurrence we extracted in the middle block. Since the loop is in
4218   // LCSSA form, we just need to find all the phi nodes for the original scalar
4219   // recurrence in the exit block, and then add an edge for the middle block.
4220   // Note that LCSSA does not imply single entry when the original scalar loop
4221   // had multiple exiting edges (as we always run the last iteration in the
4222   // scalar epilogue); in that case, the exiting path through middle will be
4223   // dynamically dead and the value picked for the phi doesn't matter.
4224   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4225     if (any_of(LCSSAPhi.incoming_values(),
4226                [Phi](Value *V) { return V == Phi; }))
4227       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4228 }
4229 
4230 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4231   // Get it's reduction variable descriptor.
4232   assert(Legal->isReductionVariable(Phi) &&
4233          "Unable to find the reduction variable");
4234   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4235 
4236   RecurKind RK = RdxDesc.getRecurrenceKind();
4237   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4238   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4239   setDebugLocFromInst(Builder, ReductionStartValue);
4240   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4241 
4242   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4243   // This is the vector-clone of the value that leaves the loop.
4244   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4245 
4246   // Wrap flags are in general invalid after vectorization, clear them.
4247   clearReductionWrapFlags(RdxDesc, State);
4248 
4249   // Fix the vector-loop phi.
4250 
4251   // Reductions do not have to start at zero. They can start with
4252   // any loop invariant values.
4253   BasicBlock *Latch = OrigLoop->getLoopLatch();
4254   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4255 
4256   for (unsigned Part = 0; Part < UF; ++Part) {
4257     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4258     Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part);
4259     cast<PHINode>(VecRdxPhi)
4260       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4261   }
4262 
4263   // Before each round, move the insertion point right between
4264   // the PHIs and the values we are going to write.
4265   // This allows us to write both PHINodes and the extractelement
4266   // instructions.
4267   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4268 
4269   setDebugLocFromInst(Builder, LoopExitInst);
4270 
4271   // If tail is folded by masking, the vector value to leave the loop should be
4272   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4273   // instead of the former. For an inloop reduction the reduction will already
4274   // be predicated, and does not need to be handled here.
4275   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4276     for (unsigned Part = 0; Part < UF; ++Part) {
4277       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4278       Value *Sel = nullptr;
4279       for (User *U : VecLoopExitInst->users()) {
4280         if (isa<SelectInst>(U)) {
4281           assert(!Sel && "Reduction exit feeding two selects");
4282           Sel = U;
4283         } else
4284           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4285       }
4286       assert(Sel && "Reduction exit feeds no select");
4287       State.reset(LoopExitInstDef, Sel, Part);
4288 
4289       // If the target can create a predicated operator for the reduction at no
4290       // extra cost in the loop (for example a predicated vadd), it can be
4291       // cheaper for the select to remain in the loop than be sunk out of it,
4292       // and so use the select value for the phi instead of the old
4293       // LoopExitValue.
4294       RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4295       if (PreferPredicatedReductionSelect ||
4296           TTI->preferPredicatedReductionSelect(
4297               RdxDesc.getOpcode(), Phi->getType(),
4298               TargetTransformInfo::ReductionFlags())) {
4299         auto *VecRdxPhi =
4300             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4301         VecRdxPhi->setIncomingValueForBlock(
4302             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4303       }
4304     }
4305   }
4306 
4307   // If the vector reduction can be performed in a smaller type, we truncate
4308   // then extend the loop exit value to enable InstCombine to evaluate the
4309   // entire expression in the smaller type.
4310   if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) {
4311     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4312     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4313     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4314     Builder.SetInsertPoint(
4315         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4316     VectorParts RdxParts(UF);
4317     for (unsigned Part = 0; Part < UF; ++Part) {
4318       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4319       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4320       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4321                                         : Builder.CreateZExt(Trunc, VecTy);
4322       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4323            UI != RdxParts[Part]->user_end();)
4324         if (*UI != Trunc) {
4325           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4326           RdxParts[Part] = Extnd;
4327         } else {
4328           ++UI;
4329         }
4330     }
4331     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4332     for (unsigned Part = 0; Part < UF; ++Part) {
4333       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4334       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4335     }
4336   }
4337 
4338   // Reduce all of the unrolled parts into a single vector.
4339   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4340   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4341 
4342   // The middle block terminator has already been assigned a DebugLoc here (the
4343   // OrigLoop's single latch terminator). We want the whole middle block to
4344   // appear to execute on this line because: (a) it is all compiler generated,
4345   // (b) these instructions are always executed after evaluating the latch
4346   // conditional branch, and (c) other passes may add new predecessors which
4347   // terminate on this line. This is the easiest way to ensure we don't
4348   // accidentally cause an extra step back into the loop while debugging.
4349   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4350   {
4351     // Floating-point operations should have some FMF to enable the reduction.
4352     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4353     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4354     for (unsigned Part = 1; Part < UF; ++Part) {
4355       Value *RdxPart = State.get(LoopExitInstDef, Part);
4356       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4357         ReducedPartRdx = Builder.CreateBinOp(
4358             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4359       } else {
4360         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4361       }
4362     }
4363   }
4364 
4365   // Create the reduction after the loop. Note that inloop reductions create the
4366   // target reduction in the loop using a Reduction recipe.
4367   if (VF.isVector() && !IsInLoopReductionPhi) {
4368     ReducedPartRdx =
4369         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4370     // If the reduction can be performed in a smaller type, we need to extend
4371     // the reduction to the wider type before we branch to the original loop.
4372     if (Phi->getType() != RdxDesc.getRecurrenceType())
4373       ReducedPartRdx =
4374         RdxDesc.isSigned()
4375         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4376         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4377   }
4378 
4379   // Create a phi node that merges control-flow from the backedge-taken check
4380   // block and the middle block.
4381   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4382                                         LoopScalarPreHeader->getTerminator());
4383   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4384     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4385   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4386 
4387   // Now, we need to fix the users of the reduction variable
4388   // inside and outside of the scalar remainder loop.
4389 
4390   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4391   // in the exit blocks.  See comment on analogous loop in
4392   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4393   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4394     if (any_of(LCSSAPhi.incoming_values(),
4395                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4396       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4397 
4398   // Fix the scalar loop reduction variable with the incoming reduction sum
4399   // from the vector body and from the backedge value.
4400   int IncomingEdgeBlockIdx =
4401     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4402   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4403   // Pick the other block.
4404   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4405   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4406   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4407 }
4408 
4409 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4410                                                   VPTransformState &State) {
4411   RecurKind RK = RdxDesc.getRecurrenceKind();
4412   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4413     return;
4414 
4415   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4416   assert(LoopExitInstr && "null loop exit instruction");
4417   SmallVector<Instruction *, 8> Worklist;
4418   SmallPtrSet<Instruction *, 8> Visited;
4419   Worklist.push_back(LoopExitInstr);
4420   Visited.insert(LoopExitInstr);
4421 
4422   while (!Worklist.empty()) {
4423     Instruction *Cur = Worklist.pop_back_val();
4424     if (isa<OverflowingBinaryOperator>(Cur))
4425       for (unsigned Part = 0; Part < UF; ++Part) {
4426         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4427         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4428       }
4429 
4430     for (User *U : Cur->users()) {
4431       Instruction *UI = cast<Instruction>(U);
4432       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4433           Visited.insert(UI).second)
4434         Worklist.push_back(UI);
4435     }
4436   }
4437 }
4438 
4439 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4440   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4441     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4442       // Some phis were already hand updated by the reduction and recurrence
4443       // code above, leave them alone.
4444       continue;
4445 
4446     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4447     // Non-instruction incoming values will have only one value.
4448 
4449     VPLane Lane = VPLane::getFirstLane();
4450     if (isa<Instruction>(IncomingValue) &&
4451         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4452                                            VF))
4453       Lane = VPLane::getLastLaneForVF(VF);
4454 
4455     // Can be a loop invariant incoming value or the last scalar value to be
4456     // extracted from the vectorized loop.
4457     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4458     Value *lastIncomingValue =
4459         OrigLoop->isLoopInvariant(IncomingValue)
4460             ? IncomingValue
4461             : State.get(State.Plan->getVPValue(IncomingValue),
4462                         VPIteration(UF - 1, Lane));
4463     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4464   }
4465 }
4466 
4467 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4468   // The basic block and loop containing the predicated instruction.
4469   auto *PredBB = PredInst->getParent();
4470   auto *VectorLoop = LI->getLoopFor(PredBB);
4471 
4472   // Initialize a worklist with the operands of the predicated instruction.
4473   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4474 
4475   // Holds instructions that we need to analyze again. An instruction may be
4476   // reanalyzed if we don't yet know if we can sink it or not.
4477   SmallVector<Instruction *, 8> InstsToReanalyze;
4478 
4479   // Returns true if a given use occurs in the predicated block. Phi nodes use
4480   // their operands in their corresponding predecessor blocks.
4481   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4482     auto *I = cast<Instruction>(U.getUser());
4483     BasicBlock *BB = I->getParent();
4484     if (auto *Phi = dyn_cast<PHINode>(I))
4485       BB = Phi->getIncomingBlock(
4486           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4487     return BB == PredBB;
4488   };
4489 
4490   // Iteratively sink the scalarized operands of the predicated instruction
4491   // into the block we created for it. When an instruction is sunk, it's
4492   // operands are then added to the worklist. The algorithm ends after one pass
4493   // through the worklist doesn't sink a single instruction.
4494   bool Changed;
4495   do {
4496     // Add the instructions that need to be reanalyzed to the worklist, and
4497     // reset the changed indicator.
4498     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4499     InstsToReanalyze.clear();
4500     Changed = false;
4501 
4502     while (!Worklist.empty()) {
4503       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4504 
4505       // We can't sink an instruction if it is a phi node, is already in the
4506       // predicated block, is not in the loop, or may have side effects.
4507       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4508           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4509         continue;
4510 
4511       // It's legal to sink the instruction if all its uses occur in the
4512       // predicated block. Otherwise, there's nothing to do yet, and we may
4513       // need to reanalyze the instruction.
4514       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4515         InstsToReanalyze.push_back(I);
4516         continue;
4517       }
4518 
4519       // Move the instruction to the beginning of the predicated block, and add
4520       // it's operands to the worklist.
4521       I->moveBefore(&*PredBB->getFirstInsertionPt());
4522       Worklist.insert(I->op_begin(), I->op_end());
4523 
4524       // The sinking may have enabled other instructions to be sunk, so we will
4525       // need to iterate.
4526       Changed = true;
4527     }
4528   } while (Changed);
4529 }
4530 
4531 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4532   for (PHINode *OrigPhi : OrigPHIsToFix) {
4533     VPWidenPHIRecipe *VPPhi =
4534         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4535     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4536     // Make sure the builder has a valid insert point.
4537     Builder.SetInsertPoint(NewPhi);
4538     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4539       VPValue *Inc = VPPhi->getIncomingValue(i);
4540       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4541       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4542     }
4543   }
4544 }
4545 
4546 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4547                                    VPUser &Operands, unsigned UF,
4548                                    ElementCount VF, bool IsPtrLoopInvariant,
4549                                    SmallBitVector &IsIndexLoopInvariant,
4550                                    VPTransformState &State) {
4551   // Construct a vector GEP by widening the operands of the scalar GEP as
4552   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4553   // results in a vector of pointers when at least one operand of the GEP
4554   // is vector-typed. Thus, to keep the representation compact, we only use
4555   // vector-typed operands for loop-varying values.
4556 
4557   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4558     // If we are vectorizing, but the GEP has only loop-invariant operands,
4559     // the GEP we build (by only using vector-typed operands for
4560     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4561     // produce a vector of pointers, we need to either arbitrarily pick an
4562     // operand to broadcast, or broadcast a clone of the original GEP.
4563     // Here, we broadcast a clone of the original.
4564     //
4565     // TODO: If at some point we decide to scalarize instructions having
4566     //       loop-invariant operands, this special case will no longer be
4567     //       required. We would add the scalarization decision to
4568     //       collectLoopScalars() and teach getVectorValue() to broadcast
4569     //       the lane-zero scalar value.
4570     auto *Clone = Builder.Insert(GEP->clone());
4571     for (unsigned Part = 0; Part < UF; ++Part) {
4572       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4573       State.set(VPDef, EntryPart, Part);
4574       addMetadata(EntryPart, GEP);
4575     }
4576   } else {
4577     // If the GEP has at least one loop-varying operand, we are sure to
4578     // produce a vector of pointers. But if we are only unrolling, we want
4579     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4580     // produce with the code below will be scalar (if VF == 1) or vector
4581     // (otherwise). Note that for the unroll-only case, we still maintain
4582     // values in the vector mapping with initVector, as we do for other
4583     // instructions.
4584     for (unsigned Part = 0; Part < UF; ++Part) {
4585       // The pointer operand of the new GEP. If it's loop-invariant, we
4586       // won't broadcast it.
4587       auto *Ptr = IsPtrLoopInvariant
4588                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4589                       : State.get(Operands.getOperand(0), Part);
4590 
4591       // Collect all the indices for the new GEP. If any index is
4592       // loop-invariant, we won't broadcast it.
4593       SmallVector<Value *, 4> Indices;
4594       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4595         VPValue *Operand = Operands.getOperand(I);
4596         if (IsIndexLoopInvariant[I - 1])
4597           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4598         else
4599           Indices.push_back(State.get(Operand, Part));
4600       }
4601 
4602       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4603       // but it should be a vector, otherwise.
4604       auto *NewGEP =
4605           GEP->isInBounds()
4606               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4607                                           Indices)
4608               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4609       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4610              "NewGEP is not a pointer vector");
4611       State.set(VPDef, NewGEP, Part);
4612       addMetadata(NewGEP, GEP);
4613     }
4614   }
4615 }
4616 
4617 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4618                                               RecurrenceDescriptor *RdxDesc,
4619                                               VPValue *StartVPV, VPValue *Def,
4620                                               VPTransformState &State) {
4621   PHINode *P = cast<PHINode>(PN);
4622   if (EnableVPlanNativePath) {
4623     // Currently we enter here in the VPlan-native path for non-induction
4624     // PHIs where all control flow is uniform. We simply widen these PHIs.
4625     // Create a vector phi with no operands - the vector phi operands will be
4626     // set at the end of vector code generation.
4627     Type *VecTy = (State.VF.isScalar())
4628                       ? PN->getType()
4629                       : VectorType::get(PN->getType(), State.VF);
4630     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4631     State.set(Def, VecPhi, 0);
4632     OrigPHIsToFix.push_back(P);
4633 
4634     return;
4635   }
4636 
4637   assert(PN->getParent() == OrigLoop->getHeader() &&
4638          "Non-header phis should have been handled elsewhere");
4639 
4640   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4641   // In order to support recurrences we need to be able to vectorize Phi nodes.
4642   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4643   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4644   // this value when we vectorize all of the instructions that use the PHI.
4645   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4646     Value *Iden = nullptr;
4647     bool ScalarPHI =
4648         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4649     Type *VecTy =
4650         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4651 
4652     if (RdxDesc) {
4653       assert(Legal->isReductionVariable(P) && StartV &&
4654              "RdxDesc should only be set for reduction variables; in that case "
4655              "a StartV is also required");
4656       RecurKind RK = RdxDesc->getRecurrenceKind();
4657       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4658         // MinMax reduction have the start value as their identify.
4659         if (ScalarPHI) {
4660           Iden = StartV;
4661         } else {
4662           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4663           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4664           StartV = Iden =
4665               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4666         }
4667       } else {
4668         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4669             RK, VecTy->getScalarType());
4670         Iden = IdenC;
4671 
4672         if (!ScalarPHI) {
4673           Iden = ConstantVector::getSplat(State.VF, IdenC);
4674           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4675           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4676           Constant *Zero = Builder.getInt32(0);
4677           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4678         }
4679       }
4680     }
4681 
4682     for (unsigned Part = 0; Part < State.UF; ++Part) {
4683       // This is phase one of vectorizing PHIs.
4684       Value *EntryPart = PHINode::Create(
4685           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4686       State.set(Def, EntryPart, Part);
4687       if (StartV) {
4688         // Make sure to add the reduction start value only to the
4689         // first unroll part.
4690         Value *StartVal = (Part == 0) ? StartV : Iden;
4691         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4692       }
4693     }
4694     return;
4695   }
4696 
4697   assert(!Legal->isReductionVariable(P) &&
4698          "reductions should be handled above");
4699 
4700   setDebugLocFromInst(Builder, P);
4701 
4702   // This PHINode must be an induction variable.
4703   // Make sure that we know about it.
4704   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4705 
4706   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4707   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4708 
4709   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4710   // which can be found from the original scalar operations.
4711   switch (II.getKind()) {
4712   case InductionDescriptor::IK_NoInduction:
4713     llvm_unreachable("Unknown induction");
4714   case InductionDescriptor::IK_IntInduction:
4715   case InductionDescriptor::IK_FpInduction:
4716     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4717   case InductionDescriptor::IK_PtrInduction: {
4718     // Handle the pointer induction variable case.
4719     assert(P->getType()->isPointerTy() && "Unexpected type.");
4720 
4721     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4722       // This is the normalized GEP that starts counting at zero.
4723       Value *PtrInd =
4724           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4725       // Determine the number of scalars we need to generate for each unroll
4726       // iteration. If the instruction is uniform, we only need to generate the
4727       // first lane. Otherwise, we generate all VF values.
4728       unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF)
4729                            ? 1
4730                            : State.VF.getKnownMinValue();
4731       for (unsigned Part = 0; Part < UF; ++Part) {
4732         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4733           Constant *Idx = ConstantInt::get(
4734               PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue());
4735           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4736           Value *SclrGep =
4737               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4738           SclrGep->setName("next.gep");
4739           State.set(Def, SclrGep, VPIteration(Part, Lane));
4740         }
4741       }
4742       return;
4743     }
4744     assert(isa<SCEVConstant>(II.getStep()) &&
4745            "Induction step not a SCEV constant!");
4746     Type *PhiType = II.getStep()->getType();
4747 
4748     // Build a pointer phi
4749     Value *ScalarStartValue = II.getStartValue();
4750     Type *ScStValueType = ScalarStartValue->getType();
4751     PHINode *NewPointerPhi =
4752         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4753     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4754 
4755     // A pointer induction, performed by using a gep
4756     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4757     Instruction *InductionLoc = LoopLatch->getTerminator();
4758     const SCEV *ScalarStep = II.getStep();
4759     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4760     Value *ScalarStepValue =
4761         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4762     Value *InductionGEP = GetElementPtrInst::Create(
4763         ScStValueType->getPointerElementType(), NewPointerPhi,
4764         Builder.CreateMul(
4765             ScalarStepValue,
4766             ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)),
4767         "ptr.ind", InductionLoc);
4768     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4769 
4770     // Create UF many actual address geps that use the pointer
4771     // phi as base and a vectorized version of the step value
4772     // (<step*0, ..., step*N>) as offset.
4773     for (unsigned Part = 0; Part < State.UF; ++Part) {
4774       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4775       Value *StartOffset =
4776           ConstantInt::get(VecPhiType, Part * State.VF.getKnownMinValue());
4777       // Create a vector of consecutive numbers from zero to VF.
4778       StartOffset =
4779           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4780 
4781       Value *GEP = Builder.CreateGEP(
4782           ScStValueType->getPointerElementType(), NewPointerPhi,
4783           Builder.CreateMul(StartOffset,
4784                             Builder.CreateVectorSplat(
4785                                 State.VF.getKnownMinValue(), ScalarStepValue),
4786                             "vector.gep"));
4787       State.set(Def, GEP, Part);
4788     }
4789   }
4790   }
4791 }
4792 
4793 /// A helper function for checking whether an integer division-related
4794 /// instruction may divide by zero (in which case it must be predicated if
4795 /// executed conditionally in the scalar code).
4796 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4797 /// Non-zero divisors that are non compile-time constants will not be
4798 /// converted into multiplication, so we will still end up scalarizing
4799 /// the division, but can do so w/o predication.
4800 static bool mayDivideByZero(Instruction &I) {
4801   assert((I.getOpcode() == Instruction::UDiv ||
4802           I.getOpcode() == Instruction::SDiv ||
4803           I.getOpcode() == Instruction::URem ||
4804           I.getOpcode() == Instruction::SRem) &&
4805          "Unexpected instruction");
4806   Value *Divisor = I.getOperand(1);
4807   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4808   return !CInt || CInt->isZero();
4809 }
4810 
4811 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4812                                            VPUser &User,
4813                                            VPTransformState &State) {
4814   switch (I.getOpcode()) {
4815   case Instruction::Call:
4816   case Instruction::Br:
4817   case Instruction::PHI:
4818   case Instruction::GetElementPtr:
4819   case Instruction::Select:
4820     llvm_unreachable("This instruction is handled by a different recipe.");
4821   case Instruction::UDiv:
4822   case Instruction::SDiv:
4823   case Instruction::SRem:
4824   case Instruction::URem:
4825   case Instruction::Add:
4826   case Instruction::FAdd:
4827   case Instruction::Sub:
4828   case Instruction::FSub:
4829   case Instruction::FNeg:
4830   case Instruction::Mul:
4831   case Instruction::FMul:
4832   case Instruction::FDiv:
4833   case Instruction::FRem:
4834   case Instruction::Shl:
4835   case Instruction::LShr:
4836   case Instruction::AShr:
4837   case Instruction::And:
4838   case Instruction::Or:
4839   case Instruction::Xor: {
4840     // Just widen unops and binops.
4841     setDebugLocFromInst(Builder, &I);
4842 
4843     for (unsigned Part = 0; Part < UF; ++Part) {
4844       SmallVector<Value *, 2> Ops;
4845       for (VPValue *VPOp : User.operands())
4846         Ops.push_back(State.get(VPOp, Part));
4847 
4848       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4849 
4850       if (auto *VecOp = dyn_cast<Instruction>(V))
4851         VecOp->copyIRFlags(&I);
4852 
4853       // Use this vector value for all users of the original instruction.
4854       State.set(Def, V, Part);
4855       addMetadata(V, &I);
4856     }
4857 
4858     break;
4859   }
4860   case Instruction::ICmp:
4861   case Instruction::FCmp: {
4862     // Widen compares. Generate vector compares.
4863     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4864     auto *Cmp = cast<CmpInst>(&I);
4865     setDebugLocFromInst(Builder, Cmp);
4866     for (unsigned Part = 0; Part < UF; ++Part) {
4867       Value *A = State.get(User.getOperand(0), Part);
4868       Value *B = State.get(User.getOperand(1), Part);
4869       Value *C = nullptr;
4870       if (FCmp) {
4871         // Propagate fast math flags.
4872         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4873         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4874         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4875       } else {
4876         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4877       }
4878       State.set(Def, C, Part);
4879       addMetadata(C, &I);
4880     }
4881 
4882     break;
4883   }
4884 
4885   case Instruction::ZExt:
4886   case Instruction::SExt:
4887   case Instruction::FPToUI:
4888   case Instruction::FPToSI:
4889   case Instruction::FPExt:
4890   case Instruction::PtrToInt:
4891   case Instruction::IntToPtr:
4892   case Instruction::SIToFP:
4893   case Instruction::UIToFP:
4894   case Instruction::Trunc:
4895   case Instruction::FPTrunc:
4896   case Instruction::BitCast: {
4897     auto *CI = cast<CastInst>(&I);
4898     setDebugLocFromInst(Builder, CI);
4899 
4900     /// Vectorize casts.
4901     Type *DestTy =
4902         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4903 
4904     for (unsigned Part = 0; Part < UF; ++Part) {
4905       Value *A = State.get(User.getOperand(0), Part);
4906       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4907       State.set(Def, Cast, Part);
4908       addMetadata(Cast, &I);
4909     }
4910     break;
4911   }
4912   default:
4913     // This instruction is not vectorized by simple widening.
4914     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4915     llvm_unreachable("Unhandled instruction!");
4916   } // end of switch.
4917 }
4918 
4919 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4920                                                VPUser &ArgOperands,
4921                                                VPTransformState &State) {
4922   assert(!isa<DbgInfoIntrinsic>(I) &&
4923          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4924   setDebugLocFromInst(Builder, &I);
4925 
4926   Module *M = I.getParent()->getParent()->getParent();
4927   auto *CI = cast<CallInst>(&I);
4928 
4929   SmallVector<Type *, 4> Tys;
4930   for (Value *ArgOperand : CI->arg_operands())
4931     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4932 
4933   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4934 
4935   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4936   // version of the instruction.
4937   // Is it beneficial to perform intrinsic call compared to lib call?
4938   bool NeedToScalarize = false;
4939   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4940   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4941   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4942   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4943          "Instruction should be scalarized elsewhere.");
4944   assert(IntrinsicCost.isValid() && CallCost.isValid() &&
4945          "Cannot have invalid costs while widening");
4946 
4947   for (unsigned Part = 0; Part < UF; ++Part) {
4948     SmallVector<Value *, 4> Args;
4949     for (auto &I : enumerate(ArgOperands.operands())) {
4950       // Some intrinsics have a scalar argument - don't replace it with a
4951       // vector.
4952       Value *Arg;
4953       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4954         Arg = State.get(I.value(), Part);
4955       else
4956         Arg = State.get(I.value(), VPIteration(0, 0));
4957       Args.push_back(Arg);
4958     }
4959 
4960     Function *VectorF;
4961     if (UseVectorIntrinsic) {
4962       // Use vector version of the intrinsic.
4963       Type *TysForDecl[] = {CI->getType()};
4964       if (VF.isVector())
4965         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4966       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4967       assert(VectorF && "Can't retrieve vector intrinsic.");
4968     } else {
4969       // Use vector version of the function call.
4970       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4971 #ifndef NDEBUG
4972       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4973              "Can't create vector function.");
4974 #endif
4975         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4976     }
4977       SmallVector<OperandBundleDef, 1> OpBundles;
4978       CI->getOperandBundlesAsDefs(OpBundles);
4979       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4980 
4981       if (isa<FPMathOperator>(V))
4982         V->copyFastMathFlags(CI);
4983 
4984       State.set(Def, V, Part);
4985       addMetadata(V, &I);
4986   }
4987 }
4988 
4989 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
4990                                                  VPUser &Operands,
4991                                                  bool InvariantCond,
4992                                                  VPTransformState &State) {
4993   setDebugLocFromInst(Builder, &I);
4994 
4995   // The condition can be loop invariant  but still defined inside the
4996   // loop. This means that we can't just use the original 'cond' value.
4997   // We have to take the 'vectorized' value and pick the first lane.
4998   // Instcombine will make this a no-op.
4999   auto *InvarCond = InvariantCond
5000                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5001                         : nullptr;
5002 
5003   for (unsigned Part = 0; Part < UF; ++Part) {
5004     Value *Cond =
5005         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5006     Value *Op0 = State.get(Operands.getOperand(1), Part);
5007     Value *Op1 = State.get(Operands.getOperand(2), Part);
5008     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5009     State.set(VPDef, Sel, Part);
5010     addMetadata(Sel, &I);
5011   }
5012 }
5013 
5014 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5015   // We should not collect Scalars more than once per VF. Right now, this
5016   // function is called from collectUniformsAndScalars(), which already does
5017   // this check. Collecting Scalars for VF=1 does not make any sense.
5018   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5019          "This function should not be visited twice for the same VF");
5020 
5021   SmallSetVector<Instruction *, 8> Worklist;
5022 
5023   // These sets are used to seed the analysis with pointers used by memory
5024   // accesses that will remain scalar.
5025   SmallSetVector<Instruction *, 8> ScalarPtrs;
5026   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5027   auto *Latch = TheLoop->getLoopLatch();
5028 
5029   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5030   // The pointer operands of loads and stores will be scalar as long as the
5031   // memory access is not a gather or scatter operation. The value operand of a
5032   // store will remain scalar if the store is scalarized.
5033   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5034     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5035     assert(WideningDecision != CM_Unknown &&
5036            "Widening decision should be ready at this moment");
5037     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5038       if (Ptr == Store->getValueOperand())
5039         return WideningDecision == CM_Scalarize;
5040     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5041            "Ptr is neither a value or pointer operand");
5042     return WideningDecision != CM_GatherScatter;
5043   };
5044 
5045   // A helper that returns true if the given value is a bitcast or
5046   // getelementptr instruction contained in the loop.
5047   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5048     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5049             isa<GetElementPtrInst>(V)) &&
5050            !TheLoop->isLoopInvariant(V);
5051   };
5052 
5053   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5054     if (!isa<PHINode>(Ptr) ||
5055         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5056       return false;
5057     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5058     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5059       return false;
5060     return isScalarUse(MemAccess, Ptr);
5061   };
5062 
5063   // A helper that evaluates a memory access's use of a pointer. If the
5064   // pointer is actually the pointer induction of a loop, it is being
5065   // inserted into Worklist. If the use will be a scalar use, and the
5066   // pointer is only used by memory accesses, we place the pointer in
5067   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5068   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5069     if (isScalarPtrInduction(MemAccess, Ptr)) {
5070       Worklist.insert(cast<Instruction>(Ptr));
5071       Instruction *Update = cast<Instruction>(
5072           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5073       Worklist.insert(Update);
5074       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5075                         << "\n");
5076       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5077                         << "\n");
5078       return;
5079     }
5080     // We only care about bitcast and getelementptr instructions contained in
5081     // the loop.
5082     if (!isLoopVaryingBitCastOrGEP(Ptr))
5083       return;
5084 
5085     // If the pointer has already been identified as scalar (e.g., if it was
5086     // also identified as uniform), there's nothing to do.
5087     auto *I = cast<Instruction>(Ptr);
5088     if (Worklist.count(I))
5089       return;
5090 
5091     // If the use of the pointer will be a scalar use, and all users of the
5092     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5093     // place the pointer in PossibleNonScalarPtrs.
5094     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5095           return isa<LoadInst>(U) || isa<StoreInst>(U);
5096         }))
5097       ScalarPtrs.insert(I);
5098     else
5099       PossibleNonScalarPtrs.insert(I);
5100   };
5101 
5102   // We seed the scalars analysis with three classes of instructions: (1)
5103   // instructions marked uniform-after-vectorization and (2) bitcast,
5104   // getelementptr and (pointer) phi instructions used by memory accesses
5105   // requiring a scalar use.
5106   //
5107   // (1) Add to the worklist all instructions that have been identified as
5108   // uniform-after-vectorization.
5109   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5110 
5111   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5112   // memory accesses requiring a scalar use. The pointer operands of loads and
5113   // stores will be scalar as long as the memory accesses is not a gather or
5114   // scatter operation. The value operand of a store will remain scalar if the
5115   // store is scalarized.
5116   for (auto *BB : TheLoop->blocks())
5117     for (auto &I : *BB) {
5118       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5119         evaluatePtrUse(Load, Load->getPointerOperand());
5120       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5121         evaluatePtrUse(Store, Store->getPointerOperand());
5122         evaluatePtrUse(Store, Store->getValueOperand());
5123       }
5124     }
5125   for (auto *I : ScalarPtrs)
5126     if (!PossibleNonScalarPtrs.count(I)) {
5127       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5128       Worklist.insert(I);
5129     }
5130 
5131   // Insert the forced scalars.
5132   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5133   // induction variable when the PHI user is scalarized.
5134   auto ForcedScalar = ForcedScalars.find(VF);
5135   if (ForcedScalar != ForcedScalars.end())
5136     for (auto *I : ForcedScalar->second)
5137       Worklist.insert(I);
5138 
5139   // Expand the worklist by looking through any bitcasts and getelementptr
5140   // instructions we've already identified as scalar. This is similar to the
5141   // expansion step in collectLoopUniforms(); however, here we're only
5142   // expanding to include additional bitcasts and getelementptr instructions.
5143   unsigned Idx = 0;
5144   while (Idx != Worklist.size()) {
5145     Instruction *Dst = Worklist[Idx++];
5146     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5147       continue;
5148     auto *Src = cast<Instruction>(Dst->getOperand(0));
5149     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5150           auto *J = cast<Instruction>(U);
5151           return !TheLoop->contains(J) || Worklist.count(J) ||
5152                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5153                   isScalarUse(J, Src));
5154         })) {
5155       Worklist.insert(Src);
5156       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5157     }
5158   }
5159 
5160   // An induction variable will remain scalar if all users of the induction
5161   // variable and induction variable update remain scalar.
5162   for (auto &Induction : Legal->getInductionVars()) {
5163     auto *Ind = Induction.first;
5164     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5165 
5166     // If tail-folding is applied, the primary induction variable will be used
5167     // to feed a vector compare.
5168     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5169       continue;
5170 
5171     // Determine if all users of the induction variable are scalar after
5172     // vectorization.
5173     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5174       auto *I = cast<Instruction>(U);
5175       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5176     });
5177     if (!ScalarInd)
5178       continue;
5179 
5180     // Determine if all users of the induction variable update instruction are
5181     // scalar after vectorization.
5182     auto ScalarIndUpdate =
5183         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5184           auto *I = cast<Instruction>(U);
5185           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5186         });
5187     if (!ScalarIndUpdate)
5188       continue;
5189 
5190     // The induction variable and its update instruction will remain scalar.
5191     Worklist.insert(Ind);
5192     Worklist.insert(IndUpdate);
5193     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5194     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5195                       << "\n");
5196   }
5197 
5198   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5199 }
5200 
5201 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
5202                                                          ElementCount VF) {
5203   if (!blockNeedsPredication(I->getParent()))
5204     return false;
5205   switch(I->getOpcode()) {
5206   default:
5207     break;
5208   case Instruction::Load:
5209   case Instruction::Store: {
5210     if (!Legal->isMaskRequired(I))
5211       return false;
5212     auto *Ptr = getLoadStorePointerOperand(I);
5213     auto *Ty = getMemInstValueType(I);
5214     // We have already decided how to vectorize this instruction, get that
5215     // result.
5216     if (VF.isVector()) {
5217       InstWidening WideningDecision = getWideningDecision(I, VF);
5218       assert(WideningDecision != CM_Unknown &&
5219              "Widening decision should be ready at this moment");
5220       return WideningDecision == CM_Scalarize;
5221     }
5222     const Align Alignment = getLoadStoreAlignment(I);
5223     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5224                                 isLegalMaskedGather(Ty, Alignment))
5225                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5226                                 isLegalMaskedScatter(Ty, Alignment));
5227   }
5228   case Instruction::UDiv:
5229   case Instruction::SDiv:
5230   case Instruction::SRem:
5231   case Instruction::URem:
5232     return mayDivideByZero(*I);
5233   }
5234   return false;
5235 }
5236 
5237 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5238     Instruction *I, ElementCount VF) {
5239   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5240   assert(getWideningDecision(I, VF) == CM_Unknown &&
5241          "Decision should not be set yet.");
5242   auto *Group = getInterleavedAccessGroup(I);
5243   assert(Group && "Must have a group.");
5244 
5245   // If the instruction's allocated size doesn't equal it's type size, it
5246   // requires padding and will be scalarized.
5247   auto &DL = I->getModule()->getDataLayout();
5248   auto *ScalarTy = getMemInstValueType(I);
5249   if (hasIrregularType(ScalarTy, DL))
5250     return false;
5251 
5252   // Check if masking is required.
5253   // A Group may need masking for one of two reasons: it resides in a block that
5254   // needs predication, or it was decided to use masking to deal with gaps.
5255   bool PredicatedAccessRequiresMasking =
5256       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5257   bool AccessWithGapsRequiresMasking =
5258       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5259   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5260     return true;
5261 
5262   // If masked interleaving is required, we expect that the user/target had
5263   // enabled it, because otherwise it either wouldn't have been created or
5264   // it should have been invalidated by the CostModel.
5265   assert(useMaskedInterleavedAccesses(TTI) &&
5266          "Masked interleave-groups for predicated accesses are not enabled.");
5267 
5268   auto *Ty = getMemInstValueType(I);
5269   const Align Alignment = getLoadStoreAlignment(I);
5270   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5271                           : TTI.isLegalMaskedStore(Ty, Alignment);
5272 }
5273 
5274 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5275     Instruction *I, ElementCount VF) {
5276   // Get and ensure we have a valid memory instruction.
5277   LoadInst *LI = dyn_cast<LoadInst>(I);
5278   StoreInst *SI = dyn_cast<StoreInst>(I);
5279   assert((LI || SI) && "Invalid memory instruction");
5280 
5281   auto *Ptr = getLoadStorePointerOperand(I);
5282 
5283   // In order to be widened, the pointer should be consecutive, first of all.
5284   if (!Legal->isConsecutivePtr(Ptr))
5285     return false;
5286 
5287   // If the instruction is a store located in a predicated block, it will be
5288   // scalarized.
5289   if (isScalarWithPredication(I))
5290     return false;
5291 
5292   // If the instruction's allocated size doesn't equal it's type size, it
5293   // requires padding and will be scalarized.
5294   auto &DL = I->getModule()->getDataLayout();
5295   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5296   if (hasIrregularType(ScalarTy, DL))
5297     return false;
5298 
5299   return true;
5300 }
5301 
5302 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5303   // We should not collect Uniforms more than once per VF. Right now,
5304   // this function is called from collectUniformsAndScalars(), which
5305   // already does this check. Collecting Uniforms for VF=1 does not make any
5306   // sense.
5307 
5308   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5309          "This function should not be visited twice for the same VF");
5310 
5311   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5312   // not analyze again.  Uniforms.count(VF) will return 1.
5313   Uniforms[VF].clear();
5314 
5315   // We now know that the loop is vectorizable!
5316   // Collect instructions inside the loop that will remain uniform after
5317   // vectorization.
5318 
5319   // Global values, params and instructions outside of current loop are out of
5320   // scope.
5321   auto isOutOfScope = [&](Value *V) -> bool {
5322     Instruction *I = dyn_cast<Instruction>(V);
5323     return (!I || !TheLoop->contains(I));
5324   };
5325 
5326   SetVector<Instruction *> Worklist;
5327   BasicBlock *Latch = TheLoop->getLoopLatch();
5328 
5329   // Instructions that are scalar with predication must not be considered
5330   // uniform after vectorization, because that would create an erroneous
5331   // replicating region where only a single instance out of VF should be formed.
5332   // TODO: optimize such seldom cases if found important, see PR40816.
5333   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5334     if (isOutOfScope(I)) {
5335       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5336                         << *I << "\n");
5337       return;
5338     }
5339     if (isScalarWithPredication(I, VF)) {
5340       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5341                         << *I << "\n");
5342       return;
5343     }
5344     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5345     Worklist.insert(I);
5346   };
5347 
5348   // Start with the conditional branch. If the branch condition is an
5349   // instruction contained in the loop that is only used by the branch, it is
5350   // uniform.
5351   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5352   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5353     addToWorklistIfAllowed(Cmp);
5354 
5355   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5356     InstWidening WideningDecision = getWideningDecision(I, VF);
5357     assert(WideningDecision != CM_Unknown &&
5358            "Widening decision should be ready at this moment");
5359 
5360     // A uniform memory op is itself uniform.  We exclude uniform stores
5361     // here as they demand the last lane, not the first one.
5362     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5363       assert(WideningDecision == CM_Scalarize);
5364       return true;
5365     }
5366 
5367     return (WideningDecision == CM_Widen ||
5368             WideningDecision == CM_Widen_Reverse ||
5369             WideningDecision == CM_Interleave);
5370   };
5371 
5372 
5373   // Returns true if Ptr is the pointer operand of a memory access instruction
5374   // I, and I is known to not require scalarization.
5375   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5376     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5377   };
5378 
5379   // Holds a list of values which are known to have at least one uniform use.
5380   // Note that there may be other uses which aren't uniform.  A "uniform use"
5381   // here is something which only demands lane 0 of the unrolled iterations;
5382   // it does not imply that all lanes produce the same value (e.g. this is not
5383   // the usual meaning of uniform)
5384   SmallPtrSet<Value *, 8> HasUniformUse;
5385 
5386   // Scan the loop for instructions which are either a) known to have only
5387   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5388   for (auto *BB : TheLoop->blocks())
5389     for (auto &I : *BB) {
5390       // If there's no pointer operand, there's nothing to do.
5391       auto *Ptr = getLoadStorePointerOperand(&I);
5392       if (!Ptr)
5393         continue;
5394 
5395       // A uniform memory op is itself uniform.  We exclude uniform stores
5396       // here as they demand the last lane, not the first one.
5397       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5398         addToWorklistIfAllowed(&I);
5399 
5400       if (isUniformDecision(&I, VF)) {
5401         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5402         HasUniformUse.insert(Ptr);
5403       }
5404     }
5405 
5406   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5407   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5408   // disallows uses outside the loop as well.
5409   for (auto *V : HasUniformUse) {
5410     if (isOutOfScope(V))
5411       continue;
5412     auto *I = cast<Instruction>(V);
5413     auto UsersAreMemAccesses =
5414       llvm::all_of(I->users(), [&](User *U) -> bool {
5415         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5416       });
5417     if (UsersAreMemAccesses)
5418       addToWorklistIfAllowed(I);
5419   }
5420 
5421   // Expand Worklist in topological order: whenever a new instruction
5422   // is added , its users should be already inside Worklist.  It ensures
5423   // a uniform instruction will only be used by uniform instructions.
5424   unsigned idx = 0;
5425   while (idx != Worklist.size()) {
5426     Instruction *I = Worklist[idx++];
5427 
5428     for (auto OV : I->operand_values()) {
5429       // isOutOfScope operands cannot be uniform instructions.
5430       if (isOutOfScope(OV))
5431         continue;
5432       // First order recurrence Phi's should typically be considered
5433       // non-uniform.
5434       auto *OP = dyn_cast<PHINode>(OV);
5435       if (OP && Legal->isFirstOrderRecurrence(OP))
5436         continue;
5437       // If all the users of the operand are uniform, then add the
5438       // operand into the uniform worklist.
5439       auto *OI = cast<Instruction>(OV);
5440       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5441             auto *J = cast<Instruction>(U);
5442             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5443           }))
5444         addToWorklistIfAllowed(OI);
5445     }
5446   }
5447 
5448   // For an instruction to be added into Worklist above, all its users inside
5449   // the loop should also be in Worklist. However, this condition cannot be
5450   // true for phi nodes that form a cyclic dependence. We must process phi
5451   // nodes separately. An induction variable will remain uniform if all users
5452   // of the induction variable and induction variable update remain uniform.
5453   // The code below handles both pointer and non-pointer induction variables.
5454   for (auto &Induction : Legal->getInductionVars()) {
5455     auto *Ind = Induction.first;
5456     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5457 
5458     // Determine if all users of the induction variable are uniform after
5459     // vectorization.
5460     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5461       auto *I = cast<Instruction>(U);
5462       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5463              isVectorizedMemAccessUse(I, Ind);
5464     });
5465     if (!UniformInd)
5466       continue;
5467 
5468     // Determine if all users of the induction variable update instruction are
5469     // uniform after vectorization.
5470     auto UniformIndUpdate =
5471         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5472           auto *I = cast<Instruction>(U);
5473           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5474                  isVectorizedMemAccessUse(I, IndUpdate);
5475         });
5476     if (!UniformIndUpdate)
5477       continue;
5478 
5479     // The induction variable and its update instruction will remain uniform.
5480     addToWorklistIfAllowed(Ind);
5481     addToWorklistIfAllowed(IndUpdate);
5482   }
5483 
5484   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5485 }
5486 
5487 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5488   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5489 
5490   if (Legal->getRuntimePointerChecking()->Need) {
5491     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5492         "runtime pointer checks needed. Enable vectorization of this "
5493         "loop with '#pragma clang loop vectorize(enable)' when "
5494         "compiling with -Os/-Oz",
5495         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5496     return true;
5497   }
5498 
5499   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5500     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5501         "runtime SCEV checks needed. Enable vectorization of this "
5502         "loop with '#pragma clang loop vectorize(enable)' when "
5503         "compiling with -Os/-Oz",
5504         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5505     return true;
5506   }
5507 
5508   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5509   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5510     reportVectorizationFailure("Runtime stride check for small trip count",
5511         "runtime stride == 1 checks needed. Enable vectorization of "
5512         "this loop without such check by compiling with -Os/-Oz",
5513         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5514     return true;
5515   }
5516 
5517   return false;
5518 }
5519 
5520 Optional<ElementCount>
5521 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5522   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5523     // TODO: It may by useful to do since it's still likely to be dynamically
5524     // uniform if the target can skip.
5525     reportVectorizationFailure(
5526         "Not inserting runtime ptr check for divergent target",
5527         "runtime pointer checks needed. Not enabled for divergent target",
5528         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5529     return None;
5530   }
5531 
5532   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5533   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5534   if (TC == 1) {
5535     reportVectorizationFailure("Single iteration (non) loop",
5536         "loop trip count is one, irrelevant for vectorization",
5537         "SingleIterationLoop", ORE, TheLoop);
5538     return None;
5539   }
5540 
5541   switch (ScalarEpilogueStatus) {
5542   case CM_ScalarEpilogueAllowed:
5543     return computeFeasibleMaxVF(TC, UserVF);
5544   case CM_ScalarEpilogueNotAllowedUsePredicate:
5545     LLVM_FALLTHROUGH;
5546   case CM_ScalarEpilogueNotNeededUsePredicate:
5547     LLVM_DEBUG(
5548         dbgs() << "LV: vector predicate hint/switch found.\n"
5549                << "LV: Not allowing scalar epilogue, creating predicated "
5550                << "vector loop.\n");
5551     break;
5552   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5553     // fallthrough as a special case of OptForSize
5554   case CM_ScalarEpilogueNotAllowedOptSize:
5555     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5556       LLVM_DEBUG(
5557           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5558     else
5559       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5560                         << "count.\n");
5561 
5562     // Bail if runtime checks are required, which are not good when optimising
5563     // for size.
5564     if (runtimeChecksRequired())
5565       return None;
5566 
5567     break;
5568   }
5569 
5570   // The only loops we can vectorize without a scalar epilogue, are loops with
5571   // a bottom-test and a single exiting block. We'd have to handle the fact
5572   // that not every instruction executes on the last iteration.  This will
5573   // require a lane mask which varies through the vector loop body.  (TODO)
5574   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5575     // If there was a tail-folding hint/switch, but we can't fold the tail by
5576     // masking, fallback to a vectorization with a scalar epilogue.
5577     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5578       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5579                            "scalar epilogue instead.\n");
5580       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5581       return computeFeasibleMaxVF(TC, UserVF);
5582     }
5583     return None;
5584   }
5585 
5586   // Now try the tail folding
5587 
5588   // Invalidate interleave groups that require an epilogue if we can't mask
5589   // the interleave-group.
5590   if (!useMaskedInterleavedAccesses(TTI)) {
5591     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5592            "No decisions should have been taken at this point");
5593     // Note: There is no need to invalidate any cost modeling decisions here, as
5594     // non where taken so far.
5595     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5596   }
5597 
5598   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5599   assert(!MaxVF.isScalable() &&
5600          "Scalable vectors do not yet support tail folding");
5601   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5602          "MaxVF must be a power of 2");
5603   unsigned MaxVFtimesIC =
5604       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5605   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5606   // chose.
5607   ScalarEvolution *SE = PSE.getSE();
5608   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5609   const SCEV *ExitCount = SE->getAddExpr(
5610       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5611   const SCEV *Rem = SE->getURemExpr(
5612       SE->applyLoopGuards(ExitCount, TheLoop),
5613       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5614   if (Rem->isZero()) {
5615     // Accept MaxVF if we do not have a tail.
5616     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5617     return MaxVF;
5618   }
5619 
5620   // If we don't know the precise trip count, or if the trip count that we
5621   // found modulo the vectorization factor is not zero, try to fold the tail
5622   // by masking.
5623   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5624   if (Legal->prepareToFoldTailByMasking()) {
5625     FoldTailByMasking = true;
5626     return MaxVF;
5627   }
5628 
5629   // If there was a tail-folding hint/switch, but we can't fold the tail by
5630   // masking, fallback to a vectorization with a scalar epilogue.
5631   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5632     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5633                          "scalar epilogue instead.\n");
5634     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5635     return MaxVF;
5636   }
5637 
5638   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5639     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5640     return None;
5641   }
5642 
5643   if (TC == 0) {
5644     reportVectorizationFailure(
5645         "Unable to calculate the loop count due to complex control flow",
5646         "unable to calculate the loop count due to complex control flow",
5647         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5648     return None;
5649   }
5650 
5651   reportVectorizationFailure(
5652       "Cannot optimize for size and vectorize at the same time.",
5653       "cannot optimize for size and vectorize at the same time. "
5654       "Enable vectorization of this loop with '#pragma clang loop "
5655       "vectorize(enable)' when compiling with -Os/-Oz",
5656       "NoTailLoopWithOptForSize", ORE, TheLoop);
5657   return None;
5658 }
5659 
5660 ElementCount
5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5662                                                  ElementCount UserVF) {
5663   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5664                               !TTI.supportsScalableVectors() &&
5665                               !ForceTargetSupportsScalableVectors;
5666   if (IgnoreScalableUserVF) {
5667     LLVM_DEBUG(
5668         dbgs() << "LV: Ignoring VF=" << UserVF
5669                << " because target does not support scalable vectors.\n");
5670     ORE->emit([&]() {
5671       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5672                                         TheLoop->getStartLoc(),
5673                                         TheLoop->getHeader())
5674              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5675              << " because target does not support scalable vectors.";
5676     });
5677   }
5678 
5679   // Beyond this point two scenarios are handled. If UserVF isn't specified
5680   // then a suitable VF is chosen. If UserVF is specified and there are
5681   // dependencies, check if it's legal. However, if a UserVF is specified and
5682   // there are no dependencies, then there's nothing to do.
5683   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5684     if (!canVectorizeReductions(UserVF)) {
5685       reportVectorizationFailure(
5686           "LV: Scalable vectorization not supported for the reduction "
5687           "operations found in this loop. Using fixed-width "
5688           "vectorization instead.",
5689           "Scalable vectorization not supported for the reduction operations "
5690           "found in this loop. Using fixed-width vectorization instead.",
5691           "ScalableVFUnfeasible", ORE, TheLoop);
5692       return computeFeasibleMaxVF(
5693           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5694     }
5695 
5696     if (Legal->isSafeForAnyVectorWidth())
5697       return UserVF;
5698   }
5699 
5700   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5701   unsigned SmallestType, WidestType;
5702   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5703   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5704 
5705   // Get the maximum safe dependence distance in bits computed by LAA.
5706   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5707   // the memory accesses that is most restrictive (involved in the smallest
5708   // dependence distance).
5709   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5710 
5711   // If the user vectorization factor is legally unsafe, clamp it to a safe
5712   // value. Otherwise, return as is.
5713   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5714     unsigned MaxSafeElements =
5715         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5716     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5717 
5718     if (UserVF.isScalable()) {
5719       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5720 
5721       // Scale VF by vscale before checking if it's safe.
5722       MaxSafeVF = ElementCount::getScalable(
5723           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5724 
5725       if (MaxSafeVF.isZero()) {
5726         // The dependence distance is too small to use scalable vectors,
5727         // fallback on fixed.
5728         LLVM_DEBUG(
5729             dbgs()
5730             << "LV: Max legal vector width too small, scalable vectorization "
5731                "unfeasible. Using fixed-width vectorization instead.\n");
5732         ORE->emit([&]() {
5733           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5734                                             TheLoop->getStartLoc(),
5735                                             TheLoop->getHeader())
5736                  << "Max legal vector width too small, scalable vectorization "
5737                  << "unfeasible. Using fixed-width vectorization instead.";
5738         });
5739         return computeFeasibleMaxVF(
5740             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5741       }
5742     }
5743 
5744     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5745 
5746     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5747       return UserVF;
5748 
5749     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5750                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5751                       << ".\n");
5752     ORE->emit([&]() {
5753       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5754                                         TheLoop->getStartLoc(),
5755                                         TheLoop->getHeader())
5756              << "User-specified vectorization factor "
5757              << ore::NV("UserVectorizationFactor", UserVF)
5758              << " is unsafe, clamping to maximum safe vectorization factor "
5759              << ore::NV("VectorizationFactor", MaxSafeVF);
5760     });
5761     return MaxSafeVF;
5762   }
5763 
5764   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5765 
5766   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5767   // Note that both WidestRegister and WidestType may not be a powers of 2.
5768   auto MaxVectorSize =
5769       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5770 
5771   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5772                     << " / " << WidestType << " bits.\n");
5773   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5774                     << WidestRegister << " bits.\n");
5775 
5776   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5777          "Did not expect to pack so many elements"
5778          " into one vector!");
5779   if (MaxVectorSize.getFixedValue() == 0) {
5780     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5781     return ElementCount::getFixed(1);
5782   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5783              isPowerOf2_32(ConstTripCount)) {
5784     // We need to clamp the VF to be the ConstTripCount. There is no point in
5785     // choosing a higher viable VF as done in the loop below.
5786     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5787                       << ConstTripCount << "\n");
5788     return ElementCount::getFixed(ConstTripCount);
5789   }
5790 
5791   ElementCount MaxVF = MaxVectorSize;
5792   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5793       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5794     // Collect all viable vectorization factors larger than the default MaxVF
5795     // (i.e. MaxVectorSize).
5796     SmallVector<ElementCount, 8> VFs;
5797     auto MaxVectorSizeMaxBW =
5798         ElementCount::getFixed(WidestRegister / SmallestType);
5799     for (ElementCount VS = MaxVectorSize * 2;
5800          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5801       VFs.push_back(VS);
5802 
5803     // For each VF calculate its register usage.
5804     auto RUs = calculateRegisterUsage(VFs);
5805 
5806     // Select the largest VF which doesn't require more registers than existing
5807     // ones.
5808     for (int i = RUs.size() - 1; i >= 0; --i) {
5809       bool Selected = true;
5810       for (auto &pair : RUs[i].MaxLocalUsers) {
5811         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5812         if (pair.second > TargetNumRegisters)
5813           Selected = false;
5814       }
5815       if (Selected) {
5816         MaxVF = VFs[i];
5817         break;
5818       }
5819     }
5820     if (ElementCount MinVF =
5821             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5822       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5823         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5824                           << ") with target's minimum: " << MinVF << '\n');
5825         MaxVF = MinVF;
5826       }
5827     }
5828   }
5829   return MaxVF;
5830 }
5831 
5832 VectorizationFactor
5833 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5834   // FIXME: This can be fixed for scalable vectors later, because at this stage
5835   // the LoopVectorizer will only consider vectorizing a loop with scalable
5836   // vectors when the loop has a hint to enable vectorization for a given VF.
5837   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5838 
5839   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5840   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5841   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5842 
5843   auto Width = ElementCount::getFixed(1);
5844   const float ScalarCost = *ExpectedCost.getValue();
5845   float Cost = ScalarCost;
5846 
5847   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5848   if (ForceVectorization && MaxVF.isVector()) {
5849     // Ignore scalar width, because the user explicitly wants vectorization.
5850     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5851     // evaluation.
5852     Cost = std::numeric_limits<float>::max();
5853   }
5854 
5855   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5856        i *= 2) {
5857     // Notice that the vector loop needs to be executed less times, so
5858     // we need to divide the cost of the vector loops by the width of
5859     // the vector elements.
5860     VectorizationCostTy C = expectedCost(i);
5861     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5862     float VectorCost = *C.first.getValue() / (float)i.getFixedValue();
5863     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5864                       << " costs: " << (int)VectorCost << ".\n");
5865     if (!C.second && !ForceVectorization) {
5866       LLVM_DEBUG(
5867           dbgs() << "LV: Not considering vector loop of width " << i
5868                  << " because it will not generate any vector instructions.\n");
5869       continue;
5870     }
5871 
5872     // If profitable add it to ProfitableVF list.
5873     if (VectorCost < ScalarCost) {
5874       ProfitableVFs.push_back(VectorizationFactor(
5875           {i, (unsigned)VectorCost}));
5876     }
5877 
5878     if (VectorCost < Cost) {
5879       Cost = VectorCost;
5880       Width = i;
5881     }
5882   }
5883 
5884   if (!EnableCondStoresVectorization && NumPredStores) {
5885     reportVectorizationFailure("There are conditional stores.",
5886         "store that is conditionally executed prevents vectorization",
5887         "ConditionalStore", ORE, TheLoop);
5888     Width = ElementCount::getFixed(1);
5889     Cost = ScalarCost;
5890   }
5891 
5892   LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs()
5893              << "LV: Vectorization seems to be not beneficial, "
5894              << "but was forced by a user.\n");
5895   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5896   VectorizationFactor Factor = {Width,
5897                                 (unsigned)(Width.getKnownMinValue() * Cost)};
5898   return Factor;
5899 }
5900 
5901 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5902     const Loop &L, ElementCount VF) const {
5903   // Cross iteration phis such as reductions need special handling and are
5904   // currently unsupported.
5905   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5906         return Legal->isFirstOrderRecurrence(&Phi) ||
5907                Legal->isReductionVariable(&Phi);
5908       }))
5909     return false;
5910 
5911   // Phis with uses outside of the loop require special handling and are
5912   // currently unsupported.
5913   for (auto &Entry : Legal->getInductionVars()) {
5914     // Look for uses of the value of the induction at the last iteration.
5915     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5916     for (User *U : PostInc->users())
5917       if (!L.contains(cast<Instruction>(U)))
5918         return false;
5919     // Look for uses of penultimate value of the induction.
5920     for (User *U : Entry.first->users())
5921       if (!L.contains(cast<Instruction>(U)))
5922         return false;
5923   }
5924 
5925   // Induction variables that are widened require special handling that is
5926   // currently not supported.
5927   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5928         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5929                  this->isProfitableToScalarize(Entry.first, VF));
5930       }))
5931     return false;
5932 
5933   return true;
5934 }
5935 
5936 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5937     const ElementCount VF) const {
5938   // FIXME: We need a much better cost-model to take different parameters such
5939   // as register pressure, code size increase and cost of extra branches into
5940   // account. For now we apply a very crude heuristic and only consider loops
5941   // with vectorization factors larger than a certain value.
5942   // We also consider epilogue vectorization unprofitable for targets that don't
5943   // consider interleaving beneficial (eg. MVE).
5944   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5945     return false;
5946   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5947     return true;
5948   return false;
5949 }
5950 
5951 VectorizationFactor
5952 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5953     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5954   VectorizationFactor Result = VectorizationFactor::Disabled();
5955   if (!EnableEpilogueVectorization) {
5956     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5957     return Result;
5958   }
5959 
5960   if (!isScalarEpilogueAllowed()) {
5961     LLVM_DEBUG(
5962         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5963                   "allowed.\n";);
5964     return Result;
5965   }
5966 
5967   // FIXME: This can be fixed for scalable vectors later, because at this stage
5968   // the LoopVectorizer will only consider vectorizing a loop with scalable
5969   // vectors when the loop has a hint to enable vectorization for a given VF.
5970   if (MainLoopVF.isScalable()) {
5971     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
5972                          "yet supported.\n");
5973     return Result;
5974   }
5975 
5976   // Not really a cost consideration, but check for unsupported cases here to
5977   // simplify the logic.
5978   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5979     LLVM_DEBUG(
5980         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5981                   "not a supported candidate.\n";);
5982     return Result;
5983   }
5984 
5985   if (EpilogueVectorizationForceVF > 1) {
5986     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5987     if (LVP.hasPlanWithVFs(
5988             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
5989       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
5990     else {
5991       LLVM_DEBUG(
5992           dbgs()
5993               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5994       return Result;
5995     }
5996   }
5997 
5998   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5999       TheLoop->getHeader()->getParent()->hasMinSize()) {
6000     LLVM_DEBUG(
6001         dbgs()
6002             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6003     return Result;
6004   }
6005 
6006   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6007     return Result;
6008 
6009   for (auto &NextVF : ProfitableVFs)
6010     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6011         (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) &&
6012         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6013       Result = NextVF;
6014 
6015   if (Result != VectorizationFactor::Disabled())
6016     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6017                       << Result.Width.getFixedValue() << "\n";);
6018   return Result;
6019 }
6020 
6021 std::pair<unsigned, unsigned>
6022 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6023   unsigned MinWidth = -1U;
6024   unsigned MaxWidth = 8;
6025   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6026 
6027   // For each block.
6028   for (BasicBlock *BB : TheLoop->blocks()) {
6029     // For each instruction in the loop.
6030     for (Instruction &I : BB->instructionsWithoutDebug()) {
6031       Type *T = I.getType();
6032 
6033       // Skip ignored values.
6034       if (ValuesToIgnore.count(&I))
6035         continue;
6036 
6037       // Only examine Loads, Stores and PHINodes.
6038       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6039         continue;
6040 
6041       // Examine PHI nodes that are reduction variables. Update the type to
6042       // account for the recurrence type.
6043       if (auto *PN = dyn_cast<PHINode>(&I)) {
6044         if (!Legal->isReductionVariable(PN))
6045           continue;
6046         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6047         if (PreferInLoopReductions ||
6048             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6049                                       RdxDesc.getRecurrenceType(),
6050                                       TargetTransformInfo::ReductionFlags()))
6051           continue;
6052         T = RdxDesc.getRecurrenceType();
6053       }
6054 
6055       // Examine the stored values.
6056       if (auto *ST = dyn_cast<StoreInst>(&I))
6057         T = ST->getValueOperand()->getType();
6058 
6059       // Ignore loaded pointer types and stored pointer types that are not
6060       // vectorizable.
6061       //
6062       // FIXME: The check here attempts to predict whether a load or store will
6063       //        be vectorized. We only know this for certain after a VF has
6064       //        been selected. Here, we assume that if an access can be
6065       //        vectorized, it will be. We should also look at extending this
6066       //        optimization to non-pointer types.
6067       //
6068       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6069           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6070         continue;
6071 
6072       MinWidth = std::min(MinWidth,
6073                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6074       MaxWidth = std::max(MaxWidth,
6075                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6076     }
6077   }
6078 
6079   return {MinWidth, MaxWidth};
6080 }
6081 
6082 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6083                                                            unsigned LoopCost) {
6084   // -- The interleave heuristics --
6085   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6086   // There are many micro-architectural considerations that we can't predict
6087   // at this level. For example, frontend pressure (on decode or fetch) due to
6088   // code size, or the number and capabilities of the execution ports.
6089   //
6090   // We use the following heuristics to select the interleave count:
6091   // 1. If the code has reductions, then we interleave to break the cross
6092   // iteration dependency.
6093   // 2. If the loop is really small, then we interleave to reduce the loop
6094   // overhead.
6095   // 3. We don't interleave if we think that we will spill registers to memory
6096   // due to the increased register pressure.
6097 
6098   if (!isScalarEpilogueAllowed())
6099     return 1;
6100 
6101   // We used the distance for the interleave count.
6102   if (Legal->getMaxSafeDepDistBytes() != -1U)
6103     return 1;
6104 
6105   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6106   const bool HasReductions = !Legal->getReductionVars().empty();
6107   // Do not interleave loops with a relatively small known or estimated trip
6108   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6109   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6110   // because with the above conditions interleaving can expose ILP and break
6111   // cross iteration dependences for reductions.
6112   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6113       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6114     return 1;
6115 
6116   RegisterUsage R = calculateRegisterUsage({VF})[0];
6117   // We divide by these constants so assume that we have at least one
6118   // instruction that uses at least one register.
6119   for (auto& pair : R.MaxLocalUsers) {
6120     pair.second = std::max(pair.second, 1U);
6121   }
6122 
6123   // We calculate the interleave count using the following formula.
6124   // Subtract the number of loop invariants from the number of available
6125   // registers. These registers are used by all of the interleaved instances.
6126   // Next, divide the remaining registers by the number of registers that is
6127   // required by the loop, in order to estimate how many parallel instances
6128   // fit without causing spills. All of this is rounded down if necessary to be
6129   // a power of two. We want power of two interleave count to simplify any
6130   // addressing operations or alignment considerations.
6131   // We also want power of two interleave counts to ensure that the induction
6132   // variable of the vector loop wraps to zero, when tail is folded by masking;
6133   // this currently happens when OptForSize, in which case IC is set to 1 above.
6134   unsigned IC = UINT_MAX;
6135 
6136   for (auto& pair : R.MaxLocalUsers) {
6137     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6138     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6139                       << " registers of "
6140                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6141     if (VF.isScalar()) {
6142       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6143         TargetNumRegisters = ForceTargetNumScalarRegs;
6144     } else {
6145       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6146         TargetNumRegisters = ForceTargetNumVectorRegs;
6147     }
6148     unsigned MaxLocalUsers = pair.second;
6149     unsigned LoopInvariantRegs = 0;
6150     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6151       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6152 
6153     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6154     // Don't count the induction variable as interleaved.
6155     if (EnableIndVarRegisterHeur) {
6156       TmpIC =
6157           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6158                         std::max(1U, (MaxLocalUsers - 1)));
6159     }
6160 
6161     IC = std::min(IC, TmpIC);
6162   }
6163 
6164   // Clamp the interleave ranges to reasonable counts.
6165   unsigned MaxInterleaveCount =
6166       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6167 
6168   // Check if the user has overridden the max.
6169   if (VF.isScalar()) {
6170     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6171       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6172   } else {
6173     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6174       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6175   }
6176 
6177   // If trip count is known or estimated compile time constant, limit the
6178   // interleave count to be less than the trip count divided by VF, provided it
6179   // is at least 1.
6180   //
6181   // For scalable vectors we can't know if interleaving is beneficial. It may
6182   // not be beneficial for small loops if none of the lanes in the second vector
6183   // iterations is enabled. However, for larger loops, there is likely to be a
6184   // similar benefit as for fixed-width vectors. For now, we choose to leave
6185   // the InterleaveCount as if vscale is '1', although if some information about
6186   // the vector is known (e.g. min vector size), we can make a better decision.
6187   if (BestKnownTC) {
6188     MaxInterleaveCount =
6189         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6190     // Make sure MaxInterleaveCount is greater than 0.
6191     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6192   }
6193 
6194   assert(MaxInterleaveCount > 0 &&
6195          "Maximum interleave count must be greater than 0");
6196 
6197   // Clamp the calculated IC to be between the 1 and the max interleave count
6198   // that the target and trip count allows.
6199   if (IC > MaxInterleaveCount)
6200     IC = MaxInterleaveCount;
6201   else
6202     // Make sure IC is greater than 0.
6203     IC = std::max(1u, IC);
6204 
6205   assert(IC > 0 && "Interleave count must be greater than 0.");
6206 
6207   // If we did not calculate the cost for VF (because the user selected the VF)
6208   // then we calculate the cost of VF here.
6209   if (LoopCost == 0) {
6210     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6211     LoopCost = *expectedCost(VF).first.getValue();
6212   }
6213 
6214   assert(LoopCost && "Non-zero loop cost expected");
6215 
6216   // Interleave if we vectorized this loop and there is a reduction that could
6217   // benefit from interleaving.
6218   if (VF.isVector() && HasReductions) {
6219     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6220     return IC;
6221   }
6222 
6223   // Note that if we've already vectorized the loop we will have done the
6224   // runtime check and so interleaving won't require further checks.
6225   bool InterleavingRequiresRuntimePointerCheck =
6226       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6227 
6228   // We want to interleave small loops in order to reduce the loop overhead and
6229   // potentially expose ILP opportunities.
6230   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6231                     << "LV: IC is " << IC << '\n'
6232                     << "LV: VF is " << VF << '\n');
6233   const bool AggressivelyInterleaveReductions =
6234       TTI.enableAggressiveInterleaving(HasReductions);
6235   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6236     // We assume that the cost overhead is 1 and we use the cost model
6237     // to estimate the cost of the loop and interleave until the cost of the
6238     // loop overhead is about 5% of the cost of the loop.
6239     unsigned SmallIC =
6240         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6241 
6242     // Interleave until store/load ports (estimated by max interleave count) are
6243     // saturated.
6244     unsigned NumStores = Legal->getNumStores();
6245     unsigned NumLoads = Legal->getNumLoads();
6246     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6247     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6248 
6249     // If we have a scalar reduction (vector reductions are already dealt with
6250     // by this point), we can increase the critical path length if the loop
6251     // we're interleaving is inside another loop. Limit, by default to 2, so the
6252     // critical path only gets increased by one reduction operation.
6253     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6254       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6255       SmallIC = std::min(SmallIC, F);
6256       StoresIC = std::min(StoresIC, F);
6257       LoadsIC = std::min(LoadsIC, F);
6258     }
6259 
6260     if (EnableLoadStoreRuntimeInterleave &&
6261         std::max(StoresIC, LoadsIC) > SmallIC) {
6262       LLVM_DEBUG(
6263           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6264       return std::max(StoresIC, LoadsIC);
6265     }
6266 
6267     // If there are scalar reductions and TTI has enabled aggressive
6268     // interleaving for reductions, we will interleave to expose ILP.
6269     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6270         AggressivelyInterleaveReductions) {
6271       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6272       // Interleave no less than SmallIC but not as aggressive as the normal IC
6273       // to satisfy the rare situation when resources are too limited.
6274       return std::max(IC / 2, SmallIC);
6275     } else {
6276       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6277       return SmallIC;
6278     }
6279   }
6280 
6281   // Interleave if this is a large loop (small loops are already dealt with by
6282   // this point) that could benefit from interleaving.
6283   if (AggressivelyInterleaveReductions) {
6284     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6285     return IC;
6286   }
6287 
6288   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6289   return 1;
6290 }
6291 
6292 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6293 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6294   // This function calculates the register usage by measuring the highest number
6295   // of values that are alive at a single location. Obviously, this is a very
6296   // rough estimation. We scan the loop in a topological order in order and
6297   // assign a number to each instruction. We use RPO to ensure that defs are
6298   // met before their users. We assume that each instruction that has in-loop
6299   // users starts an interval. We record every time that an in-loop value is
6300   // used, so we have a list of the first and last occurrences of each
6301   // instruction. Next, we transpose this data structure into a multi map that
6302   // holds the list of intervals that *end* at a specific location. This multi
6303   // map allows us to perform a linear search. We scan the instructions linearly
6304   // and record each time that a new interval starts, by placing it in a set.
6305   // If we find this value in the multi-map then we remove it from the set.
6306   // The max register usage is the maximum size of the set.
6307   // We also search for instructions that are defined outside the loop, but are
6308   // used inside the loop. We need this number separately from the max-interval
6309   // usage number because when we unroll, loop-invariant values do not take
6310   // more register.
6311   LoopBlocksDFS DFS(TheLoop);
6312   DFS.perform(LI);
6313 
6314   RegisterUsage RU;
6315 
6316   // Each 'key' in the map opens a new interval. The values
6317   // of the map are the index of the 'last seen' usage of the
6318   // instruction that is the key.
6319   using IntervalMap = DenseMap<Instruction *, unsigned>;
6320 
6321   // Maps instruction to its index.
6322   SmallVector<Instruction *, 64> IdxToInstr;
6323   // Marks the end of each interval.
6324   IntervalMap EndPoint;
6325   // Saves the list of instruction indices that are used in the loop.
6326   SmallPtrSet<Instruction *, 8> Ends;
6327   // Saves the list of values that are used in the loop but are
6328   // defined outside the loop, such as arguments and constants.
6329   SmallPtrSet<Value *, 8> LoopInvariants;
6330 
6331   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6332     for (Instruction &I : BB->instructionsWithoutDebug()) {
6333       IdxToInstr.push_back(&I);
6334 
6335       // Save the end location of each USE.
6336       for (Value *U : I.operands()) {
6337         auto *Instr = dyn_cast<Instruction>(U);
6338 
6339         // Ignore non-instruction values such as arguments, constants, etc.
6340         if (!Instr)
6341           continue;
6342 
6343         // If this instruction is outside the loop then record it and continue.
6344         if (!TheLoop->contains(Instr)) {
6345           LoopInvariants.insert(Instr);
6346           continue;
6347         }
6348 
6349         // Overwrite previous end points.
6350         EndPoint[Instr] = IdxToInstr.size();
6351         Ends.insert(Instr);
6352       }
6353     }
6354   }
6355 
6356   // Saves the list of intervals that end with the index in 'key'.
6357   using InstrList = SmallVector<Instruction *, 2>;
6358   DenseMap<unsigned, InstrList> TransposeEnds;
6359 
6360   // Transpose the EndPoints to a list of values that end at each index.
6361   for (auto &Interval : EndPoint)
6362     TransposeEnds[Interval.second].push_back(Interval.first);
6363 
6364   SmallPtrSet<Instruction *, 8> OpenIntervals;
6365   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6366   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6367 
6368   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6369 
6370   // A lambda that gets the register usage for the given type and VF.
6371   const auto &TTICapture = TTI;
6372   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6373     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6374       return 0U;
6375     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6376   };
6377 
6378   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6379     Instruction *I = IdxToInstr[i];
6380 
6381     // Remove all of the instructions that end at this location.
6382     InstrList &List = TransposeEnds[i];
6383     for (Instruction *ToRemove : List)
6384       OpenIntervals.erase(ToRemove);
6385 
6386     // Ignore instructions that are never used within the loop.
6387     if (!Ends.count(I))
6388       continue;
6389 
6390     // Skip ignored values.
6391     if (ValuesToIgnore.count(I))
6392       continue;
6393 
6394     // For each VF find the maximum usage of registers.
6395     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6396       // Count the number of live intervals.
6397       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6398 
6399       if (VFs[j].isScalar()) {
6400         for (auto Inst : OpenIntervals) {
6401           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6402           if (RegUsage.find(ClassID) == RegUsage.end())
6403             RegUsage[ClassID] = 1;
6404           else
6405             RegUsage[ClassID] += 1;
6406         }
6407       } else {
6408         collectUniformsAndScalars(VFs[j]);
6409         for (auto Inst : OpenIntervals) {
6410           // Skip ignored values for VF > 1.
6411           if (VecValuesToIgnore.count(Inst))
6412             continue;
6413           if (isScalarAfterVectorization(Inst, VFs[j])) {
6414             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6415             if (RegUsage.find(ClassID) == RegUsage.end())
6416               RegUsage[ClassID] = 1;
6417             else
6418               RegUsage[ClassID] += 1;
6419           } else {
6420             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6421             if (RegUsage.find(ClassID) == RegUsage.end())
6422               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6423             else
6424               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6425           }
6426         }
6427       }
6428 
6429       for (auto& pair : RegUsage) {
6430         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6431           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6432         else
6433           MaxUsages[j][pair.first] = pair.second;
6434       }
6435     }
6436 
6437     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6438                       << OpenIntervals.size() << '\n');
6439 
6440     // Add the current instruction to the list of open intervals.
6441     OpenIntervals.insert(I);
6442   }
6443 
6444   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6445     SmallMapVector<unsigned, unsigned, 4> Invariant;
6446 
6447     for (auto Inst : LoopInvariants) {
6448       unsigned Usage =
6449           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6450       unsigned ClassID =
6451           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6452       if (Invariant.find(ClassID) == Invariant.end())
6453         Invariant[ClassID] = Usage;
6454       else
6455         Invariant[ClassID] += Usage;
6456     }
6457 
6458     LLVM_DEBUG({
6459       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6460       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6461              << " item\n";
6462       for (const auto &pair : MaxUsages[i]) {
6463         dbgs() << "LV(REG): RegisterClass: "
6464                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6465                << " registers\n";
6466       }
6467       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6468              << " item\n";
6469       for (const auto &pair : Invariant) {
6470         dbgs() << "LV(REG): RegisterClass: "
6471                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6472                << " registers\n";
6473       }
6474     });
6475 
6476     RU.LoopInvariantRegs = Invariant;
6477     RU.MaxLocalUsers = MaxUsages[i];
6478     RUs[i] = RU;
6479   }
6480 
6481   return RUs;
6482 }
6483 
6484 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6485   // TODO: Cost model for emulated masked load/store is completely
6486   // broken. This hack guides the cost model to use an artificially
6487   // high enough value to practically disable vectorization with such
6488   // operations, except where previously deployed legality hack allowed
6489   // using very low cost values. This is to avoid regressions coming simply
6490   // from moving "masked load/store" check from legality to cost model.
6491   // Masked Load/Gather emulation was previously never allowed.
6492   // Limited number of Masked Store/Scatter emulation was allowed.
6493   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
6494   return isa<LoadInst>(I) ||
6495          (isa<StoreInst>(I) &&
6496           NumPredStores > NumberOfStoresToPredicate);
6497 }
6498 
6499 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6500   // If we aren't vectorizing the loop, or if we've already collected the
6501   // instructions to scalarize, there's nothing to do. Collection may already
6502   // have occurred if we have a user-selected VF and are now computing the
6503   // expected cost for interleaving.
6504   if (VF.isScalar() || VF.isZero() ||
6505       InstsToScalarize.find(VF) != InstsToScalarize.end())
6506     return;
6507 
6508   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6509   // not profitable to scalarize any instructions, the presence of VF in the
6510   // map will indicate that we've analyzed it already.
6511   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6512 
6513   // Find all the instructions that are scalar with predication in the loop and
6514   // determine if it would be better to not if-convert the blocks they are in.
6515   // If so, we also record the instructions to scalarize.
6516   for (BasicBlock *BB : TheLoop->blocks()) {
6517     if (!blockNeedsPredication(BB))
6518       continue;
6519     for (Instruction &I : *BB)
6520       if (isScalarWithPredication(&I)) {
6521         ScalarCostsTy ScalarCosts;
6522         // Do not apply discount logic if hacked cost is needed
6523         // for emulated masked memrefs.
6524         if (!useEmulatedMaskMemRefHack(&I) &&
6525             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6526           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6527         // Remember that BB will remain after vectorization.
6528         PredicatedBBsAfterVectorization.insert(BB);
6529       }
6530   }
6531 }
6532 
6533 int LoopVectorizationCostModel::computePredInstDiscount(
6534     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6535   assert(!isUniformAfterVectorization(PredInst, VF) &&
6536          "Instruction marked uniform-after-vectorization will be predicated");
6537 
6538   // Initialize the discount to zero, meaning that the scalar version and the
6539   // vector version cost the same.
6540   InstructionCost Discount = 0;
6541 
6542   // Holds instructions to analyze. The instructions we visit are mapped in
6543   // ScalarCosts. Those instructions are the ones that would be scalarized if
6544   // we find that the scalar version costs less.
6545   SmallVector<Instruction *, 8> Worklist;
6546 
6547   // Returns true if the given instruction can be scalarized.
6548   auto canBeScalarized = [&](Instruction *I) -> bool {
6549     // We only attempt to scalarize instructions forming a single-use chain
6550     // from the original predicated block that would otherwise be vectorized.
6551     // Although not strictly necessary, we give up on instructions we know will
6552     // already be scalar to avoid traversing chains that are unlikely to be
6553     // beneficial.
6554     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6555         isScalarAfterVectorization(I, VF))
6556       return false;
6557 
6558     // If the instruction is scalar with predication, it will be analyzed
6559     // separately. We ignore it within the context of PredInst.
6560     if (isScalarWithPredication(I))
6561       return false;
6562 
6563     // If any of the instruction's operands are uniform after vectorization,
6564     // the instruction cannot be scalarized. This prevents, for example, a
6565     // masked load from being scalarized.
6566     //
6567     // We assume we will only emit a value for lane zero of an instruction
6568     // marked uniform after vectorization, rather than VF identical values.
6569     // Thus, if we scalarize an instruction that uses a uniform, we would
6570     // create uses of values corresponding to the lanes we aren't emitting code
6571     // for. This behavior can be changed by allowing getScalarValue to clone
6572     // the lane zero values for uniforms rather than asserting.
6573     for (Use &U : I->operands())
6574       if (auto *J = dyn_cast<Instruction>(U.get()))
6575         if (isUniformAfterVectorization(J, VF))
6576           return false;
6577 
6578     // Otherwise, we can scalarize the instruction.
6579     return true;
6580   };
6581 
6582   // Compute the expected cost discount from scalarizing the entire expression
6583   // feeding the predicated instruction. We currently only consider expressions
6584   // that are single-use instruction chains.
6585   Worklist.push_back(PredInst);
6586   while (!Worklist.empty()) {
6587     Instruction *I = Worklist.pop_back_val();
6588 
6589     // If we've already analyzed the instruction, there's nothing to do.
6590     if (ScalarCosts.find(I) != ScalarCosts.end())
6591       continue;
6592 
6593     // Compute the cost of the vector instruction. Note that this cost already
6594     // includes the scalarization overhead of the predicated instruction.
6595     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6596 
6597     // Compute the cost of the scalarized instruction. This cost is the cost of
6598     // the instruction as if it wasn't if-converted and instead remained in the
6599     // predicated block. We will scale this cost by block probability after
6600     // computing the scalarization overhead.
6601     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6602     InstructionCost ScalarCost =
6603         VF.getKnownMinValue() *
6604         getInstructionCost(I, ElementCount::getFixed(1)).first;
6605 
6606     // Compute the scalarization overhead of needed insertelement instructions
6607     // and phi nodes.
6608     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6609       ScalarCost += TTI.getScalarizationOverhead(
6610           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6611           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6612       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6613       ScalarCost +=
6614           VF.getKnownMinValue() *
6615           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6616     }
6617 
6618     // Compute the scalarization overhead of needed extractelement
6619     // instructions. For each of the instruction's operands, if the operand can
6620     // be scalarized, add it to the worklist; otherwise, account for the
6621     // overhead.
6622     for (Use &U : I->operands())
6623       if (auto *J = dyn_cast<Instruction>(U.get())) {
6624         assert(VectorType::isValidElementType(J->getType()) &&
6625                "Instruction has non-scalar type");
6626         if (canBeScalarized(J))
6627           Worklist.push_back(J);
6628         else if (needsExtract(J, VF)) {
6629           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6630           ScalarCost += TTI.getScalarizationOverhead(
6631               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6632               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6633         }
6634       }
6635 
6636     // Scale the total scalar cost by block probability.
6637     ScalarCost /= getReciprocalPredBlockProb();
6638 
6639     // Compute the discount. A non-negative discount means the vector version
6640     // of the instruction costs more, and scalarizing would be beneficial.
6641     Discount += VectorCost - ScalarCost;
6642     ScalarCosts[I] = ScalarCost;
6643   }
6644 
6645   return *Discount.getValue();
6646 }
6647 
6648 LoopVectorizationCostModel::VectorizationCostTy
6649 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6650   VectorizationCostTy Cost;
6651 
6652   // For each block.
6653   for (BasicBlock *BB : TheLoop->blocks()) {
6654     VectorizationCostTy BlockCost;
6655 
6656     // For each instruction in the old loop.
6657     for (Instruction &I : BB->instructionsWithoutDebug()) {
6658       // Skip ignored values.
6659       if (ValuesToIgnore.count(&I) ||
6660           (VF.isVector() && VecValuesToIgnore.count(&I)))
6661         continue;
6662 
6663       VectorizationCostTy C = getInstructionCost(&I, VF);
6664 
6665       // Check if we should override the cost.
6666       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6667         C.first = InstructionCost(ForceTargetInstructionCost);
6668 
6669       BlockCost.first += C.first;
6670       BlockCost.second |= C.second;
6671       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6672                         << " for VF " << VF << " For instruction: " << I
6673                         << '\n');
6674     }
6675 
6676     // If we are vectorizing a predicated block, it will have been
6677     // if-converted. This means that the block's instructions (aside from
6678     // stores and instructions that may divide by zero) will now be
6679     // unconditionally executed. For the scalar case, we may not always execute
6680     // the predicated block, if it is an if-else block. Thus, scale the block's
6681     // cost by the probability of executing it. blockNeedsPredication from
6682     // Legal is used so as to not include all blocks in tail folded loops.
6683     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6684       BlockCost.first /= getReciprocalPredBlockProb();
6685 
6686     Cost.first += BlockCost.first;
6687     Cost.second |= BlockCost.second;
6688   }
6689 
6690   return Cost;
6691 }
6692 
6693 /// Gets Address Access SCEV after verifying that the access pattern
6694 /// is loop invariant except the induction variable dependence.
6695 ///
6696 /// This SCEV can be sent to the Target in order to estimate the address
6697 /// calculation cost.
6698 static const SCEV *getAddressAccessSCEV(
6699               Value *Ptr,
6700               LoopVectorizationLegality *Legal,
6701               PredicatedScalarEvolution &PSE,
6702               const Loop *TheLoop) {
6703 
6704   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6705   if (!Gep)
6706     return nullptr;
6707 
6708   // We are looking for a gep with all loop invariant indices except for one
6709   // which should be an induction variable.
6710   auto SE = PSE.getSE();
6711   unsigned NumOperands = Gep->getNumOperands();
6712   for (unsigned i = 1; i < NumOperands; ++i) {
6713     Value *Opd = Gep->getOperand(i);
6714     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6715         !Legal->isInductionVariable(Opd))
6716       return nullptr;
6717   }
6718 
6719   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6720   return PSE.getSCEV(Ptr);
6721 }
6722 
6723 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6724   return Legal->hasStride(I->getOperand(0)) ||
6725          Legal->hasStride(I->getOperand(1));
6726 }
6727 
6728 InstructionCost
6729 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6730                                                         ElementCount VF) {
6731   assert(VF.isVector() &&
6732          "Scalarization cost of instruction implies vectorization.");
6733   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6734   Type *ValTy = getMemInstValueType(I);
6735   auto SE = PSE.getSE();
6736 
6737   unsigned AS = getLoadStoreAddressSpace(I);
6738   Value *Ptr = getLoadStorePointerOperand(I);
6739   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6740 
6741   // Figure out whether the access is strided and get the stride value
6742   // if it's known in compile time
6743   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6744 
6745   // Get the cost of the scalar memory instruction and address computation.
6746   InstructionCost Cost =
6747       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6748 
6749   // Don't pass *I here, since it is scalar but will actually be part of a
6750   // vectorized loop where the user of it is a vectorized instruction.
6751   const Align Alignment = getLoadStoreAlignment(I);
6752   Cost += VF.getKnownMinValue() *
6753           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6754                               AS, TTI::TCK_RecipThroughput);
6755 
6756   // Get the overhead of the extractelement and insertelement instructions
6757   // we might create due to scalarization.
6758   Cost += getScalarizationOverhead(I, VF);
6759 
6760   // If we have a predicated load/store, it will need extra i1 extracts and
6761   // conditional branches, but may not be executed for each vector lane. Scale
6762   // the cost by the probability of executing the predicated block.
6763   if (isPredicatedInst(I)) {
6764     Cost /= getReciprocalPredBlockProb();
6765 
6766     // Add the cost of an i1 extract and a branch
6767     auto *Vec_i1Ty =
6768         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6769     Cost += TTI.getScalarizationOverhead(
6770         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6771         /*Insert=*/false, /*Extract=*/true);
6772     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6773 
6774     if (useEmulatedMaskMemRefHack(I))
6775       // Artificially setting to a high enough value to practically disable
6776       // vectorization with such operations.
6777       Cost = 3000000;
6778   }
6779 
6780   return Cost;
6781 }
6782 
6783 InstructionCost
6784 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6785                                                     ElementCount VF) {
6786   Type *ValTy = getMemInstValueType(I);
6787   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6788   Value *Ptr = getLoadStorePointerOperand(I);
6789   unsigned AS = getLoadStoreAddressSpace(I);
6790   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6791   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6792 
6793   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6794          "Stride should be 1 or -1 for consecutive memory access");
6795   const Align Alignment = getLoadStoreAlignment(I);
6796   InstructionCost Cost = 0;
6797   if (Legal->isMaskRequired(I))
6798     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6799                                       CostKind);
6800   else
6801     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6802                                 CostKind, I);
6803 
6804   bool Reverse = ConsecutiveStride < 0;
6805   if (Reverse)
6806     Cost +=
6807         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6808   return Cost;
6809 }
6810 
6811 InstructionCost
6812 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6813                                                 ElementCount VF) {
6814   assert(Legal->isUniformMemOp(*I));
6815 
6816   Type *ValTy = getMemInstValueType(I);
6817   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6818   const Align Alignment = getLoadStoreAlignment(I);
6819   unsigned AS = getLoadStoreAddressSpace(I);
6820   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6821   if (isa<LoadInst>(I)) {
6822     return TTI.getAddressComputationCost(ValTy) +
6823            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6824                                CostKind) +
6825            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6826   }
6827   StoreInst *SI = cast<StoreInst>(I);
6828 
6829   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6830   return TTI.getAddressComputationCost(ValTy) +
6831          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6832                              CostKind) +
6833          (isLoopInvariantStoreValue
6834               ? 0
6835               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6836                                        VF.getKnownMinValue() - 1));
6837 }
6838 
6839 InstructionCost
6840 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6841                                                  ElementCount VF) {
6842   Type *ValTy = getMemInstValueType(I);
6843   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6844   const Align Alignment = getLoadStoreAlignment(I);
6845   const Value *Ptr = getLoadStorePointerOperand(I);
6846 
6847   return TTI.getAddressComputationCost(VectorTy) +
6848          TTI.getGatherScatterOpCost(
6849              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6850              TargetTransformInfo::TCK_RecipThroughput, I);
6851 }
6852 
6853 InstructionCost
6854 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6855                                                    ElementCount VF) {
6856   // TODO: Once we have support for interleaving with scalable vectors
6857   // we can calculate the cost properly here.
6858   if (VF.isScalable())
6859     return InstructionCost::getInvalid();
6860 
6861   Type *ValTy = getMemInstValueType(I);
6862   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6863   unsigned AS = getLoadStoreAddressSpace(I);
6864 
6865   auto Group = getInterleavedAccessGroup(I);
6866   assert(Group && "Fail to get an interleaved access group.");
6867 
6868   unsigned InterleaveFactor = Group->getFactor();
6869   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6870 
6871   // Holds the indices of existing members in an interleaved load group.
6872   // An interleaved store group doesn't need this as it doesn't allow gaps.
6873   SmallVector<unsigned, 4> Indices;
6874   if (isa<LoadInst>(I)) {
6875     for (unsigned i = 0; i < InterleaveFactor; i++)
6876       if (Group->getMember(i))
6877         Indices.push_back(i);
6878   }
6879 
6880   // Calculate the cost of the whole interleaved group.
6881   bool UseMaskForGaps =
6882       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6883   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6884       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6885       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6886 
6887   if (Group->isReverse()) {
6888     // TODO: Add support for reversed masked interleaved access.
6889     assert(!Legal->isMaskRequired(I) &&
6890            "Reverse masked interleaved access not supported.");
6891     Cost +=
6892         Group->getNumMembers() *
6893         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6894   }
6895   return Cost;
6896 }
6897 
6898 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6899     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6900   // Early exit for no inloop reductions
6901   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6902     return InstructionCost::getInvalid();
6903   auto *VectorTy = cast<VectorType>(Ty);
6904 
6905   // We are looking for a pattern of, and finding the minimal acceptable cost:
6906   //  reduce(mul(ext(A), ext(B))) or
6907   //  reduce(mul(A, B)) or
6908   //  reduce(ext(A)) or
6909   //  reduce(A).
6910   // The basic idea is that we walk down the tree to do that, finding the root
6911   // reduction instruction in InLoopReductionImmediateChains. From there we find
6912   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6913   // of the components. If the reduction cost is lower then we return it for the
6914   // reduction instruction and 0 for the other instructions in the pattern. If
6915   // it is not we return an invalid cost specifying the orignal cost method
6916   // should be used.
6917   Instruction *RetI = I;
6918   if ((RetI->getOpcode() == Instruction::SExt ||
6919        RetI->getOpcode() == Instruction::ZExt)) {
6920     if (!RetI->hasOneUser())
6921       return InstructionCost::getInvalid();
6922     RetI = RetI->user_back();
6923   }
6924   if (RetI->getOpcode() == Instruction::Mul &&
6925       RetI->user_back()->getOpcode() == Instruction::Add) {
6926     if (!RetI->hasOneUser())
6927       return InstructionCost::getInvalid();
6928     RetI = RetI->user_back();
6929   }
6930 
6931   // Test if the found instruction is a reduction, and if not return an invalid
6932   // cost specifying the parent to use the original cost modelling.
6933   if (!InLoopReductionImmediateChains.count(RetI))
6934     return InstructionCost::getInvalid();
6935 
6936   // Find the reduction this chain is a part of and calculate the basic cost of
6937   // the reduction on its own.
6938   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6939   Instruction *ReductionPhi = LastChain;
6940   while (!isa<PHINode>(ReductionPhi))
6941     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6942 
6943   RecurrenceDescriptor RdxDesc =
6944       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
6945   unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(),
6946                                                      VectorTy, false, CostKind);
6947 
6948   // Get the operand that was not the reduction chain and match it to one of the
6949   // patterns, returning the better cost if it is found.
6950   Instruction *RedOp = RetI->getOperand(1) == LastChain
6951                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6952                            : dyn_cast<Instruction>(RetI->getOperand(1));
6953 
6954   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6955 
6956   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
6957       !TheLoop->isLoopInvariant(RedOp)) {
6958     bool IsUnsigned = isa<ZExtInst>(RedOp);
6959     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6960     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6961         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6962         CostKind);
6963 
6964     unsigned ExtCost =
6965         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6966                              TTI::CastContextHint::None, CostKind, RedOp);
6967     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6968       return I == RetI ? *RedCost.getValue() : 0;
6969   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
6970     Instruction *Mul = RedOp;
6971     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
6972     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
6973     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
6974         Op0->getOpcode() == Op1->getOpcode() &&
6975         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6976         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6977       bool IsUnsigned = isa<ZExtInst>(Op0);
6978       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6979       // reduce(mul(ext, ext))
6980       unsigned ExtCost =
6981           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
6982                                TTI::CastContextHint::None, CostKind, Op0);
6983       InstructionCost MulCost =
6984           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
6985 
6986       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6987           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6988           CostKind);
6989 
6990       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
6991         return I == RetI ? *RedCost.getValue() : 0;
6992     } else {
6993       InstructionCost MulCost =
6994           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
6995 
6996       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6997           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6998           CostKind);
6999 
7000       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7001         return I == RetI ? *RedCost.getValue() : 0;
7002     }
7003   }
7004 
7005   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7006 }
7007 
7008 InstructionCost
7009 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7010                                                      ElementCount VF) {
7011   // Calculate scalar cost only. Vectorization cost should be ready at this
7012   // moment.
7013   if (VF.isScalar()) {
7014     Type *ValTy = getMemInstValueType(I);
7015     const Align Alignment = getLoadStoreAlignment(I);
7016     unsigned AS = getLoadStoreAddressSpace(I);
7017 
7018     return TTI.getAddressComputationCost(ValTy) +
7019            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7020                                TTI::TCK_RecipThroughput, I);
7021   }
7022   return getWideningCost(I, VF);
7023 }
7024 
7025 LoopVectorizationCostModel::VectorizationCostTy
7026 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7027                                                ElementCount VF) {
7028   // If we know that this instruction will remain uniform, check the cost of
7029   // the scalar version.
7030   if (isUniformAfterVectorization(I, VF))
7031     VF = ElementCount::getFixed(1);
7032 
7033   if (VF.isVector() && isProfitableToScalarize(I, VF))
7034     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7035 
7036   // Forced scalars do not have any scalarization overhead.
7037   auto ForcedScalar = ForcedScalars.find(VF);
7038   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7039     auto InstSet = ForcedScalar->second;
7040     if (InstSet.count(I))
7041       return VectorizationCostTy(
7042           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7043            VF.getKnownMinValue()),
7044           false);
7045   }
7046 
7047   Type *VectorTy;
7048   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7049 
7050   bool TypeNotScalarized =
7051       VF.isVector() && VectorTy->isVectorTy() &&
7052       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7053   return VectorizationCostTy(C, TypeNotScalarized);
7054 }
7055 
7056 InstructionCost
7057 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7058                                                      ElementCount VF) {
7059 
7060   if (VF.isScalable())
7061     return InstructionCost::getInvalid();
7062 
7063   if (VF.isScalar())
7064     return 0;
7065 
7066   InstructionCost Cost = 0;
7067   Type *RetTy = ToVectorTy(I->getType(), VF);
7068   if (!RetTy->isVoidTy() &&
7069       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7070     Cost += TTI.getScalarizationOverhead(
7071         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7072         true, false);
7073 
7074   // Some targets keep addresses scalar.
7075   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7076     return Cost;
7077 
7078   // Some targets support efficient element stores.
7079   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7080     return Cost;
7081 
7082   // Collect operands to consider.
7083   CallInst *CI = dyn_cast<CallInst>(I);
7084   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7085 
7086   // Skip operands that do not require extraction/scalarization and do not incur
7087   // any overhead.
7088   SmallVector<Type *> Tys;
7089   for (auto *V : filterExtractingOperands(Ops, VF))
7090     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7091   return Cost + TTI.getOperandsScalarizationOverhead(
7092                     filterExtractingOperands(Ops, VF), Tys);
7093 }
7094 
7095 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7096   if (VF.isScalar())
7097     return;
7098   NumPredStores = 0;
7099   for (BasicBlock *BB : TheLoop->blocks()) {
7100     // For each instruction in the old loop.
7101     for (Instruction &I : *BB) {
7102       Value *Ptr =  getLoadStorePointerOperand(&I);
7103       if (!Ptr)
7104         continue;
7105 
7106       // TODO: We should generate better code and update the cost model for
7107       // predicated uniform stores. Today they are treated as any other
7108       // predicated store (see added test cases in
7109       // invariant-store-vectorization.ll).
7110       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7111         NumPredStores++;
7112 
7113       if (Legal->isUniformMemOp(I)) {
7114         // TODO: Avoid replicating loads and stores instead of
7115         // relying on instcombine to remove them.
7116         // Load: Scalar load + broadcast
7117         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7118         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7119         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7120         continue;
7121       }
7122 
7123       // We assume that widening is the best solution when possible.
7124       if (memoryInstructionCanBeWidened(&I, VF)) {
7125         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7126         int ConsecutiveStride =
7127                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7128         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7129                "Expected consecutive stride.");
7130         InstWidening Decision =
7131             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7132         setWideningDecision(&I, VF, Decision, Cost);
7133         continue;
7134       }
7135 
7136       // Choose between Interleaving, Gather/Scatter or Scalarization.
7137       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7138       unsigned NumAccesses = 1;
7139       if (isAccessInterleaved(&I)) {
7140         auto Group = getInterleavedAccessGroup(&I);
7141         assert(Group && "Fail to get an interleaved access group.");
7142 
7143         // Make one decision for the whole group.
7144         if (getWideningDecision(&I, VF) != CM_Unknown)
7145           continue;
7146 
7147         NumAccesses = Group->getNumMembers();
7148         if (interleavedAccessCanBeWidened(&I, VF))
7149           InterleaveCost = getInterleaveGroupCost(&I, VF);
7150       }
7151 
7152       InstructionCost GatherScatterCost =
7153           isLegalGatherOrScatter(&I)
7154               ? getGatherScatterCost(&I, VF) * NumAccesses
7155               : InstructionCost::getInvalid();
7156 
7157       InstructionCost ScalarizationCost =
7158           !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses
7159                            : InstructionCost::getInvalid();
7160 
7161       // Choose better solution for the current VF,
7162       // write down this decision and use it during vectorization.
7163       InstructionCost Cost;
7164       InstWidening Decision;
7165       if (InterleaveCost <= GatherScatterCost &&
7166           InterleaveCost < ScalarizationCost) {
7167         Decision = CM_Interleave;
7168         Cost = InterleaveCost;
7169       } else if (GatherScatterCost < ScalarizationCost) {
7170         Decision = CM_GatherScatter;
7171         Cost = GatherScatterCost;
7172       } else {
7173         assert(!VF.isScalable() &&
7174                "We cannot yet scalarise for scalable vectors");
7175         Decision = CM_Scalarize;
7176         Cost = ScalarizationCost;
7177       }
7178       // If the instructions belongs to an interleave group, the whole group
7179       // receives the same decision. The whole group receives the cost, but
7180       // the cost will actually be assigned to one instruction.
7181       if (auto Group = getInterleavedAccessGroup(&I))
7182         setWideningDecision(Group, VF, Decision, Cost);
7183       else
7184         setWideningDecision(&I, VF, Decision, Cost);
7185     }
7186   }
7187 
7188   // Make sure that any load of address and any other address computation
7189   // remains scalar unless there is gather/scatter support. This avoids
7190   // inevitable extracts into address registers, and also has the benefit of
7191   // activating LSR more, since that pass can't optimize vectorized
7192   // addresses.
7193   if (TTI.prefersVectorizedAddressing())
7194     return;
7195 
7196   // Start with all scalar pointer uses.
7197   SmallPtrSet<Instruction *, 8> AddrDefs;
7198   for (BasicBlock *BB : TheLoop->blocks())
7199     for (Instruction &I : *BB) {
7200       Instruction *PtrDef =
7201         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7202       if (PtrDef && TheLoop->contains(PtrDef) &&
7203           getWideningDecision(&I, VF) != CM_GatherScatter)
7204         AddrDefs.insert(PtrDef);
7205     }
7206 
7207   // Add all instructions used to generate the addresses.
7208   SmallVector<Instruction *, 4> Worklist;
7209   append_range(Worklist, AddrDefs);
7210   while (!Worklist.empty()) {
7211     Instruction *I = Worklist.pop_back_val();
7212     for (auto &Op : I->operands())
7213       if (auto *InstOp = dyn_cast<Instruction>(Op))
7214         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7215             AddrDefs.insert(InstOp).second)
7216           Worklist.push_back(InstOp);
7217   }
7218 
7219   for (auto *I : AddrDefs) {
7220     if (isa<LoadInst>(I)) {
7221       // Setting the desired widening decision should ideally be handled in
7222       // by cost functions, but since this involves the task of finding out
7223       // if the loaded register is involved in an address computation, it is
7224       // instead changed here when we know this is the case.
7225       InstWidening Decision = getWideningDecision(I, VF);
7226       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7227         // Scalarize a widened load of address.
7228         setWideningDecision(
7229             I, VF, CM_Scalarize,
7230             (VF.getKnownMinValue() *
7231              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7232       else if (auto Group = getInterleavedAccessGroup(I)) {
7233         // Scalarize an interleave group of address loads.
7234         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7235           if (Instruction *Member = Group->getMember(I))
7236             setWideningDecision(
7237                 Member, VF, CM_Scalarize,
7238                 (VF.getKnownMinValue() *
7239                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7240         }
7241       }
7242     } else
7243       // Make sure I gets scalarized and a cost estimate without
7244       // scalarization overhead.
7245       ForcedScalars[VF].insert(I);
7246   }
7247 }
7248 
7249 InstructionCost
7250 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7251                                                Type *&VectorTy) {
7252   Type *RetTy = I->getType();
7253   if (canTruncateToMinimalBitwidth(I, VF))
7254     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7255   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7256   auto SE = PSE.getSE();
7257   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7258 
7259   // TODO: We need to estimate the cost of intrinsic calls.
7260   switch (I->getOpcode()) {
7261   case Instruction::GetElementPtr:
7262     // We mark this instruction as zero-cost because the cost of GEPs in
7263     // vectorized code depends on whether the corresponding memory instruction
7264     // is scalarized or not. Therefore, we handle GEPs with the memory
7265     // instruction cost.
7266     return 0;
7267   case Instruction::Br: {
7268     // In cases of scalarized and predicated instructions, there will be VF
7269     // predicated blocks in the vectorized loop. Each branch around these
7270     // blocks requires also an extract of its vector compare i1 element.
7271     bool ScalarPredicatedBB = false;
7272     BranchInst *BI = cast<BranchInst>(I);
7273     if (VF.isVector() && BI->isConditional() &&
7274         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7275          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7276       ScalarPredicatedBB = true;
7277 
7278     if (ScalarPredicatedBB) {
7279       // Return cost for branches around scalarized and predicated blocks.
7280       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7281       auto *Vec_i1Ty =
7282           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7283       return (TTI.getScalarizationOverhead(
7284                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7285                   false, true) +
7286               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7287                VF.getKnownMinValue()));
7288     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7289       // The back-edge branch will remain, as will all scalar branches.
7290       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7291     else
7292       // This branch will be eliminated by if-conversion.
7293       return 0;
7294     // Note: We currently assume zero cost for an unconditional branch inside
7295     // a predicated block since it will become a fall-through, although we
7296     // may decide in the future to call TTI for all branches.
7297   }
7298   case Instruction::PHI: {
7299     auto *Phi = cast<PHINode>(I);
7300 
7301     // First-order recurrences are replaced by vector shuffles inside the loop.
7302     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7303     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7304       return TTI.getShuffleCost(
7305           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7306           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7307 
7308     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7309     // converted into select instructions. We require N - 1 selects per phi
7310     // node, where N is the number of incoming values.
7311     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7312       return (Phi->getNumIncomingValues() - 1) *
7313              TTI.getCmpSelInstrCost(
7314                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7315                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7316                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7317 
7318     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7319   }
7320   case Instruction::UDiv:
7321   case Instruction::SDiv:
7322   case Instruction::URem:
7323   case Instruction::SRem:
7324     // If we have a predicated instruction, it may not be executed for each
7325     // vector lane. Get the scalarization cost and scale this amount by the
7326     // probability of executing the predicated block. If the instruction is not
7327     // predicated, we fall through to the next case.
7328     if (VF.isVector() && isScalarWithPredication(I)) {
7329       InstructionCost Cost = 0;
7330 
7331       // These instructions have a non-void type, so account for the phi nodes
7332       // that we will create. This cost is likely to be zero. The phi node
7333       // cost, if any, should be scaled by the block probability because it
7334       // models a copy at the end of each predicated block.
7335       Cost += VF.getKnownMinValue() *
7336               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7337 
7338       // The cost of the non-predicated instruction.
7339       Cost += VF.getKnownMinValue() *
7340               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7341 
7342       // The cost of insertelement and extractelement instructions needed for
7343       // scalarization.
7344       Cost += getScalarizationOverhead(I, VF);
7345 
7346       // Scale the cost by the probability of executing the predicated blocks.
7347       // This assumes the predicated block for each vector lane is equally
7348       // likely.
7349       return Cost / getReciprocalPredBlockProb();
7350     }
7351     LLVM_FALLTHROUGH;
7352   case Instruction::Add:
7353   case Instruction::FAdd:
7354   case Instruction::Sub:
7355   case Instruction::FSub:
7356   case Instruction::Mul:
7357   case Instruction::FMul:
7358   case Instruction::FDiv:
7359   case Instruction::FRem:
7360   case Instruction::Shl:
7361   case Instruction::LShr:
7362   case Instruction::AShr:
7363   case Instruction::And:
7364   case Instruction::Or:
7365   case Instruction::Xor: {
7366     // Since we will replace the stride by 1 the multiplication should go away.
7367     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7368       return 0;
7369 
7370     // Detect reduction patterns
7371     InstructionCost RedCost;
7372     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7373             .isValid())
7374       return RedCost;
7375 
7376     // Certain instructions can be cheaper to vectorize if they have a constant
7377     // second vector operand. One example of this are shifts on x86.
7378     Value *Op2 = I->getOperand(1);
7379     TargetTransformInfo::OperandValueProperties Op2VP;
7380     TargetTransformInfo::OperandValueKind Op2VK =
7381         TTI.getOperandInfo(Op2, Op2VP);
7382     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7383       Op2VK = TargetTransformInfo::OK_UniformValue;
7384 
7385     SmallVector<const Value *, 4> Operands(I->operand_values());
7386     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7387     return N * TTI.getArithmeticInstrCost(
7388                    I->getOpcode(), VectorTy, CostKind,
7389                    TargetTransformInfo::OK_AnyValue,
7390                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7391   }
7392   case Instruction::FNeg: {
7393     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
7394     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7395     return N * TTI.getArithmeticInstrCost(
7396                    I->getOpcode(), VectorTy, CostKind,
7397                    TargetTransformInfo::OK_AnyValue,
7398                    TargetTransformInfo::OK_AnyValue,
7399                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
7400                    I->getOperand(0), I);
7401   }
7402   case Instruction::Select: {
7403     SelectInst *SI = cast<SelectInst>(I);
7404     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7405     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7406     Type *CondTy = SI->getCondition()->getType();
7407     if (!ScalarCond)
7408       CondTy = VectorType::get(CondTy, VF);
7409     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7410                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7411   }
7412   case Instruction::ICmp:
7413   case Instruction::FCmp: {
7414     Type *ValTy = I->getOperand(0)->getType();
7415     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7416     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7417       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7418     VectorTy = ToVectorTy(ValTy, VF);
7419     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7420                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7421   }
7422   case Instruction::Store:
7423   case Instruction::Load: {
7424     ElementCount Width = VF;
7425     if (Width.isVector()) {
7426       InstWidening Decision = getWideningDecision(I, Width);
7427       assert(Decision != CM_Unknown &&
7428              "CM decision should be taken at this point");
7429       if (Decision == CM_Scalarize)
7430         Width = ElementCount::getFixed(1);
7431     }
7432     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7433     return getMemoryInstructionCost(I, VF);
7434   }
7435   case Instruction::ZExt:
7436   case Instruction::SExt:
7437   case Instruction::FPToUI:
7438   case Instruction::FPToSI:
7439   case Instruction::FPExt:
7440   case Instruction::PtrToInt:
7441   case Instruction::IntToPtr:
7442   case Instruction::SIToFP:
7443   case Instruction::UIToFP:
7444   case Instruction::Trunc:
7445   case Instruction::FPTrunc:
7446   case Instruction::BitCast: {
7447     // Computes the CastContextHint from a Load/Store instruction.
7448     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7449       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7450              "Expected a load or a store!");
7451 
7452       if (VF.isScalar() || !TheLoop->contains(I))
7453         return TTI::CastContextHint::Normal;
7454 
7455       switch (getWideningDecision(I, VF)) {
7456       case LoopVectorizationCostModel::CM_GatherScatter:
7457         return TTI::CastContextHint::GatherScatter;
7458       case LoopVectorizationCostModel::CM_Interleave:
7459         return TTI::CastContextHint::Interleave;
7460       case LoopVectorizationCostModel::CM_Scalarize:
7461       case LoopVectorizationCostModel::CM_Widen:
7462         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7463                                         : TTI::CastContextHint::Normal;
7464       case LoopVectorizationCostModel::CM_Widen_Reverse:
7465         return TTI::CastContextHint::Reversed;
7466       case LoopVectorizationCostModel::CM_Unknown:
7467         llvm_unreachable("Instr did not go through cost modelling?");
7468       }
7469 
7470       llvm_unreachable("Unhandled case!");
7471     };
7472 
7473     unsigned Opcode = I->getOpcode();
7474     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7475     // For Trunc, the context is the only user, which must be a StoreInst.
7476     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7477       if (I->hasOneUse())
7478         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7479           CCH = ComputeCCH(Store);
7480     }
7481     // For Z/Sext, the context is the operand, which must be a LoadInst.
7482     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7483              Opcode == Instruction::FPExt) {
7484       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7485         CCH = ComputeCCH(Load);
7486     }
7487 
7488     // We optimize the truncation of induction variables having constant
7489     // integer steps. The cost of these truncations is the same as the scalar
7490     // operation.
7491     if (isOptimizableIVTruncate(I, VF)) {
7492       auto *Trunc = cast<TruncInst>(I);
7493       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7494                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7495     }
7496 
7497     // Detect reduction patterns
7498     InstructionCost RedCost;
7499     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7500             .isValid())
7501       return RedCost;
7502 
7503     Type *SrcScalarTy = I->getOperand(0)->getType();
7504     Type *SrcVecTy =
7505         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7506     if (canTruncateToMinimalBitwidth(I, VF)) {
7507       // This cast is going to be shrunk. This may remove the cast or it might
7508       // turn it into slightly different cast. For example, if MinBW == 16,
7509       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7510       //
7511       // Calculate the modified src and dest types.
7512       Type *MinVecTy = VectorTy;
7513       if (Opcode == Instruction::Trunc) {
7514         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7515         VectorTy =
7516             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7517       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7518         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7519         VectorTy =
7520             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7521       }
7522     }
7523 
7524     unsigned N;
7525     if (isScalarAfterVectorization(I, VF)) {
7526       assert(!VF.isScalable() && "VF is assumed to be non scalable");
7527       N = VF.getKnownMinValue();
7528     } else
7529       N = 1;
7530     return N *
7531            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7532   }
7533   case Instruction::Call: {
7534     bool NeedToScalarize;
7535     CallInst *CI = cast<CallInst>(I);
7536     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7537     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7538       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7539       return std::min(CallCost, IntrinsicCost);
7540     }
7541     return CallCost;
7542   }
7543   case Instruction::ExtractValue:
7544     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7545   default:
7546     // The cost of executing VF copies of the scalar instruction. This opcode
7547     // is unknown. Assume that it is the same as 'mul'.
7548     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
7549                                        Instruction::Mul, VectorTy, CostKind) +
7550            getScalarizationOverhead(I, VF);
7551   } // end of switch.
7552 }
7553 
7554 char LoopVectorize::ID = 0;
7555 
7556 static const char lv_name[] = "Loop Vectorization";
7557 
7558 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7559 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7560 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7561 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7562 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7563 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7564 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7565 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7566 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7567 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7568 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7569 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7570 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7571 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7572 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7573 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7574 
7575 namespace llvm {
7576 
7577 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7578 
7579 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7580                               bool VectorizeOnlyWhenForced) {
7581   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7582 }
7583 
7584 } // end namespace llvm
7585 
7586 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7587   // Check if the pointer operand of a load or store instruction is
7588   // consecutive.
7589   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7590     return Legal->isConsecutivePtr(Ptr);
7591   return false;
7592 }
7593 
7594 void LoopVectorizationCostModel::collectValuesToIgnore() {
7595   // Ignore ephemeral values.
7596   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7597 
7598   // Ignore type-promoting instructions we identified during reduction
7599   // detection.
7600   for (auto &Reduction : Legal->getReductionVars()) {
7601     RecurrenceDescriptor &RedDes = Reduction.second;
7602     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7603     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7604   }
7605   // Ignore type-casting instructions we identified during induction
7606   // detection.
7607   for (auto &Induction : Legal->getInductionVars()) {
7608     InductionDescriptor &IndDes = Induction.second;
7609     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7610     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7611   }
7612 }
7613 
7614 void LoopVectorizationCostModel::collectInLoopReductions() {
7615   for (auto &Reduction : Legal->getReductionVars()) {
7616     PHINode *Phi = Reduction.first;
7617     RecurrenceDescriptor &RdxDesc = Reduction.second;
7618 
7619     // We don't collect reductions that are type promoted (yet).
7620     if (RdxDesc.getRecurrenceType() != Phi->getType())
7621       continue;
7622 
7623     // If the target would prefer this reduction to happen "in-loop", then we
7624     // want to record it as such.
7625     unsigned Opcode = RdxDesc.getOpcode();
7626     if (!PreferInLoopReductions &&
7627         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7628                                    TargetTransformInfo::ReductionFlags()))
7629       continue;
7630 
7631     // Check that we can correctly put the reductions into the loop, by
7632     // finding the chain of operations that leads from the phi to the loop
7633     // exit value.
7634     SmallVector<Instruction *, 4> ReductionOperations =
7635         RdxDesc.getReductionOpChain(Phi, TheLoop);
7636     bool InLoop = !ReductionOperations.empty();
7637     if (InLoop) {
7638       InLoopReductionChains[Phi] = ReductionOperations;
7639       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7640       Instruction *LastChain = Phi;
7641       for (auto *I : ReductionOperations) {
7642         InLoopReductionImmediateChains[I] = LastChain;
7643         LastChain = I;
7644       }
7645     }
7646     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7647                       << " reduction for phi: " << *Phi << "\n");
7648   }
7649 }
7650 
7651 // TODO: we could return a pair of values that specify the max VF and
7652 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7653 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7654 // doesn't have a cost model that can choose which plan to execute if
7655 // more than one is generated.
7656 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7657                                  LoopVectorizationCostModel &CM) {
7658   unsigned WidestType;
7659   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7660   return WidestVectorRegBits / WidestType;
7661 }
7662 
7663 VectorizationFactor
7664 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7665   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7666   ElementCount VF = UserVF;
7667   // Outer loop handling: They may require CFG and instruction level
7668   // transformations before even evaluating whether vectorization is profitable.
7669   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7670   // the vectorization pipeline.
7671   if (!OrigLoop->isInnermost()) {
7672     // If the user doesn't provide a vectorization factor, determine a
7673     // reasonable one.
7674     if (UserVF.isZero()) {
7675       VF = ElementCount::getFixed(
7676           determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM));
7677       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7678 
7679       // Make sure we have a VF > 1 for stress testing.
7680       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7681         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7682                           << "overriding computed VF.\n");
7683         VF = ElementCount::getFixed(4);
7684       }
7685     }
7686     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7687     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7688            "VF needs to be a power of two");
7689     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7690                       << "VF " << VF << " to build VPlans.\n");
7691     buildVPlans(VF, VF);
7692 
7693     // For VPlan build stress testing, we bail out after VPlan construction.
7694     if (VPlanBuildStressTest)
7695       return VectorizationFactor::Disabled();
7696 
7697     return {VF, 0 /*Cost*/};
7698   }
7699 
7700   LLVM_DEBUG(
7701       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7702                 "VPlan-native path.\n");
7703   return VectorizationFactor::Disabled();
7704 }
7705 
7706 Optional<VectorizationFactor>
7707 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7708   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7709   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7710   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7711     return None;
7712 
7713   // Invalidate interleave groups if all blocks of loop will be predicated.
7714   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7715       !useMaskedInterleavedAccesses(*TTI)) {
7716     LLVM_DEBUG(
7717         dbgs()
7718         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7719            "which requires masked-interleaved support.\n");
7720     if (CM.InterleaveInfo.invalidateGroups())
7721       // Invalidating interleave groups also requires invalidating all decisions
7722       // based on them, which includes widening decisions and uniform and scalar
7723       // values.
7724       CM.invalidateCostModelingDecisions();
7725   }
7726 
7727   ElementCount MaxVF = MaybeMaxVF.getValue();
7728   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7729 
7730   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7731   if (!UserVF.isZero() &&
7732       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7733     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7734     // VFs here, this should be reverted to only use legal UserVFs once the
7735     // loop below supports scalable VFs.
7736     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7737     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7738                       << " VF " << VF << ".\n");
7739     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7740            "VF needs to be a power of two");
7741     // Collect the instructions (and their associated costs) that will be more
7742     // profitable to scalarize.
7743     CM.selectUserVectorizationFactor(VF);
7744     CM.collectInLoopReductions();
7745     buildVPlansWithVPRecipes(VF, VF);
7746     LLVM_DEBUG(printPlans(dbgs()));
7747     return {{VF, 0}};
7748   }
7749 
7750   assert(!MaxVF.isScalable() &&
7751          "Scalable vectors not yet supported beyond this point");
7752 
7753   for (ElementCount VF = ElementCount::getFixed(1);
7754        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7755     // Collect Uniform and Scalar instructions after vectorization with VF.
7756     CM.collectUniformsAndScalars(VF);
7757 
7758     // Collect the instructions (and their associated costs) that will be more
7759     // profitable to scalarize.
7760     if (VF.isVector())
7761       CM.collectInstsToScalarize(VF);
7762   }
7763 
7764   CM.collectInLoopReductions();
7765 
7766   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7767   LLVM_DEBUG(printPlans(dbgs()));
7768   if (MaxVF.isScalar())
7769     return VectorizationFactor::Disabled();
7770 
7771   // Select the optimal vectorization factor.
7772   return CM.selectVectorizationFactor(MaxVF);
7773 }
7774 
7775 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7776   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7777                     << '\n');
7778   BestVF = VF;
7779   BestUF = UF;
7780 
7781   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7782     return !Plan->hasVF(VF);
7783   });
7784   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7785 }
7786 
7787 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7788                                            DominatorTree *DT) {
7789   // Perform the actual loop transformation.
7790 
7791   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7792   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7793   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7794 
7795   VPTransformState State{
7796       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7797   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7798   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7799   State.CanonicalIV = ILV.Induction;
7800 
7801   ILV.printDebugTracesAtStart();
7802 
7803   //===------------------------------------------------===//
7804   //
7805   // Notice: any optimization or new instruction that go
7806   // into the code below should also be implemented in
7807   // the cost-model.
7808   //
7809   //===------------------------------------------------===//
7810 
7811   // 2. Copy and widen instructions from the old loop into the new loop.
7812   VPlans.front()->execute(&State);
7813 
7814   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7815   //    predication, updating analyses.
7816   ILV.fixVectorizedLoop(State);
7817 
7818   ILV.printDebugTracesAtEnd();
7819 }
7820 
7821 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7822 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7823   for (const auto &Plan : VPlans)
7824     if (PrintVPlansInDotFormat)
7825       Plan->printDOT(O);
7826     else
7827       Plan->print(O);
7828 }
7829 #endif
7830 
7831 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7832     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7833 
7834   // We create new control-flow for the vectorized loop, so the original exit
7835   // conditions will be dead after vectorization if it's only used by the
7836   // terminator
7837   SmallVector<BasicBlock*> ExitingBlocks;
7838   OrigLoop->getExitingBlocks(ExitingBlocks);
7839   for (auto *BB : ExitingBlocks) {
7840     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7841     if (!Cmp || !Cmp->hasOneUse())
7842       continue;
7843 
7844     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7845     if (!DeadInstructions.insert(Cmp).second)
7846       continue;
7847 
7848     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7849     // TODO: can recurse through operands in general
7850     for (Value *Op : Cmp->operands()) {
7851       if (isa<TruncInst>(Op) && Op->hasOneUse())
7852           DeadInstructions.insert(cast<Instruction>(Op));
7853     }
7854   }
7855 
7856   // We create new "steps" for induction variable updates to which the original
7857   // induction variables map. An original update instruction will be dead if
7858   // all its users except the induction variable are dead.
7859   auto *Latch = OrigLoop->getLoopLatch();
7860   for (auto &Induction : Legal->getInductionVars()) {
7861     PHINode *Ind = Induction.first;
7862     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7863 
7864     // If the tail is to be folded by masking, the primary induction variable,
7865     // if exists, isn't dead: it will be used for masking. Don't kill it.
7866     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7867       continue;
7868 
7869     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7870           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7871         }))
7872       DeadInstructions.insert(IndUpdate);
7873 
7874     // We record as "Dead" also the type-casting instructions we had identified
7875     // during induction analysis. We don't need any handling for them in the
7876     // vectorized loop because we have proven that, under a proper runtime
7877     // test guarding the vectorized loop, the value of the phi, and the casted
7878     // value of the phi, are the same. The last instruction in this casting chain
7879     // will get its scalar/vector/widened def from the scalar/vector/widened def
7880     // of the respective phi node. Any other casts in the induction def-use chain
7881     // have no other uses outside the phi update chain, and will be ignored.
7882     InductionDescriptor &IndDes = Induction.second;
7883     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7884     DeadInstructions.insert(Casts.begin(), Casts.end());
7885   }
7886 }
7887 
7888 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7889 
7890 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7891 
7892 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7893                                         Instruction::BinaryOps BinOp) {
7894   // When unrolling and the VF is 1, we only need to add a simple scalar.
7895   Type *Ty = Val->getType();
7896   assert(!Ty->isVectorTy() && "Val must be a scalar");
7897 
7898   if (Ty->isFloatingPointTy()) {
7899     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7900 
7901     // Floating-point operations inherit FMF via the builder's flags.
7902     Value *MulOp = Builder.CreateFMul(C, Step);
7903     return Builder.CreateBinOp(BinOp, Val, MulOp);
7904   }
7905   Constant *C = ConstantInt::get(Ty, StartIdx);
7906   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7907 }
7908 
7909 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7910   SmallVector<Metadata *, 4> MDs;
7911   // Reserve first location for self reference to the LoopID metadata node.
7912   MDs.push_back(nullptr);
7913   bool IsUnrollMetadata = false;
7914   MDNode *LoopID = L->getLoopID();
7915   if (LoopID) {
7916     // First find existing loop unrolling disable metadata.
7917     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7918       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7919       if (MD) {
7920         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7921         IsUnrollMetadata =
7922             S && S->getString().startswith("llvm.loop.unroll.disable");
7923       }
7924       MDs.push_back(LoopID->getOperand(i));
7925     }
7926   }
7927 
7928   if (!IsUnrollMetadata) {
7929     // Add runtime unroll disable metadata.
7930     LLVMContext &Context = L->getHeader()->getContext();
7931     SmallVector<Metadata *, 1> DisableOperands;
7932     DisableOperands.push_back(
7933         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7934     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7935     MDs.push_back(DisableNode);
7936     MDNode *NewLoopID = MDNode::get(Context, MDs);
7937     // Set operand 0 to refer to the loop id itself.
7938     NewLoopID->replaceOperandWith(0, NewLoopID);
7939     L->setLoopID(NewLoopID);
7940   }
7941 }
7942 
7943 //===--------------------------------------------------------------------===//
7944 // EpilogueVectorizerMainLoop
7945 //===--------------------------------------------------------------------===//
7946 
7947 /// This function is partially responsible for generating the control flow
7948 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7949 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7950   MDNode *OrigLoopID = OrigLoop->getLoopID();
7951   Loop *Lp = createVectorLoopSkeleton("");
7952 
7953   // Generate the code to check the minimum iteration count of the vector
7954   // epilogue (see below).
7955   EPI.EpilogueIterationCountCheck =
7956       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
7957   EPI.EpilogueIterationCountCheck->setName("iter.check");
7958 
7959   // Generate the code to check any assumptions that we've made for SCEV
7960   // expressions.
7961   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
7962 
7963   // Generate the code that checks at runtime if arrays overlap. We put the
7964   // checks into a separate block to make the more common case of few elements
7965   // faster.
7966   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
7967 
7968   // Generate the iteration count check for the main loop, *after* the check
7969   // for the epilogue loop, so that the path-length is shorter for the case
7970   // that goes directly through the vector epilogue. The longer-path length for
7971   // the main loop is compensated for, by the gain from vectorizing the larger
7972   // trip count. Note: the branch will get updated later on when we vectorize
7973   // the epilogue.
7974   EPI.MainLoopIterationCountCheck =
7975       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
7976 
7977   // Generate the induction variable.
7978   OldInduction = Legal->getPrimaryInduction();
7979   Type *IdxTy = Legal->getWidestInductionType();
7980   Value *StartIdx = ConstantInt::get(IdxTy, 0);
7981   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
7982   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
7983   EPI.VectorTripCount = CountRoundDown;
7984   Induction =
7985       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
7986                               getDebugLocFromInstOrOperands(OldInduction));
7987 
7988   // Skip induction resume value creation here because they will be created in
7989   // the second pass. If we created them here, they wouldn't be used anyway,
7990   // because the vplan in the second pass still contains the inductions from the
7991   // original loop.
7992 
7993   return completeLoopSkeleton(Lp, OrigLoopID);
7994 }
7995 
7996 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7997   LLVM_DEBUG({
7998     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7999            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8000            << ", Main Loop UF:" << EPI.MainLoopUF
8001            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8002            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8003   });
8004 }
8005 
8006 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8007   DEBUG_WITH_TYPE(VerboseDebug, {
8008     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8009   });
8010 }
8011 
8012 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8013     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8014   assert(L && "Expected valid Loop.");
8015   assert(Bypass && "Expected valid bypass basic block.");
8016   unsigned VFactor =
8017       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8018   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8019   Value *Count = getOrCreateTripCount(L);
8020   // Reuse existing vector loop preheader for TC checks.
8021   // Note that new preheader block is generated for vector loop.
8022   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8023   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8024 
8025   // Generate code to check if the loop's trip count is less than VF * UF of the
8026   // main vector loop.
8027   auto P =
8028       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8029 
8030   Value *CheckMinIters = Builder.CreateICmp(
8031       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8032       "min.iters.check");
8033 
8034   if (!ForEpilogue)
8035     TCCheckBlock->setName("vector.main.loop.iter.check");
8036 
8037   // Create new preheader for vector loop.
8038   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8039                                    DT, LI, nullptr, "vector.ph");
8040 
8041   if (ForEpilogue) {
8042     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8043                                  DT->getNode(Bypass)->getIDom()) &&
8044            "TC check is expected to dominate Bypass");
8045 
8046     // Update dominator for Bypass & LoopExit.
8047     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8048     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8049 
8050     LoopBypassBlocks.push_back(TCCheckBlock);
8051 
8052     // Save the trip count so we don't have to regenerate it in the
8053     // vec.epilog.iter.check. This is safe to do because the trip count
8054     // generated here dominates the vector epilog iter check.
8055     EPI.TripCount = Count;
8056   }
8057 
8058   ReplaceInstWithInst(
8059       TCCheckBlock->getTerminator(),
8060       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8061 
8062   return TCCheckBlock;
8063 }
8064 
8065 //===--------------------------------------------------------------------===//
8066 // EpilogueVectorizerEpilogueLoop
8067 //===--------------------------------------------------------------------===//
8068 
8069 /// This function is partially responsible for generating the control flow
8070 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8071 BasicBlock *
8072 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8073   MDNode *OrigLoopID = OrigLoop->getLoopID();
8074   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8075 
8076   // Now, compare the remaining count and if there aren't enough iterations to
8077   // execute the vectorized epilogue skip to the scalar part.
8078   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8079   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8080   LoopVectorPreHeader =
8081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8082                  LI, nullptr, "vec.epilog.ph");
8083   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8084                                           VecEpilogueIterationCountCheck);
8085 
8086   // Adjust the control flow taking the state info from the main loop
8087   // vectorization into account.
8088   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8089          "expected this to be saved from the previous pass.");
8090   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8091       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8092 
8093   DT->changeImmediateDominator(LoopVectorPreHeader,
8094                                EPI.MainLoopIterationCountCheck);
8095 
8096   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8097       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8098 
8099   if (EPI.SCEVSafetyCheck)
8100     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8101         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8102   if (EPI.MemSafetyCheck)
8103     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8104         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8105 
8106   DT->changeImmediateDominator(
8107       VecEpilogueIterationCountCheck,
8108       VecEpilogueIterationCountCheck->getSinglePredecessor());
8109 
8110   DT->changeImmediateDominator(LoopScalarPreHeader,
8111                                EPI.EpilogueIterationCountCheck);
8112   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8113 
8114   // Keep track of bypass blocks, as they feed start values to the induction
8115   // phis in the scalar loop preheader.
8116   if (EPI.SCEVSafetyCheck)
8117     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8118   if (EPI.MemSafetyCheck)
8119     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8120   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8121 
8122   // Generate a resume induction for the vector epilogue and put it in the
8123   // vector epilogue preheader
8124   Type *IdxTy = Legal->getWidestInductionType();
8125   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8126                                          LoopVectorPreHeader->getFirstNonPHI());
8127   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8128   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8129                            EPI.MainLoopIterationCountCheck);
8130 
8131   // Generate the induction variable.
8132   OldInduction = Legal->getPrimaryInduction();
8133   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8134   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8135   Value *StartIdx = EPResumeVal;
8136   Induction =
8137       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8138                               getDebugLocFromInstOrOperands(OldInduction));
8139 
8140   // Generate induction resume values. These variables save the new starting
8141   // indexes for the scalar loop. They are used to test if there are any tail
8142   // iterations left once the vector loop has completed.
8143   // Note that when the vectorized epilogue is skipped due to iteration count
8144   // check, then the resume value for the induction variable comes from
8145   // the trip count of the main vector loop, hence passing the AdditionalBypass
8146   // argument.
8147   createInductionResumeValues(Lp, CountRoundDown,
8148                               {VecEpilogueIterationCountCheck,
8149                                EPI.VectorTripCount} /* AdditionalBypass */);
8150 
8151   AddRuntimeUnrollDisableMetaData(Lp);
8152   return completeLoopSkeleton(Lp, OrigLoopID);
8153 }
8154 
8155 BasicBlock *
8156 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8157     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8158 
8159   assert(EPI.TripCount &&
8160          "Expected trip count to have been safed in the first pass.");
8161   assert(
8162       (!isa<Instruction>(EPI.TripCount) ||
8163        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8164       "saved trip count does not dominate insertion point.");
8165   Value *TC = EPI.TripCount;
8166   IRBuilder<> Builder(Insert->getTerminator());
8167   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8168 
8169   // Generate code to check if the loop's trip count is less than VF * UF of the
8170   // vector epilogue loop.
8171   auto P =
8172       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8173 
8174   Value *CheckMinIters = Builder.CreateICmp(
8175       P, Count,
8176       ConstantInt::get(Count->getType(),
8177                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8178       "min.epilog.iters.check");
8179 
8180   ReplaceInstWithInst(
8181       Insert->getTerminator(),
8182       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8183 
8184   LoopBypassBlocks.push_back(Insert);
8185   return Insert;
8186 }
8187 
8188 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8189   LLVM_DEBUG({
8190     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8191            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8192            << ", Main Loop UF:" << EPI.MainLoopUF
8193            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8194            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8195   });
8196 }
8197 
8198 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8199   DEBUG_WITH_TYPE(VerboseDebug, {
8200     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8201   });
8202 }
8203 
8204 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8205     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8206   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8207   bool PredicateAtRangeStart = Predicate(Range.Start);
8208 
8209   for (ElementCount TmpVF = Range.Start * 2;
8210        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8211     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8212       Range.End = TmpVF;
8213       break;
8214     }
8215 
8216   return PredicateAtRangeStart;
8217 }
8218 
8219 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8220 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8221 /// of VF's starting at a given VF and extending it as much as possible. Each
8222 /// vectorization decision can potentially shorten this sub-range during
8223 /// buildVPlan().
8224 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8225                                            ElementCount MaxVF) {
8226   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8227   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8228     VFRange SubRange = {VF, MaxVFPlusOne};
8229     VPlans.push_back(buildVPlan(SubRange));
8230     VF = SubRange.End;
8231   }
8232 }
8233 
8234 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8235                                          VPlanPtr &Plan) {
8236   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8237 
8238   // Look for cached value.
8239   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8240   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8241   if (ECEntryIt != EdgeMaskCache.end())
8242     return ECEntryIt->second;
8243 
8244   VPValue *SrcMask = createBlockInMask(Src, Plan);
8245 
8246   // The terminator has to be a branch inst!
8247   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8248   assert(BI && "Unexpected terminator found");
8249 
8250   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8251     return EdgeMaskCache[Edge] = SrcMask;
8252 
8253   // If source is an exiting block, we know the exit edge is dynamically dead
8254   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8255   // adding uses of an otherwise potentially dead instruction.
8256   if (OrigLoop->isLoopExiting(Src))
8257     return EdgeMaskCache[Edge] = SrcMask;
8258 
8259   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8260   assert(EdgeMask && "No Edge Mask found for condition");
8261 
8262   if (BI->getSuccessor(0) != Dst)
8263     EdgeMask = Builder.createNot(EdgeMask);
8264 
8265   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8266     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8267     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8268     // The select version does not introduce new UB if SrcMask is false and
8269     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8270     VPValue *False = Plan->getOrAddVPValue(
8271         ConstantInt::getFalse(BI->getCondition()->getType()));
8272     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8273   }
8274 
8275   return EdgeMaskCache[Edge] = EdgeMask;
8276 }
8277 
8278 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8279   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8280 
8281   // Look for cached value.
8282   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8283   if (BCEntryIt != BlockMaskCache.end())
8284     return BCEntryIt->second;
8285 
8286   // All-one mask is modelled as no-mask following the convention for masked
8287   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8288   VPValue *BlockMask = nullptr;
8289 
8290   if (OrigLoop->getHeader() == BB) {
8291     if (!CM.blockNeedsPredication(BB))
8292       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8293 
8294     // Create the block in mask as the first non-phi instruction in the block.
8295     VPBuilder::InsertPointGuard Guard(Builder);
8296     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8297     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8298 
8299     // Introduce the early-exit compare IV <= BTC to form header block mask.
8300     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8301     // Start by constructing the desired canonical IV.
8302     VPValue *IV = nullptr;
8303     if (Legal->getPrimaryInduction())
8304       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8305     else {
8306       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8307       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8308       IV = IVRecipe->getVPValue();
8309     }
8310     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8311     bool TailFolded = !CM.isScalarEpilogueAllowed();
8312 
8313     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8314       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8315       // as a second argument, we only pass the IV here and extract the
8316       // tripcount from the transform state where codegen of the VP instructions
8317       // happen.
8318       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8319     } else {
8320       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8321     }
8322     return BlockMaskCache[BB] = BlockMask;
8323   }
8324 
8325   // This is the block mask. We OR all incoming edges.
8326   for (auto *Predecessor : predecessors(BB)) {
8327     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8328     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8329       return BlockMaskCache[BB] = EdgeMask;
8330 
8331     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8332       BlockMask = EdgeMask;
8333       continue;
8334     }
8335 
8336     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8337   }
8338 
8339   return BlockMaskCache[BB] = BlockMask;
8340 }
8341 
8342 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
8343                                                 VPlanPtr &Plan) {
8344   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8345          "Must be called with either a load or store");
8346 
8347   auto willWiden = [&](ElementCount VF) -> bool {
8348     if (VF.isScalar())
8349       return false;
8350     LoopVectorizationCostModel::InstWidening Decision =
8351         CM.getWideningDecision(I, VF);
8352     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8353            "CM decision should be taken at this point.");
8354     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8355       return true;
8356     if (CM.isScalarAfterVectorization(I, VF) ||
8357         CM.isProfitableToScalarize(I, VF))
8358       return false;
8359     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8360   };
8361 
8362   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8363     return nullptr;
8364 
8365   VPValue *Mask = nullptr;
8366   if (Legal->isMaskRequired(I))
8367     Mask = createBlockInMask(I->getParent(), Plan);
8368 
8369   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
8370   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8371     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
8372 
8373   StoreInst *Store = cast<StoreInst>(I);
8374   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
8375   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
8376 }
8377 
8378 VPWidenIntOrFpInductionRecipe *
8379 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const {
8380   // Check if this is an integer or fp induction. If so, build the recipe that
8381   // produces its scalar and vector values.
8382   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8383   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8384       II.getKind() == InductionDescriptor::IK_FpInduction) {
8385     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8386     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8387     return new VPWidenIntOrFpInductionRecipe(
8388         Phi, Start, Casts.empty() ? nullptr : Casts.front());
8389   }
8390 
8391   return nullptr;
8392 }
8393 
8394 VPWidenIntOrFpInductionRecipe *
8395 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range,
8396                                                 VPlan &Plan) const {
8397   // Optimize the special case where the source is a constant integer
8398   // induction variable. Notice that we can only optimize the 'trunc' case
8399   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8400   // (c) other casts depend on pointer size.
8401 
8402   // Determine whether \p K is a truncation based on an induction variable that
8403   // can be optimized.
8404   auto isOptimizableIVTruncate =
8405       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8406     return [=](ElementCount VF) -> bool {
8407       return CM.isOptimizableIVTruncate(K, VF);
8408     };
8409   };
8410 
8411   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8412           isOptimizableIVTruncate(I), Range)) {
8413 
8414     InductionDescriptor II =
8415         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8416     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8417     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8418                                              Start, nullptr, I);
8419   }
8420   return nullptr;
8421 }
8422 
8423 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
8424   // If all incoming values are equal, the incoming VPValue can be used directly
8425   // instead of creating a new VPBlendRecipe.
8426   Value *FirstIncoming = Phi->getIncomingValue(0);
8427   if (all_of(Phi->incoming_values(), [FirstIncoming](const Value *Inc) {
8428         return FirstIncoming == Inc;
8429       })) {
8430     return Plan->getOrAddVPValue(Phi->getIncomingValue(0));
8431   }
8432 
8433   // We know that all PHIs in non-header blocks are converted into selects, so
8434   // we don't have to worry about the insertion order and we can just use the
8435   // builder. At this point we generate the predication tree. There may be
8436   // duplications since this is a simple recursive scan, but future
8437   // optimizations will clean it up.
8438   SmallVector<VPValue *, 2> Operands;
8439   unsigned NumIncoming = Phi->getNumIncomingValues();
8440 
8441   for (unsigned In = 0; In < NumIncoming; In++) {
8442     VPValue *EdgeMask =
8443       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8444     assert((EdgeMask || NumIncoming == 1) &&
8445            "Multiple predecessors with one having a full mask");
8446     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
8447     if (EdgeMask)
8448       Operands.push_back(EdgeMask);
8449   }
8450   return toVPRecipeResult(new VPBlendRecipe(Phi, Operands));
8451 }
8452 
8453 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
8454                                                    VPlan &Plan) const {
8455 
8456   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8457       [this, CI](ElementCount VF) {
8458         return CM.isScalarWithPredication(CI, VF);
8459       },
8460       Range);
8461 
8462   if (IsPredicated)
8463     return nullptr;
8464 
8465   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8466   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8467              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8468              ID == Intrinsic::pseudoprobe ||
8469              ID == Intrinsic::experimental_noalias_scope_decl))
8470     return nullptr;
8471 
8472   auto willWiden = [&](ElementCount VF) -> bool {
8473     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8474     // The following case may be scalarized depending on the VF.
8475     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8476     // version of the instruction.
8477     // Is it beneficial to perform intrinsic call compared to lib call?
8478     bool NeedToScalarize = false;
8479     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8480     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8481     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8482     assert(IntrinsicCost.isValid() && CallCost.isValid() &&
8483            "Cannot have invalid costs while widening");
8484     return UseVectorIntrinsic || !NeedToScalarize;
8485   };
8486 
8487   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8488     return nullptr;
8489 
8490   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
8491 }
8492 
8493 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8494   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8495          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8496   // Instruction should be widened, unless it is scalar after vectorization,
8497   // scalarization is profitable or it is predicated.
8498   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8499     return CM.isScalarAfterVectorization(I, VF) ||
8500            CM.isProfitableToScalarize(I, VF) ||
8501            CM.isScalarWithPredication(I, VF);
8502   };
8503   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8504                                                              Range);
8505 }
8506 
8507 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
8508   auto IsVectorizableOpcode = [](unsigned Opcode) {
8509     switch (Opcode) {
8510     case Instruction::Add:
8511     case Instruction::And:
8512     case Instruction::AShr:
8513     case Instruction::BitCast:
8514     case Instruction::FAdd:
8515     case Instruction::FCmp:
8516     case Instruction::FDiv:
8517     case Instruction::FMul:
8518     case Instruction::FNeg:
8519     case Instruction::FPExt:
8520     case Instruction::FPToSI:
8521     case Instruction::FPToUI:
8522     case Instruction::FPTrunc:
8523     case Instruction::FRem:
8524     case Instruction::FSub:
8525     case Instruction::ICmp:
8526     case Instruction::IntToPtr:
8527     case Instruction::LShr:
8528     case Instruction::Mul:
8529     case Instruction::Or:
8530     case Instruction::PtrToInt:
8531     case Instruction::SDiv:
8532     case Instruction::Select:
8533     case Instruction::SExt:
8534     case Instruction::Shl:
8535     case Instruction::SIToFP:
8536     case Instruction::SRem:
8537     case Instruction::Sub:
8538     case Instruction::Trunc:
8539     case Instruction::UDiv:
8540     case Instruction::UIToFP:
8541     case Instruction::URem:
8542     case Instruction::Xor:
8543     case Instruction::ZExt:
8544       return true;
8545     }
8546     return false;
8547   };
8548 
8549   if (!IsVectorizableOpcode(I->getOpcode()))
8550     return nullptr;
8551 
8552   // Success: widen this instruction.
8553   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
8554 }
8555 
8556 VPBasicBlock *VPRecipeBuilder::handleReplication(
8557     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8558     VPlanPtr &Plan) {
8559   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8560       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8561       Range);
8562 
8563   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8564       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
8565       Range);
8566 
8567   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8568                                        IsUniform, IsPredicated);
8569   setRecipe(I, Recipe);
8570   Plan->addVPValue(I, Recipe);
8571 
8572   // Find if I uses a predicated instruction. If so, it will use its scalar
8573   // value. Avoid hoisting the insert-element which packs the scalar value into
8574   // a vector value, as that happens iff all users use the vector value.
8575   for (VPValue *Op : Recipe->operands()) {
8576     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8577     if (!PredR)
8578       continue;
8579     auto *RepR =
8580         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8581     assert(RepR->isPredicated() &&
8582            "expected Replicate recipe to be predicated");
8583     RepR->setAlsoPack(false);
8584   }
8585 
8586   // Finalize the recipe for Instr, first if it is not predicated.
8587   if (!IsPredicated) {
8588     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8589     VPBB->appendRecipe(Recipe);
8590     return VPBB;
8591   }
8592   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8593   assert(VPBB->getSuccessors().empty() &&
8594          "VPBB has successors when handling predicated replication.");
8595   // Record predicated instructions for above packing optimizations.
8596   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8597   VPBlockUtils::insertBlockAfter(Region, VPBB);
8598   auto *RegSucc = new VPBasicBlock();
8599   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8600   return RegSucc;
8601 }
8602 
8603 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8604                                                       VPRecipeBase *PredRecipe,
8605                                                       VPlanPtr &Plan) {
8606   // Instructions marked for predication are replicated and placed under an
8607   // if-then construct to prevent side-effects.
8608 
8609   // Generate recipes to compute the block mask for this region.
8610   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8611 
8612   // Build the triangular if-then region.
8613   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8614   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8615   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8616   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8617   auto *PHIRecipe = Instr->getType()->isVoidTy()
8618                         ? nullptr
8619                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8620   if (PHIRecipe) {
8621     Plan->removeVPValueFor(Instr);
8622     Plan->addVPValue(Instr, PHIRecipe);
8623   }
8624   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8625   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8626   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8627 
8628   // Note: first set Entry as region entry and then connect successors starting
8629   // from it in order, to propagate the "parent" of each VPBasicBlock.
8630   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8631   VPBlockUtils::connectBlocks(Pred, Exit);
8632 
8633   return Region;
8634 }
8635 
8636 VPRecipeOrVPValueTy VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8637                                                             VFRange &Range,
8638                                                             VPlanPtr &Plan) {
8639   // First, check for specific widening recipes that deal with calls, memory
8640   // operations, inductions and Phi nodes.
8641   if (auto *CI = dyn_cast<CallInst>(Instr))
8642     return toVPRecipeResult(tryToWidenCall(CI, Range, *Plan));
8643 
8644   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8645     return toVPRecipeResult(tryToWidenMemory(Instr, Range, Plan));
8646 
8647   VPRecipeBase *Recipe;
8648   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8649     if (Phi->getParent() != OrigLoop->getHeader())
8650       return tryToBlend(Phi, Plan);
8651     if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan)))
8652       return toVPRecipeResult(Recipe);
8653 
8654     if (Legal->isReductionVariable(Phi)) {
8655       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8656       VPValue *StartV =
8657           Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue());
8658       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8659     }
8660 
8661     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8662   }
8663 
8664   if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8665                                     cast<TruncInst>(Instr), Range, *Plan)))
8666     return toVPRecipeResult(Recipe);
8667 
8668   if (!shouldWiden(Instr, Range))
8669     return nullptr;
8670 
8671   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8672     return toVPRecipeResult(new VPWidenGEPRecipe(
8673         GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop));
8674 
8675   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8676     bool InvariantCond =
8677         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8678     return toVPRecipeResult(new VPWidenSelectRecipe(
8679         *SI, Plan->mapToVPValues(SI->operands()), InvariantCond));
8680   }
8681 
8682   return toVPRecipeResult(tryToWiden(Instr, *Plan));
8683 }
8684 
8685 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8686                                                         ElementCount MaxVF) {
8687   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8688 
8689   // Collect instructions from the original loop that will become trivially dead
8690   // in the vectorized loop. We don't need to vectorize these instructions. For
8691   // example, original induction update instructions can become dead because we
8692   // separately emit induction "steps" when generating code for the new loop.
8693   // Similarly, we create a new latch condition when setting up the structure
8694   // of the new loop, so the old one can become dead.
8695   SmallPtrSet<Instruction *, 4> DeadInstructions;
8696   collectTriviallyDeadInstructions(DeadInstructions);
8697 
8698   // Add assume instructions we need to drop to DeadInstructions, to prevent
8699   // them from being added to the VPlan.
8700   // TODO: We only need to drop assumes in blocks that get flattend. If the
8701   // control flow is preserved, we should keep them.
8702   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8703   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8704 
8705   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8706   // Dead instructions do not need sinking. Remove them from SinkAfter.
8707   for (Instruction *I : DeadInstructions)
8708     SinkAfter.erase(I);
8709 
8710   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8711   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8712     VFRange SubRange = {VF, MaxVFPlusOne};
8713     VPlans.push_back(
8714         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8715     VF = SubRange.End;
8716   }
8717 }
8718 
8719 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8720     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8721     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8722 
8723   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8724 
8725   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8726 
8727   // ---------------------------------------------------------------------------
8728   // Pre-construction: record ingredients whose recipes we'll need to further
8729   // process after constructing the initial VPlan.
8730   // ---------------------------------------------------------------------------
8731 
8732   // Mark instructions we'll need to sink later and their targets as
8733   // ingredients whose recipe we'll need to record.
8734   for (auto &Entry : SinkAfter) {
8735     RecipeBuilder.recordRecipeOf(Entry.first);
8736     RecipeBuilder.recordRecipeOf(Entry.second);
8737   }
8738   for (auto &Reduction : CM.getInLoopReductionChains()) {
8739     PHINode *Phi = Reduction.first;
8740     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8741     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8742 
8743     RecipeBuilder.recordRecipeOf(Phi);
8744     for (auto &R : ReductionOperations) {
8745       RecipeBuilder.recordRecipeOf(R);
8746       // For min/max reducitons, where we have a pair of icmp/select, we also
8747       // need to record the ICmp recipe, so it can be removed later.
8748       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8749         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8750     }
8751   }
8752 
8753   // For each interleave group which is relevant for this (possibly trimmed)
8754   // Range, add it to the set of groups to be later applied to the VPlan and add
8755   // placeholders for its members' Recipes which we'll be replacing with a
8756   // single VPInterleaveRecipe.
8757   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8758     auto applyIG = [IG, this](ElementCount VF) -> bool {
8759       return (VF.isVector() && // Query is illegal for VF == 1
8760               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8761                   LoopVectorizationCostModel::CM_Interleave);
8762     };
8763     if (!getDecisionAndClampRange(applyIG, Range))
8764       continue;
8765     InterleaveGroups.insert(IG);
8766     for (unsigned i = 0; i < IG->getFactor(); i++)
8767       if (Instruction *Member = IG->getMember(i))
8768         RecipeBuilder.recordRecipeOf(Member);
8769   };
8770 
8771   // ---------------------------------------------------------------------------
8772   // Build initial VPlan: Scan the body of the loop in a topological order to
8773   // visit each basic block after having visited its predecessor basic blocks.
8774   // ---------------------------------------------------------------------------
8775 
8776   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8777   auto Plan = std::make_unique<VPlan>();
8778   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8779   Plan->setEntry(VPBB);
8780 
8781   // Scan the body of the loop in a topological order to visit each basic block
8782   // after having visited its predecessor basic blocks.
8783   LoopBlocksDFS DFS(OrigLoop);
8784   DFS.perform(LI);
8785 
8786   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8787     // Relevant instructions from basic block BB will be grouped into VPRecipe
8788     // ingredients and fill a new VPBasicBlock.
8789     unsigned VPBBsForBB = 0;
8790     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8791     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8792     VPBB = FirstVPBBForBB;
8793     Builder.setInsertPoint(VPBB);
8794 
8795     // Introduce each ingredient into VPlan.
8796     // TODO: Model and preserve debug instrinsics in VPlan.
8797     for (Instruction &I : BB->instructionsWithoutDebug()) {
8798       Instruction *Instr = &I;
8799 
8800       // First filter out irrelevant instructions, to ensure no recipes are
8801       // built for them.
8802       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8803         continue;
8804 
8805       if (auto RecipeOrValue =
8806               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
8807         // If Instr can be simplified to an existing VPValue, use it.
8808         if (RecipeOrValue.is<VPValue *>()) {
8809           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8810           continue;
8811         }
8812         // Otherwise, add the new recipe.
8813         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8814         for (auto *Def : Recipe->definedValues()) {
8815           auto *UV = Def->getUnderlyingValue();
8816           Plan->addVPValue(UV, Def);
8817         }
8818 
8819         RecipeBuilder.setRecipe(Instr, Recipe);
8820         VPBB->appendRecipe(Recipe);
8821         continue;
8822       }
8823 
8824       // Otherwise, if all widening options failed, Instruction is to be
8825       // replicated. This may create a successor for VPBB.
8826       VPBasicBlock *NextVPBB =
8827           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8828       if (NextVPBB != VPBB) {
8829         VPBB = NextVPBB;
8830         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8831                                     : "");
8832       }
8833     }
8834   }
8835 
8836   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8837   // may also be empty, such as the last one VPBB, reflecting original
8838   // basic-blocks with no recipes.
8839   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8840   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8841   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8842   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8843   delete PreEntry;
8844 
8845   // ---------------------------------------------------------------------------
8846   // Transform initial VPlan: Apply previously taken decisions, in order, to
8847   // bring the VPlan to its final state.
8848   // ---------------------------------------------------------------------------
8849 
8850   // Apply Sink-After legal constraints.
8851   for (auto &Entry : SinkAfter) {
8852     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8853     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8854     // If the target is in a replication region, make sure to move Sink to the
8855     // block after it, not into the replication region itself.
8856     if (auto *Region =
8857             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
8858       if (Region->isReplicator()) {
8859         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
8860         VPBasicBlock *NextBlock =
8861             cast<VPBasicBlock>(Region->getSuccessors().front());
8862         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8863         continue;
8864       }
8865     }
8866     Sink->moveAfter(Target);
8867   }
8868 
8869   // Interleave memory: for each Interleave Group we marked earlier as relevant
8870   // for this VPlan, replace the Recipes widening its memory instructions with a
8871   // single VPInterleaveRecipe at its insertion point.
8872   for (auto IG : InterleaveGroups) {
8873     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8874         RecipeBuilder.getRecipe(IG->getInsertPos()));
8875     SmallVector<VPValue *, 4> StoredValues;
8876     for (unsigned i = 0; i < IG->getFactor(); ++i)
8877       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
8878         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
8879 
8880     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8881                                         Recipe->getMask());
8882     VPIG->insertBefore(Recipe);
8883     unsigned J = 0;
8884     for (unsigned i = 0; i < IG->getFactor(); ++i)
8885       if (Instruction *Member = IG->getMember(i)) {
8886         if (!Member->getType()->isVoidTy()) {
8887           VPValue *OriginalV = Plan->getVPValue(Member);
8888           Plan->removeVPValueFor(Member);
8889           Plan->addVPValue(Member, VPIG->getVPValue(J));
8890           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8891           J++;
8892         }
8893         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8894       }
8895   }
8896 
8897   // Adjust the recipes for any inloop reductions.
8898   if (Range.Start.isVector())
8899     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
8900 
8901   // Finally, if tail is folded by masking, introduce selects between the phi
8902   // and the live-out instruction of each reduction, at the end of the latch.
8903   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
8904     Builder.setInsertPoint(VPBB);
8905     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
8906     for (auto &Reduction : Legal->getReductionVars()) {
8907       if (CM.isInLoopReduction(Reduction.first))
8908         continue;
8909       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
8910       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
8911       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
8912     }
8913   }
8914 
8915   std::string PlanName;
8916   raw_string_ostream RSO(PlanName);
8917   ElementCount VF = Range.Start;
8918   Plan->addVF(VF);
8919   RSO << "Initial VPlan for VF={" << VF;
8920   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
8921     Plan->addVF(VF);
8922     RSO << "," << VF;
8923   }
8924   RSO << "},UF>=1";
8925   RSO.flush();
8926   Plan->setName(PlanName);
8927 
8928   return Plan;
8929 }
8930 
8931 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
8932   // Outer loop handling: They may require CFG and instruction level
8933   // transformations before even evaluating whether vectorization is profitable.
8934   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8935   // the vectorization pipeline.
8936   assert(!OrigLoop->isInnermost());
8937   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8938 
8939   // Create new empty VPlan
8940   auto Plan = std::make_unique<VPlan>();
8941 
8942   // Build hierarchical CFG
8943   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
8944   HCFGBuilder.buildHierarchicalCFG();
8945 
8946   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
8947        VF *= 2)
8948     Plan->addVF(VF);
8949 
8950   if (EnableVPlanPredication) {
8951     VPlanPredicator VPP(*Plan);
8952     VPP.predicate();
8953 
8954     // Avoid running transformation to recipes until masked code generation in
8955     // VPlan-native path is in place.
8956     return Plan;
8957   }
8958 
8959   SmallPtrSet<Instruction *, 1> DeadInstructions;
8960   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
8961                                              Legal->getInductionVars(),
8962                                              DeadInstructions, *PSE.getSE());
8963   return Plan;
8964 }
8965 
8966 // Adjust the recipes for any inloop reductions. The chain of instructions
8967 // leading from the loop exit instr to the phi need to be converted to
8968 // reductions, with one operand being vector and the other being the scalar
8969 // reduction chain.
8970 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
8971     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
8972   for (auto &Reduction : CM.getInLoopReductionChains()) {
8973     PHINode *Phi = Reduction.first;
8974     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8975     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8976 
8977     // ReductionOperations are orders top-down from the phi's use to the
8978     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
8979     // which of the two operands will remain scalar and which will be reduced.
8980     // For minmax the chain will be the select instructions.
8981     Instruction *Chain = Phi;
8982     for (Instruction *R : ReductionOperations) {
8983       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
8984       RecurKind Kind = RdxDesc.getRecurrenceKind();
8985 
8986       VPValue *ChainOp = Plan->getVPValue(Chain);
8987       unsigned FirstOpId;
8988       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
8989         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
8990                "Expected to replace a VPWidenSelectSC");
8991         FirstOpId = 1;
8992       } else {
8993         assert(isa<VPWidenRecipe>(WidenRecipe) &&
8994                "Expected to replace a VPWidenSC");
8995         FirstOpId = 0;
8996       }
8997       unsigned VecOpId =
8998           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
8999       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9000 
9001       auto *CondOp = CM.foldTailByMasking()
9002                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9003                          : nullptr;
9004       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9005           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9006       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9007       Plan->removeVPValueFor(R);
9008       Plan->addVPValue(R, RedRecipe);
9009       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9010       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9011       WidenRecipe->eraseFromParent();
9012 
9013       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9014         VPRecipeBase *CompareRecipe =
9015             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9016         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9017                "Expected to replace a VPWidenSC");
9018         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9019                "Expected no remaining users");
9020         CompareRecipe->eraseFromParent();
9021       }
9022       Chain = R;
9023     }
9024   }
9025 }
9026 
9027 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9028 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9029                                VPSlotTracker &SlotTracker) const {
9030   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9031   IG->getInsertPos()->printAsOperand(O, false);
9032   O << ", ";
9033   getAddr()->printAsOperand(O, SlotTracker);
9034   VPValue *Mask = getMask();
9035   if (Mask) {
9036     O << ", ";
9037     Mask->printAsOperand(O, SlotTracker);
9038   }
9039   for (unsigned i = 0; i < IG->getFactor(); ++i)
9040     if (Instruction *I = IG->getMember(i))
9041       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9042 }
9043 #endif
9044 
9045 void VPWidenCallRecipe::execute(VPTransformState &State) {
9046   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9047                                   *this, State);
9048 }
9049 
9050 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9051   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9052                                     this, *this, InvariantCond, State);
9053 }
9054 
9055 void VPWidenRecipe::execute(VPTransformState &State) {
9056   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9057 }
9058 
9059 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9060   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9061                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9062                       IsIndexLoopInvariant, State);
9063 }
9064 
9065 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9066   assert(!State.Instance && "Int or FP induction being replicated.");
9067   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9068                                    getTruncInst(), getVPValue(0),
9069                                    getCastValue(), State);
9070 }
9071 
9072 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9073   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9074                                  getStartValue(), this, State);
9075 }
9076 
9077 void VPBlendRecipe::execute(VPTransformState &State) {
9078   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9079   // We know that all PHIs in non-header blocks are converted into
9080   // selects, so we don't have to worry about the insertion order and we
9081   // can just use the builder.
9082   // At this point we generate the predication tree. There may be
9083   // duplications since this is a simple recursive scan, but future
9084   // optimizations will clean it up.
9085 
9086   unsigned NumIncoming = getNumIncomingValues();
9087 
9088   // Generate a sequence of selects of the form:
9089   // SELECT(Mask3, In3,
9090   //        SELECT(Mask2, In2,
9091   //               SELECT(Mask1, In1,
9092   //                      In0)))
9093   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9094   // are essentially undef are taken from In0.
9095   InnerLoopVectorizer::VectorParts Entry(State.UF);
9096   for (unsigned In = 0; In < NumIncoming; ++In) {
9097     for (unsigned Part = 0; Part < State.UF; ++Part) {
9098       // We might have single edge PHIs (blocks) - use an identity
9099       // 'select' for the first PHI operand.
9100       Value *In0 = State.get(getIncomingValue(In), Part);
9101       if (In == 0)
9102         Entry[Part] = In0; // Initialize with the first incoming value.
9103       else {
9104         // Select between the current value and the previous incoming edge
9105         // based on the incoming mask.
9106         Value *Cond = State.get(getMask(In), Part);
9107         Entry[Part] =
9108             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9109       }
9110     }
9111   }
9112   for (unsigned Part = 0; Part < State.UF; ++Part)
9113     State.set(this, Entry[Part], Part);
9114 }
9115 
9116 void VPInterleaveRecipe::execute(VPTransformState &State) {
9117   assert(!State.Instance && "Interleave group being replicated.");
9118   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9119                                       getStoredValues(), getMask());
9120 }
9121 
9122 void VPReductionRecipe::execute(VPTransformState &State) {
9123   assert(!State.Instance && "Reduction being replicated.");
9124   for (unsigned Part = 0; Part < State.UF; ++Part) {
9125     RecurKind Kind = RdxDesc->getRecurrenceKind();
9126     Value *NewVecOp = State.get(getVecOp(), Part);
9127     if (VPValue *Cond = getCondOp()) {
9128       Value *NewCond = State.get(Cond, Part);
9129       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9130       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9131           Kind, VecTy->getElementType());
9132       Constant *IdenVec =
9133           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9134       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9135       NewVecOp = Select;
9136     }
9137     Value *NewRed =
9138         createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9139     Value *PrevInChain = State.get(getChainOp(), Part);
9140     Value *NextInChain;
9141     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9142       NextInChain =
9143           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9144                          NewRed, PrevInChain);
9145     } else {
9146       NextInChain = State.Builder.CreateBinOp(
9147           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9148           PrevInChain);
9149     }
9150     State.set(this, NextInChain, Part);
9151   }
9152 }
9153 
9154 void VPReplicateRecipe::execute(VPTransformState &State) {
9155   if (State.Instance) { // Generate a single instance.
9156     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9157     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9158                                     *State.Instance, IsPredicated, State);
9159     // Insert scalar instance packing it into a vector.
9160     if (AlsoPack && State.VF.isVector()) {
9161       // If we're constructing lane 0, initialize to start from poison.
9162       if (State.Instance->Lane.isFirstLane()) {
9163         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9164         Value *Poison = PoisonValue::get(
9165             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9166         State.set(this, Poison, State.Instance->Part);
9167       }
9168       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9169     }
9170     return;
9171   }
9172 
9173   // Generate scalar instances for all VF lanes of all UF parts, unless the
9174   // instruction is uniform inwhich case generate only the first lane for each
9175   // of the UF parts.
9176   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9177   assert((!State.VF.isScalable() || IsUniform) &&
9178          "Can't scalarize a scalable vector");
9179   for (unsigned Part = 0; Part < State.UF; ++Part)
9180     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9181       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9182                                       VPIteration(Part, Lane), IsPredicated,
9183                                       State);
9184 }
9185 
9186 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9187   assert(State.Instance && "Branch on Mask works only on single instance.");
9188 
9189   unsigned Part = State.Instance->Part;
9190   unsigned Lane = State.Instance->Lane.getKnownLane();
9191 
9192   Value *ConditionBit = nullptr;
9193   VPValue *BlockInMask = getMask();
9194   if (BlockInMask) {
9195     ConditionBit = State.get(BlockInMask, Part);
9196     if (ConditionBit->getType()->isVectorTy())
9197       ConditionBit = State.Builder.CreateExtractElement(
9198           ConditionBit, State.Builder.getInt32(Lane));
9199   } else // Block in mask is all-one.
9200     ConditionBit = State.Builder.getTrue();
9201 
9202   // Replace the temporary unreachable terminator with a new conditional branch,
9203   // whose two destinations will be set later when they are created.
9204   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9205   assert(isa<UnreachableInst>(CurrentTerminator) &&
9206          "Expected to replace unreachable terminator with conditional branch.");
9207   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9208   CondBr->setSuccessor(0, nullptr);
9209   ReplaceInstWithInst(CurrentTerminator, CondBr);
9210 }
9211 
9212 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9213   assert(State.Instance && "Predicated instruction PHI works per instance.");
9214   Instruction *ScalarPredInst =
9215       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9216   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9217   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9218   assert(PredicatingBB && "Predicated block has no single predecessor.");
9219   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9220          "operand must be VPReplicateRecipe");
9221 
9222   // By current pack/unpack logic we need to generate only a single phi node: if
9223   // a vector value for the predicated instruction exists at this point it means
9224   // the instruction has vector users only, and a phi for the vector value is
9225   // needed. In this case the recipe of the predicated instruction is marked to
9226   // also do that packing, thereby "hoisting" the insert-element sequence.
9227   // Otherwise, a phi node for the scalar value is needed.
9228   unsigned Part = State.Instance->Part;
9229   if (State.hasVectorValue(getOperand(0), Part)) {
9230     Value *VectorValue = State.get(getOperand(0), Part);
9231     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9232     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9233     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9234     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9235     if (State.hasVectorValue(this, Part))
9236       State.reset(this, VPhi, Part);
9237     else
9238       State.set(this, VPhi, Part);
9239     // NOTE: Currently we need to update the value of the operand, so the next
9240     // predicated iteration inserts its generated value in the correct vector.
9241     State.reset(getOperand(0), VPhi, Part);
9242   } else {
9243     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9244     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9245     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9246                      PredicatingBB);
9247     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9248     if (State.hasScalarValue(this, *State.Instance))
9249       State.reset(this, Phi, *State.Instance);
9250     else
9251       State.set(this, Phi, *State.Instance);
9252     // NOTE: Currently we need to update the value of the operand, so the next
9253     // predicated iteration inserts its generated value in the correct vector.
9254     State.reset(getOperand(0), Phi, *State.Instance);
9255   }
9256 }
9257 
9258 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9259   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9260   State.ILV->vectorizeMemoryInstruction(&Ingredient, State,
9261                                         StoredValue ? nullptr : getVPValue(),
9262                                         getAddr(), StoredValue, getMask());
9263 }
9264 
9265 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9266 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9267 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9268 // for predication.
9269 static ScalarEpilogueLowering getScalarEpilogueLowering(
9270     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9271     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9272     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9273     LoopVectorizationLegality &LVL) {
9274   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9275   // don't look at hints or options, and don't request a scalar epilogue.
9276   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9277   // LoopAccessInfo (due to code dependency and not being able to reliably get
9278   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9279   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9280   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9281   // back to the old way and vectorize with versioning when forced. See D81345.)
9282   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9283                                                       PGSOQueryType::IRPass) &&
9284                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9285     return CM_ScalarEpilogueNotAllowedOptSize;
9286 
9287   // 2) If set, obey the directives
9288   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9289     switch (PreferPredicateOverEpilogue) {
9290     case PreferPredicateTy::ScalarEpilogue:
9291       return CM_ScalarEpilogueAllowed;
9292     case PreferPredicateTy::PredicateElseScalarEpilogue:
9293       return CM_ScalarEpilogueNotNeededUsePredicate;
9294     case PreferPredicateTy::PredicateOrDontVectorize:
9295       return CM_ScalarEpilogueNotAllowedUsePredicate;
9296     };
9297   }
9298 
9299   // 3) If set, obey the hints
9300   switch (Hints.getPredicate()) {
9301   case LoopVectorizeHints::FK_Enabled:
9302     return CM_ScalarEpilogueNotNeededUsePredicate;
9303   case LoopVectorizeHints::FK_Disabled:
9304     return CM_ScalarEpilogueAllowed;
9305   };
9306 
9307   // 4) if the TTI hook indicates this is profitable, request predication.
9308   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9309                                        LVL.getLAI()))
9310     return CM_ScalarEpilogueNotNeededUsePredicate;
9311 
9312   return CM_ScalarEpilogueAllowed;
9313 }
9314 
9315 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9316   // If Values have been set for this Def return the one relevant for \p Part.
9317   if (hasVectorValue(Def, Part))
9318     return Data.PerPartOutput[Def][Part];
9319 
9320   if (!hasScalarValue(Def, {Part, 0})) {
9321     Value *IRV = Def->getLiveInIRValue();
9322     Value *B = ILV->getBroadcastInstrs(IRV);
9323     set(Def, B, Part);
9324     return B;
9325   }
9326 
9327   Value *ScalarValue = get(Def, {Part, 0});
9328   // If we aren't vectorizing, we can just copy the scalar map values over
9329   // to the vector map.
9330   if (VF.isScalar()) {
9331     set(Def, ScalarValue, Part);
9332     return ScalarValue;
9333   }
9334 
9335   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9336   bool IsUniform = RepR && RepR->isUniform();
9337 
9338   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9339   // Check if there is a scalar value for the selected lane.
9340   if (!hasScalarValue(Def, {Part, LastLane})) {
9341     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9342     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9343            "unexpected recipe found to be invariant");
9344     IsUniform = true;
9345     LastLane = 0;
9346   }
9347 
9348   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9349 
9350   // Set the insert point after the last scalarized instruction. This
9351   // ensures the insertelement sequence will directly follow the scalar
9352   // definitions.
9353   auto OldIP = Builder.saveIP();
9354   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9355   Builder.SetInsertPoint(&*NewIP);
9356 
9357   // However, if we are vectorizing, we need to construct the vector values.
9358   // If the value is known to be uniform after vectorization, we can just
9359   // broadcast the scalar value corresponding to lane zero for each unroll
9360   // iteration. Otherwise, we construct the vector values using
9361   // insertelement instructions. Since the resulting vectors are stored in
9362   // State, we will only generate the insertelements once.
9363   Value *VectorValue = nullptr;
9364   if (IsUniform) {
9365     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9366     set(Def, VectorValue, Part);
9367   } else {
9368     // Initialize packing with insertelements to start from undef.
9369     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9370     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9371     set(Def, Undef, Part);
9372     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9373       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9374     VectorValue = get(Def, Part);
9375   }
9376   Builder.restoreIP(OldIP);
9377   return VectorValue;
9378 }
9379 
9380 // Process the loop in the VPlan-native vectorization path. This path builds
9381 // VPlan upfront in the vectorization pipeline, which allows to apply
9382 // VPlan-to-VPlan transformations from the very beginning without modifying the
9383 // input LLVM IR.
9384 static bool processLoopInVPlanNativePath(
9385     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9386     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9387     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9388     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9389     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
9390 
9391   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9392     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9393     return false;
9394   }
9395   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9396   Function *F = L->getHeader()->getParent();
9397   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9398 
9399   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9400       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9401 
9402   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9403                                 &Hints, IAI);
9404   // Use the planner for outer loop vectorization.
9405   // TODO: CM is not used at this point inside the planner. Turn CM into an
9406   // optional argument if we don't need it in the future.
9407   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
9408 
9409   // Get user vectorization factor.
9410   ElementCount UserVF = Hints.getWidth();
9411 
9412   // Plan how to best vectorize, return the best VF and its cost.
9413   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9414 
9415   // If we are stress testing VPlan builds, do not attempt to generate vector
9416   // code. Masked vector code generation support will follow soon.
9417   // Also, do not attempt to vectorize if no vector code will be produced.
9418   if (VPlanBuildStressTest || EnableVPlanPredication ||
9419       VectorizationFactor::Disabled() == VF)
9420     return false;
9421 
9422   LVP.setBestPlan(VF.Width, 1);
9423 
9424   {
9425     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9426                              F->getParent()->getDataLayout());
9427     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9428                            &CM, BFI, PSI, Checks);
9429     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9430                       << L->getHeader()->getParent()->getName() << "\"\n");
9431     LVP.executePlan(LB, DT);
9432   }
9433 
9434   // Mark the loop as already vectorized to avoid vectorizing again.
9435   Hints.setAlreadyVectorized();
9436   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9437   return true;
9438 }
9439 
9440 // Emit a remark if there are stores to floats that required a floating point
9441 // extension. If the vectorized loop was generated with floating point there
9442 // will be a performance penalty from the conversion overhead and the change in
9443 // the vector width.
9444 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9445   SmallVector<Instruction *, 4> Worklist;
9446   for (BasicBlock *BB : L->getBlocks()) {
9447     for (Instruction &Inst : *BB) {
9448       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9449         if (S->getValueOperand()->getType()->isFloatTy())
9450           Worklist.push_back(S);
9451       }
9452     }
9453   }
9454 
9455   // Traverse the floating point stores upwards searching, for floating point
9456   // conversions.
9457   SmallPtrSet<const Instruction *, 4> Visited;
9458   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9459   while (!Worklist.empty()) {
9460     auto *I = Worklist.pop_back_val();
9461     if (!L->contains(I))
9462       continue;
9463     if (!Visited.insert(I).second)
9464       continue;
9465 
9466     // Emit a remark if the floating point store required a floating
9467     // point conversion.
9468     // TODO: More work could be done to identify the root cause such as a
9469     // constant or a function return type and point the user to it.
9470     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9471       ORE->emit([&]() {
9472         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9473                                           I->getDebugLoc(), L->getHeader())
9474                << "floating point conversion changes vector width. "
9475                << "Mixed floating point precision requires an up/down "
9476                << "cast that will negatively impact performance.";
9477       });
9478 
9479     for (Use &Op : I->operands())
9480       if (auto *OpI = dyn_cast<Instruction>(Op))
9481         Worklist.push_back(OpI);
9482   }
9483 }
9484 
9485 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9486     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9487                                !EnableLoopInterleaving),
9488       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9489                               !EnableLoopVectorization) {}
9490 
9491 bool LoopVectorizePass::processLoop(Loop *L) {
9492   assert((EnableVPlanNativePath || L->isInnermost()) &&
9493          "VPlan-native path is not enabled. Only process inner loops.");
9494 
9495 #ifndef NDEBUG
9496   const std::string DebugLocStr = getDebugLocString(L);
9497 #endif /* NDEBUG */
9498 
9499   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9500                     << L->getHeader()->getParent()->getName() << "\" from "
9501                     << DebugLocStr << "\n");
9502 
9503   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9504 
9505   LLVM_DEBUG(
9506       dbgs() << "LV: Loop hints:"
9507              << " force="
9508              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9509                      ? "disabled"
9510                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9511                             ? "enabled"
9512                             : "?"))
9513              << " width=" << Hints.getWidth()
9514              << " unroll=" << Hints.getInterleave() << "\n");
9515 
9516   // Function containing loop
9517   Function *F = L->getHeader()->getParent();
9518 
9519   // Looking at the diagnostic output is the only way to determine if a loop
9520   // was vectorized (other than looking at the IR or machine code), so it
9521   // is important to generate an optimization remark for each loop. Most of
9522   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9523   // generated as OptimizationRemark and OptimizationRemarkMissed are
9524   // less verbose reporting vectorized loops and unvectorized loops that may
9525   // benefit from vectorization, respectively.
9526 
9527   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9528     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9529     return false;
9530   }
9531 
9532   PredicatedScalarEvolution PSE(*SE, *L);
9533 
9534   // Check if it is legal to vectorize the loop.
9535   LoopVectorizationRequirements Requirements(*ORE);
9536   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9537                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9538   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9539     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9540     Hints.emitRemarkWithHints();
9541     return false;
9542   }
9543 
9544   // Check the function attributes and profiles to find out if this function
9545   // should be optimized for size.
9546   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9547       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9548 
9549   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9550   // here. They may require CFG and instruction level transformations before
9551   // even evaluating whether vectorization is profitable. Since we cannot modify
9552   // the incoming IR, we need to build VPlan upfront in the vectorization
9553   // pipeline.
9554   if (!L->isInnermost())
9555     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9556                                         ORE, BFI, PSI, Hints);
9557 
9558   assert(L->isInnermost() && "Inner loop expected.");
9559 
9560   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9561   // count by optimizing for size, to minimize overheads.
9562   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9563   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9564     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9565                       << "This loop is worth vectorizing only if no scalar "
9566                       << "iteration overheads are incurred.");
9567     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9568       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9569     else {
9570       LLVM_DEBUG(dbgs() << "\n");
9571       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9572     }
9573   }
9574 
9575   // Check the function attributes to see if implicit floats are allowed.
9576   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9577   // an integer loop and the vector instructions selected are purely integer
9578   // vector instructions?
9579   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9580     reportVectorizationFailure(
9581         "Can't vectorize when the NoImplicitFloat attribute is used",
9582         "loop not vectorized due to NoImplicitFloat attribute",
9583         "NoImplicitFloat", ORE, L);
9584     Hints.emitRemarkWithHints();
9585     return false;
9586   }
9587 
9588   // Check if the target supports potentially unsafe FP vectorization.
9589   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9590   // for the target we're vectorizing for, to make sure none of the
9591   // additional fp-math flags can help.
9592   if (Hints.isPotentiallyUnsafe() &&
9593       TTI->isFPVectorizationPotentiallyUnsafe()) {
9594     reportVectorizationFailure(
9595         "Potentially unsafe FP op prevents vectorization",
9596         "loop not vectorized due to unsafe FP support.",
9597         "UnsafeFP", ORE, L);
9598     Hints.emitRemarkWithHints();
9599     return false;
9600   }
9601 
9602   if (!Requirements.canVectorizeFPMath(Hints)) {
9603     ORE->emit([&]() {
9604       auto *ExactFPMathInst = Requirements.getExactFPInst();
9605       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9606                                                  ExactFPMathInst->getDebugLoc(),
9607                                                  ExactFPMathInst->getParent())
9608              << "loop not vectorized: cannot prove it is safe to reorder "
9609                 "floating-point operations";
9610     });
9611     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9612                          "reorder floating-point operations\n");
9613     Hints.emitRemarkWithHints();
9614     return false;
9615   }
9616 
9617   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9618   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9619 
9620   // If an override option has been passed in for interleaved accesses, use it.
9621   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9622     UseInterleaved = EnableInterleavedMemAccesses;
9623 
9624   // Analyze interleaved memory accesses.
9625   if (UseInterleaved) {
9626     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9627   }
9628 
9629   // Use the cost model.
9630   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9631                                 F, &Hints, IAI);
9632   CM.collectValuesToIgnore();
9633 
9634   // Use the planner for vectorization.
9635   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
9636 
9637   // Get user vectorization factor and interleave count.
9638   ElementCount UserVF = Hints.getWidth();
9639   unsigned UserIC = Hints.getInterleave();
9640 
9641   // Plan how to best vectorize, return the best VF and its cost.
9642   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9643 
9644   VectorizationFactor VF = VectorizationFactor::Disabled();
9645   unsigned IC = 1;
9646 
9647   if (MaybeVF) {
9648     VF = *MaybeVF;
9649     // Select the interleave count.
9650     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
9651   }
9652 
9653   // Identify the diagnostic messages that should be produced.
9654   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9655   bool VectorizeLoop = true, InterleaveLoop = true;
9656   if (Requirements.doesNotMeet(F, L, Hints)) {
9657     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
9658                          "requirements.\n");
9659     Hints.emitRemarkWithHints();
9660     return false;
9661   }
9662 
9663   if (VF.Width.isScalar()) {
9664     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9665     VecDiagMsg = std::make_pair(
9666         "VectorizationNotBeneficial",
9667         "the cost-model indicates that vectorization is not beneficial");
9668     VectorizeLoop = false;
9669   }
9670 
9671   if (!MaybeVF && UserIC > 1) {
9672     // Tell the user interleaving was avoided up-front, despite being explicitly
9673     // requested.
9674     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9675                          "interleaving should be avoided up front\n");
9676     IntDiagMsg = std::make_pair(
9677         "InterleavingAvoided",
9678         "Ignoring UserIC, because interleaving was avoided up front");
9679     InterleaveLoop = false;
9680   } else if (IC == 1 && UserIC <= 1) {
9681     // Tell the user interleaving is not beneficial.
9682     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9683     IntDiagMsg = std::make_pair(
9684         "InterleavingNotBeneficial",
9685         "the cost-model indicates that interleaving is not beneficial");
9686     InterleaveLoop = false;
9687     if (UserIC == 1) {
9688       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9689       IntDiagMsg.second +=
9690           " and is explicitly disabled or interleave count is set to 1";
9691     }
9692   } else if (IC > 1 && UserIC == 1) {
9693     // Tell the user interleaving is beneficial, but it explicitly disabled.
9694     LLVM_DEBUG(
9695         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9696     IntDiagMsg = std::make_pair(
9697         "InterleavingBeneficialButDisabled",
9698         "the cost-model indicates that interleaving is beneficial "
9699         "but is explicitly disabled or interleave count is set to 1");
9700     InterleaveLoop = false;
9701   }
9702 
9703   // Override IC if user provided an interleave count.
9704   IC = UserIC > 0 ? UserIC : IC;
9705 
9706   // Emit diagnostic messages, if any.
9707   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9708   if (!VectorizeLoop && !InterleaveLoop) {
9709     // Do not vectorize or interleaving the loop.
9710     ORE->emit([&]() {
9711       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9712                                       L->getStartLoc(), L->getHeader())
9713              << VecDiagMsg.second;
9714     });
9715     ORE->emit([&]() {
9716       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9717                                       L->getStartLoc(), L->getHeader())
9718              << IntDiagMsg.second;
9719     });
9720     return false;
9721   } else if (!VectorizeLoop && InterleaveLoop) {
9722     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9723     ORE->emit([&]() {
9724       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9725                                         L->getStartLoc(), L->getHeader())
9726              << VecDiagMsg.second;
9727     });
9728   } else if (VectorizeLoop && !InterleaveLoop) {
9729     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9730                       << ") in " << DebugLocStr << '\n');
9731     ORE->emit([&]() {
9732       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9733                                         L->getStartLoc(), L->getHeader())
9734              << IntDiagMsg.second;
9735     });
9736   } else if (VectorizeLoop && InterleaveLoop) {
9737     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9738                       << ") in " << DebugLocStr << '\n');
9739     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9740   }
9741 
9742   bool DisableRuntimeUnroll = false;
9743   MDNode *OrigLoopID = L->getLoopID();
9744   {
9745     // Optimistically generate runtime checks. Drop them if they turn out to not
9746     // be profitable. Limit the scope of Checks, so the cleanup happens
9747     // immediately after vector codegeneration is done.
9748     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9749                              F->getParent()->getDataLayout());
9750     if (!VF.Width.isScalar() || IC > 1)
9751       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9752     LVP.setBestPlan(VF.Width, IC);
9753 
9754     using namespace ore;
9755     if (!VectorizeLoop) {
9756       assert(IC > 1 && "interleave count should not be 1 or 0");
9757       // If we decided that it is not legal to vectorize the loop, then
9758       // interleave it.
9759       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9760                                  &CM, BFI, PSI, Checks);
9761       LVP.executePlan(Unroller, DT);
9762 
9763       ORE->emit([&]() {
9764         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9765                                   L->getHeader())
9766                << "interleaved loop (interleaved count: "
9767                << NV("InterleaveCount", IC) << ")";
9768       });
9769     } else {
9770       // If we decided that it is *legal* to vectorize the loop, then do it.
9771 
9772       // Consider vectorizing the epilogue too if it's profitable.
9773       VectorizationFactor EpilogueVF =
9774           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9775       if (EpilogueVF.Width.isVector()) {
9776 
9777         // The first pass vectorizes the main loop and creates a scalar epilogue
9778         // to be vectorized by executing the plan (potentially with a different
9779         // factor) again shortly afterwards.
9780         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9781                                           EpilogueVF.Width.getKnownMinValue(),
9782                                           1);
9783         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9784                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9785 
9786         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9787         LVP.executePlan(MainILV, DT);
9788         ++LoopsVectorized;
9789 
9790         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9791         formLCSSARecursively(*L, *DT, LI, SE);
9792 
9793         // Second pass vectorizes the epilogue and adjusts the control flow
9794         // edges from the first pass.
9795         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9796         EPI.MainLoopVF = EPI.EpilogueVF;
9797         EPI.MainLoopUF = EPI.EpilogueUF;
9798         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9799                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9800                                                  Checks);
9801         LVP.executePlan(EpilogILV, DT);
9802         ++LoopsEpilogueVectorized;
9803 
9804         if (!MainILV.areSafetyChecksAdded())
9805           DisableRuntimeUnroll = true;
9806       } else {
9807         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9808                                &LVL, &CM, BFI, PSI, Checks);
9809         LVP.executePlan(LB, DT);
9810         ++LoopsVectorized;
9811 
9812         // Add metadata to disable runtime unrolling a scalar loop when there
9813         // are no runtime checks about strides and memory. A scalar loop that is
9814         // rarely used is not worth unrolling.
9815         if (!LB.areSafetyChecksAdded())
9816           DisableRuntimeUnroll = true;
9817       }
9818       // Report the vectorization decision.
9819       ORE->emit([&]() {
9820         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9821                                   L->getHeader())
9822                << "vectorized loop (vectorization width: "
9823                << NV("VectorizationFactor", VF.Width)
9824                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9825       });
9826     }
9827 
9828     if (ORE->allowExtraAnalysis(LV_NAME))
9829       checkMixedPrecision(L, ORE);
9830   }
9831 
9832   Optional<MDNode *> RemainderLoopID =
9833       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9834                                       LLVMLoopVectorizeFollowupEpilogue});
9835   if (RemainderLoopID.hasValue()) {
9836     L->setLoopID(RemainderLoopID.getValue());
9837   } else {
9838     if (DisableRuntimeUnroll)
9839       AddRuntimeUnrollDisableMetaData(L);
9840 
9841     // Mark the loop as already vectorized to avoid vectorizing again.
9842     Hints.setAlreadyVectorized();
9843   }
9844 
9845   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9846   return true;
9847 }
9848 
9849 LoopVectorizeResult LoopVectorizePass::runImpl(
9850     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
9851     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
9852     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
9853     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
9854     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
9855   SE = &SE_;
9856   LI = &LI_;
9857   TTI = &TTI_;
9858   DT = &DT_;
9859   BFI = &BFI_;
9860   TLI = TLI_;
9861   AA = &AA_;
9862   AC = &AC_;
9863   GetLAA = &GetLAA_;
9864   DB = &DB_;
9865   ORE = &ORE_;
9866   PSI = PSI_;
9867 
9868   // Don't attempt if
9869   // 1. the target claims to have no vector registers, and
9870   // 2. interleaving won't help ILP.
9871   //
9872   // The second condition is necessary because, even if the target has no
9873   // vector registers, loop vectorization may still enable scalar
9874   // interleaving.
9875   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
9876       TTI->getMaxInterleaveFactor(1) < 2)
9877     return LoopVectorizeResult(false, false);
9878 
9879   bool Changed = false, CFGChanged = false;
9880 
9881   // The vectorizer requires loops to be in simplified form.
9882   // Since simplification may add new inner loops, it has to run before the
9883   // legality and profitability checks. This means running the loop vectorizer
9884   // will simplify all loops, regardless of whether anything end up being
9885   // vectorized.
9886   for (auto &L : *LI)
9887     Changed |= CFGChanged |=
9888         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9889 
9890   // Build up a worklist of inner-loops to vectorize. This is necessary as
9891   // the act of vectorizing or partially unrolling a loop creates new loops
9892   // and can invalidate iterators across the loops.
9893   SmallVector<Loop *, 8> Worklist;
9894 
9895   for (Loop *L : *LI)
9896     collectSupportedLoops(*L, LI, ORE, Worklist);
9897 
9898   LoopsAnalyzed += Worklist.size();
9899 
9900   // Now walk the identified inner loops.
9901   while (!Worklist.empty()) {
9902     Loop *L = Worklist.pop_back_val();
9903 
9904     // For the inner loops we actually process, form LCSSA to simplify the
9905     // transform.
9906     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
9907 
9908     Changed |= CFGChanged |= processLoop(L);
9909   }
9910 
9911   // Process each loop nest in the function.
9912   return LoopVectorizeResult(Changed, CFGChanged);
9913 }
9914 
9915 PreservedAnalyses LoopVectorizePass::run(Function &F,
9916                                          FunctionAnalysisManager &AM) {
9917     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
9918     auto &LI = AM.getResult<LoopAnalysis>(F);
9919     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
9920     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
9921     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
9922     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
9923     auto &AA = AM.getResult<AAManager>(F);
9924     auto &AC = AM.getResult<AssumptionAnalysis>(F);
9925     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
9926     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9927     MemorySSA *MSSA = EnableMSSALoopDependency
9928                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
9929                           : nullptr;
9930 
9931     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
9932     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
9933         [&](Loop &L) -> const LoopAccessInfo & {
9934       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
9935                                         TLI, TTI, nullptr, MSSA};
9936       return LAM.getResult<LoopAccessAnalysis>(L, AR);
9937     };
9938     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
9939     ProfileSummaryInfo *PSI =
9940         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
9941     LoopVectorizeResult Result =
9942         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
9943     if (!Result.MadeAnyChange)
9944       return PreservedAnalyses::all();
9945     PreservedAnalyses PA;
9946 
9947     // We currently do not preserve loopinfo/dominator analyses with outer loop
9948     // vectorization. Until this is addressed, mark these analyses as preserved
9949     // only for non-VPlan-native path.
9950     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
9951     if (!EnableVPlanNativePath) {
9952       PA.preserve<LoopAnalysis>();
9953       PA.preserve<DominatorTreeAnalysis>();
9954     }
9955     PA.preserve<BasicAA>();
9956     PA.preserve<GlobalsAA>();
9957     if (!Result.MadeCFGChange)
9958       PA.preserveSet<CFGAnalyses>();
9959     return PA;
9960 }
9961