1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39 //  Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45 //  Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
50 #include "LoopVectorizationPlanner.h"
51 #include "llvm/ADT/APInt.h"
52 #include "llvm/ADT/ArrayRef.h"
53 #include "llvm/ADT/DenseMap.h"
54 #include "llvm/ADT/DenseMapInfo.h"
55 #include "llvm/ADT/Hashing.h"
56 #include "llvm/ADT/MapVector.h"
57 #include "llvm/ADT/None.h"
58 #include "llvm/ADT/Optional.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallSet.h"
63 #include "llvm/ADT/SmallVector.h"
64 #include "llvm/ADT/Statistic.h"
65 #include "llvm/ADT/StringRef.h"
66 #include "llvm/ADT/Twine.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/BasicAliasAnalysis.h"
70 #include "llvm/Analysis/BlockFrequencyInfo.h"
71 #include "llvm/Analysis/CFG.h"
72 #include "llvm/Analysis/CodeMetrics.h"
73 #include "llvm/Analysis/DemandedBits.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/LoopAccessAnalysis.h"
76 #include "llvm/Analysis/LoopAnalysisManager.h"
77 #include "llvm/Analysis/LoopInfo.h"
78 #include "llvm/Analysis/LoopIterator.h"
79 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
80 #include "llvm/Analysis/ScalarEvolution.h"
81 #include "llvm/Analysis/ScalarEvolutionExpander.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/TargetTransformInfo.h"
85 #include "llvm/Analysis/VectorUtils.h"
86 #include "llvm/IR/Attributes.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DebugInfoMetadata.h"
93 #include "llvm/IR/DebugLoc.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/DiagnosticInfo.h"
96 #include "llvm/IR/Dominators.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/IRBuilder.h"
99 #include "llvm/IR/InstrTypes.h"
100 #include "llvm/IR/Instruction.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/IntrinsicInst.h"
103 #include "llvm/IR/Intrinsics.h"
104 #include "llvm/IR/LLVMContext.h"
105 #include "llvm/IR/Metadata.h"
106 #include "llvm/IR/Module.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/Type.h"
109 #include "llvm/IR/Use.h"
110 #include "llvm/IR/User.h"
111 #include "llvm/IR/Value.h"
112 #include "llvm/IR/ValueHandle.h"
113 #include "llvm/IR/Verifier.h"
114 #include "llvm/Pass.h"
115 #include "llvm/Support/Casting.h"
116 #include "llvm/Support/CommandLine.h"
117 #include "llvm/Support/Compiler.h"
118 #include "llvm/Support/Debug.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/MathExtras.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
123 #include "llvm/Transforms/Utils/LoopSimplify.h"
124 #include "llvm/Transforms/Utils/LoopUtils.h"
125 #include "llvm/Transforms/Utils/LoopVersioning.h"
126 #include <algorithm>
127 #include <cassert>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <functional>
131 #include <iterator>
132 #include <limits>
133 #include <memory>
134 #include <string>
135 #include <tuple>
136 #include <utility>
137 #include <vector>
138 
139 using namespace llvm;
140 
141 #define LV_NAME "loop-vectorize"
142 #define DEBUG_TYPE LV_NAME
143 
144 STATISTIC(LoopsVectorized, "Number of loops vectorized");
145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
146 
147 static cl::opt<bool>
148     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
149                        cl::desc("Enable if-conversion during vectorization."));
150 
151 /// Loops with a known constant trip count below this number are vectorized only
152 /// if no scalar iteration overheads are incurred.
153 static cl::opt<unsigned> TinyTripCountVectorThreshold(
154     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
155     cl::desc("Loops with a constant trip count that is smaller than this "
156              "value are vectorized only if no scalar iteration overheads "
157              "are incurred."));
158 
159 static cl::opt<bool> MaximizeBandwidth(
160     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
161     cl::desc("Maximize bandwidth when selecting vectorization factor which "
162              "will be determined by the smallest type in loop."));
163 
164 static cl::opt<bool> EnableInterleavedMemAccesses(
165     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
166     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
167 
168 /// Maximum factor for an interleaved memory access.
169 static cl::opt<unsigned> MaxInterleaveGroupFactor(
170     "max-interleave-group-factor", cl::Hidden,
171     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
172     cl::init(8));
173 
174 /// We don't interleave loops with a known constant trip count below this
175 /// number.
176 static const unsigned TinyTripCountInterleaveThreshold = 128;
177 
178 static cl::opt<unsigned> ForceTargetNumScalarRegs(
179     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
180     cl::desc("A flag that overrides the target's number of scalar registers."));
181 
182 static cl::opt<unsigned> ForceTargetNumVectorRegs(
183     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
184     cl::desc("A flag that overrides the target's number of vector registers."));
185 
186 /// Maximum vectorization interleave count.
187 static const unsigned MaxInterleaveFactor = 16;
188 
189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
190     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
191     cl::desc("A flag that overrides the target's max interleave factor for "
192              "scalar loops."));
193 
194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
195     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
196     cl::desc("A flag that overrides the target's max interleave factor for "
197              "vectorized loops."));
198 
199 static cl::opt<unsigned> ForceTargetInstructionCost(
200     "force-target-instruction-cost", cl::init(0), cl::Hidden,
201     cl::desc("A flag that overrides the target's expected cost for "
202              "an instruction to a single constant value. Mostly "
203              "useful for getting consistent testing."));
204 
205 static cl::opt<unsigned> SmallLoopCost(
206     "small-loop-cost", cl::init(20), cl::Hidden,
207     cl::desc(
208         "The cost of a loop that is considered 'small' by the interleaver."));
209 
210 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
211     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
212     cl::desc("Enable the use of the block frequency analysis to access PGO "
213              "heuristics minimizing code growth in cold regions and being more "
214              "aggressive in hot regions."));
215 
216 // Runtime interleave loops for load/store throughput.
217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
218     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
219     cl::desc(
220         "Enable runtime interleaving until load/store ports are saturated"));
221 
222 /// The number of stores in a loop that are allowed to need predication.
223 static cl::opt<unsigned> NumberOfStoresToPredicate(
224     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
225     cl::desc("Max number of stores to be predicated behind an if."));
226 
227 static cl::opt<bool> EnableIndVarRegisterHeur(
228     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
229     cl::desc("Count the induction variable only once when interleaving"));
230 
231 static cl::opt<bool> EnableCondStoresVectorization(
232     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
233     cl::desc("Enable if predication of stores during vectorization."));
234 
235 static cl::opt<unsigned> MaxNestedScalarReductionIC(
236     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
237     cl::desc("The maximum interleave count to use when interleaving a scalar "
238              "reduction in a nested loop."));
239 
240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
241     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
242     cl::desc("The maximum allowed number of runtime memory checks with a "
243              "vectorize(enable) pragma."));
244 
245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
246     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
247     cl::desc("The maximum number of SCEV checks allowed."));
248 
249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
250     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
251     cl::desc("The maximum number of SCEV checks allowed with a "
252              "vectorize(enable) pragma"));
253 
254 /// Create an analysis remark that explains why vectorization failed
255 ///
256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
257 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
258 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
259 /// the location of the remark.  \return the remark object that can be
260 /// streamed to.
261 static OptimizationRemarkAnalysis
262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
263                      Instruction *I = nullptr) {
264   Value *CodeRegion = TheLoop->getHeader();
265   DebugLoc DL = TheLoop->getStartLoc();
266 
267   if (I) {
268     CodeRegion = I->getParent();
269     // If there is no debug location attached to the instruction, revert back to
270     // using the loop's.
271     if (I->getDebugLoc())
272       DL = I->getDebugLoc();
273   }
274 
275   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
276   R << "loop not vectorized: ";
277   return R;
278 }
279 
280 namespace {
281 
282 class LoopVectorizationRequirements;
283 
284 } // end anonymous namespace
285 
286 /// A helper function for converting Scalar types to vector types.
287 /// If the incoming type is void, we return void. If the VF is 1, we return
288 /// the scalar type.
289 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
290   if (Scalar->isVoidTy() || VF == 1)
291     return Scalar;
292   return VectorType::get(Scalar, VF);
293 }
294 
295 // FIXME: The following helper functions have multiple implementations
296 // in the project. They can be effectively organized in a common Load/Store
297 // utilities unit.
298 
299 /// A helper function that returns the type of loaded or stored value.
300 static Type *getMemInstValueType(Value *I) {
301   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
302          "Expected Load or Store instruction");
303   if (auto *LI = dyn_cast<LoadInst>(I))
304     return LI->getType();
305   return cast<StoreInst>(I)->getValueOperand()->getType();
306 }
307 
308 /// A helper function that returns the alignment of load or store instruction.
309 static unsigned getMemInstAlignment(Value *I) {
310   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
311          "Expected Load or Store instruction");
312   if (auto *LI = dyn_cast<LoadInst>(I))
313     return LI->getAlignment();
314   return cast<StoreInst>(I)->getAlignment();
315 }
316 
317 /// A helper function that returns the address space of the pointer operand of
318 /// load or store instruction.
319 static unsigned getMemInstAddressSpace(Value *I) {
320   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
321          "Expected Load or Store instruction");
322   if (auto *LI = dyn_cast<LoadInst>(I))
323     return LI->getPointerAddressSpace();
324   return cast<StoreInst>(I)->getPointerAddressSpace();
325 }
326 
327 /// A helper function that returns true if the given type is irregular. The
328 /// type is irregular if its allocated size doesn't equal the store size of an
329 /// element of the corresponding vector type at the given vectorization factor.
330 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
331   // Determine if an array of VF elements of type Ty is "bitcast compatible"
332   // with a <VF x Ty> vector.
333   if (VF > 1) {
334     auto *VectorTy = VectorType::get(Ty, VF);
335     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
336   }
337 
338   // If the vectorization factor is one, we just check if an array of type Ty
339   // requires padding between elements.
340   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
341 }
342 
343 /// A helper function that returns the reciprocal of the block probability of
344 /// predicated blocks. If we return X, we are assuming the predicated block
345 /// will execute once for every X iterations of the loop header.
346 ///
347 /// TODO: We should use actual block probability here, if available. Currently,
348 ///       we always assume predicated blocks have a 50% chance of executing.
349 static unsigned getReciprocalPredBlockProb() { return 2; }
350 
351 /// A helper function that adds a 'fast' flag to floating-point operations.
352 static Value *addFastMathFlag(Value *V) {
353   if (isa<FPMathOperator>(V)) {
354     FastMathFlags Flags;
355     Flags.setFast();
356     cast<Instruction>(V)->setFastMathFlags(Flags);
357   }
358   return V;
359 }
360 
361 /// A helper function that returns an integer or floating-point constant with
362 /// value C.
363 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
364   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
365                            : ConstantFP::get(Ty, C);
366 }
367 
368 namespace llvm {
369 
370 /// InnerLoopVectorizer vectorizes loops which contain only one basic
371 /// block to a specified vectorization factor (VF).
372 /// This class performs the widening of scalars into vectors, or multiple
373 /// scalars. This class also implements the following features:
374 /// * It inserts an epilogue loop for handling loops that don't have iteration
375 ///   counts that are known to be a multiple of the vectorization factor.
376 /// * It handles the code generation for reduction variables.
377 /// * Scalarization (implementation using scalars) of un-vectorizable
378 ///   instructions.
379 /// InnerLoopVectorizer does not perform any vectorization-legality
380 /// checks, and relies on the caller to check for the different legality
381 /// aspects. The InnerLoopVectorizer relies on the
382 /// LoopVectorizationLegality class to provide information about the induction
383 /// and reduction variables that were found to a given vectorization factor.
384 class InnerLoopVectorizer {
385 public:
386   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
387                       LoopInfo *LI, DominatorTree *DT,
388                       const TargetLibraryInfo *TLI,
389                       const TargetTransformInfo *TTI, AssumptionCache *AC,
390                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
391                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
392                       LoopVectorizationCostModel *CM)
393       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
394         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
395         Builder(PSE.getSE()->getContext()),
396         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
397   virtual ~InnerLoopVectorizer() = default;
398 
399   /// Create a new empty loop. Unlink the old loop and connect the new one.
400   /// Return the pre-header block of the new loop.
401   BasicBlock *createVectorizedLoopSkeleton();
402 
403   /// Widen a single instruction within the innermost loop.
404   void widenInstruction(Instruction &I);
405 
406   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
407   void fixVectorizedLoop();
408 
409   // Return true if any runtime check is added.
410   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
411 
412   /// A type for vectorized values in the new loop. Each value from the
413   /// original loop, when vectorized, is represented by UF vector values in the
414   /// new unrolled loop, where UF is the unroll factor.
415   using VectorParts = SmallVector<Value *, 2>;
416 
417   /// Vectorize a single PHINode in a block. This method handles the induction
418   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
419   /// arbitrary length vectors.
420   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
421 
422   /// A helper function to scalarize a single Instruction in the innermost loop.
423   /// Generates a sequence of scalar instances for each lane between \p MinLane
424   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
425   /// inclusive..
426   void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
427                             bool IfPredicateInstr);
428 
429   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
430   /// is provided, the integer induction variable will first be truncated to
431   /// the corresponding type.
432   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
433 
434   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
435   /// vector or scalar value on-demand if one is not yet available. When
436   /// vectorizing a loop, we visit the definition of an instruction before its
437   /// uses. When visiting the definition, we either vectorize or scalarize the
438   /// instruction, creating an entry for it in the corresponding map. (In some
439   /// cases, such as induction variables, we will create both vector and scalar
440   /// entries.) Then, as we encounter uses of the definition, we derive values
441   /// for each scalar or vector use unless such a value is already available.
442   /// For example, if we scalarize a definition and one of its uses is vector,
443   /// we build the required vector on-demand with an insertelement sequence
444   /// when visiting the use. Otherwise, if the use is scalar, we can use the
445   /// existing scalar definition.
446   ///
447   /// Return a value in the new loop corresponding to \p V from the original
448   /// loop at unroll index \p Part. If the value has already been vectorized,
449   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
450   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
451   /// a new vector value on-demand by inserting the scalar values into a vector
452   /// with an insertelement sequence. If the value has been neither vectorized
453   /// nor scalarized, it must be loop invariant, so we simply broadcast the
454   /// value into a vector.
455   Value *getOrCreateVectorValue(Value *V, unsigned Part);
456 
457   /// Return a value in the new loop corresponding to \p V from the original
458   /// loop at unroll and vector indices \p Instance. If the value has been
459   /// vectorized but not scalarized, the necessary extractelement instruction
460   /// will be generated.
461   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
462 
463   /// Construct the vector value of a scalarized value \p V one lane at a time.
464   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
465 
466   /// Try to vectorize the interleaved access group that \p Instr belongs to.
467   void vectorizeInterleaveGroup(Instruction *Instr);
468 
469   /// Vectorize Load and Store instructions, optionally masking the vector
470   /// operations if \p BlockInMask is non-null.
471   void vectorizeMemoryInstruction(Instruction *Instr,
472                                   VectorParts *BlockInMask = nullptr);
473 
474   /// \brief Set the debug location in the builder using the debug location in
475   /// the instruction.
476   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
477 
478 protected:
479   friend class LoopVectorizationPlanner;
480 
481   /// A small list of PHINodes.
482   using PhiVector = SmallVector<PHINode *, 4>;
483 
484   /// A type for scalarized values in the new loop. Each value from the
485   /// original loop, when scalarized, is represented by UF x VF scalar values
486   /// in the new unrolled loop, where UF is the unroll factor and VF is the
487   /// vectorization factor.
488   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
489 
490   /// Set up the values of the IVs correctly when exiting the vector loop.
491   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
492                     Value *CountRoundDown, Value *EndValue,
493                     BasicBlock *MiddleBlock);
494 
495   /// Create a new induction variable inside L.
496   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
497                                    Value *Step, Instruction *DL);
498 
499   /// Handle all cross-iteration phis in the header.
500   void fixCrossIterationPHIs();
501 
502   /// Fix a first-order recurrence. This is the second phase of vectorizing
503   /// this phi node.
504   void fixFirstOrderRecurrence(PHINode *Phi);
505 
506   /// Fix a reduction cross-iteration phi. This is the second phase of
507   /// vectorizing this phi node.
508   void fixReduction(PHINode *Phi);
509 
510   /// \brief The Loop exit block may have single value PHI nodes with some
511   /// incoming value. While vectorizing we only handled real values
512   /// that were defined inside the loop and we should have one value for
513   /// each predecessor of its parent basic block. See PR14725.
514   void fixLCSSAPHIs();
515 
516   /// Iteratively sink the scalarized operands of a predicated instruction into
517   /// the block that was created for it.
518   void sinkScalarOperands(Instruction *PredInst);
519 
520   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
521   /// represented as.
522   void truncateToMinimalBitwidths();
523 
524   /// Insert the new loop to the loop hierarchy and pass manager
525   /// and update the analysis passes.
526   void updateAnalysis();
527 
528   /// Create a broadcast instruction. This method generates a broadcast
529   /// instruction (shuffle) for loop invariant values and for the induction
530   /// value. If this is the induction variable then we extend it to N, N+1, ...
531   /// this is needed because each iteration in the loop corresponds to a SIMD
532   /// element.
533   virtual Value *getBroadcastInstrs(Value *V);
534 
535   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
536   /// to each vector element of Val. The sequence starts at StartIndex.
537   /// \p Opcode is relevant for FP induction variable.
538   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
539                                Instruction::BinaryOps Opcode =
540                                Instruction::BinaryOpsEnd);
541 
542   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
543   /// variable on which to base the steps, \p Step is the size of the step, and
544   /// \p EntryVal is the value from the original loop that maps to the steps.
545   /// Note that \p EntryVal doesn't have to be an induction variable - it
546   /// can also be a truncate instruction.
547   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
548                         const InductionDescriptor &ID);
549 
550   /// Create a vector induction phi node based on an existing scalar one. \p
551   /// EntryVal is the value from the original loop that maps to the vector phi
552   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
553   /// truncate instruction, instead of widening the original IV, we widen a
554   /// version of the IV truncated to \p EntryVal's type.
555   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
556                                        Value *Step, Instruction *EntryVal);
557 
558   /// Returns true if an instruction \p I should be scalarized instead of
559   /// vectorized for the chosen vectorization factor.
560   bool shouldScalarizeInstruction(Instruction *I) const;
561 
562   /// Returns true if we should generate a scalar version of \p IV.
563   bool needsScalarInduction(Instruction *IV) const;
564 
565   /// If there is a cast involved in the induction variable \p ID, which should
566   /// be ignored in the vectorized loop body, this function records the
567   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
568   /// cast. We had already proved that the casted Phi is equal to the uncasted
569   /// Phi in the vectorized loop (under a runtime guard), and therefore
570   /// there is no need to vectorize the cast - the same value can be used in the
571   /// vector loop for both the Phi and the cast.
572   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
573   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
574   ///
575   /// \p EntryVal is the value from the original loop that maps to the vector
576   /// phi node and is used to distinguish what is the IV currently being
577   /// processed - original one (if \p EntryVal is a phi corresponding to the
578   /// original IV) or the "newly-created" one based on the proof mentioned above
579   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
580   /// latter case \p EntryVal is a TruncInst and we must not record anything for
581   /// that IV, but it's error-prone to expect callers of this routine to care
582   /// about that, hence this explicit parameter.
583   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
584                                              const Instruction *EntryVal,
585                                              Value *VectorLoopValue,
586                                              unsigned Part,
587                                              unsigned Lane = UINT_MAX);
588 
589   /// Generate a shuffle sequence that will reverse the vector Vec.
590   virtual Value *reverseVector(Value *Vec);
591 
592   /// Returns (and creates if needed) the original loop trip count.
593   Value *getOrCreateTripCount(Loop *NewLoop);
594 
595   /// Returns (and creates if needed) the trip count of the widened loop.
596   Value *getOrCreateVectorTripCount(Loop *NewLoop);
597 
598   /// Returns a bitcasted value to the requested vector type.
599   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
600   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
601                                 const DataLayout &DL);
602 
603   /// Emit a bypass check to see if the vector trip count is zero, including if
604   /// it overflows.
605   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
606 
607   /// Emit a bypass check to see if all of the SCEV assumptions we've
608   /// had to make are correct.
609   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
610 
611   /// Emit bypass checks to check any memory assumptions we may have made.
612   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
613 
614   /// Add additional metadata to \p To that was not present on \p Orig.
615   ///
616   /// Currently this is used to add the noalias annotations based on the
617   /// inserted memchecks.  Use this for instructions that are *cloned* into the
618   /// vector loop.
619   void addNewMetadata(Instruction *To, const Instruction *Orig);
620 
621   /// Add metadata from one instruction to another.
622   ///
623   /// This includes both the original MDs from \p From and additional ones (\see
624   /// addNewMetadata).  Use this for *newly created* instructions in the vector
625   /// loop.
626   void addMetadata(Instruction *To, Instruction *From);
627 
628   /// \brief Similar to the previous function but it adds the metadata to a
629   /// vector of instructions.
630   void addMetadata(ArrayRef<Value *> To, Instruction *From);
631 
632   /// The original loop.
633   Loop *OrigLoop;
634 
635   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
636   /// dynamic knowledge to simplify SCEV expressions and converts them to a
637   /// more usable form.
638   PredicatedScalarEvolution &PSE;
639 
640   /// Loop Info.
641   LoopInfo *LI;
642 
643   /// Dominator Tree.
644   DominatorTree *DT;
645 
646   /// Alias Analysis.
647   AliasAnalysis *AA;
648 
649   /// Target Library Info.
650   const TargetLibraryInfo *TLI;
651 
652   /// Target Transform Info.
653   const TargetTransformInfo *TTI;
654 
655   /// Assumption Cache.
656   AssumptionCache *AC;
657 
658   /// Interface to emit optimization remarks.
659   OptimizationRemarkEmitter *ORE;
660 
661   /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
662   /// used.
663   ///
664   /// This is currently only used to add no-alias metadata based on the
665   /// memchecks.  The actually versioning is performed manually.
666   std::unique_ptr<LoopVersioning> LVer;
667 
668   /// The vectorization SIMD factor to use. Each vector will have this many
669   /// vector elements.
670   unsigned VF;
671 
672   /// The vectorization unroll factor to use. Each scalar is vectorized to this
673   /// many different vector instructions.
674   unsigned UF;
675 
676   /// The builder that we use
677   IRBuilder<> Builder;
678 
679   // --- Vectorization state ---
680 
681   /// The vector-loop preheader.
682   BasicBlock *LoopVectorPreHeader;
683 
684   /// The scalar-loop preheader.
685   BasicBlock *LoopScalarPreHeader;
686 
687   /// Middle Block between the vector and the scalar.
688   BasicBlock *LoopMiddleBlock;
689 
690   /// The ExitBlock of the scalar loop.
691   BasicBlock *LoopExitBlock;
692 
693   /// The vector loop body.
694   BasicBlock *LoopVectorBody;
695 
696   /// The scalar loop body.
697   BasicBlock *LoopScalarBody;
698 
699   /// A list of all bypass blocks. The first block is the entry of the loop.
700   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
701 
702   /// The new Induction variable which was added to the new block.
703   PHINode *Induction = nullptr;
704 
705   /// The induction variable of the old basic block.
706   PHINode *OldInduction = nullptr;
707 
708   /// Maps values from the original loop to their corresponding values in the
709   /// vectorized loop. A key value can map to either vector values, scalar
710   /// values or both kinds of values, depending on whether the key was
711   /// vectorized and scalarized.
712   VectorizerValueMap VectorLoopValueMap;
713 
714   /// Store instructions that were predicated.
715   SmallVector<Instruction *, 4> PredicatedInstructions;
716 
717   /// Trip count of the original loop.
718   Value *TripCount = nullptr;
719 
720   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
721   Value *VectorTripCount = nullptr;
722 
723   /// The legality analysis.
724   LoopVectorizationLegality *Legal;
725 
726   /// The profitablity analysis.
727   LoopVectorizationCostModel *Cost;
728 
729   // Record whether runtime checks are added.
730   bool AddedSafetyChecks = false;
731 
732   // Holds the end values for each induction variable. We save the end values
733   // so we can later fix-up the external users of the induction variables.
734   DenseMap<PHINode *, Value *> IVEndValues;
735 };
736 
737 class InnerLoopUnroller : public InnerLoopVectorizer {
738 public:
739   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
740                     LoopInfo *LI, DominatorTree *DT,
741                     const TargetLibraryInfo *TLI,
742                     const TargetTransformInfo *TTI, AssumptionCache *AC,
743                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
744                     LoopVectorizationLegality *LVL,
745                     LoopVectorizationCostModel *CM)
746       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
747                             UnrollFactor, LVL, CM) {}
748 
749 private:
750   Value *getBroadcastInstrs(Value *V) override;
751   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
752                        Instruction::BinaryOps Opcode =
753                        Instruction::BinaryOpsEnd) override;
754   Value *reverseVector(Value *Vec) override;
755 };
756 
757 } // end namespace llvm
758 
759 /// \brief Look for a meaningful debug location on the instruction or it's
760 /// operands.
761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
762   if (!I)
763     return I;
764 
765   DebugLoc Empty;
766   if (I->getDebugLoc() != Empty)
767     return I;
768 
769   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
770     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
771       if (OpInst->getDebugLoc() != Empty)
772         return OpInst;
773   }
774 
775   return I;
776 }
777 
778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
779   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
780     const DILocation *DIL = Inst->getDebugLoc();
781     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
782         !isa<DbgInfoIntrinsic>(Inst))
783       B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
784     else
785       B.SetCurrentDebugLocation(DIL);
786   } else
787     B.SetCurrentDebugLocation(DebugLoc());
788 }
789 
790 #ifndef NDEBUG
791 /// \return string containing a file name and a line # for the given loop.
792 static std::string getDebugLocString(const Loop *L) {
793   std::string Result;
794   if (L) {
795     raw_string_ostream OS(Result);
796     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
797       LoopDbgLoc.print(OS);
798     else
799       // Just print the module name.
800       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
801     OS.flush();
802   }
803   return Result;
804 }
805 #endif
806 
807 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
808                                          const Instruction *Orig) {
809   // If the loop was versioned with memchecks, add the corresponding no-alias
810   // metadata.
811   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
812     LVer->annotateInstWithNoAlias(To, Orig);
813 }
814 
815 void InnerLoopVectorizer::addMetadata(Instruction *To,
816                                       Instruction *From) {
817   propagateMetadata(To, From);
818   addNewMetadata(To, From);
819 }
820 
821 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
822                                       Instruction *From) {
823   for (Value *V : To) {
824     if (Instruction *I = dyn_cast<Instruction>(V))
825       addMetadata(I, From);
826   }
827 }
828 
829 namespace llvm {
830 
831 /// \brief The group of interleaved loads/stores sharing the same stride and
832 /// close to each other.
833 ///
834 /// Each member in this group has an index starting from 0, and the largest
835 /// index should be less than interleaved factor, which is equal to the absolute
836 /// value of the access's stride.
837 ///
838 /// E.g. An interleaved load group of factor 4:
839 ///        for (unsigned i = 0; i < 1024; i+=4) {
840 ///          a = A[i];                           // Member of index 0
841 ///          b = A[i+1];                         // Member of index 1
842 ///          d = A[i+3];                         // Member of index 3
843 ///          ...
844 ///        }
845 ///
846 ///      An interleaved store group of factor 4:
847 ///        for (unsigned i = 0; i < 1024; i+=4) {
848 ///          ...
849 ///          A[i]   = a;                         // Member of index 0
850 ///          A[i+1] = b;                         // Member of index 1
851 ///          A[i+2] = c;                         // Member of index 2
852 ///          A[i+3] = d;                         // Member of index 3
853 ///        }
854 ///
855 /// Note: the interleaved load group could have gaps (missing members), but
856 /// the interleaved store group doesn't allow gaps.
857 class InterleaveGroup {
858 public:
859   InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
860       : Align(Align), InsertPos(Instr) {
861     assert(Align && "The alignment should be non-zero");
862 
863     Factor = std::abs(Stride);
864     assert(Factor > 1 && "Invalid interleave factor");
865 
866     Reverse = Stride < 0;
867     Members[0] = Instr;
868   }
869 
870   bool isReverse() const { return Reverse; }
871   unsigned getFactor() const { return Factor; }
872   unsigned getAlignment() const { return Align; }
873   unsigned getNumMembers() const { return Members.size(); }
874 
875   /// \brief Try to insert a new member \p Instr with index \p Index and
876   /// alignment \p NewAlign. The index is related to the leader and it could be
877   /// negative if it is the new leader.
878   ///
879   /// \returns false if the instruction doesn't belong to the group.
880   bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
881     assert(NewAlign && "The new member's alignment should be non-zero");
882 
883     int Key = Index + SmallestKey;
884 
885     // Skip if there is already a member with the same index.
886     if (Members.count(Key))
887       return false;
888 
889     if (Key > LargestKey) {
890       // The largest index is always less than the interleave factor.
891       if (Index >= static_cast<int>(Factor))
892         return false;
893 
894       LargestKey = Key;
895     } else if (Key < SmallestKey) {
896       // The largest index is always less than the interleave factor.
897       if (LargestKey - Key >= static_cast<int>(Factor))
898         return false;
899 
900       SmallestKey = Key;
901     }
902 
903     // It's always safe to select the minimum alignment.
904     Align = std::min(Align, NewAlign);
905     Members[Key] = Instr;
906     return true;
907   }
908 
909   /// \brief Get the member with the given index \p Index
910   ///
911   /// \returns nullptr if contains no such member.
912   Instruction *getMember(unsigned Index) const {
913     int Key = SmallestKey + Index;
914     if (!Members.count(Key))
915       return nullptr;
916 
917     return Members.find(Key)->second;
918   }
919 
920   /// \brief Get the index for the given member. Unlike the key in the member
921   /// map, the index starts from 0.
922   unsigned getIndex(Instruction *Instr) const {
923     for (auto I : Members)
924       if (I.second == Instr)
925         return I.first - SmallestKey;
926 
927     llvm_unreachable("InterleaveGroup contains no such member");
928   }
929 
930   Instruction *getInsertPos() const { return InsertPos; }
931   void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
932 
933   /// Add metadata (e.g. alias info) from the instructions in this group to \p
934   /// NewInst.
935   ///
936   /// FIXME: this function currently does not add noalias metadata a'la
937   /// addNewMedata.  To do that we need to compute the intersection of the
938   /// noalias info from all members.
939   void addMetadata(Instruction *NewInst) const {
940     SmallVector<Value *, 4> VL;
941     std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
942                    [](std::pair<int, Instruction *> p) { return p.second; });
943     propagateMetadata(NewInst, VL);
944   }
945 
946 private:
947   unsigned Factor; // Interleave Factor.
948   bool Reverse;
949   unsigned Align;
950   DenseMap<int, Instruction *> Members;
951   int SmallestKey = 0;
952   int LargestKey = 0;
953 
954   // To avoid breaking dependences, vectorized instructions of an interleave
955   // group should be inserted at either the first load or the last store in
956   // program order.
957   //
958   // E.g. %even = load i32             // Insert Position
959   //      %add = add i32 %even         // Use of %even
960   //      %odd = load i32
961   //
962   //      store i32 %even
963   //      %odd = add i32               // Def of %odd
964   //      store i32 %odd               // Insert Position
965   Instruction *InsertPos;
966 };
967 } // end namespace llvm
968 
969 namespace {
970 
971 /// \brief Drive the analysis of interleaved memory accesses in the loop.
972 ///
973 /// Use this class to analyze interleaved accesses only when we can vectorize
974 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
975 /// on interleaved accesses is unsafe.
976 ///
977 /// The analysis collects interleave groups and records the relationships
978 /// between the member and the group in a map.
979 class InterleavedAccessInfo {
980 public:
981   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
982                         DominatorTree *DT, LoopInfo *LI)
983       : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {}
984 
985   ~InterleavedAccessInfo() {
986     SmallSet<InterleaveGroup *, 4> DelSet;
987     // Avoid releasing a pointer twice.
988     for (auto &I : InterleaveGroupMap)
989       DelSet.insert(I.second);
990     for (auto *Ptr : DelSet)
991       delete Ptr;
992   }
993 
994   /// \brief Analyze the interleaved accesses and collect them in interleave
995   /// groups. Substitute symbolic strides using \p Strides.
996   void analyzeInterleaving(const ValueToValueMap &Strides);
997 
998   /// \brief Check if \p Instr belongs to any interleave group.
999   bool isInterleaved(Instruction *Instr) const {
1000     return InterleaveGroupMap.count(Instr);
1001   }
1002 
1003   /// \brief Get the interleave group that \p Instr belongs to.
1004   ///
1005   /// \returns nullptr if doesn't have such group.
1006   InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
1007     if (InterleaveGroupMap.count(Instr))
1008       return InterleaveGroupMap.find(Instr)->second;
1009     return nullptr;
1010   }
1011 
1012   /// \brief Returns true if an interleaved group that may access memory
1013   /// out-of-bounds requires a scalar epilogue iteration for correctness.
1014   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
1015 
1016   /// \brief Initialize the LoopAccessInfo used for dependence checking.
1017   void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
1018 
1019 private:
1020   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
1021   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
1022   /// The interleaved access analysis can also add new predicates (for example
1023   /// by versioning strides of pointers).
1024   PredicatedScalarEvolution &PSE;
1025 
1026   Loop *TheLoop;
1027   DominatorTree *DT;
1028   LoopInfo *LI;
1029   const LoopAccessInfo *LAI = nullptr;
1030 
1031   /// True if the loop may contain non-reversed interleaved groups with
1032   /// out-of-bounds accesses. We ensure we don't speculatively access memory
1033   /// out-of-bounds by executing at least one scalar epilogue iteration.
1034   bool RequiresScalarEpilogue = false;
1035 
1036   /// Holds the relationships between the members and the interleave group.
1037   DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1038 
1039   /// Holds dependences among the memory accesses in the loop. It maps a source
1040   /// access to a set of dependent sink accesses.
1041   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1042 
1043   /// \brief The descriptor for a strided memory access.
1044   struct StrideDescriptor {
1045     StrideDescriptor() = default;
1046     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1047                      unsigned Align)
1048         : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1049 
1050     // The access's stride. It is negative for a reverse access.
1051     int64_t Stride = 0;
1052 
1053     // The scalar expression of this access.
1054     const SCEV *Scev = nullptr;
1055 
1056     // The size of the memory object.
1057     uint64_t Size = 0;
1058 
1059     // The alignment of this access.
1060     unsigned Align = 0;
1061   };
1062 
1063   /// \brief A type for holding instructions and their stride descriptors.
1064   using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
1065 
1066   /// \brief Create a new interleave group with the given instruction \p Instr,
1067   /// stride \p Stride and alignment \p Align.
1068   ///
1069   /// \returns the newly created interleave group.
1070   InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1071                                          unsigned Align) {
1072     assert(!InterleaveGroupMap.count(Instr) &&
1073            "Already in an interleaved access group");
1074     InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1075     return InterleaveGroupMap[Instr];
1076   }
1077 
1078   /// \brief Release the group and remove all the relationships.
1079   void releaseGroup(InterleaveGroup *Group) {
1080     for (unsigned i = 0; i < Group->getFactor(); i++)
1081       if (Instruction *Member = Group->getMember(i))
1082         InterleaveGroupMap.erase(Member);
1083 
1084     delete Group;
1085   }
1086 
1087   /// \brief Collect all the accesses with a constant stride in program order.
1088   void collectConstStrideAccesses(
1089       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1090       const ValueToValueMap &Strides);
1091 
1092   /// \brief Returns true if \p Stride is allowed in an interleaved group.
1093   static bool isStrided(int Stride) {
1094     unsigned Factor = std::abs(Stride);
1095     return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1096   }
1097 
1098   /// \brief Returns true if \p BB is a predicated block.
1099   bool isPredicated(BasicBlock *BB) const {
1100     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1101   }
1102 
1103   /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
1104   bool areDependencesValid() const {
1105     return LAI && LAI->getDepChecker().getDependences();
1106   }
1107 
1108   /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
1109   /// necessary, when constructing interleaved groups.
1110   ///
1111   /// \p A must precede \p B in program order. We return false if reordering is
1112   /// not necessary or is prevented because \p A and \p B may be dependent.
1113   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1114                                                  StrideEntry *B) const {
1115     // Code motion for interleaved accesses can potentially hoist strided loads
1116     // and sink strided stores. The code below checks the legality of the
1117     // following two conditions:
1118     //
1119     // 1. Potentially moving a strided load (B) before any store (A) that
1120     //    precedes B, or
1121     //
1122     // 2. Potentially moving a strided store (A) after any load or store (B)
1123     //    that A precedes.
1124     //
1125     // It's legal to reorder A and B if we know there isn't a dependence from A
1126     // to B. Note that this determination is conservative since some
1127     // dependences could potentially be reordered safely.
1128 
1129     // A is potentially the source of a dependence.
1130     auto *Src = A->first;
1131     auto SrcDes = A->second;
1132 
1133     // B is potentially the sink of a dependence.
1134     auto *Sink = B->first;
1135     auto SinkDes = B->second;
1136 
1137     // Code motion for interleaved accesses can't violate WAR dependences.
1138     // Thus, reordering is legal if the source isn't a write.
1139     if (!Src->mayWriteToMemory())
1140       return true;
1141 
1142     // At least one of the accesses must be strided.
1143     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1144       return true;
1145 
1146     // If dependence information is not available from LoopAccessInfo,
1147     // conservatively assume the instructions can't be reordered.
1148     if (!areDependencesValid())
1149       return false;
1150 
1151     // If we know there is a dependence from source to sink, assume the
1152     // instructions can't be reordered. Otherwise, reordering is legal.
1153     return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1154   }
1155 
1156   /// \brief Collect the dependences from LoopAccessInfo.
1157   ///
1158   /// We process the dependences once during the interleaved access analysis to
1159   /// enable constant-time dependence queries.
1160   void collectDependences() {
1161     if (!areDependencesValid())
1162       return;
1163     auto *Deps = LAI->getDepChecker().getDependences();
1164     for (auto Dep : *Deps)
1165       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1166   }
1167 };
1168 
1169 /// Utility class for getting and setting loop vectorizer hints in the form
1170 /// of loop metadata.
1171 /// This class keeps a number of loop annotations locally (as member variables)
1172 /// and can, upon request, write them back as metadata on the loop. It will
1173 /// initially scan the loop for existing metadata, and will update the local
1174 /// values based on information in the loop.
1175 /// We cannot write all values to metadata, as the mere presence of some info,
1176 /// for example 'force', means a decision has been made. So, we need to be
1177 /// careful NOT to add them if the user hasn't specifically asked so.
1178 class LoopVectorizeHints {
1179   enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };
1180 
1181   /// Hint - associates name and validation with the hint value.
1182   struct Hint {
1183     const char *Name;
1184     unsigned Value; // This may have to change for non-numeric values.
1185     HintKind Kind;
1186 
1187     Hint(const char *Name, unsigned Value, HintKind Kind)
1188         : Name(Name), Value(Value), Kind(Kind) {}
1189 
1190     bool validate(unsigned Val) {
1191       switch (Kind) {
1192       case HK_WIDTH:
1193         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1194       case HK_UNROLL:
1195         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1196       case HK_FORCE:
1197         return (Val <= 1);
1198       case HK_ISVECTORIZED:
1199         return (Val==0 || Val==1);
1200       }
1201       return false;
1202     }
1203   };
1204 
1205   /// Vectorization width.
1206   Hint Width;
1207 
1208   /// Vectorization interleave factor.
1209   Hint Interleave;
1210 
1211   /// Vectorization forced
1212   Hint Force;
1213 
1214   /// Already Vectorized
1215   Hint IsVectorized;
1216 
1217   /// Return the loop metadata prefix.
1218   static StringRef Prefix() { return "llvm.loop."; }
1219 
1220   /// True if there is any unsafe math in the loop.
1221   bool PotentiallyUnsafe = false;
1222 
1223 public:
1224   enum ForceKind {
1225     FK_Undefined = -1, ///< Not selected.
1226     FK_Disabled = 0,   ///< Forcing disabled.
1227     FK_Enabled = 1,    ///< Forcing enabled.
1228   };
1229 
1230   LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
1231                      OptimizationRemarkEmitter &ORE)
1232       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1233               HK_WIDTH),
1234         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1235         Force("vectorize.enable", FK_Undefined, HK_FORCE),
1236         IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
1237     // Populate values with existing loop metadata.
1238     getHintsFromMetadata();
1239 
1240     // force-vector-interleave overrides DisableInterleaving.
1241     if (VectorizerParams::isInterleaveForced())
1242       Interleave.Value = VectorizerParams::VectorizationInterleave;
1243 
1244     if (IsVectorized.Value != 1)
1245       // If the vectorization width and interleaving count are both 1 then
1246       // consider the loop to have been already vectorized because there's
1247       // nothing more that we can do.
1248       IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
1249     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1250           << "LV: Interleaving disabled by the pass manager\n");
1251   }
1252 
1253   /// Mark the loop L as already vectorized by setting the width to 1.
1254   void setAlreadyVectorized() {
1255     IsVectorized.Value = 1;
1256     Hint Hints[] = {IsVectorized};
1257     writeHintsToMetadata(Hints);
1258   }
1259 
1260   bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1261     if (getForce() == LoopVectorizeHints::FK_Disabled) {
1262       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1263       emitRemarkWithHints();
1264       return false;
1265     }
1266 
1267     if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1268       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1269       emitRemarkWithHints();
1270       return false;
1271     }
1272 
1273     if (getIsVectorized() == 1) {
1274       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1275       // FIXME: Add interleave.disable metadata. This will allow
1276       // vectorize.disable to be used without disabling the pass and errors
1277       // to differentiate between disabled vectorization and a width of 1.
1278       ORE.emit([&]() {
1279         return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
1280                                           "AllDisabled", L->getStartLoc(),
1281                                           L->getHeader())
1282                << "loop not vectorized: vectorization and interleaving are "
1283                   "explicitly disabled, or the loop has already been "
1284                   "vectorized";
1285       });
1286       return false;
1287     }
1288 
1289     return true;
1290   }
1291 
1292   /// Dumps all the hint information.
1293   void emitRemarkWithHints() const {
1294     using namespace ore;
1295 
1296     ORE.emit([&]() {
1297       if (Force.Value == LoopVectorizeHints::FK_Disabled)
1298         return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
1299                                         TheLoop->getStartLoc(),
1300                                         TheLoop->getHeader())
1301                << "loop not vectorized: vectorization is explicitly disabled";
1302       else {
1303         OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
1304                                    TheLoop->getStartLoc(),
1305                                    TheLoop->getHeader());
1306         R << "loop not vectorized";
1307         if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1308           R << " (Force=" << NV("Force", true);
1309           if (Width.Value != 0)
1310             R << ", Vector Width=" << NV("VectorWidth", Width.Value);
1311           if (Interleave.Value != 0)
1312             R << ", Interleave Count="
1313               << NV("InterleaveCount", Interleave.Value);
1314           R << ")";
1315         }
1316         return R;
1317       }
1318     });
1319   }
1320 
1321   unsigned getWidth() const { return Width.Value; }
1322   unsigned getInterleave() const { return Interleave.Value; }
1323   unsigned getIsVectorized() const { return IsVectorized.Value; }
1324   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1325 
1326   /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1327   /// pass name to force the frontend to print the diagnostic.
1328   const char *vectorizeAnalysisPassName() const {
1329     if (getWidth() == 1)
1330       return LV_NAME;
1331     if (getForce() == LoopVectorizeHints::FK_Disabled)
1332       return LV_NAME;
1333     if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1334       return LV_NAME;
1335     return OptimizationRemarkAnalysis::AlwaysPrint;
1336   }
1337 
1338   bool allowReordering() const {
1339     // When enabling loop hints are provided we allow the vectorizer to change
1340     // the order of operations that is given by the scalar loop. This is not
1341     // enabled by default because can be unsafe or inefficient. For example,
1342     // reordering floating-point operations will change the way round-off
1343     // error accumulates in the loop.
1344     return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1345   }
1346 
1347   bool isPotentiallyUnsafe() const {
1348     // Avoid FP vectorization if the target is unsure about proper support.
1349     // This may be related to the SIMD unit in the target not handling
1350     // IEEE 754 FP ops properly, or bad single-to-double promotions.
1351     // Otherwise, a sequence of vectorized loops, even without reduction,
1352     // could lead to different end results on the destination vectors.
1353     return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1354   }
1355 
1356   void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1357 
1358 private:
1359   /// Find hints specified in the loop metadata and update local values.
1360   void getHintsFromMetadata() {
1361     MDNode *LoopID = TheLoop->getLoopID();
1362     if (!LoopID)
1363       return;
1364 
1365     // First operand should refer to the loop id itself.
1366     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1367     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1368 
1369     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1370       const MDString *S = nullptr;
1371       SmallVector<Metadata *, 4> Args;
1372 
1373       // The expected hint is either a MDString or a MDNode with the first
1374       // operand a MDString.
1375       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1376         if (!MD || MD->getNumOperands() == 0)
1377           continue;
1378         S = dyn_cast<MDString>(MD->getOperand(0));
1379         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1380           Args.push_back(MD->getOperand(i));
1381       } else {
1382         S = dyn_cast<MDString>(LoopID->getOperand(i));
1383         assert(Args.size() == 0 && "too many arguments for MDString");
1384       }
1385 
1386       if (!S)
1387         continue;
1388 
1389       // Check if the hint starts with the loop metadata prefix.
1390       StringRef Name = S->getString();
1391       if (Args.size() == 1)
1392         setHint(Name, Args[0]);
1393     }
1394   }
1395 
1396   /// Checks string hint with one operand and set value if valid.
1397   void setHint(StringRef Name, Metadata *Arg) {
1398     if (!Name.startswith(Prefix()))
1399       return;
1400     Name = Name.substr(Prefix().size(), StringRef::npos);
1401 
1402     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1403     if (!C)
1404       return;
1405     unsigned Val = C->getZExtValue();
1406 
1407     Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
1408     for (auto H : Hints) {
1409       if (Name == H->Name) {
1410         if (H->validate(Val))
1411           H->Value = Val;
1412         else
1413           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1414         break;
1415       }
1416     }
1417   }
1418 
1419   /// Create a new hint from name / value pair.
1420   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1421     LLVMContext &Context = TheLoop->getHeader()->getContext();
1422     Metadata *MDs[] = {MDString::get(Context, Name),
1423                        ConstantAsMetadata::get(
1424                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1425     return MDNode::get(Context, MDs);
1426   }
1427 
1428   /// Matches metadata with hint name.
1429   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1430     MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1431     if (!Name)
1432       return false;
1433 
1434     for (auto H : HintTypes)
1435       if (Name->getString().endswith(H.Name))
1436         return true;
1437     return false;
1438   }
1439 
1440   /// Sets current hints into loop metadata, keeping other values intact.
1441   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1442     if (HintTypes.empty())
1443       return;
1444 
1445     // Reserve the first element to LoopID (see below).
1446     SmallVector<Metadata *, 4> MDs(1);
1447     // If the loop already has metadata, then ignore the existing operands.
1448     MDNode *LoopID = TheLoop->getLoopID();
1449     if (LoopID) {
1450       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1451         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1452         // If node in update list, ignore old value.
1453         if (!matchesHintMetadataName(Node, HintTypes))
1454           MDs.push_back(Node);
1455       }
1456     }
1457 
1458     // Now, add the missing hints.
1459     for (auto H : HintTypes)
1460       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1461 
1462     // Replace current metadata node with new one.
1463     LLVMContext &Context = TheLoop->getHeader()->getContext();
1464     MDNode *NewLoopID = MDNode::get(Context, MDs);
1465     // Set operand 0 to refer to the loop id itself.
1466     NewLoopID->replaceOperandWith(0, NewLoopID);
1467 
1468     TheLoop->setLoopID(NewLoopID);
1469   }
1470 
1471   /// The loop these hints belong to.
1472   const Loop *TheLoop;
1473 
1474   /// Interface to emit optimization remarks.
1475   OptimizationRemarkEmitter &ORE;
1476 };
1477 
1478 } // end anonymous namespace
1479 
1480 static void emitMissedWarning(Function *F, Loop *L,
1481                               const LoopVectorizeHints &LH,
1482                               OptimizationRemarkEmitter *ORE) {
1483   LH.emitRemarkWithHints();
1484 
1485   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1486     if (LH.getWidth() != 1)
1487       ORE->emit(DiagnosticInfoOptimizationFailure(
1488                     DEBUG_TYPE, "FailedRequestedVectorization",
1489                     L->getStartLoc(), L->getHeader())
1490                 << "loop not vectorized: "
1491                 << "failed explicitly specified loop vectorization");
1492     else if (LH.getInterleave() != 1)
1493       ORE->emit(DiagnosticInfoOptimizationFailure(
1494                     DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
1495                     L->getHeader())
1496                 << "loop not interleaved: "
1497                 << "failed explicitly specified loop interleaving");
1498   }
1499 }
1500 
1501 namespace llvm {
1502 
1503 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1504 /// to what vectorization factor.
1505 /// This class does not look at the profitability of vectorization, only the
1506 /// legality. This class has two main kinds of checks:
1507 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1508 ///   will change the order of memory accesses in a way that will change the
1509 ///   correctness of the program.
1510 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1511 /// checks for a number of different conditions, such as the availability of a
1512 /// single induction variable, that all types are supported and vectorize-able,
1513 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1514 /// This class is also used by InnerLoopVectorizer for identifying
1515 /// induction variable and the different reduction variables.
1516 class LoopVectorizationLegality {
1517 public:
1518   LoopVectorizationLegality(
1519       Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1520       TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1521       const TargetTransformInfo *TTI,
1522       std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1523       OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
1524       LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
1525       : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA),
1526         ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H),
1527         DB(DB), AC(AC) {}
1528 
1529   /// ReductionList contains the reduction descriptors for all
1530   /// of the reductions that were found in the loop.
1531   using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;
1532 
1533   /// InductionList saves induction variables and maps them to the
1534   /// induction descriptor.
1535   using InductionList = MapVector<PHINode *, InductionDescriptor>;
1536 
1537   /// RecurrenceSet contains the phi nodes that are recurrences other than
1538   /// inductions and reductions.
1539   using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
1540 
1541   /// Returns true if it is legal to vectorize this loop.
1542   /// This does not mean that it is profitable to vectorize this
1543   /// loop, only that it is legal to do so.
1544   bool canVectorize();
1545 
1546   /// Returns the primary induction variable.
1547   PHINode *getPrimaryInduction() { return PrimaryInduction; }
1548 
1549   /// Returns the reduction variables found in the loop.
1550   ReductionList *getReductionVars() { return &Reductions; }
1551 
1552   /// Returns the induction variables found in the loop.
1553   InductionList *getInductionVars() { return &Inductions; }
1554 
1555   /// Return the first-order recurrences found in the loop.
1556   RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1557 
1558   /// Return the set of instructions to sink to handle first-order recurrences.
1559   DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }
1560 
1561   /// Returns the widest induction type.
1562   Type *getWidestInductionType() { return WidestIndTy; }
1563 
1564   /// Returns True if V is a Phi node of an induction variable in this loop.
1565   bool isInductionPhi(const Value *V);
1566 
1567   /// Returns True if V is a cast that is part of an induction def-use chain,
1568   /// and had been proven to be redundant under a runtime guard (in other
1569   /// words, the cast has the same SCEV expression as the induction phi).
1570   bool isCastedInductionVariable(const Value *V);
1571 
1572   /// Returns True if V can be considered as an induction variable in this
1573   /// loop. V can be the induction phi, or some redundant cast in the def-use
1574   /// chain of the inducion phi.
1575   bool isInductionVariable(const Value *V);
1576 
1577   /// Returns True if PN is a reduction variable in this loop.
1578   bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1579 
1580   /// Returns True if Phi is a first-order recurrence in this loop.
1581   bool isFirstOrderRecurrence(const PHINode *Phi);
1582 
1583   /// Return true if the block BB needs to be predicated in order for the loop
1584   /// to be vectorized.
1585   bool blockNeedsPredication(BasicBlock *BB);
1586 
1587   /// Check if this pointer is consecutive when vectorizing. This happens
1588   /// when the last index of the GEP is the induction variable, or that the
1589   /// pointer itself is an induction variable.
1590   /// This check allows us to vectorize A[idx] into a wide load/store.
1591   /// Returns:
1592   /// 0 - Stride is unknown or non-consecutive.
1593   /// 1 - Address is consecutive.
1594   /// -1 - Address is consecutive, and decreasing.
1595   /// NOTE: This method must only be used before modifying the original scalar
1596   /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
1597   int isConsecutivePtr(Value *Ptr);
1598 
1599   /// Returns true if the value V is uniform within the loop.
1600   bool isUniform(Value *V);
1601 
1602   /// Returns the information that we collected about runtime memory check.
1603   const RuntimePointerChecking *getRuntimePointerChecking() const {
1604     return LAI->getRuntimePointerChecking();
1605   }
1606 
1607   const LoopAccessInfo *getLAI() const { return LAI; }
1608 
1609   /// \brief Check if \p Instr belongs to any interleaved access group.
1610   bool isAccessInterleaved(Instruction *Instr) {
1611     return InterleaveInfo.isInterleaved(Instr);
1612   }
1613 
1614   /// \brief Get the interleaved access group that \p Instr belongs to.
1615   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1616     return InterleaveInfo.getInterleaveGroup(Instr);
1617   }
1618 
1619   /// \brief Returns true if an interleaved group requires a scalar iteration
1620   /// to handle accesses with gaps.
1621   bool requiresScalarEpilogue() const {
1622     return InterleaveInfo.requiresScalarEpilogue();
1623   }
1624 
1625   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1626 
1627   uint64_t getMaxSafeRegisterWidth() const {
1628 	  return LAI->getDepChecker().getMaxSafeRegisterWidth();
1629   }
1630 
1631   bool hasStride(Value *V) { return LAI->hasStride(V); }
1632 
1633   /// Returns true if vector representation of the instruction \p I
1634   /// requires mask.
1635   bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1636 
1637   unsigned getNumStores() const { return LAI->getNumStores(); }
1638   unsigned getNumLoads() const { return LAI->getNumLoads(); }
1639 
1640   // Returns true if the NoNaN attribute is set on the function.
1641   bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
1642 
1643 private:
1644   /// Check if a single basic block loop is vectorizable.
1645   /// At this point we know that this is a loop with a constant trip count
1646   /// and we only need to check individual instructions.
1647   bool canVectorizeInstrs();
1648 
1649   /// When we vectorize loops we may change the order in which
1650   /// we read and write from memory. This method checks if it is
1651   /// legal to vectorize the code, considering only memory constrains.
1652   /// Returns true if the loop is vectorizable
1653   bool canVectorizeMemory();
1654 
1655   /// Return true if we can vectorize this loop using the IF-conversion
1656   /// transformation.
1657   bool canVectorizeWithIfConvert();
1658 
1659   /// Return true if all of the instructions in the block can be speculatively
1660   /// executed. \p SafePtrs is a list of addresses that are known to be legal
1661   /// and we know that we can read from them without segfault.
1662   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1663 
1664   /// Updates the vectorization state by adding \p Phi to the inductions list.
1665   /// This can set \p Phi as the main induction of the loop if \p Phi is a
1666   /// better choice for the main induction than the existing one.
1667   void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1668                        SmallPtrSetImpl<Value *> &AllowedExit);
1669 
1670   /// Create an analysis remark that explains why vectorization failed
1671   ///
1672   /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
1673   /// an instruction that prevents vectorization.  Otherwise the loop is used
1674   /// for the location of the remark.  \return the remark object that can be
1675   /// streamed to.
1676   OptimizationRemarkAnalysis
1677   createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
1678     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1679                                   RemarkName, TheLoop, I);
1680   }
1681 
1682   /// \brief If an access has a symbolic strides, this maps the pointer value to
1683   /// the stride symbol.
1684   const ValueToValueMap *getSymbolicStrides() {
1685     // FIXME: Currently, the set of symbolic strides is sometimes queried before
1686     // it's collected.  This happens from canVectorizeWithIfConvert, when the
1687     // pointer is checked to reference consecutive elements suitable for a
1688     // masked access.
1689     return LAI ? &LAI->getSymbolicStrides() : nullptr;
1690   }
1691 
1692   /// The loop that we evaluate.
1693   Loop *TheLoop;
1694 
1695   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1696   /// Applies dynamic knowledge to simplify SCEV expressions in the context
1697   /// of existing SCEV assumptions. The analysis will also add a minimal set
1698   /// of new predicates if this is required to enable vectorization and
1699   /// unrolling.
1700   PredicatedScalarEvolution &PSE;
1701 
1702   /// Target Library Info.
1703   TargetLibraryInfo *TLI;
1704 
1705   /// Target Transform Info
1706   const TargetTransformInfo *TTI;
1707 
1708   /// Dominator Tree.
1709   DominatorTree *DT;
1710 
1711   // LoopAccess analysis.
1712   std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1713 
1714   // And the loop-accesses info corresponding to this loop.  This pointer is
1715   // null until canVectorizeMemory sets it up.
1716   const LoopAccessInfo *LAI = nullptr;
1717 
1718   /// Interface to emit optimization remarks.
1719   OptimizationRemarkEmitter *ORE;
1720 
1721   /// The interleave access information contains groups of interleaved accesses
1722   /// with the same stride and close to each other.
1723   InterleavedAccessInfo InterleaveInfo;
1724 
1725   //  ---  vectorization state --- //
1726 
1727   /// Holds the primary induction variable. This is the counter of the
1728   /// loop.
1729   PHINode *PrimaryInduction = nullptr;
1730 
1731   /// Holds the reduction variables.
1732   ReductionList Reductions;
1733 
1734   /// Holds all of the induction variables that we found in the loop.
1735   /// Notice that inductions don't need to start at zero and that induction
1736   /// variables can be pointers.
1737   InductionList Inductions;
1738 
1739   /// Holds all the casts that participate in the update chain of the induction
1740   /// variables, and that have been proven to be redundant (possibly under a
1741   /// runtime guard). These casts can be ignored when creating the vectorized
1742   /// loop body.
1743   SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
1744 
1745   /// Holds the phi nodes that are first-order recurrences.
1746   RecurrenceSet FirstOrderRecurrences;
1747 
1748   /// Holds instructions that need to sink past other instructions to handle
1749   /// first-order recurrences.
1750   DenseMap<Instruction *, Instruction *> SinkAfter;
1751 
1752   /// Holds the widest induction type encountered.
1753   Type *WidestIndTy = nullptr;
1754 
1755   /// Allowed outside users. This holds the induction and reduction
1756   /// vars which can be accessed from outside the loop.
1757   SmallPtrSet<Value *, 4> AllowedExit;
1758 
1759   /// Can we assume the absence of NaNs.
1760   bool HasFunNoNaNAttr = false;
1761 
1762   /// Vectorization requirements that will go through late-evaluation.
1763   LoopVectorizationRequirements *Requirements;
1764 
1765   /// Used to emit an analysis of any legality issues.
1766   LoopVectorizeHints *Hints;
1767 
1768   /// The demanded bits analsyis is used to compute the minimum type size in
1769   /// which a reduction can be computed.
1770   DemandedBits *DB;
1771 
1772   /// The assumption cache analysis is used to compute the minimum type size in
1773   /// which a reduction can be computed.
1774   AssumptionCache *AC;
1775 
1776   /// While vectorizing these instructions we have to generate a
1777   /// call to the appropriate masked intrinsic
1778   SmallPtrSet<const Instruction *, 8> MaskedOp;
1779 };
1780 
1781 /// LoopVectorizationCostModel - estimates the expected speedups due to
1782 /// vectorization.
1783 /// In many cases vectorization is not profitable. This can happen because of
1784 /// a number of reasons. In this class we mainly attempt to predict the
1785 /// expected speedup/slowdowns due to the supported instruction set. We use the
1786 /// TargetTransformInfo to query the different backends for the cost of
1787 /// different operations.
1788 class LoopVectorizationCostModel {
1789 public:
1790   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1791                              LoopInfo *LI, LoopVectorizationLegality *Legal,
1792                              const TargetTransformInfo &TTI,
1793                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1794                              AssumptionCache *AC,
1795                              OptimizationRemarkEmitter *ORE, const Function *F,
1796                              const LoopVectorizeHints *Hints)
1797       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1798         AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}
1799 
1800   /// \return An upper bound for the vectorization factor, or None if
1801   /// vectorization should be avoided up front.
1802   Optional<unsigned> computeMaxVF(bool OptForSize);
1803 
1804   /// \return The most profitable vectorization factor and the cost of that VF.
1805   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1806   /// then this vectorization factor will be selected if vectorization is
1807   /// possible.
1808   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1809 
1810   /// Setup cost-based decisions for user vectorization factor.
1811   void selectUserVectorizationFactor(unsigned UserVF) {
1812     collectUniformsAndScalars(UserVF);
1813     collectInstsToScalarize(UserVF);
1814   }
1815 
1816   /// \return The size (in bits) of the smallest and widest types in the code
1817   /// that needs to be vectorized. We ignore values that remain scalar such as
1818   /// 64 bit loop indices.
1819   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1820 
1821   /// \return The desired interleave count.
1822   /// If interleave count has been specified by metadata it will be returned.
1823   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1824   /// are the selected vectorization factor and the cost of the selected VF.
1825   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1826                                  unsigned LoopCost);
1827 
1828   /// Memory access instruction may be vectorized in more than one way.
1829   /// Form of instruction after vectorization depends on cost.
1830   /// This function takes cost-based decisions for Load/Store instructions
1831   /// and collects them in a map. This decisions map is used for building
1832   /// the lists of loop-uniform and loop-scalar instructions.
1833   /// The calculated cost is saved with widening decision in order to
1834   /// avoid redundant calculations.
1835   void setCostBasedWideningDecision(unsigned VF);
1836 
1837   /// \brief A struct that represents some properties of the register usage
1838   /// of a loop.
1839   struct RegisterUsage {
1840     /// Holds the number of loop invariant values that are used in the loop.
1841     unsigned LoopInvariantRegs;
1842 
1843     /// Holds the maximum number of concurrent live intervals in the loop.
1844     unsigned MaxLocalUsers;
1845   };
1846 
1847   /// \return Returns information about the register usages of the loop for the
1848   /// given vectorization factors.
1849   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1850 
1851   /// Collect values we want to ignore in the cost model.
1852   void collectValuesToIgnore();
1853 
1854   /// \returns The smallest bitwidth each instruction can be represented with.
1855   /// The vector equivalents of these instructions should be truncated to this
1856   /// type.
1857   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1858     return MinBWs;
1859   }
1860 
1861   /// \returns True if it is more profitable to scalarize instruction \p I for
1862   /// vectorization factor \p VF.
1863   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1864     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1865     auto Scalars = InstsToScalarize.find(VF);
1866     assert(Scalars != InstsToScalarize.end() &&
1867            "VF not yet analyzed for scalarization profitability");
1868     return Scalars->second.count(I);
1869   }
1870 
1871   /// Returns true if \p I is known to be uniform after vectorization.
1872   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1873     if (VF == 1)
1874       return true;
1875     assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity");
1876     auto UniformsPerVF = Uniforms.find(VF);
1877     return UniformsPerVF->second.count(I);
1878   }
1879 
1880   /// Returns true if \p I is known to be scalar after vectorization.
1881   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1882     if (VF == 1)
1883       return true;
1884     assert(Scalars.count(VF) && "Scalar values are not calculated for VF");
1885     auto ScalarsPerVF = Scalars.find(VF);
1886     return ScalarsPerVF->second.count(I);
1887   }
1888 
1889   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1890   /// for vectorization factor \p VF.
1891   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1892     return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1893            !isScalarAfterVectorization(I, VF);
1894   }
1895 
1896   /// Decision that was taken during cost calculation for memory instruction.
1897   enum InstWidening {
1898     CM_Unknown,
1899     CM_Widen,         // For consecutive accesses with stride +1.
1900     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1901     CM_Interleave,
1902     CM_GatherScatter,
1903     CM_Scalarize
1904   };
1905 
1906   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1907   /// instruction \p I and vector width \p VF.
1908   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1909                            unsigned Cost) {
1910     assert(VF >= 2 && "Expected VF >=2");
1911     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1912   }
1913 
1914   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1915   /// interleaving group \p Grp and vector width \p VF.
1916   void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1917                            InstWidening W, unsigned Cost) {
1918     assert(VF >= 2 && "Expected VF >=2");
1919     /// Broadcast this decicion to all instructions inside the group.
1920     /// But the cost will be assigned to one instruction only.
1921     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1922       if (auto *I = Grp->getMember(i)) {
1923         if (Grp->getInsertPos() == I)
1924           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1925         else
1926           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1927       }
1928     }
1929   }
1930 
1931   /// Return the cost model decision for the given instruction \p I and vector
1932   /// width \p VF. Return CM_Unknown if this instruction did not pass
1933   /// through the cost modeling.
1934   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1935     assert(VF >= 2 && "Expected VF >=2");
1936     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1937     auto Itr = WideningDecisions.find(InstOnVF);
1938     if (Itr == WideningDecisions.end())
1939       return CM_Unknown;
1940     return Itr->second.first;
1941   }
1942 
1943   /// Return the vectorization cost for the given instruction \p I and vector
1944   /// width \p VF.
1945   unsigned getWideningCost(Instruction *I, unsigned VF) {
1946     assert(VF >= 2 && "Expected VF >=2");
1947     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1948     assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated");
1949     return WideningDecisions[InstOnVF].second;
1950   }
1951 
1952   /// Return True if instruction \p I is an optimizable truncate whose operand
1953   /// is an induction variable. Such a truncate will be removed by adding a new
1954   /// induction variable with the destination type.
1955   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1956     // If the instruction is not a truncate, return false.
1957     auto *Trunc = dyn_cast<TruncInst>(I);
1958     if (!Trunc)
1959       return false;
1960 
1961     // Get the source and destination types of the truncate.
1962     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1963     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1964 
1965     // If the truncate is free for the given types, return false. Replacing a
1966     // free truncate with an induction variable would add an induction variable
1967     // update instruction to each iteration of the loop. We exclude from this
1968     // check the primary induction variable since it will need an update
1969     // instruction regardless.
1970     Value *Op = Trunc->getOperand(0);
1971     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1972       return false;
1973 
1974     // If the truncated value is not an induction variable, return false.
1975     return Legal->isInductionPhi(Op);
1976   }
1977 
1978   /// Collects the instructions to scalarize for each predicated instruction in
1979   /// the loop.
1980   void collectInstsToScalarize(unsigned VF);
1981 
1982   /// Collect Uniform and Scalar values for the given \p VF.
1983   /// The sets depend on CM decision for Load/Store instructions
1984   /// that may be vectorized as interleave, gather-scatter or scalarized.
1985   void collectUniformsAndScalars(unsigned VF) {
1986     // Do the analysis once.
1987     if (VF == 1 || Uniforms.count(VF))
1988       return;
1989     setCostBasedWideningDecision(VF);
1990     collectLoopUniforms(VF);
1991     collectLoopScalars(VF);
1992   }
1993 
1994   /// Returns true if the target machine supports masked store operation
1995   /// for the given \p DataType and kind of access to \p Ptr.
1996   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1997     return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
1998   }
1999 
2000   /// Returns true if the target machine supports masked load operation
2001   /// for the given \p DataType and kind of access to \p Ptr.
2002   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
2003     return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
2004   }
2005 
2006   /// Returns true if the target machine supports masked scatter operation
2007   /// for the given \p DataType.
2008   bool isLegalMaskedScatter(Type *DataType) {
2009     return TTI.isLegalMaskedScatter(DataType);
2010   }
2011 
2012   /// Returns true if the target machine supports masked gather operation
2013   /// for the given \p DataType.
2014   bool isLegalMaskedGather(Type *DataType) {
2015     return TTI.isLegalMaskedGather(DataType);
2016   }
2017 
2018   /// Returns true if the target machine can represent \p V as a masked gather
2019   /// or scatter operation.
2020   bool isLegalGatherOrScatter(Value *V) {
2021     bool LI = isa<LoadInst>(V);
2022     bool SI = isa<StoreInst>(V);
2023     if (!LI && !SI)
2024       return false;
2025     auto *Ty = getMemInstValueType(V);
2026     return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
2027   }
2028 
2029   /// Returns true if \p I is an instruction that will be scalarized with
2030   /// predication. Such instructions include conditional stores and
2031   /// instructions that may divide by zero.
2032   bool isScalarWithPredication(Instruction *I);
2033 
2034   /// Returns true if \p I is a memory instruction with consecutive memory
2035   /// access that can be widened.
2036   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
2037 
2038 private:
2039   unsigned NumPredStores = 0;
2040 
2041   /// \return An upper bound for the vectorization factor, larger than zero.
2042   /// One is returned if vectorization should best be avoided due to cost.
2043   unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
2044 
2045   /// The vectorization cost is a combination of the cost itself and a boolean
2046   /// indicating whether any of the contributing operations will actually
2047   /// operate on
2048   /// vector values after type legalization in the backend. If this latter value
2049   /// is
2050   /// false, then all operations will be scalarized (i.e. no vectorization has
2051   /// actually taken place).
2052   using VectorizationCostTy = std::pair<unsigned, bool>;
2053 
2054   /// Returns the expected execution cost. The unit of the cost does
2055   /// not matter because we use the 'cost' units to compare different
2056   /// vector widths. The cost that is returned is *not* normalized by
2057   /// the factor width.
2058   VectorizationCostTy expectedCost(unsigned VF);
2059 
2060   /// Returns the execution time cost of an instruction for a given vector
2061   /// width. Vector width of one means scalar.
2062   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
2063 
2064   /// The cost-computation logic from getInstructionCost which provides
2065   /// the vector type as an output parameter.
2066   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
2067 
2068   /// Calculate vectorization cost of memory instruction \p I.
2069   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
2070 
2071   /// The cost computation for scalarized memory instruction.
2072   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
2073 
2074   /// The cost computation for interleaving group of memory instructions.
2075   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
2076 
2077   /// The cost computation for Gather/Scatter instruction.
2078   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
2079 
2080   /// The cost computation for widening instruction \p I with consecutive
2081   /// memory access.
2082   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
2083 
2084   /// The cost calculation for Load instruction \p I with uniform pointer -
2085   /// scalar load + broadcast.
2086   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
2087 
2088   /// Returns whether the instruction is a load or store and will be a emitted
2089   /// as a vector operation.
2090   bool isConsecutiveLoadOrStore(Instruction *I);
2091 
2092   /// Returns true if an artificially high cost for emulated masked memrefs
2093   /// should be used.
2094   bool useEmulatedMaskMemRefHack(Instruction *I);
2095 
2096   /// Create an analysis remark that explains why vectorization failed
2097   ///
2098   /// \p RemarkName is the identifier for the remark.  \return the remark object
2099   /// that can be streamed to.
2100   OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
2101     return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
2102                                   RemarkName, TheLoop);
2103   }
2104 
2105   /// Map of scalar integer values to the smallest bitwidth they can be legally
2106   /// represented as. The vector equivalents of these values should be truncated
2107   /// to this type.
2108   MapVector<Instruction *, uint64_t> MinBWs;
2109 
2110   /// A type representing the costs for instructions if they were to be
2111   /// scalarized rather than vectorized. The entries are Instruction-Cost
2112   /// pairs.
2113   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
2114 
2115   /// A set containing all BasicBlocks that are known to present after
2116   /// vectorization as a predicated block.
2117   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
2118 
2119   /// A map holding scalar costs for different vectorization factors. The
2120   /// presence of a cost for an instruction in the mapping indicates that the
2121   /// instruction will be scalarized when vectorizing with the associated
2122   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
2123   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
2124 
2125   /// Holds the instructions known to be uniform after vectorization.
2126   /// The data is collected per VF.
2127   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
2128 
2129   /// Holds the instructions known to be scalar after vectorization.
2130   /// The data is collected per VF.
2131   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
2132 
2133   /// Holds the instructions (address computations) that are forced to be
2134   /// scalarized.
2135   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
2136 
2137   /// Returns the expected difference in cost from scalarizing the expression
2138   /// feeding a predicated instruction \p PredInst. The instructions to
2139   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
2140   /// non-negative return value implies the expression will be scalarized.
2141   /// Currently, only single-use chains are considered for scalarization.
2142   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
2143                               unsigned VF);
2144 
2145   /// Collect the instructions that are uniform after vectorization. An
2146   /// instruction is uniform if we represent it with a single scalar value in
2147   /// the vectorized loop corresponding to each vector iteration. Examples of
2148   /// uniform instructions include pointer operands of consecutive or
2149   /// interleaved memory accesses. Note that although uniformity implies an
2150   /// instruction will be scalar, the reverse is not true. In general, a
2151   /// scalarized instruction will be represented by VF scalar values in the
2152   /// vectorized loop, each corresponding to an iteration of the original
2153   /// scalar loop.
2154   void collectLoopUniforms(unsigned VF);
2155 
2156   /// Collect the instructions that are scalar after vectorization. An
2157   /// instruction is scalar if it is known to be uniform or will be scalarized
2158   /// during vectorization. Non-uniform scalarized instructions will be
2159   /// represented by VF values in the vectorized loop, each corresponding to an
2160   /// iteration of the original scalar loop.
2161   void collectLoopScalars(unsigned VF);
2162 
2163   /// Keeps cost model vectorization decision and cost for instructions.
2164   /// Right now it is used for memory instructions only.
2165   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
2166                                 std::pair<InstWidening, unsigned>>;
2167 
2168   DecisionList WideningDecisions;
2169 
2170 public:
2171   /// The loop that we evaluate.
2172   Loop *TheLoop;
2173 
2174   /// Predicated scalar evolution analysis.
2175   PredicatedScalarEvolution &PSE;
2176 
2177   /// Loop Info analysis.
2178   LoopInfo *LI;
2179 
2180   /// Vectorization legality.
2181   LoopVectorizationLegality *Legal;
2182 
2183   /// Vector target information.
2184   const TargetTransformInfo &TTI;
2185 
2186   /// Target Library Info.
2187   const TargetLibraryInfo *TLI;
2188 
2189   /// Demanded bits analysis.
2190   DemandedBits *DB;
2191 
2192   /// Assumption cache.
2193   AssumptionCache *AC;
2194 
2195   /// Interface to emit optimization remarks.
2196   OptimizationRemarkEmitter *ORE;
2197 
2198   const Function *TheFunction;
2199 
2200   /// Loop Vectorize Hint.
2201   const LoopVectorizeHints *Hints;
2202 
2203   /// Values to ignore in the cost model.
2204   SmallPtrSet<const Value *, 16> ValuesToIgnore;
2205 
2206   /// Values to ignore in the cost model when VF > 1.
2207   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
2208 };
2209 
2210 } // end namespace llvm
2211 
2212 namespace {
2213 
2214 /// \brief This holds vectorization requirements that must be verified late in
2215 /// the process. The requirements are set by legalize and costmodel. Once
2216 /// vectorization has been determined to be possible and profitable the
2217 /// requirements can be verified by looking for metadata or compiler options.
2218 /// For example, some loops require FP commutativity which is only allowed if
2219 /// vectorization is explicitly specified or if the fast-math compiler option
2220 /// has been provided.
2221 /// Late evaluation of these requirements allows helpful diagnostics to be
2222 /// composed that tells the user what need to be done to vectorize the loop. For
2223 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
2224 /// evaluation should be used only when diagnostics can generated that can be
2225 /// followed by a non-expert user.
2226 class LoopVectorizationRequirements {
2227 public:
2228   LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}
2229 
2230   void addUnsafeAlgebraInst(Instruction *I) {
2231     // First unsafe algebra instruction.
2232     if (!UnsafeAlgebraInst)
2233       UnsafeAlgebraInst = I;
2234   }
2235 
2236   void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
2237 
2238   bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
2239     const char *PassName = Hints.vectorizeAnalysisPassName();
2240     bool Failed = false;
2241     if (UnsafeAlgebraInst && !Hints.allowReordering()) {
2242       ORE.emit([&]() {
2243         return OptimizationRemarkAnalysisFPCommute(
2244                    PassName, "CantReorderFPOps",
2245                    UnsafeAlgebraInst->getDebugLoc(),
2246                    UnsafeAlgebraInst->getParent())
2247                << "loop not vectorized: cannot prove it is safe to reorder "
2248                   "floating-point operations";
2249       });
2250       Failed = true;
2251     }
2252 
2253     // Test if runtime memcheck thresholds are exceeded.
2254     bool PragmaThresholdReached =
2255         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
2256     bool ThresholdReached =
2257         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
2258     if ((ThresholdReached && !Hints.allowReordering()) ||
2259         PragmaThresholdReached) {
2260       ORE.emit([&]() {
2261         return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
2262                                                   L->getStartLoc(),
2263                                                   L->getHeader())
2264                << "loop not vectorized: cannot prove it is safe to reorder "
2265                   "memory operations";
2266       });
2267       DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
2268       Failed = true;
2269     }
2270 
2271     return Failed;
2272   }
2273 
2274 private:
2275   unsigned NumRuntimePointerChecks = 0;
2276   Instruction *UnsafeAlgebraInst = nullptr;
2277 
2278   /// Interface to emit optimization remarks.
2279   OptimizationRemarkEmitter &ORE;
2280 };
2281 
2282 } // end anonymous namespace
2283 
2284 static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI,
2285                                 SmallVectorImpl<Loop *> &V) {
2286   if (L.empty()) {
2287     LoopBlocksRPO RPOT(&L);
2288     RPOT.perform(&LI);
2289     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2290       V.push_back(&L);
2291     return;
2292   }
2293   for (Loop *InnerL : L)
2294     addAcyclicInnerLoop(*InnerL, LI, V);
2295 }
2296 
2297 namespace {
2298 
2299 /// The LoopVectorize Pass.
2300 struct LoopVectorize : public FunctionPass {
2301   /// Pass identification, replacement for typeid
2302   static char ID;
2303 
2304   LoopVectorizePass Impl;
2305 
2306   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
2307       : FunctionPass(ID) {
2308     Impl.DisableUnrolling = NoUnrolling;
2309     Impl.AlwaysVectorize = AlwaysVectorize;
2310     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2311   }
2312 
2313   bool runOnFunction(Function &F) override {
2314     if (skipFunction(F))
2315       return false;
2316 
2317     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2318     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2319     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2320     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2321     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2322     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2323     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2324     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2325     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2326     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2327     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2328     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2329 
2330     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2331         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2332 
2333     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2334                         GetLAA, *ORE);
2335   }
2336 
2337   void getAnalysisUsage(AnalysisUsage &AU) const override {
2338     AU.addRequired<AssumptionCacheTracker>();
2339     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2340     AU.addRequired<DominatorTreeWrapperPass>();
2341     AU.addRequired<LoopInfoWrapperPass>();
2342     AU.addRequired<ScalarEvolutionWrapperPass>();
2343     AU.addRequired<TargetTransformInfoWrapperPass>();
2344     AU.addRequired<AAResultsWrapperPass>();
2345     AU.addRequired<LoopAccessLegacyAnalysis>();
2346     AU.addRequired<DemandedBitsWrapperPass>();
2347     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2348     AU.addPreserved<LoopInfoWrapperPass>();
2349     AU.addPreserved<DominatorTreeWrapperPass>();
2350     AU.addPreserved<BasicAAWrapperPass>();
2351     AU.addPreserved<GlobalsAAWrapperPass>();
2352   }
2353 };
2354 
2355 } // end anonymous namespace
2356 
2357 //===----------------------------------------------------------------------===//
2358 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2359 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2360 //===----------------------------------------------------------------------===//
2361 
2362 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2363   // We need to place the broadcast of invariant variables outside the loop.
2364   Instruction *Instr = dyn_cast<Instruction>(V);
2365   bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
2366   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
2367 
2368   // Place the code for broadcasting invariant variables in the new preheader.
2369   IRBuilder<>::InsertPointGuard Guard(Builder);
2370   if (Invariant)
2371     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2372 
2373   // Broadcast the scalar into all locations in the vector.
2374   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2375 
2376   return Shuf;
2377 }
2378 
2379 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2380     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
2381   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2382          "Expected either an induction phi-node or a truncate of it!");
2383   Value *Start = II.getStartValue();
2384 
2385   // Construct the initial value of the vector IV in the vector loop preheader
2386   auto CurrIP = Builder.saveIP();
2387   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2388   if (isa<TruncInst>(EntryVal)) {
2389     assert(Start->getType()->isIntegerTy() &&
2390            "Truncation requires an integer type");
2391     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2392     Step = Builder.CreateTrunc(Step, TruncType);
2393     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2394   }
2395   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2396   Value *SteppedStart =
2397       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2398 
2399   // We create vector phi nodes for both integer and floating-point induction
2400   // variables. Here, we determine the kind of arithmetic we will perform.
2401   Instruction::BinaryOps AddOp;
2402   Instruction::BinaryOps MulOp;
2403   if (Step->getType()->isIntegerTy()) {
2404     AddOp = Instruction::Add;
2405     MulOp = Instruction::Mul;
2406   } else {
2407     AddOp = II.getInductionOpcode();
2408     MulOp = Instruction::FMul;
2409   }
2410 
2411   // Multiply the vectorization factor by the step using integer or
2412   // floating-point arithmetic as appropriate.
2413   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
2414   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
2415 
2416   // Create a vector splat to use in the induction update.
2417   //
2418   // FIXME: If the step is non-constant, we create the vector splat with
2419   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2420   //        handle a constant vector splat.
2421   Value *SplatVF = isa<Constant>(Mul)
2422                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2423                        : Builder.CreateVectorSplat(VF, Mul);
2424   Builder.restoreIP(CurrIP);
2425 
2426   // We may need to add the step a number of times, depending on the unroll
2427   // factor. The last of those goes into the PHI.
2428   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2429                                     &*LoopVectorBody->getFirstInsertionPt());
2430   Instruction *LastInduction = VecInd;
2431   for (unsigned Part = 0; Part < UF; ++Part) {
2432     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
2433 
2434     if (isa<TruncInst>(EntryVal))
2435       addMetadata(LastInduction, EntryVal);
2436     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
2437 
2438     LastInduction = cast<Instruction>(addFastMathFlag(
2439         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
2440   }
2441 
2442   // Move the last step to the end of the latch block. This ensures consistent
2443   // placement of all induction updates.
2444   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2445   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2446   auto *ICmp = cast<Instruction>(Br->getCondition());
2447   LastInduction->moveBefore(ICmp);
2448   LastInduction->setName("vec.ind.next");
2449 
2450   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2451   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2452 }
2453 
2454 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2455   return Cost->isScalarAfterVectorization(I, VF) ||
2456          Cost->isProfitableToScalarize(I, VF);
2457 }
2458 
2459 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2460   if (shouldScalarizeInstruction(IV))
2461     return true;
2462   auto isScalarInst = [&](User *U) -> bool {
2463     auto *I = cast<Instruction>(U);
2464     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2465   };
2466   return llvm::any_of(IV->users(), isScalarInst);
2467 }
2468 
2469 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2470     const InductionDescriptor &ID, const Instruction *EntryVal,
2471     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
2472   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2473          "Expected either an induction phi-node or a truncate of it!");
2474 
2475   // This induction variable is not the phi from the original loop but the
2476   // newly-created IV based on the proof that casted Phi is equal to the
2477   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2478   // re-uses the same InductionDescriptor that original IV uses but we don't
2479   // have to do any recording in this case - that is done when original IV is
2480   // processed.
2481   if (isa<TruncInst>(EntryVal))
2482     return;
2483 
2484   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2485   if (Casts.empty())
2486     return;
2487   // Only the first Cast instruction in the Casts vector is of interest.
2488   // The rest of the Casts (if exist) have no uses outside the
2489   // induction update chain itself.
2490   Instruction *CastInst = *Casts.begin();
2491   if (Lane < UINT_MAX)
2492     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
2493   else
2494     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
2495 }
2496 
2497 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
2498   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2499          "Primary induction variable must have an integer type");
2500 
2501   auto II = Legal->getInductionVars()->find(IV);
2502   assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
2503 
2504   auto ID = II->second;
2505   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2506 
2507   // The scalar value to broadcast. This will be derived from the canonical
2508   // induction variable.
2509   Value *ScalarIV = nullptr;
2510 
2511   // The value from the original loop to which we are mapping the new induction
2512   // variable.
2513   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2514 
2515   // True if we have vectorized the induction variable.
2516   auto VectorizedIV = false;
2517 
2518   // Determine if we want a scalar version of the induction variable. This is
2519   // true if the induction variable itself is not widened, or if it has at
2520   // least one user in the loop that is not widened.
2521   auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
2522 
2523   // Generate code for the induction step. Note that induction steps are
2524   // required to be loop-invariant
2525   assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
2526          "Induction step should be loop invariant");
2527   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2528   Value *Step = nullptr;
2529   if (PSE.getSE()->isSCEVable(IV->getType())) {
2530     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2531     Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
2532                              LoopVectorPreHeader->getTerminator());
2533   } else {
2534     Step = cast<SCEVUnknown>(ID.getStep())->getValue();
2535   }
2536 
2537   // Try to create a new independent vector induction variable. If we can't
2538   // create the phi node, we will splat the scalar induction variable in each
2539   // loop iteration.
2540   if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
2541     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2542     VectorizedIV = true;
2543   }
2544 
2545   // If we haven't yet vectorized the induction variable, or if we will create
2546   // a scalar one, we need to define the scalar induction variable and step
2547   // values. If we were given a truncation type, truncate the canonical
2548   // induction variable and step. Otherwise, derive these values from the
2549   // induction descriptor.
2550   if (!VectorizedIV || NeedsScalarIV) {
2551     ScalarIV = Induction;
2552     if (IV != OldInduction) {
2553       ScalarIV = IV->getType()->isIntegerTy()
2554                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2555                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2556                                           IV->getType());
2557       ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
2558       ScalarIV->setName("offset.idx");
2559     }
2560     if (Trunc) {
2561       auto *TruncType = cast<IntegerType>(Trunc->getType());
2562       assert(Step->getType()->isIntegerTy() &&
2563              "Truncation requires an integer step");
2564       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2565       Step = Builder.CreateTrunc(Step, TruncType);
2566     }
2567   }
2568 
2569   // If we haven't yet vectorized the induction variable, splat the scalar
2570   // induction variable, and build the necessary step vectors.
2571   // TODO: Don't do it unless the vectorized IV is really required.
2572   if (!VectorizedIV) {
2573     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2574     for (unsigned Part = 0; Part < UF; ++Part) {
2575       Value *EntryPart =
2576           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
2577       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2578       if (Trunc)
2579         addMetadata(EntryPart, Trunc);
2580       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2581     }
2582   }
2583 
2584   // If an induction variable is only used for counting loop iterations or
2585   // calculating addresses, it doesn't need to be widened. Create scalar steps
2586   // that can be used by instructions we will later scalarize. Note that the
2587   // addition of the scalar steps will not increase the number of instructions
2588   // in the loop in the common case prior to InstCombine. We will be trading
2589   // one vector extract for each scalar step.
2590   if (NeedsScalarIV)
2591     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2592 }
2593 
2594 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2595                                           Instruction::BinaryOps BinOp) {
2596   // Create and check the types.
2597   assert(Val->getType()->isVectorTy() && "Must be a vector");
2598   int VLen = Val->getType()->getVectorNumElements();
2599 
2600   Type *STy = Val->getType()->getScalarType();
2601   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2602          "Induction Step must be an integer or FP");
2603   assert(Step->getType() == STy && "Step has wrong type");
2604 
2605   SmallVector<Constant *, 8> Indices;
2606 
2607   if (STy->isIntegerTy()) {
2608     // Create a vector of consecutive numbers from zero to VF.
2609     for (int i = 0; i < VLen; ++i)
2610       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2611 
2612     // Add the consecutive indices to the vector value.
2613     Constant *Cv = ConstantVector::get(Indices);
2614     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2615     Step = Builder.CreateVectorSplat(VLen, Step);
2616     assert(Step->getType() == Val->getType() && "Invalid step vec");
2617     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2618     // which can be found from the original scalar operations.
2619     Step = Builder.CreateMul(Cv, Step);
2620     return Builder.CreateAdd(Val, Step, "induction");
2621   }
2622 
2623   // Floating point induction.
2624   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2625          "Binary Opcode should be specified for FP induction");
2626   // Create a vector of consecutive numbers from zero to VF.
2627   for (int i = 0; i < VLen; ++i)
2628     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2629 
2630   // Add the consecutive indices to the vector value.
2631   Constant *Cv = ConstantVector::get(Indices);
2632 
2633   Step = Builder.CreateVectorSplat(VLen, Step);
2634 
2635   // Floating point operations had to be 'fast' to enable the induction.
2636   FastMathFlags Flags;
2637   Flags.setFast();
2638 
2639   Value *MulOp = Builder.CreateFMul(Cv, Step);
2640   if (isa<Instruction>(MulOp))
2641     // Have to check, MulOp may be a constant
2642     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2643 
2644   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2645   if (isa<Instruction>(BOp))
2646     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2647   return BOp;
2648 }
2649 
2650 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2651                                            Instruction *EntryVal,
2652                                            const InductionDescriptor &ID) {
2653   // We shouldn't have to build scalar steps if we aren't vectorizing.
2654   assert(VF > 1 && "VF should be greater than one");
2655 
2656   // Get the value type and ensure it and the step have the same integer type.
2657   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2658   assert(ScalarIVTy == Step->getType() &&
2659          "Val and Step should have the same type");
2660 
2661   // We build scalar steps for both integer and floating-point induction
2662   // variables. Here, we determine the kind of arithmetic we will perform.
2663   Instruction::BinaryOps AddOp;
2664   Instruction::BinaryOps MulOp;
2665   if (ScalarIVTy->isIntegerTy()) {
2666     AddOp = Instruction::Add;
2667     MulOp = Instruction::Mul;
2668   } else {
2669     AddOp = ID.getInductionOpcode();
2670     MulOp = Instruction::FMul;
2671   }
2672 
2673   // Determine the number of scalars we need to generate for each unroll
2674   // iteration. If EntryVal is uniform, we only need to generate the first
2675   // lane. Otherwise, we generate all VF values.
2676   unsigned Lanes =
2677       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2678                                                                          : VF;
2679   // Compute the scalar steps and save the results in VectorLoopValueMap.
2680   for (unsigned Part = 0; Part < UF; ++Part) {
2681     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2682       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2683       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2684       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2685       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2686       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2687     }
2688   }
2689 }
2690 
2691 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2692   const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
2693     ValueToValueMap();
2694 
2695   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
2696   if (Stride == 1 || Stride == -1)
2697     return Stride;
2698   return 0;
2699 }
2700 
2701 bool LoopVectorizationLegality::isUniform(Value *V) {
2702   return LAI->isUniform(V);
2703 }
2704 
2705 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2706   assert(V != Induction && "The new induction variable should not be used.");
2707   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2708   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2709 
2710   // If we have a stride that is replaced by one, do it here.
2711   if (Legal->hasStride(V))
2712     V = ConstantInt::get(V->getType(), 1);
2713 
2714   // If we have a vector mapped to this value, return it.
2715   if (VectorLoopValueMap.hasVectorValue(V, Part))
2716     return VectorLoopValueMap.getVectorValue(V, Part);
2717 
2718   // If the value has not been vectorized, check if it has been scalarized
2719   // instead. If it has been scalarized, and we actually need the value in
2720   // vector form, we will construct the vector values on demand.
2721   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2722     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2723 
2724     // If we've scalarized a value, that value should be an instruction.
2725     auto *I = cast<Instruction>(V);
2726 
2727     // If we aren't vectorizing, we can just copy the scalar map values over to
2728     // the vector map.
2729     if (VF == 1) {
2730       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2731       return ScalarValue;
2732     }
2733 
2734     // Get the last scalar instruction we generated for V and Part. If the value
2735     // is known to be uniform after vectorization, this corresponds to lane zero
2736     // of the Part unroll iteration. Otherwise, the last instruction is the one
2737     // we created for the last vector lane of the Part unroll iteration.
2738     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2739     auto *LastInst = cast<Instruction>(
2740         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2741 
2742     // Set the insert point after the last scalarized instruction. This ensures
2743     // the insertelement sequence will directly follow the scalar definitions.
2744     auto OldIP = Builder.saveIP();
2745     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2746     Builder.SetInsertPoint(&*NewIP);
2747 
2748     // However, if we are vectorizing, we need to construct the vector values.
2749     // If the value is known to be uniform after vectorization, we can just
2750     // broadcast the scalar value corresponding to lane zero for each unroll
2751     // iteration. Otherwise, we construct the vector values using insertelement
2752     // instructions. Since the resulting vectors are stored in
2753     // VectorLoopValueMap, we will only generate the insertelements once.
2754     Value *VectorValue = nullptr;
2755     if (Cost->isUniformAfterVectorization(I, VF)) {
2756       VectorValue = getBroadcastInstrs(ScalarValue);
2757       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2758     } else {
2759       // Initialize packing with insertelements to start from undef.
2760       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2761       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2762       for (unsigned Lane = 0; Lane < VF; ++Lane)
2763         packScalarIntoVectorValue(V, {Part, Lane});
2764       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2765     }
2766     Builder.restoreIP(OldIP);
2767     return VectorValue;
2768   }
2769 
2770   // If this scalar is unknown, assume that it is a constant or that it is
2771   // loop invariant. Broadcast V and save the value for future uses.
2772   Value *B = getBroadcastInstrs(V);
2773   VectorLoopValueMap.setVectorValue(V, Part, B);
2774   return B;
2775 }
2776 
2777 Value *
2778 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2779                                             const VPIteration &Instance) {
2780   // If the value is not an instruction contained in the loop, it should
2781   // already be scalar.
2782   if (OrigLoop->isLoopInvariant(V))
2783     return V;
2784 
2785   assert(Instance.Lane > 0
2786              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2787              : true && "Uniform values only have lane zero");
2788 
2789   // If the value from the original loop has not been vectorized, it is
2790   // represented by UF x VF scalar values in the new loop. Return the requested
2791   // scalar value.
2792   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2793     return VectorLoopValueMap.getScalarValue(V, Instance);
2794 
2795   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2796   // for the given unroll part. If this entry is not a vector type (i.e., the
2797   // vectorization factor is one), there is no need to generate an
2798   // extractelement instruction.
2799   auto *U = getOrCreateVectorValue(V, Instance.Part);
2800   if (!U->getType()->isVectorTy()) {
2801     assert(VF == 1 && "Value not scalarized has non-vector type");
2802     return U;
2803   }
2804 
2805   // Otherwise, the value from the original loop has been vectorized and is
2806   // represented by UF vector values. Extract and return the requested scalar
2807   // value from the appropriate vector lane.
2808   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2809 }
2810 
2811 void InnerLoopVectorizer::packScalarIntoVectorValue(
2812     Value *V, const VPIteration &Instance) {
2813   assert(V != Induction && "The new induction variable should not be used.");
2814   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2815   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2816 
2817   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2818   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2819   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2820                                             Builder.getInt32(Instance.Lane));
2821   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2822 }
2823 
2824 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2825   assert(Vec->getType()->isVectorTy() && "Invalid type");
2826   SmallVector<Constant *, 8> ShuffleMask;
2827   for (unsigned i = 0; i < VF; ++i)
2828     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2829 
2830   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2831                                      ConstantVector::get(ShuffleMask),
2832                                      "reverse");
2833 }
2834 
2835 // Try to vectorize the interleave group that \p Instr belongs to.
2836 //
2837 // E.g. Translate following interleaved load group (factor = 3):
2838 //   for (i = 0; i < N; i+=3) {
2839 //     R = Pic[i];             // Member of index 0
2840 //     G = Pic[i+1];           // Member of index 1
2841 //     B = Pic[i+2];           // Member of index 2
2842 //     ... // do something to R, G, B
2843 //   }
2844 // To:
2845 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2846 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2847 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2848 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2849 //
2850 // Or translate following interleaved store group (factor = 3):
2851 //   for (i = 0; i < N; i+=3) {
2852 //     ... do something to R, G, B
2853 //     Pic[i]   = R;           // Member of index 0
2854 //     Pic[i+1] = G;           // Member of index 1
2855 //     Pic[i+2] = B;           // Member of index 2
2856 //   }
2857 // To:
2858 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2859 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2860 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2861 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2862 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2863 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2864   const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2865   assert(Group && "Fail to get an interleaved access group.");
2866 
2867   // Skip if current instruction is not the insert position.
2868   if (Instr != Group->getInsertPos())
2869     return;
2870 
2871   const DataLayout &DL = Instr->getModule()->getDataLayout();
2872   Value *Ptr = getLoadStorePointerOperand(Instr);
2873 
2874   // Prepare for the vector type of the interleaved load/store.
2875   Type *ScalarTy = getMemInstValueType(Instr);
2876   unsigned InterleaveFactor = Group->getFactor();
2877   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2878   Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2879 
2880   // Prepare for the new pointers.
2881   setDebugLocFromInst(Builder, Ptr);
2882   SmallVector<Value *, 2> NewPtrs;
2883   unsigned Index = Group->getIndex(Instr);
2884 
2885   // If the group is reverse, adjust the index to refer to the last vector lane
2886   // instead of the first. We adjust the index from the first vector lane,
2887   // rather than directly getting the pointer for lane VF - 1, because the
2888   // pointer operand of the interleaved access is supposed to be uniform. For
2889   // uniform instructions, we're only required to generate a value for the
2890   // first vector lane in each unroll iteration.
2891   if (Group->isReverse())
2892     Index += (VF - 1) * Group->getFactor();
2893 
2894   for (unsigned Part = 0; Part < UF; Part++) {
2895     Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
2896 
2897     // Notice current instruction could be any index. Need to adjust the address
2898     // to the member of index 0.
2899     //
2900     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2901     //       b = A[i];       // Member of index 0
2902     // Current pointer is pointed to A[i+1], adjust it to A[i].
2903     //
2904     // E.g.  A[i+1] = a;     // Member of index 1
2905     //       A[i]   = b;     // Member of index 0
2906     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2907     // Current pointer is pointed to A[i+2], adjust it to A[i].
2908     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2909 
2910     // Cast to the vector pointer type.
2911     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2912   }
2913 
2914   setDebugLocFromInst(Builder, Instr);
2915   Value *UndefVec = UndefValue::get(VecTy);
2916 
2917   // Vectorize the interleaved load group.
2918   if (isa<LoadInst>(Instr)) {
2919     // For each unroll part, create a wide load for the group.
2920     SmallVector<Value *, 2> NewLoads;
2921     for (unsigned Part = 0; Part < UF; Part++) {
2922       auto *NewLoad = Builder.CreateAlignedLoad(
2923           NewPtrs[Part], Group->getAlignment(), "wide.vec");
2924       Group->addMetadata(NewLoad);
2925       NewLoads.push_back(NewLoad);
2926     }
2927 
2928     // For each member in the group, shuffle out the appropriate data from the
2929     // wide loads.
2930     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2931       Instruction *Member = Group->getMember(I);
2932 
2933       // Skip the gaps in the group.
2934       if (!Member)
2935         continue;
2936 
2937       Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2938       for (unsigned Part = 0; Part < UF; Part++) {
2939         Value *StridedVec = Builder.CreateShuffleVector(
2940             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2941 
2942         // If this member has different type, cast the result type.
2943         if (Member->getType() != ScalarTy) {
2944           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2945           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2946         }
2947 
2948         if (Group->isReverse())
2949           StridedVec = reverseVector(StridedVec);
2950 
2951         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2952       }
2953     }
2954     return;
2955   }
2956 
2957   // The sub vector type for current instruction.
2958   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2959 
2960   // Vectorize the interleaved store group.
2961   for (unsigned Part = 0; Part < UF; Part++) {
2962     // Collect the stored vector from each member.
2963     SmallVector<Value *, 4> StoredVecs;
2964     for (unsigned i = 0; i < InterleaveFactor; i++) {
2965       // Interleaved store group doesn't allow a gap, so each index has a member
2966       Instruction *Member = Group->getMember(i);
2967       assert(Member && "Fail to get a member from an interleaved store group");
2968 
2969       Value *StoredVec = getOrCreateVectorValue(
2970           cast<StoreInst>(Member)->getValueOperand(), Part);
2971       if (Group->isReverse())
2972         StoredVec = reverseVector(StoredVec);
2973 
2974       // If this member has different type, cast it to a unified type.
2975 
2976       if (StoredVec->getType() != SubVT)
2977         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2978 
2979       StoredVecs.push_back(StoredVec);
2980     }
2981 
2982     // Concatenate all vectors into a wide vector.
2983     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2984 
2985     // Interleave the elements in the wide vector.
2986     Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2987     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2988                                               "interleaved.vec");
2989 
2990     Instruction *NewStoreInstr =
2991         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2992 
2993     Group->addMetadata(NewStoreInstr);
2994   }
2995 }
2996 
2997 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2998                                                      VectorParts *BlockInMask) {
2999   // Attempt to issue a wide load.
3000   LoadInst *LI = dyn_cast<LoadInst>(Instr);
3001   StoreInst *SI = dyn_cast<StoreInst>(Instr);
3002 
3003   assert((LI || SI) && "Invalid Load/Store instruction");
3004 
3005   LoopVectorizationCostModel::InstWidening Decision =
3006       Cost->getWideningDecision(Instr, VF);
3007   assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
3008          "CM decision should be taken at this point");
3009   if (Decision == LoopVectorizationCostModel::CM_Interleave)
3010     return vectorizeInterleaveGroup(Instr);
3011 
3012   Type *ScalarDataTy = getMemInstValueType(Instr);
3013   Type *DataTy = VectorType::get(ScalarDataTy, VF);
3014   Value *Ptr = getLoadStorePointerOperand(Instr);
3015   unsigned Alignment = getMemInstAlignment(Instr);
3016   // An alignment of 0 means target abi alignment. We need to use the scalar's
3017   // target abi alignment in such a case.
3018   const DataLayout &DL = Instr->getModule()->getDataLayout();
3019   if (!Alignment)
3020     Alignment = DL.getABITypeAlignment(ScalarDataTy);
3021   unsigned AddressSpace = getMemInstAddressSpace(Instr);
3022 
3023   // Determine if the pointer operand of the access is either consecutive or
3024   // reverse consecutive.
3025   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
3026   bool ConsecutiveStride =
3027       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
3028   bool CreateGatherScatter =
3029       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
3030 
3031   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
3032   // gather/scatter. Otherwise Decision should have been to Scalarize.
3033   assert((ConsecutiveStride || CreateGatherScatter) &&
3034          "The instruction should be scalarized");
3035 
3036   // Handle consecutive loads/stores.
3037   if (ConsecutiveStride)
3038     Ptr = getOrCreateScalarValue(Ptr, {0, 0});
3039 
3040   VectorParts Mask;
3041   bool isMaskRequired = BlockInMask;
3042   if (isMaskRequired)
3043     Mask = *BlockInMask;
3044 
3045   // Handle Stores:
3046   if (SI) {
3047     setDebugLocFromInst(Builder, SI);
3048 
3049     for (unsigned Part = 0; Part < UF; ++Part) {
3050       Instruction *NewSI = nullptr;
3051       Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
3052       if (CreateGatherScatter) {
3053         Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3054         Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3055         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
3056                                             MaskPart);
3057       } else {
3058         // Calculate the pointer for the specific unroll-part.
3059         Value *PartPtr =
3060             Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3061 
3062         if (Reverse) {
3063           // If we store to reverse consecutive memory locations, then we need
3064           // to reverse the order of elements in the stored value.
3065           StoredVal = reverseVector(StoredVal);
3066           // We don't want to update the value in the map as it might be used in
3067           // another expression. So don't call resetVectorValue(StoredVal).
3068 
3069           // If the address is consecutive but reversed, then the
3070           // wide store needs to start at the last vector element.
3071           PartPtr =
3072               Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3073           PartPtr =
3074               Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3075           if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3076             Mask[Part] = reverseVector(Mask[Part]);
3077         }
3078 
3079         Value *VecPtr =
3080             Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3081 
3082         if (isMaskRequired)
3083           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3084                                             Mask[Part]);
3085         else
3086           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3087       }
3088       addMetadata(NewSI, SI);
3089     }
3090     return;
3091   }
3092 
3093   // Handle loads.
3094   assert(LI && "Must have a load instruction");
3095   setDebugLocFromInst(Builder, LI);
3096   for (unsigned Part = 0; Part < UF; ++Part) {
3097     Value *NewLI;
3098     if (CreateGatherScatter) {
3099       Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3100       Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3101       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
3102                                          nullptr, "wide.masked.gather");
3103       addMetadata(NewLI, LI);
3104     } else {
3105       // Calculate the pointer for the specific unroll-part.
3106       Value *PartPtr =
3107           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3108 
3109       if (Reverse) {
3110         // If the address is consecutive but reversed, then the
3111         // wide load needs to start at the last vector element.
3112         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3113         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3114         if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3115           Mask[Part] = reverseVector(Mask[Part]);
3116       }
3117 
3118       Value *VecPtr =
3119           Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3120       if (isMaskRequired)
3121         NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
3122                                          UndefValue::get(DataTy),
3123                                          "wide.masked.load");
3124       else
3125         NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
3126 
3127       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3128       addMetadata(NewLI, LI);
3129       if (Reverse)
3130         NewLI = reverseVector(NewLI);
3131     }
3132     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
3133   }
3134 }
3135 
3136 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3137                                                const VPIteration &Instance,
3138                                                bool IfPredicateInstr) {
3139   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3140 
3141   setDebugLocFromInst(Builder, Instr);
3142 
3143   // Does this instruction return a value ?
3144   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3145 
3146   Instruction *Cloned = Instr->clone();
3147   if (!IsVoidRetTy)
3148     Cloned->setName(Instr->getName() + ".cloned");
3149 
3150   // Replace the operands of the cloned instructions with their scalar
3151   // equivalents in the new loop.
3152   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
3153     auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
3154     Cloned->setOperand(op, NewOp);
3155   }
3156   addNewMetadata(Cloned, Instr);
3157 
3158   // Place the cloned scalar in the new loop.
3159   Builder.Insert(Cloned);
3160 
3161   // Add the cloned scalar to the scalar map entry.
3162   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
3163 
3164   // If we just cloned a new assumption, add it the assumption cache.
3165   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3166     if (II->getIntrinsicID() == Intrinsic::assume)
3167       AC->registerAssumption(II);
3168 
3169   // End if-block.
3170   if (IfPredicateInstr)
3171     PredicatedInstructions.push_back(Cloned);
3172 }
3173 
3174 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3175                                                       Value *End, Value *Step,
3176                                                       Instruction *DL) {
3177   BasicBlock *Header = L->getHeader();
3178   BasicBlock *Latch = L->getLoopLatch();
3179   // As we're just creating this loop, it's possible no latch exists
3180   // yet. If so, use the header as this will be a single block loop.
3181   if (!Latch)
3182     Latch = Header;
3183 
3184   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3185   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3186   setDebugLocFromInst(Builder, OldInst);
3187   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3188 
3189   Builder.SetInsertPoint(Latch->getTerminator());
3190   setDebugLocFromInst(Builder, OldInst);
3191 
3192   // Create i+1 and fill the PHINode.
3193   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3194   Induction->addIncoming(Start, L->getLoopPreheader());
3195   Induction->addIncoming(Next, Latch);
3196   // Create the compare.
3197   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3198   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
3199 
3200   // Now we have two terminators. Remove the old one from the block.
3201   Latch->getTerminator()->eraseFromParent();
3202 
3203   return Induction;
3204 }
3205 
3206 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3207   if (TripCount)
3208     return TripCount;
3209 
3210   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3211   // Find the loop boundaries.
3212   ScalarEvolution *SE = PSE.getSE();
3213   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3214   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
3215          "Invalid loop count");
3216 
3217   Type *IdxTy = Legal->getWidestInductionType();
3218 
3219   // The exit count might have the type of i64 while the phi is i32. This can
3220   // happen if we have an induction variable that is sign extended before the
3221   // compare. The only way that we get a backedge taken count is that the
3222   // induction variable was signed and as such will not overflow. In such a case
3223   // truncation is legal.
3224   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
3225       IdxTy->getPrimitiveSizeInBits())
3226     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3227   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3228 
3229   // Get the total trip count from the count by adding 1.
3230   const SCEV *ExitCount = SE->getAddExpr(
3231       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3232 
3233   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3234 
3235   // Expand the trip count and place the new instructions in the preheader.
3236   // Notice that the pre-header does not change, only the loop body.
3237   SCEVExpander Exp(*SE, DL, "induction");
3238 
3239   // Count holds the overall loop count (N).
3240   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3241                                 L->getLoopPreheader()->getTerminator());
3242 
3243   if (TripCount->getType()->isPointerTy())
3244     TripCount =
3245         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3246                                     L->getLoopPreheader()->getTerminator());
3247 
3248   return TripCount;
3249 }
3250 
3251 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3252   if (VectorTripCount)
3253     return VectorTripCount;
3254 
3255   Value *TC = getOrCreateTripCount(L);
3256   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3257 
3258   // Now we need to generate the expression for the part of the loop that the
3259   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3260   // iterations are not required for correctness, or N - Step, otherwise. Step
3261   // is equal to the vectorization factor (number of SIMD elements) times the
3262   // unroll factor (number of SIMD instructions).
3263   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
3264   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3265 
3266   // If there is a non-reversed interleaved group that may speculatively access
3267   // memory out-of-bounds, we need to ensure that there will be at least one
3268   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
3269   // the trip count, we set the remainder to be equal to the step. If the step
3270   // does not evenly divide the trip count, no adjustment is necessary since
3271   // there will already be scalar iterations. Note that the minimum iterations
3272   // check ensures that N >= Step.
3273   if (VF > 1 && Legal->requiresScalarEpilogue()) {
3274     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3275     R = Builder.CreateSelect(IsZero, Step, R);
3276   }
3277 
3278   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3279 
3280   return VectorTripCount;
3281 }
3282 
3283 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3284                                                    const DataLayout &DL) {
3285   // Verify that V is a vector type with same number of elements as DstVTy.
3286   unsigned VF = DstVTy->getNumElements();
3287   VectorType *SrcVecTy = cast<VectorType>(V->getType());
3288   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3289   Type *SrcElemTy = SrcVecTy->getElementType();
3290   Type *DstElemTy = DstVTy->getElementType();
3291   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3292          "Vector elements must have same size");
3293 
3294   // Do a direct cast if element types are castable.
3295   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3296     return Builder.CreateBitOrPointerCast(V, DstVTy);
3297   }
3298   // V cannot be directly casted to desired vector type.
3299   // May happen when V is a floating point vector but DstVTy is a vector of
3300   // pointers or vice-versa. Handle this using a two-step bitcast using an
3301   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3302   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3303          "Only one type should be a pointer type");
3304   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3305          "Only one type should be a floating point type");
3306   Type *IntTy =
3307       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3308   VectorType *VecIntTy = VectorType::get(IntTy, VF);
3309   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3310   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3311 }
3312 
3313 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3314                                                          BasicBlock *Bypass) {
3315   Value *Count = getOrCreateTripCount(L);
3316   BasicBlock *BB = L->getLoopPreheader();
3317   IRBuilder<> Builder(BB->getTerminator());
3318 
3319   // Generate code to check if the loop's trip count is less than VF * UF, or
3320   // equal to it in case a scalar epilogue is required; this implies that the
3321   // vector trip count is zero. This check also covers the case where adding one
3322   // to the backedge-taken count overflowed leading to an incorrect trip count
3323   // of zero. In this case we will also jump to the scalar loop.
3324   auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3325                                            : ICmpInst::ICMP_ULT;
3326   Value *CheckMinIters = Builder.CreateICmp(
3327       P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
3328 
3329   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3330   // Update dominator tree immediately if the generated block is a
3331   // LoopBypassBlock because SCEV expansions to generate loop bypass
3332   // checks may query it before the current function is finished.
3333   DT->addNewBlock(NewBB, BB);
3334   if (L->getParentLoop())
3335     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3336   ReplaceInstWithInst(BB->getTerminator(),
3337                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
3338   LoopBypassBlocks.push_back(BB);
3339 }
3340 
3341 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3342   BasicBlock *BB = L->getLoopPreheader();
3343 
3344   // Generate the code to check that the SCEV assumptions that we made.
3345   // We want the new basic block to start at the first instruction in a
3346   // sequence of instructions that form a check.
3347   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
3348                    "scev.check");
3349   Value *SCEVCheck =
3350       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
3351 
3352   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
3353     if (C->isZero())
3354       return;
3355 
3356   // Create a new block containing the stride check.
3357   BB->setName("vector.scevcheck");
3358   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3359   // Update dominator tree immediately if the generated block is a
3360   // LoopBypassBlock because SCEV expansions to generate loop bypass
3361   // checks may query it before the current function is finished.
3362   DT->addNewBlock(NewBB, BB);
3363   if (L->getParentLoop())
3364     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3365   ReplaceInstWithInst(BB->getTerminator(),
3366                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
3367   LoopBypassBlocks.push_back(BB);
3368   AddedSafetyChecks = true;
3369 }
3370 
3371 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
3372   BasicBlock *BB = L->getLoopPreheader();
3373 
3374   // Generate the code that checks in runtime if arrays overlap. We put the
3375   // checks into a separate block to make the more common case of few elements
3376   // faster.
3377   Instruction *FirstCheckInst;
3378   Instruction *MemRuntimeCheck;
3379   std::tie(FirstCheckInst, MemRuntimeCheck) =
3380       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
3381   if (!MemRuntimeCheck)
3382     return;
3383 
3384   // Create a new block containing the memory check.
3385   BB->setName("vector.memcheck");
3386   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3387   // Update dominator tree immediately if the generated block is a
3388   // LoopBypassBlock because SCEV expansions to generate loop bypass
3389   // checks may query it before the current function is finished.
3390   DT->addNewBlock(NewBB, BB);
3391   if (L->getParentLoop())
3392     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3393   ReplaceInstWithInst(BB->getTerminator(),
3394                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
3395   LoopBypassBlocks.push_back(BB);
3396   AddedSafetyChecks = true;
3397 
3398   // We currently don't use LoopVersioning for the actual loop cloning but we
3399   // still use it to add the noalias metadata.
3400   LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
3401                                            PSE.getSE());
3402   LVer->prepareNoAliasMetadata();
3403 }
3404 
3405 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3406   /*
3407    In this function we generate a new loop. The new loop will contain
3408    the vectorized instructions while the old loop will continue to run the
3409    scalar remainder.
3410 
3411        [ ] <-- loop iteration number check.
3412     /   |
3413    /    v
3414   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3415   |  /  |
3416   | /   v
3417   ||   [ ]     <-- vector pre header.
3418   |/    |
3419   |     v
3420   |    [  ] \
3421   |    [  ]_|   <-- vector loop.
3422   |     |
3423   |     v
3424   |   -[ ]   <--- middle-block.
3425   |  /  |
3426   | /   v
3427   -|- >[ ]     <--- new preheader.
3428    |    |
3429    |    v
3430    |   [ ] \
3431    |   [ ]_|   <-- old scalar loop to handle remainder.
3432     \   |
3433      \  v
3434       >[ ]     <-- exit block.
3435    ...
3436    */
3437 
3438   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
3439   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
3440   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
3441   assert(VectorPH && "Invalid loop structure");
3442   assert(ExitBlock && "Must have an exit block");
3443 
3444   // Some loops have a single integer induction variable, while other loops
3445   // don't. One example is c++ iterators that often have multiple pointer
3446   // induction variables. In the code below we also support a case where we
3447   // don't have a single induction variable.
3448   //
3449   // We try to obtain an induction variable from the original loop as hard
3450   // as possible. However if we don't find one that:
3451   //   - is an integer
3452   //   - counts from zero, stepping by one
3453   //   - is the size of the widest induction variable type
3454   // then we create a new one.
3455   OldInduction = Legal->getPrimaryInduction();
3456   Type *IdxTy = Legal->getWidestInductionType();
3457 
3458   // Split the single block loop into the two loop structure described above.
3459   BasicBlock *VecBody =
3460       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3461   BasicBlock *MiddleBlock =
3462       VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3463   BasicBlock *ScalarPH =
3464       MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3465 
3466   // Create and register the new vector loop.
3467   Loop *Lp = LI->AllocateLoop();
3468   Loop *ParentLoop = OrigLoop->getParentLoop();
3469 
3470   // Insert the new loop into the loop nest and register the new basic blocks
3471   // before calling any utilities such as SCEV that require valid LoopInfo.
3472   if (ParentLoop) {
3473     ParentLoop->addChildLoop(Lp);
3474     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3475     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3476   } else {
3477     LI->addTopLevelLoop(Lp);
3478   }
3479   Lp->addBasicBlockToLoop(VecBody, *LI);
3480 
3481   // Find the loop boundaries.
3482   Value *Count = getOrCreateTripCount(Lp);
3483 
3484   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3485 
3486   // Now, compare the new count to zero. If it is zero skip the vector loop and
3487   // jump to the scalar loop. This check also covers the case where the
3488   // backedge-taken count is uint##_max: adding one to it will overflow leading
3489   // to an incorrect trip count of zero. In this (rare) case we will also jump
3490   // to the scalar loop.
3491   emitMinimumIterationCountCheck(Lp, ScalarPH);
3492 
3493   // Generate the code to check any assumptions that we've made for SCEV
3494   // expressions.
3495   emitSCEVChecks(Lp, ScalarPH);
3496 
3497   // Generate the code that checks in runtime if arrays overlap. We put the
3498   // checks into a separate block to make the more common case of few elements
3499   // faster.
3500   emitMemRuntimeChecks(Lp, ScalarPH);
3501 
3502   // Generate the induction variable.
3503   // The loop step is equal to the vectorization factor (num of SIMD elements)
3504   // times the unroll factor (num of SIMD instructions).
3505   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3506   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3507   Induction =
3508       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3509                               getDebugLocFromInstOrOperands(OldInduction));
3510 
3511   // We are going to resume the execution of the scalar loop.
3512   // Go over all of the induction variables that we found and fix the
3513   // PHIs that are left in the scalar version of the loop.
3514   // The starting values of PHI nodes depend on the counter of the last
3515   // iteration in the vectorized loop.
3516   // If we come from a bypass edge then we need to start from the original
3517   // start value.
3518 
3519   // This variable saves the new starting index for the scalar loop. It is used
3520   // to test if there are any tail iterations left once the vector loop has
3521   // completed.
3522   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3523   for (auto &InductionEntry : *List) {
3524     PHINode *OrigPhi = InductionEntry.first;
3525     InductionDescriptor II = InductionEntry.second;
3526 
3527     // Create phi nodes to merge from the  backedge-taken check block.
3528     PHINode *BCResumeVal = PHINode::Create(
3529         OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3530     Value *&EndValue = IVEndValues[OrigPhi];
3531     if (OrigPhi == OldInduction) {
3532       // We know what the end value is.
3533       EndValue = CountRoundDown;
3534     } else {
3535       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3536       Type *StepType = II.getStep()->getType();
3537       Instruction::CastOps CastOp =
3538         CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3539       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3540       const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3541       EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3542       EndValue->setName("ind.end");
3543     }
3544 
3545     // The new PHI merges the original incoming value, in case of a bypass,
3546     // or the value at the end of the vectorized loop.
3547     BCResumeVal->addIncoming(EndValue, MiddleBlock);
3548 
3549     // Fix the scalar body counter (PHI node).
3550     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3551 
3552     // The old induction's phi node in the scalar body needs the truncated
3553     // value.
3554     for (BasicBlock *BB : LoopBypassBlocks)
3555       BCResumeVal->addIncoming(II.getStartValue(), BB);
3556     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3557   }
3558 
3559   // Add a check in the middle block to see if we have completed
3560   // all of the iterations in the first vector loop.
3561   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3562   Value *CmpN =
3563       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3564                       CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3565   ReplaceInstWithInst(MiddleBlock->getTerminator(),
3566                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3567 
3568   // Get ready to start creating new instructions into the vectorized body.
3569   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3570 
3571   // Save the state.
3572   LoopVectorPreHeader = Lp->getLoopPreheader();
3573   LoopScalarPreHeader = ScalarPH;
3574   LoopMiddleBlock = MiddleBlock;
3575   LoopExitBlock = ExitBlock;
3576   LoopVectorBody = VecBody;
3577   LoopScalarBody = OldBasicBlock;
3578 
3579   // Keep all loop hints from the original loop on the vector loop (we'll
3580   // replace the vectorizer-specific hints below).
3581   if (MDNode *LID = OrigLoop->getLoopID())
3582     Lp->setLoopID(LID);
3583 
3584   LoopVectorizeHints Hints(Lp, true, *ORE);
3585   Hints.setAlreadyVectorized();
3586 
3587   return LoopVectorPreHeader;
3588 }
3589 
3590 // Fix up external users of the induction variable. At this point, we are
3591 // in LCSSA form, with all external PHIs that use the IV having one input value,
3592 // coming from the remainder loop. We need those PHIs to also have a correct
3593 // value for the IV when arriving directly from the middle block.
3594 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3595                                        const InductionDescriptor &II,
3596                                        Value *CountRoundDown, Value *EndValue,
3597                                        BasicBlock *MiddleBlock) {
3598   // There are two kinds of external IV usages - those that use the value
3599   // computed in the last iteration (the PHI) and those that use the penultimate
3600   // value (the value that feeds into the phi from the loop latch).
3601   // We allow both, but they, obviously, have different values.
3602 
3603   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3604 
3605   DenseMap<Value *, Value *> MissingVals;
3606 
3607   // An external user of the last iteration's value should see the value that
3608   // the remainder loop uses to initialize its own IV.
3609   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3610   for (User *U : PostInc->users()) {
3611     Instruction *UI = cast<Instruction>(U);
3612     if (!OrigLoop->contains(UI)) {
3613       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3614       MissingVals[UI] = EndValue;
3615     }
3616   }
3617 
3618   // An external user of the penultimate value need to see EndValue - Step.
3619   // The simplest way to get this is to recompute it from the constituent SCEVs,
3620   // that is Start + (Step * (CRD - 1)).
3621   for (User *U : OrigPhi->users()) {
3622     auto *UI = cast<Instruction>(U);
3623     if (!OrigLoop->contains(UI)) {
3624       const DataLayout &DL =
3625           OrigLoop->getHeader()->getModule()->getDataLayout();
3626       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3627 
3628       IRBuilder<> B(MiddleBlock->getTerminator());
3629       Value *CountMinusOne = B.CreateSub(
3630           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3631       Value *CMO =
3632           !II.getStep()->getType()->isIntegerTy()
3633               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3634                              II.getStep()->getType())
3635               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3636       CMO->setName("cast.cmo");
3637       Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3638       Escape->setName("ind.escape");
3639       MissingVals[UI] = Escape;
3640     }
3641   }
3642 
3643   for (auto &I : MissingVals) {
3644     PHINode *PHI = cast<PHINode>(I.first);
3645     // One corner case we have to handle is two IVs "chasing" each-other,
3646     // that is %IV2 = phi [...], [ %IV1, %latch ]
3647     // In this case, if IV1 has an external use, we need to avoid adding both
3648     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3649     // don't already have an incoming value for the middle block.
3650     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3651       PHI->addIncoming(I.second, MiddleBlock);
3652   }
3653 }
3654 
3655 namespace {
3656 
3657 struct CSEDenseMapInfo {
3658   static bool canHandle(const Instruction *I) {
3659     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3660            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3661   }
3662 
3663   static inline Instruction *getEmptyKey() {
3664     return DenseMapInfo<Instruction *>::getEmptyKey();
3665   }
3666 
3667   static inline Instruction *getTombstoneKey() {
3668     return DenseMapInfo<Instruction *>::getTombstoneKey();
3669   }
3670 
3671   static unsigned getHashValue(const Instruction *I) {
3672     assert(canHandle(I) && "Unknown instruction!");
3673     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3674                                                            I->value_op_end()));
3675   }
3676 
3677   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3678     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3679         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3680       return LHS == RHS;
3681     return LHS->isIdenticalTo(RHS);
3682   }
3683 };
3684 
3685 } // end anonymous namespace
3686 
3687 ///\brief Perform cse of induction variable instructions.
3688 static void cse(BasicBlock *BB) {
3689   // Perform simple cse.
3690   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3691   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3692     Instruction *In = &*I++;
3693 
3694     if (!CSEDenseMapInfo::canHandle(In))
3695       continue;
3696 
3697     // Check if we can replace this instruction with any of the
3698     // visited instructions.
3699     if (Instruction *V = CSEMap.lookup(In)) {
3700       In->replaceAllUsesWith(V);
3701       In->eraseFromParent();
3702       continue;
3703     }
3704 
3705     CSEMap[In] = In;
3706   }
3707 }
3708 
3709 /// \brief Estimate the overhead of scalarizing an instruction. This is a
3710 /// convenience wrapper for the type-based getScalarizationOverhead API.
3711 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3712                                          const TargetTransformInfo &TTI) {
3713   if (VF == 1)
3714     return 0;
3715 
3716   unsigned Cost = 0;
3717   Type *RetTy = ToVectorTy(I->getType(), VF);
3718   if (!RetTy->isVoidTy() &&
3719       (!isa<LoadInst>(I) ||
3720        !TTI.supportsEfficientVectorElementLoadStore()))
3721     Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3722 
3723   if (CallInst *CI = dyn_cast<CallInst>(I)) {
3724     SmallVector<const Value *, 4> Operands(CI->arg_operands());
3725     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3726   }
3727   else if (!isa<StoreInst>(I) ||
3728            !TTI.supportsEfficientVectorElementLoadStore()) {
3729     SmallVector<const Value *, 4> Operands(I->operand_values());
3730     Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3731   }
3732 
3733   return Cost;
3734 }
3735 
3736 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3737 // Return the cost of the instruction, including scalarization overhead if it's
3738 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3739 // i.e. either vector version isn't available, or is too expensive.
3740 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3741                                   const TargetTransformInfo &TTI,
3742                                   const TargetLibraryInfo *TLI,
3743                                   bool &NeedToScalarize) {
3744   Function *F = CI->getCalledFunction();
3745   StringRef FnName = CI->getCalledFunction()->getName();
3746   Type *ScalarRetTy = CI->getType();
3747   SmallVector<Type *, 4> Tys, ScalarTys;
3748   for (auto &ArgOp : CI->arg_operands())
3749     ScalarTys.push_back(ArgOp->getType());
3750 
3751   // Estimate cost of scalarized vector call. The source operands are assumed
3752   // to be vectors, so we need to extract individual elements from there,
3753   // execute VF scalar calls, and then gather the result into the vector return
3754   // value.
3755   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3756   if (VF == 1)
3757     return ScalarCallCost;
3758 
3759   // Compute corresponding vector type for return value and arguments.
3760   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3761   for (Type *ScalarTy : ScalarTys)
3762     Tys.push_back(ToVectorTy(ScalarTy, VF));
3763 
3764   // Compute costs of unpacking argument values for the scalar calls and
3765   // packing the return values to a vector.
3766   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3767 
3768   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3769 
3770   // If we can't emit a vector call for this function, then the currently found
3771   // cost is the cost we need to return.
3772   NeedToScalarize = true;
3773   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3774     return Cost;
3775 
3776   // If the corresponding vector cost is cheaper, return its cost.
3777   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3778   if (VectorCallCost < Cost) {
3779     NeedToScalarize = false;
3780     return VectorCallCost;
3781   }
3782   return Cost;
3783 }
3784 
3785 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3786 // factor VF.  Return the cost of the instruction, including scalarization
3787 // overhead if it's needed.
3788 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3789                                        const TargetTransformInfo &TTI,
3790                                        const TargetLibraryInfo *TLI) {
3791   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3792   assert(ID && "Expected intrinsic call!");
3793 
3794   FastMathFlags FMF;
3795   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3796     FMF = FPMO->getFastMathFlags();
3797 
3798   SmallVector<Value *, 4> Operands(CI->arg_operands());
3799   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3800 }
3801 
3802 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3803   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3804   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3805   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3806 }
3807 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3808   auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3809   auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3810   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3811 }
3812 
3813 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3814   // For every instruction `I` in MinBWs, truncate the operands, create a
3815   // truncated version of `I` and reextend its result. InstCombine runs
3816   // later and will remove any ext/trunc pairs.
3817   SmallPtrSet<Value *, 4> Erased;
3818   for (const auto &KV : Cost->getMinimalBitwidths()) {
3819     // If the value wasn't vectorized, we must maintain the original scalar
3820     // type. The absence of the value from VectorLoopValueMap indicates that it
3821     // wasn't vectorized.
3822     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3823       continue;
3824     for (unsigned Part = 0; Part < UF; ++Part) {
3825       Value *I = getOrCreateVectorValue(KV.first, Part);
3826       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3827         continue;
3828       Type *OriginalTy = I->getType();
3829       Type *ScalarTruncatedTy =
3830           IntegerType::get(OriginalTy->getContext(), KV.second);
3831       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3832                                           OriginalTy->getVectorNumElements());
3833       if (TruncatedTy == OriginalTy)
3834         continue;
3835 
3836       IRBuilder<> B(cast<Instruction>(I));
3837       auto ShrinkOperand = [&](Value *V) -> Value * {
3838         if (auto *ZI = dyn_cast<ZExtInst>(V))
3839           if (ZI->getSrcTy() == TruncatedTy)
3840             return ZI->getOperand(0);
3841         return B.CreateZExtOrTrunc(V, TruncatedTy);
3842       };
3843 
3844       // The actual instruction modification depends on the instruction type,
3845       // unfortunately.
3846       Value *NewI = nullptr;
3847       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3848         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3849                              ShrinkOperand(BO->getOperand(1)));
3850 
3851         // Any wrapping introduced by shrinking this operation shouldn't be
3852         // considered undefined behavior. So, we can't unconditionally copy
3853         // arithmetic wrapping flags to NewI.
3854         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3855       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3856         NewI =
3857             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3858                          ShrinkOperand(CI->getOperand(1)));
3859       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3860         NewI = B.CreateSelect(SI->getCondition(),
3861                               ShrinkOperand(SI->getTrueValue()),
3862                               ShrinkOperand(SI->getFalseValue()));
3863       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3864         switch (CI->getOpcode()) {
3865         default:
3866           llvm_unreachable("Unhandled cast!");
3867         case Instruction::Trunc:
3868           NewI = ShrinkOperand(CI->getOperand(0));
3869           break;
3870         case Instruction::SExt:
3871           NewI = B.CreateSExtOrTrunc(
3872               CI->getOperand(0),
3873               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3874           break;
3875         case Instruction::ZExt:
3876           NewI = B.CreateZExtOrTrunc(
3877               CI->getOperand(0),
3878               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3879           break;
3880         }
3881       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3882         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3883         auto *O0 = B.CreateZExtOrTrunc(
3884             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3885         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3886         auto *O1 = B.CreateZExtOrTrunc(
3887             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3888 
3889         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3890       } else if (isa<LoadInst>(I)) {
3891         // Don't do anything with the operands, just extend the result.
3892         continue;
3893       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3894         auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3895         auto *O0 = B.CreateZExtOrTrunc(
3896             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3897         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3898         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3899       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3900         auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3901         auto *O0 = B.CreateZExtOrTrunc(
3902             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3903         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3904       } else {
3905         llvm_unreachable("Unhandled instruction type!");
3906       }
3907 
3908       // Lastly, extend the result.
3909       NewI->takeName(cast<Instruction>(I));
3910       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3911       I->replaceAllUsesWith(Res);
3912       cast<Instruction>(I)->eraseFromParent();
3913       Erased.insert(I);
3914       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3915     }
3916   }
3917 
3918   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3919   for (const auto &KV : Cost->getMinimalBitwidths()) {
3920     // If the value wasn't vectorized, we must maintain the original scalar
3921     // type. The absence of the value from VectorLoopValueMap indicates that it
3922     // wasn't vectorized.
3923     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3924       continue;
3925     for (unsigned Part = 0; Part < UF; ++Part) {
3926       Value *I = getOrCreateVectorValue(KV.first, Part);
3927       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3928       if (Inst && Inst->use_empty()) {
3929         Value *NewI = Inst->getOperand(0);
3930         Inst->eraseFromParent();
3931         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3932       }
3933     }
3934   }
3935 }
3936 
3937 void InnerLoopVectorizer::fixVectorizedLoop() {
3938   // Insert truncates and extends for any truncated instructions as hints to
3939   // InstCombine.
3940   if (VF > 1)
3941     truncateToMinimalBitwidths();
3942 
3943   // At this point every instruction in the original loop is widened to a
3944   // vector form. Now we need to fix the recurrences in the loop. These PHI
3945   // nodes are currently empty because we did not want to introduce cycles.
3946   // This is the second stage of vectorizing recurrences.
3947   fixCrossIterationPHIs();
3948 
3949   // Update the dominator tree.
3950   //
3951   // FIXME: After creating the structure of the new loop, the dominator tree is
3952   //        no longer up-to-date, and it remains that way until we update it
3953   //        here. An out-of-date dominator tree is problematic for SCEV,
3954   //        because SCEVExpander uses it to guide code generation. The
3955   //        vectorizer use SCEVExpanders in several places. Instead, we should
3956   //        keep the dominator tree up-to-date as we go.
3957   updateAnalysis();
3958 
3959   // Fix-up external users of the induction variables.
3960   for (auto &Entry : *Legal->getInductionVars())
3961     fixupIVUsers(Entry.first, Entry.second,
3962                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3963                  IVEndValues[Entry.first], LoopMiddleBlock);
3964 
3965   fixLCSSAPHIs();
3966   for (Instruction *PI : PredicatedInstructions)
3967     sinkScalarOperands(&*PI);
3968 
3969   // Remove redundant induction instructions.
3970   cse(LoopVectorBody);
3971 }
3972 
3973 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3974   // In order to support recurrences we need to be able to vectorize Phi nodes.
3975   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3976   // stage #2: We now need to fix the recurrences by adding incoming edges to
3977   // the currently empty PHI nodes. At this point every instruction in the
3978   // original loop is widened to a vector form so we can use them to construct
3979   // the incoming edges.
3980   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3981     // Handle first-order recurrences and reductions that need to be fixed.
3982     if (Legal->isFirstOrderRecurrence(&Phi))
3983       fixFirstOrderRecurrence(&Phi);
3984     else if (Legal->isReductionVariable(&Phi))
3985       fixReduction(&Phi);
3986   }
3987 }
3988 
3989 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3990   // This is the second phase of vectorizing first-order recurrences. An
3991   // overview of the transformation is described below. Suppose we have the
3992   // following loop.
3993   //
3994   //   for (int i = 0; i < n; ++i)
3995   //     b[i] = a[i] - a[i - 1];
3996   //
3997   // There is a first-order recurrence on "a". For this loop, the shorthand
3998   // scalar IR looks like:
3999   //
4000   //   scalar.ph:
4001   //     s_init = a[-1]
4002   //     br scalar.body
4003   //
4004   //   scalar.body:
4005   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4006   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4007   //     s2 = a[i]
4008   //     b[i] = s2 - s1
4009   //     br cond, scalar.body, ...
4010   //
4011   // In this example, s1 is a recurrence because it's value depends on the
4012   // previous iteration. In the first phase of vectorization, we created a
4013   // temporary value for s1. We now complete the vectorization and produce the
4014   // shorthand vector IR shown below (for VF = 4, UF = 1).
4015   //
4016   //   vector.ph:
4017   //     v_init = vector(..., ..., ..., a[-1])
4018   //     br vector.body
4019   //
4020   //   vector.body
4021   //     i = phi [0, vector.ph], [i+4, vector.body]
4022   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4023   //     v2 = a[i, i+1, i+2, i+3];
4024   //     v3 = vector(v1(3), v2(0, 1, 2))
4025   //     b[i, i+1, i+2, i+3] = v2 - v3
4026   //     br cond, vector.body, middle.block
4027   //
4028   //   middle.block:
4029   //     x = v2(3)
4030   //     br scalar.ph
4031   //
4032   //   scalar.ph:
4033   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4034   //     br scalar.body
4035   //
4036   // After execution completes the vector loop, we extract the next value of
4037   // the recurrence (x) to use as the initial value in the scalar loop.
4038 
4039   // Get the original loop preheader and single loop latch.
4040   auto *Preheader = OrigLoop->getLoopPreheader();
4041   auto *Latch = OrigLoop->getLoopLatch();
4042 
4043   // Get the initial and previous values of the scalar recurrence.
4044   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4045   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4046 
4047   // Create a vector from the initial value.
4048   auto *VectorInit = ScalarInit;
4049   if (VF > 1) {
4050     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4051     VectorInit = Builder.CreateInsertElement(
4052         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4053         Builder.getInt32(VF - 1), "vector.recur.init");
4054   }
4055 
4056   // We constructed a temporary phi node in the first phase of vectorization.
4057   // This phi node will eventually be deleted.
4058   Builder.SetInsertPoint(
4059       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
4060 
4061   // Create a phi node for the new recurrence. The current value will either be
4062   // the initial value inserted into a vector or loop-varying vector value.
4063   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4064   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4065 
4066   // Get the vectorized previous value of the last part UF - 1. It appears last
4067   // among all unrolled iterations, due to the order of their construction.
4068   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
4069 
4070   // Set the insertion point after the previous value if it is an instruction.
4071   // Note that the previous value may have been constant-folded so it is not
4072   // guaranteed to be an instruction in the vector loop. Also, if the previous
4073   // value is a phi node, we should insert after all the phi nodes to avoid
4074   // breaking basic block verification.
4075   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
4076       isa<PHINode>(PreviousLastPart))
4077     Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
4078   else
4079     Builder.SetInsertPoint(
4080         &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
4081 
4082   // We will construct a vector for the recurrence by combining the values for
4083   // the current and previous iterations. This is the required shuffle mask.
4084   SmallVector<Constant *, 8> ShuffleMask(VF);
4085   ShuffleMask[0] = Builder.getInt32(VF - 1);
4086   for (unsigned I = 1; I < VF; ++I)
4087     ShuffleMask[I] = Builder.getInt32(I + VF - 1);
4088 
4089   // The vector from which to take the initial value for the current iteration
4090   // (actual or unrolled). Initially, this is the vector phi node.
4091   Value *Incoming = VecPhi;
4092 
4093   // Shuffle the current and previous vector and update the vector parts.
4094   for (unsigned Part = 0; Part < UF; ++Part) {
4095     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
4096     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
4097     auto *Shuffle =
4098         VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
4099                                              ConstantVector::get(ShuffleMask))
4100                : Incoming;
4101     PhiPart->replaceAllUsesWith(Shuffle);
4102     cast<Instruction>(PhiPart)->eraseFromParent();
4103     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
4104     Incoming = PreviousPart;
4105   }
4106 
4107   // Fix the latch value of the new recurrence in the vector loop.
4108   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4109 
4110   // Extract the last vector element in the middle block. This will be the
4111   // initial value for the recurrence when jumping to the scalar loop.
4112   auto *ExtractForScalar = Incoming;
4113   if (VF > 1) {
4114     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4115     ExtractForScalar = Builder.CreateExtractElement(
4116         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
4117   }
4118   // Extract the second last element in the middle block if the
4119   // Phi is used outside the loop. We need to extract the phi itself
4120   // and not the last element (the phi update in the current iteration). This
4121   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4122   // when the scalar loop is not run at all.
4123   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4124   if (VF > 1)
4125     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4126         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
4127   // When loop is unrolled without vectorizing, initialize
4128   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4129   // `Incoming`. This is analogous to the vectorized case above: extracting the
4130   // second last element when VF > 1.
4131   else if (UF > 1)
4132     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
4133 
4134   // Fix the initial value of the original recurrence in the scalar loop.
4135   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4136   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4137   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4138     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4139     Start->addIncoming(Incoming, BB);
4140   }
4141 
4142   Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
4143   Phi->setName("scalar.recur");
4144 
4145   // Finally, fix users of the recurrence outside the loop. The users will need
4146   // either the last value of the scalar recurrence or the last value of the
4147   // vector recurrence we extracted in the middle block. Since the loop is in
4148   // LCSSA form, we just need to find the phi node for the original scalar
4149   // recurrence in the exit block, and then add an edge for the middle block.
4150   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4151     if (LCSSAPhi.getIncomingValue(0) == Phi) {
4152       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4153       break;
4154     }
4155   }
4156 }
4157 
4158 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
4159   Constant *Zero = Builder.getInt32(0);
4160 
4161   // Get it's reduction variable descriptor.
4162   assert(Legal->isReductionVariable(Phi) &&
4163          "Unable to find the reduction variable");
4164   RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
4165 
4166   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4167   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4168   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4169   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
4170     RdxDesc.getMinMaxRecurrenceKind();
4171   setDebugLocFromInst(Builder, ReductionStartValue);
4172 
4173   // We need to generate a reduction vector from the incoming scalar.
4174   // To do so, we need to generate the 'identity' vector and override
4175   // one of the elements with the incoming scalar reduction. We need
4176   // to do it in the vector-loop preheader.
4177   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4178 
4179   // This is the vector-clone of the value that leaves the loop.
4180   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
4181 
4182   // Find the reduction identity variable. Zero for addition, or, xor,
4183   // one for multiplication, -1 for And.
4184   Value *Identity;
4185   Value *VectorStart;
4186   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
4187       RK == RecurrenceDescriptor::RK_FloatMinMax) {
4188     // MinMax reduction have the start value as their identify.
4189     if (VF == 1) {
4190       VectorStart = Identity = ReductionStartValue;
4191     } else {
4192       VectorStart = Identity =
4193         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
4194     }
4195   } else {
4196     // Handle other reduction kinds:
4197     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
4198         RK, VecTy->getScalarType());
4199     if (VF == 1) {
4200       Identity = Iden;
4201       // This vector is the Identity vector where the first element is the
4202       // incoming scalar reduction.
4203       VectorStart = ReductionStartValue;
4204     } else {
4205       Identity = ConstantVector::getSplat(VF, Iden);
4206 
4207       // This vector is the Identity vector where the first element is the
4208       // incoming scalar reduction.
4209       VectorStart =
4210         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
4211     }
4212   }
4213 
4214   // Fix the vector-loop phi.
4215 
4216   // Reductions do not have to start at zero. They can start with
4217   // any loop invariant values.
4218   BasicBlock *Latch = OrigLoop->getLoopLatch();
4219   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4220   for (unsigned Part = 0; Part < UF; ++Part) {
4221     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
4222     Value *Val = getOrCreateVectorValue(LoopVal, Part);
4223     // Make sure to add the reduction stat value only to the
4224     // first unroll part.
4225     Value *StartVal = (Part == 0) ? VectorStart : Identity;
4226     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
4227     cast<PHINode>(VecRdxPhi)
4228       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4229   }
4230 
4231   // Before each round, move the insertion point right between
4232   // the PHIs and the values we are going to write.
4233   // This allows us to write both PHINodes and the extractelement
4234   // instructions.
4235   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4236 
4237   setDebugLocFromInst(Builder, LoopExitInst);
4238 
4239   // If the vector reduction can be performed in a smaller type, we truncate
4240   // then extend the loop exit value to enable InstCombine to evaluate the
4241   // entire expression in the smaller type.
4242   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
4243     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4244     Builder.SetInsertPoint(
4245         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4246     VectorParts RdxParts(UF);
4247     for (unsigned Part = 0; Part < UF; ++Part) {
4248       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4249       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4250       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4251                                         : Builder.CreateZExt(Trunc, VecTy);
4252       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4253            UI != RdxParts[Part]->user_end();)
4254         if (*UI != Trunc) {
4255           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4256           RdxParts[Part] = Extnd;
4257         } else {
4258           ++UI;
4259         }
4260     }
4261     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4262     for (unsigned Part = 0; Part < UF; ++Part) {
4263       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4264       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4265     }
4266   }
4267 
4268   // Reduce all of the unrolled parts into a single vector.
4269   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4270   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4271   setDebugLocFromInst(Builder, ReducedPartRdx);
4272   for (unsigned Part = 1; Part < UF; ++Part) {
4273     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4274     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4275       // Floating point operations had to be 'fast' to enable the reduction.
4276       ReducedPartRdx = addFastMathFlag(
4277           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4278                               ReducedPartRdx, "bin.rdx"));
4279     else
4280       ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
4281           Builder, MinMaxKind, ReducedPartRdx, RdxPart);
4282   }
4283 
4284   if (VF > 1) {
4285     bool NoNaN = Legal->hasFunNoNaNAttr();
4286     ReducedPartRdx =
4287         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4288     // If the reduction can be performed in a smaller type, we need to extend
4289     // the reduction to the wider type before we branch to the original loop.
4290     if (Phi->getType() != RdxDesc.getRecurrenceType())
4291       ReducedPartRdx =
4292         RdxDesc.isSigned()
4293         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4294         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4295   }
4296 
4297   // Create a phi node that merges control-flow from the backedge-taken check
4298   // block and the middle block.
4299   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4300                                         LoopScalarPreHeader->getTerminator());
4301   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4302     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4303   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4304 
4305   // Now, we need to fix the users of the reduction variable
4306   // inside and outside of the scalar remainder loop.
4307   // We know that the loop is in LCSSA form. We need to update the
4308   // PHI nodes in the exit blocks.
4309   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4310     // All PHINodes need to have a single entry edge, or two if
4311     // we already fixed them.
4312     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4313 
4314     // We found a reduction value exit-PHI. Update it with the
4315     // incoming bypass edge.
4316     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4317       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4318   } // end of the LCSSA phi scan.
4319 
4320     // Fix the scalar loop reduction variable with the incoming reduction sum
4321     // from the vector body and from the backedge value.
4322   int IncomingEdgeBlockIdx =
4323     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4324   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4325   // Pick the other block.
4326   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4327   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4328   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4329 }
4330 
4331 void InnerLoopVectorizer::fixLCSSAPHIs() {
4332   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4333     if (LCSSAPhi.getNumIncomingValues() == 1) {
4334       assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) &&
4335              "Incoming value isn't loop invariant");
4336       LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock);
4337     }
4338   }
4339 }
4340 
4341 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4342   // The basic block and loop containing the predicated instruction.
4343   auto *PredBB = PredInst->getParent();
4344   auto *VectorLoop = LI->getLoopFor(PredBB);
4345 
4346   // Initialize a worklist with the operands of the predicated instruction.
4347   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4348 
4349   // Holds instructions that we need to analyze again. An instruction may be
4350   // reanalyzed if we don't yet know if we can sink it or not.
4351   SmallVector<Instruction *, 8> InstsToReanalyze;
4352 
4353   // Returns true if a given use occurs in the predicated block. Phi nodes use
4354   // their operands in their corresponding predecessor blocks.
4355   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4356     auto *I = cast<Instruction>(U.getUser());
4357     BasicBlock *BB = I->getParent();
4358     if (auto *Phi = dyn_cast<PHINode>(I))
4359       BB = Phi->getIncomingBlock(
4360           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4361     return BB == PredBB;
4362   };
4363 
4364   // Iteratively sink the scalarized operands of the predicated instruction
4365   // into the block we created for it. When an instruction is sunk, it's
4366   // operands are then added to the worklist. The algorithm ends after one pass
4367   // through the worklist doesn't sink a single instruction.
4368   bool Changed;
4369   do {
4370     // Add the instructions that need to be reanalyzed to the worklist, and
4371     // reset the changed indicator.
4372     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4373     InstsToReanalyze.clear();
4374     Changed = false;
4375 
4376     while (!Worklist.empty()) {
4377       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4378 
4379       // We can't sink an instruction if it is a phi node, is already in the
4380       // predicated block, is not in the loop, or may have side effects.
4381       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4382           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4383         continue;
4384 
4385       // It's legal to sink the instruction if all its uses occur in the
4386       // predicated block. Otherwise, there's nothing to do yet, and we may
4387       // need to reanalyze the instruction.
4388       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4389         InstsToReanalyze.push_back(I);
4390         continue;
4391       }
4392 
4393       // Move the instruction to the beginning of the predicated block, and add
4394       // it's operands to the worklist.
4395       I->moveBefore(&*PredBB->getFirstInsertionPt());
4396       Worklist.insert(I->op_begin(), I->op_end());
4397 
4398       // The sinking may have enabled other instructions to be sunk, so we will
4399       // need to iterate.
4400       Changed = true;
4401     }
4402   } while (Changed);
4403 }
4404 
4405 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4406                                               unsigned VF) {
4407   assert(PN->getParent() == OrigLoop->getHeader() &&
4408          "Non-header phis should have been handled elsewhere");
4409 
4410   PHINode *P = cast<PHINode>(PN);
4411   // In order to support recurrences we need to be able to vectorize Phi nodes.
4412   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4413   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4414   // this value when we vectorize all of the instructions that use the PHI.
4415   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4416     for (unsigned Part = 0; Part < UF; ++Part) {
4417       // This is phase one of vectorizing PHIs.
4418       Type *VecTy =
4419           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4420       Value *EntryPart = PHINode::Create(
4421           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4422       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4423     }
4424     return;
4425   }
4426 
4427   setDebugLocFromInst(Builder, P);
4428 
4429   // This PHINode must be an induction variable.
4430   // Make sure that we know about it.
4431   assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
4432 
4433   InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4434   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4435 
4436   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4437   // which can be found from the original scalar operations.
4438   switch (II.getKind()) {
4439   case InductionDescriptor::IK_NoInduction:
4440     llvm_unreachable("Unknown induction");
4441   case InductionDescriptor::IK_IntInduction:
4442   case InductionDescriptor::IK_FpInduction:
4443     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4444   case InductionDescriptor::IK_PtrInduction: {
4445     // Handle the pointer induction variable case.
4446     assert(P->getType()->isPointerTy() && "Unexpected type.");
4447     // This is the normalized GEP that starts counting at zero.
4448     Value *PtrInd = Induction;
4449     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4450     // Determine the number of scalars we need to generate for each unroll
4451     // iteration. If the instruction is uniform, we only need to generate the
4452     // first lane. Otherwise, we generate all VF values.
4453     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4454     // These are the scalar results. Notice that we don't generate vector GEPs
4455     // because scalar GEPs result in better code.
4456     for (unsigned Part = 0; Part < UF; ++Part) {
4457       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4458         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4459         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4460         Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4461         SclrGep->setName("next.gep");
4462         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4463       }
4464     }
4465     return;
4466   }
4467   }
4468 }
4469 
4470 /// A helper function for checking whether an integer division-related
4471 /// instruction may divide by zero (in which case it must be predicated if
4472 /// executed conditionally in the scalar code).
4473 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4474 /// Non-zero divisors that are non compile-time constants will not be
4475 /// converted into multiplication, so we will still end up scalarizing
4476 /// the division, but can do so w/o predication.
4477 static bool mayDivideByZero(Instruction &I) {
4478   assert((I.getOpcode() == Instruction::UDiv ||
4479           I.getOpcode() == Instruction::SDiv ||
4480           I.getOpcode() == Instruction::URem ||
4481           I.getOpcode() == Instruction::SRem) &&
4482          "Unexpected instruction");
4483   Value *Divisor = I.getOperand(1);
4484   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4485   return !CInt || CInt->isZero();
4486 }
4487 
4488 void InnerLoopVectorizer::widenInstruction(Instruction &I) {
4489   switch (I.getOpcode()) {
4490   case Instruction::Br:
4491   case Instruction::PHI:
4492     llvm_unreachable("This instruction is handled by a different recipe.");
4493   case Instruction::GetElementPtr: {
4494     // Construct a vector GEP by widening the operands of the scalar GEP as
4495     // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4496     // results in a vector of pointers when at least one operand of the GEP
4497     // is vector-typed. Thus, to keep the representation compact, we only use
4498     // vector-typed operands for loop-varying values.
4499     auto *GEP = cast<GetElementPtrInst>(&I);
4500 
4501     if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
4502       // If we are vectorizing, but the GEP has only loop-invariant operands,
4503       // the GEP we build (by only using vector-typed operands for
4504       // loop-varying values) would be a scalar pointer. Thus, to ensure we
4505       // produce a vector of pointers, we need to either arbitrarily pick an
4506       // operand to broadcast, or broadcast a clone of the original GEP.
4507       // Here, we broadcast a clone of the original.
4508       //
4509       // TODO: If at some point we decide to scalarize instructions having
4510       //       loop-invariant operands, this special case will no longer be
4511       //       required. We would add the scalarization decision to
4512       //       collectLoopScalars() and teach getVectorValue() to broadcast
4513       //       the lane-zero scalar value.
4514       auto *Clone = Builder.Insert(GEP->clone());
4515       for (unsigned Part = 0; Part < UF; ++Part) {
4516         Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4517         VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
4518         addMetadata(EntryPart, GEP);
4519       }
4520     } else {
4521       // If the GEP has at least one loop-varying operand, we are sure to
4522       // produce a vector of pointers. But if we are only unrolling, we want
4523       // to produce a scalar GEP for each unroll part. Thus, the GEP we
4524       // produce with the code below will be scalar (if VF == 1) or vector
4525       // (otherwise). Note that for the unroll-only case, we still maintain
4526       // values in the vector mapping with initVector, as we do for other
4527       // instructions.
4528       for (unsigned Part = 0; Part < UF; ++Part) {
4529         // The pointer operand of the new GEP. If it's loop-invariant, we
4530         // won't broadcast it.
4531         auto *Ptr =
4532             OrigLoop->isLoopInvariant(GEP->getPointerOperand())
4533                 ? GEP->getPointerOperand()
4534                 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4535 
4536         // Collect all the indices for the new GEP. If any index is
4537         // loop-invariant, we won't broadcast it.
4538         SmallVector<Value *, 4> Indices;
4539         for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
4540           if (OrigLoop->isLoopInvariant(U.get()))
4541             Indices.push_back(U.get());
4542           else
4543             Indices.push_back(getOrCreateVectorValue(U.get(), Part));
4544         }
4545 
4546         // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4547         // but it should be a vector, otherwise.
4548         auto *NewGEP = GEP->isInBounds()
4549                            ? Builder.CreateInBoundsGEP(Ptr, Indices)
4550                            : Builder.CreateGEP(Ptr, Indices);
4551         assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4552                "NewGEP is not a pointer vector");
4553         VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
4554         addMetadata(NewGEP, GEP);
4555       }
4556     }
4557 
4558     break;
4559   }
4560   case Instruction::UDiv:
4561   case Instruction::SDiv:
4562   case Instruction::SRem:
4563   case Instruction::URem:
4564   case Instruction::Add:
4565   case Instruction::FAdd:
4566   case Instruction::Sub:
4567   case Instruction::FSub:
4568   case Instruction::Mul:
4569   case Instruction::FMul:
4570   case Instruction::FDiv:
4571   case Instruction::FRem:
4572   case Instruction::Shl:
4573   case Instruction::LShr:
4574   case Instruction::AShr:
4575   case Instruction::And:
4576   case Instruction::Or:
4577   case Instruction::Xor: {
4578     // Just widen binops.
4579     auto *BinOp = cast<BinaryOperator>(&I);
4580     setDebugLocFromInst(Builder, BinOp);
4581 
4582     for (unsigned Part = 0; Part < UF; ++Part) {
4583       Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
4584       Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
4585       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
4586 
4587       if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4588         VecOp->copyIRFlags(BinOp);
4589 
4590       // Use this vector value for all users of the original instruction.
4591       VectorLoopValueMap.setVectorValue(&I, Part, V);
4592       addMetadata(V, BinOp);
4593     }
4594 
4595     break;
4596   }
4597   case Instruction::Select: {
4598     // Widen selects.
4599     // If the selector is loop invariant we can create a select
4600     // instruction with a scalar condition. Otherwise, use vector-select.
4601     auto *SE = PSE.getSE();
4602     bool InvariantCond =
4603         SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4604     setDebugLocFromInst(Builder, &I);
4605 
4606     // The condition can be loop invariant  but still defined inside the
4607     // loop. This means that we can't just use the original 'cond' value.
4608     // We have to take the 'vectorized' value and pick the first lane.
4609     // Instcombine will make this a no-op.
4610 
4611     auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4612 
4613     for (unsigned Part = 0; Part < UF; ++Part) {
4614       Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4615       Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4616       Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4617       Value *Sel =
4618           Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4619       VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4620       addMetadata(Sel, &I);
4621     }
4622 
4623     break;
4624   }
4625 
4626   case Instruction::ICmp:
4627   case Instruction::FCmp: {
4628     // Widen compares. Generate vector compares.
4629     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4630     auto *Cmp = dyn_cast<CmpInst>(&I);
4631     setDebugLocFromInst(Builder, Cmp);
4632     for (unsigned Part = 0; Part < UF; ++Part) {
4633       Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
4634       Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
4635       Value *C = nullptr;
4636       if (FCmp) {
4637         // Propagate fast math flags.
4638         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4639         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4640         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4641       } else {
4642         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4643       }
4644       VectorLoopValueMap.setVectorValue(&I, Part, C);
4645       addMetadata(C, &I);
4646     }
4647 
4648     break;
4649   }
4650 
4651   case Instruction::ZExt:
4652   case Instruction::SExt:
4653   case Instruction::FPToUI:
4654   case Instruction::FPToSI:
4655   case Instruction::FPExt:
4656   case Instruction::PtrToInt:
4657   case Instruction::IntToPtr:
4658   case Instruction::SIToFP:
4659   case Instruction::UIToFP:
4660   case Instruction::Trunc:
4661   case Instruction::FPTrunc:
4662   case Instruction::BitCast: {
4663     auto *CI = dyn_cast<CastInst>(&I);
4664     setDebugLocFromInst(Builder, CI);
4665 
4666     /// Vectorize casts.
4667     Type *DestTy =
4668         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4669 
4670     for (unsigned Part = 0; Part < UF; ++Part) {
4671       Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
4672       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4673       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4674       addMetadata(Cast, &I);
4675     }
4676     break;
4677   }
4678 
4679   case Instruction::Call: {
4680     // Ignore dbg intrinsics.
4681     if (isa<DbgInfoIntrinsic>(I))
4682       break;
4683     setDebugLocFromInst(Builder, &I);
4684 
4685     Module *M = I.getParent()->getParent()->getParent();
4686     auto *CI = cast<CallInst>(&I);
4687 
4688     StringRef FnName = CI->getCalledFunction()->getName();
4689     Function *F = CI->getCalledFunction();
4690     Type *RetTy = ToVectorTy(CI->getType(), VF);
4691     SmallVector<Type *, 4> Tys;
4692     for (Value *ArgOperand : CI->arg_operands())
4693       Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4694 
4695     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4696 
4697     // The flag shows whether we use Intrinsic or a usual Call for vectorized
4698     // version of the instruction.
4699     // Is it beneficial to perform intrinsic call compared to lib call?
4700     bool NeedToScalarize;
4701     unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4702     bool UseVectorIntrinsic =
4703         ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4704     assert((UseVectorIntrinsic || !NeedToScalarize) &&
4705            "Instruction should be scalarized elsewhere.");
4706 
4707     for (unsigned Part = 0; Part < UF; ++Part) {
4708       SmallVector<Value *, 4> Args;
4709       for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4710         Value *Arg = CI->getArgOperand(i);
4711         // Some intrinsics have a scalar argument - don't replace it with a
4712         // vector.
4713         if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
4714           Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
4715         Args.push_back(Arg);
4716       }
4717 
4718       Function *VectorF;
4719       if (UseVectorIntrinsic) {
4720         // Use vector version of the intrinsic.
4721         Type *TysForDecl[] = {CI->getType()};
4722         if (VF > 1)
4723           TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4724         VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4725       } else {
4726         // Use vector version of the library call.
4727         StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4728         assert(!VFnName.empty() && "Vector function name is empty.");
4729         VectorF = M->getFunction(VFnName);
4730         if (!VectorF) {
4731           // Generate a declaration
4732           FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4733           VectorF =
4734               Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4735           VectorF->copyAttributesFrom(F);
4736         }
4737       }
4738       assert(VectorF && "Can't create vector function.");
4739 
4740       SmallVector<OperandBundleDef, 1> OpBundles;
4741       CI->getOperandBundlesAsDefs(OpBundles);
4742       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4743 
4744       if (isa<FPMathOperator>(V))
4745         V->copyFastMathFlags(CI);
4746 
4747       VectorLoopValueMap.setVectorValue(&I, Part, V);
4748       addMetadata(V, &I);
4749     }
4750 
4751     break;
4752   }
4753 
4754   default:
4755     // This instruction is not vectorized by simple widening.
4756     DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4757     llvm_unreachable("Unhandled instruction!");
4758   } // end of switch.
4759 }
4760 
4761 void InnerLoopVectorizer::updateAnalysis() {
4762   // Forget the original basic block.
4763   PSE.getSE()->forgetLoop(OrigLoop);
4764 
4765   // Update the dominator tree information.
4766   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
4767          "Entry does not dominate exit.");
4768 
4769   DT->addNewBlock(LoopMiddleBlock,
4770                   LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4771   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4772   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4773   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4774   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
4775 }
4776 
4777 /// \brief Check whether it is safe to if-convert this phi node.
4778 ///
4779 /// Phi nodes with constant expressions that can trap are not safe to if
4780 /// convert.
4781 static bool canIfConvertPHINodes(BasicBlock *BB) {
4782   for (PHINode &Phi : BB->phis()) {
4783     for (Value *V : Phi.incoming_values())
4784       if (auto *C = dyn_cast<Constant>(V))
4785         if (C->canTrap())
4786           return false;
4787   }
4788   return true;
4789 }
4790 
4791 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4792   if (!EnableIfConversion) {
4793     ORE->emit(createMissedAnalysis("IfConversionDisabled")
4794               << "if-conversion is disabled");
4795     return false;
4796   }
4797 
4798   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
4799 
4800   // A list of pointers that we can safely read and write to.
4801   SmallPtrSet<Value *, 8> SafePointes;
4802 
4803   // Collect safe addresses.
4804   for (BasicBlock *BB : TheLoop->blocks()) {
4805     if (blockNeedsPredication(BB))
4806       continue;
4807 
4808     for (Instruction &I : *BB)
4809       if (auto *Ptr = getLoadStorePointerOperand(&I))
4810         SafePointes.insert(Ptr);
4811   }
4812 
4813   // Collect the blocks that need predication.
4814   BasicBlock *Header = TheLoop->getHeader();
4815   for (BasicBlock *BB : TheLoop->blocks()) {
4816     // We don't support switch statements inside loops.
4817     if (!isa<BranchInst>(BB->getTerminator())) {
4818       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
4819                 << "loop contains a switch statement");
4820       return false;
4821     }
4822 
4823     // We must be able to predicate all blocks that need to be predicated.
4824     if (blockNeedsPredication(BB)) {
4825       if (!blockCanBePredicated(BB, SafePointes)) {
4826         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4827                   << "control flow cannot be substituted for a select");
4828         return false;
4829       }
4830     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4831       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4832                 << "control flow cannot be substituted for a select");
4833       return false;
4834     }
4835   }
4836 
4837   // We can if-convert this loop.
4838   return true;
4839 }
4840 
4841 bool LoopVectorizationLegality::canVectorize() {
4842   // Store the result and return it at the end instead of exiting early, in case
4843   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
4844   bool Result = true;
4845 
4846   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
4847   // We must have a loop in canonical form. Loops with indirectbr in them cannot
4848   // be canonicalized.
4849   if (!TheLoop->getLoopPreheader()) {
4850     DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
4851     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4852               << "loop control flow is not understood by vectorizer");
4853     if (DoExtraAnalysis)
4854       Result = false;
4855     else
4856       return false;
4857   }
4858 
4859   // FIXME: The code is currently dead, since the loop gets sent to
4860   // LoopVectorizationLegality is already an innermost loop.
4861   //
4862   // We can only vectorize innermost loops.
4863   if (!TheLoop->empty()) {
4864     ORE->emit(createMissedAnalysis("NotInnermostLoop")
4865               << "loop is not the innermost loop");
4866     if (DoExtraAnalysis)
4867       Result = false;
4868     else
4869       return false;
4870   }
4871 
4872   // We must have a single backedge.
4873   if (TheLoop->getNumBackEdges() != 1) {
4874     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4875               << "loop control flow is not understood by vectorizer");
4876     if (DoExtraAnalysis)
4877       Result = false;
4878     else
4879       return false;
4880   }
4881 
4882   // We must have a single exiting block.
4883   if (!TheLoop->getExitingBlock()) {
4884     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4885               << "loop control flow is not understood by vectorizer");
4886     if (DoExtraAnalysis)
4887       Result = false;
4888     else
4889       return false;
4890   }
4891 
4892   // We only handle bottom-tested loops, i.e. loop in which the condition is
4893   // checked at the end of each iteration. With that we can assume that all
4894   // instructions in the loop are executed the same number of times.
4895   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4896     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4897               << "loop control flow is not understood by vectorizer");
4898     if (DoExtraAnalysis)
4899       Result = false;
4900     else
4901       return false;
4902   }
4903 
4904   // We need to have a loop header.
4905   DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
4906                << '\n');
4907 
4908   // Check if we can if-convert non-single-bb loops.
4909   unsigned NumBlocks = TheLoop->getNumBlocks();
4910   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4911     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
4912     if (DoExtraAnalysis)
4913       Result = false;
4914     else
4915       return false;
4916   }
4917 
4918   // Check if we can vectorize the instructions and CFG in this loop.
4919   if (!canVectorizeInstrs()) {
4920     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
4921     if (DoExtraAnalysis)
4922       Result = false;
4923     else
4924       return false;
4925   }
4926 
4927   // Go over each instruction and look at memory deps.
4928   if (!canVectorizeMemory()) {
4929     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
4930     if (DoExtraAnalysis)
4931       Result = false;
4932     else
4933       return false;
4934   }
4935 
4936   DEBUG(dbgs() << "LV: We can vectorize this loop"
4937                << (LAI->getRuntimePointerChecking()->Need
4938                        ? " (with a runtime bound check)"
4939                        : "")
4940                << "!\n");
4941 
4942   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4943 
4944   // If an override option has been passed in for interleaved accesses, use it.
4945   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4946     UseInterleaved = EnableInterleavedMemAccesses;
4947 
4948   // Analyze interleaved memory accesses.
4949   if (UseInterleaved)
4950     InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
4951 
4952   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4953   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4954     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4955 
4956   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4957     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
4958               << "Too many SCEV assumptions need to be made and checked "
4959               << "at runtime");
4960     DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
4961     if (DoExtraAnalysis)
4962       Result = false;
4963     else
4964       return false;
4965   }
4966 
4967   // Okay! We've done all the tests. If any have failed, return false. Otherwise
4968   // we can vectorize, and at this point we don't have any other mem analysis
4969   // which may limit our maximum vectorization factor, so just return true with
4970   // no restrictions.
4971   return Result;
4972 }
4973 
4974 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4975   if (Ty->isPointerTy())
4976     return DL.getIntPtrType(Ty);
4977 
4978   // It is possible that char's or short's overflow when we ask for the loop's
4979   // trip count, work around this by changing the type size.
4980   if (Ty->getScalarSizeInBits() < 32)
4981     return Type::getInt32Ty(Ty->getContext());
4982 
4983   return Ty;
4984 }
4985 
4986 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4987   Ty0 = convertPointerToIntegerType(DL, Ty0);
4988   Ty1 = convertPointerToIntegerType(DL, Ty1);
4989   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4990     return Ty0;
4991   return Ty1;
4992 }
4993 
4994 /// \brief Check that the instruction has outside loop users and is not an
4995 /// identified reduction variable.
4996 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4997                                SmallPtrSetImpl<Value *> &AllowedExit) {
4998   // Reduction and Induction instructions are allowed to have exit users. All
4999   // other instructions must not have external users.
5000   if (!AllowedExit.count(Inst))
5001     // Check that all of the users of the loop are inside the BB.
5002     for (User *U : Inst->users()) {
5003       Instruction *UI = cast<Instruction>(U);
5004       // This user may be a reduction exit value.
5005       if (!TheLoop->contains(UI)) {
5006         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
5007         return true;
5008       }
5009     }
5010   return false;
5011 }
5012 
5013 void LoopVectorizationLegality::addInductionPhi(
5014     PHINode *Phi, const InductionDescriptor &ID,
5015     SmallPtrSetImpl<Value *> &AllowedExit) {
5016   Inductions[Phi] = ID;
5017 
5018   // In case this induction also comes with casts that we know we can ignore
5019   // in the vectorized loop body, record them here. All casts could be recorded
5020   // here for ignoring, but suffices to record only the first (as it is the
5021   // only one that may bw used outside the cast sequence).
5022   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
5023   if (!Casts.empty())
5024     InductionCastsToIgnore.insert(*Casts.begin());
5025 
5026   Type *PhiTy = Phi->getType();
5027   const DataLayout &DL = Phi->getModule()->getDataLayout();
5028 
5029   // Get the widest type.
5030   if (!PhiTy->isFloatingPointTy()) {
5031     if (!WidestIndTy)
5032       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
5033     else
5034       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
5035   }
5036 
5037   // Int inductions are special because we only allow one IV.
5038   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
5039       ID.getConstIntStepValue() &&
5040       ID.getConstIntStepValue()->isOne() &&
5041       isa<Constant>(ID.getStartValue()) &&
5042       cast<Constant>(ID.getStartValue())->isNullValue()) {
5043 
5044     // Use the phi node with the widest type as induction. Use the last
5045     // one if there are multiple (no good reason for doing this other
5046     // than it is expedient). We've checked that it begins at zero and
5047     // steps by one, so this is a canonical induction variable.
5048     if (!PrimaryInduction || PhiTy == WidestIndTy)
5049       PrimaryInduction = Phi;
5050   }
5051 
5052   // Both the PHI node itself, and the "post-increment" value feeding
5053   // back into the PHI node may have external users.
5054   // We can allow those uses, except if the SCEVs we have for them rely
5055   // on predicates that only hold within the loop, since allowing the exit
5056   // currently means re-using this SCEV outside the loop.
5057   if (PSE.getUnionPredicate().isAlwaysTrue()) {
5058     AllowedExit.insert(Phi);
5059     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
5060   }
5061 
5062   DEBUG(dbgs() << "LV: Found an induction variable.\n");
5063 }
5064 
5065 bool LoopVectorizationLegality::canVectorizeInstrs() {
5066   BasicBlock *Header = TheLoop->getHeader();
5067 
5068   // Look for the attribute signaling the absence of NaNs.
5069   Function &F = *Header->getParent();
5070   HasFunNoNaNAttr =
5071       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
5072 
5073   // For each block in the loop.
5074   for (BasicBlock *BB : TheLoop->blocks()) {
5075     // Scan the instructions in the block and look for hazards.
5076     for (Instruction &I : *BB) {
5077       if (auto *Phi = dyn_cast<PHINode>(&I)) {
5078         Type *PhiTy = Phi->getType();
5079         // Check that this PHI type is allowed.
5080         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
5081             !PhiTy->isPointerTy()) {
5082           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5083                     << "loop control flow is not understood by vectorizer");
5084           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
5085           return false;
5086         }
5087 
5088         // If this PHINode is not in the header block, then we know that we
5089         // can convert it to select during if-conversion. No need to check if
5090         // the PHIs in this block are induction or reduction variables.
5091         if (BB != Header) {
5092           // Check that this instruction has no outside users or is an
5093           // identified reduction value with an outside user.
5094           if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
5095             continue;
5096           ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
5097                     << "value could not be identified as "
5098                        "an induction or reduction variable");
5099           return false;
5100         }
5101 
5102         // We only allow if-converted PHIs with exactly two incoming values.
5103         if (Phi->getNumIncomingValues() != 2) {
5104           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5105                     << "control flow not understood by vectorizer");
5106           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
5107           return false;
5108         }
5109 
5110         RecurrenceDescriptor RedDes;
5111         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
5112                                                  DT)) {
5113           if (RedDes.hasUnsafeAlgebra())
5114             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
5115           AllowedExit.insert(RedDes.getLoopExitInstr());
5116           Reductions[Phi] = RedDes;
5117           continue;
5118         }
5119 
5120         InductionDescriptor ID;
5121         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
5122           addInductionPhi(Phi, ID, AllowedExit);
5123           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
5124             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
5125           continue;
5126         }
5127 
5128         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
5129                                                          SinkAfter, DT)) {
5130           FirstOrderRecurrences.insert(Phi);
5131           continue;
5132         }
5133 
5134         // As a last resort, coerce the PHI to a AddRec expression
5135         // and re-try classifying it a an induction PHI.
5136         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
5137           addInductionPhi(Phi, ID, AllowedExit);
5138           continue;
5139         }
5140 
5141         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
5142                   << "value that could not be identified as "
5143                      "reduction is used outside the loop");
5144         DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
5145         return false;
5146       } // end of PHI handling
5147 
5148       // We handle calls that:
5149       //   * Are debug info intrinsics.
5150       //   * Have a mapping to an IR intrinsic.
5151       //   * Have a vector version available.
5152       auto *CI = dyn_cast<CallInst>(&I);
5153       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
5154           !isa<DbgInfoIntrinsic>(CI) &&
5155           !(CI->getCalledFunction() && TLI &&
5156             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
5157         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
5158                   << "call instruction cannot be vectorized");
5159         DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
5160         return false;
5161       }
5162 
5163       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
5164       // second argument is the same (i.e. loop invariant)
5165       if (CI && hasVectorInstrinsicScalarOpd(
5166                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
5167         auto *SE = PSE.getSE();
5168         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
5169           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
5170                     << "intrinsic instruction cannot be vectorized");
5171           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
5172           return false;
5173         }
5174       }
5175 
5176       // Check that the instruction return type is vectorizable.
5177       // Also, we can't vectorize extractelement instructions.
5178       if ((!VectorType::isValidElementType(I.getType()) &&
5179            !I.getType()->isVoidTy()) ||
5180           isa<ExtractElementInst>(I)) {
5181         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
5182                   << "instruction return type cannot be vectorized");
5183         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
5184         return false;
5185       }
5186 
5187       // Check that the stored type is vectorizable.
5188       if (auto *ST = dyn_cast<StoreInst>(&I)) {
5189         Type *T = ST->getValueOperand()->getType();
5190         if (!VectorType::isValidElementType(T)) {
5191           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
5192                     << "store instruction cannot be vectorized");
5193           return false;
5194         }
5195 
5196         // FP instructions can allow unsafe algebra, thus vectorizable by
5197         // non-IEEE-754 compliant SIMD units.
5198         // This applies to floating-point math operations and calls, not memory
5199         // operations, shuffles, or casts, as they don't change precision or
5200         // semantics.
5201       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
5202                  !I.isFast()) {
5203         DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
5204         Hints->setPotentiallyUnsafe();
5205       }
5206 
5207       // Reduction instructions are allowed to have exit users.
5208       // All other instructions must not have external users.
5209       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
5210         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
5211                   << "value cannot be used outside the loop");
5212         return false;
5213       }
5214     } // next instr.
5215   }
5216 
5217   if (!PrimaryInduction) {
5218     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
5219     if (Inductions.empty()) {
5220       ORE->emit(createMissedAnalysis("NoInductionVariable")
5221                 << "loop induction variable could not be identified");
5222       return false;
5223     }
5224   }
5225 
5226   // Now we know the widest induction type, check if our found induction
5227   // is the same size. If it's not, unset it here and InnerLoopVectorizer
5228   // will create another.
5229   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
5230     PrimaryInduction = nullptr;
5231 
5232   return true;
5233 }
5234 
5235 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
5236   // We should not collect Scalars more than once per VF. Right now, this
5237   // function is called from collectUniformsAndScalars(), which already does
5238   // this check. Collecting Scalars for VF=1 does not make any sense.
5239   assert(VF >= 2 && !Scalars.count(VF) &&
5240          "This function should not be visited twice for the same VF");
5241 
5242   SmallSetVector<Instruction *, 8> Worklist;
5243 
5244   // These sets are used to seed the analysis with pointers used by memory
5245   // accesses that will remain scalar.
5246   SmallSetVector<Instruction *, 8> ScalarPtrs;
5247   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5248 
5249   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5250   // The pointer operands of loads and stores will be scalar as long as the
5251   // memory access is not a gather or scatter operation. The value operand of a
5252   // store will remain scalar if the store is scalarized.
5253   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5254     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5255     assert(WideningDecision != CM_Unknown &&
5256            "Widening decision should be ready at this moment");
5257     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5258       if (Ptr == Store->getValueOperand())
5259         return WideningDecision == CM_Scalarize;
5260     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5261            "Ptr is neither a value or pointer operand");
5262     return WideningDecision != CM_GatherScatter;
5263   };
5264 
5265   // A helper that returns true if the given value is a bitcast or
5266   // getelementptr instruction contained in the loop.
5267   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5268     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5269             isa<GetElementPtrInst>(V)) &&
5270            !TheLoop->isLoopInvariant(V);
5271   };
5272 
5273   // A helper that evaluates a memory access's use of a pointer. If the use
5274   // will be a scalar use, and the pointer is only used by memory accesses, we
5275   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
5276   // PossibleNonScalarPtrs.
5277   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5278     // We only care about bitcast and getelementptr instructions contained in
5279     // the loop.
5280     if (!isLoopVaryingBitCastOrGEP(Ptr))
5281       return;
5282 
5283     // If the pointer has already been identified as scalar (e.g., if it was
5284     // also identified as uniform), there's nothing to do.
5285     auto *I = cast<Instruction>(Ptr);
5286     if (Worklist.count(I))
5287       return;
5288 
5289     // If the use of the pointer will be a scalar use, and all users of the
5290     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5291     // place the pointer in PossibleNonScalarPtrs.
5292     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5293           return isa<LoadInst>(U) || isa<StoreInst>(U);
5294         }))
5295       ScalarPtrs.insert(I);
5296     else
5297       PossibleNonScalarPtrs.insert(I);
5298   };
5299 
5300   // We seed the scalars analysis with three classes of instructions: (1)
5301   // instructions marked uniform-after-vectorization, (2) bitcast and
5302   // getelementptr instructions used by memory accesses requiring a scalar use,
5303   // and (3) pointer induction variables and their update instructions (we
5304   // currently only scalarize these).
5305   //
5306   // (1) Add to the worklist all instructions that have been identified as
5307   // uniform-after-vectorization.
5308   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5309 
5310   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5311   // memory accesses requiring a scalar use. The pointer operands of loads and
5312   // stores will be scalar as long as the memory accesses is not a gather or
5313   // scatter operation. The value operand of a store will remain scalar if the
5314   // store is scalarized.
5315   for (auto *BB : TheLoop->blocks())
5316     for (auto &I : *BB) {
5317       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5318         evaluatePtrUse(Load, Load->getPointerOperand());
5319       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5320         evaluatePtrUse(Store, Store->getPointerOperand());
5321         evaluatePtrUse(Store, Store->getValueOperand());
5322       }
5323     }
5324   for (auto *I : ScalarPtrs)
5325     if (!PossibleNonScalarPtrs.count(I)) {
5326       DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5327       Worklist.insert(I);
5328     }
5329 
5330   // (3) Add to the worklist all pointer induction variables and their update
5331   // instructions.
5332   //
5333   // TODO: Once we are able to vectorize pointer induction variables we should
5334   //       no longer insert them into the worklist here.
5335   auto *Latch = TheLoop->getLoopLatch();
5336   for (auto &Induction : *Legal->getInductionVars()) {
5337     auto *Ind = Induction.first;
5338     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5339     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
5340       continue;
5341     Worklist.insert(Ind);
5342     Worklist.insert(IndUpdate);
5343     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5344     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5345   }
5346 
5347   // Insert the forced scalars.
5348   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5349   // induction variable when the PHI user is scalarized.
5350   if (ForcedScalars.count(VF))
5351     for (auto *I : ForcedScalars.find(VF)->second)
5352       Worklist.insert(I);
5353 
5354   // Expand the worklist by looking through any bitcasts and getelementptr
5355   // instructions we've already identified as scalar. This is similar to the
5356   // expansion step in collectLoopUniforms(); however, here we're only
5357   // expanding to include additional bitcasts and getelementptr instructions.
5358   unsigned Idx = 0;
5359   while (Idx != Worklist.size()) {
5360     Instruction *Dst = Worklist[Idx++];
5361     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5362       continue;
5363     auto *Src = cast<Instruction>(Dst->getOperand(0));
5364     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5365           auto *J = cast<Instruction>(U);
5366           return !TheLoop->contains(J) || Worklist.count(J) ||
5367                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5368                   isScalarUse(J, Src));
5369         })) {
5370       Worklist.insert(Src);
5371       DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5372     }
5373   }
5374 
5375   // An induction variable will remain scalar if all users of the induction
5376   // variable and induction variable update remain scalar.
5377   for (auto &Induction : *Legal->getInductionVars()) {
5378     auto *Ind = Induction.first;
5379     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5380 
5381     // We already considered pointer induction variables, so there's no reason
5382     // to look at their users again.
5383     //
5384     // TODO: Once we are able to vectorize pointer induction variables we
5385     //       should no longer skip over them here.
5386     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
5387       continue;
5388 
5389     // Determine if all users of the induction variable are scalar after
5390     // vectorization.
5391     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5392       auto *I = cast<Instruction>(U);
5393       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5394     });
5395     if (!ScalarInd)
5396       continue;
5397 
5398     // Determine if all users of the induction variable update instruction are
5399     // scalar after vectorization.
5400     auto ScalarIndUpdate =
5401         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5402           auto *I = cast<Instruction>(U);
5403           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5404         });
5405     if (!ScalarIndUpdate)
5406       continue;
5407 
5408     // The induction variable and its update instruction will remain scalar.
5409     Worklist.insert(Ind);
5410     Worklist.insert(IndUpdate);
5411     DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5412     DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
5413   }
5414 
5415   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5416 }
5417 
5418 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) {
5419   if (!Legal->blockNeedsPredication(I->getParent()))
5420     return false;
5421   switch(I->getOpcode()) {
5422   default:
5423     break;
5424   case Instruction::Load:
5425   case Instruction::Store: {
5426     if (!Legal->isMaskRequired(I))
5427       return false;
5428     auto *Ptr = getLoadStorePointerOperand(I);
5429     auto *Ty = getMemInstValueType(I);
5430     return isa<LoadInst>(I) ?
5431         !(isLegalMaskedLoad(Ty, Ptr)  || isLegalMaskedGather(Ty))
5432       : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
5433   }
5434   case Instruction::UDiv:
5435   case Instruction::SDiv:
5436   case Instruction::SRem:
5437   case Instruction::URem:
5438     return mayDivideByZero(*I);
5439   }
5440   return false;
5441 }
5442 
5443 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
5444                                                                unsigned VF) {
5445   // Get and ensure we have a valid memory instruction.
5446   LoadInst *LI = dyn_cast<LoadInst>(I);
5447   StoreInst *SI = dyn_cast<StoreInst>(I);
5448   assert((LI || SI) && "Invalid memory instruction");
5449 
5450   auto *Ptr = getLoadStorePointerOperand(I);
5451 
5452   // In order to be widened, the pointer should be consecutive, first of all.
5453   if (!Legal->isConsecutivePtr(Ptr))
5454     return false;
5455 
5456   // If the instruction is a store located in a predicated block, it will be
5457   // scalarized.
5458   if (isScalarWithPredication(I))
5459     return false;
5460 
5461   // If the instruction's allocated size doesn't equal it's type size, it
5462   // requires padding and will be scalarized.
5463   auto &DL = I->getModule()->getDataLayout();
5464   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5465   if (hasIrregularType(ScalarTy, DL, VF))
5466     return false;
5467 
5468   return true;
5469 }
5470 
5471 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
5472   // We should not collect Uniforms more than once per VF. Right now,
5473   // this function is called from collectUniformsAndScalars(), which
5474   // already does this check. Collecting Uniforms for VF=1 does not make any
5475   // sense.
5476 
5477   assert(VF >= 2 && !Uniforms.count(VF) &&
5478          "This function should not be visited twice for the same VF");
5479 
5480   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5481   // not analyze again.  Uniforms.count(VF) will return 1.
5482   Uniforms[VF].clear();
5483 
5484   // We now know that the loop is vectorizable!
5485   // Collect instructions inside the loop that will remain uniform after
5486   // vectorization.
5487 
5488   // Global values, params and instructions outside of current loop are out of
5489   // scope.
5490   auto isOutOfScope = [&](Value *V) -> bool {
5491     Instruction *I = dyn_cast<Instruction>(V);
5492     return (!I || !TheLoop->contains(I));
5493   };
5494 
5495   SetVector<Instruction *> Worklist;
5496   BasicBlock *Latch = TheLoop->getLoopLatch();
5497 
5498   // Start with the conditional branch. If the branch condition is an
5499   // instruction contained in the loop that is only used by the branch, it is
5500   // uniform.
5501   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5502   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
5503     Worklist.insert(Cmp);
5504     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
5505   }
5506 
5507   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5508   // are pointers that are treated like consecutive pointers during
5509   // vectorization. The pointer operands of interleaved accesses are an
5510   // example.
5511   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5512 
5513   // Holds pointer operands of instructions that are possibly non-uniform.
5514   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5515 
5516   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
5517     InstWidening WideningDecision = getWideningDecision(I, VF);
5518     assert(WideningDecision != CM_Unknown &&
5519            "Widening decision should be ready at this moment");
5520 
5521     return (WideningDecision == CM_Widen ||
5522             WideningDecision == CM_Widen_Reverse ||
5523             WideningDecision == CM_Interleave);
5524   };
5525   // Iterate over the instructions in the loop, and collect all
5526   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5527   // that a consecutive-like pointer operand will be scalarized, we collect it
5528   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5529   // getelementptr instruction can be used by both vectorized and scalarized
5530   // memory instructions. For example, if a loop loads and stores from the same
5531   // location, but the store is conditional, the store will be scalarized, and
5532   // the getelementptr won't remain uniform.
5533   for (auto *BB : TheLoop->blocks())
5534     for (auto &I : *BB) {
5535       // If there's no pointer operand, there's nothing to do.
5536       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
5537       if (!Ptr)
5538         continue;
5539 
5540       // True if all users of Ptr are memory accesses that have Ptr as their
5541       // pointer operand.
5542       auto UsersAreMemAccesses =
5543           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5544             return getLoadStorePointerOperand(U) == Ptr;
5545           });
5546 
5547       // Ensure the memory instruction will not be scalarized or used by
5548       // gather/scatter, making its pointer operand non-uniform. If the pointer
5549       // operand is used by any instruction other than a memory access, we
5550       // conservatively assume the pointer operand may be non-uniform.
5551       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5552         PossibleNonUniformPtrs.insert(Ptr);
5553 
5554       // If the memory instruction will be vectorized and its pointer operand
5555       // is consecutive-like, or interleaving - the pointer operand should
5556       // remain uniform.
5557       else
5558         ConsecutiveLikePtrs.insert(Ptr);
5559     }
5560 
5561   // Add to the Worklist all consecutive and consecutive-like pointers that
5562   // aren't also identified as possibly non-uniform.
5563   for (auto *V : ConsecutiveLikePtrs)
5564     if (!PossibleNonUniformPtrs.count(V)) {
5565       DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
5566       Worklist.insert(V);
5567     }
5568 
5569   // Expand Worklist in topological order: whenever a new instruction
5570   // is added , its users should be either already inside Worklist, or
5571   // out of scope. It ensures a uniform instruction will only be used
5572   // by uniform instructions or out of scope instructions.
5573   unsigned idx = 0;
5574   while (idx != Worklist.size()) {
5575     Instruction *I = Worklist[idx++];
5576 
5577     for (auto OV : I->operand_values()) {
5578       if (isOutOfScope(OV))
5579         continue;
5580       auto *OI = cast<Instruction>(OV);
5581       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5582             auto *J = cast<Instruction>(U);
5583             return !TheLoop->contains(J) || Worklist.count(J) ||
5584                    (OI == getLoadStorePointerOperand(J) &&
5585                     isUniformDecision(J, VF));
5586           })) {
5587         Worklist.insert(OI);
5588         DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
5589       }
5590     }
5591   }
5592 
5593   // Returns true if Ptr is the pointer operand of a memory access instruction
5594   // I, and I is known to not require scalarization.
5595   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5596     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5597   };
5598 
5599   // For an instruction to be added into Worklist above, all its users inside
5600   // the loop should also be in Worklist. However, this condition cannot be
5601   // true for phi nodes that form a cyclic dependence. We must process phi
5602   // nodes separately. An induction variable will remain uniform if all users
5603   // of the induction variable and induction variable update remain uniform.
5604   // The code below handles both pointer and non-pointer induction variables.
5605   for (auto &Induction : *Legal->getInductionVars()) {
5606     auto *Ind = Induction.first;
5607     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5608 
5609     // Determine if all users of the induction variable are uniform after
5610     // vectorization.
5611     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5612       auto *I = cast<Instruction>(U);
5613       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5614              isVectorizedMemAccessUse(I, Ind);
5615     });
5616     if (!UniformInd)
5617       continue;
5618 
5619     // Determine if all users of the induction variable update instruction are
5620     // uniform after vectorization.
5621     auto UniformIndUpdate =
5622         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5623           auto *I = cast<Instruction>(U);
5624           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5625                  isVectorizedMemAccessUse(I, IndUpdate);
5626         });
5627     if (!UniformIndUpdate)
5628       continue;
5629 
5630     // The induction variable and its update instruction will remain uniform.
5631     Worklist.insert(Ind);
5632     Worklist.insert(IndUpdate);
5633     DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
5634     DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n");
5635   }
5636 
5637   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5638 }
5639 
5640 bool LoopVectorizationLegality::canVectorizeMemory() {
5641   LAI = &(*GetLAA)(*TheLoop);
5642   InterleaveInfo.setLAI(LAI);
5643   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
5644   if (LAR) {
5645     ORE->emit([&]() {
5646       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
5647                                         "loop not vectorized: ", *LAR);
5648     });
5649   }
5650   if (!LAI->canVectorizeMemory())
5651     return false;
5652 
5653   if (LAI->hasStoreToLoopInvariantAddress()) {
5654     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
5655               << "write to a loop invariant address could not be vectorized");
5656     DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
5657     return false;
5658   }
5659 
5660   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
5661   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
5662 
5663   return true;
5664 }
5665 
5666 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
5667   Value *In0 = const_cast<Value *>(V);
5668   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5669   if (!PN)
5670     return false;
5671 
5672   return Inductions.count(PN);
5673 }
5674 
5675 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
5676   auto *Inst = dyn_cast<Instruction>(V);
5677   return (Inst && InductionCastsToIgnore.count(Inst));
5678 }
5679 
5680 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5681   return isInductionPhi(V) || isCastedInductionVariable(V);
5682 }
5683 
5684 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
5685   return FirstOrderRecurrences.count(Phi);
5686 }
5687 
5688 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5689   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
5690 }
5691 
5692 bool LoopVectorizationLegality::blockCanBePredicated(
5693     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
5694   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
5695 
5696   for (Instruction &I : *BB) {
5697     // Check that we don't have a constant expression that can trap as operand.
5698     for (Value *Operand : I.operands()) {
5699       if (auto *C = dyn_cast<Constant>(Operand))
5700         if (C->canTrap())
5701           return false;
5702     }
5703     // We might be able to hoist the load.
5704     if (I.mayReadFromMemory()) {
5705       auto *LI = dyn_cast<LoadInst>(&I);
5706       if (!LI)
5707         return false;
5708       if (!SafePtrs.count(LI->getPointerOperand())) {
5709         // !llvm.mem.parallel_loop_access implies if-conversion safety.
5710         // Otherwise, record that the load needs (real or emulated) masking
5711         // and let the cost model decide.
5712         if (!IsAnnotatedParallel)
5713           MaskedOp.insert(LI);
5714         continue;
5715       }
5716     }
5717 
5718     if (I.mayWriteToMemory()) {
5719       auto *SI = dyn_cast<StoreInst>(&I);
5720       if (!SI)
5721         return false;
5722       // Predicated store requires some form of masking:
5723       // 1) masked store HW instruction,
5724       // 2) emulation via load-blend-store (only if safe and legal to do so,
5725       //    be aware on the race conditions), or
5726       // 3) element-by-element predicate check and scalar store.
5727       MaskedOp.insert(SI);
5728       continue;
5729     }
5730     if (I.mayThrow())
5731       return false;
5732   }
5733 
5734   return true;
5735 }
5736 
5737 void InterleavedAccessInfo::collectConstStrideAccesses(
5738     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
5739     const ValueToValueMap &Strides) {
5740   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
5741 
5742   // Since it's desired that the load/store instructions be maintained in
5743   // "program order" for the interleaved access analysis, we have to visit the
5744   // blocks in the loop in reverse postorder (i.e., in a topological order).
5745   // Such an ordering will ensure that any load/store that may be executed
5746   // before a second load/store will precede the second load/store in
5747   // AccessStrideInfo.
5748   LoopBlocksDFS DFS(TheLoop);
5749   DFS.perform(LI);
5750   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
5751     for (auto &I : *BB) {
5752       auto *LI = dyn_cast<LoadInst>(&I);
5753       auto *SI = dyn_cast<StoreInst>(&I);
5754       if (!LI && !SI)
5755         continue;
5756 
5757       Value *Ptr = getLoadStorePointerOperand(&I);
5758       // We don't check wrapping here because we don't know yet if Ptr will be
5759       // part of a full group or a group with gaps. Checking wrapping for all
5760       // pointers (even those that end up in groups with no gaps) will be overly
5761       // conservative. For full groups, wrapping should be ok since if we would
5762       // wrap around the address space we would do a memory access at nullptr
5763       // even without the transformation. The wrapping checks are therefore
5764       // deferred until after we've formed the interleaved groups.
5765       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
5766                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
5767 
5768       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
5769       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5770       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
5771 
5772       // An alignment of 0 means target ABI alignment.
5773       unsigned Align = getMemInstAlignment(&I);
5774       if (!Align)
5775         Align = DL.getABITypeAlignment(PtrTy->getElementType());
5776 
5777       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
5778     }
5779 }
5780 
5781 // Analyze interleaved accesses and collect them into interleaved load and
5782 // store groups.
5783 //
5784 // When generating code for an interleaved load group, we effectively hoist all
5785 // loads in the group to the location of the first load in program order. When
5786 // generating code for an interleaved store group, we sink all stores to the
5787 // location of the last store. This code motion can change the order of load
5788 // and store instructions and may break dependences.
5789 //
5790 // The code generation strategy mentioned above ensures that we won't violate
5791 // any write-after-read (WAR) dependences.
5792 //
5793 // E.g., for the WAR dependence:  a = A[i];      // (1)
5794 //                                A[i] = b;      // (2)
5795 //
5796 // The store group of (2) is always inserted at or below (2), and the load
5797 // group of (1) is always inserted at or above (1). Thus, the instructions will
5798 // never be reordered. All other dependences are checked to ensure the
5799 // correctness of the instruction reordering.
5800 //
5801 // The algorithm visits all memory accesses in the loop in bottom-up program
5802 // order. Program order is established by traversing the blocks in the loop in
5803 // reverse postorder when collecting the accesses.
5804 //
5805 // We visit the memory accesses in bottom-up order because it can simplify the
5806 // construction of store groups in the presence of write-after-write (WAW)
5807 // dependences.
5808 //
5809 // E.g., for the WAW dependence:  A[i] = a;      // (1)
5810 //                                A[i] = b;      // (2)
5811 //                                A[i + 1] = c;  // (3)
5812 //
5813 // We will first create a store group with (3) and (2). (1) can't be added to
5814 // this group because it and (2) are dependent. However, (1) can be grouped
5815 // with other accesses that may precede it in program order. Note that a
5816 // bottom-up order does not imply that WAW dependences should not be checked.
5817 void InterleavedAccessInfo::analyzeInterleaving(
5818     const ValueToValueMap &Strides) {
5819   DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
5820 
5821   // Holds all accesses with a constant stride.
5822   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5823   collectConstStrideAccesses(AccessStrideInfo, Strides);
5824 
5825   if (AccessStrideInfo.empty())
5826     return;
5827 
5828   // Collect the dependences in the loop.
5829   collectDependences();
5830 
5831   // Holds all interleaved store groups temporarily.
5832   SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5833   // Holds all interleaved load groups temporarily.
5834   SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5835 
5836   // Search in bottom-up program order for pairs of accesses (A and B) that can
5837   // form interleaved load or store groups. In the algorithm below, access A
5838   // precedes access B in program order. We initialize a group for B in the
5839   // outer loop of the algorithm, and then in the inner loop, we attempt to
5840   // insert each A into B's group if:
5841   //
5842   //  1. A and B have the same stride,
5843   //  2. A and B have the same memory object size, and
5844   //  3. A belongs in B's group according to its distance from B.
5845   //
5846   // Special care is taken to ensure group formation will not break any
5847   // dependences.
5848   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
5849        BI != E; ++BI) {
5850     Instruction *B = BI->first;
5851     StrideDescriptor DesB = BI->second;
5852 
5853     // Initialize a group for B if it has an allowable stride. Even if we don't
5854     // create a group for B, we continue with the bottom-up algorithm to ensure
5855     // we don't break any of B's dependences.
5856     InterleaveGroup *Group = nullptr;
5857     if (isStrided(DesB.Stride)) {
5858       Group = getInterleaveGroup(B);
5859       if (!Group) {
5860         DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n');
5861         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
5862       }
5863       if (B->mayWriteToMemory())
5864         StoreGroups.insert(Group);
5865       else
5866         LoadGroups.insert(Group);
5867     }
5868 
5869     for (auto AI = std::next(BI); AI != E; ++AI) {
5870       Instruction *A = AI->first;
5871       StrideDescriptor DesA = AI->second;
5872 
5873       // Our code motion strategy implies that we can't have dependences
5874       // between accesses in an interleaved group and other accesses located
5875       // between the first and last member of the group. Note that this also
5876       // means that a group can't have more than one member at a given offset.
5877       // The accesses in a group can have dependences with other accesses, but
5878       // we must ensure we don't extend the boundaries of the group such that
5879       // we encompass those dependent accesses.
5880       //
5881       // For example, assume we have the sequence of accesses shown below in a
5882       // stride-2 loop:
5883       //
5884       //  (1, 2) is a group | A[i]   = a;  // (1)
5885       //                    | A[i-1] = b;  // (2) |
5886       //                      A[i-3] = c;  // (3)
5887       //                      A[i]   = d;  // (4) | (2, 4) is not a group
5888       //
5889       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5890       // but not with (4). If we did, the dependent access (3) would be within
5891       // the boundaries of the (2, 4) group.
5892       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
5893         // If a dependence exists and A is already in a group, we know that A
5894         // must be a store since A precedes B and WAR dependences are allowed.
5895         // Thus, A would be sunk below B. We release A's group to prevent this
5896         // illegal code motion. A will then be free to form another group with
5897         // instructions that precede it.
5898         if (isInterleaved(A)) {
5899           InterleaveGroup *StoreGroup = getInterleaveGroup(A);
5900           StoreGroups.remove(StoreGroup);
5901           releaseGroup(StoreGroup);
5902         }
5903 
5904         // If a dependence exists and A is not already in a group (or it was
5905         // and we just released it), B might be hoisted above A (if B is a
5906         // load) or another store might be sunk below A (if B is a store). In
5907         // either case, we can't add additional instructions to B's group. B
5908         // will only form a group with instructions that it precedes.
5909         break;
5910       }
5911 
5912       // At this point, we've checked for illegal code motion. If either A or B
5913       // isn't strided, there's nothing left to do.
5914       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
5915         continue;
5916 
5917       // Ignore A if it's already in a group or isn't the same kind of memory
5918       // operation as B.
5919       // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory
5920       // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory()
5921       // should have returned false - except for the case we asked for optimization
5922       // remarks.
5923       if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory())
5924           || (A->mayWriteToMemory() != B->mayWriteToMemory()))
5925         continue;
5926 
5927       // Check rules 1 and 2. Ignore A if its stride or size is different from
5928       // that of B.
5929       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
5930         continue;
5931 
5932       // Ignore A if the memory object of A and B don't belong to the same
5933       // address space
5934       if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
5935         continue;
5936 
5937       // Calculate the distance from A to B.
5938       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
5939           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
5940       if (!DistToB)
5941         continue;
5942       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
5943 
5944       // Check rule 3. Ignore A if its distance to B is not a multiple of the
5945       // size.
5946       if (DistanceToB % static_cast<int64_t>(DesB.Size))
5947         continue;
5948 
5949       // Ignore A if either A or B is in a predicated block. Although we
5950       // currently prevent group formation for predicated accesses, we may be
5951       // able to relax this limitation in the future once we handle more
5952       // complicated blocks.
5953       if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
5954         continue;
5955 
5956       // The index of A is the index of B plus A's distance to B in multiples
5957       // of the size.
5958       int IndexA =
5959           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
5960 
5961       // Try to insert A into B's group.
5962       if (Group->insertMember(A, IndexA, DesA.Align)) {
5963         DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
5964                      << "    into the interleave group with" << *B << '\n');
5965         InterleaveGroupMap[A] = Group;
5966 
5967         // Set the first load in program order as the insert position.
5968         if (A->mayReadFromMemory())
5969           Group->setInsertPos(A);
5970       }
5971     } // Iteration over A accesses.
5972   } // Iteration over B accesses.
5973 
5974   // Remove interleaved store groups with gaps.
5975   for (InterleaveGroup *Group : StoreGroups)
5976     if (Group->getNumMembers() != Group->getFactor()) {
5977       DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due "
5978                       "to gaps.\n");
5979       releaseGroup(Group);
5980     }
5981   // Remove interleaved groups with gaps (currently only loads) whose memory
5982   // accesses may wrap around. We have to revisit the getPtrStride analysis,
5983   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
5984   // not check wrapping (see documentation there).
5985   // FORNOW we use Assume=false;
5986   // TODO: Change to Assume=true but making sure we don't exceed the threshold
5987   // of runtime SCEV assumptions checks (thereby potentially failing to
5988   // vectorize altogether).
5989   // Additional optional optimizations:
5990   // TODO: If we are peeling the loop and we know that the first pointer doesn't
5991   // wrap then we can deduce that all pointers in the group don't wrap.
5992   // This means that we can forcefully peel the loop in order to only have to
5993   // check the first pointer for no-wrap. When we'll change to use Assume=true
5994   // we'll only need at most one runtime check per interleaved group.
5995   for (InterleaveGroup *Group : LoadGroups) {
5996     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
5997     // load would wrap around the address space we would do a memory access at
5998     // nullptr even without the transformation.
5999     if (Group->getNumMembers() == Group->getFactor())
6000       continue;
6001 
6002     // Case 2: If first and last members of the group don't wrap this implies
6003     // that all the pointers in the group don't wrap.
6004     // So we check only group member 0 (which is always guaranteed to exist),
6005     // and group member Factor - 1; If the latter doesn't exist we rely on
6006     // peeling (if it is a non-reveresed accsess -- see Case 3).
6007     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
6008     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
6009                       /*ShouldCheckWrap=*/true)) {
6010       DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6011                       "first group member potentially pointer-wrapping.\n");
6012       releaseGroup(Group);
6013       continue;
6014     }
6015     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
6016     if (LastMember) {
6017       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
6018       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
6019                         /*ShouldCheckWrap=*/true)) {
6020         DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6021                         "last group member potentially pointer-wrapping.\n");
6022         releaseGroup(Group);
6023       }
6024     } else {
6025       // Case 3: A non-reversed interleaved load group with gaps: We need
6026       // to execute at least one scalar epilogue iteration. This will ensure
6027       // we don't speculatively access memory out-of-bounds. We only need
6028       // to look for a member at index factor - 1, since every group must have
6029       // a member at index zero.
6030       if (Group->isReverse()) {
6031         DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
6032                         "a reverse access with gaps.\n");
6033         releaseGroup(Group);
6034         continue;
6035       }
6036       DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
6037       RequiresScalarEpilogue = true;
6038     }
6039   }
6040 }
6041 
6042 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
6043   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
6044     // TODO: It may by useful to do since it's still likely to be dynamically
6045     // uniform if the target can skip.
6046     DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target");
6047 
6048     ORE->emit(
6049       createMissedAnalysis("CantVersionLoopWithDivergentTarget")
6050       << "runtime pointer checks needed. Not enabled for divergent target");
6051 
6052     return None;
6053   }
6054 
6055   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6056   if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
6057     return computeFeasibleMaxVF(OptForSize, TC);
6058 
6059   if (Legal->getRuntimePointerChecking()->Need) {
6060     ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
6061               << "runtime pointer checks needed. Enable vectorization of this "
6062                  "loop with '#pragma clang loop vectorize(enable)' when "
6063                  "compiling with -Os/-Oz");
6064     DEBUG(dbgs()
6065           << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
6066     return None;
6067   }
6068 
6069   // If we optimize the program for size, avoid creating the tail loop.
6070   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
6071 
6072   // If we don't know the precise trip count, don't try to vectorize.
6073   if (TC < 2) {
6074     ORE->emit(
6075         createMissedAnalysis("UnknownLoopCountComplexCFG")
6076         << "unable to calculate the loop count due to complex control flow");
6077     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6078     return None;
6079   }
6080 
6081   unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
6082 
6083   if (TC % MaxVF != 0) {
6084     // If the trip count that we found modulo the vectorization factor is not
6085     // zero then we require a tail.
6086     // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
6087     // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
6088     //        smaller MaxVF that does not require a scalar epilog.
6089 
6090     ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
6091               << "cannot optimize for size and vectorize at the "
6092                  "same time. Enable vectorization of this loop "
6093                  "with '#pragma clang loop vectorize(enable)' "
6094                  "when compiling with -Os/-Oz");
6095     DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
6096     return None;
6097   }
6098 
6099   return MaxVF;
6100 }
6101 
6102 unsigned
6103 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
6104                                                  unsigned ConstTripCount) {
6105   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
6106   unsigned SmallestType, WidestType;
6107   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
6108   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
6109 
6110   // Get the maximum safe dependence distance in bits computed by LAA.
6111   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
6112   // the memory accesses that is most restrictive (involved in the smallest
6113   // dependence distance).
6114   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
6115 
6116   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
6117 
6118   unsigned MaxVectorSize = WidestRegister / WidestType;
6119 
6120   DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
6121                << WidestType << " bits.\n");
6122   DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister
6123                << " bits.\n");
6124 
6125   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
6126                                 " into one vector!");
6127   if (MaxVectorSize == 0) {
6128     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
6129     MaxVectorSize = 1;
6130     return MaxVectorSize;
6131   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
6132              isPowerOf2_32(ConstTripCount)) {
6133     // We need to clamp the VF to be the ConstTripCount. There is no point in
6134     // choosing a higher viable VF as done in the loop below.
6135     DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
6136                  << ConstTripCount << "\n");
6137     MaxVectorSize = ConstTripCount;
6138     return MaxVectorSize;
6139   }
6140 
6141   unsigned MaxVF = MaxVectorSize;
6142   if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
6143       (MaximizeBandwidth && !OptForSize)) {
6144     // Collect all viable vectorization factors larger than the default MaxVF
6145     // (i.e. MaxVectorSize).
6146     SmallVector<unsigned, 8> VFs;
6147     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
6148     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
6149       VFs.push_back(VS);
6150 
6151     // For each VF calculate its register usage.
6152     auto RUs = calculateRegisterUsage(VFs);
6153 
6154     // Select the largest VF which doesn't require more registers than existing
6155     // ones.
6156     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
6157     for (int i = RUs.size() - 1; i >= 0; --i) {
6158       if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
6159         MaxVF = VFs[i];
6160         break;
6161       }
6162     }
6163   }
6164   return MaxVF;
6165 }
6166 
6167 VectorizationFactor
6168 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
6169   float Cost = expectedCost(1).first;
6170   const float ScalarCost = Cost;
6171   unsigned Width = 1;
6172   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
6173 
6174   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6175   // Ignore scalar width, because the user explicitly wants vectorization.
6176   if (ForceVectorization && MaxVF > 1) {
6177     Width = 2;
6178     Cost = expectedCost(Width).first / (float)Width;
6179   }
6180 
6181   for (unsigned i = 2; i <= MaxVF; i *= 2) {
6182     // Notice that the vector loop needs to be executed less times, so
6183     // we need to divide the cost of the vector loops by the width of
6184     // the vector elements.
6185     VectorizationCostTy C = expectedCost(i);
6186     float VectorCost = C.first / (float)i;
6187     DEBUG(dbgs() << "LV: Vector loop of width " << i
6188                  << " costs: " << (int)VectorCost << ".\n");
6189     if (!C.second && !ForceVectorization) {
6190       DEBUG(
6191           dbgs() << "LV: Not considering vector loop of width " << i
6192                  << " because it will not generate any vector instructions.\n");
6193       continue;
6194     }
6195     if (VectorCost < Cost) {
6196       Cost = VectorCost;
6197       Width = i;
6198     }
6199   }
6200 
6201   if (!EnableCondStoresVectorization && NumPredStores) {
6202     ORE->emit(createMissedAnalysis("ConditionalStore")
6203               << "store that is conditionally executed prevents vectorization");
6204     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
6205     Width = 1;
6206     Cost = ScalarCost;
6207   }
6208 
6209   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
6210         << "LV: Vectorization seems to be not beneficial, "
6211         << "but was forced by a user.\n");
6212   DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
6213   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
6214   return Factor;
6215 }
6216 
6217 std::pair<unsigned, unsigned>
6218 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6219   unsigned MinWidth = -1U;
6220   unsigned MaxWidth = 8;
6221   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6222 
6223   // For each block.
6224   for (BasicBlock *BB : TheLoop->blocks()) {
6225     // For each instruction in the loop.
6226     for (Instruction &I : *BB) {
6227       Type *T = I.getType();
6228 
6229       // Skip ignored values.
6230       if (ValuesToIgnore.count(&I))
6231         continue;
6232 
6233       // Only examine Loads, Stores and PHINodes.
6234       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6235         continue;
6236 
6237       // Examine PHI nodes that are reduction variables. Update the type to
6238       // account for the recurrence type.
6239       if (auto *PN = dyn_cast<PHINode>(&I)) {
6240         if (!Legal->isReductionVariable(PN))
6241           continue;
6242         RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
6243         T = RdxDesc.getRecurrenceType();
6244       }
6245 
6246       // Examine the stored values.
6247       if (auto *ST = dyn_cast<StoreInst>(&I))
6248         T = ST->getValueOperand()->getType();
6249 
6250       // Ignore loaded pointer types and stored pointer types that are not
6251       // vectorizable.
6252       //
6253       // FIXME: The check here attempts to predict whether a load or store will
6254       //        be vectorized. We only know this for certain after a VF has
6255       //        been selected. Here, we assume that if an access can be
6256       //        vectorized, it will be. We should also look at extending this
6257       //        optimization to non-pointer types.
6258       //
6259       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6260           !Legal->isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6261         continue;
6262 
6263       MinWidth = std::min(MinWidth,
6264                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6265       MaxWidth = std::max(MaxWidth,
6266                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6267     }
6268   }
6269 
6270   return {MinWidth, MaxWidth};
6271 }
6272 
6273 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
6274                                                            unsigned VF,
6275                                                            unsigned LoopCost) {
6276   // -- The interleave heuristics --
6277   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6278   // There are many micro-architectural considerations that we can't predict
6279   // at this level. For example, frontend pressure (on decode or fetch) due to
6280   // code size, or the number and capabilities of the execution ports.
6281   //
6282   // We use the following heuristics to select the interleave count:
6283   // 1. If the code has reductions, then we interleave to break the cross
6284   // iteration dependency.
6285   // 2. If the loop is really small, then we interleave to reduce the loop
6286   // overhead.
6287   // 3. We don't interleave if we think that we will spill registers to memory
6288   // due to the increased register pressure.
6289 
6290   // When we optimize for size, we don't interleave.
6291   if (OptForSize)
6292     return 1;
6293 
6294   // We used the distance for the interleave count.
6295   if (Legal->getMaxSafeDepDistBytes() != -1U)
6296     return 1;
6297 
6298   // Do not interleave loops with a relatively small trip count.
6299   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6300   if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
6301     return 1;
6302 
6303   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
6304   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6305                << " registers\n");
6306 
6307   if (VF == 1) {
6308     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6309       TargetNumRegisters = ForceTargetNumScalarRegs;
6310   } else {
6311     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6312       TargetNumRegisters = ForceTargetNumVectorRegs;
6313   }
6314 
6315   RegisterUsage R = calculateRegisterUsage({VF})[0];
6316   // We divide by these constants so assume that we have at least one
6317   // instruction that uses at least one register.
6318   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
6319 
6320   // We calculate the interleave count using the following formula.
6321   // Subtract the number of loop invariants from the number of available
6322   // registers. These registers are used by all of the interleaved instances.
6323   // Next, divide the remaining registers by the number of registers that is
6324   // required by the loop, in order to estimate how many parallel instances
6325   // fit without causing spills. All of this is rounded down if necessary to be
6326   // a power of two. We want power of two interleave count to simplify any
6327   // addressing operations or alignment considerations.
6328   unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
6329                               R.MaxLocalUsers);
6330 
6331   // Don't count the induction variable as interleaved.
6332   if (EnableIndVarRegisterHeur)
6333     IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
6334                        std::max(1U, (R.MaxLocalUsers - 1)));
6335 
6336   // Clamp the interleave ranges to reasonable counts.
6337   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
6338 
6339   // Check if the user has overridden the max.
6340   if (VF == 1) {
6341     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6342       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6343   } else {
6344     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6345       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6346   }
6347 
6348   // If we did not calculate the cost for VF (because the user selected the VF)
6349   // then we calculate the cost of VF here.
6350   if (LoopCost == 0)
6351     LoopCost = expectedCost(VF).first;
6352 
6353   // Clamp the calculated IC to be between the 1 and the max interleave count
6354   // that the target allows.
6355   if (IC > MaxInterleaveCount)
6356     IC = MaxInterleaveCount;
6357   else if (IC < 1)
6358     IC = 1;
6359 
6360   // Interleave if we vectorized this loop and there is a reduction that could
6361   // benefit from interleaving.
6362   if (VF > 1 && !Legal->getReductionVars()->empty()) {
6363     DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6364     return IC;
6365   }
6366 
6367   // Note that if we've already vectorized the loop we will have done the
6368   // runtime check and so interleaving won't require further checks.
6369   bool InterleavingRequiresRuntimePointerCheck =
6370       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
6371 
6372   // We want to interleave small loops in order to reduce the loop overhead and
6373   // potentially expose ILP opportunities.
6374   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
6375   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6376     // We assume that the cost overhead is 1 and we use the cost model
6377     // to estimate the cost of the loop and interleave until the cost of the
6378     // loop overhead is about 5% of the cost of the loop.
6379     unsigned SmallIC =
6380         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6381 
6382     // Interleave until store/load ports (estimated by max interleave count) are
6383     // saturated.
6384     unsigned NumStores = Legal->getNumStores();
6385     unsigned NumLoads = Legal->getNumLoads();
6386     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6387     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6388 
6389     // If we have a scalar reduction (vector reductions are already dealt with
6390     // by this point), we can increase the critical path length if the loop
6391     // we're interleaving is inside another loop. Limit, by default to 2, so the
6392     // critical path only gets increased by one reduction operation.
6393     if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
6394       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6395       SmallIC = std::min(SmallIC, F);
6396       StoresIC = std::min(StoresIC, F);
6397       LoadsIC = std::min(LoadsIC, F);
6398     }
6399 
6400     if (EnableLoadStoreRuntimeInterleave &&
6401         std::max(StoresIC, LoadsIC) > SmallIC) {
6402       DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6403       return std::max(StoresIC, LoadsIC);
6404     }
6405 
6406     DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6407     return SmallIC;
6408   }
6409 
6410   // Interleave if this is a large loop (small loops are already dealt with by
6411   // this point) that could benefit from interleaving.
6412   bool HasReductions = !Legal->getReductionVars()->empty();
6413   if (TTI.enableAggressiveInterleaving(HasReductions)) {
6414     DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6415     return IC;
6416   }
6417 
6418   DEBUG(dbgs() << "LV: Not Interleaving.\n");
6419   return 1;
6420 }
6421 
6422 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6423 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
6424   // This function calculates the register usage by measuring the highest number
6425   // of values that are alive at a single location. Obviously, this is a very
6426   // rough estimation. We scan the loop in a topological order in order and
6427   // assign a number to each instruction. We use RPO to ensure that defs are
6428   // met before their users. We assume that each instruction that has in-loop
6429   // users starts an interval. We record every time that an in-loop value is
6430   // used, so we have a list of the first and last occurrences of each
6431   // instruction. Next, we transpose this data structure into a multi map that
6432   // holds the list of intervals that *end* at a specific location. This multi
6433   // map allows us to perform a linear search. We scan the instructions linearly
6434   // and record each time that a new interval starts, by placing it in a set.
6435   // If we find this value in the multi-map then we remove it from the set.
6436   // The max register usage is the maximum size of the set.
6437   // We also search for instructions that are defined outside the loop, but are
6438   // used inside the loop. We need this number separately from the max-interval
6439   // usage number because when we unroll, loop-invariant values do not take
6440   // more register.
6441   LoopBlocksDFS DFS(TheLoop);
6442   DFS.perform(LI);
6443 
6444   RegisterUsage RU;
6445 
6446   // Each 'key' in the map opens a new interval. The values
6447   // of the map are the index of the 'last seen' usage of the
6448   // instruction that is the key.
6449   using IntervalMap = DenseMap<Instruction *, unsigned>;
6450 
6451   // Maps instruction to its index.
6452   DenseMap<unsigned, Instruction *> IdxToInstr;
6453   // Marks the end of each interval.
6454   IntervalMap EndPoint;
6455   // Saves the list of instruction indices that are used in the loop.
6456   SmallSet<Instruction *, 8> Ends;
6457   // Saves the list of values that are used in the loop but are
6458   // defined outside the loop, such as arguments and constants.
6459   SmallPtrSet<Value *, 8> LoopInvariants;
6460 
6461   unsigned Index = 0;
6462   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6463     for (Instruction &I : *BB) {
6464       IdxToInstr[Index++] = &I;
6465 
6466       // Save the end location of each USE.
6467       for (Value *U : I.operands()) {
6468         auto *Instr = dyn_cast<Instruction>(U);
6469 
6470         // Ignore non-instruction values such as arguments, constants, etc.
6471         if (!Instr)
6472           continue;
6473 
6474         // If this instruction is outside the loop then record it and continue.
6475         if (!TheLoop->contains(Instr)) {
6476           LoopInvariants.insert(Instr);
6477           continue;
6478         }
6479 
6480         // Overwrite previous end points.
6481         EndPoint[Instr] = Index;
6482         Ends.insert(Instr);
6483       }
6484     }
6485   }
6486 
6487   // Saves the list of intervals that end with the index in 'key'.
6488   using InstrList = SmallVector<Instruction *, 2>;
6489   DenseMap<unsigned, InstrList> TransposeEnds;
6490 
6491   // Transpose the EndPoints to a list of values that end at each index.
6492   for (auto &Interval : EndPoint)
6493     TransposeEnds[Interval.second].push_back(Interval.first);
6494 
6495   SmallSet<Instruction *, 8> OpenIntervals;
6496 
6497   // Get the size of the widest register.
6498   unsigned MaxSafeDepDist = -1U;
6499   if (Legal->getMaxSafeDepDistBytes() != -1U)
6500     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
6501   unsigned WidestRegister =
6502       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
6503   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6504 
6505   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6506   SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
6507 
6508   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6509 
6510   // A lambda that gets the register usage for the given type and VF.
6511   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
6512     if (Ty->isTokenTy())
6513       return 0U;
6514     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
6515     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
6516   };
6517 
6518   for (unsigned int i = 0; i < Index; ++i) {
6519     Instruction *I = IdxToInstr[i];
6520 
6521     // Remove all of the instructions that end at this location.
6522     InstrList &List = TransposeEnds[i];
6523     for (Instruction *ToRemove : List)
6524       OpenIntervals.erase(ToRemove);
6525 
6526     // Ignore instructions that are never used within the loop.
6527     if (!Ends.count(I))
6528       continue;
6529 
6530     // Skip ignored values.
6531     if (ValuesToIgnore.count(I))
6532       continue;
6533 
6534     // For each VF find the maximum usage of registers.
6535     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6536       if (VFs[j] == 1) {
6537         MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
6538         continue;
6539       }
6540       collectUniformsAndScalars(VFs[j]);
6541       // Count the number of live intervals.
6542       unsigned RegUsage = 0;
6543       for (auto Inst : OpenIntervals) {
6544         // Skip ignored values for VF > 1.
6545         if (VecValuesToIgnore.count(Inst) ||
6546             isScalarAfterVectorization(Inst, VFs[j]))
6547           continue;
6548         RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
6549       }
6550       MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
6551     }
6552 
6553     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6554                  << OpenIntervals.size() << '\n');
6555 
6556     // Add the current instruction to the list of open intervals.
6557     OpenIntervals.insert(I);
6558   }
6559 
6560   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6561     unsigned Invariant = 0;
6562     if (VFs[i] == 1)
6563       Invariant = LoopInvariants.size();
6564     else {
6565       for (auto Inst : LoopInvariants)
6566         Invariant += GetRegUsage(Inst->getType(), VFs[i]);
6567     }
6568 
6569     DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
6570     DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
6571     DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
6572 
6573     RU.LoopInvariantRegs = Invariant;
6574     RU.MaxLocalUsers = MaxUsages[i];
6575     RUs[i] = RU;
6576   }
6577 
6578   return RUs;
6579 }
6580 
6581 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6582   // TODO: Cost model for emulated masked load/store is completely
6583   // broken. This hack guides the cost model to use an artificially
6584   // high enough value to practically disable vectorization with such
6585   // operations, except where previously deployed legality hack allowed
6586   // using very low cost values. This is to avoid regressions coming simply
6587   // from moving "masked load/store" check from legality to cost model.
6588   // Masked Load/Gather emulation was previously never allowed.
6589   // Limited number of Masked Store/Scatter emulation was allowed.
6590   assert(isScalarWithPredication(I) &&
6591          "Expecting a scalar emulated instruction");
6592   return isa<LoadInst>(I) ||
6593          (isa<StoreInst>(I) &&
6594           NumPredStores > NumberOfStoresToPredicate);
6595 }
6596 
6597 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
6598   // If we aren't vectorizing the loop, or if we've already collected the
6599   // instructions to scalarize, there's nothing to do. Collection may already
6600   // have occurred if we have a user-selected VF and are now computing the
6601   // expected cost for interleaving.
6602   if (VF < 2 || InstsToScalarize.count(VF))
6603     return;
6604 
6605   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6606   // not profitable to scalarize any instructions, the presence of VF in the
6607   // map will indicate that we've analyzed it already.
6608   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6609 
6610   // Find all the instructions that are scalar with predication in the loop and
6611   // determine if it would be better to not if-convert the blocks they are in.
6612   // If so, we also record the instructions to scalarize.
6613   for (BasicBlock *BB : TheLoop->blocks()) {
6614     if (!Legal->blockNeedsPredication(BB))
6615       continue;
6616     for (Instruction &I : *BB)
6617       if (isScalarWithPredication(&I)) {
6618         ScalarCostsTy ScalarCosts;
6619         // Do not apply discount logic if hacked cost is needed
6620         // for emulated masked memrefs.
6621         if (!useEmulatedMaskMemRefHack(&I) &&
6622             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6623           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6624         // Remember that BB will remain after vectorization.
6625         PredicatedBBsAfterVectorization.insert(BB);
6626       }
6627   }
6628 }
6629 
6630 int LoopVectorizationCostModel::computePredInstDiscount(
6631     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
6632     unsigned VF) {
6633   assert(!isUniformAfterVectorization(PredInst, VF) &&
6634          "Instruction marked uniform-after-vectorization will be predicated");
6635 
6636   // Initialize the discount to zero, meaning that the scalar version and the
6637   // vector version cost the same.
6638   int Discount = 0;
6639 
6640   // Holds instructions to analyze. The instructions we visit are mapped in
6641   // ScalarCosts. Those instructions are the ones that would be scalarized if
6642   // we find that the scalar version costs less.
6643   SmallVector<Instruction *, 8> Worklist;
6644 
6645   // Returns true if the given instruction can be scalarized.
6646   auto canBeScalarized = [&](Instruction *I) -> bool {
6647     // We only attempt to scalarize instructions forming a single-use chain
6648     // from the original predicated block that would otherwise be vectorized.
6649     // Although not strictly necessary, we give up on instructions we know will
6650     // already be scalar to avoid traversing chains that are unlikely to be
6651     // beneficial.
6652     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6653         isScalarAfterVectorization(I, VF))
6654       return false;
6655 
6656     // If the instruction is scalar with predication, it will be analyzed
6657     // separately. We ignore it within the context of PredInst.
6658     if (isScalarWithPredication(I))
6659       return false;
6660 
6661     // If any of the instruction's operands are uniform after vectorization,
6662     // the instruction cannot be scalarized. This prevents, for example, a
6663     // masked load from being scalarized.
6664     //
6665     // We assume we will only emit a value for lane zero of an instruction
6666     // marked uniform after vectorization, rather than VF identical values.
6667     // Thus, if we scalarize an instruction that uses a uniform, we would
6668     // create uses of values corresponding to the lanes we aren't emitting code
6669     // for. This behavior can be changed by allowing getScalarValue to clone
6670     // the lane zero values for uniforms rather than asserting.
6671     for (Use &U : I->operands())
6672       if (auto *J = dyn_cast<Instruction>(U.get()))
6673         if (isUniformAfterVectorization(J, VF))
6674           return false;
6675 
6676     // Otherwise, we can scalarize the instruction.
6677     return true;
6678   };
6679 
6680   // Returns true if an operand that cannot be scalarized must be extracted
6681   // from a vector. We will account for this scalarization overhead below. Note
6682   // that the non-void predicated instructions are placed in their own blocks,
6683   // and their return values are inserted into vectors. Thus, an extract would
6684   // still be required.
6685   auto needsExtract = [&](Instruction *I) -> bool {
6686     return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
6687   };
6688 
6689   // Compute the expected cost discount from scalarizing the entire expression
6690   // feeding the predicated instruction. We currently only consider expressions
6691   // that are single-use instruction chains.
6692   Worklist.push_back(PredInst);
6693   while (!Worklist.empty()) {
6694     Instruction *I = Worklist.pop_back_val();
6695 
6696     // If we've already analyzed the instruction, there's nothing to do.
6697     if (ScalarCosts.count(I))
6698       continue;
6699 
6700     // Compute the cost of the vector instruction. Note that this cost already
6701     // includes the scalarization overhead of the predicated instruction.
6702     unsigned VectorCost = getInstructionCost(I, VF).first;
6703 
6704     // Compute the cost of the scalarized instruction. This cost is the cost of
6705     // the instruction as if it wasn't if-converted and instead remained in the
6706     // predicated block. We will scale this cost by block probability after
6707     // computing the scalarization overhead.
6708     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
6709 
6710     // Compute the scalarization overhead of needed insertelement instructions
6711     // and phi nodes.
6712     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6713       ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
6714                                                  true, false);
6715       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
6716     }
6717 
6718     // Compute the scalarization overhead of needed extractelement
6719     // instructions. For each of the instruction's operands, if the operand can
6720     // be scalarized, add it to the worklist; otherwise, account for the
6721     // overhead.
6722     for (Use &U : I->operands())
6723       if (auto *J = dyn_cast<Instruction>(U.get())) {
6724         assert(VectorType::isValidElementType(J->getType()) &&
6725                "Instruction has non-scalar type");
6726         if (canBeScalarized(J))
6727           Worklist.push_back(J);
6728         else if (needsExtract(J))
6729           ScalarCost += TTI.getScalarizationOverhead(
6730                               ToVectorTy(J->getType(),VF), false, true);
6731       }
6732 
6733     // Scale the total scalar cost by block probability.
6734     ScalarCost /= getReciprocalPredBlockProb();
6735 
6736     // Compute the discount. A non-negative discount means the vector version
6737     // of the instruction costs more, and scalarizing would be beneficial.
6738     Discount += VectorCost - ScalarCost;
6739     ScalarCosts[I] = ScalarCost;
6740   }
6741 
6742   return Discount;
6743 }
6744 
6745 LoopVectorizationCostModel::VectorizationCostTy
6746 LoopVectorizationCostModel::expectedCost(unsigned VF) {
6747   VectorizationCostTy Cost;
6748 
6749   // For each block.
6750   for (BasicBlock *BB : TheLoop->blocks()) {
6751     VectorizationCostTy BlockCost;
6752 
6753     // For each instruction in the old loop.
6754     for (Instruction &I : *BB) {
6755       // Skip dbg intrinsics.
6756       if (isa<DbgInfoIntrinsic>(I))
6757         continue;
6758 
6759       // Skip ignored values.
6760       if (ValuesToIgnore.count(&I) ||
6761           (VF > 1 && VecValuesToIgnore.count(&I)))
6762         continue;
6763 
6764       VectorizationCostTy C = getInstructionCost(&I, VF);
6765 
6766       // Check if we should override the cost.
6767       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6768         C.first = ForceTargetInstructionCost;
6769 
6770       BlockCost.first += C.first;
6771       BlockCost.second |= C.second;
6772       DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
6773                    << VF << " For instruction: " << I << '\n');
6774     }
6775 
6776     // If we are vectorizing a predicated block, it will have been
6777     // if-converted. This means that the block's instructions (aside from
6778     // stores and instructions that may divide by zero) will now be
6779     // unconditionally executed. For the scalar case, we may not always execute
6780     // the predicated block. Thus, scale the block's cost by the probability of
6781     // executing it.
6782     if (VF == 1 && Legal->blockNeedsPredication(BB))
6783       BlockCost.first /= getReciprocalPredBlockProb();
6784 
6785     Cost.first += BlockCost.first;
6786     Cost.second |= BlockCost.second;
6787   }
6788 
6789   return Cost;
6790 }
6791 
6792 /// \brief Gets Address Access SCEV after verifying that the access pattern
6793 /// is loop invariant except the induction variable dependence.
6794 ///
6795 /// This SCEV can be sent to the Target in order to estimate the address
6796 /// calculation cost.
6797 static const SCEV *getAddressAccessSCEV(
6798               Value *Ptr,
6799               LoopVectorizationLegality *Legal,
6800               PredicatedScalarEvolution &PSE,
6801               const Loop *TheLoop) {
6802 
6803   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6804   if (!Gep)
6805     return nullptr;
6806 
6807   // We are looking for a gep with all loop invariant indices except for one
6808   // which should be an induction variable.
6809   auto SE = PSE.getSE();
6810   unsigned NumOperands = Gep->getNumOperands();
6811   for (unsigned i = 1; i < NumOperands; ++i) {
6812     Value *Opd = Gep->getOperand(i);
6813     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6814         !Legal->isInductionVariable(Opd))
6815       return nullptr;
6816   }
6817 
6818   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6819   return PSE.getSCEV(Ptr);
6820 }
6821 
6822 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6823   return Legal->hasStride(I->getOperand(0)) ||
6824          Legal->hasStride(I->getOperand(1));
6825 }
6826 
6827 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6828                                                                  unsigned VF) {
6829   Type *ValTy = getMemInstValueType(I);
6830   auto SE = PSE.getSE();
6831 
6832   unsigned Alignment = getMemInstAlignment(I);
6833   unsigned AS = getMemInstAddressSpace(I);
6834   Value *Ptr = getLoadStorePointerOperand(I);
6835   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6836 
6837   // Figure out whether the access is strided and get the stride value
6838   // if it's known in compile time
6839   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6840 
6841   // Get the cost of the scalar memory instruction and address computation.
6842   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6843 
6844   Cost += VF *
6845           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6846                               AS, I);
6847 
6848   // Get the overhead of the extractelement and insertelement instructions
6849   // we might create due to scalarization.
6850   Cost += getScalarizationOverhead(I, VF, TTI);
6851 
6852   // If we have a predicated store, it may not be executed for each vector
6853   // lane. Scale the cost by the probability of executing the predicated
6854   // block.
6855   if (isScalarWithPredication(I)) {
6856     Cost /= getReciprocalPredBlockProb();
6857 
6858     if (useEmulatedMaskMemRefHack(I))
6859       // Artificially setting to a high enough value to practically disable
6860       // vectorization with such operations.
6861       Cost = 3000000;
6862   }
6863 
6864   return Cost;
6865 }
6866 
6867 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6868                                                              unsigned VF) {
6869   Type *ValTy = getMemInstValueType(I);
6870   Type *VectorTy = ToVectorTy(ValTy, VF);
6871   unsigned Alignment = getMemInstAlignment(I);
6872   Value *Ptr = getLoadStorePointerOperand(I);
6873   unsigned AS = getMemInstAddressSpace(I);
6874   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6875 
6876   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6877          "Stride should be 1 or -1 for consecutive memory access");
6878   unsigned Cost = 0;
6879   if (Legal->isMaskRequired(I))
6880     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6881   else
6882     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
6883 
6884   bool Reverse = ConsecutiveStride < 0;
6885   if (Reverse)
6886     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6887   return Cost;
6888 }
6889 
6890 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6891                                                          unsigned VF) {
6892   LoadInst *LI = cast<LoadInst>(I);
6893   Type *ValTy = LI->getType();
6894   Type *VectorTy = ToVectorTy(ValTy, VF);
6895   unsigned Alignment = LI->getAlignment();
6896   unsigned AS = LI->getPointerAddressSpace();
6897 
6898   return TTI.getAddressComputationCost(ValTy) +
6899          TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
6900          TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6901 }
6902 
6903 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6904                                                           unsigned VF) {
6905   Type *ValTy = getMemInstValueType(I);
6906   Type *VectorTy = ToVectorTy(ValTy, VF);
6907   unsigned Alignment = getMemInstAlignment(I);
6908   Value *Ptr = getLoadStorePointerOperand(I);
6909 
6910   return TTI.getAddressComputationCost(VectorTy) +
6911          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6912                                     Legal->isMaskRequired(I), Alignment);
6913 }
6914 
6915 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6916                                                             unsigned VF) {
6917   Type *ValTy = getMemInstValueType(I);
6918   Type *VectorTy = ToVectorTy(ValTy, VF);
6919   unsigned AS = getMemInstAddressSpace(I);
6920 
6921   auto Group = Legal->getInterleavedAccessGroup(I);
6922   assert(Group && "Fail to get an interleaved access group.");
6923 
6924   unsigned InterleaveFactor = Group->getFactor();
6925   Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6926 
6927   // Holds the indices of existing members in an interleaved load group.
6928   // An interleaved store group doesn't need this as it doesn't allow gaps.
6929   SmallVector<unsigned, 4> Indices;
6930   if (isa<LoadInst>(I)) {
6931     for (unsigned i = 0; i < InterleaveFactor; i++)
6932       if (Group->getMember(i))
6933         Indices.push_back(i);
6934   }
6935 
6936   // Calculate the cost of the whole interleaved group.
6937   unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
6938                                                  Group->getFactor(), Indices,
6939                                                  Group->getAlignment(), AS);
6940 
6941   if (Group->isReverse())
6942     Cost += Group->getNumMembers() *
6943             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6944   return Cost;
6945 }
6946 
6947 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6948                                                               unsigned VF) {
6949   // Calculate scalar cost only. Vectorization cost should be ready at this
6950   // moment.
6951   if (VF == 1) {
6952     Type *ValTy = getMemInstValueType(I);
6953     unsigned Alignment = getMemInstAlignment(I);
6954     unsigned AS = getMemInstAddressSpace(I);
6955 
6956     return TTI.getAddressComputationCost(ValTy) +
6957            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
6958   }
6959   return getWideningCost(I, VF);
6960 }
6961 
6962 LoopVectorizationCostModel::VectorizationCostTy
6963 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6964   // If we know that this instruction will remain uniform, check the cost of
6965   // the scalar version.
6966   if (isUniformAfterVectorization(I, VF))
6967     VF = 1;
6968 
6969   if (VF > 1 && isProfitableToScalarize(I, VF))
6970     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6971 
6972   // Forced scalars do not have any scalarization overhead.
6973   if (VF > 1 && ForcedScalars.count(VF) &&
6974       ForcedScalars.find(VF)->second.count(I))
6975     return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6976 
6977   Type *VectorTy;
6978   unsigned C = getInstructionCost(I, VF, VectorTy);
6979 
6980   bool TypeNotScalarized =
6981       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6982   return VectorizationCostTy(C, TypeNotScalarized);
6983 }
6984 
6985 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6986   if (VF == 1)
6987     return;
6988   NumPredStores = 0;
6989   for (BasicBlock *BB : TheLoop->blocks()) {
6990     // For each instruction in the old loop.
6991     for (Instruction &I : *BB) {
6992       Value *Ptr =  getLoadStorePointerOperand(&I);
6993       if (!Ptr)
6994         continue;
6995 
6996       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6997         NumPredStores++;
6998       if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
6999         // Scalar load + broadcast
7000         unsigned Cost = getUniformMemOpCost(&I, VF);
7001         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7002         continue;
7003       }
7004 
7005       // We assume that widening is the best solution when possible.
7006       if (memoryInstructionCanBeWidened(&I, VF)) {
7007         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
7008         int ConsecutiveStride =
7009                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7010         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7011                "Expected consecutive stride.");
7012         InstWidening Decision =
7013             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7014         setWideningDecision(&I, VF, Decision, Cost);
7015         continue;
7016       }
7017 
7018       // Choose between Interleaving, Gather/Scatter or Scalarization.
7019       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
7020       unsigned NumAccesses = 1;
7021       if (Legal->isAccessInterleaved(&I)) {
7022         auto Group = Legal->getInterleavedAccessGroup(&I);
7023         assert(Group && "Fail to get an interleaved access group.");
7024 
7025         // Make one decision for the whole group.
7026         if (getWideningDecision(&I, VF) != CM_Unknown)
7027           continue;
7028 
7029         NumAccesses = Group->getNumMembers();
7030         InterleaveCost = getInterleaveGroupCost(&I, VF);
7031       }
7032 
7033       unsigned GatherScatterCost =
7034           isLegalGatherOrScatter(&I)
7035               ? getGatherScatterCost(&I, VF) * NumAccesses
7036               : std::numeric_limits<unsigned>::max();
7037 
7038       unsigned ScalarizationCost =
7039           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7040 
7041       // Choose better solution for the current VF,
7042       // write down this decision and use it during vectorization.
7043       unsigned Cost;
7044       InstWidening Decision;
7045       if (InterleaveCost <= GatherScatterCost &&
7046           InterleaveCost < ScalarizationCost) {
7047         Decision = CM_Interleave;
7048         Cost = InterleaveCost;
7049       } else if (GatherScatterCost < ScalarizationCost) {
7050         Decision = CM_GatherScatter;
7051         Cost = GatherScatterCost;
7052       } else {
7053         Decision = CM_Scalarize;
7054         Cost = ScalarizationCost;
7055       }
7056       // If the instructions belongs to an interleave group, the whole group
7057       // receives the same decision. The whole group receives the cost, but
7058       // the cost will actually be assigned to one instruction.
7059       if (auto Group = Legal->getInterleavedAccessGroup(&I))
7060         setWideningDecision(Group, VF, Decision, Cost);
7061       else
7062         setWideningDecision(&I, VF, Decision, Cost);
7063     }
7064   }
7065 
7066   // Make sure that any load of address and any other address computation
7067   // remains scalar unless there is gather/scatter support. This avoids
7068   // inevitable extracts into address registers, and also has the benefit of
7069   // activating LSR more, since that pass can't optimize vectorized
7070   // addresses.
7071   if (TTI.prefersVectorizedAddressing())
7072     return;
7073 
7074   // Start with all scalar pointer uses.
7075   SmallPtrSet<Instruction *, 8> AddrDefs;
7076   for (BasicBlock *BB : TheLoop->blocks())
7077     for (Instruction &I : *BB) {
7078       Instruction *PtrDef =
7079         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7080       if (PtrDef && TheLoop->contains(PtrDef) &&
7081           getWideningDecision(&I, VF) != CM_GatherScatter)
7082         AddrDefs.insert(PtrDef);
7083     }
7084 
7085   // Add all instructions used to generate the addresses.
7086   SmallVector<Instruction *, 4> Worklist;
7087   for (auto *I : AddrDefs)
7088     Worklist.push_back(I);
7089   while (!Worklist.empty()) {
7090     Instruction *I = Worklist.pop_back_val();
7091     for (auto &Op : I->operands())
7092       if (auto *InstOp = dyn_cast<Instruction>(Op))
7093         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7094             AddrDefs.insert(InstOp).second)
7095           Worklist.push_back(InstOp);
7096   }
7097 
7098   for (auto *I : AddrDefs) {
7099     if (isa<LoadInst>(I)) {
7100       // Setting the desired widening decision should ideally be handled in
7101       // by cost functions, but since this involves the task of finding out
7102       // if the loaded register is involved in an address computation, it is
7103       // instead changed here when we know this is the case.
7104       InstWidening Decision = getWideningDecision(I, VF);
7105       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7106         // Scalarize a widened load of address.
7107         setWideningDecision(I, VF, CM_Scalarize,
7108                             (VF * getMemoryInstructionCost(I, 1)));
7109       else if (auto Group = Legal->getInterleavedAccessGroup(I)) {
7110         // Scalarize an interleave group of address loads.
7111         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7112           if (Instruction *Member = Group->getMember(I))
7113             setWideningDecision(Member, VF, CM_Scalarize,
7114                                 (VF * getMemoryInstructionCost(Member, 1)));
7115         }
7116       }
7117     } else
7118       // Make sure I gets scalarized and a cost estimate without
7119       // scalarization overhead.
7120       ForcedScalars[VF].insert(I);
7121   }
7122 }
7123 
7124 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7125                                                         unsigned VF,
7126                                                         Type *&VectorTy) {
7127   Type *RetTy = I->getType();
7128   if (canTruncateToMinimalBitwidth(I, VF))
7129     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7130   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7131   auto SE = PSE.getSE();
7132 
7133   // TODO: We need to estimate the cost of intrinsic calls.
7134   switch (I->getOpcode()) {
7135   case Instruction::GetElementPtr:
7136     // We mark this instruction as zero-cost because the cost of GEPs in
7137     // vectorized code depends on whether the corresponding memory instruction
7138     // is scalarized or not. Therefore, we handle GEPs with the memory
7139     // instruction cost.
7140     return 0;
7141   case Instruction::Br: {
7142     // In cases of scalarized and predicated instructions, there will be VF
7143     // predicated blocks in the vectorized loop. Each branch around these
7144     // blocks requires also an extract of its vector compare i1 element.
7145     bool ScalarPredicatedBB = false;
7146     BranchInst *BI = cast<BranchInst>(I);
7147     if (VF > 1 && BI->isConditional() &&
7148         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7149          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7150       ScalarPredicatedBB = true;
7151 
7152     if (ScalarPredicatedBB) {
7153       // Return cost for branches around scalarized and predicated blocks.
7154       Type *Vec_i1Ty =
7155           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7156       return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
7157               (TTI.getCFInstrCost(Instruction::Br) * VF));
7158     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
7159       // The back-edge branch will remain, as will all scalar branches.
7160       return TTI.getCFInstrCost(Instruction::Br);
7161     else
7162       // This branch will be eliminated by if-conversion.
7163       return 0;
7164     // Note: We currently assume zero cost for an unconditional branch inside
7165     // a predicated block since it will become a fall-through, although we
7166     // may decide in the future to call TTI for all branches.
7167   }
7168   case Instruction::PHI: {
7169     auto *Phi = cast<PHINode>(I);
7170 
7171     // First-order recurrences are replaced by vector shuffles inside the loop.
7172     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
7173       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
7174                                 VectorTy, VF - 1, VectorTy);
7175 
7176     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7177     // converted into select instructions. We require N - 1 selects per phi
7178     // node, where N is the number of incoming values.
7179     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
7180       return (Phi->getNumIncomingValues() - 1) *
7181              TTI.getCmpSelInstrCost(
7182                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7183                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
7184 
7185     return TTI.getCFInstrCost(Instruction::PHI);
7186   }
7187   case Instruction::UDiv:
7188   case Instruction::SDiv:
7189   case Instruction::URem:
7190   case Instruction::SRem:
7191     // If we have a predicated instruction, it may not be executed for each
7192     // vector lane. Get the scalarization cost and scale this amount by the
7193     // probability of executing the predicated block. If the instruction is not
7194     // predicated, we fall through to the next case.
7195     if (VF > 1 && isScalarWithPredication(I)) {
7196       unsigned Cost = 0;
7197 
7198       // These instructions have a non-void type, so account for the phi nodes
7199       // that we will create. This cost is likely to be zero. The phi node
7200       // cost, if any, should be scaled by the block probability because it
7201       // models a copy at the end of each predicated block.
7202       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
7203 
7204       // The cost of the non-predicated instruction.
7205       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
7206 
7207       // The cost of insertelement and extractelement instructions needed for
7208       // scalarization.
7209       Cost += getScalarizationOverhead(I, VF, TTI);
7210 
7211       // Scale the cost by the probability of executing the predicated blocks.
7212       // This assumes the predicated block for each vector lane is equally
7213       // likely.
7214       return Cost / getReciprocalPredBlockProb();
7215     }
7216     LLVM_FALLTHROUGH;
7217   case Instruction::Add:
7218   case Instruction::FAdd:
7219   case Instruction::Sub:
7220   case Instruction::FSub:
7221   case Instruction::Mul:
7222   case Instruction::FMul:
7223   case Instruction::FDiv:
7224   case Instruction::FRem:
7225   case Instruction::Shl:
7226   case Instruction::LShr:
7227   case Instruction::AShr:
7228   case Instruction::And:
7229   case Instruction::Or:
7230   case Instruction::Xor: {
7231     // Since we will replace the stride by 1 the multiplication should go away.
7232     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7233       return 0;
7234     // Certain instructions can be cheaper to vectorize if they have a constant
7235     // second vector operand. One example of this are shifts on x86.
7236     TargetTransformInfo::OperandValueKind Op1VK =
7237         TargetTransformInfo::OK_AnyValue;
7238     TargetTransformInfo::OperandValueKind Op2VK =
7239         TargetTransformInfo::OK_AnyValue;
7240     TargetTransformInfo::OperandValueProperties Op1VP =
7241         TargetTransformInfo::OP_None;
7242     TargetTransformInfo::OperandValueProperties Op2VP =
7243         TargetTransformInfo::OP_None;
7244     Value *Op2 = I->getOperand(1);
7245 
7246     // Check for a splat or for a non uniform vector of constants.
7247     if (isa<ConstantInt>(Op2)) {
7248       ConstantInt *CInt = cast<ConstantInt>(Op2);
7249       if (CInt && CInt->getValue().isPowerOf2())
7250         Op2VP = TargetTransformInfo::OP_PowerOf2;
7251       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7252     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
7253       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
7254       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
7255       if (SplatValue) {
7256         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
7257         if (CInt && CInt->getValue().isPowerOf2())
7258           Op2VP = TargetTransformInfo::OP_PowerOf2;
7259         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7260       }
7261     } else if (Legal->isUniform(Op2)) {
7262       Op2VK = TargetTransformInfo::OK_UniformValue;
7263     }
7264     SmallVector<const Value *, 4> Operands(I->operand_values());
7265     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7266     return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
7267                                           Op2VK, Op1VP, Op2VP, Operands);
7268   }
7269   case Instruction::Select: {
7270     SelectInst *SI = cast<SelectInst>(I);
7271     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7272     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7273     Type *CondTy = SI->getCondition()->getType();
7274     if (!ScalarCond)
7275       CondTy = VectorType::get(CondTy, VF);
7276 
7277     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
7278   }
7279   case Instruction::ICmp:
7280   case Instruction::FCmp: {
7281     Type *ValTy = I->getOperand(0)->getType();
7282     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7283     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7284       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7285     VectorTy = ToVectorTy(ValTy, VF);
7286     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
7287   }
7288   case Instruction::Store:
7289   case Instruction::Load: {
7290     unsigned Width = VF;
7291     if (Width > 1) {
7292       InstWidening Decision = getWideningDecision(I, Width);
7293       assert(Decision != CM_Unknown &&
7294              "CM decision should be taken at this point");
7295       if (Decision == CM_Scalarize)
7296         Width = 1;
7297     }
7298     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7299     return getMemoryInstructionCost(I, VF);
7300   }
7301   case Instruction::ZExt:
7302   case Instruction::SExt:
7303   case Instruction::FPToUI:
7304   case Instruction::FPToSI:
7305   case Instruction::FPExt:
7306   case Instruction::PtrToInt:
7307   case Instruction::IntToPtr:
7308   case Instruction::SIToFP:
7309   case Instruction::UIToFP:
7310   case Instruction::Trunc:
7311   case Instruction::FPTrunc:
7312   case Instruction::BitCast: {
7313     // We optimize the truncation of induction variables having constant
7314     // integer steps. The cost of these truncations is the same as the scalar
7315     // operation.
7316     if (isOptimizableIVTruncate(I, VF)) {
7317       auto *Trunc = cast<TruncInst>(I);
7318       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7319                                   Trunc->getSrcTy(), Trunc);
7320     }
7321 
7322     Type *SrcScalarTy = I->getOperand(0)->getType();
7323     Type *SrcVecTy =
7324         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7325     if (canTruncateToMinimalBitwidth(I, VF)) {
7326       // This cast is going to be shrunk. This may remove the cast or it might
7327       // turn it into slightly different cast. For example, if MinBW == 16,
7328       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7329       //
7330       // Calculate the modified src and dest types.
7331       Type *MinVecTy = VectorTy;
7332       if (I->getOpcode() == Instruction::Trunc) {
7333         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7334         VectorTy =
7335             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7336       } else if (I->getOpcode() == Instruction::ZExt ||
7337                  I->getOpcode() == Instruction::SExt) {
7338         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7339         VectorTy =
7340             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7341       }
7342     }
7343 
7344     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7345     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
7346   }
7347   case Instruction::Call: {
7348     bool NeedToScalarize;
7349     CallInst *CI = cast<CallInst>(I);
7350     unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
7351     if (getVectorIntrinsicIDForCall(CI, TLI))
7352       return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
7353     return CallCost;
7354   }
7355   default:
7356     // The cost of executing VF copies of the scalar instruction. This opcode
7357     // is unknown. Assume that it is the same as 'mul'.
7358     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
7359            getScalarizationOverhead(I, VF, TTI);
7360   } // end of switch.
7361 }
7362 
7363 char LoopVectorize::ID = 0;
7364 
7365 static const char lv_name[] = "Loop Vectorization";
7366 
7367 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7368 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7369 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7370 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7371 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7372 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7373 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7374 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7375 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7376 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7377 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7378 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7379 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7380 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7381 
7382 namespace llvm {
7383 
7384 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
7385   return new LoopVectorize(NoUnrolling, AlwaysVectorize);
7386 }
7387 
7388 } // end namespace llvm
7389 
7390 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7391   // Check if the pointer operand of a load or store instruction is
7392   // consecutive.
7393   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7394     return Legal->isConsecutivePtr(Ptr);
7395   return false;
7396 }
7397 
7398 void LoopVectorizationCostModel::collectValuesToIgnore() {
7399   // Ignore ephemeral values.
7400   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7401 
7402   // Ignore type-promoting instructions we identified during reduction
7403   // detection.
7404   for (auto &Reduction : *Legal->getReductionVars()) {
7405     RecurrenceDescriptor &RedDes = Reduction.second;
7406     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7407     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7408   }
7409   // Ignore type-casting instructions we identified during induction
7410   // detection.
7411   for (auto &Induction : *Legal->getInductionVars()) {
7412     InductionDescriptor &IndDes = Induction.second;
7413     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7414     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7415   }
7416 }
7417 
7418 VectorizationFactor
7419 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
7420   // Width 1 means no vectorize, cost 0 means uncomputed cost.
7421   const VectorizationFactor NoVectorization = {1U, 0U};
7422   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
7423   if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
7424     return NoVectorization;
7425 
7426   if (UserVF) {
7427     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7428     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
7429     // Collect the instructions (and their associated costs) that will be more
7430     // profitable to scalarize.
7431     CM.selectUserVectorizationFactor(UserVF);
7432     buildVPlans(UserVF, UserVF);
7433     DEBUG(printPlans(dbgs()));
7434     return {UserVF, 0};
7435   }
7436 
7437   unsigned MaxVF = MaybeMaxVF.getValue();
7438   assert(MaxVF != 0 && "MaxVF is zero.");
7439 
7440   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
7441     // Collect Uniform and Scalar instructions after vectorization with VF.
7442     CM.collectUniformsAndScalars(VF);
7443 
7444     // Collect the instructions (and their associated costs) that will be more
7445     // profitable to scalarize.
7446     if (VF > 1)
7447       CM.collectInstsToScalarize(VF);
7448   }
7449 
7450   buildVPlans(1, MaxVF);
7451   DEBUG(printPlans(dbgs()));
7452   if (MaxVF == 1)
7453     return NoVectorization;
7454 
7455   // Select the optimal vectorization factor.
7456   return CM.selectVectorizationFactor(MaxVF);
7457 }
7458 
7459 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
7460   DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n');
7461   BestVF = VF;
7462   BestUF = UF;
7463 
7464   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7465     return !Plan->hasVF(VF);
7466   });
7467   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7468 }
7469 
7470 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7471                                            DominatorTree *DT) {
7472   // Perform the actual loop transformation.
7473 
7474   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7475   VPCallbackILV CallbackILV(ILV);
7476 
7477   VPTransformState State{BestVF, BestUF,      LI,
7478                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
7479                          &ILV,   CallbackILV};
7480   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7481 
7482   //===------------------------------------------------===//
7483   //
7484   // Notice: any optimization or new instruction that go
7485   // into the code below should also be implemented in
7486   // the cost-model.
7487   //
7488   //===------------------------------------------------===//
7489 
7490   // 2. Copy and widen instructions from the old loop into the new loop.
7491   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7492   VPlans.front()->execute(&State);
7493 
7494   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7495   //    predication, updating analyses.
7496   ILV.fixVectorizedLoop();
7497 }
7498 
7499 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7500     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7501   BasicBlock *Latch = OrigLoop->getLoopLatch();
7502 
7503   // We create new control-flow for the vectorized loop, so the original
7504   // condition will be dead after vectorization if it's only used by the
7505   // branch.
7506   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7507   if (Cmp && Cmp->hasOneUse())
7508     DeadInstructions.insert(Cmp);
7509 
7510   // We create new "steps" for induction variable updates to which the original
7511   // induction variables map. An original update instruction will be dead if
7512   // all its users except the induction variable are dead.
7513   for (auto &Induction : *Legal->getInductionVars()) {
7514     PHINode *Ind = Induction.first;
7515     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7516     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7517           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7518         }))
7519       DeadInstructions.insert(IndUpdate);
7520 
7521     // We record as "Dead" also the type-casting instructions we had identified
7522     // during induction analysis. We don't need any handling for them in the
7523     // vectorized loop because we have proven that, under a proper runtime
7524     // test guarding the vectorized loop, the value of the phi, and the casted
7525     // value of the phi, are the same. The last instruction in this casting chain
7526     // will get its scalar/vector/widened def from the scalar/vector/widened def
7527     // of the respective phi node. Any other casts in the induction def-use chain
7528     // have no other uses outside the phi update chain, and will be ignored.
7529     InductionDescriptor &IndDes = Induction.second;
7530     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7531     DeadInstructions.insert(Casts.begin(), Casts.end());
7532   }
7533 }
7534 
7535 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7536 
7537 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7538 
7539 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7540                                         Instruction::BinaryOps BinOp) {
7541   // When unrolling and the VF is 1, we only need to add a simple scalar.
7542   Type *Ty = Val->getType();
7543   assert(!Ty->isVectorTy() && "Val must be a scalar");
7544 
7545   if (Ty->isFloatingPointTy()) {
7546     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7547 
7548     // Floating point operations had to be 'fast' to enable the unrolling.
7549     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7550     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7551   }
7552   Constant *C = ConstantInt::get(Ty, StartIdx);
7553   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7554 }
7555 
7556 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7557   SmallVector<Metadata *, 4> MDs;
7558   // Reserve first location for self reference to the LoopID metadata node.
7559   MDs.push_back(nullptr);
7560   bool IsUnrollMetadata = false;
7561   MDNode *LoopID = L->getLoopID();
7562   if (LoopID) {
7563     // First find existing loop unrolling disable metadata.
7564     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7565       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7566       if (MD) {
7567         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7568         IsUnrollMetadata =
7569             S && S->getString().startswith("llvm.loop.unroll.disable");
7570       }
7571       MDs.push_back(LoopID->getOperand(i));
7572     }
7573   }
7574 
7575   if (!IsUnrollMetadata) {
7576     // Add runtime unroll disable metadata.
7577     LLVMContext &Context = L->getHeader()->getContext();
7578     SmallVector<Metadata *, 1> DisableOperands;
7579     DisableOperands.push_back(
7580         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7581     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7582     MDs.push_back(DisableNode);
7583     MDNode *NewLoopID = MDNode::get(Context, MDs);
7584     // Set operand 0 to refer to the loop id itself.
7585     NewLoopID->replaceOperandWith(0, NewLoopID);
7586     L->setLoopID(NewLoopID);
7587   }
7588 }
7589 
7590 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7591     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
7592   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
7593   bool PredicateAtRangeStart = Predicate(Range.Start);
7594 
7595   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
7596     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7597       Range.End = TmpVF;
7598       break;
7599     }
7600 
7601   return PredicateAtRangeStart;
7602 }
7603 
7604 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7605 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7606 /// of VF's starting at a given VF and extending it as much as possible. Each
7607 /// vectorization decision can potentially shorten this sub-range during
7608 /// buildVPlan().
7609 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
7610 
7611   // Collect conditions feeding internal conditional branches; they need to be
7612   // represented in VPlan for it to model masking.
7613   SmallPtrSet<Value *, 1> NeedDef;
7614 
7615   auto *Latch = OrigLoop->getLoopLatch();
7616   for (BasicBlock *BB : OrigLoop->blocks()) {
7617     if (BB == Latch)
7618       continue;
7619     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7620     if (Branch && Branch->isConditional())
7621       NeedDef.insert(Branch->getCondition());
7622   }
7623 
7624   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7625     VFRange SubRange = {VF, MaxVF + 1};
7626     VPlans.push_back(buildVPlan(SubRange, NeedDef));
7627     VF = SubRange.End;
7628   }
7629 }
7630 
7631 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src,
7632                                                   BasicBlock *Dst,
7633                                                   VPlanPtr &Plan) {
7634   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7635 
7636   // Look for cached value.
7637   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7638   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7639   if (ECEntryIt != EdgeMaskCache.end())
7640     return ECEntryIt->second;
7641 
7642   VPValue *SrcMask = createBlockInMask(Src, Plan);
7643 
7644   // The terminator has to be a branch inst!
7645   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7646   assert(BI && "Unexpected terminator found");
7647 
7648   if (!BI->isConditional())
7649     return EdgeMaskCache[Edge] = SrcMask;
7650 
7651   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
7652   assert(EdgeMask && "No Edge Mask found for condition");
7653 
7654   if (BI->getSuccessor(0) != Dst)
7655     EdgeMask = Builder.createNot(EdgeMask);
7656 
7657   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7658     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7659 
7660   return EdgeMaskCache[Edge] = EdgeMask;
7661 }
7662 
7663 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB,
7664                                                      VPlanPtr &Plan) {
7665   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
7666 
7667   // Look for cached value.
7668   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7669   if (BCEntryIt != BlockMaskCache.end())
7670     return BCEntryIt->second;
7671 
7672   // All-one mask is modelled as no-mask following the convention for masked
7673   // load/store/gather/scatter. Initialize BlockMask to no-mask.
7674   VPValue *BlockMask = nullptr;
7675 
7676   // Loop incoming mask is all-one.
7677   if (OrigLoop->getHeader() == BB)
7678     return BlockMaskCache[BB] = BlockMask;
7679 
7680   // This is the block mask. We OR all incoming edges.
7681   for (auto *Predecessor : predecessors(BB)) {
7682     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7683     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7684       return BlockMaskCache[BB] = EdgeMask;
7685 
7686     if (!BlockMask) { // BlockMask has its initialized nullptr value.
7687       BlockMask = EdgeMask;
7688       continue;
7689     }
7690 
7691     BlockMask = Builder.createOr(BlockMask, EdgeMask);
7692   }
7693 
7694   return BlockMaskCache[BB] = BlockMask;
7695 }
7696 
7697 VPInterleaveRecipe *
7698 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I,
7699                                                 VFRange &Range) {
7700   const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I);
7701   if (!IG)
7702     return nullptr;
7703 
7704   // Now check if IG is relevant for VF's in the given range.
7705   auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
7706     return [=](unsigned VF) -> bool {
7707       return (VF >= 2 && // Query is illegal for VF == 1
7708               CM.getWideningDecision(I, VF) ==
7709                   LoopVectorizationCostModel::CM_Interleave);
7710     };
7711   };
7712   if (!getDecisionAndClampRange(isIGMember(I), Range))
7713     return nullptr;
7714 
7715   // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
7716   // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
7717   // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
7718   assert(I == IG->getInsertPos() &&
7719          "Generating a recipe for an adjunct member of an interleave group");
7720 
7721   return new VPInterleaveRecipe(IG);
7722 }
7723 
7724 VPWidenMemoryInstructionRecipe *
7725 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range,
7726                                            VPlanPtr &Plan) {
7727   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
7728     return nullptr;
7729 
7730   auto willWiden = [&](unsigned VF) -> bool {
7731     if (VF == 1)
7732       return false;
7733     if (CM.isScalarAfterVectorization(I, VF) ||
7734         CM.isProfitableToScalarize(I, VF))
7735       return false;
7736     LoopVectorizationCostModel::InstWidening Decision =
7737         CM.getWideningDecision(I, VF);
7738     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
7739            "CM decision should be taken at this point.");
7740     assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
7741            "Interleave memory opportunity should be caught earlier.");
7742     return Decision != LoopVectorizationCostModel::CM_Scalarize;
7743   };
7744 
7745   if (!getDecisionAndClampRange(willWiden, Range))
7746     return nullptr;
7747 
7748   VPValue *Mask = nullptr;
7749   if (Legal->isMaskRequired(I))
7750     Mask = createBlockInMask(I->getParent(), Plan);
7751 
7752   return new VPWidenMemoryInstructionRecipe(*I, Mask);
7753 }
7754 
7755 VPWidenIntOrFpInductionRecipe *
7756 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I,
7757                                                  VFRange &Range) {
7758   if (PHINode *Phi = dyn_cast<PHINode>(I)) {
7759     // Check if this is an integer or fp induction. If so, build the recipe that
7760     // produces its scalar and vector values.
7761     InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
7762     if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7763         II.getKind() == InductionDescriptor::IK_FpInduction)
7764       return new VPWidenIntOrFpInductionRecipe(Phi);
7765 
7766     return nullptr;
7767   }
7768 
7769   // Optimize the special case where the source is a constant integer
7770   // induction variable. Notice that we can only optimize the 'trunc' case
7771   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7772   // (c) other casts depend on pointer size.
7773 
7774   // Determine whether \p K is a truncation based on an induction variable that
7775   // can be optimized.
7776   auto isOptimizableIVTruncate =
7777       [&](Instruction *K) -> std::function<bool(unsigned)> {
7778     return
7779         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
7780   };
7781 
7782   if (isa<TruncInst>(I) &&
7783       getDecisionAndClampRange(isOptimizableIVTruncate(I), Range))
7784     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7785                                              cast<TruncInst>(I));
7786   return nullptr;
7787 }
7788 
7789 VPBlendRecipe *
7790 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) {
7791   PHINode *Phi = dyn_cast<PHINode>(I);
7792   if (!Phi || Phi->getParent() == OrigLoop->getHeader())
7793     return nullptr;
7794 
7795   // We know that all PHIs in non-header blocks are converted into selects, so
7796   // we don't have to worry about the insertion order and we can just use the
7797   // builder. At this point we generate the predication tree. There may be
7798   // duplications since this is a simple recursive scan, but future
7799   // optimizations will clean it up.
7800 
7801   SmallVector<VPValue *, 2> Masks;
7802   unsigned NumIncoming = Phi->getNumIncomingValues();
7803   for (unsigned In = 0; In < NumIncoming; In++) {
7804     VPValue *EdgeMask =
7805       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7806     assert((EdgeMask || NumIncoming == 1) &&
7807            "Multiple predecessors with one having a full mask");
7808     if (EdgeMask)
7809       Masks.push_back(EdgeMask);
7810   }
7811   return new VPBlendRecipe(Phi, Masks);
7812 }
7813 
7814 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
7815                                           VFRange &Range) {
7816   if (CM.isScalarWithPredication(I))
7817     return false;
7818 
7819   auto IsVectorizableOpcode = [](unsigned Opcode) {
7820     switch (Opcode) {
7821     case Instruction::Add:
7822     case Instruction::And:
7823     case Instruction::AShr:
7824     case Instruction::BitCast:
7825     case Instruction::Br:
7826     case Instruction::Call:
7827     case Instruction::FAdd:
7828     case Instruction::FCmp:
7829     case Instruction::FDiv:
7830     case Instruction::FMul:
7831     case Instruction::FPExt:
7832     case Instruction::FPToSI:
7833     case Instruction::FPToUI:
7834     case Instruction::FPTrunc:
7835     case Instruction::FRem:
7836     case Instruction::FSub:
7837     case Instruction::GetElementPtr:
7838     case Instruction::ICmp:
7839     case Instruction::IntToPtr:
7840     case Instruction::Load:
7841     case Instruction::LShr:
7842     case Instruction::Mul:
7843     case Instruction::Or:
7844     case Instruction::PHI:
7845     case Instruction::PtrToInt:
7846     case Instruction::SDiv:
7847     case Instruction::Select:
7848     case Instruction::SExt:
7849     case Instruction::Shl:
7850     case Instruction::SIToFP:
7851     case Instruction::SRem:
7852     case Instruction::Store:
7853     case Instruction::Sub:
7854     case Instruction::Trunc:
7855     case Instruction::UDiv:
7856     case Instruction::UIToFP:
7857     case Instruction::URem:
7858     case Instruction::Xor:
7859     case Instruction::ZExt:
7860       return true;
7861     }
7862     return false;
7863   };
7864 
7865   if (!IsVectorizableOpcode(I->getOpcode()))
7866     return false;
7867 
7868   if (CallInst *CI = dyn_cast<CallInst>(I)) {
7869     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7870     if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7871                ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
7872       return false;
7873   }
7874 
7875   auto willWiden = [&](unsigned VF) -> bool {
7876     if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
7877                              CM.isProfitableToScalarize(I, VF)))
7878       return false;
7879     if (CallInst *CI = dyn_cast<CallInst>(I)) {
7880       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7881       // The following case may be scalarized depending on the VF.
7882       // The flag shows whether we use Intrinsic or a usual Call for vectorized
7883       // version of the instruction.
7884       // Is it beneficial to perform intrinsic call compared to lib call?
7885       bool NeedToScalarize;
7886       unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
7887       bool UseVectorIntrinsic =
7888           ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
7889       return UseVectorIntrinsic || !NeedToScalarize;
7890     }
7891     if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
7892       assert(CM.getWideningDecision(I, VF) ==
7893                  LoopVectorizationCostModel::CM_Scalarize &&
7894              "Memory widening decisions should have been taken care by now");
7895       return false;
7896     }
7897     return true;
7898   };
7899 
7900   if (!getDecisionAndClampRange(willWiden, Range))
7901     return false;
7902 
7903   // Success: widen this instruction. We optimize the common case where
7904   // consecutive instructions can be represented by a single recipe.
7905   if (!VPBB->empty()) {
7906     VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
7907     if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
7908       return true;
7909   }
7910 
7911   VPBB->appendRecipe(new VPWidenRecipe(I));
7912   return true;
7913 }
7914 
7915 VPBasicBlock *LoopVectorizationPlanner::handleReplication(
7916     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7917     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7918     VPlanPtr &Plan) {
7919   bool IsUniform = getDecisionAndClampRange(
7920       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7921       Range);
7922 
7923   bool IsPredicated = CM.isScalarWithPredication(I);
7924   auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
7925 
7926   // Find if I uses a predicated instruction. If so, it will use its scalar
7927   // value. Avoid hoisting the insert-element which packs the scalar value into
7928   // a vector value, as that happens iff all users use the vector value.
7929   for (auto &Op : I->operands())
7930     if (auto *PredInst = dyn_cast<Instruction>(Op))
7931       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7932         PredInst2Recipe[PredInst]->setAlsoPack(false);
7933 
7934   // Finalize the recipe for Instr, first if it is not predicated.
7935   if (!IsPredicated) {
7936     DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7937     VPBB->appendRecipe(Recipe);
7938     return VPBB;
7939   }
7940   DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7941   assert(VPBB->getSuccessors().empty() &&
7942          "VPBB has successors when handling predicated replication.");
7943   // Record predicated instructions for above packing optimizations.
7944   PredInst2Recipe[I] = Recipe;
7945   VPBlockBase *Region =
7946     VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan));
7947   return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock()));
7948 }
7949 
7950 VPRegionBlock *
7951 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr,
7952                                                 VPRecipeBase *PredRecipe,
7953                                                 VPlanPtr &Plan) {
7954   // Instructions marked for predication are replicated and placed under an
7955   // if-then construct to prevent side-effects.
7956 
7957   // Generate recipes to compute the block mask for this region.
7958   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7959 
7960   // Build the triangular if-then region.
7961   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7962   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7963   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7964   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7965   auto *PHIRecipe =
7966       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7967   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7968   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7969   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7970 
7971   // Note: first set Entry as region entry and then connect successors starting
7972   // from it in order, to propagate the "parent" of each VPBasicBlock.
7973   Entry->setTwoSuccessors(Pred, Exit);
7974   Pred->setOneSuccessor(Exit);
7975 
7976   return Region;
7977 }
7978 
7979 LoopVectorizationPlanner::VPlanPtr
7980 LoopVectorizationPlanner::buildVPlan(VFRange &Range,
7981                                      const SmallPtrSetImpl<Value *> &NeedDef) {
7982   EdgeMaskCache.clear();
7983   BlockMaskCache.clear();
7984   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7985   DenseMap<Instruction *, Instruction *> SinkAfterInverse;
7986 
7987   // Collect instructions from the original loop that will become trivially dead
7988   // in the vectorized loop. We don't need to vectorize these instructions. For
7989   // example, original induction update instructions can become dead because we
7990   // separately emit induction "steps" when generating code for the new loop.
7991   // Similarly, we create a new latch condition when setting up the structure
7992   // of the new loop, so the old one can become dead.
7993   SmallPtrSet<Instruction *, 4> DeadInstructions;
7994   collectTriviallyDeadInstructions(DeadInstructions);
7995 
7996   // Hold a mapping from predicated instructions to their recipes, in order to
7997   // fix their AlsoPack behavior if a user is determined to replicate and use a
7998   // scalar instead of vector value.
7999   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
8000 
8001   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8002   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8003   auto Plan = llvm::make_unique<VPlan>(VPBB);
8004 
8005   // Represent values that will have defs inside VPlan.
8006   for (Value *V : NeedDef)
8007     Plan->addVPValue(V);
8008 
8009   // Scan the body of the loop in a topological order to visit each basic block
8010   // after having visited its predecessor basic blocks.
8011   LoopBlocksDFS DFS(OrigLoop);
8012   DFS.perform(LI);
8013 
8014   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8015     // Relevant instructions from basic block BB will be grouped into VPRecipe
8016     // ingredients and fill a new VPBasicBlock.
8017     unsigned VPBBsForBB = 0;
8018     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8019     VPBB->setOneSuccessor(FirstVPBBForBB);
8020     VPBB = FirstVPBBForBB;
8021     Builder.setInsertPoint(VPBB);
8022 
8023     std::vector<Instruction *> Ingredients;
8024 
8025     // Organize the ingredients to vectorize from current basic block in the
8026     // right order.
8027     for (Instruction &I : *BB) {
8028       Instruction *Instr = &I;
8029 
8030       // First filter out irrelevant instructions, to ensure no recipes are
8031       // built for them.
8032       if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) ||
8033           DeadInstructions.count(Instr))
8034         continue;
8035 
8036       // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
8037       // member of the IG, do not construct any Recipe for it.
8038       const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr);
8039       if (IG && Instr != IG->getInsertPos() &&
8040           Range.Start >= 2 && // Query is illegal for VF == 1
8041           CM.getWideningDecision(Instr, Range.Start) ==
8042               LoopVectorizationCostModel::CM_Interleave) {
8043         if (SinkAfterInverse.count(Instr))
8044           Ingredients.push_back(SinkAfterInverse.find(Instr)->second);
8045         continue;
8046       }
8047 
8048       // Move instructions to handle first-order recurrences, step 1: avoid
8049       // handling this instruction until after we've handled the instruction it
8050       // should follow.
8051       auto SAIt = SinkAfter.find(Instr);
8052       if (SAIt != SinkAfter.end()) {
8053         DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second
8054                      << " to vectorize a 1st order recurrence.\n");
8055         SinkAfterInverse[SAIt->second] = Instr;
8056         continue;
8057       }
8058 
8059       Ingredients.push_back(Instr);
8060 
8061       // Move instructions to handle first-order recurrences, step 2: push the
8062       // instruction to be sunk at its insertion point.
8063       auto SAInvIt = SinkAfterInverse.find(Instr);
8064       if (SAInvIt != SinkAfterInverse.end())
8065         Ingredients.push_back(SAInvIt->second);
8066     }
8067 
8068     // Introduce each ingredient into VPlan.
8069     for (Instruction *Instr : Ingredients) {
8070       VPRecipeBase *Recipe = nullptr;
8071 
8072       // Check if Instr should belong to an interleave memory recipe, or already
8073       // does. In the latter case Instr is irrelevant.
8074       if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
8075         VPBB->appendRecipe(Recipe);
8076         continue;
8077       }
8078 
8079       // Check if Instr is a memory operation that should be widened.
8080       if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
8081         VPBB->appendRecipe(Recipe);
8082         continue;
8083       }
8084 
8085       // Check if Instr should form some PHI recipe.
8086       if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
8087         VPBB->appendRecipe(Recipe);
8088         continue;
8089       }
8090       if ((Recipe = tryToBlend(Instr, Plan))) {
8091         VPBB->appendRecipe(Recipe);
8092         continue;
8093       }
8094       if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
8095         VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
8096         continue;
8097       }
8098 
8099       // Check if Instr is to be widened by a general VPWidenRecipe, after
8100       // having first checked for specific widening recipes that deal with
8101       // Interleave Groups, Inductions and Phi nodes.
8102       if (tryToWiden(Instr, VPBB, Range))
8103         continue;
8104 
8105       // Otherwise, if all widening options failed, Instruction is to be
8106       // replicated. This may create a successor for VPBB.
8107       VPBasicBlock *NextVPBB =
8108         handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan);
8109       if (NextVPBB != VPBB) {
8110         VPBB = NextVPBB;
8111         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8112                                     : "");
8113       }
8114     }
8115   }
8116 
8117   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8118   // may also be empty, such as the last one VPBB, reflecting original
8119   // basic-blocks with no recipes.
8120   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8121   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8122   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8123   PreEntry->disconnectSuccessor(Entry);
8124   delete PreEntry;
8125 
8126   std::string PlanName;
8127   raw_string_ostream RSO(PlanName);
8128   unsigned VF = Range.Start;
8129   Plan->addVF(VF);
8130   RSO << "Initial VPlan for VF={" << VF;
8131   for (VF *= 2; VF < Range.End; VF *= 2) {
8132     Plan->addVF(VF);
8133     RSO << "," << VF;
8134   }
8135   RSO << "},UF>=1";
8136   RSO.flush();
8137   Plan->setName(PlanName);
8138 
8139   return Plan;
8140 }
8141 
8142 Value* LoopVectorizationPlanner::VPCallbackILV::
8143 getOrCreateVectorValues(Value *V, unsigned Part) {
8144       return ILV.getOrCreateVectorValue(V, Part);
8145 }
8146 
8147 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
8148   O << " +\n"
8149     << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
8150   IG->getInsertPos()->printAsOperand(O, false);
8151   O << "\\l\"";
8152   for (unsigned i = 0; i < IG->getFactor(); ++i)
8153     if (Instruction *I = IG->getMember(i))
8154       O << " +\n"
8155         << Indent << "\"  " << VPlanIngredient(I) << " " << i << "\\l\"";
8156 }
8157 
8158 void VPWidenRecipe::execute(VPTransformState &State) {
8159   for (auto &Instr : make_range(Begin, End))
8160     State.ILV->widenInstruction(Instr);
8161 }
8162 
8163 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8164   assert(!State.Instance && "Int or FP induction being replicated.");
8165   State.ILV->widenIntOrFpInduction(IV, Trunc);
8166 }
8167 
8168 void VPWidenPHIRecipe::execute(VPTransformState &State) {
8169   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8170 }
8171 
8172 void VPBlendRecipe::execute(VPTransformState &State) {
8173   State.ILV->setDebugLocFromInst(State.Builder, Phi);
8174   // We know that all PHIs in non-header blocks are converted into
8175   // selects, so we don't have to worry about the insertion order and we
8176   // can just use the builder.
8177   // At this point we generate the predication tree. There may be
8178   // duplications since this is a simple recursive scan, but future
8179   // optimizations will clean it up.
8180 
8181   unsigned NumIncoming = Phi->getNumIncomingValues();
8182 
8183   assert((User || NumIncoming == 1) &&
8184          "Multiple predecessors with predecessors having a full mask");
8185   // Generate a sequence of selects of the form:
8186   // SELECT(Mask3, In3,
8187   //      SELECT(Mask2, In2,
8188   //                   ( ...)))
8189   InnerLoopVectorizer::VectorParts Entry(State.UF);
8190   for (unsigned In = 0; In < NumIncoming; ++In) {
8191     for (unsigned Part = 0; Part < State.UF; ++Part) {
8192       // We might have single edge PHIs (blocks) - use an identity
8193       // 'select' for the first PHI operand.
8194       Value *In0 =
8195           State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
8196       if (In == 0)
8197         Entry[Part] = In0; // Initialize with the first incoming value.
8198       else {
8199         // Select between the current value and the previous incoming edge
8200         // based on the incoming mask.
8201         Value *Cond = State.get(User->getOperand(In), Part);
8202         Entry[Part] =
8203             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8204       }
8205     }
8206   }
8207   for (unsigned Part = 0; Part < State.UF; ++Part)
8208     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8209 }
8210 
8211 void VPInterleaveRecipe::execute(VPTransformState &State) {
8212   assert(!State.Instance && "Interleave group being replicated.");
8213   State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
8214 }
8215 
8216 void VPReplicateRecipe::execute(VPTransformState &State) {
8217   if (State.Instance) { // Generate a single instance.
8218     State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
8219     // Insert scalar instance packing it into a vector.
8220     if (AlsoPack && State.VF > 1) {
8221       // If we're constructing lane 0, initialize to start from undef.
8222       if (State.Instance->Lane == 0) {
8223         Value *Undef =
8224             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8225         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8226       }
8227       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8228     }
8229     return;
8230   }
8231 
8232   // Generate scalar instances for all VF lanes of all UF parts, unless the
8233   // instruction is uniform inwhich case generate only the first lane for each
8234   // of the UF parts.
8235   unsigned EndLane = IsUniform ? 1 : State.VF;
8236   for (unsigned Part = 0; Part < State.UF; ++Part)
8237     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8238       State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
8239 }
8240 
8241 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8242   assert(State.Instance && "Branch on Mask works only on single instance.");
8243 
8244   unsigned Part = State.Instance->Part;
8245   unsigned Lane = State.Instance->Lane;
8246 
8247   Value *ConditionBit = nullptr;
8248   if (!User) // Block in mask is all-one.
8249     ConditionBit = State.Builder.getTrue();
8250   else {
8251     VPValue *BlockInMask = User->getOperand(0);
8252     ConditionBit = State.get(BlockInMask, Part);
8253     if (ConditionBit->getType()->isVectorTy())
8254       ConditionBit = State.Builder.CreateExtractElement(
8255           ConditionBit, State.Builder.getInt32(Lane));
8256   }
8257 
8258   // Replace the temporary unreachable terminator with a new conditional branch,
8259   // whose two destinations will be set later when they are created.
8260   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8261   assert(isa<UnreachableInst>(CurrentTerminator) &&
8262          "Expected to replace unreachable terminator with conditional branch.");
8263   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8264   CondBr->setSuccessor(0, nullptr);
8265   ReplaceInstWithInst(CurrentTerminator, CondBr);
8266 }
8267 
8268 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8269   assert(State.Instance && "Predicated instruction PHI works per instance.");
8270   Instruction *ScalarPredInst = cast<Instruction>(
8271       State.ValueMap.getScalarValue(PredInst, *State.Instance));
8272   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8273   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8274   assert(PredicatingBB && "Predicated block has no single predecessor.");
8275 
8276   // By current pack/unpack logic we need to generate only a single phi node: if
8277   // a vector value for the predicated instruction exists at this point it means
8278   // the instruction has vector users only, and a phi for the vector value is
8279   // needed. In this case the recipe of the predicated instruction is marked to
8280   // also do that packing, thereby "hoisting" the insert-element sequence.
8281   // Otherwise, a phi node for the scalar value is needed.
8282   unsigned Part = State.Instance->Part;
8283   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8284     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8285     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8286     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8287     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8288     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8289     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8290   } else {
8291     Type *PredInstType = PredInst->getType();
8292     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8293     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8294     Phi->addIncoming(ScalarPredInst, PredicatedBB);
8295     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8296   }
8297 }
8298 
8299 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8300   if (!User)
8301     return State.ILV->vectorizeMemoryInstruction(&Instr);
8302 
8303   // Last (and currently only) operand is a mask.
8304   InnerLoopVectorizer::VectorParts MaskValues(State.UF);
8305   VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
8306   for (unsigned Part = 0; Part < State.UF; ++Part)
8307     MaskValues[Part] = State.get(Mask, Part);
8308   State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
8309 }
8310 
8311 bool LoopVectorizePass::processLoop(Loop *L) {
8312   assert(L->empty() && "Only process inner loops.");
8313 
8314 #ifndef NDEBUG
8315   const std::string DebugLocStr = getDebugLocString(L);
8316 #endif /* NDEBUG */
8317 
8318   DEBUG(dbgs() << "\nLV: Checking a loop in \""
8319                << L->getHeader()->getParent()->getName() << "\" from "
8320                << DebugLocStr << "\n");
8321 
8322   LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
8323 
8324   DEBUG(dbgs() << "LV: Loop hints:"
8325                << " force="
8326                << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
8327                        ? "disabled"
8328                        : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
8329                               ? "enabled"
8330                               : "?"))
8331                << " width=" << Hints.getWidth()
8332                << " unroll=" << Hints.getInterleave() << "\n");
8333 
8334   // Function containing loop
8335   Function *F = L->getHeader()->getParent();
8336 
8337   // Looking at the diagnostic output is the only way to determine if a loop
8338   // was vectorized (other than looking at the IR or machine code), so it
8339   // is important to generate an optimization remark for each loop. Most of
8340   // these messages are generated as OptimizationRemarkAnalysis. Remarks
8341   // generated as OptimizationRemark and OptimizationRemarkMissed are
8342   // less verbose reporting vectorized loops and unvectorized loops that may
8343   // benefit from vectorization, respectively.
8344 
8345   if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
8346     DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
8347     return false;
8348   }
8349 
8350   PredicatedScalarEvolution PSE(*SE, *L);
8351 
8352   // Check if it is legal to vectorize the loop.
8353   LoopVectorizationRequirements Requirements(*ORE);
8354   LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
8355                                 &Requirements, &Hints, DB, AC);
8356   if (!LVL.canVectorize()) {
8357     DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
8358     emitMissedWarning(F, L, Hints, ORE);
8359     return false;
8360   }
8361 
8362   // Check the function attributes to find out if this function should be
8363   // optimized for size.
8364   bool OptForSize =
8365       Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
8366 
8367   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8368   // count by optimizing for size, to minimize overheads.
8369   // Prefer constant trip counts over profile data, over upper bound estimate.
8370   unsigned ExpectedTC = 0;
8371   bool HasExpectedTC = false;
8372   if (const SCEVConstant *ConstExits =
8373       dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
8374     const APInt &ExitsCount = ConstExits->getAPInt();
8375     // We are interested in small values for ExpectedTC. Skip over those that
8376     // can't fit an unsigned.
8377     if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
8378       ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
8379       HasExpectedTC = true;
8380     }
8381   }
8382   // ExpectedTC may be large because it's bound by a variable. Check
8383   // profiling information to validate we should vectorize.
8384   if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
8385     auto EstimatedTC = getLoopEstimatedTripCount(L);
8386     if (EstimatedTC) {
8387       ExpectedTC = *EstimatedTC;
8388       HasExpectedTC = true;
8389     }
8390   }
8391   if (!HasExpectedTC) {
8392     ExpectedTC = SE->getSmallConstantMaxTripCount(L);
8393     HasExpectedTC = (ExpectedTC > 0);
8394   }
8395 
8396   if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
8397     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
8398                  << "This loop is worth vectorizing only if no scalar "
8399                  << "iteration overheads are incurred.");
8400     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8401       DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
8402     else {
8403       DEBUG(dbgs() << "\n");
8404       // Loops with a very small trip count are considered for vectorization
8405       // under OptForSize, thereby making sure the cost of their loop body is
8406       // dominant, free of runtime guards and scalar iteration overheads.
8407       OptForSize = true;
8408     }
8409   }
8410 
8411   // Check the function attributes to see if implicit floats are allowed.
8412   // FIXME: This check doesn't seem possibly correct -- what if the loop is
8413   // an integer loop and the vector instructions selected are purely integer
8414   // vector instructions?
8415   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8416     DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
8417                     "attribute is used.\n");
8418     ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
8419                                    "NoImplicitFloat", L)
8420               << "loop not vectorized due to NoImplicitFloat attribute");
8421     emitMissedWarning(F, L, Hints, ORE);
8422     return false;
8423   }
8424 
8425   // Check if the target supports potentially unsafe FP vectorization.
8426   // FIXME: Add a check for the type of safety issue (denormal, signaling)
8427   // for the target we're vectorizing for, to make sure none of the
8428   // additional fp-math flags can help.
8429   if (Hints.isPotentiallyUnsafe() &&
8430       TTI->isFPVectorizationPotentiallyUnsafe()) {
8431     DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
8432     ORE->emit(
8433         createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
8434         << "loop not vectorized due to unsafe FP support.");
8435     emitMissedWarning(F, L, Hints, ORE);
8436     return false;
8437   }
8438 
8439   // Use the cost model.
8440   LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
8441                                 &Hints);
8442   CM.collectValuesToIgnore();
8443 
8444   // Use the planner for vectorization.
8445   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
8446 
8447   // Get user vectorization factor.
8448   unsigned UserVF = Hints.getWidth();
8449 
8450   // Plan how to best vectorize, return the best VF and its cost.
8451   VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
8452 
8453   // Select the interleave count.
8454   unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
8455 
8456   // Get user interleave count.
8457   unsigned UserIC = Hints.getInterleave();
8458 
8459   // Identify the diagnostic messages that should be produced.
8460   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8461   bool VectorizeLoop = true, InterleaveLoop = true;
8462   if (Requirements.doesNotMeet(F, L, Hints)) {
8463     DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
8464                     "requirements.\n");
8465     emitMissedWarning(F, L, Hints, ORE);
8466     return false;
8467   }
8468 
8469   if (VF.Width == 1) {
8470     DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
8471     VecDiagMsg = std::make_pair(
8472         "VectorizationNotBeneficial",
8473         "the cost-model indicates that vectorization is not beneficial");
8474     VectorizeLoop = false;
8475   }
8476 
8477   if (IC == 1 && UserIC <= 1) {
8478     // Tell the user interleaving is not beneficial.
8479     DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
8480     IntDiagMsg = std::make_pair(
8481         "InterleavingNotBeneficial",
8482         "the cost-model indicates that interleaving is not beneficial");
8483     InterleaveLoop = false;
8484     if (UserIC == 1) {
8485       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8486       IntDiagMsg.second +=
8487           " and is explicitly disabled or interleave count is set to 1";
8488     }
8489   } else if (IC > 1 && UserIC == 1) {
8490     // Tell the user interleaving is beneficial, but it explicitly disabled.
8491     DEBUG(dbgs()
8492           << "LV: Interleaving is beneficial but is explicitly disabled.");
8493     IntDiagMsg = std::make_pair(
8494         "InterleavingBeneficialButDisabled",
8495         "the cost-model indicates that interleaving is beneficial "
8496         "but is explicitly disabled or interleave count is set to 1");
8497     InterleaveLoop = false;
8498   }
8499 
8500   // Override IC if user provided an interleave count.
8501   IC = UserIC > 0 ? UserIC : IC;
8502 
8503   // Emit diagnostic messages, if any.
8504   const char *VAPassName = Hints.vectorizeAnalysisPassName();
8505   if (!VectorizeLoop && !InterleaveLoop) {
8506     // Do not vectorize or interleaving the loop.
8507     ORE->emit([&]() {
8508       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8509                                       L->getStartLoc(), L->getHeader())
8510              << VecDiagMsg.second;
8511     });
8512     ORE->emit([&]() {
8513       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
8514                                       L->getStartLoc(), L->getHeader())
8515              << IntDiagMsg.second;
8516     });
8517     return false;
8518   } else if (!VectorizeLoop && InterleaveLoop) {
8519     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8520     ORE->emit([&]() {
8521       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8522                                         L->getStartLoc(), L->getHeader())
8523              << VecDiagMsg.second;
8524     });
8525   } else if (VectorizeLoop && !InterleaveLoop) {
8526     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
8527                  << DebugLocStr << '\n');
8528     ORE->emit([&]() {
8529       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
8530                                         L->getStartLoc(), L->getHeader())
8531              << IntDiagMsg.second;
8532     });
8533   } else if (VectorizeLoop && InterleaveLoop) {
8534     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
8535                  << DebugLocStr << '\n');
8536     DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8537   }
8538 
8539   LVP.setBestPlan(VF.Width, IC);
8540 
8541   using namespace ore;
8542 
8543   if (!VectorizeLoop) {
8544     assert(IC > 1 && "interleave count should not be 1 or 0");
8545     // If we decided that it is not legal to vectorize the loop, then
8546     // interleave it.
8547     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
8548                                &CM);
8549     LVP.executePlan(Unroller, DT);
8550 
8551     ORE->emit([&]() {
8552       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
8553                                 L->getHeader())
8554              << "interleaved loop (interleaved count: "
8555              << NV("InterleaveCount", IC) << ")";
8556     });
8557   } else {
8558     // If we decided that it is *legal* to vectorize the loop, then do it.
8559     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8560                            &LVL, &CM);
8561     LVP.executePlan(LB, DT);
8562     ++LoopsVectorized;
8563 
8564     // Add metadata to disable runtime unrolling a scalar loop when there are
8565     // no runtime checks about strides and memory. A scalar loop that is
8566     // rarely used is not worth unrolling.
8567     if (!LB.areSafetyChecksAdded())
8568       AddRuntimeUnrollDisableMetaData(L);
8569 
8570     // Report the vectorization decision.
8571     ORE->emit([&]() {
8572       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
8573                                 L->getHeader())
8574              << "vectorized loop (vectorization width: "
8575              << NV("VectorizationFactor", VF.Width)
8576              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8577     });
8578   }
8579 
8580   // Mark the loop as already vectorized to avoid vectorizing again.
8581   Hints.setAlreadyVectorized();
8582 
8583   DEBUG(verifyFunction(*L->getHeader()->getParent()));
8584   return true;
8585 }
8586 
8587 bool LoopVectorizePass::runImpl(
8588     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8589     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8590     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
8591     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8592     OptimizationRemarkEmitter &ORE_) {
8593   SE = &SE_;
8594   LI = &LI_;
8595   TTI = &TTI_;
8596   DT = &DT_;
8597   BFI = &BFI_;
8598   TLI = TLI_;
8599   AA = &AA_;
8600   AC = &AC_;
8601   GetLAA = &GetLAA_;
8602   DB = &DB_;
8603   ORE = &ORE_;
8604 
8605   // Don't attempt if
8606   // 1. the target claims to have no vector registers, and
8607   // 2. interleaving won't help ILP.
8608   //
8609   // The second condition is necessary because, even if the target has no
8610   // vector registers, loop vectorization may still enable scalar
8611   // interleaving.
8612   if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
8613     return false;
8614 
8615   bool Changed = false;
8616 
8617   // The vectorizer requires loops to be in simplified form.
8618   // Since simplification may add new inner loops, it has to run before the
8619   // legality and profitability checks. This means running the loop vectorizer
8620   // will simplify all loops, regardless of whether anything end up being
8621   // vectorized.
8622   for (auto &L : *LI)
8623     Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
8624 
8625   // Build up a worklist of inner-loops to vectorize. This is necessary as
8626   // the act of vectorizing or partially unrolling a loop creates new loops
8627   // and can invalidate iterators across the loops.
8628   SmallVector<Loop *, 8> Worklist;
8629 
8630   for (Loop *L : *LI)
8631     addAcyclicInnerLoop(*L, *LI, Worklist);
8632 
8633   LoopsAnalyzed += Worklist.size();
8634 
8635   // Now walk the identified inner loops.
8636   while (!Worklist.empty()) {
8637     Loop *L = Worklist.pop_back_val();
8638 
8639     // For the inner loops we actually process, form LCSSA to simplify the
8640     // transform.
8641     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8642 
8643     Changed |= processLoop(L);
8644   }
8645 
8646   // Process each loop nest in the function.
8647   return Changed;
8648 }
8649 
8650 PreservedAnalyses LoopVectorizePass::run(Function &F,
8651                                          FunctionAnalysisManager &AM) {
8652     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8653     auto &LI = AM.getResult<LoopAnalysis>(F);
8654     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8655     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8656     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8657     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8658     auto &AA = AM.getResult<AAManager>(F);
8659     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8660     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8661     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8662 
8663     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8664     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8665         [&](Loop &L) -> const LoopAccessInfo & {
8666       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
8667       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8668     };
8669     bool Changed =
8670         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
8671     if (!Changed)
8672       return PreservedAnalyses::all();
8673     PreservedAnalyses PA;
8674     PA.preserve<LoopAnalysis>();
8675     PA.preserve<DominatorTreeAnalysis>();
8676     PA.preserve<BasicAA>();
8677     PA.preserve<GlobalsAA>();
8678     return PA;
8679 }
8680