1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallPtrSet.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/ADT/SmallVector.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/ADT/StringRef.h" 66 #include "llvm/ADT/Twine.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/BasicAliasAnalysis.h" 70 #include "llvm/Analysis/BlockFrequencyInfo.h" 71 #include "llvm/Analysis/CFG.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// A helper function for converting Scalar types to vector types. 287 /// If the incoming type is void, we return void. If the VF is 1, we return 288 /// the scalar type. 289 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 290 if (Scalar->isVoidTy() || VF == 1) 291 return Scalar; 292 return VectorType::get(Scalar, VF); 293 } 294 295 // FIXME: The following helper functions have multiple implementations 296 // in the project. They can be effectively organized in a common Load/Store 297 // utilities unit. 298 299 /// A helper function that returns the pointer operand of a load or store 300 /// instruction. 301 static Value *getPointerOperand(Value *I) { 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getPointerOperand(); 304 if (auto *SI = dyn_cast<StoreInst>(I)) 305 return SI->getPointerOperand(); 306 return nullptr; 307 } 308 309 /// A helper function that returns the type of loaded or stored value. 310 static Type *getMemInstValueType(Value *I) { 311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 312 "Expected Load or Store instruction"); 313 if (auto *LI = dyn_cast<LoadInst>(I)) 314 return LI->getType(); 315 return cast<StoreInst>(I)->getValueOperand()->getType(); 316 } 317 318 /// A helper function that returns the alignment of load or store instruction. 319 static unsigned getMemInstAlignment(Value *I) { 320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 321 "Expected Load or Store instruction"); 322 if (auto *LI = dyn_cast<LoadInst>(I)) 323 return LI->getAlignment(); 324 return cast<StoreInst>(I)->getAlignment(); 325 } 326 327 /// A helper function that returns the address space of the pointer operand of 328 /// load or store instruction. 329 static unsigned getMemInstAddressSpace(Value *I) { 330 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 331 "Expected Load or Store instruction"); 332 if (auto *LI = dyn_cast<LoadInst>(I)) 333 return LI->getPointerAddressSpace(); 334 return cast<StoreInst>(I)->getPointerAddressSpace(); 335 } 336 337 /// A helper function that returns true if the given type is irregular. The 338 /// type is irregular if its allocated size doesn't equal the store size of an 339 /// element of the corresponding vector type at the given vectorization factor. 340 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 341 // Determine if an array of VF elements of type Ty is "bitcast compatible" 342 // with a <VF x Ty> vector. 343 if (VF > 1) { 344 auto *VectorTy = VectorType::get(Ty, VF); 345 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 346 } 347 348 // If the vectorization factor is one, we just check if an array of type Ty 349 // requires padding between elements. 350 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 351 } 352 353 /// A helper function that returns the reciprocal of the block probability of 354 /// predicated blocks. If we return X, we are assuming the predicated block 355 /// will execute once for every X iterations of the loop header. 356 /// 357 /// TODO: We should use actual block probability here, if available. Currently, 358 /// we always assume predicated blocks have a 50% chance of executing. 359 static unsigned getReciprocalPredBlockProb() { return 2; } 360 361 /// A helper function that adds a 'fast' flag to floating-point operations. 362 static Value *addFastMathFlag(Value *V) { 363 if (isa<FPMathOperator>(V)) { 364 FastMathFlags Flags; 365 Flags.setFast(); 366 cast<Instruction>(V)->setFastMathFlags(Flags); 367 } 368 return V; 369 } 370 371 /// A helper function that returns an integer or floating-point constant with 372 /// value C. 373 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 374 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 375 : ConstantFP::get(Ty, C); 376 } 377 378 namespace llvm { 379 380 /// InnerLoopVectorizer vectorizes loops which contain only one basic 381 /// block to a specified vectorization factor (VF). 382 /// This class performs the widening of scalars into vectors, or multiple 383 /// scalars. This class also implements the following features: 384 /// * It inserts an epilogue loop for handling loops that don't have iteration 385 /// counts that are known to be a multiple of the vectorization factor. 386 /// * It handles the code generation for reduction variables. 387 /// * Scalarization (implementation using scalars) of un-vectorizable 388 /// instructions. 389 /// InnerLoopVectorizer does not perform any vectorization-legality 390 /// checks, and relies on the caller to check for the different legality 391 /// aspects. The InnerLoopVectorizer relies on the 392 /// LoopVectorizationLegality class to provide information about the induction 393 /// and reduction variables that were found to a given vectorization factor. 394 class InnerLoopVectorizer { 395 public: 396 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 397 LoopInfo *LI, DominatorTree *DT, 398 const TargetLibraryInfo *TLI, 399 const TargetTransformInfo *TTI, AssumptionCache *AC, 400 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 401 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 402 LoopVectorizationCostModel *CM) 403 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 404 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 405 Builder(PSE.getSE()->getContext()), 406 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 407 virtual ~InnerLoopVectorizer() = default; 408 409 /// Create a new empty loop. Unlink the old loop and connect the new one. 410 /// Return the pre-header block of the new loop. 411 BasicBlock *createVectorizedLoopSkeleton(); 412 413 /// Widen a single instruction within the innermost loop. 414 void widenInstruction(Instruction &I); 415 416 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 417 void fixVectorizedLoop(); 418 419 // Return true if any runtime check is added. 420 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 421 422 /// A type for vectorized values in the new loop. Each value from the 423 /// original loop, when vectorized, is represented by UF vector values in the 424 /// new unrolled loop, where UF is the unroll factor. 425 using VectorParts = SmallVector<Value *, 2>; 426 427 /// Vectorize a single PHINode in a block. This method handles the induction 428 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 429 /// arbitrary length vectors. 430 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 431 432 /// A helper function to scalarize a single Instruction in the innermost loop. 433 /// Generates a sequence of scalar instances for each lane between \p MinLane 434 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 435 /// inclusive.. 436 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 437 bool IfPredicateInstr); 438 439 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 440 /// is provided, the integer induction variable will first be truncated to 441 /// the corresponding type. 442 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 443 444 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 445 /// vector or scalar value on-demand if one is not yet available. When 446 /// vectorizing a loop, we visit the definition of an instruction before its 447 /// uses. When visiting the definition, we either vectorize or scalarize the 448 /// instruction, creating an entry for it in the corresponding map. (In some 449 /// cases, such as induction variables, we will create both vector and scalar 450 /// entries.) Then, as we encounter uses of the definition, we derive values 451 /// for each scalar or vector use unless such a value is already available. 452 /// For example, if we scalarize a definition and one of its uses is vector, 453 /// we build the required vector on-demand with an insertelement sequence 454 /// when visiting the use. Otherwise, if the use is scalar, we can use the 455 /// existing scalar definition. 456 /// 457 /// Return a value in the new loop corresponding to \p V from the original 458 /// loop at unroll index \p Part. If the value has already been vectorized, 459 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 460 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 461 /// a new vector value on-demand by inserting the scalar values into a vector 462 /// with an insertelement sequence. If the value has been neither vectorized 463 /// nor scalarized, it must be loop invariant, so we simply broadcast the 464 /// value into a vector. 465 Value *getOrCreateVectorValue(Value *V, unsigned Part); 466 467 /// Return a value in the new loop corresponding to \p V from the original 468 /// loop at unroll and vector indices \p Instance. If the value has been 469 /// vectorized but not scalarized, the necessary extractelement instruction 470 /// will be generated. 471 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 472 473 /// Construct the vector value of a scalarized value \p V one lane at a time. 474 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 475 476 /// Try to vectorize the interleaved access group that \p Instr belongs to. 477 void vectorizeInterleaveGroup(Instruction *Instr); 478 479 /// Vectorize Load and Store instructions, optionally masking the vector 480 /// operations if \p BlockInMask is non-null. 481 void vectorizeMemoryInstruction(Instruction *Instr, 482 VectorParts *BlockInMask = nullptr); 483 484 /// \brief Set the debug location in the builder using the debug location in 485 /// the instruction. 486 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 487 488 protected: 489 friend class LoopVectorizationPlanner; 490 491 /// A small list of PHINodes. 492 using PhiVector = SmallVector<PHINode *, 4>; 493 494 /// A type for scalarized values in the new loop. Each value from the 495 /// original loop, when scalarized, is represented by UF x VF scalar values 496 /// in the new unrolled loop, where UF is the unroll factor and VF is the 497 /// vectorization factor. 498 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 499 500 /// Set up the values of the IVs correctly when exiting the vector loop. 501 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 502 Value *CountRoundDown, Value *EndValue, 503 BasicBlock *MiddleBlock); 504 505 /// Create a new induction variable inside L. 506 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 507 Value *Step, Instruction *DL); 508 509 /// Handle all cross-iteration phis in the header. 510 void fixCrossIterationPHIs(); 511 512 /// Fix a first-order recurrence. This is the second phase of vectorizing 513 /// this phi node. 514 void fixFirstOrderRecurrence(PHINode *Phi); 515 516 /// Fix a reduction cross-iteration phi. This is the second phase of 517 /// vectorizing this phi node. 518 void fixReduction(PHINode *Phi); 519 520 /// \brief The Loop exit block may have single value PHI nodes with some 521 /// incoming value. While vectorizing we only handled real values 522 /// that were defined inside the loop and we should have one value for 523 /// each predecessor of its parent basic block. See PR14725. 524 void fixLCSSAPHIs(); 525 526 /// Iteratively sink the scalarized operands of a predicated instruction into 527 /// the block that was created for it. 528 void sinkScalarOperands(Instruction *PredInst); 529 530 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 531 /// represented as. 532 void truncateToMinimalBitwidths(); 533 534 /// Insert the new loop to the loop hierarchy and pass manager 535 /// and update the analysis passes. 536 void updateAnalysis(); 537 538 /// Create a broadcast instruction. This method generates a broadcast 539 /// instruction (shuffle) for loop invariant values and for the induction 540 /// value. If this is the induction variable then we extend it to N, N+1, ... 541 /// this is needed because each iteration in the loop corresponds to a SIMD 542 /// element. 543 virtual Value *getBroadcastInstrs(Value *V); 544 545 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 546 /// to each vector element of Val. The sequence starts at StartIndex. 547 /// \p Opcode is relevant for FP induction variable. 548 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 549 Instruction::BinaryOps Opcode = 550 Instruction::BinaryOpsEnd); 551 552 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 553 /// variable on which to base the steps, \p Step is the size of the step, and 554 /// \p EntryVal is the value from the original loop that maps to the steps. 555 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 556 /// can be a truncate instruction). 557 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 558 const InductionDescriptor &ID); 559 560 /// Create a vector induction phi node based on an existing scalar one. \p 561 /// EntryVal is the value from the original loop that maps to the vector phi 562 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 563 /// truncate instruction, instead of widening the original IV, we widen a 564 /// version of the IV truncated to \p EntryVal's type. 565 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 566 Value *Step, Instruction *EntryVal); 567 568 /// Returns true if an instruction \p I should be scalarized instead of 569 /// vectorized for the chosen vectorization factor. 570 bool shouldScalarizeInstruction(Instruction *I) const; 571 572 /// Returns true if we should generate a scalar version of \p IV. 573 bool needsScalarInduction(Instruction *IV) const; 574 575 /// If there is a cast involved in the induction variable \p ID, which should 576 /// be ignored in the vectorized loop body, this function records the 577 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 578 /// cast. We had already proved that the casted Phi is equal to the uncasted 579 /// Phi in the vectorized loop (under a runtime guard), and therefore 580 /// there is no need to vectorize the cast - the same value can be used in the 581 /// vector loop for both the Phi and the cast. 582 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 583 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 584 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 585 Value *VectorLoopValue, 586 unsigned Part, 587 unsigned Lane = UINT_MAX); 588 589 /// Generate a shuffle sequence that will reverse the vector Vec. 590 virtual Value *reverseVector(Value *Vec); 591 592 /// Returns (and creates if needed) the original loop trip count. 593 Value *getOrCreateTripCount(Loop *NewLoop); 594 595 /// Returns (and creates if needed) the trip count of the widened loop. 596 Value *getOrCreateVectorTripCount(Loop *NewLoop); 597 598 /// Returns a bitcasted value to the requested vector type. 599 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 600 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 601 const DataLayout &DL); 602 603 /// Emit a bypass check to see if the vector trip count is zero, including if 604 /// it overflows. 605 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 606 607 /// Emit a bypass check to see if all of the SCEV assumptions we've 608 /// had to make are correct. 609 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 610 611 /// Emit bypass checks to check any memory assumptions we may have made. 612 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 613 614 /// Add additional metadata to \p To that was not present on \p Orig. 615 /// 616 /// Currently this is used to add the noalias annotations based on the 617 /// inserted memchecks. Use this for instructions that are *cloned* into the 618 /// vector loop. 619 void addNewMetadata(Instruction *To, const Instruction *Orig); 620 621 /// Add metadata from one instruction to another. 622 /// 623 /// This includes both the original MDs from \p From and additional ones (\see 624 /// addNewMetadata). Use this for *newly created* instructions in the vector 625 /// loop. 626 void addMetadata(Instruction *To, Instruction *From); 627 628 /// \brief Similar to the previous function but it adds the metadata to a 629 /// vector of instructions. 630 void addMetadata(ArrayRef<Value *> To, Instruction *From); 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AliasAnalysis *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 662 /// used. 663 /// 664 /// This is currently only used to add no-alias metadata based on the 665 /// memchecks. The actually versioning is performed manually. 666 std::unique_ptr<LoopVersioning> LVer; 667 668 /// The vectorization SIMD factor to use. Each vector will have this many 669 /// vector elements. 670 unsigned VF; 671 672 /// The vectorization unroll factor to use. Each scalar is vectorized to this 673 /// many different vector instructions. 674 unsigned UF; 675 676 /// The builder that we use 677 IRBuilder<> Builder; 678 679 // --- Vectorization state --- 680 681 /// The vector-loop preheader. 682 BasicBlock *LoopVectorPreHeader; 683 684 /// The scalar-loop preheader. 685 BasicBlock *LoopScalarPreHeader; 686 687 /// Middle Block between the vector and the scalar. 688 BasicBlock *LoopMiddleBlock; 689 690 /// The ExitBlock of the scalar loop. 691 BasicBlock *LoopExitBlock; 692 693 /// The vector loop body. 694 BasicBlock *LoopVectorBody; 695 696 /// The scalar loop body. 697 BasicBlock *LoopScalarBody; 698 699 /// A list of all bypass blocks. The first block is the entry of the loop. 700 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 701 702 /// The new Induction variable which was added to the new block. 703 PHINode *Induction = nullptr; 704 705 /// The induction variable of the old basic block. 706 PHINode *OldInduction = nullptr; 707 708 /// Maps values from the original loop to their corresponding values in the 709 /// vectorized loop. A key value can map to either vector values, scalar 710 /// values or both kinds of values, depending on whether the key was 711 /// vectorized and scalarized. 712 VectorizerValueMap VectorLoopValueMap; 713 714 /// Store instructions that were predicated. 715 SmallVector<Instruction *, 4> PredicatedInstructions; 716 717 /// Trip count of the original loop. 718 Value *TripCount = nullptr; 719 720 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 721 Value *VectorTripCount = nullptr; 722 723 /// The legality analysis. 724 LoopVectorizationLegality *Legal; 725 726 /// The profitablity analysis. 727 LoopVectorizationCostModel *Cost; 728 729 // Record whether runtime checks are added. 730 bool AddedSafetyChecks = false; 731 732 // Holds the end values for each induction variable. We save the end values 733 // so we can later fix-up the external users of the induction variables. 734 DenseMap<PHINode *, Value *> IVEndValues; 735 }; 736 737 class InnerLoopUnroller : public InnerLoopVectorizer { 738 public: 739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 740 LoopInfo *LI, DominatorTree *DT, 741 const TargetLibraryInfo *TLI, 742 const TargetTransformInfo *TTI, AssumptionCache *AC, 743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 744 LoopVectorizationLegality *LVL, 745 LoopVectorizationCostModel *CM) 746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 747 UnrollFactor, LVL, CM) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 752 Instruction::BinaryOps Opcode = 753 Instruction::BinaryOpsEnd) override; 754 Value *reverseVector(Value *Vec) override; 755 }; 756 757 } // end namespace llvm 758 759 /// \brief Look for a meaningful debug location on the instruction or it's 760 /// operands. 761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 762 if (!I) 763 return I; 764 765 DebugLoc Empty; 766 if (I->getDebugLoc() != Empty) 767 return I; 768 769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 771 if (OpInst->getDebugLoc() != Empty) 772 return OpInst; 773 } 774 775 return I; 776 } 777 778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 780 const DILocation *DIL = Inst->getDebugLoc(); 781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 782 !isa<DbgInfoIntrinsic>(Inst)) 783 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 784 else 785 B.SetCurrentDebugLocation(DIL); 786 } else 787 B.SetCurrentDebugLocation(DebugLoc()); 788 } 789 790 #ifndef NDEBUG 791 /// \return string containing a file name and a line # for the given loop. 792 static std::string getDebugLocString(const Loop *L) { 793 std::string Result; 794 if (L) { 795 raw_string_ostream OS(Result); 796 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 797 LoopDbgLoc.print(OS); 798 else 799 // Just print the module name. 800 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 801 OS.flush(); 802 } 803 return Result; 804 } 805 #endif 806 807 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 808 const Instruction *Orig) { 809 // If the loop was versioned with memchecks, add the corresponding no-alias 810 // metadata. 811 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 812 LVer->annotateInstWithNoAlias(To, Orig); 813 } 814 815 void InnerLoopVectorizer::addMetadata(Instruction *To, 816 Instruction *From) { 817 propagateMetadata(To, From); 818 addNewMetadata(To, From); 819 } 820 821 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 822 Instruction *From) { 823 for (Value *V : To) { 824 if (Instruction *I = dyn_cast<Instruction>(V)) 825 addMetadata(I, From); 826 } 827 } 828 829 namespace llvm { 830 831 /// \brief The group of interleaved loads/stores sharing the same stride and 832 /// close to each other. 833 /// 834 /// Each member in this group has an index starting from 0, and the largest 835 /// index should be less than interleaved factor, which is equal to the absolute 836 /// value of the access's stride. 837 /// 838 /// E.g. An interleaved load group of factor 4: 839 /// for (unsigned i = 0; i < 1024; i+=4) { 840 /// a = A[i]; // Member of index 0 841 /// b = A[i+1]; // Member of index 1 842 /// d = A[i+3]; // Member of index 3 843 /// ... 844 /// } 845 /// 846 /// An interleaved store group of factor 4: 847 /// for (unsigned i = 0; i < 1024; i+=4) { 848 /// ... 849 /// A[i] = a; // Member of index 0 850 /// A[i+1] = b; // Member of index 1 851 /// A[i+2] = c; // Member of index 2 852 /// A[i+3] = d; // Member of index 3 853 /// } 854 /// 855 /// Note: the interleaved load group could have gaps (missing members), but 856 /// the interleaved store group doesn't allow gaps. 857 class InterleaveGroup { 858 public: 859 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 860 : Align(Align), InsertPos(Instr) { 861 assert(Align && "The alignment should be non-zero"); 862 863 Factor = std::abs(Stride); 864 assert(Factor > 1 && "Invalid interleave factor"); 865 866 Reverse = Stride < 0; 867 Members[0] = Instr; 868 } 869 870 bool isReverse() const { return Reverse; } 871 unsigned getFactor() const { return Factor; } 872 unsigned getAlignment() const { return Align; } 873 unsigned getNumMembers() const { return Members.size(); } 874 875 /// \brief Try to insert a new member \p Instr with index \p Index and 876 /// alignment \p NewAlign. The index is related to the leader and it could be 877 /// negative if it is the new leader. 878 /// 879 /// \returns false if the instruction doesn't belong to the group. 880 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 881 assert(NewAlign && "The new member's alignment should be non-zero"); 882 883 int Key = Index + SmallestKey; 884 885 // Skip if there is already a member with the same index. 886 if (Members.count(Key)) 887 return false; 888 889 if (Key > LargestKey) { 890 // The largest index is always less than the interleave factor. 891 if (Index >= static_cast<int>(Factor)) 892 return false; 893 894 LargestKey = Key; 895 } else if (Key < SmallestKey) { 896 // The largest index is always less than the interleave factor. 897 if (LargestKey - Key >= static_cast<int>(Factor)) 898 return false; 899 900 SmallestKey = Key; 901 } 902 903 // It's always safe to select the minimum alignment. 904 Align = std::min(Align, NewAlign); 905 Members[Key] = Instr; 906 return true; 907 } 908 909 /// \brief Get the member with the given index \p Index 910 /// 911 /// \returns nullptr if contains no such member. 912 Instruction *getMember(unsigned Index) const { 913 int Key = SmallestKey + Index; 914 if (!Members.count(Key)) 915 return nullptr; 916 917 return Members.find(Key)->second; 918 } 919 920 /// \brief Get the index for the given member. Unlike the key in the member 921 /// map, the index starts from 0. 922 unsigned getIndex(Instruction *Instr) const { 923 for (auto I : Members) 924 if (I.second == Instr) 925 return I.first - SmallestKey; 926 927 llvm_unreachable("InterleaveGroup contains no such member"); 928 } 929 930 Instruction *getInsertPos() const { return InsertPos; } 931 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 932 933 /// Add metadata (e.g. alias info) from the instructions in this group to \p 934 /// NewInst. 935 /// 936 /// FIXME: this function currently does not add noalias metadata a'la 937 /// addNewMedata. To do that we need to compute the intersection of the 938 /// noalias info from all members. 939 void addMetadata(Instruction *NewInst) const { 940 SmallVector<Value *, 4> VL; 941 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 942 [](std::pair<int, Instruction *> p) { return p.second; }); 943 propagateMetadata(NewInst, VL); 944 } 945 946 private: 947 unsigned Factor; // Interleave Factor. 948 bool Reverse; 949 unsigned Align; 950 DenseMap<int, Instruction *> Members; 951 int SmallestKey = 0; 952 int LargestKey = 0; 953 954 // To avoid breaking dependences, vectorized instructions of an interleave 955 // group should be inserted at either the first load or the last store in 956 // program order. 957 // 958 // E.g. %even = load i32 // Insert Position 959 // %add = add i32 %even // Use of %even 960 // %odd = load i32 961 // 962 // store i32 %even 963 // %odd = add i32 // Def of %odd 964 // store i32 %odd // Insert Position 965 Instruction *InsertPos; 966 }; 967 } // end namespace llvm 968 969 namespace { 970 971 /// \brief Drive the analysis of interleaved memory accesses in the loop. 972 /// 973 /// Use this class to analyze interleaved accesses only when we can vectorize 974 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 975 /// on interleaved accesses is unsafe. 976 /// 977 /// The analysis collects interleave groups and records the relationships 978 /// between the member and the group in a map. 979 class InterleavedAccessInfo { 980 public: 981 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 982 DominatorTree *DT, LoopInfo *LI) 983 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 984 985 ~InterleavedAccessInfo() { 986 SmallSet<InterleaveGroup *, 4> DelSet; 987 // Avoid releasing a pointer twice. 988 for (auto &I : InterleaveGroupMap) 989 DelSet.insert(I.second); 990 for (auto *Ptr : DelSet) 991 delete Ptr; 992 } 993 994 /// \brief Analyze the interleaved accesses and collect them in interleave 995 /// groups. Substitute symbolic strides using \p Strides. 996 void analyzeInterleaving(const ValueToValueMap &Strides); 997 998 /// \brief Check if \p Instr belongs to any interleave group. 999 bool isInterleaved(Instruction *Instr) const { 1000 return InterleaveGroupMap.count(Instr); 1001 } 1002 1003 /// \brief Get the interleave group that \p Instr belongs to. 1004 /// 1005 /// \returns nullptr if doesn't have such group. 1006 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1007 if (InterleaveGroupMap.count(Instr)) 1008 return InterleaveGroupMap.find(Instr)->second; 1009 return nullptr; 1010 } 1011 1012 /// \brief Returns true if an interleaved group that may access memory 1013 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1014 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1015 1016 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1017 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1018 1019 private: 1020 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1021 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1022 /// The interleaved access analysis can also add new predicates (for example 1023 /// by versioning strides of pointers). 1024 PredicatedScalarEvolution &PSE; 1025 1026 Loop *TheLoop; 1027 DominatorTree *DT; 1028 LoopInfo *LI; 1029 const LoopAccessInfo *LAI = nullptr; 1030 1031 /// True if the loop may contain non-reversed interleaved groups with 1032 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1033 /// out-of-bounds by executing at least one scalar epilogue iteration. 1034 bool RequiresScalarEpilogue = false; 1035 1036 /// Holds the relationships between the members and the interleave group. 1037 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1038 1039 /// Holds dependences among the memory accesses in the loop. It maps a source 1040 /// access to a set of dependent sink accesses. 1041 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1042 1043 /// \brief The descriptor for a strided memory access. 1044 struct StrideDescriptor { 1045 StrideDescriptor() = default; 1046 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1047 unsigned Align) 1048 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1049 1050 // The access's stride. It is negative for a reverse access. 1051 int64_t Stride = 0; 1052 1053 // The scalar expression of this access. 1054 const SCEV *Scev = nullptr; 1055 1056 // The size of the memory object. 1057 uint64_t Size = 0; 1058 1059 // The alignment of this access. 1060 unsigned Align = 0; 1061 }; 1062 1063 /// \brief A type for holding instructions and their stride descriptors. 1064 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1065 1066 /// \brief Create a new interleave group with the given instruction \p Instr, 1067 /// stride \p Stride and alignment \p Align. 1068 /// 1069 /// \returns the newly created interleave group. 1070 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1071 unsigned Align) { 1072 assert(!InterleaveGroupMap.count(Instr) && 1073 "Already in an interleaved access group"); 1074 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1075 return InterleaveGroupMap[Instr]; 1076 } 1077 1078 /// \brief Release the group and remove all the relationships. 1079 void releaseGroup(InterleaveGroup *Group) { 1080 for (unsigned i = 0; i < Group->getFactor(); i++) 1081 if (Instruction *Member = Group->getMember(i)) 1082 InterleaveGroupMap.erase(Member); 1083 1084 delete Group; 1085 } 1086 1087 /// \brief Collect all the accesses with a constant stride in program order. 1088 void collectConstStrideAccesses( 1089 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1090 const ValueToValueMap &Strides); 1091 1092 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1093 static bool isStrided(int Stride) { 1094 unsigned Factor = std::abs(Stride); 1095 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1096 } 1097 1098 /// \brief Returns true if \p BB is a predicated block. 1099 bool isPredicated(BasicBlock *BB) const { 1100 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1101 } 1102 1103 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1104 bool areDependencesValid() const { 1105 return LAI && LAI->getDepChecker().getDependences(); 1106 } 1107 1108 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1109 /// necessary, when constructing interleaved groups. 1110 /// 1111 /// \p A must precede \p B in program order. We return false if reordering is 1112 /// not necessary or is prevented because \p A and \p B may be dependent. 1113 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1114 StrideEntry *B) const { 1115 // Code motion for interleaved accesses can potentially hoist strided loads 1116 // and sink strided stores. The code below checks the legality of the 1117 // following two conditions: 1118 // 1119 // 1. Potentially moving a strided load (B) before any store (A) that 1120 // precedes B, or 1121 // 1122 // 2. Potentially moving a strided store (A) after any load or store (B) 1123 // that A precedes. 1124 // 1125 // It's legal to reorder A and B if we know there isn't a dependence from A 1126 // to B. Note that this determination is conservative since some 1127 // dependences could potentially be reordered safely. 1128 1129 // A is potentially the source of a dependence. 1130 auto *Src = A->first; 1131 auto SrcDes = A->second; 1132 1133 // B is potentially the sink of a dependence. 1134 auto *Sink = B->first; 1135 auto SinkDes = B->second; 1136 1137 // Code motion for interleaved accesses can't violate WAR dependences. 1138 // Thus, reordering is legal if the source isn't a write. 1139 if (!Src->mayWriteToMemory()) 1140 return true; 1141 1142 // At least one of the accesses must be strided. 1143 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1144 return true; 1145 1146 // If dependence information is not available from LoopAccessInfo, 1147 // conservatively assume the instructions can't be reordered. 1148 if (!areDependencesValid()) 1149 return false; 1150 1151 // If we know there is a dependence from source to sink, assume the 1152 // instructions can't be reordered. Otherwise, reordering is legal. 1153 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1154 } 1155 1156 /// \brief Collect the dependences from LoopAccessInfo. 1157 /// 1158 /// We process the dependences once during the interleaved access analysis to 1159 /// enable constant-time dependence queries. 1160 void collectDependences() { 1161 if (!areDependencesValid()) 1162 return; 1163 auto *Deps = LAI->getDepChecker().getDependences(); 1164 for (auto Dep : *Deps) 1165 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1166 } 1167 }; 1168 1169 /// Utility class for getting and setting loop vectorizer hints in the form 1170 /// of loop metadata. 1171 /// This class keeps a number of loop annotations locally (as member variables) 1172 /// and can, upon request, write them back as metadata on the loop. It will 1173 /// initially scan the loop for existing metadata, and will update the local 1174 /// values based on information in the loop. 1175 /// We cannot write all values to metadata, as the mere presence of some info, 1176 /// for example 'force', means a decision has been made. So, we need to be 1177 /// careful NOT to add them if the user hasn't specifically asked so. 1178 class LoopVectorizeHints { 1179 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1180 1181 /// Hint - associates name and validation with the hint value. 1182 struct Hint { 1183 const char *Name; 1184 unsigned Value; // This may have to change for non-numeric values. 1185 HintKind Kind; 1186 1187 Hint(const char *Name, unsigned Value, HintKind Kind) 1188 : Name(Name), Value(Value), Kind(Kind) {} 1189 1190 bool validate(unsigned Val) { 1191 switch (Kind) { 1192 case HK_WIDTH: 1193 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1194 case HK_UNROLL: 1195 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1196 case HK_FORCE: 1197 return (Val <= 1); 1198 case HK_ISVECTORIZED: 1199 return (Val==0 || Val==1); 1200 } 1201 return false; 1202 } 1203 }; 1204 1205 /// Vectorization width. 1206 Hint Width; 1207 1208 /// Vectorization interleave factor. 1209 Hint Interleave; 1210 1211 /// Vectorization forced 1212 Hint Force; 1213 1214 /// Already Vectorized 1215 Hint IsVectorized; 1216 1217 /// Return the loop metadata prefix. 1218 static StringRef Prefix() { return "llvm.loop."; } 1219 1220 /// True if there is any unsafe math in the loop. 1221 bool PotentiallyUnsafe = false; 1222 1223 public: 1224 enum ForceKind { 1225 FK_Undefined = -1, ///< Not selected. 1226 FK_Disabled = 0, ///< Forcing disabled. 1227 FK_Enabled = 1, ///< Forcing enabled. 1228 }; 1229 1230 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1231 OptimizationRemarkEmitter &ORE) 1232 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1233 HK_WIDTH), 1234 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1235 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1236 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1237 // Populate values with existing loop metadata. 1238 getHintsFromMetadata(); 1239 1240 // force-vector-interleave overrides DisableInterleaving. 1241 if (VectorizerParams::isInterleaveForced()) 1242 Interleave.Value = VectorizerParams::VectorizationInterleave; 1243 1244 if (IsVectorized.Value != 1) 1245 // If the vectorization width and interleaving count are both 1 then 1246 // consider the loop to have been already vectorized because there's 1247 // nothing more that we can do. 1248 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1249 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1250 << "LV: Interleaving disabled by the pass manager\n"); 1251 } 1252 1253 /// Mark the loop L as already vectorized by setting the width to 1. 1254 void setAlreadyVectorized() { 1255 IsVectorized.Value = 1; 1256 Hint Hints[] = {IsVectorized}; 1257 writeHintsToMetadata(Hints); 1258 } 1259 1260 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1261 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1262 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1263 emitRemarkWithHints(); 1264 return false; 1265 } 1266 1267 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1268 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1269 emitRemarkWithHints(); 1270 return false; 1271 } 1272 1273 if (getIsVectorized() == 1) { 1274 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1275 // FIXME: Add interleave.disable metadata. This will allow 1276 // vectorize.disable to be used without disabling the pass and errors 1277 // to differentiate between disabled vectorization and a width of 1. 1278 ORE.emit([&]() { 1279 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1280 "AllDisabled", L->getStartLoc(), 1281 L->getHeader()) 1282 << "loop not vectorized: vectorization and interleaving are " 1283 "explicitly disabled, or the loop has already been " 1284 "vectorized"; 1285 }); 1286 return false; 1287 } 1288 1289 return true; 1290 } 1291 1292 /// Dumps all the hint information. 1293 void emitRemarkWithHints() const { 1294 using namespace ore; 1295 1296 ORE.emit([&]() { 1297 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1298 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1299 TheLoop->getStartLoc(), 1300 TheLoop->getHeader()) 1301 << "loop not vectorized: vectorization is explicitly disabled"; 1302 else { 1303 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1304 TheLoop->getStartLoc(), 1305 TheLoop->getHeader()); 1306 R << "loop not vectorized"; 1307 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1308 R << " (Force=" << NV("Force", true); 1309 if (Width.Value != 0) 1310 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1311 if (Interleave.Value != 0) 1312 R << ", Interleave Count=" 1313 << NV("InterleaveCount", Interleave.Value); 1314 R << ")"; 1315 } 1316 return R; 1317 } 1318 }); 1319 } 1320 1321 unsigned getWidth() const { return Width.Value; } 1322 unsigned getInterleave() const { return Interleave.Value; } 1323 unsigned getIsVectorized() const { return IsVectorized.Value; } 1324 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1325 1326 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1327 /// pass name to force the frontend to print the diagnostic. 1328 const char *vectorizeAnalysisPassName() const { 1329 if (getWidth() == 1) 1330 return LV_NAME; 1331 if (getForce() == LoopVectorizeHints::FK_Disabled) 1332 return LV_NAME; 1333 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1334 return LV_NAME; 1335 return OptimizationRemarkAnalysis::AlwaysPrint; 1336 } 1337 1338 bool allowReordering() const { 1339 // When enabling loop hints are provided we allow the vectorizer to change 1340 // the order of operations that is given by the scalar loop. This is not 1341 // enabled by default because can be unsafe or inefficient. For example, 1342 // reordering floating-point operations will change the way round-off 1343 // error accumulates in the loop. 1344 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1345 } 1346 1347 bool isPotentiallyUnsafe() const { 1348 // Avoid FP vectorization if the target is unsure about proper support. 1349 // This may be related to the SIMD unit in the target not handling 1350 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1351 // Otherwise, a sequence of vectorized loops, even without reduction, 1352 // could lead to different end results on the destination vectors. 1353 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1354 } 1355 1356 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1357 1358 private: 1359 /// Find hints specified in the loop metadata and update local values. 1360 void getHintsFromMetadata() { 1361 MDNode *LoopID = TheLoop->getLoopID(); 1362 if (!LoopID) 1363 return; 1364 1365 // First operand should refer to the loop id itself. 1366 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1367 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1368 1369 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1370 const MDString *S = nullptr; 1371 SmallVector<Metadata *, 4> Args; 1372 1373 // The expected hint is either a MDString or a MDNode with the first 1374 // operand a MDString. 1375 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1376 if (!MD || MD->getNumOperands() == 0) 1377 continue; 1378 S = dyn_cast<MDString>(MD->getOperand(0)); 1379 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1380 Args.push_back(MD->getOperand(i)); 1381 } else { 1382 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1383 assert(Args.size() == 0 && "too many arguments for MDString"); 1384 } 1385 1386 if (!S) 1387 continue; 1388 1389 // Check if the hint starts with the loop metadata prefix. 1390 StringRef Name = S->getString(); 1391 if (Args.size() == 1) 1392 setHint(Name, Args[0]); 1393 } 1394 } 1395 1396 /// Checks string hint with one operand and set value if valid. 1397 void setHint(StringRef Name, Metadata *Arg) { 1398 if (!Name.startswith(Prefix())) 1399 return; 1400 Name = Name.substr(Prefix().size(), StringRef::npos); 1401 1402 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1403 if (!C) 1404 return; 1405 unsigned Val = C->getZExtValue(); 1406 1407 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1408 for (auto H : Hints) { 1409 if (Name == H->Name) { 1410 if (H->validate(Val)) 1411 H->Value = Val; 1412 else 1413 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1414 break; 1415 } 1416 } 1417 } 1418 1419 /// Create a new hint from name / value pair. 1420 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1421 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1422 Metadata *MDs[] = {MDString::get(Context, Name), 1423 ConstantAsMetadata::get( 1424 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1425 return MDNode::get(Context, MDs); 1426 } 1427 1428 /// Matches metadata with hint name. 1429 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1430 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1431 if (!Name) 1432 return false; 1433 1434 for (auto H : HintTypes) 1435 if (Name->getString().endswith(H.Name)) 1436 return true; 1437 return false; 1438 } 1439 1440 /// Sets current hints into loop metadata, keeping other values intact. 1441 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1442 if (HintTypes.empty()) 1443 return; 1444 1445 // Reserve the first element to LoopID (see below). 1446 SmallVector<Metadata *, 4> MDs(1); 1447 // If the loop already has metadata, then ignore the existing operands. 1448 MDNode *LoopID = TheLoop->getLoopID(); 1449 if (LoopID) { 1450 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1451 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1452 // If node in update list, ignore old value. 1453 if (!matchesHintMetadataName(Node, HintTypes)) 1454 MDs.push_back(Node); 1455 } 1456 } 1457 1458 // Now, add the missing hints. 1459 for (auto H : HintTypes) 1460 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1461 1462 // Replace current metadata node with new one. 1463 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1464 MDNode *NewLoopID = MDNode::get(Context, MDs); 1465 // Set operand 0 to refer to the loop id itself. 1466 NewLoopID->replaceOperandWith(0, NewLoopID); 1467 1468 TheLoop->setLoopID(NewLoopID); 1469 } 1470 1471 /// The loop these hints belong to. 1472 const Loop *TheLoop; 1473 1474 /// Interface to emit optimization remarks. 1475 OptimizationRemarkEmitter &ORE; 1476 }; 1477 1478 } // end anonymous namespace 1479 1480 static void emitMissedWarning(Function *F, Loop *L, 1481 const LoopVectorizeHints &LH, 1482 OptimizationRemarkEmitter *ORE) { 1483 LH.emitRemarkWithHints(); 1484 1485 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1486 if (LH.getWidth() != 1) 1487 ORE->emit(DiagnosticInfoOptimizationFailure( 1488 DEBUG_TYPE, "FailedRequestedVectorization", 1489 L->getStartLoc(), L->getHeader()) 1490 << "loop not vectorized: " 1491 << "failed explicitly specified loop vectorization"); 1492 else if (LH.getInterleave() != 1) 1493 ORE->emit(DiagnosticInfoOptimizationFailure( 1494 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1495 L->getHeader()) 1496 << "loop not interleaved: " 1497 << "failed explicitly specified loop interleaving"); 1498 } 1499 } 1500 1501 namespace llvm { 1502 1503 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1504 /// to what vectorization factor. 1505 /// This class does not look at the profitability of vectorization, only the 1506 /// legality. This class has two main kinds of checks: 1507 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1508 /// will change the order of memory accesses in a way that will change the 1509 /// correctness of the program. 1510 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1511 /// checks for a number of different conditions, such as the availability of a 1512 /// single induction variable, that all types are supported and vectorize-able, 1513 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1514 /// This class is also used by InnerLoopVectorizer for identifying 1515 /// induction variable and the different reduction variables. 1516 class LoopVectorizationLegality { 1517 public: 1518 LoopVectorizationLegality( 1519 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1520 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1521 const TargetTransformInfo *TTI, 1522 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1523 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1524 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1525 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1526 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H), 1527 DB(DB), AC(AC) {} 1528 1529 /// ReductionList contains the reduction descriptors for all 1530 /// of the reductions that were found in the loop. 1531 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1532 1533 /// InductionList saves induction variables and maps them to the 1534 /// induction descriptor. 1535 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1536 1537 /// RecurrenceSet contains the phi nodes that are recurrences other than 1538 /// inductions and reductions. 1539 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1540 1541 /// Returns true if it is legal to vectorize this loop. 1542 /// This does not mean that it is profitable to vectorize this 1543 /// loop, only that it is legal to do so. 1544 bool canVectorize(); 1545 1546 /// Returns the primary induction variable. 1547 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1548 1549 /// Returns the reduction variables found in the loop. 1550 ReductionList *getReductionVars() { return &Reductions; } 1551 1552 /// Returns the induction variables found in the loop. 1553 InductionList *getInductionVars() { return &Inductions; } 1554 1555 /// Return the first-order recurrences found in the loop. 1556 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1557 1558 /// Return the set of instructions to sink to handle first-order recurrences. 1559 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1560 1561 /// Returns the widest induction type. 1562 Type *getWidestInductionType() { return WidestIndTy; } 1563 1564 /// Returns True if V is a Phi node of an induction variable in this loop. 1565 bool isInductionPhi(const Value *V); 1566 1567 /// Returns True if V is a cast that is part of an induction def-use chain, 1568 /// and had been proven to be redundant under a runtime guard (in other 1569 /// words, the cast has the same SCEV expression as the induction phi). 1570 bool isCastedInductionVariable(const Value *V); 1571 1572 /// Returns True if V can be considered as an induction variable in this 1573 /// loop. V can be the induction phi, or some redundant cast in the def-use 1574 /// chain of the inducion phi. 1575 bool isInductionVariable(const Value *V); 1576 1577 /// Returns True if PN is a reduction variable in this loop. 1578 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1579 1580 /// Returns True if Phi is a first-order recurrence in this loop. 1581 bool isFirstOrderRecurrence(const PHINode *Phi); 1582 1583 /// Return true if the block BB needs to be predicated in order for the loop 1584 /// to be vectorized. 1585 bool blockNeedsPredication(BasicBlock *BB); 1586 1587 /// Check if this pointer is consecutive when vectorizing. This happens 1588 /// when the last index of the GEP is the induction variable, or that the 1589 /// pointer itself is an induction variable. 1590 /// This check allows us to vectorize A[idx] into a wide load/store. 1591 /// Returns: 1592 /// 0 - Stride is unknown or non-consecutive. 1593 /// 1 - Address is consecutive. 1594 /// -1 - Address is consecutive, and decreasing. 1595 /// NOTE: This method must only be used before modifying the original scalar 1596 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1597 int isConsecutivePtr(Value *Ptr); 1598 1599 /// Returns true if the value V is uniform within the loop. 1600 bool isUniform(Value *V); 1601 1602 /// Returns the information that we collected about runtime memory check. 1603 const RuntimePointerChecking *getRuntimePointerChecking() const { 1604 return LAI->getRuntimePointerChecking(); 1605 } 1606 1607 const LoopAccessInfo *getLAI() const { return LAI; } 1608 1609 /// \brief Check if \p Instr belongs to any interleaved access group. 1610 bool isAccessInterleaved(Instruction *Instr) { 1611 return InterleaveInfo.isInterleaved(Instr); 1612 } 1613 1614 /// \brief Get the interleaved access group that \p Instr belongs to. 1615 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1616 return InterleaveInfo.getInterleaveGroup(Instr); 1617 } 1618 1619 /// \brief Returns true if an interleaved group requires a scalar iteration 1620 /// to handle accesses with gaps. 1621 bool requiresScalarEpilogue() const { 1622 return InterleaveInfo.requiresScalarEpilogue(); 1623 } 1624 1625 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1626 1627 uint64_t getMaxSafeRegisterWidth() const { 1628 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1629 } 1630 1631 bool hasStride(Value *V) { return LAI->hasStride(V); } 1632 1633 /// Returns true if vector representation of the instruction \p I 1634 /// requires mask. 1635 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1636 1637 unsigned getNumStores() const { return LAI->getNumStores(); } 1638 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1639 1640 // Returns true if the NoNaN attribute is set on the function. 1641 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1642 1643 private: 1644 /// Check if a single basic block loop is vectorizable. 1645 /// At this point we know that this is a loop with a constant trip count 1646 /// and we only need to check individual instructions. 1647 bool canVectorizeInstrs(); 1648 1649 /// When we vectorize loops we may change the order in which 1650 /// we read and write from memory. This method checks if it is 1651 /// legal to vectorize the code, considering only memory constrains. 1652 /// Returns true if the loop is vectorizable 1653 bool canVectorizeMemory(); 1654 1655 /// Return true if we can vectorize this loop using the IF-conversion 1656 /// transformation. 1657 bool canVectorizeWithIfConvert(); 1658 1659 /// Return true if all of the instructions in the block can be speculatively 1660 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1661 /// and we know that we can read from them without segfault. 1662 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1663 1664 /// Updates the vectorization state by adding \p Phi to the inductions list. 1665 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1666 /// better choice for the main induction than the existing one. 1667 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1668 SmallPtrSetImpl<Value *> &AllowedExit); 1669 1670 /// Create an analysis remark that explains why vectorization failed 1671 /// 1672 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1673 /// an instruction that prevents vectorization. Otherwise the loop is used 1674 /// for the location of the remark. \return the remark object that can be 1675 /// streamed to. 1676 OptimizationRemarkAnalysis 1677 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1678 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1679 RemarkName, TheLoop, I); 1680 } 1681 1682 /// \brief If an access has a symbolic strides, this maps the pointer value to 1683 /// the stride symbol. 1684 const ValueToValueMap *getSymbolicStrides() { 1685 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1686 // it's collected. This happens from canVectorizeWithIfConvert, when the 1687 // pointer is checked to reference consecutive elements suitable for a 1688 // masked access. 1689 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1690 } 1691 1692 /// The loop that we evaluate. 1693 Loop *TheLoop; 1694 1695 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1696 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1697 /// of existing SCEV assumptions. The analysis will also add a minimal set 1698 /// of new predicates if this is required to enable vectorization and 1699 /// unrolling. 1700 PredicatedScalarEvolution &PSE; 1701 1702 /// Target Library Info. 1703 TargetLibraryInfo *TLI; 1704 1705 /// Target Transform Info 1706 const TargetTransformInfo *TTI; 1707 1708 /// Dominator Tree. 1709 DominatorTree *DT; 1710 1711 // LoopAccess analysis. 1712 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1713 1714 // And the loop-accesses info corresponding to this loop. This pointer is 1715 // null until canVectorizeMemory sets it up. 1716 const LoopAccessInfo *LAI = nullptr; 1717 1718 /// Interface to emit optimization remarks. 1719 OptimizationRemarkEmitter *ORE; 1720 1721 /// The interleave access information contains groups of interleaved accesses 1722 /// with the same stride and close to each other. 1723 InterleavedAccessInfo InterleaveInfo; 1724 1725 // --- vectorization state --- // 1726 1727 /// Holds the primary induction variable. This is the counter of the 1728 /// loop. 1729 PHINode *PrimaryInduction = nullptr; 1730 1731 /// Holds the reduction variables. 1732 ReductionList Reductions; 1733 1734 /// Holds all of the induction variables that we found in the loop. 1735 /// Notice that inductions don't need to start at zero and that induction 1736 /// variables can be pointers. 1737 InductionList Inductions; 1738 1739 /// Holds all the casts that participate in the update chain of the induction 1740 /// variables, and that have been proven to be redundant (possibly under a 1741 /// runtime guard). These casts can be ignored when creating the vectorized 1742 /// loop body. 1743 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1744 1745 /// Holds the phi nodes that are first-order recurrences. 1746 RecurrenceSet FirstOrderRecurrences; 1747 1748 /// Holds instructions that need to sink past other instructions to handle 1749 /// first-order recurrences. 1750 DenseMap<Instruction *, Instruction *> SinkAfter; 1751 1752 /// Holds the widest induction type encountered. 1753 Type *WidestIndTy = nullptr; 1754 1755 /// Allowed outside users. This holds the induction and reduction 1756 /// vars which can be accessed from outside the loop. 1757 SmallPtrSet<Value *, 4> AllowedExit; 1758 1759 /// Can we assume the absence of NaNs. 1760 bool HasFunNoNaNAttr = false; 1761 1762 /// Vectorization requirements that will go through late-evaluation. 1763 LoopVectorizationRequirements *Requirements; 1764 1765 /// Used to emit an analysis of any legality issues. 1766 LoopVectorizeHints *Hints; 1767 1768 /// The demanded bits analsyis is used to compute the minimum type size in 1769 /// which a reduction can be computed. 1770 DemandedBits *DB; 1771 1772 /// The assumption cache analysis is used to compute the minimum type size in 1773 /// which a reduction can be computed. 1774 AssumptionCache *AC; 1775 1776 /// While vectorizing these instructions we have to generate a 1777 /// call to the appropriate masked intrinsic 1778 SmallPtrSet<const Instruction *, 8> MaskedOp; 1779 }; 1780 1781 /// LoopVectorizationCostModel - estimates the expected speedups due to 1782 /// vectorization. 1783 /// In many cases vectorization is not profitable. This can happen because of 1784 /// a number of reasons. In this class we mainly attempt to predict the 1785 /// expected speedup/slowdowns due to the supported instruction set. We use the 1786 /// TargetTransformInfo to query the different backends for the cost of 1787 /// different operations. 1788 class LoopVectorizationCostModel { 1789 public: 1790 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1791 LoopInfo *LI, LoopVectorizationLegality *Legal, 1792 const TargetTransformInfo &TTI, 1793 const TargetLibraryInfo *TLI, DemandedBits *DB, 1794 AssumptionCache *AC, 1795 OptimizationRemarkEmitter *ORE, const Function *F, 1796 const LoopVectorizeHints *Hints) 1797 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1798 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1799 1800 /// \return An upper bound for the vectorization factor, or None if 1801 /// vectorization should be avoided up front. 1802 Optional<unsigned> computeMaxVF(bool OptForSize); 1803 1804 /// \return The most profitable vectorization factor and the cost of that VF. 1805 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1806 /// then this vectorization factor will be selected if vectorization is 1807 /// possible. 1808 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1809 1810 /// Setup cost-based decisions for user vectorization factor. 1811 void selectUserVectorizationFactor(unsigned UserVF) { 1812 collectUniformsAndScalars(UserVF); 1813 collectInstsToScalarize(UserVF); 1814 } 1815 1816 /// \return The size (in bits) of the smallest and widest types in the code 1817 /// that needs to be vectorized. We ignore values that remain scalar such as 1818 /// 64 bit loop indices. 1819 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1820 1821 /// \return The desired interleave count. 1822 /// If interleave count has been specified by metadata it will be returned. 1823 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1824 /// are the selected vectorization factor and the cost of the selected VF. 1825 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1826 unsigned LoopCost); 1827 1828 /// Memory access instruction may be vectorized in more than one way. 1829 /// Form of instruction after vectorization depends on cost. 1830 /// This function takes cost-based decisions for Load/Store instructions 1831 /// and collects them in a map. This decisions map is used for building 1832 /// the lists of loop-uniform and loop-scalar instructions. 1833 /// The calculated cost is saved with widening decision in order to 1834 /// avoid redundant calculations. 1835 void setCostBasedWideningDecision(unsigned VF); 1836 1837 /// \brief A struct that represents some properties of the register usage 1838 /// of a loop. 1839 struct RegisterUsage { 1840 /// Holds the number of loop invariant values that are used in the loop. 1841 unsigned LoopInvariantRegs; 1842 1843 /// Holds the maximum number of concurrent live intervals in the loop. 1844 unsigned MaxLocalUsers; 1845 1846 /// Holds the number of instructions in the loop. 1847 unsigned NumInstructions; 1848 }; 1849 1850 /// \return Returns information about the register usages of the loop for the 1851 /// given vectorization factors. 1852 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1853 1854 /// Collect values we want to ignore in the cost model. 1855 void collectValuesToIgnore(); 1856 1857 /// \returns The smallest bitwidth each instruction can be represented with. 1858 /// The vector equivalents of these instructions should be truncated to this 1859 /// type. 1860 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1861 return MinBWs; 1862 } 1863 1864 /// \returns True if it is more profitable to scalarize instruction \p I for 1865 /// vectorization factor \p VF. 1866 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1867 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1868 auto Scalars = InstsToScalarize.find(VF); 1869 assert(Scalars != InstsToScalarize.end() && 1870 "VF not yet analyzed for scalarization profitability"); 1871 return Scalars->second.count(I); 1872 } 1873 1874 /// Returns true if \p I is known to be uniform after vectorization. 1875 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1876 if (VF == 1) 1877 return true; 1878 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1879 auto UniformsPerVF = Uniforms.find(VF); 1880 return UniformsPerVF->second.count(I); 1881 } 1882 1883 /// Returns true if \p I is known to be scalar after vectorization. 1884 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1885 if (VF == 1) 1886 return true; 1887 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1888 auto ScalarsPerVF = Scalars.find(VF); 1889 return ScalarsPerVF->second.count(I); 1890 } 1891 1892 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1893 /// for vectorization factor \p VF. 1894 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1895 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1896 !isScalarAfterVectorization(I, VF); 1897 } 1898 1899 /// Decision that was taken during cost calculation for memory instruction. 1900 enum InstWidening { 1901 CM_Unknown, 1902 CM_Widen, // For consecutive accesses with stride +1. 1903 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1904 CM_Interleave, 1905 CM_GatherScatter, 1906 CM_Scalarize 1907 }; 1908 1909 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1910 /// instruction \p I and vector width \p VF. 1911 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1912 unsigned Cost) { 1913 assert(VF >= 2 && "Expected VF >=2"); 1914 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1915 } 1916 1917 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1918 /// interleaving group \p Grp and vector width \p VF. 1919 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1920 InstWidening W, unsigned Cost) { 1921 assert(VF >= 2 && "Expected VF >=2"); 1922 /// Broadcast this decicion to all instructions inside the group. 1923 /// But the cost will be assigned to one instruction only. 1924 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1925 if (auto *I = Grp->getMember(i)) { 1926 if (Grp->getInsertPos() == I) 1927 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1928 else 1929 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1930 } 1931 } 1932 } 1933 1934 /// Return the cost model decision for the given instruction \p I and vector 1935 /// width \p VF. Return CM_Unknown if this instruction did not pass 1936 /// through the cost modeling. 1937 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1938 assert(VF >= 2 && "Expected VF >=2"); 1939 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1940 auto Itr = WideningDecisions.find(InstOnVF); 1941 if (Itr == WideningDecisions.end()) 1942 return CM_Unknown; 1943 return Itr->second.first; 1944 } 1945 1946 /// Return the vectorization cost for the given instruction \p I and vector 1947 /// width \p VF. 1948 unsigned getWideningCost(Instruction *I, unsigned VF) { 1949 assert(VF >= 2 && "Expected VF >=2"); 1950 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1951 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1952 return WideningDecisions[InstOnVF].second; 1953 } 1954 1955 /// Return True if instruction \p I is an optimizable truncate whose operand 1956 /// is an induction variable. Such a truncate will be removed by adding a new 1957 /// induction variable with the destination type. 1958 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1959 // If the instruction is not a truncate, return false. 1960 auto *Trunc = dyn_cast<TruncInst>(I); 1961 if (!Trunc) 1962 return false; 1963 1964 // Get the source and destination types of the truncate. 1965 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1966 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1967 1968 // If the truncate is free for the given types, return false. Replacing a 1969 // free truncate with an induction variable would add an induction variable 1970 // update instruction to each iteration of the loop. We exclude from this 1971 // check the primary induction variable since it will need an update 1972 // instruction regardless. 1973 Value *Op = Trunc->getOperand(0); 1974 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1975 return false; 1976 1977 // If the truncated value is not an induction variable, return false. 1978 return Legal->isInductionPhi(Op); 1979 } 1980 1981 /// Collects the instructions to scalarize for each predicated instruction in 1982 /// the loop. 1983 void collectInstsToScalarize(unsigned VF); 1984 1985 /// Collect Uniform and Scalar values for the given \p VF. 1986 /// The sets depend on CM decision for Load/Store instructions 1987 /// that may be vectorized as interleave, gather-scatter or scalarized. 1988 void collectUniformsAndScalars(unsigned VF) { 1989 // Do the analysis once. 1990 if (VF == 1 || Uniforms.count(VF)) 1991 return; 1992 setCostBasedWideningDecision(VF); 1993 collectLoopUniforms(VF); 1994 collectLoopScalars(VF); 1995 } 1996 1997 /// Returns true if the target machine supports masked store operation 1998 /// for the given \p DataType and kind of access to \p Ptr. 1999 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 2000 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 2001 } 2002 2003 /// Returns true if the target machine supports masked load operation 2004 /// for the given \p DataType and kind of access to \p Ptr. 2005 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 2006 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 2007 } 2008 2009 /// Returns true if the target machine supports masked scatter operation 2010 /// for the given \p DataType. 2011 bool isLegalMaskedScatter(Type *DataType) { 2012 return TTI.isLegalMaskedScatter(DataType); 2013 } 2014 2015 /// Returns true if the target machine supports masked gather operation 2016 /// for the given \p DataType. 2017 bool isLegalMaskedGather(Type *DataType) { 2018 return TTI.isLegalMaskedGather(DataType); 2019 } 2020 2021 /// Returns true if the target machine can represent \p V as a masked gather 2022 /// or scatter operation. 2023 bool isLegalGatherOrScatter(Value *V) { 2024 bool LI = isa<LoadInst>(V); 2025 bool SI = isa<StoreInst>(V); 2026 if (!LI && !SI) 2027 return false; 2028 auto *Ty = getMemInstValueType(V); 2029 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 2030 } 2031 2032 /// Returns true if \p I is an instruction that will be scalarized with 2033 /// predication. Such instructions include conditional stores and 2034 /// instructions that may divide by zero. 2035 bool isScalarWithPredication(Instruction *I); 2036 2037 /// Returns true if \p I is a memory instruction with consecutive memory 2038 /// access that can be widened. 2039 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 2040 2041 private: 2042 unsigned NumPredStores = 0; 2043 2044 /// \return An upper bound for the vectorization factor, larger than zero. 2045 /// One is returned if vectorization should best be avoided due to cost. 2046 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2047 2048 /// The vectorization cost is a combination of the cost itself and a boolean 2049 /// indicating whether any of the contributing operations will actually 2050 /// operate on 2051 /// vector values after type legalization in the backend. If this latter value 2052 /// is 2053 /// false, then all operations will be scalarized (i.e. no vectorization has 2054 /// actually taken place). 2055 using VectorizationCostTy = std::pair<unsigned, bool>; 2056 2057 /// Returns the expected execution cost. The unit of the cost does 2058 /// not matter because we use the 'cost' units to compare different 2059 /// vector widths. The cost that is returned is *not* normalized by 2060 /// the factor width. 2061 VectorizationCostTy expectedCost(unsigned VF); 2062 2063 /// Returns the execution time cost of an instruction for a given vector 2064 /// width. Vector width of one means scalar. 2065 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2066 2067 /// The cost-computation logic from getInstructionCost which provides 2068 /// the vector type as an output parameter. 2069 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2070 2071 /// Calculate vectorization cost of memory instruction \p I. 2072 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2073 2074 /// The cost computation for scalarized memory instruction. 2075 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2076 2077 /// The cost computation for interleaving group of memory instructions. 2078 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2079 2080 /// The cost computation for Gather/Scatter instruction. 2081 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2082 2083 /// The cost computation for widening instruction \p I with consecutive 2084 /// memory access. 2085 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2086 2087 /// The cost calculation for Load instruction \p I with uniform pointer - 2088 /// scalar load + broadcast. 2089 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2090 2091 /// Returns whether the instruction is a load or store and will be a emitted 2092 /// as a vector operation. 2093 bool isConsecutiveLoadOrStore(Instruction *I); 2094 2095 /// Returns true if an artificially high cost for emulated masked memrefs 2096 /// should be used. 2097 bool useEmulatedMaskMemRefHack(Instruction *I); 2098 2099 /// Create an analysis remark that explains why vectorization failed 2100 /// 2101 /// \p RemarkName is the identifier for the remark. \return the remark object 2102 /// that can be streamed to. 2103 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2104 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2105 RemarkName, TheLoop); 2106 } 2107 2108 /// Map of scalar integer values to the smallest bitwidth they can be legally 2109 /// represented as. The vector equivalents of these values should be truncated 2110 /// to this type. 2111 MapVector<Instruction *, uint64_t> MinBWs; 2112 2113 /// A type representing the costs for instructions if they were to be 2114 /// scalarized rather than vectorized. The entries are Instruction-Cost 2115 /// pairs. 2116 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2117 2118 /// A set containing all BasicBlocks that are known to present after 2119 /// vectorization as a predicated block. 2120 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2121 2122 /// A map holding scalar costs for different vectorization factors. The 2123 /// presence of a cost for an instruction in the mapping indicates that the 2124 /// instruction will be scalarized when vectorizing with the associated 2125 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2126 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2127 2128 /// Holds the instructions known to be uniform after vectorization. 2129 /// The data is collected per VF. 2130 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2131 2132 /// Holds the instructions known to be scalar after vectorization. 2133 /// The data is collected per VF. 2134 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2135 2136 /// Holds the instructions (address computations) that are forced to be 2137 /// scalarized. 2138 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2139 2140 /// Returns the expected difference in cost from scalarizing the expression 2141 /// feeding a predicated instruction \p PredInst. The instructions to 2142 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2143 /// non-negative return value implies the expression will be scalarized. 2144 /// Currently, only single-use chains are considered for scalarization. 2145 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2146 unsigned VF); 2147 2148 /// Collect the instructions that are uniform after vectorization. An 2149 /// instruction is uniform if we represent it with a single scalar value in 2150 /// the vectorized loop corresponding to each vector iteration. Examples of 2151 /// uniform instructions include pointer operands of consecutive or 2152 /// interleaved memory accesses. Note that although uniformity implies an 2153 /// instruction will be scalar, the reverse is not true. In general, a 2154 /// scalarized instruction will be represented by VF scalar values in the 2155 /// vectorized loop, each corresponding to an iteration of the original 2156 /// scalar loop. 2157 void collectLoopUniforms(unsigned VF); 2158 2159 /// Collect the instructions that are scalar after vectorization. An 2160 /// instruction is scalar if it is known to be uniform or will be scalarized 2161 /// during vectorization. Non-uniform scalarized instructions will be 2162 /// represented by VF values in the vectorized loop, each corresponding to an 2163 /// iteration of the original scalar loop. 2164 void collectLoopScalars(unsigned VF); 2165 2166 /// Keeps cost model vectorization decision and cost for instructions. 2167 /// Right now it is used for memory instructions only. 2168 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2169 std::pair<InstWidening, unsigned>>; 2170 2171 DecisionList WideningDecisions; 2172 2173 public: 2174 /// The loop that we evaluate. 2175 Loop *TheLoop; 2176 2177 /// Predicated scalar evolution analysis. 2178 PredicatedScalarEvolution &PSE; 2179 2180 /// Loop Info analysis. 2181 LoopInfo *LI; 2182 2183 /// Vectorization legality. 2184 LoopVectorizationLegality *Legal; 2185 2186 /// Vector target information. 2187 const TargetTransformInfo &TTI; 2188 2189 /// Target Library Info. 2190 const TargetLibraryInfo *TLI; 2191 2192 /// Demanded bits analysis. 2193 DemandedBits *DB; 2194 2195 /// Assumption cache. 2196 AssumptionCache *AC; 2197 2198 /// Interface to emit optimization remarks. 2199 OptimizationRemarkEmitter *ORE; 2200 2201 const Function *TheFunction; 2202 2203 /// Loop Vectorize Hint. 2204 const LoopVectorizeHints *Hints; 2205 2206 /// Values to ignore in the cost model. 2207 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2208 2209 /// Values to ignore in the cost model when VF > 1. 2210 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2211 }; 2212 2213 } // end namespace llvm 2214 2215 namespace { 2216 2217 /// \brief This holds vectorization requirements that must be verified late in 2218 /// the process. The requirements are set by legalize and costmodel. Once 2219 /// vectorization has been determined to be possible and profitable the 2220 /// requirements can be verified by looking for metadata or compiler options. 2221 /// For example, some loops require FP commutativity which is only allowed if 2222 /// vectorization is explicitly specified or if the fast-math compiler option 2223 /// has been provided. 2224 /// Late evaluation of these requirements allows helpful diagnostics to be 2225 /// composed that tells the user what need to be done to vectorize the loop. For 2226 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2227 /// evaluation should be used only when diagnostics can generated that can be 2228 /// followed by a non-expert user. 2229 class LoopVectorizationRequirements { 2230 public: 2231 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2232 2233 void addUnsafeAlgebraInst(Instruction *I) { 2234 // First unsafe algebra instruction. 2235 if (!UnsafeAlgebraInst) 2236 UnsafeAlgebraInst = I; 2237 } 2238 2239 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2240 2241 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2242 const char *PassName = Hints.vectorizeAnalysisPassName(); 2243 bool Failed = false; 2244 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2245 ORE.emit([&]() { 2246 return OptimizationRemarkAnalysisFPCommute( 2247 PassName, "CantReorderFPOps", 2248 UnsafeAlgebraInst->getDebugLoc(), 2249 UnsafeAlgebraInst->getParent()) 2250 << "loop not vectorized: cannot prove it is safe to reorder " 2251 "floating-point operations"; 2252 }); 2253 Failed = true; 2254 } 2255 2256 // Test if runtime memcheck thresholds are exceeded. 2257 bool PragmaThresholdReached = 2258 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2259 bool ThresholdReached = 2260 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2261 if ((ThresholdReached && !Hints.allowReordering()) || 2262 PragmaThresholdReached) { 2263 ORE.emit([&]() { 2264 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2265 L->getStartLoc(), 2266 L->getHeader()) 2267 << "loop not vectorized: cannot prove it is safe to reorder " 2268 "memory operations"; 2269 }); 2270 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2271 Failed = true; 2272 } 2273 2274 return Failed; 2275 } 2276 2277 private: 2278 unsigned NumRuntimePointerChecks = 0; 2279 Instruction *UnsafeAlgebraInst = nullptr; 2280 2281 /// Interface to emit optimization remarks. 2282 OptimizationRemarkEmitter &ORE; 2283 }; 2284 2285 } // end anonymous namespace 2286 2287 static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI, 2288 SmallVectorImpl<Loop *> &V) { 2289 if (L.empty()) { 2290 LoopBlocksRPO RPOT(&L); 2291 RPOT.perform(&LI); 2292 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2293 V.push_back(&L); 2294 return; 2295 } 2296 for (Loop *InnerL : L) 2297 addAcyclicInnerLoop(*InnerL, LI, V); 2298 } 2299 2300 namespace { 2301 2302 /// The LoopVectorize Pass. 2303 struct LoopVectorize : public FunctionPass { 2304 /// Pass identification, replacement for typeid 2305 static char ID; 2306 2307 LoopVectorizePass Impl; 2308 2309 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2310 : FunctionPass(ID) { 2311 Impl.DisableUnrolling = NoUnrolling; 2312 Impl.AlwaysVectorize = AlwaysVectorize; 2313 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2314 } 2315 2316 bool runOnFunction(Function &F) override { 2317 if (skipFunction(F)) 2318 return false; 2319 2320 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2321 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2322 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2323 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2324 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2325 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2326 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2327 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2328 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2329 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2330 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2331 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2332 2333 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2334 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2335 2336 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2337 GetLAA, *ORE); 2338 } 2339 2340 void getAnalysisUsage(AnalysisUsage &AU) const override { 2341 AU.addRequired<AssumptionCacheTracker>(); 2342 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2343 AU.addRequired<DominatorTreeWrapperPass>(); 2344 AU.addRequired<LoopInfoWrapperPass>(); 2345 AU.addRequired<ScalarEvolutionWrapperPass>(); 2346 AU.addRequired<TargetTransformInfoWrapperPass>(); 2347 AU.addRequired<AAResultsWrapperPass>(); 2348 AU.addRequired<LoopAccessLegacyAnalysis>(); 2349 AU.addRequired<DemandedBitsWrapperPass>(); 2350 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2351 AU.addPreserved<LoopInfoWrapperPass>(); 2352 AU.addPreserved<DominatorTreeWrapperPass>(); 2353 AU.addPreserved<BasicAAWrapperPass>(); 2354 AU.addPreserved<GlobalsAAWrapperPass>(); 2355 } 2356 }; 2357 2358 } // end anonymous namespace 2359 2360 //===----------------------------------------------------------------------===// 2361 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2362 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2363 //===----------------------------------------------------------------------===// 2364 2365 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2366 // We need to place the broadcast of invariant variables outside the loop. 2367 Instruction *Instr = dyn_cast<Instruction>(V); 2368 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2369 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2370 2371 // Place the code for broadcasting invariant variables in the new preheader. 2372 IRBuilder<>::InsertPointGuard Guard(Builder); 2373 if (Invariant) 2374 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2375 2376 // Broadcast the scalar into all locations in the vector. 2377 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2378 2379 return Shuf; 2380 } 2381 2382 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2383 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2384 Value *Start = II.getStartValue(); 2385 2386 // Construct the initial value of the vector IV in the vector loop preheader 2387 auto CurrIP = Builder.saveIP(); 2388 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2389 if (isa<TruncInst>(EntryVal)) { 2390 assert(Start->getType()->isIntegerTy() && 2391 "Truncation requires an integer type"); 2392 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2393 Step = Builder.CreateTrunc(Step, TruncType); 2394 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2395 } 2396 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2397 Value *SteppedStart = 2398 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2399 2400 // We create vector phi nodes for both integer and floating-point induction 2401 // variables. Here, we determine the kind of arithmetic we will perform. 2402 Instruction::BinaryOps AddOp; 2403 Instruction::BinaryOps MulOp; 2404 if (Step->getType()->isIntegerTy()) { 2405 AddOp = Instruction::Add; 2406 MulOp = Instruction::Mul; 2407 } else { 2408 AddOp = II.getInductionOpcode(); 2409 MulOp = Instruction::FMul; 2410 } 2411 2412 // Multiply the vectorization factor by the step using integer or 2413 // floating-point arithmetic as appropriate. 2414 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2415 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2416 2417 // Create a vector splat to use in the induction update. 2418 // 2419 // FIXME: If the step is non-constant, we create the vector splat with 2420 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2421 // handle a constant vector splat. 2422 Value *SplatVF = isa<Constant>(Mul) 2423 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2424 : Builder.CreateVectorSplat(VF, Mul); 2425 Builder.restoreIP(CurrIP); 2426 2427 // We may need to add the step a number of times, depending on the unroll 2428 // factor. The last of those goes into the PHI. 2429 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2430 &*LoopVectorBody->getFirstInsertionPt()); 2431 Instruction *LastInduction = VecInd; 2432 for (unsigned Part = 0; Part < UF; ++Part) { 2433 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2434 2435 if (isa<TruncInst>(EntryVal)) 2436 addMetadata(LastInduction, EntryVal); 2437 else 2438 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2439 2440 LastInduction = cast<Instruction>(addFastMathFlag( 2441 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2442 } 2443 2444 // Move the last step to the end of the latch block. This ensures consistent 2445 // placement of all induction updates. 2446 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2447 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2448 auto *ICmp = cast<Instruction>(Br->getCondition()); 2449 LastInduction->moveBefore(ICmp); 2450 LastInduction->setName("vec.ind.next"); 2451 2452 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2453 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2454 } 2455 2456 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2457 return Cost->isScalarAfterVectorization(I, VF) || 2458 Cost->isProfitableToScalarize(I, VF); 2459 } 2460 2461 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2462 if (shouldScalarizeInstruction(IV)) 2463 return true; 2464 auto isScalarInst = [&](User *U) -> bool { 2465 auto *I = cast<Instruction>(U); 2466 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2467 }; 2468 return llvm::any_of(IV->users(), isScalarInst); 2469 } 2470 2471 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2472 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2473 unsigned Lane) { 2474 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2475 if (Casts.empty()) 2476 return; 2477 // Only the first Cast instruction in the Casts vector is of interest. 2478 // The rest of the Casts (if exist) have no uses outside the 2479 // induction update chain itself. 2480 Instruction *CastInst = *Casts.begin(); 2481 if (Lane < UINT_MAX) 2482 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2483 else 2484 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2485 } 2486 2487 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2488 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2489 "Primary induction variable must have an integer type"); 2490 2491 auto II = Legal->getInductionVars()->find(IV); 2492 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2493 2494 auto ID = II->second; 2495 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2496 2497 // The scalar value to broadcast. This will be derived from the canonical 2498 // induction variable. 2499 Value *ScalarIV = nullptr; 2500 2501 // The value from the original loop to which we are mapping the new induction 2502 // variable. 2503 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2504 2505 // True if we have vectorized the induction variable. 2506 auto VectorizedIV = false; 2507 2508 // Determine if we want a scalar version of the induction variable. This is 2509 // true if the induction variable itself is not widened, or if it has at 2510 // least one user in the loop that is not widened. 2511 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2512 2513 // Generate code for the induction step. Note that induction steps are 2514 // required to be loop-invariant 2515 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2516 "Induction step should be loop invariant"); 2517 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2518 Value *Step = nullptr; 2519 if (PSE.getSE()->isSCEVable(IV->getType())) { 2520 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2521 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2522 LoopVectorPreHeader->getTerminator()); 2523 } else { 2524 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2525 } 2526 2527 // Try to create a new independent vector induction variable. If we can't 2528 // create the phi node, we will splat the scalar induction variable in each 2529 // loop iteration. 2530 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2531 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2532 VectorizedIV = true; 2533 } 2534 2535 // If we haven't yet vectorized the induction variable, or if we will create 2536 // a scalar one, we need to define the scalar induction variable and step 2537 // values. If we were given a truncation type, truncate the canonical 2538 // induction variable and step. Otherwise, derive these values from the 2539 // induction descriptor. 2540 if (!VectorizedIV || NeedsScalarIV) { 2541 ScalarIV = Induction; 2542 if (IV != OldInduction) { 2543 ScalarIV = IV->getType()->isIntegerTy() 2544 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2545 : Builder.CreateCast(Instruction::SIToFP, Induction, 2546 IV->getType()); 2547 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2548 ScalarIV->setName("offset.idx"); 2549 } 2550 if (Trunc) { 2551 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2552 assert(Step->getType()->isIntegerTy() && 2553 "Truncation requires an integer step"); 2554 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2555 Step = Builder.CreateTrunc(Step, TruncType); 2556 } 2557 } 2558 2559 // If we haven't yet vectorized the induction variable, splat the scalar 2560 // induction variable, and build the necessary step vectors. 2561 // TODO: Don't do it unless the vectorized IV is really required. 2562 if (!VectorizedIV) { 2563 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2564 for (unsigned Part = 0; Part < UF; ++Part) { 2565 Value *EntryPart = 2566 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2567 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2568 if (Trunc) 2569 addMetadata(EntryPart, Trunc); 2570 else 2571 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2572 } 2573 } 2574 2575 // If an induction variable is only used for counting loop iterations or 2576 // calculating addresses, it doesn't need to be widened. Create scalar steps 2577 // that can be used by instructions we will later scalarize. Note that the 2578 // addition of the scalar steps will not increase the number of instructions 2579 // in the loop in the common case prior to InstCombine. We will be trading 2580 // one vector extract for each scalar step. 2581 if (NeedsScalarIV) 2582 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2583 } 2584 2585 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2586 Instruction::BinaryOps BinOp) { 2587 // Create and check the types. 2588 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2589 int VLen = Val->getType()->getVectorNumElements(); 2590 2591 Type *STy = Val->getType()->getScalarType(); 2592 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2593 "Induction Step must be an integer or FP"); 2594 assert(Step->getType() == STy && "Step has wrong type"); 2595 2596 SmallVector<Constant *, 8> Indices; 2597 2598 if (STy->isIntegerTy()) { 2599 // Create a vector of consecutive numbers from zero to VF. 2600 for (int i = 0; i < VLen; ++i) 2601 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2602 2603 // Add the consecutive indices to the vector value. 2604 Constant *Cv = ConstantVector::get(Indices); 2605 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2606 Step = Builder.CreateVectorSplat(VLen, Step); 2607 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2608 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2609 // which can be found from the original scalar operations. 2610 Step = Builder.CreateMul(Cv, Step); 2611 return Builder.CreateAdd(Val, Step, "induction"); 2612 } 2613 2614 // Floating point induction. 2615 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2616 "Binary Opcode should be specified for FP induction"); 2617 // Create a vector of consecutive numbers from zero to VF. 2618 for (int i = 0; i < VLen; ++i) 2619 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2620 2621 // Add the consecutive indices to the vector value. 2622 Constant *Cv = ConstantVector::get(Indices); 2623 2624 Step = Builder.CreateVectorSplat(VLen, Step); 2625 2626 // Floating point operations had to be 'fast' to enable the induction. 2627 FastMathFlags Flags; 2628 Flags.setFast(); 2629 2630 Value *MulOp = Builder.CreateFMul(Cv, Step); 2631 if (isa<Instruction>(MulOp)) 2632 // Have to check, MulOp may be a constant 2633 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2634 2635 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2636 if (isa<Instruction>(BOp)) 2637 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2638 return BOp; 2639 } 2640 2641 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2642 Value *EntryVal, 2643 const InductionDescriptor &ID) { 2644 // We shouldn't have to build scalar steps if we aren't vectorizing. 2645 assert(VF > 1 && "VF should be greater than one"); 2646 2647 // Get the value type and ensure it and the step have the same integer type. 2648 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2649 assert(ScalarIVTy == Step->getType() && 2650 "Val and Step should have the same type"); 2651 2652 // We build scalar steps for both integer and floating-point induction 2653 // variables. Here, we determine the kind of arithmetic we will perform. 2654 Instruction::BinaryOps AddOp; 2655 Instruction::BinaryOps MulOp; 2656 if (ScalarIVTy->isIntegerTy()) { 2657 AddOp = Instruction::Add; 2658 MulOp = Instruction::Mul; 2659 } else { 2660 AddOp = ID.getInductionOpcode(); 2661 MulOp = Instruction::FMul; 2662 } 2663 2664 // Determine the number of scalars we need to generate for each unroll 2665 // iteration. If EntryVal is uniform, we only need to generate the first 2666 // lane. Otherwise, we generate all VF values. 2667 unsigned Lanes = 2668 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2669 : VF; 2670 // Compute the scalar steps and save the results in VectorLoopValueMap. 2671 for (unsigned Part = 0; Part < UF; ++Part) { 2672 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2673 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2674 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2675 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2676 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2677 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2678 } 2679 } 2680 } 2681 2682 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2683 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2684 ValueToValueMap(); 2685 2686 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2687 if (Stride == 1 || Stride == -1) 2688 return Stride; 2689 return 0; 2690 } 2691 2692 bool LoopVectorizationLegality::isUniform(Value *V) { 2693 return LAI->isUniform(V); 2694 } 2695 2696 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2697 assert(V != Induction && "The new induction variable should not be used."); 2698 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2699 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2700 2701 // If we have a stride that is replaced by one, do it here. 2702 if (Legal->hasStride(V)) 2703 V = ConstantInt::get(V->getType(), 1); 2704 2705 // If we have a vector mapped to this value, return it. 2706 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2707 return VectorLoopValueMap.getVectorValue(V, Part); 2708 2709 // If the value has not been vectorized, check if it has been scalarized 2710 // instead. If it has been scalarized, and we actually need the value in 2711 // vector form, we will construct the vector values on demand. 2712 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2713 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2714 2715 // If we've scalarized a value, that value should be an instruction. 2716 auto *I = cast<Instruction>(V); 2717 2718 // If we aren't vectorizing, we can just copy the scalar map values over to 2719 // the vector map. 2720 if (VF == 1) { 2721 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2722 return ScalarValue; 2723 } 2724 2725 // Get the last scalar instruction we generated for V and Part. If the value 2726 // is known to be uniform after vectorization, this corresponds to lane zero 2727 // of the Part unroll iteration. Otherwise, the last instruction is the one 2728 // we created for the last vector lane of the Part unroll iteration. 2729 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2730 auto *LastInst = cast<Instruction>( 2731 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2732 2733 // Set the insert point after the last scalarized instruction. This ensures 2734 // the insertelement sequence will directly follow the scalar definitions. 2735 auto OldIP = Builder.saveIP(); 2736 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2737 Builder.SetInsertPoint(&*NewIP); 2738 2739 // However, if we are vectorizing, we need to construct the vector values. 2740 // If the value is known to be uniform after vectorization, we can just 2741 // broadcast the scalar value corresponding to lane zero for each unroll 2742 // iteration. Otherwise, we construct the vector values using insertelement 2743 // instructions. Since the resulting vectors are stored in 2744 // VectorLoopValueMap, we will only generate the insertelements once. 2745 Value *VectorValue = nullptr; 2746 if (Cost->isUniformAfterVectorization(I, VF)) { 2747 VectorValue = getBroadcastInstrs(ScalarValue); 2748 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2749 } else { 2750 // Initialize packing with insertelements to start from undef. 2751 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2752 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2753 for (unsigned Lane = 0; Lane < VF; ++Lane) 2754 packScalarIntoVectorValue(V, {Part, Lane}); 2755 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2756 } 2757 Builder.restoreIP(OldIP); 2758 return VectorValue; 2759 } 2760 2761 // If this scalar is unknown, assume that it is a constant or that it is 2762 // loop invariant. Broadcast V and save the value for future uses. 2763 Value *B = getBroadcastInstrs(V); 2764 VectorLoopValueMap.setVectorValue(V, Part, B); 2765 return B; 2766 } 2767 2768 Value * 2769 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2770 const VPIteration &Instance) { 2771 // If the value is not an instruction contained in the loop, it should 2772 // already be scalar. 2773 if (OrigLoop->isLoopInvariant(V)) 2774 return V; 2775 2776 assert(Instance.Lane > 0 2777 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2778 : true && "Uniform values only have lane zero"); 2779 2780 // If the value from the original loop has not been vectorized, it is 2781 // represented by UF x VF scalar values in the new loop. Return the requested 2782 // scalar value. 2783 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2784 return VectorLoopValueMap.getScalarValue(V, Instance); 2785 2786 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2787 // for the given unroll part. If this entry is not a vector type (i.e., the 2788 // vectorization factor is one), there is no need to generate an 2789 // extractelement instruction. 2790 auto *U = getOrCreateVectorValue(V, Instance.Part); 2791 if (!U->getType()->isVectorTy()) { 2792 assert(VF == 1 && "Value not scalarized has non-vector type"); 2793 return U; 2794 } 2795 2796 // Otherwise, the value from the original loop has been vectorized and is 2797 // represented by UF vector values. Extract and return the requested scalar 2798 // value from the appropriate vector lane. 2799 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2800 } 2801 2802 void InnerLoopVectorizer::packScalarIntoVectorValue( 2803 Value *V, const VPIteration &Instance) { 2804 assert(V != Induction && "The new induction variable should not be used."); 2805 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2806 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2807 2808 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2809 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2810 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2811 Builder.getInt32(Instance.Lane)); 2812 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2813 } 2814 2815 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2816 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2817 SmallVector<Constant *, 8> ShuffleMask; 2818 for (unsigned i = 0; i < VF; ++i) 2819 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2820 2821 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2822 ConstantVector::get(ShuffleMask), 2823 "reverse"); 2824 } 2825 2826 // Try to vectorize the interleave group that \p Instr belongs to. 2827 // 2828 // E.g. Translate following interleaved load group (factor = 3): 2829 // for (i = 0; i < N; i+=3) { 2830 // R = Pic[i]; // Member of index 0 2831 // G = Pic[i+1]; // Member of index 1 2832 // B = Pic[i+2]; // Member of index 2 2833 // ... // do something to R, G, B 2834 // } 2835 // To: 2836 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2837 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2838 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2839 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2840 // 2841 // Or translate following interleaved store group (factor = 3): 2842 // for (i = 0; i < N; i+=3) { 2843 // ... do something to R, G, B 2844 // Pic[i] = R; // Member of index 0 2845 // Pic[i+1] = G; // Member of index 1 2846 // Pic[i+2] = B; // Member of index 2 2847 // } 2848 // To: 2849 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2850 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2851 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2852 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2853 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2854 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2855 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2856 assert(Group && "Fail to get an interleaved access group."); 2857 2858 // Skip if current instruction is not the insert position. 2859 if (Instr != Group->getInsertPos()) 2860 return; 2861 2862 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2863 Value *Ptr = getPointerOperand(Instr); 2864 2865 // Prepare for the vector type of the interleaved load/store. 2866 Type *ScalarTy = getMemInstValueType(Instr); 2867 unsigned InterleaveFactor = Group->getFactor(); 2868 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2869 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2870 2871 // Prepare for the new pointers. 2872 setDebugLocFromInst(Builder, Ptr); 2873 SmallVector<Value *, 2> NewPtrs; 2874 unsigned Index = Group->getIndex(Instr); 2875 2876 // If the group is reverse, adjust the index to refer to the last vector lane 2877 // instead of the first. We adjust the index from the first vector lane, 2878 // rather than directly getting the pointer for lane VF - 1, because the 2879 // pointer operand of the interleaved access is supposed to be uniform. For 2880 // uniform instructions, we're only required to generate a value for the 2881 // first vector lane in each unroll iteration. 2882 if (Group->isReverse()) 2883 Index += (VF - 1) * Group->getFactor(); 2884 2885 for (unsigned Part = 0; Part < UF; Part++) { 2886 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2887 2888 // Notice current instruction could be any index. Need to adjust the address 2889 // to the member of index 0. 2890 // 2891 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2892 // b = A[i]; // Member of index 0 2893 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2894 // 2895 // E.g. A[i+1] = a; // Member of index 1 2896 // A[i] = b; // Member of index 0 2897 // A[i+2] = c; // Member of index 2 (Current instruction) 2898 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2899 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2900 2901 // Cast to the vector pointer type. 2902 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2903 } 2904 2905 setDebugLocFromInst(Builder, Instr); 2906 Value *UndefVec = UndefValue::get(VecTy); 2907 2908 // Vectorize the interleaved load group. 2909 if (isa<LoadInst>(Instr)) { 2910 // For each unroll part, create a wide load for the group. 2911 SmallVector<Value *, 2> NewLoads; 2912 for (unsigned Part = 0; Part < UF; Part++) { 2913 auto *NewLoad = Builder.CreateAlignedLoad( 2914 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2915 Group->addMetadata(NewLoad); 2916 NewLoads.push_back(NewLoad); 2917 } 2918 2919 // For each member in the group, shuffle out the appropriate data from the 2920 // wide loads. 2921 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2922 Instruction *Member = Group->getMember(I); 2923 2924 // Skip the gaps in the group. 2925 if (!Member) 2926 continue; 2927 2928 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2929 for (unsigned Part = 0; Part < UF; Part++) { 2930 Value *StridedVec = Builder.CreateShuffleVector( 2931 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2932 2933 // If this member has different type, cast the result type. 2934 if (Member->getType() != ScalarTy) { 2935 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2936 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2937 } 2938 2939 if (Group->isReverse()) 2940 StridedVec = reverseVector(StridedVec); 2941 2942 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2943 } 2944 } 2945 return; 2946 } 2947 2948 // The sub vector type for current instruction. 2949 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2950 2951 // Vectorize the interleaved store group. 2952 for (unsigned Part = 0; Part < UF; Part++) { 2953 // Collect the stored vector from each member. 2954 SmallVector<Value *, 4> StoredVecs; 2955 for (unsigned i = 0; i < InterleaveFactor; i++) { 2956 // Interleaved store group doesn't allow a gap, so each index has a member 2957 Instruction *Member = Group->getMember(i); 2958 assert(Member && "Fail to get a member from an interleaved store group"); 2959 2960 Value *StoredVec = getOrCreateVectorValue( 2961 cast<StoreInst>(Member)->getValueOperand(), Part); 2962 if (Group->isReverse()) 2963 StoredVec = reverseVector(StoredVec); 2964 2965 // If this member has different type, cast it to a unified type. 2966 2967 if (StoredVec->getType() != SubVT) 2968 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2969 2970 StoredVecs.push_back(StoredVec); 2971 } 2972 2973 // Concatenate all vectors into a wide vector. 2974 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2975 2976 // Interleave the elements in the wide vector. 2977 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2978 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2979 "interleaved.vec"); 2980 2981 Instruction *NewStoreInstr = 2982 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2983 2984 Group->addMetadata(NewStoreInstr); 2985 } 2986 } 2987 2988 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2989 VectorParts *BlockInMask) { 2990 // Attempt to issue a wide load. 2991 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2992 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2993 2994 assert((LI || SI) && "Invalid Load/Store instruction"); 2995 2996 LoopVectorizationCostModel::InstWidening Decision = 2997 Cost->getWideningDecision(Instr, VF); 2998 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2999 "CM decision should be taken at this point"); 3000 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3001 return vectorizeInterleaveGroup(Instr); 3002 3003 Type *ScalarDataTy = getMemInstValueType(Instr); 3004 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3005 Value *Ptr = getPointerOperand(Instr); 3006 unsigned Alignment = getMemInstAlignment(Instr); 3007 // An alignment of 0 means target abi alignment. We need to use the scalar's 3008 // target abi alignment in such a case. 3009 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3010 if (!Alignment) 3011 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3012 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3013 3014 // Determine if the pointer operand of the access is either consecutive or 3015 // reverse consecutive. 3016 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3017 bool ConsecutiveStride = 3018 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3019 bool CreateGatherScatter = 3020 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3021 3022 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3023 // gather/scatter. Otherwise Decision should have been to Scalarize. 3024 assert((ConsecutiveStride || CreateGatherScatter) && 3025 "The instruction should be scalarized"); 3026 3027 // Handle consecutive loads/stores. 3028 if (ConsecutiveStride) 3029 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3030 3031 VectorParts Mask; 3032 bool isMaskRequired = BlockInMask; 3033 if (isMaskRequired) 3034 Mask = *BlockInMask; 3035 3036 // Handle Stores: 3037 if (SI) { 3038 assert(!Legal->isUniform(SI->getPointerOperand()) && 3039 "We do not allow storing to uniform addresses"); 3040 setDebugLocFromInst(Builder, SI); 3041 3042 for (unsigned Part = 0; Part < UF; ++Part) { 3043 Instruction *NewSI = nullptr; 3044 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3045 if (CreateGatherScatter) { 3046 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3047 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3048 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3049 MaskPart); 3050 } else { 3051 // Calculate the pointer for the specific unroll-part. 3052 Value *PartPtr = 3053 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3054 3055 if (Reverse) { 3056 // If we store to reverse consecutive memory locations, then we need 3057 // to reverse the order of elements in the stored value. 3058 StoredVal = reverseVector(StoredVal); 3059 // We don't want to update the value in the map as it might be used in 3060 // another expression. So don't call resetVectorValue(StoredVal). 3061 3062 // If the address is consecutive but reversed, then the 3063 // wide store needs to start at the last vector element. 3064 PartPtr = 3065 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3066 PartPtr = 3067 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3068 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3069 Mask[Part] = reverseVector(Mask[Part]); 3070 } 3071 3072 Value *VecPtr = 3073 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3074 3075 if (isMaskRequired) 3076 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3077 Mask[Part]); 3078 else 3079 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3080 } 3081 addMetadata(NewSI, SI); 3082 } 3083 return; 3084 } 3085 3086 // Handle loads. 3087 assert(LI && "Must have a load instruction"); 3088 setDebugLocFromInst(Builder, LI); 3089 for (unsigned Part = 0; Part < UF; ++Part) { 3090 Value *NewLI; 3091 if (CreateGatherScatter) { 3092 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3093 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3094 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3095 nullptr, "wide.masked.gather"); 3096 addMetadata(NewLI, LI); 3097 } else { 3098 // Calculate the pointer for the specific unroll-part. 3099 Value *PartPtr = 3100 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3101 3102 if (Reverse) { 3103 // If the address is consecutive but reversed, then the 3104 // wide load needs to start at the last vector element. 3105 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3106 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3107 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3108 Mask[Part] = reverseVector(Mask[Part]); 3109 } 3110 3111 Value *VecPtr = 3112 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3113 if (isMaskRequired) 3114 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3115 UndefValue::get(DataTy), 3116 "wide.masked.load"); 3117 else 3118 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3119 3120 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3121 addMetadata(NewLI, LI); 3122 if (Reverse) 3123 NewLI = reverseVector(NewLI); 3124 } 3125 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3126 } 3127 } 3128 3129 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3130 const VPIteration &Instance, 3131 bool IfPredicateInstr) { 3132 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3133 3134 setDebugLocFromInst(Builder, Instr); 3135 3136 // Does this instruction return a value ? 3137 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3138 3139 Instruction *Cloned = Instr->clone(); 3140 if (!IsVoidRetTy) 3141 Cloned->setName(Instr->getName() + ".cloned"); 3142 3143 // Replace the operands of the cloned instructions with their scalar 3144 // equivalents in the new loop. 3145 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3146 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3147 Cloned->setOperand(op, NewOp); 3148 } 3149 addNewMetadata(Cloned, Instr); 3150 3151 // Place the cloned scalar in the new loop. 3152 Builder.Insert(Cloned); 3153 3154 // Add the cloned scalar to the scalar map entry. 3155 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3156 3157 // If we just cloned a new assumption, add it the assumption cache. 3158 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3159 if (II->getIntrinsicID() == Intrinsic::assume) 3160 AC->registerAssumption(II); 3161 3162 // End if-block. 3163 if (IfPredicateInstr) 3164 PredicatedInstructions.push_back(Cloned); 3165 } 3166 3167 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3168 Value *End, Value *Step, 3169 Instruction *DL) { 3170 BasicBlock *Header = L->getHeader(); 3171 BasicBlock *Latch = L->getLoopLatch(); 3172 // As we're just creating this loop, it's possible no latch exists 3173 // yet. If so, use the header as this will be a single block loop. 3174 if (!Latch) 3175 Latch = Header; 3176 3177 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3178 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3179 setDebugLocFromInst(Builder, OldInst); 3180 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3181 3182 Builder.SetInsertPoint(Latch->getTerminator()); 3183 setDebugLocFromInst(Builder, OldInst); 3184 3185 // Create i+1 and fill the PHINode. 3186 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3187 Induction->addIncoming(Start, L->getLoopPreheader()); 3188 Induction->addIncoming(Next, Latch); 3189 // Create the compare. 3190 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3191 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3192 3193 // Now we have two terminators. Remove the old one from the block. 3194 Latch->getTerminator()->eraseFromParent(); 3195 3196 return Induction; 3197 } 3198 3199 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3200 if (TripCount) 3201 return TripCount; 3202 3203 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3204 // Find the loop boundaries. 3205 ScalarEvolution *SE = PSE.getSE(); 3206 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3207 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3208 "Invalid loop count"); 3209 3210 Type *IdxTy = Legal->getWidestInductionType(); 3211 3212 // The exit count might have the type of i64 while the phi is i32. This can 3213 // happen if we have an induction variable that is sign extended before the 3214 // compare. The only way that we get a backedge taken count is that the 3215 // induction variable was signed and as such will not overflow. In such a case 3216 // truncation is legal. 3217 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3218 IdxTy->getPrimitiveSizeInBits()) 3219 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3220 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3221 3222 // Get the total trip count from the count by adding 1. 3223 const SCEV *ExitCount = SE->getAddExpr( 3224 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3225 3226 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3227 3228 // Expand the trip count and place the new instructions in the preheader. 3229 // Notice that the pre-header does not change, only the loop body. 3230 SCEVExpander Exp(*SE, DL, "induction"); 3231 3232 // Count holds the overall loop count (N). 3233 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3234 L->getLoopPreheader()->getTerminator()); 3235 3236 if (TripCount->getType()->isPointerTy()) 3237 TripCount = 3238 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3239 L->getLoopPreheader()->getTerminator()); 3240 3241 return TripCount; 3242 } 3243 3244 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3245 if (VectorTripCount) 3246 return VectorTripCount; 3247 3248 Value *TC = getOrCreateTripCount(L); 3249 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3250 3251 // Now we need to generate the expression for the part of the loop that the 3252 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3253 // iterations are not required for correctness, or N - Step, otherwise. Step 3254 // is equal to the vectorization factor (number of SIMD elements) times the 3255 // unroll factor (number of SIMD instructions). 3256 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3257 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3258 3259 // If there is a non-reversed interleaved group that may speculatively access 3260 // memory out-of-bounds, we need to ensure that there will be at least one 3261 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3262 // the trip count, we set the remainder to be equal to the step. If the step 3263 // does not evenly divide the trip count, no adjustment is necessary since 3264 // there will already be scalar iterations. Note that the minimum iterations 3265 // check ensures that N >= Step. 3266 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3267 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3268 R = Builder.CreateSelect(IsZero, Step, R); 3269 } 3270 3271 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3272 3273 return VectorTripCount; 3274 } 3275 3276 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3277 const DataLayout &DL) { 3278 // Verify that V is a vector type with same number of elements as DstVTy. 3279 unsigned VF = DstVTy->getNumElements(); 3280 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3281 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3282 Type *SrcElemTy = SrcVecTy->getElementType(); 3283 Type *DstElemTy = DstVTy->getElementType(); 3284 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3285 "Vector elements must have same size"); 3286 3287 // Do a direct cast if element types are castable. 3288 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3289 return Builder.CreateBitOrPointerCast(V, DstVTy); 3290 } 3291 // V cannot be directly casted to desired vector type. 3292 // May happen when V is a floating point vector but DstVTy is a vector of 3293 // pointers or vice-versa. Handle this using a two-step bitcast using an 3294 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3295 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3296 "Only one type should be a pointer type"); 3297 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3298 "Only one type should be a floating point type"); 3299 Type *IntTy = 3300 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3301 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3302 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3303 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3304 } 3305 3306 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3307 BasicBlock *Bypass) { 3308 Value *Count = getOrCreateTripCount(L); 3309 BasicBlock *BB = L->getLoopPreheader(); 3310 IRBuilder<> Builder(BB->getTerminator()); 3311 3312 // Generate code to check if the loop's trip count is less than VF * UF, or 3313 // equal to it in case a scalar epilogue is required; this implies that the 3314 // vector trip count is zero. This check also covers the case where adding one 3315 // to the backedge-taken count overflowed leading to an incorrect trip count 3316 // of zero. In this case we will also jump to the scalar loop. 3317 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3318 : ICmpInst::ICMP_ULT; 3319 Value *CheckMinIters = Builder.CreateICmp( 3320 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3321 3322 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3323 // Update dominator tree immediately if the generated block is a 3324 // LoopBypassBlock because SCEV expansions to generate loop bypass 3325 // checks may query it before the current function is finished. 3326 DT->addNewBlock(NewBB, BB); 3327 if (L->getParentLoop()) 3328 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3329 ReplaceInstWithInst(BB->getTerminator(), 3330 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3331 LoopBypassBlocks.push_back(BB); 3332 } 3333 3334 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3335 BasicBlock *BB = L->getLoopPreheader(); 3336 3337 // Generate the code to check that the SCEV assumptions that we made. 3338 // We want the new basic block to start at the first instruction in a 3339 // sequence of instructions that form a check. 3340 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3341 "scev.check"); 3342 Value *SCEVCheck = 3343 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3344 3345 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3346 if (C->isZero()) 3347 return; 3348 3349 // Create a new block containing the stride check. 3350 BB->setName("vector.scevcheck"); 3351 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3352 // Update dominator tree immediately if the generated block is a 3353 // LoopBypassBlock because SCEV expansions to generate loop bypass 3354 // checks may query it before the current function is finished. 3355 DT->addNewBlock(NewBB, BB); 3356 if (L->getParentLoop()) 3357 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3358 ReplaceInstWithInst(BB->getTerminator(), 3359 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3360 LoopBypassBlocks.push_back(BB); 3361 AddedSafetyChecks = true; 3362 } 3363 3364 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3365 BasicBlock *BB = L->getLoopPreheader(); 3366 3367 // Generate the code that checks in runtime if arrays overlap. We put the 3368 // checks into a separate block to make the more common case of few elements 3369 // faster. 3370 Instruction *FirstCheckInst; 3371 Instruction *MemRuntimeCheck; 3372 std::tie(FirstCheckInst, MemRuntimeCheck) = 3373 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3374 if (!MemRuntimeCheck) 3375 return; 3376 3377 // Create a new block containing the memory check. 3378 BB->setName("vector.memcheck"); 3379 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3380 // Update dominator tree immediately if the generated block is a 3381 // LoopBypassBlock because SCEV expansions to generate loop bypass 3382 // checks may query it before the current function is finished. 3383 DT->addNewBlock(NewBB, BB); 3384 if (L->getParentLoop()) 3385 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3386 ReplaceInstWithInst(BB->getTerminator(), 3387 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3388 LoopBypassBlocks.push_back(BB); 3389 AddedSafetyChecks = true; 3390 3391 // We currently don't use LoopVersioning for the actual loop cloning but we 3392 // still use it to add the noalias metadata. 3393 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3394 PSE.getSE()); 3395 LVer->prepareNoAliasMetadata(); 3396 } 3397 3398 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3399 /* 3400 In this function we generate a new loop. The new loop will contain 3401 the vectorized instructions while the old loop will continue to run the 3402 scalar remainder. 3403 3404 [ ] <-- loop iteration number check. 3405 / | 3406 / v 3407 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3408 | / | 3409 | / v 3410 || [ ] <-- vector pre header. 3411 |/ | 3412 | v 3413 | [ ] \ 3414 | [ ]_| <-- vector loop. 3415 | | 3416 | v 3417 | -[ ] <--- middle-block. 3418 | / | 3419 | / v 3420 -|- >[ ] <--- new preheader. 3421 | | 3422 | v 3423 | [ ] \ 3424 | [ ]_| <-- old scalar loop to handle remainder. 3425 \ | 3426 \ v 3427 >[ ] <-- exit block. 3428 ... 3429 */ 3430 3431 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3432 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3433 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3434 assert(VectorPH && "Invalid loop structure"); 3435 assert(ExitBlock && "Must have an exit block"); 3436 3437 // Some loops have a single integer induction variable, while other loops 3438 // don't. One example is c++ iterators that often have multiple pointer 3439 // induction variables. In the code below we also support a case where we 3440 // don't have a single induction variable. 3441 // 3442 // We try to obtain an induction variable from the original loop as hard 3443 // as possible. However if we don't find one that: 3444 // - is an integer 3445 // - counts from zero, stepping by one 3446 // - is the size of the widest induction variable type 3447 // then we create a new one. 3448 OldInduction = Legal->getPrimaryInduction(); 3449 Type *IdxTy = Legal->getWidestInductionType(); 3450 3451 // Split the single block loop into the two loop structure described above. 3452 BasicBlock *VecBody = 3453 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3454 BasicBlock *MiddleBlock = 3455 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3456 BasicBlock *ScalarPH = 3457 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3458 3459 // Create and register the new vector loop. 3460 Loop *Lp = LI->AllocateLoop(); 3461 Loop *ParentLoop = OrigLoop->getParentLoop(); 3462 3463 // Insert the new loop into the loop nest and register the new basic blocks 3464 // before calling any utilities such as SCEV that require valid LoopInfo. 3465 if (ParentLoop) { 3466 ParentLoop->addChildLoop(Lp); 3467 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3468 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3469 } else { 3470 LI->addTopLevelLoop(Lp); 3471 } 3472 Lp->addBasicBlockToLoop(VecBody, *LI); 3473 3474 // Find the loop boundaries. 3475 Value *Count = getOrCreateTripCount(Lp); 3476 3477 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3478 3479 // Now, compare the new count to zero. If it is zero skip the vector loop and 3480 // jump to the scalar loop. This check also covers the case where the 3481 // backedge-taken count is uint##_max: adding one to it will overflow leading 3482 // to an incorrect trip count of zero. In this (rare) case we will also jump 3483 // to the scalar loop. 3484 emitMinimumIterationCountCheck(Lp, ScalarPH); 3485 3486 // Generate the code to check any assumptions that we've made for SCEV 3487 // expressions. 3488 emitSCEVChecks(Lp, ScalarPH); 3489 3490 // Generate the code that checks in runtime if arrays overlap. We put the 3491 // checks into a separate block to make the more common case of few elements 3492 // faster. 3493 emitMemRuntimeChecks(Lp, ScalarPH); 3494 3495 // Generate the induction variable. 3496 // The loop step is equal to the vectorization factor (num of SIMD elements) 3497 // times the unroll factor (num of SIMD instructions). 3498 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3499 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3500 Induction = 3501 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3502 getDebugLocFromInstOrOperands(OldInduction)); 3503 3504 // We are going to resume the execution of the scalar loop. 3505 // Go over all of the induction variables that we found and fix the 3506 // PHIs that are left in the scalar version of the loop. 3507 // The starting values of PHI nodes depend on the counter of the last 3508 // iteration in the vectorized loop. 3509 // If we come from a bypass edge then we need to start from the original 3510 // start value. 3511 3512 // This variable saves the new starting index for the scalar loop. It is used 3513 // to test if there are any tail iterations left once the vector loop has 3514 // completed. 3515 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3516 for (auto &InductionEntry : *List) { 3517 PHINode *OrigPhi = InductionEntry.first; 3518 InductionDescriptor II = InductionEntry.second; 3519 3520 // Create phi nodes to merge from the backedge-taken check block. 3521 PHINode *BCResumeVal = PHINode::Create( 3522 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3523 Value *&EndValue = IVEndValues[OrigPhi]; 3524 if (OrigPhi == OldInduction) { 3525 // We know what the end value is. 3526 EndValue = CountRoundDown; 3527 } else { 3528 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3529 Type *StepType = II.getStep()->getType(); 3530 Instruction::CastOps CastOp = 3531 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3532 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3533 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3534 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3535 EndValue->setName("ind.end"); 3536 } 3537 3538 // The new PHI merges the original incoming value, in case of a bypass, 3539 // or the value at the end of the vectorized loop. 3540 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3541 3542 // Fix the scalar body counter (PHI node). 3543 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3544 3545 // The old induction's phi node in the scalar body needs the truncated 3546 // value. 3547 for (BasicBlock *BB : LoopBypassBlocks) 3548 BCResumeVal->addIncoming(II.getStartValue(), BB); 3549 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3550 } 3551 3552 // Add a check in the middle block to see if we have completed 3553 // all of the iterations in the first vector loop. 3554 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3555 Value *CmpN = 3556 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3557 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3558 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3559 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3560 3561 // Get ready to start creating new instructions into the vectorized body. 3562 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3563 3564 // Save the state. 3565 LoopVectorPreHeader = Lp->getLoopPreheader(); 3566 LoopScalarPreHeader = ScalarPH; 3567 LoopMiddleBlock = MiddleBlock; 3568 LoopExitBlock = ExitBlock; 3569 LoopVectorBody = VecBody; 3570 LoopScalarBody = OldBasicBlock; 3571 3572 // Keep all loop hints from the original loop on the vector loop (we'll 3573 // replace the vectorizer-specific hints below). 3574 if (MDNode *LID = OrigLoop->getLoopID()) 3575 Lp->setLoopID(LID); 3576 3577 LoopVectorizeHints Hints(Lp, true, *ORE); 3578 Hints.setAlreadyVectorized(); 3579 3580 return LoopVectorPreHeader; 3581 } 3582 3583 // Fix up external users of the induction variable. At this point, we are 3584 // in LCSSA form, with all external PHIs that use the IV having one input value, 3585 // coming from the remainder loop. We need those PHIs to also have a correct 3586 // value for the IV when arriving directly from the middle block. 3587 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3588 const InductionDescriptor &II, 3589 Value *CountRoundDown, Value *EndValue, 3590 BasicBlock *MiddleBlock) { 3591 // There are two kinds of external IV usages - those that use the value 3592 // computed in the last iteration (the PHI) and those that use the penultimate 3593 // value (the value that feeds into the phi from the loop latch). 3594 // We allow both, but they, obviously, have different values. 3595 3596 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3597 3598 DenseMap<Value *, Value *> MissingVals; 3599 3600 // An external user of the last iteration's value should see the value that 3601 // the remainder loop uses to initialize its own IV. 3602 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3603 for (User *U : PostInc->users()) { 3604 Instruction *UI = cast<Instruction>(U); 3605 if (!OrigLoop->contains(UI)) { 3606 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3607 MissingVals[UI] = EndValue; 3608 } 3609 } 3610 3611 // An external user of the penultimate value need to see EndValue - Step. 3612 // The simplest way to get this is to recompute it from the constituent SCEVs, 3613 // that is Start + (Step * (CRD - 1)). 3614 for (User *U : OrigPhi->users()) { 3615 auto *UI = cast<Instruction>(U); 3616 if (!OrigLoop->contains(UI)) { 3617 const DataLayout &DL = 3618 OrigLoop->getHeader()->getModule()->getDataLayout(); 3619 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3620 3621 IRBuilder<> B(MiddleBlock->getTerminator()); 3622 Value *CountMinusOne = B.CreateSub( 3623 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3624 Value *CMO = 3625 !II.getStep()->getType()->isIntegerTy() 3626 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3627 II.getStep()->getType()) 3628 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3629 CMO->setName("cast.cmo"); 3630 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3631 Escape->setName("ind.escape"); 3632 MissingVals[UI] = Escape; 3633 } 3634 } 3635 3636 for (auto &I : MissingVals) { 3637 PHINode *PHI = cast<PHINode>(I.first); 3638 // One corner case we have to handle is two IVs "chasing" each-other, 3639 // that is %IV2 = phi [...], [ %IV1, %latch ] 3640 // In this case, if IV1 has an external use, we need to avoid adding both 3641 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3642 // don't already have an incoming value for the middle block. 3643 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3644 PHI->addIncoming(I.second, MiddleBlock); 3645 } 3646 } 3647 3648 namespace { 3649 3650 struct CSEDenseMapInfo { 3651 static bool canHandle(const Instruction *I) { 3652 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3653 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3654 } 3655 3656 static inline Instruction *getEmptyKey() { 3657 return DenseMapInfo<Instruction *>::getEmptyKey(); 3658 } 3659 3660 static inline Instruction *getTombstoneKey() { 3661 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3662 } 3663 3664 static unsigned getHashValue(const Instruction *I) { 3665 assert(canHandle(I) && "Unknown instruction!"); 3666 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3667 I->value_op_end())); 3668 } 3669 3670 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3671 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3672 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3673 return LHS == RHS; 3674 return LHS->isIdenticalTo(RHS); 3675 } 3676 }; 3677 3678 } // end anonymous namespace 3679 3680 ///\brief Perform cse of induction variable instructions. 3681 static void cse(BasicBlock *BB) { 3682 // Perform simple cse. 3683 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3684 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3685 Instruction *In = &*I++; 3686 3687 if (!CSEDenseMapInfo::canHandle(In)) 3688 continue; 3689 3690 // Check if we can replace this instruction with any of the 3691 // visited instructions. 3692 if (Instruction *V = CSEMap.lookup(In)) { 3693 In->replaceAllUsesWith(V); 3694 In->eraseFromParent(); 3695 continue; 3696 } 3697 3698 CSEMap[In] = In; 3699 } 3700 } 3701 3702 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3703 /// convenience wrapper for the type-based getScalarizationOverhead API. 3704 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3705 const TargetTransformInfo &TTI) { 3706 if (VF == 1) 3707 return 0; 3708 3709 unsigned Cost = 0; 3710 Type *RetTy = ToVectorTy(I->getType(), VF); 3711 if (!RetTy->isVoidTy() && 3712 (!isa<LoadInst>(I) || 3713 !TTI.supportsEfficientVectorElementLoadStore())) 3714 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3715 3716 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3717 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3718 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3719 } 3720 else if (!isa<StoreInst>(I) || 3721 !TTI.supportsEfficientVectorElementLoadStore()) { 3722 SmallVector<const Value *, 4> Operands(I->operand_values()); 3723 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3724 } 3725 3726 return Cost; 3727 } 3728 3729 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3730 // Return the cost of the instruction, including scalarization overhead if it's 3731 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3732 // i.e. either vector version isn't available, or is too expensive. 3733 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3734 const TargetTransformInfo &TTI, 3735 const TargetLibraryInfo *TLI, 3736 bool &NeedToScalarize) { 3737 Function *F = CI->getCalledFunction(); 3738 StringRef FnName = CI->getCalledFunction()->getName(); 3739 Type *ScalarRetTy = CI->getType(); 3740 SmallVector<Type *, 4> Tys, ScalarTys; 3741 for (auto &ArgOp : CI->arg_operands()) 3742 ScalarTys.push_back(ArgOp->getType()); 3743 3744 // Estimate cost of scalarized vector call. The source operands are assumed 3745 // to be vectors, so we need to extract individual elements from there, 3746 // execute VF scalar calls, and then gather the result into the vector return 3747 // value. 3748 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3749 if (VF == 1) 3750 return ScalarCallCost; 3751 3752 // Compute corresponding vector type for return value and arguments. 3753 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3754 for (Type *ScalarTy : ScalarTys) 3755 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3756 3757 // Compute costs of unpacking argument values for the scalar calls and 3758 // packing the return values to a vector. 3759 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3760 3761 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3762 3763 // If we can't emit a vector call for this function, then the currently found 3764 // cost is the cost we need to return. 3765 NeedToScalarize = true; 3766 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3767 return Cost; 3768 3769 // If the corresponding vector cost is cheaper, return its cost. 3770 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3771 if (VectorCallCost < Cost) { 3772 NeedToScalarize = false; 3773 return VectorCallCost; 3774 } 3775 return Cost; 3776 } 3777 3778 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3779 // factor VF. Return the cost of the instruction, including scalarization 3780 // overhead if it's needed. 3781 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3782 const TargetTransformInfo &TTI, 3783 const TargetLibraryInfo *TLI) { 3784 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3785 assert(ID && "Expected intrinsic call!"); 3786 3787 FastMathFlags FMF; 3788 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3789 FMF = FPMO->getFastMathFlags(); 3790 3791 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3792 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3793 } 3794 3795 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3796 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3797 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3798 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3799 } 3800 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3801 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3802 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3803 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3804 } 3805 3806 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3807 // For every instruction `I` in MinBWs, truncate the operands, create a 3808 // truncated version of `I` and reextend its result. InstCombine runs 3809 // later and will remove any ext/trunc pairs. 3810 SmallPtrSet<Value *, 4> Erased; 3811 for (const auto &KV : Cost->getMinimalBitwidths()) { 3812 // If the value wasn't vectorized, we must maintain the original scalar 3813 // type. The absence of the value from VectorLoopValueMap indicates that it 3814 // wasn't vectorized. 3815 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3816 continue; 3817 for (unsigned Part = 0; Part < UF; ++Part) { 3818 Value *I = getOrCreateVectorValue(KV.first, Part); 3819 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3820 continue; 3821 Type *OriginalTy = I->getType(); 3822 Type *ScalarTruncatedTy = 3823 IntegerType::get(OriginalTy->getContext(), KV.second); 3824 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3825 OriginalTy->getVectorNumElements()); 3826 if (TruncatedTy == OriginalTy) 3827 continue; 3828 3829 IRBuilder<> B(cast<Instruction>(I)); 3830 auto ShrinkOperand = [&](Value *V) -> Value * { 3831 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3832 if (ZI->getSrcTy() == TruncatedTy) 3833 return ZI->getOperand(0); 3834 return B.CreateZExtOrTrunc(V, TruncatedTy); 3835 }; 3836 3837 // The actual instruction modification depends on the instruction type, 3838 // unfortunately. 3839 Value *NewI = nullptr; 3840 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3841 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3842 ShrinkOperand(BO->getOperand(1))); 3843 3844 // Any wrapping introduced by shrinking this operation shouldn't be 3845 // considered undefined behavior. So, we can't unconditionally copy 3846 // arithmetic wrapping flags to NewI. 3847 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3848 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3849 NewI = 3850 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3851 ShrinkOperand(CI->getOperand(1))); 3852 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3853 NewI = B.CreateSelect(SI->getCondition(), 3854 ShrinkOperand(SI->getTrueValue()), 3855 ShrinkOperand(SI->getFalseValue())); 3856 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3857 switch (CI->getOpcode()) { 3858 default: 3859 llvm_unreachable("Unhandled cast!"); 3860 case Instruction::Trunc: 3861 NewI = ShrinkOperand(CI->getOperand(0)); 3862 break; 3863 case Instruction::SExt: 3864 NewI = B.CreateSExtOrTrunc( 3865 CI->getOperand(0), 3866 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3867 break; 3868 case Instruction::ZExt: 3869 NewI = B.CreateZExtOrTrunc( 3870 CI->getOperand(0), 3871 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3872 break; 3873 } 3874 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3875 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3876 auto *O0 = B.CreateZExtOrTrunc( 3877 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3878 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3879 auto *O1 = B.CreateZExtOrTrunc( 3880 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3881 3882 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3883 } else if (isa<LoadInst>(I)) { 3884 // Don't do anything with the operands, just extend the result. 3885 continue; 3886 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3887 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3888 auto *O0 = B.CreateZExtOrTrunc( 3889 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3890 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3891 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3892 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3893 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3894 auto *O0 = B.CreateZExtOrTrunc( 3895 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3896 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3897 } else { 3898 llvm_unreachable("Unhandled instruction type!"); 3899 } 3900 3901 // Lastly, extend the result. 3902 NewI->takeName(cast<Instruction>(I)); 3903 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3904 I->replaceAllUsesWith(Res); 3905 cast<Instruction>(I)->eraseFromParent(); 3906 Erased.insert(I); 3907 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3908 } 3909 } 3910 3911 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3912 for (const auto &KV : Cost->getMinimalBitwidths()) { 3913 // If the value wasn't vectorized, we must maintain the original scalar 3914 // type. The absence of the value from VectorLoopValueMap indicates that it 3915 // wasn't vectorized. 3916 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3917 continue; 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 Value *I = getOrCreateVectorValue(KV.first, Part); 3920 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3921 if (Inst && Inst->use_empty()) { 3922 Value *NewI = Inst->getOperand(0); 3923 Inst->eraseFromParent(); 3924 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3925 } 3926 } 3927 } 3928 } 3929 3930 void InnerLoopVectorizer::fixVectorizedLoop() { 3931 // Insert truncates and extends for any truncated instructions as hints to 3932 // InstCombine. 3933 if (VF > 1) 3934 truncateToMinimalBitwidths(); 3935 3936 // At this point every instruction in the original loop is widened to a 3937 // vector form. Now we need to fix the recurrences in the loop. These PHI 3938 // nodes are currently empty because we did not want to introduce cycles. 3939 // This is the second stage of vectorizing recurrences. 3940 fixCrossIterationPHIs(); 3941 3942 // Update the dominator tree. 3943 // 3944 // FIXME: After creating the structure of the new loop, the dominator tree is 3945 // no longer up-to-date, and it remains that way until we update it 3946 // here. An out-of-date dominator tree is problematic for SCEV, 3947 // because SCEVExpander uses it to guide code generation. The 3948 // vectorizer use SCEVExpanders in several places. Instead, we should 3949 // keep the dominator tree up-to-date as we go. 3950 updateAnalysis(); 3951 3952 // Fix-up external users of the induction variables. 3953 for (auto &Entry : *Legal->getInductionVars()) 3954 fixupIVUsers(Entry.first, Entry.second, 3955 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3956 IVEndValues[Entry.first], LoopMiddleBlock); 3957 3958 fixLCSSAPHIs(); 3959 for (Instruction *PI : PredicatedInstructions) 3960 sinkScalarOperands(&*PI); 3961 3962 // Remove redundant induction instructions. 3963 cse(LoopVectorBody); 3964 } 3965 3966 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3967 // In order to support recurrences we need to be able to vectorize Phi nodes. 3968 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3969 // stage #2: We now need to fix the recurrences by adding incoming edges to 3970 // the currently empty PHI nodes. At this point every instruction in the 3971 // original loop is widened to a vector form so we can use them to construct 3972 // the incoming edges. 3973 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3974 // Handle first-order recurrences and reductions that need to be fixed. 3975 if (Legal->isFirstOrderRecurrence(&Phi)) 3976 fixFirstOrderRecurrence(&Phi); 3977 else if (Legal->isReductionVariable(&Phi)) 3978 fixReduction(&Phi); 3979 } 3980 } 3981 3982 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3983 // This is the second phase of vectorizing first-order recurrences. An 3984 // overview of the transformation is described below. Suppose we have the 3985 // following loop. 3986 // 3987 // for (int i = 0; i < n; ++i) 3988 // b[i] = a[i] - a[i - 1]; 3989 // 3990 // There is a first-order recurrence on "a". For this loop, the shorthand 3991 // scalar IR looks like: 3992 // 3993 // scalar.ph: 3994 // s_init = a[-1] 3995 // br scalar.body 3996 // 3997 // scalar.body: 3998 // i = phi [0, scalar.ph], [i+1, scalar.body] 3999 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4000 // s2 = a[i] 4001 // b[i] = s2 - s1 4002 // br cond, scalar.body, ... 4003 // 4004 // In this example, s1 is a recurrence because it's value depends on the 4005 // previous iteration. In the first phase of vectorization, we created a 4006 // temporary value for s1. We now complete the vectorization and produce the 4007 // shorthand vector IR shown below (for VF = 4, UF = 1). 4008 // 4009 // vector.ph: 4010 // v_init = vector(..., ..., ..., a[-1]) 4011 // br vector.body 4012 // 4013 // vector.body 4014 // i = phi [0, vector.ph], [i+4, vector.body] 4015 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4016 // v2 = a[i, i+1, i+2, i+3]; 4017 // v3 = vector(v1(3), v2(0, 1, 2)) 4018 // b[i, i+1, i+2, i+3] = v2 - v3 4019 // br cond, vector.body, middle.block 4020 // 4021 // middle.block: 4022 // x = v2(3) 4023 // br scalar.ph 4024 // 4025 // scalar.ph: 4026 // s_init = phi [x, middle.block], [a[-1], otherwise] 4027 // br scalar.body 4028 // 4029 // After execution completes the vector loop, we extract the next value of 4030 // the recurrence (x) to use as the initial value in the scalar loop. 4031 4032 // Get the original loop preheader and single loop latch. 4033 auto *Preheader = OrigLoop->getLoopPreheader(); 4034 auto *Latch = OrigLoop->getLoopLatch(); 4035 4036 // Get the initial and previous values of the scalar recurrence. 4037 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4038 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4039 4040 // Create a vector from the initial value. 4041 auto *VectorInit = ScalarInit; 4042 if (VF > 1) { 4043 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4044 VectorInit = Builder.CreateInsertElement( 4045 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4046 Builder.getInt32(VF - 1), "vector.recur.init"); 4047 } 4048 4049 // We constructed a temporary phi node in the first phase of vectorization. 4050 // This phi node will eventually be deleted. 4051 Builder.SetInsertPoint( 4052 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4053 4054 // Create a phi node for the new recurrence. The current value will either be 4055 // the initial value inserted into a vector or loop-varying vector value. 4056 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4057 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4058 4059 // Get the vectorized previous value of the last part UF - 1. It appears last 4060 // among all unrolled iterations, due to the order of their construction. 4061 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4062 4063 // Set the insertion point after the previous value if it is an instruction. 4064 // Note that the previous value may have been constant-folded so it is not 4065 // guaranteed to be an instruction in the vector loop. Also, if the previous 4066 // value is a phi node, we should insert after all the phi nodes to avoid 4067 // breaking basic block verification. 4068 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4069 isa<PHINode>(PreviousLastPart)) 4070 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4071 else 4072 Builder.SetInsertPoint( 4073 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4074 4075 // We will construct a vector for the recurrence by combining the values for 4076 // the current and previous iterations. This is the required shuffle mask. 4077 SmallVector<Constant *, 8> ShuffleMask(VF); 4078 ShuffleMask[0] = Builder.getInt32(VF - 1); 4079 for (unsigned I = 1; I < VF; ++I) 4080 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4081 4082 // The vector from which to take the initial value for the current iteration 4083 // (actual or unrolled). Initially, this is the vector phi node. 4084 Value *Incoming = VecPhi; 4085 4086 // Shuffle the current and previous vector and update the vector parts. 4087 for (unsigned Part = 0; Part < UF; ++Part) { 4088 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4089 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4090 auto *Shuffle = 4091 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4092 ConstantVector::get(ShuffleMask)) 4093 : Incoming; 4094 PhiPart->replaceAllUsesWith(Shuffle); 4095 cast<Instruction>(PhiPart)->eraseFromParent(); 4096 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4097 Incoming = PreviousPart; 4098 } 4099 4100 // Fix the latch value of the new recurrence in the vector loop. 4101 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4102 4103 // Extract the last vector element in the middle block. This will be the 4104 // initial value for the recurrence when jumping to the scalar loop. 4105 auto *ExtractForScalar = Incoming; 4106 if (VF > 1) { 4107 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4108 ExtractForScalar = Builder.CreateExtractElement( 4109 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4110 } 4111 // Extract the second last element in the middle block if the 4112 // Phi is used outside the loop. We need to extract the phi itself 4113 // and not the last element (the phi update in the current iteration). This 4114 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4115 // when the scalar loop is not run at all. 4116 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4117 if (VF > 1) 4118 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4119 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4120 // When loop is unrolled without vectorizing, initialize 4121 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4122 // `Incoming`. This is analogous to the vectorized case above: extracting the 4123 // second last element when VF > 1. 4124 else if (UF > 1) 4125 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4126 4127 // Fix the initial value of the original recurrence in the scalar loop. 4128 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4129 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4130 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4131 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4132 Start->addIncoming(Incoming, BB); 4133 } 4134 4135 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4136 Phi->setName("scalar.recur"); 4137 4138 // Finally, fix users of the recurrence outside the loop. The users will need 4139 // either the last value of the scalar recurrence or the last value of the 4140 // vector recurrence we extracted in the middle block. Since the loop is in 4141 // LCSSA form, we just need to find the phi node for the original scalar 4142 // recurrence in the exit block, and then add an edge for the middle block. 4143 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4144 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4145 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4146 break; 4147 } 4148 } 4149 } 4150 4151 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4152 Constant *Zero = Builder.getInt32(0); 4153 4154 // Get it's reduction variable descriptor. 4155 assert(Legal->isReductionVariable(Phi) && 4156 "Unable to find the reduction variable"); 4157 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4158 4159 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4160 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4161 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4162 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4163 RdxDesc.getMinMaxRecurrenceKind(); 4164 setDebugLocFromInst(Builder, ReductionStartValue); 4165 4166 // We need to generate a reduction vector from the incoming scalar. 4167 // To do so, we need to generate the 'identity' vector and override 4168 // one of the elements with the incoming scalar reduction. We need 4169 // to do it in the vector-loop preheader. 4170 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4171 4172 // This is the vector-clone of the value that leaves the loop. 4173 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4174 4175 // Find the reduction identity variable. Zero for addition, or, xor, 4176 // one for multiplication, -1 for And. 4177 Value *Identity; 4178 Value *VectorStart; 4179 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4180 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4181 // MinMax reduction have the start value as their identify. 4182 if (VF == 1) { 4183 VectorStart = Identity = ReductionStartValue; 4184 } else { 4185 VectorStart = Identity = 4186 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4187 } 4188 } else { 4189 // Handle other reduction kinds: 4190 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4191 RK, VecTy->getScalarType()); 4192 if (VF == 1) { 4193 Identity = Iden; 4194 // This vector is the Identity vector where the first element is the 4195 // incoming scalar reduction. 4196 VectorStart = ReductionStartValue; 4197 } else { 4198 Identity = ConstantVector::getSplat(VF, Iden); 4199 4200 // This vector is the Identity vector where the first element is the 4201 // incoming scalar reduction. 4202 VectorStart = 4203 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4204 } 4205 } 4206 4207 // Fix the vector-loop phi. 4208 4209 // Reductions do not have to start at zero. They can start with 4210 // any loop invariant values. 4211 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4212 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4213 for (unsigned Part = 0; Part < UF; ++Part) { 4214 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4215 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4216 // Make sure to add the reduction stat value only to the 4217 // first unroll part. 4218 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4219 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4220 cast<PHINode>(VecRdxPhi) 4221 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4222 } 4223 4224 // Before each round, move the insertion point right between 4225 // the PHIs and the values we are going to write. 4226 // This allows us to write both PHINodes and the extractelement 4227 // instructions. 4228 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4229 4230 setDebugLocFromInst(Builder, LoopExitInst); 4231 4232 // If the vector reduction can be performed in a smaller type, we truncate 4233 // then extend the loop exit value to enable InstCombine to evaluate the 4234 // entire expression in the smaller type. 4235 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4236 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4237 Builder.SetInsertPoint( 4238 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4239 VectorParts RdxParts(UF); 4240 for (unsigned Part = 0; Part < UF; ++Part) { 4241 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4242 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4243 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4244 : Builder.CreateZExt(Trunc, VecTy); 4245 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4246 UI != RdxParts[Part]->user_end();) 4247 if (*UI != Trunc) { 4248 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4249 RdxParts[Part] = Extnd; 4250 } else { 4251 ++UI; 4252 } 4253 } 4254 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4255 for (unsigned Part = 0; Part < UF; ++Part) { 4256 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4257 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4258 } 4259 } 4260 4261 // Reduce all of the unrolled parts into a single vector. 4262 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4263 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4264 setDebugLocFromInst(Builder, ReducedPartRdx); 4265 for (unsigned Part = 1; Part < UF; ++Part) { 4266 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4267 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4268 // Floating point operations had to be 'fast' to enable the reduction. 4269 ReducedPartRdx = addFastMathFlag( 4270 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4271 ReducedPartRdx, "bin.rdx")); 4272 else 4273 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4274 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4275 } 4276 4277 if (VF > 1) { 4278 bool NoNaN = Legal->hasFunNoNaNAttr(); 4279 ReducedPartRdx = 4280 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4281 // If the reduction can be performed in a smaller type, we need to extend 4282 // the reduction to the wider type before we branch to the original loop. 4283 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4284 ReducedPartRdx = 4285 RdxDesc.isSigned() 4286 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4287 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4288 } 4289 4290 // Create a phi node that merges control-flow from the backedge-taken check 4291 // block and the middle block. 4292 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4293 LoopScalarPreHeader->getTerminator()); 4294 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4295 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4296 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4297 4298 // Now, we need to fix the users of the reduction variable 4299 // inside and outside of the scalar remainder loop. 4300 // We know that the loop is in LCSSA form. We need to update the 4301 // PHI nodes in the exit blocks. 4302 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4303 // All PHINodes need to have a single entry edge, or two if 4304 // we already fixed them. 4305 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4306 4307 // We found a reduction value exit-PHI. Update it with the 4308 // incoming bypass edge. 4309 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4310 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4311 } // end of the LCSSA phi scan. 4312 4313 // Fix the scalar loop reduction variable with the incoming reduction sum 4314 // from the vector body and from the backedge value. 4315 int IncomingEdgeBlockIdx = 4316 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4317 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4318 // Pick the other block. 4319 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4320 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4321 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4322 } 4323 4324 void InnerLoopVectorizer::fixLCSSAPHIs() { 4325 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4326 if (LCSSAPhi.getNumIncomingValues() == 1) { 4327 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4328 "Incoming value isn't loop invariant"); 4329 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4330 } 4331 } 4332 } 4333 4334 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4335 // The basic block and loop containing the predicated instruction. 4336 auto *PredBB = PredInst->getParent(); 4337 auto *VectorLoop = LI->getLoopFor(PredBB); 4338 4339 // Initialize a worklist with the operands of the predicated instruction. 4340 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4341 4342 // Holds instructions that we need to analyze again. An instruction may be 4343 // reanalyzed if we don't yet know if we can sink it or not. 4344 SmallVector<Instruction *, 8> InstsToReanalyze; 4345 4346 // Returns true if a given use occurs in the predicated block. Phi nodes use 4347 // their operands in their corresponding predecessor blocks. 4348 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4349 auto *I = cast<Instruction>(U.getUser()); 4350 BasicBlock *BB = I->getParent(); 4351 if (auto *Phi = dyn_cast<PHINode>(I)) 4352 BB = Phi->getIncomingBlock( 4353 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4354 return BB == PredBB; 4355 }; 4356 4357 // Iteratively sink the scalarized operands of the predicated instruction 4358 // into the block we created for it. When an instruction is sunk, it's 4359 // operands are then added to the worklist. The algorithm ends after one pass 4360 // through the worklist doesn't sink a single instruction. 4361 bool Changed; 4362 do { 4363 // Add the instructions that need to be reanalyzed to the worklist, and 4364 // reset the changed indicator. 4365 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4366 InstsToReanalyze.clear(); 4367 Changed = false; 4368 4369 while (!Worklist.empty()) { 4370 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4371 4372 // We can't sink an instruction if it is a phi node, is already in the 4373 // predicated block, is not in the loop, or may have side effects. 4374 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4375 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4376 continue; 4377 4378 // It's legal to sink the instruction if all its uses occur in the 4379 // predicated block. Otherwise, there's nothing to do yet, and we may 4380 // need to reanalyze the instruction. 4381 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4382 InstsToReanalyze.push_back(I); 4383 continue; 4384 } 4385 4386 // Move the instruction to the beginning of the predicated block, and add 4387 // it's operands to the worklist. 4388 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4389 Worklist.insert(I->op_begin(), I->op_end()); 4390 4391 // The sinking may have enabled other instructions to be sunk, so we will 4392 // need to iterate. 4393 Changed = true; 4394 } 4395 } while (Changed); 4396 } 4397 4398 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4399 unsigned VF) { 4400 assert(PN->getParent() == OrigLoop->getHeader() && 4401 "Non-header phis should have been handled elsewhere"); 4402 4403 PHINode *P = cast<PHINode>(PN); 4404 // In order to support recurrences we need to be able to vectorize Phi nodes. 4405 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4406 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4407 // this value when we vectorize all of the instructions that use the PHI. 4408 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4409 for (unsigned Part = 0; Part < UF; ++Part) { 4410 // This is phase one of vectorizing PHIs. 4411 Type *VecTy = 4412 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4413 Value *EntryPart = PHINode::Create( 4414 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4415 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4416 } 4417 return; 4418 } 4419 4420 setDebugLocFromInst(Builder, P); 4421 4422 // This PHINode must be an induction variable. 4423 // Make sure that we know about it. 4424 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4425 4426 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4427 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4428 4429 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4430 // which can be found from the original scalar operations. 4431 switch (II.getKind()) { 4432 case InductionDescriptor::IK_NoInduction: 4433 llvm_unreachable("Unknown induction"); 4434 case InductionDescriptor::IK_IntInduction: 4435 case InductionDescriptor::IK_FpInduction: 4436 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4437 case InductionDescriptor::IK_PtrInduction: { 4438 // Handle the pointer induction variable case. 4439 assert(P->getType()->isPointerTy() && "Unexpected type."); 4440 // This is the normalized GEP that starts counting at zero. 4441 Value *PtrInd = Induction; 4442 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4443 // Determine the number of scalars we need to generate for each unroll 4444 // iteration. If the instruction is uniform, we only need to generate the 4445 // first lane. Otherwise, we generate all VF values. 4446 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4447 // These are the scalar results. Notice that we don't generate vector GEPs 4448 // because scalar GEPs result in better code. 4449 for (unsigned Part = 0; Part < UF; ++Part) { 4450 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4451 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4452 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4453 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4454 SclrGep->setName("next.gep"); 4455 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4456 } 4457 } 4458 return; 4459 } 4460 } 4461 } 4462 4463 /// A helper function for checking whether an integer division-related 4464 /// instruction may divide by zero (in which case it must be predicated if 4465 /// executed conditionally in the scalar code). 4466 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4467 /// Non-zero divisors that are non compile-time constants will not be 4468 /// converted into multiplication, so we will still end up scalarizing 4469 /// the division, but can do so w/o predication. 4470 static bool mayDivideByZero(Instruction &I) { 4471 assert((I.getOpcode() == Instruction::UDiv || 4472 I.getOpcode() == Instruction::SDiv || 4473 I.getOpcode() == Instruction::URem || 4474 I.getOpcode() == Instruction::SRem) && 4475 "Unexpected instruction"); 4476 Value *Divisor = I.getOperand(1); 4477 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4478 return !CInt || CInt->isZero(); 4479 } 4480 4481 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4482 switch (I.getOpcode()) { 4483 case Instruction::Br: 4484 case Instruction::PHI: 4485 llvm_unreachable("This instruction is handled by a different recipe."); 4486 case Instruction::GetElementPtr: { 4487 // Construct a vector GEP by widening the operands of the scalar GEP as 4488 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4489 // results in a vector of pointers when at least one operand of the GEP 4490 // is vector-typed. Thus, to keep the representation compact, we only use 4491 // vector-typed operands for loop-varying values. 4492 auto *GEP = cast<GetElementPtrInst>(&I); 4493 4494 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4495 // If we are vectorizing, but the GEP has only loop-invariant operands, 4496 // the GEP we build (by only using vector-typed operands for 4497 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4498 // produce a vector of pointers, we need to either arbitrarily pick an 4499 // operand to broadcast, or broadcast a clone of the original GEP. 4500 // Here, we broadcast a clone of the original. 4501 // 4502 // TODO: If at some point we decide to scalarize instructions having 4503 // loop-invariant operands, this special case will no longer be 4504 // required. We would add the scalarization decision to 4505 // collectLoopScalars() and teach getVectorValue() to broadcast 4506 // the lane-zero scalar value. 4507 auto *Clone = Builder.Insert(GEP->clone()); 4508 for (unsigned Part = 0; Part < UF; ++Part) { 4509 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4510 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4511 addMetadata(EntryPart, GEP); 4512 } 4513 } else { 4514 // If the GEP has at least one loop-varying operand, we are sure to 4515 // produce a vector of pointers. But if we are only unrolling, we want 4516 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4517 // produce with the code below will be scalar (if VF == 1) or vector 4518 // (otherwise). Note that for the unroll-only case, we still maintain 4519 // values in the vector mapping with initVector, as we do for other 4520 // instructions. 4521 for (unsigned Part = 0; Part < UF; ++Part) { 4522 // The pointer operand of the new GEP. If it's loop-invariant, we 4523 // won't broadcast it. 4524 auto *Ptr = 4525 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4526 ? GEP->getPointerOperand() 4527 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4528 4529 // Collect all the indices for the new GEP. If any index is 4530 // loop-invariant, we won't broadcast it. 4531 SmallVector<Value *, 4> Indices; 4532 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4533 if (OrigLoop->isLoopInvariant(U.get())) 4534 Indices.push_back(U.get()); 4535 else 4536 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4537 } 4538 4539 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4540 // but it should be a vector, otherwise. 4541 auto *NewGEP = GEP->isInBounds() 4542 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4543 : Builder.CreateGEP(Ptr, Indices); 4544 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4545 "NewGEP is not a pointer vector"); 4546 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4547 addMetadata(NewGEP, GEP); 4548 } 4549 } 4550 4551 break; 4552 } 4553 case Instruction::UDiv: 4554 case Instruction::SDiv: 4555 case Instruction::SRem: 4556 case Instruction::URem: 4557 case Instruction::Add: 4558 case Instruction::FAdd: 4559 case Instruction::Sub: 4560 case Instruction::FSub: 4561 case Instruction::Mul: 4562 case Instruction::FMul: 4563 case Instruction::FDiv: 4564 case Instruction::FRem: 4565 case Instruction::Shl: 4566 case Instruction::LShr: 4567 case Instruction::AShr: 4568 case Instruction::And: 4569 case Instruction::Or: 4570 case Instruction::Xor: { 4571 // Just widen binops. 4572 auto *BinOp = cast<BinaryOperator>(&I); 4573 setDebugLocFromInst(Builder, BinOp); 4574 4575 for (unsigned Part = 0; Part < UF; ++Part) { 4576 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4577 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4578 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4579 4580 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4581 VecOp->copyIRFlags(BinOp); 4582 4583 // Use this vector value for all users of the original instruction. 4584 VectorLoopValueMap.setVectorValue(&I, Part, V); 4585 addMetadata(V, BinOp); 4586 } 4587 4588 break; 4589 } 4590 case Instruction::Select: { 4591 // Widen selects. 4592 // If the selector is loop invariant we can create a select 4593 // instruction with a scalar condition. Otherwise, use vector-select. 4594 auto *SE = PSE.getSE(); 4595 bool InvariantCond = 4596 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4597 setDebugLocFromInst(Builder, &I); 4598 4599 // The condition can be loop invariant but still defined inside the 4600 // loop. This means that we can't just use the original 'cond' value. 4601 // We have to take the 'vectorized' value and pick the first lane. 4602 // Instcombine will make this a no-op. 4603 4604 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4605 4606 for (unsigned Part = 0; Part < UF; ++Part) { 4607 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4608 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4609 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4610 Value *Sel = 4611 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4612 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4613 addMetadata(Sel, &I); 4614 } 4615 4616 break; 4617 } 4618 4619 case Instruction::ICmp: 4620 case Instruction::FCmp: { 4621 // Widen compares. Generate vector compares. 4622 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4623 auto *Cmp = dyn_cast<CmpInst>(&I); 4624 setDebugLocFromInst(Builder, Cmp); 4625 for (unsigned Part = 0; Part < UF; ++Part) { 4626 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4627 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4628 Value *C = nullptr; 4629 if (FCmp) { 4630 // Propagate fast math flags. 4631 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4632 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4633 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4634 } else { 4635 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4636 } 4637 VectorLoopValueMap.setVectorValue(&I, Part, C); 4638 addMetadata(C, &I); 4639 } 4640 4641 break; 4642 } 4643 4644 case Instruction::ZExt: 4645 case Instruction::SExt: 4646 case Instruction::FPToUI: 4647 case Instruction::FPToSI: 4648 case Instruction::FPExt: 4649 case Instruction::PtrToInt: 4650 case Instruction::IntToPtr: 4651 case Instruction::SIToFP: 4652 case Instruction::UIToFP: 4653 case Instruction::Trunc: 4654 case Instruction::FPTrunc: 4655 case Instruction::BitCast: { 4656 auto *CI = dyn_cast<CastInst>(&I); 4657 setDebugLocFromInst(Builder, CI); 4658 4659 /// Vectorize casts. 4660 Type *DestTy = 4661 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4662 4663 for (unsigned Part = 0; Part < UF; ++Part) { 4664 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4665 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4666 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4667 addMetadata(Cast, &I); 4668 } 4669 break; 4670 } 4671 4672 case Instruction::Call: { 4673 // Ignore dbg intrinsics. 4674 if (isa<DbgInfoIntrinsic>(I)) 4675 break; 4676 setDebugLocFromInst(Builder, &I); 4677 4678 Module *M = I.getParent()->getParent()->getParent(); 4679 auto *CI = cast<CallInst>(&I); 4680 4681 StringRef FnName = CI->getCalledFunction()->getName(); 4682 Function *F = CI->getCalledFunction(); 4683 Type *RetTy = ToVectorTy(CI->getType(), VF); 4684 SmallVector<Type *, 4> Tys; 4685 for (Value *ArgOperand : CI->arg_operands()) 4686 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4687 4688 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4689 4690 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4691 // version of the instruction. 4692 // Is it beneficial to perform intrinsic call compared to lib call? 4693 bool NeedToScalarize; 4694 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4695 bool UseVectorIntrinsic = 4696 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4697 assert((UseVectorIntrinsic || !NeedToScalarize) && 4698 "Instruction should be scalarized elsewhere."); 4699 4700 for (unsigned Part = 0; Part < UF; ++Part) { 4701 SmallVector<Value *, 4> Args; 4702 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4703 Value *Arg = CI->getArgOperand(i); 4704 // Some intrinsics have a scalar argument - don't replace it with a 4705 // vector. 4706 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4707 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4708 Args.push_back(Arg); 4709 } 4710 4711 Function *VectorF; 4712 if (UseVectorIntrinsic) { 4713 // Use vector version of the intrinsic. 4714 Type *TysForDecl[] = {CI->getType()}; 4715 if (VF > 1) 4716 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4717 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4718 } else { 4719 // Use vector version of the library call. 4720 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4721 assert(!VFnName.empty() && "Vector function name is empty."); 4722 VectorF = M->getFunction(VFnName); 4723 if (!VectorF) { 4724 // Generate a declaration 4725 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4726 VectorF = 4727 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4728 VectorF->copyAttributesFrom(F); 4729 } 4730 } 4731 assert(VectorF && "Can't create vector function."); 4732 4733 SmallVector<OperandBundleDef, 1> OpBundles; 4734 CI->getOperandBundlesAsDefs(OpBundles); 4735 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4736 4737 if (isa<FPMathOperator>(V)) 4738 V->copyFastMathFlags(CI); 4739 4740 VectorLoopValueMap.setVectorValue(&I, Part, V); 4741 addMetadata(V, &I); 4742 } 4743 4744 break; 4745 } 4746 4747 default: 4748 // This instruction is not vectorized by simple widening. 4749 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4750 llvm_unreachable("Unhandled instruction!"); 4751 } // end of switch. 4752 } 4753 4754 void InnerLoopVectorizer::updateAnalysis() { 4755 // Forget the original basic block. 4756 PSE.getSE()->forgetLoop(OrigLoop); 4757 4758 // Update the dominator tree information. 4759 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4760 "Entry does not dominate exit."); 4761 4762 DT->addNewBlock(LoopMiddleBlock, 4763 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4764 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4765 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4766 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4767 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4768 } 4769 4770 /// \brief Check whether it is safe to if-convert this phi node. 4771 /// 4772 /// Phi nodes with constant expressions that can trap are not safe to if 4773 /// convert. 4774 static bool canIfConvertPHINodes(BasicBlock *BB) { 4775 for (PHINode &Phi : BB->phis()) { 4776 for (Value *V : Phi.incoming_values()) 4777 if (auto *C = dyn_cast<Constant>(V)) 4778 if (C->canTrap()) 4779 return false; 4780 } 4781 return true; 4782 } 4783 4784 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4785 if (!EnableIfConversion) { 4786 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4787 << "if-conversion is disabled"); 4788 return false; 4789 } 4790 4791 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4792 4793 // A list of pointers that we can safely read and write to. 4794 SmallPtrSet<Value *, 8> SafePointes; 4795 4796 // Collect safe addresses. 4797 for (BasicBlock *BB : TheLoop->blocks()) { 4798 if (blockNeedsPredication(BB)) 4799 continue; 4800 4801 for (Instruction &I : *BB) 4802 if (auto *Ptr = getPointerOperand(&I)) 4803 SafePointes.insert(Ptr); 4804 } 4805 4806 // Collect the blocks that need predication. 4807 BasicBlock *Header = TheLoop->getHeader(); 4808 for (BasicBlock *BB : TheLoop->blocks()) { 4809 // We don't support switch statements inside loops. 4810 if (!isa<BranchInst>(BB->getTerminator())) { 4811 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4812 << "loop contains a switch statement"); 4813 return false; 4814 } 4815 4816 // We must be able to predicate all blocks that need to be predicated. 4817 if (blockNeedsPredication(BB)) { 4818 if (!blockCanBePredicated(BB, SafePointes)) { 4819 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4820 << "control flow cannot be substituted for a select"); 4821 return false; 4822 } 4823 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4824 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4825 << "control flow cannot be substituted for a select"); 4826 return false; 4827 } 4828 } 4829 4830 // We can if-convert this loop. 4831 return true; 4832 } 4833 4834 bool LoopVectorizationLegality::canVectorize() { 4835 // Store the result and return it at the end instead of exiting early, in case 4836 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4837 bool Result = true; 4838 4839 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4840 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4841 // be canonicalized. 4842 if (!TheLoop->getLoopPreheader()) { 4843 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4844 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4845 << "loop control flow is not understood by vectorizer"); 4846 if (DoExtraAnalysis) 4847 Result = false; 4848 else 4849 return false; 4850 } 4851 4852 // FIXME: The code is currently dead, since the loop gets sent to 4853 // LoopVectorizationLegality is already an innermost loop. 4854 // 4855 // We can only vectorize innermost loops. 4856 if (!TheLoop->empty()) { 4857 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4858 << "loop is not the innermost loop"); 4859 if (DoExtraAnalysis) 4860 Result = false; 4861 else 4862 return false; 4863 } 4864 4865 // We must have a single backedge. 4866 if (TheLoop->getNumBackEdges() != 1) { 4867 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4868 << "loop control flow is not understood by vectorizer"); 4869 if (DoExtraAnalysis) 4870 Result = false; 4871 else 4872 return false; 4873 } 4874 4875 // We must have a single exiting block. 4876 if (!TheLoop->getExitingBlock()) { 4877 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4878 << "loop control flow is not understood by vectorizer"); 4879 if (DoExtraAnalysis) 4880 Result = false; 4881 else 4882 return false; 4883 } 4884 4885 // We only handle bottom-tested loops, i.e. loop in which the condition is 4886 // checked at the end of each iteration. With that we can assume that all 4887 // instructions in the loop are executed the same number of times. 4888 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4889 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4890 << "loop control flow is not understood by vectorizer"); 4891 if (DoExtraAnalysis) 4892 Result = false; 4893 else 4894 return false; 4895 } 4896 4897 // We need to have a loop header. 4898 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4899 << '\n'); 4900 4901 // Check if we can if-convert non-single-bb loops. 4902 unsigned NumBlocks = TheLoop->getNumBlocks(); 4903 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4904 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4905 if (DoExtraAnalysis) 4906 Result = false; 4907 else 4908 return false; 4909 } 4910 4911 // Check if we can vectorize the instructions and CFG in this loop. 4912 if (!canVectorizeInstrs()) { 4913 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4914 if (DoExtraAnalysis) 4915 Result = false; 4916 else 4917 return false; 4918 } 4919 4920 // Go over each instruction and look at memory deps. 4921 if (!canVectorizeMemory()) { 4922 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4923 if (DoExtraAnalysis) 4924 Result = false; 4925 else 4926 return false; 4927 } 4928 4929 DEBUG(dbgs() << "LV: We can vectorize this loop" 4930 << (LAI->getRuntimePointerChecking()->Need 4931 ? " (with a runtime bound check)" 4932 : "") 4933 << "!\n"); 4934 4935 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4936 4937 // If an override option has been passed in for interleaved accesses, use it. 4938 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4939 UseInterleaved = EnableInterleavedMemAccesses; 4940 4941 // Analyze interleaved memory accesses. 4942 if (UseInterleaved) 4943 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4944 4945 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4946 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4947 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4948 4949 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4950 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4951 << "Too many SCEV assumptions need to be made and checked " 4952 << "at runtime"); 4953 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4954 if (DoExtraAnalysis) 4955 Result = false; 4956 else 4957 return false; 4958 } 4959 4960 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4961 // we can vectorize, and at this point we don't have any other mem analysis 4962 // which may limit our maximum vectorization factor, so just return true with 4963 // no restrictions. 4964 return Result; 4965 } 4966 4967 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4968 if (Ty->isPointerTy()) 4969 return DL.getIntPtrType(Ty); 4970 4971 // It is possible that char's or short's overflow when we ask for the loop's 4972 // trip count, work around this by changing the type size. 4973 if (Ty->getScalarSizeInBits() < 32) 4974 return Type::getInt32Ty(Ty->getContext()); 4975 4976 return Ty; 4977 } 4978 4979 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4980 Ty0 = convertPointerToIntegerType(DL, Ty0); 4981 Ty1 = convertPointerToIntegerType(DL, Ty1); 4982 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4983 return Ty0; 4984 return Ty1; 4985 } 4986 4987 /// \brief Check that the instruction has outside loop users and is not an 4988 /// identified reduction variable. 4989 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4990 SmallPtrSetImpl<Value *> &AllowedExit) { 4991 // Reduction and Induction instructions are allowed to have exit users. All 4992 // other instructions must not have external users. 4993 if (!AllowedExit.count(Inst)) 4994 // Check that all of the users of the loop are inside the BB. 4995 for (User *U : Inst->users()) { 4996 Instruction *UI = cast<Instruction>(U); 4997 // This user may be a reduction exit value. 4998 if (!TheLoop->contains(UI)) { 4999 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5000 return true; 5001 } 5002 } 5003 return false; 5004 } 5005 5006 void LoopVectorizationLegality::addInductionPhi( 5007 PHINode *Phi, const InductionDescriptor &ID, 5008 SmallPtrSetImpl<Value *> &AllowedExit) { 5009 Inductions[Phi] = ID; 5010 5011 // In case this induction also comes with casts that we know we can ignore 5012 // in the vectorized loop body, record them here. All casts could be recorded 5013 // here for ignoring, but suffices to record only the first (as it is the 5014 // only one that may bw used outside the cast sequence). 5015 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5016 if (!Casts.empty()) 5017 InductionCastsToIgnore.insert(*Casts.begin()); 5018 5019 Type *PhiTy = Phi->getType(); 5020 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5021 5022 // Get the widest type. 5023 if (!PhiTy->isFloatingPointTy()) { 5024 if (!WidestIndTy) 5025 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5026 else 5027 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5028 } 5029 5030 // Int inductions are special because we only allow one IV. 5031 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5032 ID.getConstIntStepValue() && 5033 ID.getConstIntStepValue()->isOne() && 5034 isa<Constant>(ID.getStartValue()) && 5035 cast<Constant>(ID.getStartValue())->isNullValue()) { 5036 5037 // Use the phi node with the widest type as induction. Use the last 5038 // one if there are multiple (no good reason for doing this other 5039 // than it is expedient). We've checked that it begins at zero and 5040 // steps by one, so this is a canonical induction variable. 5041 if (!PrimaryInduction || PhiTy == WidestIndTy) 5042 PrimaryInduction = Phi; 5043 } 5044 5045 // Both the PHI node itself, and the "post-increment" value feeding 5046 // back into the PHI node may have external users. 5047 // We can allow those uses, except if the SCEVs we have for them rely 5048 // on predicates that only hold within the loop, since allowing the exit 5049 // currently means re-using this SCEV outside the loop. 5050 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5051 AllowedExit.insert(Phi); 5052 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5053 } 5054 5055 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5056 } 5057 5058 bool LoopVectorizationLegality::canVectorizeInstrs() { 5059 BasicBlock *Header = TheLoop->getHeader(); 5060 5061 // Look for the attribute signaling the absence of NaNs. 5062 Function &F = *Header->getParent(); 5063 HasFunNoNaNAttr = 5064 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5065 5066 // For each block in the loop. 5067 for (BasicBlock *BB : TheLoop->blocks()) { 5068 // Scan the instructions in the block and look for hazards. 5069 for (Instruction &I : *BB) { 5070 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5071 Type *PhiTy = Phi->getType(); 5072 // Check that this PHI type is allowed. 5073 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5074 !PhiTy->isPointerTy()) { 5075 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5076 << "loop control flow is not understood by vectorizer"); 5077 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5078 return false; 5079 } 5080 5081 // If this PHINode is not in the header block, then we know that we 5082 // can convert it to select during if-conversion. No need to check if 5083 // the PHIs in this block are induction or reduction variables. 5084 if (BB != Header) { 5085 // Check that this instruction has no outside users or is an 5086 // identified reduction value with an outside user. 5087 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5088 continue; 5089 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5090 << "value could not be identified as " 5091 "an induction or reduction variable"); 5092 return false; 5093 } 5094 5095 // We only allow if-converted PHIs with exactly two incoming values. 5096 if (Phi->getNumIncomingValues() != 2) { 5097 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5098 << "control flow not understood by vectorizer"); 5099 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5100 return false; 5101 } 5102 5103 RecurrenceDescriptor RedDes; 5104 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5105 DT)) { 5106 if (RedDes.hasUnsafeAlgebra()) 5107 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5108 AllowedExit.insert(RedDes.getLoopExitInstr()); 5109 Reductions[Phi] = RedDes; 5110 continue; 5111 } 5112 5113 InductionDescriptor ID; 5114 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5115 addInductionPhi(Phi, ID, AllowedExit); 5116 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5117 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5118 continue; 5119 } 5120 5121 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5122 SinkAfter, DT)) { 5123 FirstOrderRecurrences.insert(Phi); 5124 continue; 5125 } 5126 5127 // As a last resort, coerce the PHI to a AddRec expression 5128 // and re-try classifying it a an induction PHI. 5129 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5130 addInductionPhi(Phi, ID, AllowedExit); 5131 continue; 5132 } 5133 5134 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5135 << "value that could not be identified as " 5136 "reduction is used outside the loop"); 5137 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5138 return false; 5139 } // end of PHI handling 5140 5141 // We handle calls that: 5142 // * Are debug info intrinsics. 5143 // * Have a mapping to an IR intrinsic. 5144 // * Have a vector version available. 5145 auto *CI = dyn_cast<CallInst>(&I); 5146 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5147 !isa<DbgInfoIntrinsic>(CI) && 5148 !(CI->getCalledFunction() && TLI && 5149 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5150 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5151 << "call instruction cannot be vectorized"); 5152 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5153 return false; 5154 } 5155 5156 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5157 // second argument is the same (i.e. loop invariant) 5158 if (CI && hasVectorInstrinsicScalarOpd( 5159 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5160 auto *SE = PSE.getSE(); 5161 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5162 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5163 << "intrinsic instruction cannot be vectorized"); 5164 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5165 return false; 5166 } 5167 } 5168 5169 // Check that the instruction return type is vectorizable. 5170 // Also, we can't vectorize extractelement instructions. 5171 if ((!VectorType::isValidElementType(I.getType()) && 5172 !I.getType()->isVoidTy()) || 5173 isa<ExtractElementInst>(I)) { 5174 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5175 << "instruction return type cannot be vectorized"); 5176 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5177 return false; 5178 } 5179 5180 // Check that the stored type is vectorizable. 5181 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5182 Type *T = ST->getValueOperand()->getType(); 5183 if (!VectorType::isValidElementType(T)) { 5184 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5185 << "store instruction cannot be vectorized"); 5186 return false; 5187 } 5188 5189 // FP instructions can allow unsafe algebra, thus vectorizable by 5190 // non-IEEE-754 compliant SIMD units. 5191 // This applies to floating-point math operations and calls, not memory 5192 // operations, shuffles, or casts, as they don't change precision or 5193 // semantics. 5194 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5195 !I.isFast()) { 5196 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5197 Hints->setPotentiallyUnsafe(); 5198 } 5199 5200 // Reduction instructions are allowed to have exit users. 5201 // All other instructions must not have external users. 5202 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5203 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5204 << "value cannot be used outside the loop"); 5205 return false; 5206 } 5207 } // next instr. 5208 } 5209 5210 if (!PrimaryInduction) { 5211 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5212 if (Inductions.empty()) { 5213 ORE->emit(createMissedAnalysis("NoInductionVariable") 5214 << "loop induction variable could not be identified"); 5215 return false; 5216 } 5217 } 5218 5219 // Now we know the widest induction type, check if our found induction 5220 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5221 // will create another. 5222 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5223 PrimaryInduction = nullptr; 5224 5225 return true; 5226 } 5227 5228 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5229 // We should not collect Scalars more than once per VF. Right now, this 5230 // function is called from collectUniformsAndScalars(), which already does 5231 // this check. Collecting Scalars for VF=1 does not make any sense. 5232 assert(VF >= 2 && !Scalars.count(VF) && 5233 "This function should not be visited twice for the same VF"); 5234 5235 SmallSetVector<Instruction *, 8> Worklist; 5236 5237 // These sets are used to seed the analysis with pointers used by memory 5238 // accesses that will remain scalar. 5239 SmallSetVector<Instruction *, 8> ScalarPtrs; 5240 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5241 5242 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5243 // The pointer operands of loads and stores will be scalar as long as the 5244 // memory access is not a gather or scatter operation. The value operand of a 5245 // store will remain scalar if the store is scalarized. 5246 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5247 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5248 assert(WideningDecision != CM_Unknown && 5249 "Widening decision should be ready at this moment"); 5250 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5251 if (Ptr == Store->getValueOperand()) 5252 return WideningDecision == CM_Scalarize; 5253 assert(Ptr == getPointerOperand(MemAccess) && 5254 "Ptr is neither a value or pointer operand"); 5255 return WideningDecision != CM_GatherScatter; 5256 }; 5257 5258 // A helper that returns true if the given value is a bitcast or 5259 // getelementptr instruction contained in the loop. 5260 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5261 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5262 isa<GetElementPtrInst>(V)) && 5263 !TheLoop->isLoopInvariant(V); 5264 }; 5265 5266 // A helper that evaluates a memory access's use of a pointer. If the use 5267 // will be a scalar use, and the pointer is only used by memory accesses, we 5268 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5269 // PossibleNonScalarPtrs. 5270 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5271 // We only care about bitcast and getelementptr instructions contained in 5272 // the loop. 5273 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5274 return; 5275 5276 // If the pointer has already been identified as scalar (e.g., if it was 5277 // also identified as uniform), there's nothing to do. 5278 auto *I = cast<Instruction>(Ptr); 5279 if (Worklist.count(I)) 5280 return; 5281 5282 // If the use of the pointer will be a scalar use, and all users of the 5283 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5284 // place the pointer in PossibleNonScalarPtrs. 5285 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5286 return isa<LoadInst>(U) || isa<StoreInst>(U); 5287 })) 5288 ScalarPtrs.insert(I); 5289 else 5290 PossibleNonScalarPtrs.insert(I); 5291 }; 5292 5293 // We seed the scalars analysis with three classes of instructions: (1) 5294 // instructions marked uniform-after-vectorization, (2) bitcast and 5295 // getelementptr instructions used by memory accesses requiring a scalar use, 5296 // and (3) pointer induction variables and their update instructions (we 5297 // currently only scalarize these). 5298 // 5299 // (1) Add to the worklist all instructions that have been identified as 5300 // uniform-after-vectorization. 5301 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5302 5303 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5304 // memory accesses requiring a scalar use. The pointer operands of loads and 5305 // stores will be scalar as long as the memory accesses is not a gather or 5306 // scatter operation. The value operand of a store will remain scalar if the 5307 // store is scalarized. 5308 for (auto *BB : TheLoop->blocks()) 5309 for (auto &I : *BB) { 5310 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5311 evaluatePtrUse(Load, Load->getPointerOperand()); 5312 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5313 evaluatePtrUse(Store, Store->getPointerOperand()); 5314 evaluatePtrUse(Store, Store->getValueOperand()); 5315 } 5316 } 5317 for (auto *I : ScalarPtrs) 5318 if (!PossibleNonScalarPtrs.count(I)) { 5319 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5320 Worklist.insert(I); 5321 } 5322 5323 // (3) Add to the worklist all pointer induction variables and their update 5324 // instructions. 5325 // 5326 // TODO: Once we are able to vectorize pointer induction variables we should 5327 // no longer insert them into the worklist here. 5328 auto *Latch = TheLoop->getLoopLatch(); 5329 for (auto &Induction : *Legal->getInductionVars()) { 5330 auto *Ind = Induction.first; 5331 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5332 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5333 continue; 5334 Worklist.insert(Ind); 5335 Worklist.insert(IndUpdate); 5336 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5337 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5338 } 5339 5340 // Insert the forced scalars. 5341 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5342 // induction variable when the PHI user is scalarized. 5343 if (ForcedScalars.count(VF)) 5344 for (auto *I : ForcedScalars.find(VF)->second) 5345 Worklist.insert(I); 5346 5347 // Expand the worklist by looking through any bitcasts and getelementptr 5348 // instructions we've already identified as scalar. This is similar to the 5349 // expansion step in collectLoopUniforms(); however, here we're only 5350 // expanding to include additional bitcasts and getelementptr instructions. 5351 unsigned Idx = 0; 5352 while (Idx != Worklist.size()) { 5353 Instruction *Dst = Worklist[Idx++]; 5354 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5355 continue; 5356 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5357 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5358 auto *J = cast<Instruction>(U); 5359 return !TheLoop->contains(J) || Worklist.count(J) || 5360 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5361 isScalarUse(J, Src)); 5362 })) { 5363 Worklist.insert(Src); 5364 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5365 } 5366 } 5367 5368 // An induction variable will remain scalar if all users of the induction 5369 // variable and induction variable update remain scalar. 5370 for (auto &Induction : *Legal->getInductionVars()) { 5371 auto *Ind = Induction.first; 5372 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5373 5374 // We already considered pointer induction variables, so there's no reason 5375 // to look at their users again. 5376 // 5377 // TODO: Once we are able to vectorize pointer induction variables we 5378 // should no longer skip over them here. 5379 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5380 continue; 5381 5382 // Determine if all users of the induction variable are scalar after 5383 // vectorization. 5384 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5385 auto *I = cast<Instruction>(U); 5386 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5387 }); 5388 if (!ScalarInd) 5389 continue; 5390 5391 // Determine if all users of the induction variable update instruction are 5392 // scalar after vectorization. 5393 auto ScalarIndUpdate = 5394 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5395 auto *I = cast<Instruction>(U); 5396 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5397 }); 5398 if (!ScalarIndUpdate) 5399 continue; 5400 5401 // The induction variable and its update instruction will remain scalar. 5402 Worklist.insert(Ind); 5403 Worklist.insert(IndUpdate); 5404 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5405 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5406 } 5407 5408 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5409 } 5410 5411 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 5412 if (!Legal->blockNeedsPredication(I->getParent())) 5413 return false; 5414 switch(I->getOpcode()) { 5415 default: 5416 break; 5417 case Instruction::Load: 5418 case Instruction::Store: { 5419 if (!Legal->isMaskRequired(I)) 5420 return false; 5421 auto *Ptr = getPointerOperand(I); 5422 auto *Ty = getMemInstValueType(I); 5423 return isa<LoadInst>(I) ? 5424 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 5425 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 5426 } 5427 case Instruction::UDiv: 5428 case Instruction::SDiv: 5429 case Instruction::SRem: 5430 case Instruction::URem: 5431 return mayDivideByZero(*I); 5432 } 5433 return false; 5434 } 5435 5436 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 5437 unsigned VF) { 5438 // Get and ensure we have a valid memory instruction. 5439 LoadInst *LI = dyn_cast<LoadInst>(I); 5440 StoreInst *SI = dyn_cast<StoreInst>(I); 5441 assert((LI || SI) && "Invalid memory instruction"); 5442 5443 auto *Ptr = getPointerOperand(I); 5444 5445 // In order to be widened, the pointer should be consecutive, first of all. 5446 if (!Legal->isConsecutivePtr(Ptr)) 5447 return false; 5448 5449 // If the instruction is a store located in a predicated block, it will be 5450 // scalarized. 5451 if (isScalarWithPredication(I)) 5452 return false; 5453 5454 // If the instruction's allocated size doesn't equal it's type size, it 5455 // requires padding and will be scalarized. 5456 auto &DL = I->getModule()->getDataLayout(); 5457 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5458 if (hasIrregularType(ScalarTy, DL, VF)) 5459 return false; 5460 5461 return true; 5462 } 5463 5464 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5465 // We should not collect Uniforms more than once per VF. Right now, 5466 // this function is called from collectUniformsAndScalars(), which 5467 // already does this check. Collecting Uniforms for VF=1 does not make any 5468 // sense. 5469 5470 assert(VF >= 2 && !Uniforms.count(VF) && 5471 "This function should not be visited twice for the same VF"); 5472 5473 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5474 // not analyze again. Uniforms.count(VF) will return 1. 5475 Uniforms[VF].clear(); 5476 5477 // We now know that the loop is vectorizable! 5478 // Collect instructions inside the loop that will remain uniform after 5479 // vectorization. 5480 5481 // Global values, params and instructions outside of current loop are out of 5482 // scope. 5483 auto isOutOfScope = [&](Value *V) -> bool { 5484 Instruction *I = dyn_cast<Instruction>(V); 5485 return (!I || !TheLoop->contains(I)); 5486 }; 5487 5488 SetVector<Instruction *> Worklist; 5489 BasicBlock *Latch = TheLoop->getLoopLatch(); 5490 5491 // Start with the conditional branch. If the branch condition is an 5492 // instruction contained in the loop that is only used by the branch, it is 5493 // uniform. 5494 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5495 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5496 Worklist.insert(Cmp); 5497 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5498 } 5499 5500 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5501 // are pointers that are treated like consecutive pointers during 5502 // vectorization. The pointer operands of interleaved accesses are an 5503 // example. 5504 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5505 5506 // Holds pointer operands of instructions that are possibly non-uniform. 5507 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5508 5509 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5510 InstWidening WideningDecision = getWideningDecision(I, VF); 5511 assert(WideningDecision != CM_Unknown && 5512 "Widening decision should be ready at this moment"); 5513 5514 return (WideningDecision == CM_Widen || 5515 WideningDecision == CM_Widen_Reverse || 5516 WideningDecision == CM_Interleave); 5517 }; 5518 // Iterate over the instructions in the loop, and collect all 5519 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5520 // that a consecutive-like pointer operand will be scalarized, we collect it 5521 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5522 // getelementptr instruction can be used by both vectorized and scalarized 5523 // memory instructions. For example, if a loop loads and stores from the same 5524 // location, but the store is conditional, the store will be scalarized, and 5525 // the getelementptr won't remain uniform. 5526 for (auto *BB : TheLoop->blocks()) 5527 for (auto &I : *BB) { 5528 // If there's no pointer operand, there's nothing to do. 5529 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5530 if (!Ptr) 5531 continue; 5532 5533 // True if all users of Ptr are memory accesses that have Ptr as their 5534 // pointer operand. 5535 auto UsersAreMemAccesses = 5536 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5537 return getPointerOperand(U) == Ptr; 5538 }); 5539 5540 // Ensure the memory instruction will not be scalarized or used by 5541 // gather/scatter, making its pointer operand non-uniform. If the pointer 5542 // operand is used by any instruction other than a memory access, we 5543 // conservatively assume the pointer operand may be non-uniform. 5544 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5545 PossibleNonUniformPtrs.insert(Ptr); 5546 5547 // If the memory instruction will be vectorized and its pointer operand 5548 // is consecutive-like, or interleaving - the pointer operand should 5549 // remain uniform. 5550 else 5551 ConsecutiveLikePtrs.insert(Ptr); 5552 } 5553 5554 // Add to the Worklist all consecutive and consecutive-like pointers that 5555 // aren't also identified as possibly non-uniform. 5556 for (auto *V : ConsecutiveLikePtrs) 5557 if (!PossibleNonUniformPtrs.count(V)) { 5558 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5559 Worklist.insert(V); 5560 } 5561 5562 // Expand Worklist in topological order: whenever a new instruction 5563 // is added , its users should be either already inside Worklist, or 5564 // out of scope. It ensures a uniform instruction will only be used 5565 // by uniform instructions or out of scope instructions. 5566 unsigned idx = 0; 5567 while (idx != Worklist.size()) { 5568 Instruction *I = Worklist[idx++]; 5569 5570 for (auto OV : I->operand_values()) { 5571 if (isOutOfScope(OV)) 5572 continue; 5573 auto *OI = cast<Instruction>(OV); 5574 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5575 auto *J = cast<Instruction>(U); 5576 return !TheLoop->contains(J) || Worklist.count(J) || 5577 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5578 })) { 5579 Worklist.insert(OI); 5580 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5581 } 5582 } 5583 } 5584 5585 // Returns true if Ptr is the pointer operand of a memory access instruction 5586 // I, and I is known to not require scalarization. 5587 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5588 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5589 }; 5590 5591 // For an instruction to be added into Worklist above, all its users inside 5592 // the loop should also be in Worklist. However, this condition cannot be 5593 // true for phi nodes that form a cyclic dependence. We must process phi 5594 // nodes separately. An induction variable will remain uniform if all users 5595 // of the induction variable and induction variable update remain uniform. 5596 // The code below handles both pointer and non-pointer induction variables. 5597 for (auto &Induction : *Legal->getInductionVars()) { 5598 auto *Ind = Induction.first; 5599 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5600 5601 // Determine if all users of the induction variable are uniform after 5602 // vectorization. 5603 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5604 auto *I = cast<Instruction>(U); 5605 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5606 isVectorizedMemAccessUse(I, Ind); 5607 }); 5608 if (!UniformInd) 5609 continue; 5610 5611 // Determine if all users of the induction variable update instruction are 5612 // uniform after vectorization. 5613 auto UniformIndUpdate = 5614 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5615 auto *I = cast<Instruction>(U); 5616 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5617 isVectorizedMemAccessUse(I, IndUpdate); 5618 }); 5619 if (!UniformIndUpdate) 5620 continue; 5621 5622 // The induction variable and its update instruction will remain uniform. 5623 Worklist.insert(Ind); 5624 Worklist.insert(IndUpdate); 5625 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5626 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5627 } 5628 5629 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5630 } 5631 5632 bool LoopVectorizationLegality::canVectorizeMemory() { 5633 LAI = &(*GetLAA)(*TheLoop); 5634 InterleaveInfo.setLAI(LAI); 5635 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5636 if (LAR) { 5637 ORE->emit([&]() { 5638 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5639 "loop not vectorized: ", *LAR); 5640 }); 5641 } 5642 if (!LAI->canVectorizeMemory()) 5643 return false; 5644 5645 if (LAI->hasStoreToLoopInvariantAddress()) { 5646 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5647 << "write to a loop invariant address could not be vectorized"); 5648 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5649 return false; 5650 } 5651 5652 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5653 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5654 5655 return true; 5656 } 5657 5658 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5659 Value *In0 = const_cast<Value *>(V); 5660 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5661 if (!PN) 5662 return false; 5663 5664 return Inductions.count(PN); 5665 } 5666 5667 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5668 auto *Inst = dyn_cast<Instruction>(V); 5669 return (Inst && InductionCastsToIgnore.count(Inst)); 5670 } 5671 5672 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5673 return isInductionPhi(V) || isCastedInductionVariable(V); 5674 } 5675 5676 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5677 return FirstOrderRecurrences.count(Phi); 5678 } 5679 5680 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5681 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5682 } 5683 5684 bool LoopVectorizationLegality::blockCanBePredicated( 5685 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5686 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5687 5688 for (Instruction &I : *BB) { 5689 // Check that we don't have a constant expression that can trap as operand. 5690 for (Value *Operand : I.operands()) { 5691 if (auto *C = dyn_cast<Constant>(Operand)) 5692 if (C->canTrap()) 5693 return false; 5694 } 5695 // We might be able to hoist the load. 5696 if (I.mayReadFromMemory()) { 5697 auto *LI = dyn_cast<LoadInst>(&I); 5698 if (!LI) 5699 return false; 5700 if (!SafePtrs.count(LI->getPointerOperand())) { 5701 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5702 // Otherwise, record that the load needs (real or emulated) masking 5703 // and let the cost model decide. 5704 if (!IsAnnotatedParallel) 5705 MaskedOp.insert(LI); 5706 continue; 5707 } 5708 } 5709 5710 if (I.mayWriteToMemory()) { 5711 auto *SI = dyn_cast<StoreInst>(&I); 5712 if (!SI) 5713 return false; 5714 // Predicated store requires some form of masking: 5715 // 1) masked store HW instruction, 5716 // 2) emulation via load-blend-store (only if safe and legal to do so, 5717 // be aware on the race conditions), or 5718 // 3) element-by-element predicate check and scalar store. 5719 MaskedOp.insert(SI); 5720 continue; 5721 } 5722 if (I.mayThrow()) 5723 return false; 5724 } 5725 5726 return true; 5727 } 5728 5729 void InterleavedAccessInfo::collectConstStrideAccesses( 5730 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5731 const ValueToValueMap &Strides) { 5732 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5733 5734 // Since it's desired that the load/store instructions be maintained in 5735 // "program order" for the interleaved access analysis, we have to visit the 5736 // blocks in the loop in reverse postorder (i.e., in a topological order). 5737 // Such an ordering will ensure that any load/store that may be executed 5738 // before a second load/store will precede the second load/store in 5739 // AccessStrideInfo. 5740 LoopBlocksDFS DFS(TheLoop); 5741 DFS.perform(LI); 5742 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5743 for (auto &I : *BB) { 5744 auto *LI = dyn_cast<LoadInst>(&I); 5745 auto *SI = dyn_cast<StoreInst>(&I); 5746 if (!LI && !SI) 5747 continue; 5748 5749 Value *Ptr = getPointerOperand(&I); 5750 // We don't check wrapping here because we don't know yet if Ptr will be 5751 // part of a full group or a group with gaps. Checking wrapping for all 5752 // pointers (even those that end up in groups with no gaps) will be overly 5753 // conservative. For full groups, wrapping should be ok since if we would 5754 // wrap around the address space we would do a memory access at nullptr 5755 // even without the transformation. The wrapping checks are therefore 5756 // deferred until after we've formed the interleaved groups. 5757 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5758 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5759 5760 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5761 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5762 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5763 5764 // An alignment of 0 means target ABI alignment. 5765 unsigned Align = getMemInstAlignment(&I); 5766 if (!Align) 5767 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5768 5769 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5770 } 5771 } 5772 5773 // Analyze interleaved accesses and collect them into interleaved load and 5774 // store groups. 5775 // 5776 // When generating code for an interleaved load group, we effectively hoist all 5777 // loads in the group to the location of the first load in program order. When 5778 // generating code for an interleaved store group, we sink all stores to the 5779 // location of the last store. This code motion can change the order of load 5780 // and store instructions and may break dependences. 5781 // 5782 // The code generation strategy mentioned above ensures that we won't violate 5783 // any write-after-read (WAR) dependences. 5784 // 5785 // E.g., for the WAR dependence: a = A[i]; // (1) 5786 // A[i] = b; // (2) 5787 // 5788 // The store group of (2) is always inserted at or below (2), and the load 5789 // group of (1) is always inserted at or above (1). Thus, the instructions will 5790 // never be reordered. All other dependences are checked to ensure the 5791 // correctness of the instruction reordering. 5792 // 5793 // The algorithm visits all memory accesses in the loop in bottom-up program 5794 // order. Program order is established by traversing the blocks in the loop in 5795 // reverse postorder when collecting the accesses. 5796 // 5797 // We visit the memory accesses in bottom-up order because it can simplify the 5798 // construction of store groups in the presence of write-after-write (WAW) 5799 // dependences. 5800 // 5801 // E.g., for the WAW dependence: A[i] = a; // (1) 5802 // A[i] = b; // (2) 5803 // A[i + 1] = c; // (3) 5804 // 5805 // We will first create a store group with (3) and (2). (1) can't be added to 5806 // this group because it and (2) are dependent. However, (1) can be grouped 5807 // with other accesses that may precede it in program order. Note that a 5808 // bottom-up order does not imply that WAW dependences should not be checked. 5809 void InterleavedAccessInfo::analyzeInterleaving( 5810 const ValueToValueMap &Strides) { 5811 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5812 5813 // Holds all accesses with a constant stride. 5814 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5815 collectConstStrideAccesses(AccessStrideInfo, Strides); 5816 5817 if (AccessStrideInfo.empty()) 5818 return; 5819 5820 // Collect the dependences in the loop. 5821 collectDependences(); 5822 5823 // Holds all interleaved store groups temporarily. 5824 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5825 // Holds all interleaved load groups temporarily. 5826 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5827 5828 // Search in bottom-up program order for pairs of accesses (A and B) that can 5829 // form interleaved load or store groups. In the algorithm below, access A 5830 // precedes access B in program order. We initialize a group for B in the 5831 // outer loop of the algorithm, and then in the inner loop, we attempt to 5832 // insert each A into B's group if: 5833 // 5834 // 1. A and B have the same stride, 5835 // 2. A and B have the same memory object size, and 5836 // 3. A belongs in B's group according to its distance from B. 5837 // 5838 // Special care is taken to ensure group formation will not break any 5839 // dependences. 5840 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5841 BI != E; ++BI) { 5842 Instruction *B = BI->first; 5843 StrideDescriptor DesB = BI->second; 5844 5845 // Initialize a group for B if it has an allowable stride. Even if we don't 5846 // create a group for B, we continue with the bottom-up algorithm to ensure 5847 // we don't break any of B's dependences. 5848 InterleaveGroup *Group = nullptr; 5849 if (isStrided(DesB.Stride)) { 5850 Group = getInterleaveGroup(B); 5851 if (!Group) { 5852 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5853 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5854 } 5855 if (B->mayWriteToMemory()) 5856 StoreGroups.insert(Group); 5857 else 5858 LoadGroups.insert(Group); 5859 } 5860 5861 for (auto AI = std::next(BI); AI != E; ++AI) { 5862 Instruction *A = AI->first; 5863 StrideDescriptor DesA = AI->second; 5864 5865 // Our code motion strategy implies that we can't have dependences 5866 // between accesses in an interleaved group and other accesses located 5867 // between the first and last member of the group. Note that this also 5868 // means that a group can't have more than one member at a given offset. 5869 // The accesses in a group can have dependences with other accesses, but 5870 // we must ensure we don't extend the boundaries of the group such that 5871 // we encompass those dependent accesses. 5872 // 5873 // For example, assume we have the sequence of accesses shown below in a 5874 // stride-2 loop: 5875 // 5876 // (1, 2) is a group | A[i] = a; // (1) 5877 // | A[i-1] = b; // (2) | 5878 // A[i-3] = c; // (3) 5879 // A[i] = d; // (4) | (2, 4) is not a group 5880 // 5881 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5882 // but not with (4). If we did, the dependent access (3) would be within 5883 // the boundaries of the (2, 4) group. 5884 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5885 // If a dependence exists and A is already in a group, we know that A 5886 // must be a store since A precedes B and WAR dependences are allowed. 5887 // Thus, A would be sunk below B. We release A's group to prevent this 5888 // illegal code motion. A will then be free to form another group with 5889 // instructions that precede it. 5890 if (isInterleaved(A)) { 5891 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5892 StoreGroups.remove(StoreGroup); 5893 releaseGroup(StoreGroup); 5894 } 5895 5896 // If a dependence exists and A is not already in a group (or it was 5897 // and we just released it), B might be hoisted above A (if B is a 5898 // load) or another store might be sunk below A (if B is a store). In 5899 // either case, we can't add additional instructions to B's group. B 5900 // will only form a group with instructions that it precedes. 5901 break; 5902 } 5903 5904 // At this point, we've checked for illegal code motion. If either A or B 5905 // isn't strided, there's nothing left to do. 5906 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5907 continue; 5908 5909 // Ignore A if it's already in a group or isn't the same kind of memory 5910 // operation as B. 5911 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 5912 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 5913 // should have returned false - except for the case we asked for optimization 5914 // remarks. 5915 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 5916 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 5917 continue; 5918 5919 // Check rules 1 and 2. Ignore A if its stride or size is different from 5920 // that of B. 5921 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5922 continue; 5923 5924 // Ignore A if the memory object of A and B don't belong to the same 5925 // address space 5926 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5927 continue; 5928 5929 // Calculate the distance from A to B. 5930 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5931 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5932 if (!DistToB) 5933 continue; 5934 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5935 5936 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5937 // size. 5938 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5939 continue; 5940 5941 // Ignore A if either A or B is in a predicated block. Although we 5942 // currently prevent group formation for predicated accesses, we may be 5943 // able to relax this limitation in the future once we handle more 5944 // complicated blocks. 5945 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5946 continue; 5947 5948 // The index of A is the index of B plus A's distance to B in multiples 5949 // of the size. 5950 int IndexA = 5951 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5952 5953 // Try to insert A into B's group. 5954 if (Group->insertMember(A, IndexA, DesA.Align)) { 5955 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5956 << " into the interleave group with" << *B << '\n'); 5957 InterleaveGroupMap[A] = Group; 5958 5959 // Set the first load in program order as the insert position. 5960 if (A->mayReadFromMemory()) 5961 Group->setInsertPos(A); 5962 } 5963 } // Iteration over A accesses. 5964 } // Iteration over B accesses. 5965 5966 // Remove interleaved store groups with gaps. 5967 for (InterleaveGroup *Group : StoreGroups) 5968 if (Group->getNumMembers() != Group->getFactor()) { 5969 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5970 "to gaps.\n"); 5971 releaseGroup(Group); 5972 } 5973 // Remove interleaved groups with gaps (currently only loads) whose memory 5974 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5975 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5976 // not check wrapping (see documentation there). 5977 // FORNOW we use Assume=false; 5978 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5979 // of runtime SCEV assumptions checks (thereby potentially failing to 5980 // vectorize altogether). 5981 // Additional optional optimizations: 5982 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5983 // wrap then we can deduce that all pointers in the group don't wrap. 5984 // This means that we can forcefully peel the loop in order to only have to 5985 // check the first pointer for no-wrap. When we'll change to use Assume=true 5986 // we'll only need at most one runtime check per interleaved group. 5987 for (InterleaveGroup *Group : LoadGroups) { 5988 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5989 // load would wrap around the address space we would do a memory access at 5990 // nullptr even without the transformation. 5991 if (Group->getNumMembers() == Group->getFactor()) 5992 continue; 5993 5994 // Case 2: If first and last members of the group don't wrap this implies 5995 // that all the pointers in the group don't wrap. 5996 // So we check only group member 0 (which is always guaranteed to exist), 5997 // and group member Factor - 1; If the latter doesn't exist we rely on 5998 // peeling (if it is a non-reveresed accsess -- see Case 3). 5999 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6000 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6001 /*ShouldCheckWrap=*/true)) { 6002 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6003 "first group member potentially pointer-wrapping.\n"); 6004 releaseGroup(Group); 6005 continue; 6006 } 6007 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6008 if (LastMember) { 6009 Value *LastMemberPtr = getPointerOperand(LastMember); 6010 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6011 /*ShouldCheckWrap=*/true)) { 6012 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6013 "last group member potentially pointer-wrapping.\n"); 6014 releaseGroup(Group); 6015 } 6016 } else { 6017 // Case 3: A non-reversed interleaved load group with gaps: We need 6018 // to execute at least one scalar epilogue iteration. This will ensure 6019 // we don't speculatively access memory out-of-bounds. We only need 6020 // to look for a member at index factor - 1, since every group must have 6021 // a member at index zero. 6022 if (Group->isReverse()) { 6023 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6024 "a reverse access with gaps.\n"); 6025 releaseGroup(Group); 6026 continue; 6027 } 6028 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6029 RequiresScalarEpilogue = true; 6030 } 6031 } 6032 } 6033 6034 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6035 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6036 // TODO: It may by useful to do since it's still likely to be dynamically 6037 // uniform if the target can skip. 6038 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6039 6040 ORE->emit( 6041 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6042 << "runtime pointer checks needed. Not enabled for divergent target"); 6043 6044 return None; 6045 } 6046 6047 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6048 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6049 return computeFeasibleMaxVF(OptForSize, TC); 6050 6051 if (Legal->getRuntimePointerChecking()->Need) { 6052 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6053 << "runtime pointer checks needed. Enable vectorization of this " 6054 "loop with '#pragma clang loop vectorize(enable)' when " 6055 "compiling with -Os/-Oz"); 6056 DEBUG(dbgs() 6057 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6058 return None; 6059 } 6060 6061 // If we optimize the program for size, avoid creating the tail loop. 6062 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6063 6064 // If we don't know the precise trip count, don't try to vectorize. 6065 if (TC < 2) { 6066 ORE->emit( 6067 createMissedAnalysis("UnknownLoopCountComplexCFG") 6068 << "unable to calculate the loop count due to complex control flow"); 6069 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6070 return None; 6071 } 6072 6073 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6074 6075 if (TC % MaxVF != 0) { 6076 // If the trip count that we found modulo the vectorization factor is not 6077 // zero then we require a tail. 6078 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6079 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6080 // smaller MaxVF that does not require a scalar epilog. 6081 6082 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6083 << "cannot optimize for size and vectorize at the " 6084 "same time. Enable vectorization of this loop " 6085 "with '#pragma clang loop vectorize(enable)' " 6086 "when compiling with -Os/-Oz"); 6087 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6088 return None; 6089 } 6090 6091 return MaxVF; 6092 } 6093 6094 unsigned 6095 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6096 unsigned ConstTripCount) { 6097 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6098 unsigned SmallestType, WidestType; 6099 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6100 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6101 6102 // Get the maximum safe dependence distance in bits computed by LAA. 6103 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6104 // the memory accesses that is most restrictive (involved in the smallest 6105 // dependence distance). 6106 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6107 6108 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6109 6110 unsigned MaxVectorSize = WidestRegister / WidestType; 6111 6112 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6113 << WidestType << " bits.\n"); 6114 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6115 << " bits.\n"); 6116 6117 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6118 " into one vector!"); 6119 if (MaxVectorSize == 0) { 6120 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6121 MaxVectorSize = 1; 6122 return MaxVectorSize; 6123 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6124 isPowerOf2_32(ConstTripCount)) { 6125 // We need to clamp the VF to be the ConstTripCount. There is no point in 6126 // choosing a higher viable VF as done in the loop below. 6127 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6128 << ConstTripCount << "\n"); 6129 MaxVectorSize = ConstTripCount; 6130 return MaxVectorSize; 6131 } 6132 6133 unsigned MaxVF = MaxVectorSize; 6134 if (MaximizeBandwidth && !OptForSize) { 6135 // Collect all viable vectorization factors larger than the default MaxVF 6136 // (i.e. MaxVectorSize). 6137 SmallVector<unsigned, 8> VFs; 6138 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6139 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6140 VFs.push_back(VS); 6141 6142 // For each VF calculate its register usage. 6143 auto RUs = calculateRegisterUsage(VFs); 6144 6145 // Select the largest VF which doesn't require more registers than existing 6146 // ones. 6147 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6148 for (int i = RUs.size() - 1; i >= 0; --i) { 6149 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6150 MaxVF = VFs[i]; 6151 break; 6152 } 6153 } 6154 } 6155 return MaxVF; 6156 } 6157 6158 VectorizationFactor 6159 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6160 float Cost = expectedCost(1).first; 6161 const float ScalarCost = Cost; 6162 unsigned Width = 1; 6163 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6164 6165 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6166 // Ignore scalar width, because the user explicitly wants vectorization. 6167 if (ForceVectorization && MaxVF > 1) { 6168 Width = 2; 6169 Cost = expectedCost(Width).first / (float)Width; 6170 } 6171 6172 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6173 // Notice that the vector loop needs to be executed less times, so 6174 // we need to divide the cost of the vector loops by the width of 6175 // the vector elements. 6176 VectorizationCostTy C = expectedCost(i); 6177 float VectorCost = C.first / (float)i; 6178 DEBUG(dbgs() << "LV: Vector loop of width " << i 6179 << " costs: " << (int)VectorCost << ".\n"); 6180 if (!C.second && !ForceVectorization) { 6181 DEBUG( 6182 dbgs() << "LV: Not considering vector loop of width " << i 6183 << " because it will not generate any vector instructions.\n"); 6184 continue; 6185 } 6186 if (VectorCost < Cost) { 6187 Cost = VectorCost; 6188 Width = i; 6189 } 6190 } 6191 6192 if (!EnableCondStoresVectorization && NumPredStores) { 6193 ORE->emit(createMissedAnalysis("ConditionalStore") 6194 << "store that is conditionally executed prevents vectorization"); 6195 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6196 Width = 1; 6197 Cost = ScalarCost; 6198 } 6199 6200 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6201 << "LV: Vectorization seems to be not beneficial, " 6202 << "but was forced by a user.\n"); 6203 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6204 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6205 return Factor; 6206 } 6207 6208 std::pair<unsigned, unsigned> 6209 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6210 unsigned MinWidth = -1U; 6211 unsigned MaxWidth = 8; 6212 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6213 6214 // For each block. 6215 for (BasicBlock *BB : TheLoop->blocks()) { 6216 // For each instruction in the loop. 6217 for (Instruction &I : *BB) { 6218 Type *T = I.getType(); 6219 6220 // Skip ignored values. 6221 if (ValuesToIgnore.count(&I)) 6222 continue; 6223 6224 // Only examine Loads, Stores and PHINodes. 6225 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6226 continue; 6227 6228 // Examine PHI nodes that are reduction variables. Update the type to 6229 // account for the recurrence type. 6230 if (auto *PN = dyn_cast<PHINode>(&I)) { 6231 if (!Legal->isReductionVariable(PN)) 6232 continue; 6233 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6234 T = RdxDesc.getRecurrenceType(); 6235 } 6236 6237 // Examine the stored values. 6238 if (auto *ST = dyn_cast<StoreInst>(&I)) 6239 T = ST->getValueOperand()->getType(); 6240 6241 // Ignore loaded pointer types and stored pointer types that are not 6242 // vectorizable. 6243 // 6244 // FIXME: The check here attempts to predict whether a load or store will 6245 // be vectorized. We only know this for certain after a VF has 6246 // been selected. Here, we assume that if an access can be 6247 // vectorized, it will be. We should also look at extending this 6248 // optimization to non-pointer types. 6249 // 6250 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6251 !Legal->isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6252 continue; 6253 6254 MinWidth = std::min(MinWidth, 6255 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6256 MaxWidth = std::max(MaxWidth, 6257 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6258 } 6259 } 6260 6261 return {MinWidth, MaxWidth}; 6262 } 6263 6264 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6265 unsigned VF, 6266 unsigned LoopCost) { 6267 // -- The interleave heuristics -- 6268 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6269 // There are many micro-architectural considerations that we can't predict 6270 // at this level. For example, frontend pressure (on decode or fetch) due to 6271 // code size, or the number and capabilities of the execution ports. 6272 // 6273 // We use the following heuristics to select the interleave count: 6274 // 1. If the code has reductions, then we interleave to break the cross 6275 // iteration dependency. 6276 // 2. If the loop is really small, then we interleave to reduce the loop 6277 // overhead. 6278 // 3. We don't interleave if we think that we will spill registers to memory 6279 // due to the increased register pressure. 6280 6281 // When we optimize for size, we don't interleave. 6282 if (OptForSize) 6283 return 1; 6284 6285 // We used the distance for the interleave count. 6286 if (Legal->getMaxSafeDepDistBytes() != -1U) 6287 return 1; 6288 6289 // Do not interleave loops with a relatively small trip count. 6290 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6291 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6292 return 1; 6293 6294 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6295 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6296 << " registers\n"); 6297 6298 if (VF == 1) { 6299 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6300 TargetNumRegisters = ForceTargetNumScalarRegs; 6301 } else { 6302 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6303 TargetNumRegisters = ForceTargetNumVectorRegs; 6304 } 6305 6306 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6307 // We divide by these constants so assume that we have at least one 6308 // instruction that uses at least one register. 6309 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6310 R.NumInstructions = std::max(R.NumInstructions, 1U); 6311 6312 // We calculate the interleave count using the following formula. 6313 // Subtract the number of loop invariants from the number of available 6314 // registers. These registers are used by all of the interleaved instances. 6315 // Next, divide the remaining registers by the number of registers that is 6316 // required by the loop, in order to estimate how many parallel instances 6317 // fit without causing spills. All of this is rounded down if necessary to be 6318 // a power of two. We want power of two interleave count to simplify any 6319 // addressing operations or alignment considerations. 6320 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6321 R.MaxLocalUsers); 6322 6323 // Don't count the induction variable as interleaved. 6324 if (EnableIndVarRegisterHeur) 6325 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6326 std::max(1U, (R.MaxLocalUsers - 1))); 6327 6328 // Clamp the interleave ranges to reasonable counts. 6329 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6330 6331 // Check if the user has overridden the max. 6332 if (VF == 1) { 6333 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6334 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6335 } else { 6336 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6337 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6338 } 6339 6340 // If we did not calculate the cost for VF (because the user selected the VF) 6341 // then we calculate the cost of VF here. 6342 if (LoopCost == 0) 6343 LoopCost = expectedCost(VF).first; 6344 6345 // Clamp the calculated IC to be between the 1 and the max interleave count 6346 // that the target allows. 6347 if (IC > MaxInterleaveCount) 6348 IC = MaxInterleaveCount; 6349 else if (IC < 1) 6350 IC = 1; 6351 6352 // Interleave if we vectorized this loop and there is a reduction that could 6353 // benefit from interleaving. 6354 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6355 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6356 return IC; 6357 } 6358 6359 // Note that if we've already vectorized the loop we will have done the 6360 // runtime check and so interleaving won't require further checks. 6361 bool InterleavingRequiresRuntimePointerCheck = 6362 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6363 6364 // We want to interleave small loops in order to reduce the loop overhead and 6365 // potentially expose ILP opportunities. 6366 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6367 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6368 // We assume that the cost overhead is 1 and we use the cost model 6369 // to estimate the cost of the loop and interleave until the cost of the 6370 // loop overhead is about 5% of the cost of the loop. 6371 unsigned SmallIC = 6372 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6373 6374 // Interleave until store/load ports (estimated by max interleave count) are 6375 // saturated. 6376 unsigned NumStores = Legal->getNumStores(); 6377 unsigned NumLoads = Legal->getNumLoads(); 6378 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6379 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6380 6381 // If we have a scalar reduction (vector reductions are already dealt with 6382 // by this point), we can increase the critical path length if the loop 6383 // we're interleaving is inside another loop. Limit, by default to 2, so the 6384 // critical path only gets increased by one reduction operation. 6385 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6386 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6387 SmallIC = std::min(SmallIC, F); 6388 StoresIC = std::min(StoresIC, F); 6389 LoadsIC = std::min(LoadsIC, F); 6390 } 6391 6392 if (EnableLoadStoreRuntimeInterleave && 6393 std::max(StoresIC, LoadsIC) > SmallIC) { 6394 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6395 return std::max(StoresIC, LoadsIC); 6396 } 6397 6398 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6399 return SmallIC; 6400 } 6401 6402 // Interleave if this is a large loop (small loops are already dealt with by 6403 // this point) that could benefit from interleaving. 6404 bool HasReductions = !Legal->getReductionVars()->empty(); 6405 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6406 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6407 return IC; 6408 } 6409 6410 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6411 return 1; 6412 } 6413 6414 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6415 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6416 // This function calculates the register usage by measuring the highest number 6417 // of values that are alive at a single location. Obviously, this is a very 6418 // rough estimation. We scan the loop in a topological order in order and 6419 // assign a number to each instruction. We use RPO to ensure that defs are 6420 // met before their users. We assume that each instruction that has in-loop 6421 // users starts an interval. We record every time that an in-loop value is 6422 // used, so we have a list of the first and last occurrences of each 6423 // instruction. Next, we transpose this data structure into a multi map that 6424 // holds the list of intervals that *end* at a specific location. This multi 6425 // map allows us to perform a linear search. We scan the instructions linearly 6426 // and record each time that a new interval starts, by placing it in a set. 6427 // If we find this value in the multi-map then we remove it from the set. 6428 // The max register usage is the maximum size of the set. 6429 // We also search for instructions that are defined outside the loop, but are 6430 // used inside the loop. We need this number separately from the max-interval 6431 // usage number because when we unroll, loop-invariant values do not take 6432 // more register. 6433 LoopBlocksDFS DFS(TheLoop); 6434 DFS.perform(LI); 6435 6436 RegisterUsage RU; 6437 RU.NumInstructions = 0; 6438 6439 // Each 'key' in the map opens a new interval. The values 6440 // of the map are the index of the 'last seen' usage of the 6441 // instruction that is the key. 6442 using IntervalMap = DenseMap<Instruction *, unsigned>; 6443 6444 // Maps instruction to its index. 6445 DenseMap<unsigned, Instruction *> IdxToInstr; 6446 // Marks the end of each interval. 6447 IntervalMap EndPoint; 6448 // Saves the list of instruction indices that are used in the loop. 6449 SmallSet<Instruction *, 8> Ends; 6450 // Saves the list of values that are used in the loop but are 6451 // defined outside the loop, such as arguments and constants. 6452 SmallPtrSet<Value *, 8> LoopInvariants; 6453 6454 unsigned Index = 0; 6455 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6456 RU.NumInstructions += BB->size(); 6457 for (Instruction &I : *BB) { 6458 IdxToInstr[Index++] = &I; 6459 6460 // Save the end location of each USE. 6461 for (Value *U : I.operands()) { 6462 auto *Instr = dyn_cast<Instruction>(U); 6463 6464 // Ignore non-instruction values such as arguments, constants, etc. 6465 if (!Instr) 6466 continue; 6467 6468 // If this instruction is outside the loop then record it and continue. 6469 if (!TheLoop->contains(Instr)) { 6470 LoopInvariants.insert(Instr); 6471 continue; 6472 } 6473 6474 // Overwrite previous end points. 6475 EndPoint[Instr] = Index; 6476 Ends.insert(Instr); 6477 } 6478 } 6479 } 6480 6481 // Saves the list of intervals that end with the index in 'key'. 6482 using InstrList = SmallVector<Instruction *, 2>; 6483 DenseMap<unsigned, InstrList> TransposeEnds; 6484 6485 // Transpose the EndPoints to a list of values that end at each index. 6486 for (auto &Interval : EndPoint) 6487 TransposeEnds[Interval.second].push_back(Interval.first); 6488 6489 SmallSet<Instruction *, 8> OpenIntervals; 6490 6491 // Get the size of the widest register. 6492 unsigned MaxSafeDepDist = -1U; 6493 if (Legal->getMaxSafeDepDistBytes() != -1U) 6494 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6495 unsigned WidestRegister = 6496 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6497 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6498 6499 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6500 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6501 6502 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6503 6504 // A lambda that gets the register usage for the given type and VF. 6505 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6506 if (Ty->isTokenTy()) 6507 return 0U; 6508 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6509 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6510 }; 6511 6512 for (unsigned int i = 0; i < Index; ++i) { 6513 Instruction *I = IdxToInstr[i]; 6514 6515 // Remove all of the instructions that end at this location. 6516 InstrList &List = TransposeEnds[i]; 6517 for (Instruction *ToRemove : List) 6518 OpenIntervals.erase(ToRemove); 6519 6520 // Ignore instructions that are never used within the loop. 6521 if (!Ends.count(I)) 6522 continue; 6523 6524 // Skip ignored values. 6525 if (ValuesToIgnore.count(I)) 6526 continue; 6527 6528 // For each VF find the maximum usage of registers. 6529 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6530 if (VFs[j] == 1) { 6531 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6532 continue; 6533 } 6534 collectUniformsAndScalars(VFs[j]); 6535 // Count the number of live intervals. 6536 unsigned RegUsage = 0; 6537 for (auto Inst : OpenIntervals) { 6538 // Skip ignored values for VF > 1. 6539 if (VecValuesToIgnore.count(Inst) || 6540 isScalarAfterVectorization(Inst, VFs[j])) 6541 continue; 6542 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6543 } 6544 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6545 } 6546 6547 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6548 << OpenIntervals.size() << '\n'); 6549 6550 // Add the current instruction to the list of open intervals. 6551 OpenIntervals.insert(I); 6552 } 6553 6554 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6555 unsigned Invariant = 0; 6556 if (VFs[i] == 1) 6557 Invariant = LoopInvariants.size(); 6558 else { 6559 for (auto Inst : LoopInvariants) 6560 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6561 } 6562 6563 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6564 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6565 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6566 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6567 6568 RU.LoopInvariantRegs = Invariant; 6569 RU.MaxLocalUsers = MaxUsages[i]; 6570 RUs[i] = RU; 6571 } 6572 6573 return RUs; 6574 } 6575 6576 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6577 // TODO: Cost model for emulated masked load/store is completely 6578 // broken. This hack guides the cost model to use an artificially 6579 // high enough value to practically disable vectorization with such 6580 // operations, except where previously deployed legality hack allowed 6581 // using very low cost values. This is to avoid regressions coming simply 6582 // from moving "masked load/store" check from legality to cost model. 6583 // Masked Load/Gather emulation was previously never allowed. 6584 // Limited number of Masked Store/Scatter emulation was allowed. 6585 assert(isScalarWithPredication(I) && 6586 "Expecting a scalar emulated instruction"); 6587 return isa<LoadInst>(I) || 6588 (isa<StoreInst>(I) && 6589 NumPredStores > NumberOfStoresToPredicate); 6590 } 6591 6592 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6593 // If we aren't vectorizing the loop, or if we've already collected the 6594 // instructions to scalarize, there's nothing to do. Collection may already 6595 // have occurred if we have a user-selected VF and are now computing the 6596 // expected cost for interleaving. 6597 if (VF < 2 || InstsToScalarize.count(VF)) 6598 return; 6599 6600 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6601 // not profitable to scalarize any instructions, the presence of VF in the 6602 // map will indicate that we've analyzed it already. 6603 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6604 6605 // Find all the instructions that are scalar with predication in the loop and 6606 // determine if it would be better to not if-convert the blocks they are in. 6607 // If so, we also record the instructions to scalarize. 6608 for (BasicBlock *BB : TheLoop->blocks()) { 6609 if (!Legal->blockNeedsPredication(BB)) 6610 continue; 6611 for (Instruction &I : *BB) 6612 if (isScalarWithPredication(&I)) { 6613 ScalarCostsTy ScalarCosts; 6614 // Do not apply discount logic if hacked cost is needed 6615 // for emulated masked memrefs. 6616 if (!useEmulatedMaskMemRefHack(&I) && 6617 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6618 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6619 // Remember that BB will remain after vectorization. 6620 PredicatedBBsAfterVectorization.insert(BB); 6621 } 6622 } 6623 } 6624 6625 int LoopVectorizationCostModel::computePredInstDiscount( 6626 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6627 unsigned VF) { 6628 assert(!isUniformAfterVectorization(PredInst, VF) && 6629 "Instruction marked uniform-after-vectorization will be predicated"); 6630 6631 // Initialize the discount to zero, meaning that the scalar version and the 6632 // vector version cost the same. 6633 int Discount = 0; 6634 6635 // Holds instructions to analyze. The instructions we visit are mapped in 6636 // ScalarCosts. Those instructions are the ones that would be scalarized if 6637 // we find that the scalar version costs less. 6638 SmallVector<Instruction *, 8> Worklist; 6639 6640 // Returns true if the given instruction can be scalarized. 6641 auto canBeScalarized = [&](Instruction *I) -> bool { 6642 // We only attempt to scalarize instructions forming a single-use chain 6643 // from the original predicated block that would otherwise be vectorized. 6644 // Although not strictly necessary, we give up on instructions we know will 6645 // already be scalar to avoid traversing chains that are unlikely to be 6646 // beneficial. 6647 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6648 isScalarAfterVectorization(I, VF)) 6649 return false; 6650 6651 // If the instruction is scalar with predication, it will be analyzed 6652 // separately. We ignore it within the context of PredInst. 6653 if (isScalarWithPredication(I)) 6654 return false; 6655 6656 // If any of the instruction's operands are uniform after vectorization, 6657 // the instruction cannot be scalarized. This prevents, for example, a 6658 // masked load from being scalarized. 6659 // 6660 // We assume we will only emit a value for lane zero of an instruction 6661 // marked uniform after vectorization, rather than VF identical values. 6662 // Thus, if we scalarize an instruction that uses a uniform, we would 6663 // create uses of values corresponding to the lanes we aren't emitting code 6664 // for. This behavior can be changed by allowing getScalarValue to clone 6665 // the lane zero values for uniforms rather than asserting. 6666 for (Use &U : I->operands()) 6667 if (auto *J = dyn_cast<Instruction>(U.get())) 6668 if (isUniformAfterVectorization(J, VF)) 6669 return false; 6670 6671 // Otherwise, we can scalarize the instruction. 6672 return true; 6673 }; 6674 6675 // Returns true if an operand that cannot be scalarized must be extracted 6676 // from a vector. We will account for this scalarization overhead below. Note 6677 // that the non-void predicated instructions are placed in their own blocks, 6678 // and their return values are inserted into vectors. Thus, an extract would 6679 // still be required. 6680 auto needsExtract = [&](Instruction *I) -> bool { 6681 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6682 }; 6683 6684 // Compute the expected cost discount from scalarizing the entire expression 6685 // feeding the predicated instruction. We currently only consider expressions 6686 // that are single-use instruction chains. 6687 Worklist.push_back(PredInst); 6688 while (!Worklist.empty()) { 6689 Instruction *I = Worklist.pop_back_val(); 6690 6691 // If we've already analyzed the instruction, there's nothing to do. 6692 if (ScalarCosts.count(I)) 6693 continue; 6694 6695 // Compute the cost of the vector instruction. Note that this cost already 6696 // includes the scalarization overhead of the predicated instruction. 6697 unsigned VectorCost = getInstructionCost(I, VF).first; 6698 6699 // Compute the cost of the scalarized instruction. This cost is the cost of 6700 // the instruction as if it wasn't if-converted and instead remained in the 6701 // predicated block. We will scale this cost by block probability after 6702 // computing the scalarization overhead. 6703 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6704 6705 // Compute the scalarization overhead of needed insertelement instructions 6706 // and phi nodes. 6707 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6708 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6709 true, false); 6710 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6711 } 6712 6713 // Compute the scalarization overhead of needed extractelement 6714 // instructions. For each of the instruction's operands, if the operand can 6715 // be scalarized, add it to the worklist; otherwise, account for the 6716 // overhead. 6717 for (Use &U : I->operands()) 6718 if (auto *J = dyn_cast<Instruction>(U.get())) { 6719 assert(VectorType::isValidElementType(J->getType()) && 6720 "Instruction has non-scalar type"); 6721 if (canBeScalarized(J)) 6722 Worklist.push_back(J); 6723 else if (needsExtract(J)) 6724 ScalarCost += TTI.getScalarizationOverhead( 6725 ToVectorTy(J->getType(),VF), false, true); 6726 } 6727 6728 // Scale the total scalar cost by block probability. 6729 ScalarCost /= getReciprocalPredBlockProb(); 6730 6731 // Compute the discount. A non-negative discount means the vector version 6732 // of the instruction costs more, and scalarizing would be beneficial. 6733 Discount += VectorCost - ScalarCost; 6734 ScalarCosts[I] = ScalarCost; 6735 } 6736 6737 return Discount; 6738 } 6739 6740 LoopVectorizationCostModel::VectorizationCostTy 6741 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6742 VectorizationCostTy Cost; 6743 6744 // For each block. 6745 for (BasicBlock *BB : TheLoop->blocks()) { 6746 VectorizationCostTy BlockCost; 6747 6748 // For each instruction in the old loop. 6749 for (Instruction &I : *BB) { 6750 // Skip dbg intrinsics. 6751 if (isa<DbgInfoIntrinsic>(I)) 6752 continue; 6753 6754 // Skip ignored values. 6755 if (ValuesToIgnore.count(&I) || 6756 (VF > 1 && VecValuesToIgnore.count(&I))) 6757 continue; 6758 6759 VectorizationCostTy C = getInstructionCost(&I, VF); 6760 6761 // Check if we should override the cost. 6762 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6763 C.first = ForceTargetInstructionCost; 6764 6765 BlockCost.first += C.first; 6766 BlockCost.second |= C.second; 6767 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6768 << VF << " For instruction: " << I << '\n'); 6769 } 6770 6771 // If we are vectorizing a predicated block, it will have been 6772 // if-converted. This means that the block's instructions (aside from 6773 // stores and instructions that may divide by zero) will now be 6774 // unconditionally executed. For the scalar case, we may not always execute 6775 // the predicated block. Thus, scale the block's cost by the probability of 6776 // executing it. 6777 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6778 BlockCost.first /= getReciprocalPredBlockProb(); 6779 6780 Cost.first += BlockCost.first; 6781 Cost.second |= BlockCost.second; 6782 } 6783 6784 return Cost; 6785 } 6786 6787 /// \brief Gets Address Access SCEV after verifying that the access pattern 6788 /// is loop invariant except the induction variable dependence. 6789 /// 6790 /// This SCEV can be sent to the Target in order to estimate the address 6791 /// calculation cost. 6792 static const SCEV *getAddressAccessSCEV( 6793 Value *Ptr, 6794 LoopVectorizationLegality *Legal, 6795 PredicatedScalarEvolution &PSE, 6796 const Loop *TheLoop) { 6797 6798 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6799 if (!Gep) 6800 return nullptr; 6801 6802 // We are looking for a gep with all loop invariant indices except for one 6803 // which should be an induction variable. 6804 auto SE = PSE.getSE(); 6805 unsigned NumOperands = Gep->getNumOperands(); 6806 for (unsigned i = 1; i < NumOperands; ++i) { 6807 Value *Opd = Gep->getOperand(i); 6808 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6809 !Legal->isInductionVariable(Opd)) 6810 return nullptr; 6811 } 6812 6813 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6814 return PSE.getSCEV(Ptr); 6815 } 6816 6817 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6818 return Legal->hasStride(I->getOperand(0)) || 6819 Legal->hasStride(I->getOperand(1)); 6820 } 6821 6822 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6823 unsigned VF) { 6824 Type *ValTy = getMemInstValueType(I); 6825 auto SE = PSE.getSE(); 6826 6827 unsigned Alignment = getMemInstAlignment(I); 6828 unsigned AS = getMemInstAddressSpace(I); 6829 Value *Ptr = getPointerOperand(I); 6830 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6831 6832 // Figure out whether the access is strided and get the stride value 6833 // if it's known in compile time 6834 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6835 6836 // Get the cost of the scalar memory instruction and address computation. 6837 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6838 6839 Cost += VF * 6840 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6841 AS, I); 6842 6843 // Get the overhead of the extractelement and insertelement instructions 6844 // we might create due to scalarization. 6845 Cost += getScalarizationOverhead(I, VF, TTI); 6846 6847 // If we have a predicated store, it may not be executed for each vector 6848 // lane. Scale the cost by the probability of executing the predicated 6849 // block. 6850 if (isScalarWithPredication(I)) { 6851 Cost /= getReciprocalPredBlockProb(); 6852 6853 if (useEmulatedMaskMemRefHack(I)) 6854 // Artificially setting to a high enough value to practically disable 6855 // vectorization with such operations. 6856 Cost = 3000000; 6857 } 6858 6859 return Cost; 6860 } 6861 6862 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6863 unsigned VF) { 6864 Type *ValTy = getMemInstValueType(I); 6865 Type *VectorTy = ToVectorTy(ValTy, VF); 6866 unsigned Alignment = getMemInstAlignment(I); 6867 Value *Ptr = getPointerOperand(I); 6868 unsigned AS = getMemInstAddressSpace(I); 6869 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6870 6871 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6872 "Stride should be 1 or -1 for consecutive memory access"); 6873 unsigned Cost = 0; 6874 if (Legal->isMaskRequired(I)) 6875 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6876 else 6877 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6878 6879 bool Reverse = ConsecutiveStride < 0; 6880 if (Reverse) 6881 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6882 return Cost; 6883 } 6884 6885 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6886 unsigned VF) { 6887 LoadInst *LI = cast<LoadInst>(I); 6888 Type *ValTy = LI->getType(); 6889 Type *VectorTy = ToVectorTy(ValTy, VF); 6890 unsigned Alignment = LI->getAlignment(); 6891 unsigned AS = LI->getPointerAddressSpace(); 6892 6893 return TTI.getAddressComputationCost(ValTy) + 6894 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6895 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6896 } 6897 6898 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6899 unsigned VF) { 6900 Type *ValTy = getMemInstValueType(I); 6901 Type *VectorTy = ToVectorTy(ValTy, VF); 6902 unsigned Alignment = getMemInstAlignment(I); 6903 Value *Ptr = getPointerOperand(I); 6904 6905 return TTI.getAddressComputationCost(VectorTy) + 6906 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6907 Legal->isMaskRequired(I), Alignment); 6908 } 6909 6910 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6911 unsigned VF) { 6912 Type *ValTy = getMemInstValueType(I); 6913 Type *VectorTy = ToVectorTy(ValTy, VF); 6914 unsigned AS = getMemInstAddressSpace(I); 6915 6916 auto Group = Legal->getInterleavedAccessGroup(I); 6917 assert(Group && "Fail to get an interleaved access group."); 6918 6919 unsigned InterleaveFactor = Group->getFactor(); 6920 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6921 6922 // Holds the indices of existing members in an interleaved load group. 6923 // An interleaved store group doesn't need this as it doesn't allow gaps. 6924 SmallVector<unsigned, 4> Indices; 6925 if (isa<LoadInst>(I)) { 6926 for (unsigned i = 0; i < InterleaveFactor; i++) 6927 if (Group->getMember(i)) 6928 Indices.push_back(i); 6929 } 6930 6931 // Calculate the cost of the whole interleaved group. 6932 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6933 Group->getFactor(), Indices, 6934 Group->getAlignment(), AS); 6935 6936 if (Group->isReverse()) 6937 Cost += Group->getNumMembers() * 6938 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6939 return Cost; 6940 } 6941 6942 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6943 unsigned VF) { 6944 // Calculate scalar cost only. Vectorization cost should be ready at this 6945 // moment. 6946 if (VF == 1) { 6947 Type *ValTy = getMemInstValueType(I); 6948 unsigned Alignment = getMemInstAlignment(I); 6949 unsigned AS = getMemInstAddressSpace(I); 6950 6951 return TTI.getAddressComputationCost(ValTy) + 6952 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6953 } 6954 return getWideningCost(I, VF); 6955 } 6956 6957 LoopVectorizationCostModel::VectorizationCostTy 6958 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6959 // If we know that this instruction will remain uniform, check the cost of 6960 // the scalar version. 6961 if (isUniformAfterVectorization(I, VF)) 6962 VF = 1; 6963 6964 if (VF > 1 && isProfitableToScalarize(I, VF)) 6965 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6966 6967 // Forced scalars do not have any scalarization overhead. 6968 if (VF > 1 && ForcedScalars.count(VF) && 6969 ForcedScalars.find(VF)->second.count(I)) 6970 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6971 6972 Type *VectorTy; 6973 unsigned C = getInstructionCost(I, VF, VectorTy); 6974 6975 bool TypeNotScalarized = 6976 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6977 return VectorizationCostTy(C, TypeNotScalarized); 6978 } 6979 6980 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6981 if (VF == 1) 6982 return; 6983 NumPredStores = 0; 6984 for (BasicBlock *BB : TheLoop->blocks()) { 6985 // For each instruction in the old loop. 6986 for (Instruction &I : *BB) { 6987 Value *Ptr = getPointerOperand(&I); 6988 if (!Ptr) 6989 continue; 6990 6991 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6992 NumPredStores++; 6993 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6994 // Scalar load + broadcast 6995 unsigned Cost = getUniformMemOpCost(&I, VF); 6996 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6997 continue; 6998 } 6999 7000 // We assume that widening is the best solution when possible. 7001 if (memoryInstructionCanBeWidened(&I, VF)) { 7002 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7003 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 7004 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7005 "Expected consecutive stride."); 7006 InstWidening Decision = 7007 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7008 setWideningDecision(&I, VF, Decision, Cost); 7009 continue; 7010 } 7011 7012 // Choose between Interleaving, Gather/Scatter or Scalarization. 7013 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7014 unsigned NumAccesses = 1; 7015 if (Legal->isAccessInterleaved(&I)) { 7016 auto Group = Legal->getInterleavedAccessGroup(&I); 7017 assert(Group && "Fail to get an interleaved access group."); 7018 7019 // Make one decision for the whole group. 7020 if (getWideningDecision(&I, VF) != CM_Unknown) 7021 continue; 7022 7023 NumAccesses = Group->getNumMembers(); 7024 InterleaveCost = getInterleaveGroupCost(&I, VF); 7025 } 7026 7027 unsigned GatherScatterCost = 7028 isLegalGatherOrScatter(&I) 7029 ? getGatherScatterCost(&I, VF) * NumAccesses 7030 : std::numeric_limits<unsigned>::max(); 7031 7032 unsigned ScalarizationCost = 7033 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7034 7035 // Choose better solution for the current VF, 7036 // write down this decision and use it during vectorization. 7037 unsigned Cost; 7038 InstWidening Decision; 7039 if (InterleaveCost <= GatherScatterCost && 7040 InterleaveCost < ScalarizationCost) { 7041 Decision = CM_Interleave; 7042 Cost = InterleaveCost; 7043 } else if (GatherScatterCost < ScalarizationCost) { 7044 Decision = CM_GatherScatter; 7045 Cost = GatherScatterCost; 7046 } else { 7047 Decision = CM_Scalarize; 7048 Cost = ScalarizationCost; 7049 } 7050 // If the instructions belongs to an interleave group, the whole group 7051 // receives the same decision. The whole group receives the cost, but 7052 // the cost will actually be assigned to one instruction. 7053 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7054 setWideningDecision(Group, VF, Decision, Cost); 7055 else 7056 setWideningDecision(&I, VF, Decision, Cost); 7057 } 7058 } 7059 7060 // Make sure that any load of address and any other address computation 7061 // remains scalar unless there is gather/scatter support. This avoids 7062 // inevitable extracts into address registers, and also has the benefit of 7063 // activating LSR more, since that pass can't optimize vectorized 7064 // addresses. 7065 if (TTI.prefersVectorizedAddressing()) 7066 return; 7067 7068 // Start with all scalar pointer uses. 7069 SmallPtrSet<Instruction *, 8> AddrDefs; 7070 for (BasicBlock *BB : TheLoop->blocks()) 7071 for (Instruction &I : *BB) { 7072 Instruction *PtrDef = 7073 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7074 if (PtrDef && TheLoop->contains(PtrDef) && 7075 getWideningDecision(&I, VF) != CM_GatherScatter) 7076 AddrDefs.insert(PtrDef); 7077 } 7078 7079 // Add all instructions used to generate the addresses. 7080 SmallVector<Instruction *, 4> Worklist; 7081 for (auto *I : AddrDefs) 7082 Worklist.push_back(I); 7083 while (!Worklist.empty()) { 7084 Instruction *I = Worklist.pop_back_val(); 7085 for (auto &Op : I->operands()) 7086 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7087 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7088 AddrDefs.insert(InstOp).second) 7089 Worklist.push_back(InstOp); 7090 } 7091 7092 for (auto *I : AddrDefs) { 7093 if (isa<LoadInst>(I)) { 7094 // Setting the desired widening decision should ideally be handled in 7095 // by cost functions, but since this involves the task of finding out 7096 // if the loaded register is involved in an address computation, it is 7097 // instead changed here when we know this is the case. 7098 InstWidening Decision = getWideningDecision(I, VF); 7099 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7100 // Scalarize a widened load of address. 7101 setWideningDecision(I, VF, CM_Scalarize, 7102 (VF * getMemoryInstructionCost(I, 1))); 7103 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7104 // Scalarize an interleave group of address loads. 7105 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7106 if (Instruction *Member = Group->getMember(I)) 7107 setWideningDecision(Member, VF, CM_Scalarize, 7108 (VF * getMemoryInstructionCost(Member, 1))); 7109 } 7110 } 7111 } else 7112 // Make sure I gets scalarized and a cost estimate without 7113 // scalarization overhead. 7114 ForcedScalars[VF].insert(I); 7115 } 7116 } 7117 7118 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7119 unsigned VF, 7120 Type *&VectorTy) { 7121 Type *RetTy = I->getType(); 7122 if (canTruncateToMinimalBitwidth(I, VF)) 7123 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7124 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7125 auto SE = PSE.getSE(); 7126 7127 // TODO: We need to estimate the cost of intrinsic calls. 7128 switch (I->getOpcode()) { 7129 case Instruction::GetElementPtr: 7130 // We mark this instruction as zero-cost because the cost of GEPs in 7131 // vectorized code depends on whether the corresponding memory instruction 7132 // is scalarized or not. Therefore, we handle GEPs with the memory 7133 // instruction cost. 7134 return 0; 7135 case Instruction::Br: { 7136 // In cases of scalarized and predicated instructions, there will be VF 7137 // predicated blocks in the vectorized loop. Each branch around these 7138 // blocks requires also an extract of its vector compare i1 element. 7139 bool ScalarPredicatedBB = false; 7140 BranchInst *BI = cast<BranchInst>(I); 7141 if (VF > 1 && BI->isConditional() && 7142 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7143 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7144 ScalarPredicatedBB = true; 7145 7146 if (ScalarPredicatedBB) { 7147 // Return cost for branches around scalarized and predicated blocks. 7148 Type *Vec_i1Ty = 7149 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7150 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7151 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7152 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7153 // The back-edge branch will remain, as will all scalar branches. 7154 return TTI.getCFInstrCost(Instruction::Br); 7155 else 7156 // This branch will be eliminated by if-conversion. 7157 return 0; 7158 // Note: We currently assume zero cost for an unconditional branch inside 7159 // a predicated block since it will become a fall-through, although we 7160 // may decide in the future to call TTI for all branches. 7161 } 7162 case Instruction::PHI: { 7163 auto *Phi = cast<PHINode>(I); 7164 7165 // First-order recurrences are replaced by vector shuffles inside the loop. 7166 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7167 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7168 VectorTy, VF - 1, VectorTy); 7169 7170 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7171 // converted into select instructions. We require N - 1 selects per phi 7172 // node, where N is the number of incoming values. 7173 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7174 return (Phi->getNumIncomingValues() - 1) * 7175 TTI.getCmpSelInstrCost( 7176 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7177 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7178 7179 return TTI.getCFInstrCost(Instruction::PHI); 7180 } 7181 case Instruction::UDiv: 7182 case Instruction::SDiv: 7183 case Instruction::URem: 7184 case Instruction::SRem: 7185 // If we have a predicated instruction, it may not be executed for each 7186 // vector lane. Get the scalarization cost and scale this amount by the 7187 // probability of executing the predicated block. If the instruction is not 7188 // predicated, we fall through to the next case. 7189 if (VF > 1 && isScalarWithPredication(I)) { 7190 unsigned Cost = 0; 7191 7192 // These instructions have a non-void type, so account for the phi nodes 7193 // that we will create. This cost is likely to be zero. The phi node 7194 // cost, if any, should be scaled by the block probability because it 7195 // models a copy at the end of each predicated block. 7196 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7197 7198 // The cost of the non-predicated instruction. 7199 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7200 7201 // The cost of insertelement and extractelement instructions needed for 7202 // scalarization. 7203 Cost += getScalarizationOverhead(I, VF, TTI); 7204 7205 // Scale the cost by the probability of executing the predicated blocks. 7206 // This assumes the predicated block for each vector lane is equally 7207 // likely. 7208 return Cost / getReciprocalPredBlockProb(); 7209 } 7210 LLVM_FALLTHROUGH; 7211 case Instruction::Add: 7212 case Instruction::FAdd: 7213 case Instruction::Sub: 7214 case Instruction::FSub: 7215 case Instruction::Mul: 7216 case Instruction::FMul: 7217 case Instruction::FDiv: 7218 case Instruction::FRem: 7219 case Instruction::Shl: 7220 case Instruction::LShr: 7221 case Instruction::AShr: 7222 case Instruction::And: 7223 case Instruction::Or: 7224 case Instruction::Xor: { 7225 // Since we will replace the stride by 1 the multiplication should go away. 7226 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7227 return 0; 7228 // Certain instructions can be cheaper to vectorize if they have a constant 7229 // second vector operand. One example of this are shifts on x86. 7230 TargetTransformInfo::OperandValueKind Op1VK = 7231 TargetTransformInfo::OK_AnyValue; 7232 TargetTransformInfo::OperandValueKind Op2VK = 7233 TargetTransformInfo::OK_AnyValue; 7234 TargetTransformInfo::OperandValueProperties Op1VP = 7235 TargetTransformInfo::OP_None; 7236 TargetTransformInfo::OperandValueProperties Op2VP = 7237 TargetTransformInfo::OP_None; 7238 Value *Op2 = I->getOperand(1); 7239 7240 // Check for a splat or for a non uniform vector of constants. 7241 if (isa<ConstantInt>(Op2)) { 7242 ConstantInt *CInt = cast<ConstantInt>(Op2); 7243 if (CInt && CInt->getValue().isPowerOf2()) 7244 Op2VP = TargetTransformInfo::OP_PowerOf2; 7245 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7246 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7247 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7248 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7249 if (SplatValue) { 7250 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7251 if (CInt && CInt->getValue().isPowerOf2()) 7252 Op2VP = TargetTransformInfo::OP_PowerOf2; 7253 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7254 } 7255 } else if (Legal->isUniform(Op2)) { 7256 Op2VK = TargetTransformInfo::OK_UniformValue; 7257 } 7258 SmallVector<const Value *, 4> Operands(I->operand_values()); 7259 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7260 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7261 Op2VK, Op1VP, Op2VP, Operands); 7262 } 7263 case Instruction::Select: { 7264 SelectInst *SI = cast<SelectInst>(I); 7265 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7266 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7267 Type *CondTy = SI->getCondition()->getType(); 7268 if (!ScalarCond) 7269 CondTy = VectorType::get(CondTy, VF); 7270 7271 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7272 } 7273 case Instruction::ICmp: 7274 case Instruction::FCmp: { 7275 Type *ValTy = I->getOperand(0)->getType(); 7276 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7277 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7278 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7279 VectorTy = ToVectorTy(ValTy, VF); 7280 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7281 } 7282 case Instruction::Store: 7283 case Instruction::Load: { 7284 unsigned Width = VF; 7285 if (Width > 1) { 7286 InstWidening Decision = getWideningDecision(I, Width); 7287 assert(Decision != CM_Unknown && 7288 "CM decision should be taken at this point"); 7289 if (Decision == CM_Scalarize) 7290 Width = 1; 7291 } 7292 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7293 return getMemoryInstructionCost(I, VF); 7294 } 7295 case Instruction::ZExt: 7296 case Instruction::SExt: 7297 case Instruction::FPToUI: 7298 case Instruction::FPToSI: 7299 case Instruction::FPExt: 7300 case Instruction::PtrToInt: 7301 case Instruction::IntToPtr: 7302 case Instruction::SIToFP: 7303 case Instruction::UIToFP: 7304 case Instruction::Trunc: 7305 case Instruction::FPTrunc: 7306 case Instruction::BitCast: { 7307 // We optimize the truncation of induction variables having constant 7308 // integer steps. The cost of these truncations is the same as the scalar 7309 // operation. 7310 if (isOptimizableIVTruncate(I, VF)) { 7311 auto *Trunc = cast<TruncInst>(I); 7312 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7313 Trunc->getSrcTy(), Trunc); 7314 } 7315 7316 Type *SrcScalarTy = I->getOperand(0)->getType(); 7317 Type *SrcVecTy = 7318 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7319 if (canTruncateToMinimalBitwidth(I, VF)) { 7320 // This cast is going to be shrunk. This may remove the cast or it might 7321 // turn it into slightly different cast. For example, if MinBW == 16, 7322 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7323 // 7324 // Calculate the modified src and dest types. 7325 Type *MinVecTy = VectorTy; 7326 if (I->getOpcode() == Instruction::Trunc) { 7327 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7328 VectorTy = 7329 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7330 } else if (I->getOpcode() == Instruction::ZExt || 7331 I->getOpcode() == Instruction::SExt) { 7332 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7333 VectorTy = 7334 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7335 } 7336 } 7337 7338 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7339 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7340 } 7341 case Instruction::Call: { 7342 bool NeedToScalarize; 7343 CallInst *CI = cast<CallInst>(I); 7344 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7345 if (getVectorIntrinsicIDForCall(CI, TLI)) 7346 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7347 return CallCost; 7348 } 7349 default: 7350 // The cost of executing VF copies of the scalar instruction. This opcode 7351 // is unknown. Assume that it is the same as 'mul'. 7352 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7353 getScalarizationOverhead(I, VF, TTI); 7354 } // end of switch. 7355 } 7356 7357 char LoopVectorize::ID = 0; 7358 7359 static const char lv_name[] = "Loop Vectorization"; 7360 7361 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7362 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7363 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7364 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7365 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7366 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7367 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7368 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7369 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7370 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7371 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7372 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7373 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7374 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7375 7376 namespace llvm { 7377 7378 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7379 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7380 } 7381 7382 } // end namespace llvm 7383 7384 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7385 // Check if the pointer operand of a load or store instruction is 7386 // consecutive. 7387 if (auto *Ptr = getPointerOperand(Inst)) 7388 return Legal->isConsecutivePtr(Ptr); 7389 return false; 7390 } 7391 7392 void LoopVectorizationCostModel::collectValuesToIgnore() { 7393 // Ignore ephemeral values. 7394 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7395 7396 // Ignore type-promoting instructions we identified during reduction 7397 // detection. 7398 for (auto &Reduction : *Legal->getReductionVars()) { 7399 RecurrenceDescriptor &RedDes = Reduction.second; 7400 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7401 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7402 } 7403 // Ignore type-casting instructions we identified during induction 7404 // detection. 7405 for (auto &Induction : *Legal->getInductionVars()) { 7406 InductionDescriptor &IndDes = Induction.second; 7407 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7408 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7409 } 7410 } 7411 7412 VectorizationFactor 7413 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7414 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7415 const VectorizationFactor NoVectorization = {1U, 0U}; 7416 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7417 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7418 return NoVectorization; 7419 7420 if (UserVF) { 7421 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7422 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7423 // Collect the instructions (and their associated costs) that will be more 7424 // profitable to scalarize. 7425 CM.selectUserVectorizationFactor(UserVF); 7426 buildVPlans(UserVF, UserVF); 7427 DEBUG(printPlans(dbgs())); 7428 return {UserVF, 0}; 7429 } 7430 7431 unsigned MaxVF = MaybeMaxVF.getValue(); 7432 assert(MaxVF != 0 && "MaxVF is zero."); 7433 7434 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7435 // Collect Uniform and Scalar instructions after vectorization with VF. 7436 CM.collectUniformsAndScalars(VF); 7437 7438 // Collect the instructions (and their associated costs) that will be more 7439 // profitable to scalarize. 7440 if (VF > 1) 7441 CM.collectInstsToScalarize(VF); 7442 } 7443 7444 buildVPlans(1, MaxVF); 7445 DEBUG(printPlans(dbgs())); 7446 if (MaxVF == 1) 7447 return NoVectorization; 7448 7449 // Select the optimal vectorization factor. 7450 return CM.selectVectorizationFactor(MaxVF); 7451 } 7452 7453 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7454 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7455 BestVF = VF; 7456 BestUF = UF; 7457 7458 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7459 return !Plan->hasVF(VF); 7460 }); 7461 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7462 } 7463 7464 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7465 DominatorTree *DT) { 7466 // Perform the actual loop transformation. 7467 7468 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7469 VPCallbackILV CallbackILV(ILV); 7470 7471 VPTransformState State{BestVF, BestUF, LI, 7472 DT, ILV.Builder, ILV.VectorLoopValueMap, 7473 &ILV, CallbackILV}; 7474 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7475 7476 //===------------------------------------------------===// 7477 // 7478 // Notice: any optimization or new instruction that go 7479 // into the code below should also be implemented in 7480 // the cost-model. 7481 // 7482 //===------------------------------------------------===// 7483 7484 // 2. Copy and widen instructions from the old loop into the new loop. 7485 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7486 VPlans.front()->execute(&State); 7487 7488 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7489 // predication, updating analyses. 7490 ILV.fixVectorizedLoop(); 7491 } 7492 7493 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7494 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7495 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7496 7497 // We create new control-flow for the vectorized loop, so the original 7498 // condition will be dead after vectorization if it's only used by the 7499 // branch. 7500 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7501 if (Cmp && Cmp->hasOneUse()) 7502 DeadInstructions.insert(Cmp); 7503 7504 // We create new "steps" for induction variable updates to which the original 7505 // induction variables map. An original update instruction will be dead if 7506 // all its users except the induction variable are dead. 7507 for (auto &Induction : *Legal->getInductionVars()) { 7508 PHINode *Ind = Induction.first; 7509 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7510 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7511 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7512 })) 7513 DeadInstructions.insert(IndUpdate); 7514 7515 // We record as "Dead" also the type-casting instructions we had identified 7516 // during induction analysis. We don't need any handling for them in the 7517 // vectorized loop because we have proven that, under a proper runtime 7518 // test guarding the vectorized loop, the value of the phi, and the casted 7519 // value of the phi, are the same. The last instruction in this casting chain 7520 // will get its scalar/vector/widened def from the scalar/vector/widened def 7521 // of the respective phi node. Any other casts in the induction def-use chain 7522 // have no other uses outside the phi update chain, and will be ignored. 7523 InductionDescriptor &IndDes = Induction.second; 7524 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7525 DeadInstructions.insert(Casts.begin(), Casts.end()); 7526 } 7527 } 7528 7529 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7530 7531 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7532 7533 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7534 Instruction::BinaryOps BinOp) { 7535 // When unrolling and the VF is 1, we only need to add a simple scalar. 7536 Type *Ty = Val->getType(); 7537 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7538 7539 if (Ty->isFloatingPointTy()) { 7540 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7541 7542 // Floating point operations had to be 'fast' to enable the unrolling. 7543 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7544 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7545 } 7546 Constant *C = ConstantInt::get(Ty, StartIdx); 7547 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7548 } 7549 7550 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7551 SmallVector<Metadata *, 4> MDs; 7552 // Reserve first location for self reference to the LoopID metadata node. 7553 MDs.push_back(nullptr); 7554 bool IsUnrollMetadata = false; 7555 MDNode *LoopID = L->getLoopID(); 7556 if (LoopID) { 7557 // First find existing loop unrolling disable metadata. 7558 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7559 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7560 if (MD) { 7561 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7562 IsUnrollMetadata = 7563 S && S->getString().startswith("llvm.loop.unroll.disable"); 7564 } 7565 MDs.push_back(LoopID->getOperand(i)); 7566 } 7567 } 7568 7569 if (!IsUnrollMetadata) { 7570 // Add runtime unroll disable metadata. 7571 LLVMContext &Context = L->getHeader()->getContext(); 7572 SmallVector<Metadata *, 1> DisableOperands; 7573 DisableOperands.push_back( 7574 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7575 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7576 MDs.push_back(DisableNode); 7577 MDNode *NewLoopID = MDNode::get(Context, MDs); 7578 // Set operand 0 to refer to the loop id itself. 7579 NewLoopID->replaceOperandWith(0, NewLoopID); 7580 L->setLoopID(NewLoopID); 7581 } 7582 } 7583 7584 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7585 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7586 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7587 bool PredicateAtRangeStart = Predicate(Range.Start); 7588 7589 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7590 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7591 Range.End = TmpVF; 7592 break; 7593 } 7594 7595 return PredicateAtRangeStart; 7596 } 7597 7598 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7599 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7600 /// of VF's starting at a given VF and extending it as much as possible. Each 7601 /// vectorization decision can potentially shorten this sub-range during 7602 /// buildVPlan(). 7603 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7604 7605 // Collect conditions feeding internal conditional branches; they need to be 7606 // represented in VPlan for it to model masking. 7607 SmallPtrSet<Value *, 1> NeedDef; 7608 7609 auto *Latch = OrigLoop->getLoopLatch(); 7610 for (BasicBlock *BB : OrigLoop->blocks()) { 7611 if (BB == Latch) 7612 continue; 7613 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7614 if (Branch && Branch->isConditional()) 7615 NeedDef.insert(Branch->getCondition()); 7616 } 7617 7618 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7619 VFRange SubRange = {VF, MaxVF + 1}; 7620 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7621 VF = SubRange.End; 7622 } 7623 } 7624 7625 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7626 BasicBlock *Dst, 7627 VPlanPtr &Plan) { 7628 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7629 7630 // Look for cached value. 7631 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7632 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7633 if (ECEntryIt != EdgeMaskCache.end()) 7634 return ECEntryIt->second; 7635 7636 VPValue *SrcMask = createBlockInMask(Src, Plan); 7637 7638 // The terminator has to be a branch inst! 7639 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7640 assert(BI && "Unexpected terminator found"); 7641 7642 if (!BI->isConditional()) 7643 return EdgeMaskCache[Edge] = SrcMask; 7644 7645 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7646 assert(EdgeMask && "No Edge Mask found for condition"); 7647 7648 if (BI->getSuccessor(0) != Dst) 7649 EdgeMask = Builder.createNot(EdgeMask); 7650 7651 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7652 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7653 7654 return EdgeMaskCache[Edge] = EdgeMask; 7655 } 7656 7657 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7658 VPlanPtr &Plan) { 7659 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7660 7661 // Look for cached value. 7662 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7663 if (BCEntryIt != BlockMaskCache.end()) 7664 return BCEntryIt->second; 7665 7666 // All-one mask is modelled as no-mask following the convention for masked 7667 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7668 VPValue *BlockMask = nullptr; 7669 7670 // Loop incoming mask is all-one. 7671 if (OrigLoop->getHeader() == BB) 7672 return BlockMaskCache[BB] = BlockMask; 7673 7674 // This is the block mask. We OR all incoming edges. 7675 for (auto *Predecessor : predecessors(BB)) { 7676 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7677 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7678 return BlockMaskCache[BB] = EdgeMask; 7679 7680 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7681 BlockMask = EdgeMask; 7682 continue; 7683 } 7684 7685 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7686 } 7687 7688 return BlockMaskCache[BB] = BlockMask; 7689 } 7690 7691 VPInterleaveRecipe * 7692 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7693 VFRange &Range) { 7694 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7695 if (!IG) 7696 return nullptr; 7697 7698 // Now check if IG is relevant for VF's in the given range. 7699 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7700 return [=](unsigned VF) -> bool { 7701 return (VF >= 2 && // Query is illegal for VF == 1 7702 CM.getWideningDecision(I, VF) == 7703 LoopVectorizationCostModel::CM_Interleave); 7704 }; 7705 }; 7706 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7707 return nullptr; 7708 7709 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7710 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7711 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7712 assert(I == IG->getInsertPos() && 7713 "Generating a recipe for an adjunct member of an interleave group"); 7714 7715 return new VPInterleaveRecipe(IG); 7716 } 7717 7718 VPWidenMemoryInstructionRecipe * 7719 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7720 VPlanPtr &Plan) { 7721 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7722 return nullptr; 7723 7724 auto willWiden = [&](unsigned VF) -> bool { 7725 if (VF == 1) 7726 return false; 7727 if (CM.isScalarAfterVectorization(I, VF) || 7728 CM.isProfitableToScalarize(I, VF)) 7729 return false; 7730 LoopVectorizationCostModel::InstWidening Decision = 7731 CM.getWideningDecision(I, VF); 7732 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7733 "CM decision should be taken at this point."); 7734 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7735 "Interleave memory opportunity should be caught earlier."); 7736 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7737 }; 7738 7739 if (!getDecisionAndClampRange(willWiden, Range)) 7740 return nullptr; 7741 7742 VPValue *Mask = nullptr; 7743 if (Legal->isMaskRequired(I)) 7744 Mask = createBlockInMask(I->getParent(), Plan); 7745 7746 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7747 } 7748 7749 VPWidenIntOrFpInductionRecipe * 7750 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7751 VFRange &Range) { 7752 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7753 // Check if this is an integer or fp induction. If so, build the recipe that 7754 // produces its scalar and vector values. 7755 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7756 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7757 II.getKind() == InductionDescriptor::IK_FpInduction) 7758 return new VPWidenIntOrFpInductionRecipe(Phi); 7759 7760 return nullptr; 7761 } 7762 7763 // Optimize the special case where the source is a constant integer 7764 // induction variable. Notice that we can only optimize the 'trunc' case 7765 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7766 // (c) other casts depend on pointer size. 7767 7768 // Determine whether \p K is a truncation based on an induction variable that 7769 // can be optimized. 7770 auto isOptimizableIVTruncate = 7771 [&](Instruction *K) -> std::function<bool(unsigned)> { 7772 return 7773 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7774 }; 7775 7776 if (isa<TruncInst>(I) && 7777 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7778 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7779 cast<TruncInst>(I)); 7780 return nullptr; 7781 } 7782 7783 VPBlendRecipe * 7784 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7785 PHINode *Phi = dyn_cast<PHINode>(I); 7786 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7787 return nullptr; 7788 7789 // We know that all PHIs in non-header blocks are converted into selects, so 7790 // we don't have to worry about the insertion order and we can just use the 7791 // builder. At this point we generate the predication tree. There may be 7792 // duplications since this is a simple recursive scan, but future 7793 // optimizations will clean it up. 7794 7795 SmallVector<VPValue *, 2> Masks; 7796 unsigned NumIncoming = Phi->getNumIncomingValues(); 7797 for (unsigned In = 0; In < NumIncoming; In++) { 7798 VPValue *EdgeMask = 7799 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7800 assert((EdgeMask || NumIncoming == 1) && 7801 "Multiple predecessors with one having a full mask"); 7802 if (EdgeMask) 7803 Masks.push_back(EdgeMask); 7804 } 7805 return new VPBlendRecipe(Phi, Masks); 7806 } 7807 7808 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7809 VFRange &Range) { 7810 if (CM.isScalarWithPredication(I)) 7811 return false; 7812 7813 auto IsVectorizableOpcode = [](unsigned Opcode) { 7814 switch (Opcode) { 7815 case Instruction::Add: 7816 case Instruction::And: 7817 case Instruction::AShr: 7818 case Instruction::BitCast: 7819 case Instruction::Br: 7820 case Instruction::Call: 7821 case Instruction::FAdd: 7822 case Instruction::FCmp: 7823 case Instruction::FDiv: 7824 case Instruction::FMul: 7825 case Instruction::FPExt: 7826 case Instruction::FPToSI: 7827 case Instruction::FPToUI: 7828 case Instruction::FPTrunc: 7829 case Instruction::FRem: 7830 case Instruction::FSub: 7831 case Instruction::GetElementPtr: 7832 case Instruction::ICmp: 7833 case Instruction::IntToPtr: 7834 case Instruction::Load: 7835 case Instruction::LShr: 7836 case Instruction::Mul: 7837 case Instruction::Or: 7838 case Instruction::PHI: 7839 case Instruction::PtrToInt: 7840 case Instruction::SDiv: 7841 case Instruction::Select: 7842 case Instruction::SExt: 7843 case Instruction::Shl: 7844 case Instruction::SIToFP: 7845 case Instruction::SRem: 7846 case Instruction::Store: 7847 case Instruction::Sub: 7848 case Instruction::Trunc: 7849 case Instruction::UDiv: 7850 case Instruction::UIToFP: 7851 case Instruction::URem: 7852 case Instruction::Xor: 7853 case Instruction::ZExt: 7854 return true; 7855 } 7856 return false; 7857 }; 7858 7859 if (!IsVectorizableOpcode(I->getOpcode())) 7860 return false; 7861 7862 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7863 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7864 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7865 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7866 return false; 7867 } 7868 7869 auto willWiden = [&](unsigned VF) -> bool { 7870 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7871 CM.isProfitableToScalarize(I, VF))) 7872 return false; 7873 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7874 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7875 // The following case may be scalarized depending on the VF. 7876 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7877 // version of the instruction. 7878 // Is it beneficial to perform intrinsic call compared to lib call? 7879 bool NeedToScalarize; 7880 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7881 bool UseVectorIntrinsic = 7882 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7883 return UseVectorIntrinsic || !NeedToScalarize; 7884 } 7885 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7886 assert(CM.getWideningDecision(I, VF) == 7887 LoopVectorizationCostModel::CM_Scalarize && 7888 "Memory widening decisions should have been taken care by now"); 7889 return false; 7890 } 7891 return true; 7892 }; 7893 7894 if (!getDecisionAndClampRange(willWiden, Range)) 7895 return false; 7896 7897 // Success: widen this instruction. We optimize the common case where 7898 // consecutive instructions can be represented by a single recipe. 7899 if (!VPBB->empty()) { 7900 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7901 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7902 return true; 7903 } 7904 7905 VPBB->appendRecipe(new VPWidenRecipe(I)); 7906 return true; 7907 } 7908 7909 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7910 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7911 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7912 VPlanPtr &Plan) { 7913 bool IsUniform = getDecisionAndClampRange( 7914 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7915 Range); 7916 7917 bool IsPredicated = CM.isScalarWithPredication(I); 7918 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7919 7920 // Find if I uses a predicated instruction. If so, it will use its scalar 7921 // value. Avoid hoisting the insert-element which packs the scalar value into 7922 // a vector value, as that happens iff all users use the vector value. 7923 for (auto &Op : I->operands()) 7924 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7925 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7926 PredInst2Recipe[PredInst]->setAlsoPack(false); 7927 7928 // Finalize the recipe for Instr, first if it is not predicated. 7929 if (!IsPredicated) { 7930 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7931 VPBB->appendRecipe(Recipe); 7932 return VPBB; 7933 } 7934 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7935 assert(VPBB->getSuccessors().empty() && 7936 "VPBB has successors when handling predicated replication."); 7937 // Record predicated instructions for above packing optimizations. 7938 PredInst2Recipe[I] = Recipe; 7939 VPBlockBase *Region = 7940 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7941 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7942 } 7943 7944 VPRegionBlock * 7945 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7946 VPRecipeBase *PredRecipe, 7947 VPlanPtr &Plan) { 7948 // Instructions marked for predication are replicated and placed under an 7949 // if-then construct to prevent side-effects. 7950 7951 // Generate recipes to compute the block mask for this region. 7952 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7953 7954 // Build the triangular if-then region. 7955 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7956 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7957 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7958 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7959 auto *PHIRecipe = 7960 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7961 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7962 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7963 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7964 7965 // Note: first set Entry as region entry and then connect successors starting 7966 // from it in order, to propagate the "parent" of each VPBasicBlock. 7967 Entry->setTwoSuccessors(Pred, Exit); 7968 Pred->setOneSuccessor(Exit); 7969 7970 return Region; 7971 } 7972 7973 LoopVectorizationPlanner::VPlanPtr 7974 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7975 const SmallPtrSetImpl<Value *> &NeedDef) { 7976 EdgeMaskCache.clear(); 7977 BlockMaskCache.clear(); 7978 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7979 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7980 7981 // Collect instructions from the original loop that will become trivially dead 7982 // in the vectorized loop. We don't need to vectorize these instructions. For 7983 // example, original induction update instructions can become dead because we 7984 // separately emit induction "steps" when generating code for the new loop. 7985 // Similarly, we create a new latch condition when setting up the structure 7986 // of the new loop, so the old one can become dead. 7987 SmallPtrSet<Instruction *, 4> DeadInstructions; 7988 collectTriviallyDeadInstructions(DeadInstructions); 7989 7990 // Hold a mapping from predicated instructions to their recipes, in order to 7991 // fix their AlsoPack behavior if a user is determined to replicate and use a 7992 // scalar instead of vector value. 7993 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7994 7995 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7996 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7997 auto Plan = llvm::make_unique<VPlan>(VPBB); 7998 7999 // Represent values that will have defs inside VPlan. 8000 for (Value *V : NeedDef) 8001 Plan->addVPValue(V); 8002 8003 // Scan the body of the loop in a topological order to visit each basic block 8004 // after having visited its predecessor basic blocks. 8005 LoopBlocksDFS DFS(OrigLoop); 8006 DFS.perform(LI); 8007 8008 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8009 // Relevant instructions from basic block BB will be grouped into VPRecipe 8010 // ingredients and fill a new VPBasicBlock. 8011 unsigned VPBBsForBB = 0; 8012 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8013 VPBB->setOneSuccessor(FirstVPBBForBB); 8014 VPBB = FirstVPBBForBB; 8015 Builder.setInsertPoint(VPBB); 8016 8017 std::vector<Instruction *> Ingredients; 8018 8019 // Organize the ingredients to vectorize from current basic block in the 8020 // right order. 8021 for (Instruction &I : *BB) { 8022 Instruction *Instr = &I; 8023 8024 // First filter out irrelevant instructions, to ensure no recipes are 8025 // built for them. 8026 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8027 DeadInstructions.count(Instr)) 8028 continue; 8029 8030 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8031 // member of the IG, do not construct any Recipe for it. 8032 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8033 if (IG && Instr != IG->getInsertPos() && 8034 Range.Start >= 2 && // Query is illegal for VF == 1 8035 CM.getWideningDecision(Instr, Range.Start) == 8036 LoopVectorizationCostModel::CM_Interleave) { 8037 if (SinkAfterInverse.count(Instr)) 8038 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8039 continue; 8040 } 8041 8042 // Move instructions to handle first-order recurrences, step 1: avoid 8043 // handling this instruction until after we've handled the instruction it 8044 // should follow. 8045 auto SAIt = SinkAfter.find(Instr); 8046 if (SAIt != SinkAfter.end()) { 8047 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8048 << " to vectorize a 1st order recurrence.\n"); 8049 SinkAfterInverse[SAIt->second] = Instr; 8050 continue; 8051 } 8052 8053 Ingredients.push_back(Instr); 8054 8055 // Move instructions to handle first-order recurrences, step 2: push the 8056 // instruction to be sunk at its insertion point. 8057 auto SAInvIt = SinkAfterInverse.find(Instr); 8058 if (SAInvIt != SinkAfterInverse.end()) 8059 Ingredients.push_back(SAInvIt->second); 8060 } 8061 8062 // Introduce each ingredient into VPlan. 8063 for (Instruction *Instr : Ingredients) { 8064 VPRecipeBase *Recipe = nullptr; 8065 8066 // Check if Instr should belong to an interleave memory recipe, or already 8067 // does. In the latter case Instr is irrelevant. 8068 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8069 VPBB->appendRecipe(Recipe); 8070 continue; 8071 } 8072 8073 // Check if Instr is a memory operation that should be widened. 8074 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8075 VPBB->appendRecipe(Recipe); 8076 continue; 8077 } 8078 8079 // Check if Instr should form some PHI recipe. 8080 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8081 VPBB->appendRecipe(Recipe); 8082 continue; 8083 } 8084 if ((Recipe = tryToBlend(Instr, Plan))) { 8085 VPBB->appendRecipe(Recipe); 8086 continue; 8087 } 8088 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8089 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8090 continue; 8091 } 8092 8093 // Check if Instr is to be widened by a general VPWidenRecipe, after 8094 // having first checked for specific widening recipes that deal with 8095 // Interleave Groups, Inductions and Phi nodes. 8096 if (tryToWiden(Instr, VPBB, Range)) 8097 continue; 8098 8099 // Otherwise, if all widening options failed, Instruction is to be 8100 // replicated. This may create a successor for VPBB. 8101 VPBasicBlock *NextVPBB = 8102 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8103 if (NextVPBB != VPBB) { 8104 VPBB = NextVPBB; 8105 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8106 : ""); 8107 } 8108 } 8109 } 8110 8111 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8112 // may also be empty, such as the last one VPBB, reflecting original 8113 // basic-blocks with no recipes. 8114 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8115 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8116 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8117 PreEntry->disconnectSuccessor(Entry); 8118 delete PreEntry; 8119 8120 std::string PlanName; 8121 raw_string_ostream RSO(PlanName); 8122 unsigned VF = Range.Start; 8123 Plan->addVF(VF); 8124 RSO << "Initial VPlan for VF={" << VF; 8125 for (VF *= 2; VF < Range.End; VF *= 2) { 8126 Plan->addVF(VF); 8127 RSO << "," << VF; 8128 } 8129 RSO << "},UF>=1"; 8130 RSO.flush(); 8131 Plan->setName(PlanName); 8132 8133 return Plan; 8134 } 8135 8136 Value* LoopVectorizationPlanner::VPCallbackILV:: 8137 getOrCreateVectorValues(Value *V, unsigned Part) { 8138 return ILV.getOrCreateVectorValue(V, Part); 8139 } 8140 8141 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8142 O << " +\n" 8143 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8144 IG->getInsertPos()->printAsOperand(O, false); 8145 O << "\\l\""; 8146 for (unsigned i = 0; i < IG->getFactor(); ++i) 8147 if (Instruction *I = IG->getMember(i)) 8148 O << " +\n" 8149 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8150 } 8151 8152 void VPWidenRecipe::execute(VPTransformState &State) { 8153 for (auto &Instr : make_range(Begin, End)) 8154 State.ILV->widenInstruction(Instr); 8155 } 8156 8157 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8158 assert(!State.Instance && "Int or FP induction being replicated."); 8159 State.ILV->widenIntOrFpInduction(IV, Trunc); 8160 } 8161 8162 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8163 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8164 } 8165 8166 void VPBlendRecipe::execute(VPTransformState &State) { 8167 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8168 // We know that all PHIs in non-header blocks are converted into 8169 // selects, so we don't have to worry about the insertion order and we 8170 // can just use the builder. 8171 // At this point we generate the predication tree. There may be 8172 // duplications since this is a simple recursive scan, but future 8173 // optimizations will clean it up. 8174 8175 unsigned NumIncoming = Phi->getNumIncomingValues(); 8176 8177 assert((User || NumIncoming == 1) && 8178 "Multiple predecessors with predecessors having a full mask"); 8179 // Generate a sequence of selects of the form: 8180 // SELECT(Mask3, In3, 8181 // SELECT(Mask2, In2, 8182 // ( ...))) 8183 InnerLoopVectorizer::VectorParts Entry(State.UF); 8184 for (unsigned In = 0; In < NumIncoming; ++In) { 8185 for (unsigned Part = 0; Part < State.UF; ++Part) { 8186 // We might have single edge PHIs (blocks) - use an identity 8187 // 'select' for the first PHI operand. 8188 Value *In0 = 8189 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8190 if (In == 0) 8191 Entry[Part] = In0; // Initialize with the first incoming value. 8192 else { 8193 // Select between the current value and the previous incoming edge 8194 // based on the incoming mask. 8195 Value *Cond = State.get(User->getOperand(In), Part); 8196 Entry[Part] = 8197 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8198 } 8199 } 8200 } 8201 for (unsigned Part = 0; Part < State.UF; ++Part) 8202 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8203 } 8204 8205 void VPInterleaveRecipe::execute(VPTransformState &State) { 8206 assert(!State.Instance && "Interleave group being replicated."); 8207 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8208 } 8209 8210 void VPReplicateRecipe::execute(VPTransformState &State) { 8211 if (State.Instance) { // Generate a single instance. 8212 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8213 // Insert scalar instance packing it into a vector. 8214 if (AlsoPack && State.VF > 1) { 8215 // If we're constructing lane 0, initialize to start from undef. 8216 if (State.Instance->Lane == 0) { 8217 Value *Undef = 8218 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8219 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8220 } 8221 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8222 } 8223 return; 8224 } 8225 8226 // Generate scalar instances for all VF lanes of all UF parts, unless the 8227 // instruction is uniform inwhich case generate only the first lane for each 8228 // of the UF parts. 8229 unsigned EndLane = IsUniform ? 1 : State.VF; 8230 for (unsigned Part = 0; Part < State.UF; ++Part) 8231 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8232 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8233 } 8234 8235 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8236 assert(State.Instance && "Branch on Mask works only on single instance."); 8237 8238 unsigned Part = State.Instance->Part; 8239 unsigned Lane = State.Instance->Lane; 8240 8241 Value *ConditionBit = nullptr; 8242 if (!User) // Block in mask is all-one. 8243 ConditionBit = State.Builder.getTrue(); 8244 else { 8245 VPValue *BlockInMask = User->getOperand(0); 8246 ConditionBit = State.get(BlockInMask, Part); 8247 if (ConditionBit->getType()->isVectorTy()) 8248 ConditionBit = State.Builder.CreateExtractElement( 8249 ConditionBit, State.Builder.getInt32(Lane)); 8250 } 8251 8252 // Replace the temporary unreachable terminator with a new conditional branch, 8253 // whose two destinations will be set later when they are created. 8254 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8255 assert(isa<UnreachableInst>(CurrentTerminator) && 8256 "Expected to replace unreachable terminator with conditional branch."); 8257 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8258 CondBr->setSuccessor(0, nullptr); 8259 ReplaceInstWithInst(CurrentTerminator, CondBr); 8260 } 8261 8262 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8263 assert(State.Instance && "Predicated instruction PHI works per instance."); 8264 Instruction *ScalarPredInst = cast<Instruction>( 8265 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8266 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8267 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8268 assert(PredicatingBB && "Predicated block has no single predecessor."); 8269 8270 // By current pack/unpack logic we need to generate only a single phi node: if 8271 // a vector value for the predicated instruction exists at this point it means 8272 // the instruction has vector users only, and a phi for the vector value is 8273 // needed. In this case the recipe of the predicated instruction is marked to 8274 // also do that packing, thereby "hoisting" the insert-element sequence. 8275 // Otherwise, a phi node for the scalar value is needed. 8276 unsigned Part = State.Instance->Part; 8277 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8278 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8279 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8280 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8281 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8282 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8283 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8284 } else { 8285 Type *PredInstType = PredInst->getType(); 8286 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8287 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8288 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8289 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8290 } 8291 } 8292 8293 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8294 if (!User) 8295 return State.ILV->vectorizeMemoryInstruction(&Instr); 8296 8297 // Last (and currently only) operand is a mask. 8298 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8299 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8300 for (unsigned Part = 0; Part < State.UF; ++Part) 8301 MaskValues[Part] = State.get(Mask, Part); 8302 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8303 } 8304 8305 bool LoopVectorizePass::processLoop(Loop *L) { 8306 assert(L->empty() && "Only process inner loops."); 8307 8308 #ifndef NDEBUG 8309 const std::string DebugLocStr = getDebugLocString(L); 8310 #endif /* NDEBUG */ 8311 8312 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8313 << L->getHeader()->getParent()->getName() << "\" from " 8314 << DebugLocStr << "\n"); 8315 8316 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8317 8318 DEBUG(dbgs() << "LV: Loop hints:" 8319 << " force=" 8320 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8321 ? "disabled" 8322 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8323 ? "enabled" 8324 : "?")) 8325 << " width=" << Hints.getWidth() 8326 << " unroll=" << Hints.getInterleave() << "\n"); 8327 8328 // Function containing loop 8329 Function *F = L->getHeader()->getParent(); 8330 8331 // Looking at the diagnostic output is the only way to determine if a loop 8332 // was vectorized (other than looking at the IR or machine code), so it 8333 // is important to generate an optimization remark for each loop. Most of 8334 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8335 // generated as OptimizationRemark and OptimizationRemarkMissed are 8336 // less verbose reporting vectorized loops and unvectorized loops that may 8337 // benefit from vectorization, respectively. 8338 8339 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8340 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8341 return false; 8342 } 8343 8344 PredicatedScalarEvolution PSE(*SE, *L); 8345 8346 // Check if it is legal to vectorize the loop. 8347 LoopVectorizationRequirements Requirements(*ORE); 8348 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8349 &Requirements, &Hints, DB, AC); 8350 if (!LVL.canVectorize()) { 8351 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8352 emitMissedWarning(F, L, Hints, ORE); 8353 return false; 8354 } 8355 8356 // Check the function attributes to find out if this function should be 8357 // optimized for size. 8358 bool OptForSize = 8359 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8360 8361 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8362 // count by optimizing for size, to minimize overheads. 8363 // Prefer constant trip counts over profile data, over upper bound estimate. 8364 unsigned ExpectedTC = 0; 8365 bool HasExpectedTC = false; 8366 if (const SCEVConstant *ConstExits = 8367 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 8368 const APInt &ExitsCount = ConstExits->getAPInt(); 8369 // We are interested in small values for ExpectedTC. Skip over those that 8370 // can't fit an unsigned. 8371 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 8372 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 8373 HasExpectedTC = true; 8374 } 8375 } 8376 // ExpectedTC may be large because it's bound by a variable. Check 8377 // profiling information to validate we should vectorize. 8378 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8379 auto EstimatedTC = getLoopEstimatedTripCount(L); 8380 if (EstimatedTC) { 8381 ExpectedTC = *EstimatedTC; 8382 HasExpectedTC = true; 8383 } 8384 } 8385 if (!HasExpectedTC) { 8386 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8387 HasExpectedTC = (ExpectedTC > 0); 8388 } 8389 8390 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8391 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8392 << "This loop is worth vectorizing only if no scalar " 8393 << "iteration overheads are incurred."); 8394 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8395 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8396 else { 8397 DEBUG(dbgs() << "\n"); 8398 // Loops with a very small trip count are considered for vectorization 8399 // under OptForSize, thereby making sure the cost of their loop body is 8400 // dominant, free of runtime guards and scalar iteration overheads. 8401 OptForSize = true; 8402 } 8403 } 8404 8405 // Check the function attributes to see if implicit floats are allowed. 8406 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8407 // an integer loop and the vector instructions selected are purely integer 8408 // vector instructions? 8409 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8410 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8411 "attribute is used.\n"); 8412 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8413 "NoImplicitFloat", L) 8414 << "loop not vectorized due to NoImplicitFloat attribute"); 8415 emitMissedWarning(F, L, Hints, ORE); 8416 return false; 8417 } 8418 8419 // Check if the target supports potentially unsafe FP vectorization. 8420 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8421 // for the target we're vectorizing for, to make sure none of the 8422 // additional fp-math flags can help. 8423 if (Hints.isPotentiallyUnsafe() && 8424 TTI->isFPVectorizationPotentiallyUnsafe()) { 8425 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8426 ORE->emit( 8427 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8428 << "loop not vectorized due to unsafe FP support."); 8429 emitMissedWarning(F, L, Hints, ORE); 8430 return false; 8431 } 8432 8433 // Use the cost model. 8434 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8435 &Hints); 8436 CM.collectValuesToIgnore(); 8437 8438 // Use the planner for vectorization. 8439 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8440 8441 // Get user vectorization factor. 8442 unsigned UserVF = Hints.getWidth(); 8443 8444 // Plan how to best vectorize, return the best VF and its cost. 8445 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8446 8447 // Select the interleave count. 8448 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8449 8450 // Get user interleave count. 8451 unsigned UserIC = Hints.getInterleave(); 8452 8453 // Identify the diagnostic messages that should be produced. 8454 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8455 bool VectorizeLoop = true, InterleaveLoop = true; 8456 if (Requirements.doesNotMeet(F, L, Hints)) { 8457 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8458 "requirements.\n"); 8459 emitMissedWarning(F, L, Hints, ORE); 8460 return false; 8461 } 8462 8463 if (VF.Width == 1) { 8464 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8465 VecDiagMsg = std::make_pair( 8466 "VectorizationNotBeneficial", 8467 "the cost-model indicates that vectorization is not beneficial"); 8468 VectorizeLoop = false; 8469 } 8470 8471 if (IC == 1 && UserIC <= 1) { 8472 // Tell the user interleaving is not beneficial. 8473 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8474 IntDiagMsg = std::make_pair( 8475 "InterleavingNotBeneficial", 8476 "the cost-model indicates that interleaving is not beneficial"); 8477 InterleaveLoop = false; 8478 if (UserIC == 1) { 8479 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8480 IntDiagMsg.second += 8481 " and is explicitly disabled or interleave count is set to 1"; 8482 } 8483 } else if (IC > 1 && UserIC == 1) { 8484 // Tell the user interleaving is beneficial, but it explicitly disabled. 8485 DEBUG(dbgs() 8486 << "LV: Interleaving is beneficial but is explicitly disabled."); 8487 IntDiagMsg = std::make_pair( 8488 "InterleavingBeneficialButDisabled", 8489 "the cost-model indicates that interleaving is beneficial " 8490 "but is explicitly disabled or interleave count is set to 1"); 8491 InterleaveLoop = false; 8492 } 8493 8494 // Override IC if user provided an interleave count. 8495 IC = UserIC > 0 ? UserIC : IC; 8496 8497 // Emit diagnostic messages, if any. 8498 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8499 if (!VectorizeLoop && !InterleaveLoop) { 8500 // Do not vectorize or interleaving the loop. 8501 ORE->emit([&]() { 8502 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8503 L->getStartLoc(), L->getHeader()) 8504 << VecDiagMsg.second; 8505 }); 8506 ORE->emit([&]() { 8507 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8508 L->getStartLoc(), L->getHeader()) 8509 << IntDiagMsg.second; 8510 }); 8511 return false; 8512 } else if (!VectorizeLoop && InterleaveLoop) { 8513 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8514 ORE->emit([&]() { 8515 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8516 L->getStartLoc(), L->getHeader()) 8517 << VecDiagMsg.second; 8518 }); 8519 } else if (VectorizeLoop && !InterleaveLoop) { 8520 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8521 << DebugLocStr << '\n'); 8522 ORE->emit([&]() { 8523 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8524 L->getStartLoc(), L->getHeader()) 8525 << IntDiagMsg.second; 8526 }); 8527 } else if (VectorizeLoop && InterleaveLoop) { 8528 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8529 << DebugLocStr << '\n'); 8530 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8531 } 8532 8533 LVP.setBestPlan(VF.Width, IC); 8534 8535 using namespace ore; 8536 8537 if (!VectorizeLoop) { 8538 assert(IC > 1 && "interleave count should not be 1 or 0"); 8539 // If we decided that it is not legal to vectorize the loop, then 8540 // interleave it. 8541 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8542 &CM); 8543 LVP.executePlan(Unroller, DT); 8544 8545 ORE->emit([&]() { 8546 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8547 L->getHeader()) 8548 << "interleaved loop (interleaved count: " 8549 << NV("InterleaveCount", IC) << ")"; 8550 }); 8551 } else { 8552 // If we decided that it is *legal* to vectorize the loop, then do it. 8553 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8554 &LVL, &CM); 8555 LVP.executePlan(LB, DT); 8556 ++LoopsVectorized; 8557 8558 // Add metadata to disable runtime unrolling a scalar loop when there are 8559 // no runtime checks about strides and memory. A scalar loop that is 8560 // rarely used is not worth unrolling. 8561 if (!LB.areSafetyChecksAdded()) 8562 AddRuntimeUnrollDisableMetaData(L); 8563 8564 // Report the vectorization decision. 8565 ORE->emit([&]() { 8566 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8567 L->getHeader()) 8568 << "vectorized loop (vectorization width: " 8569 << NV("VectorizationFactor", VF.Width) 8570 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8571 }); 8572 } 8573 8574 // Mark the loop as already vectorized to avoid vectorizing again. 8575 Hints.setAlreadyVectorized(); 8576 8577 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8578 return true; 8579 } 8580 8581 bool LoopVectorizePass::runImpl( 8582 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8583 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8584 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8585 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8586 OptimizationRemarkEmitter &ORE_) { 8587 SE = &SE_; 8588 LI = &LI_; 8589 TTI = &TTI_; 8590 DT = &DT_; 8591 BFI = &BFI_; 8592 TLI = TLI_; 8593 AA = &AA_; 8594 AC = &AC_; 8595 GetLAA = &GetLAA_; 8596 DB = &DB_; 8597 ORE = &ORE_; 8598 8599 // Don't attempt if 8600 // 1. the target claims to have no vector registers, and 8601 // 2. interleaving won't help ILP. 8602 // 8603 // The second condition is necessary because, even if the target has no 8604 // vector registers, loop vectorization may still enable scalar 8605 // interleaving. 8606 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8607 return false; 8608 8609 bool Changed = false; 8610 8611 // The vectorizer requires loops to be in simplified form. 8612 // Since simplification may add new inner loops, it has to run before the 8613 // legality and profitability checks. This means running the loop vectorizer 8614 // will simplify all loops, regardless of whether anything end up being 8615 // vectorized. 8616 for (auto &L : *LI) 8617 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8618 8619 // Build up a worklist of inner-loops to vectorize. This is necessary as 8620 // the act of vectorizing or partially unrolling a loop creates new loops 8621 // and can invalidate iterators across the loops. 8622 SmallVector<Loop *, 8> Worklist; 8623 8624 for (Loop *L : *LI) 8625 addAcyclicInnerLoop(*L, *LI, Worklist); 8626 8627 LoopsAnalyzed += Worklist.size(); 8628 8629 // Now walk the identified inner loops. 8630 while (!Worklist.empty()) { 8631 Loop *L = Worklist.pop_back_val(); 8632 8633 // For the inner loops we actually process, form LCSSA to simplify the 8634 // transform. 8635 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8636 8637 Changed |= processLoop(L); 8638 } 8639 8640 // Process each loop nest in the function. 8641 return Changed; 8642 } 8643 8644 PreservedAnalyses LoopVectorizePass::run(Function &F, 8645 FunctionAnalysisManager &AM) { 8646 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8647 auto &LI = AM.getResult<LoopAnalysis>(F); 8648 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8649 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8650 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8651 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8652 auto &AA = AM.getResult<AAManager>(F); 8653 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8654 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8655 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8656 8657 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8658 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8659 [&](Loop &L) -> const LoopAccessInfo & { 8660 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8661 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8662 }; 8663 bool Changed = 8664 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8665 if (!Changed) 8666 return PreservedAnalyses::all(); 8667 PreservedAnalyses PA; 8668 PA.preserve<LoopAnalysis>(); 8669 PA.preserve<DominatorTreeAnalysis>(); 8670 PA.preserve<BasicAA>(); 8671 PA.preserve<GlobalsAA>(); 8672 return PA; 8673 } 8674