1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *VectorTripCount, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 890 void printDebugTracesAtStart() override; 891 void printDebugTracesAtEnd() override; 892 }; 893 894 // A specialized derived class of inner loop vectorizer that performs 895 // vectorization of *epilogue* loops in the process of vectorizing loops and 896 // their epilogues. 897 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 898 public: 899 EpilogueVectorizerEpilogueLoop( 900 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 901 DominatorTree *DT, const TargetLibraryInfo *TLI, 902 const TargetTransformInfo *TTI, AssumptionCache *AC, 903 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 904 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 905 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 906 GeneratedRTChecks &Checks) 907 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 908 EPI, LVL, CM, BFI, PSI, Checks) { 909 TripCount = EPI.TripCount; 910 } 911 /// Implements the interface for creating a vectorized skeleton using the 912 /// *epilogue loop* strategy (ie the second pass of vplan execution). 913 std::pair<BasicBlock *, Value *> 914 createEpilogueVectorizedLoopSkeleton() final override; 915 916 protected: 917 /// Emits an iteration count bypass check after the main vector loop has 918 /// finished to see if there are any iterations left to execute by either 919 /// the vector epilogue or the scalar epilogue. 920 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 921 BasicBlock *Bypass, 922 BasicBlock *Insert); 923 void printDebugTracesAtStart() override; 924 void printDebugTracesAtEnd() override; 925 }; 926 } // end namespace llvm 927 928 /// Look for a meaningful debug location on the instruction or it's 929 /// operands. 930 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 931 if (!I) 932 return I; 933 934 DebugLoc Empty; 935 if (I->getDebugLoc() != Empty) 936 return I; 937 938 for (Use &Op : I->operands()) { 939 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 940 if (OpInst->getDebugLoc() != Empty) 941 return OpInst; 942 } 943 944 return I; 945 } 946 947 void InnerLoopVectorizer::setDebugLocFromInst( 948 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 949 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 950 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 951 const DILocation *DIL = Inst->getDebugLoc(); 952 953 // When a FSDiscriminator is enabled, we don't need to add the multiply 954 // factors to the discriminators. 955 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 956 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 957 // FIXME: For scalable vectors, assume vscale=1. 958 auto NewDIL = 959 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 960 if (NewDIL) 961 B->SetCurrentDebugLocation(NewDIL.getValue()); 962 else 963 LLVM_DEBUG(dbgs() 964 << "Failed to create new discriminator: " 965 << DIL->getFilename() << " Line: " << DIL->getLine()); 966 } else 967 B->SetCurrentDebugLocation(DIL); 968 } else 969 B->SetCurrentDebugLocation(DebugLoc()); 970 } 971 972 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 973 /// is passed, the message relates to that particular instruction. 974 #ifndef NDEBUG 975 static void debugVectorizationMessage(const StringRef Prefix, 976 const StringRef DebugMsg, 977 Instruction *I) { 978 dbgs() << "LV: " << Prefix << DebugMsg; 979 if (I != nullptr) 980 dbgs() << " " << *I; 981 else 982 dbgs() << '.'; 983 dbgs() << '\n'; 984 } 985 #endif 986 987 /// Create an analysis remark that explains why vectorization failed 988 /// 989 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 990 /// RemarkName is the identifier for the remark. If \p I is passed it is an 991 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 992 /// the location of the remark. \return the remark object that can be 993 /// streamed to. 994 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 995 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 996 Value *CodeRegion = TheLoop->getHeader(); 997 DebugLoc DL = TheLoop->getStartLoc(); 998 999 if (I) { 1000 CodeRegion = I->getParent(); 1001 // If there is no debug location attached to the instruction, revert back to 1002 // using the loop's. 1003 if (I->getDebugLoc()) 1004 DL = I->getDebugLoc(); 1005 } 1006 1007 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1008 } 1009 1010 namespace llvm { 1011 1012 /// Return a value for Step multiplied by VF. 1013 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1014 int64_t Step) { 1015 assert(Ty->isIntegerTy() && "Expected an integer step"); 1016 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1017 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1018 } 1019 1020 /// Return the runtime value for VF. 1021 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1022 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1023 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1024 } 1025 1026 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1027 ElementCount VF) { 1028 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1029 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1030 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1031 return B.CreateUIToFP(RuntimeVF, FTy); 1032 } 1033 1034 void reportVectorizationFailure(const StringRef DebugMsg, 1035 const StringRef OREMsg, const StringRef ORETag, 1036 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1037 Instruction *I) { 1038 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1039 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1040 ORE->emit( 1041 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1042 << "loop not vectorized: " << OREMsg); 1043 } 1044 1045 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1046 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1047 Instruction *I) { 1048 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1049 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1050 ORE->emit( 1051 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1052 << Msg); 1053 } 1054 1055 } // end namespace llvm 1056 1057 #ifndef NDEBUG 1058 /// \return string containing a file name and a line # for the given loop. 1059 static std::string getDebugLocString(const Loop *L) { 1060 std::string Result; 1061 if (L) { 1062 raw_string_ostream OS(Result); 1063 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1064 LoopDbgLoc.print(OS); 1065 else 1066 // Just print the module name. 1067 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1068 OS.flush(); 1069 } 1070 return Result; 1071 } 1072 #endif 1073 1074 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1075 const Instruction *Orig) { 1076 // If the loop was versioned with memchecks, add the corresponding no-alias 1077 // metadata. 1078 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1079 LVer->annotateInstWithNoAlias(To, Orig); 1080 } 1081 1082 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1083 VPTransformState &State) { 1084 1085 // Collect recipes in the backward slice of `Root` that may generate a poison 1086 // value that is used after vectorization. 1087 SmallPtrSet<VPRecipeBase *, 16> Visited; 1088 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1089 SmallVector<VPRecipeBase *, 16> Worklist; 1090 Worklist.push_back(Root); 1091 1092 // Traverse the backward slice of Root through its use-def chain. 1093 while (!Worklist.empty()) { 1094 VPRecipeBase *CurRec = Worklist.back(); 1095 Worklist.pop_back(); 1096 1097 if (!Visited.insert(CurRec).second) 1098 continue; 1099 1100 // Prune search if we find another recipe generating a widen memory 1101 // instruction. Widen memory instructions involved in address computation 1102 // will lead to gather/scatter instructions, which don't need to be 1103 // handled. 1104 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1105 isa<VPInterleaveRecipe>(CurRec) || 1106 isa<VPScalarIVStepsRecipe>(CurRec) || 1107 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1108 continue; 1109 1110 // This recipe contributes to the address computation of a widen 1111 // load/store. Collect recipe if its underlying instruction has 1112 // poison-generating flags. 1113 Instruction *Instr = CurRec->getUnderlyingInstr(); 1114 if (Instr && Instr->hasPoisonGeneratingFlags()) 1115 State.MayGeneratePoisonRecipes.insert(CurRec); 1116 1117 // Add new definitions to the worklist. 1118 for (VPValue *operand : CurRec->operands()) 1119 if (VPDef *OpDef = operand->getDef()) 1120 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1121 } 1122 }); 1123 1124 // Traverse all the recipes in the VPlan and collect the poison-generating 1125 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1126 // VPInterleaveRecipe. 1127 auto Iter = depth_first( 1128 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1129 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1130 for (VPRecipeBase &Recipe : *VPBB) { 1131 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1132 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1133 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1134 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1135 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1136 collectPoisonGeneratingInstrsInBackwardSlice( 1137 cast<VPRecipeBase>(AddrDef)); 1138 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1139 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1140 if (AddrDef) { 1141 // Check if any member of the interleave group needs predication. 1142 const InterleaveGroup<Instruction> *InterGroup = 1143 InterleaveRec->getInterleaveGroup(); 1144 bool NeedPredication = false; 1145 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1146 I < NumMembers; ++I) { 1147 Instruction *Member = InterGroup->getMember(I); 1148 if (Member) 1149 NeedPredication |= 1150 Legal->blockNeedsPredication(Member->getParent()); 1151 } 1152 1153 if (NeedPredication) 1154 collectPoisonGeneratingInstrsInBackwardSlice( 1155 cast<VPRecipeBase>(AddrDef)); 1156 } 1157 } 1158 } 1159 } 1160 } 1161 1162 void InnerLoopVectorizer::addMetadata(Instruction *To, 1163 Instruction *From) { 1164 propagateMetadata(To, From); 1165 addNewMetadata(To, From); 1166 } 1167 1168 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1169 Instruction *From) { 1170 for (Value *V : To) { 1171 if (Instruction *I = dyn_cast<Instruction>(V)) 1172 addMetadata(I, From); 1173 } 1174 } 1175 1176 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1177 const RecurrenceDescriptor &RdxDesc) { 1178 auto It = ReductionResumeValues.find(&RdxDesc); 1179 assert(It != ReductionResumeValues.end() && 1180 "Expected to find a resume value for the reduction."); 1181 return It->second; 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(DataType, Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V, 1509 ElementCount VF = ElementCount::getFixed(1)) { 1510 bool LI = isa<LoadInst>(V); 1511 bool SI = isa<StoreInst>(V); 1512 if (!LI && !SI) 1513 return false; 1514 auto *Ty = getLoadStoreType(V); 1515 Align Align = getLoadStoreAlignment(V); 1516 if (VF.isVector()) 1517 Ty = VectorType::get(Ty, VF); 1518 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1519 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1520 } 1521 1522 /// Returns true if the target machine supports all of the reduction 1523 /// variables found for the given VF. 1524 bool canVectorizeReductions(ElementCount VF) const { 1525 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1526 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1527 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1528 })); 1529 } 1530 1531 /// Returns true if \p I is an instruction that will be scalarized with 1532 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1533 /// instructions include conditional stores and instructions that may divide 1534 /// by zero. 1535 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1536 1537 // Returns true if \p I is an instruction that will be predicated either 1538 // through scalar predication or masked load/store or masked gather/scatter. 1539 // \p VF is the vectorization factor that will be used to vectorize \p I. 1540 // Superset of instructions that return true for isScalarWithPredication. 1541 bool isPredicatedInst(Instruction *I, ElementCount VF, 1542 bool IsKnownUniform = false) { 1543 // When we know the load is uniform and the original scalar loop was not 1544 // predicated we don't need to mark it as a predicated instruction. Any 1545 // vectorised blocks created when tail-folding are something artificial we 1546 // have introduced and we know there is always at least one active lane. 1547 // That's why we call Legal->blockNeedsPredication here because it doesn't 1548 // query tail-folding. 1549 if (IsKnownUniform && isa<LoadInst>(I) && 1550 !Legal->blockNeedsPredication(I->getParent())) 1551 return false; 1552 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1553 return false; 1554 // Loads and stores that need some form of masked operation are predicated 1555 // instructions. 1556 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1557 return Legal->isMaskRequired(I); 1558 return isScalarWithPredication(I, VF); 1559 } 1560 1561 /// Returns true if \p I is a memory instruction with consecutive memory 1562 /// access that can be widened. 1563 bool 1564 memoryInstructionCanBeWidened(Instruction *I, 1565 ElementCount VF = ElementCount::getFixed(1)); 1566 1567 /// Returns true if \p I is a memory instruction in an interleaved-group 1568 /// of memory accesses that can be vectorized with wide vector loads/stores 1569 /// and shuffles. 1570 bool 1571 interleavedAccessCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Check if \p Instr belongs to any interleaved access group. 1575 bool isAccessInterleaved(Instruction *Instr) { 1576 return InterleaveInfo.isInterleaved(Instr); 1577 } 1578 1579 /// Get the interleaved access group that \p Instr belongs to. 1580 const InterleaveGroup<Instruction> * 1581 getInterleavedAccessGroup(Instruction *Instr) { 1582 return InterleaveInfo.getInterleaveGroup(Instr); 1583 } 1584 1585 /// Returns true if we're required to use a scalar epilogue for at least 1586 /// the final iteration of the original loop. 1587 bool requiresScalarEpilogue(ElementCount VF) const { 1588 if (!isScalarEpilogueAllowed()) 1589 return false; 1590 // If we might exit from anywhere but the latch, must run the exiting 1591 // iteration in scalar form. 1592 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1593 return true; 1594 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1595 } 1596 1597 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1598 /// loop hint annotation. 1599 bool isScalarEpilogueAllowed() const { 1600 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1601 } 1602 1603 /// Returns true if all loop blocks should be masked to fold tail loop. 1604 bool foldTailByMasking() const { return FoldTailByMasking; } 1605 1606 /// Returns true if the instructions in this block requires predication 1607 /// for any reason, e.g. because tail folding now requires a predicate 1608 /// or because the block in the original loop was predicated. 1609 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1610 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1611 } 1612 1613 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1614 /// nodes to the chain of instructions representing the reductions. Uses a 1615 /// MapVector to ensure deterministic iteration order. 1616 using ReductionChainMap = 1617 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1618 1619 /// Return the chain of instructions representing an inloop reduction. 1620 const ReductionChainMap &getInLoopReductionChains() const { 1621 return InLoopReductionChains; 1622 } 1623 1624 /// Returns true if the Phi is part of an inloop reduction. 1625 bool isInLoopReduction(PHINode *Phi) const { 1626 return InLoopReductionChains.count(Phi); 1627 } 1628 1629 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1630 /// with factor VF. Return the cost of the instruction, including 1631 /// scalarization overhead if it's needed. 1632 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1633 1634 /// Estimate cost of a call instruction CI if it were vectorized with factor 1635 /// VF. Return the cost of the instruction, including scalarization overhead 1636 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1637 /// scalarized - 1638 /// i.e. either vector version isn't available, or is too expensive. 1639 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1640 bool &NeedToScalarize) const; 1641 1642 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1643 /// that of B. 1644 bool isMoreProfitable(const VectorizationFactor &A, 1645 const VectorizationFactor &B) const; 1646 1647 /// Invalidates decisions already taken by the cost model. 1648 void invalidateCostModelingDecisions() { 1649 WideningDecisions.clear(); 1650 Uniforms.clear(); 1651 Scalars.clear(); 1652 } 1653 1654 private: 1655 unsigned NumPredStores = 0; 1656 1657 /// Convenience function that returns the value of vscale_range iff 1658 /// vscale_range.min == vscale_range.max or otherwise returns the value 1659 /// returned by the corresponding TLI method. 1660 Optional<unsigned> getVScaleForTuning() const; 1661 1662 /// \return An upper bound for the vectorization factors for both 1663 /// fixed and scalable vectorization, where the minimum-known number of 1664 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1665 /// disabled or unsupported, then the scalable part will be equal to 1666 /// ElementCount::getScalable(0). 1667 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1668 ElementCount UserVF, 1669 bool FoldTailByMasking); 1670 1671 /// \return the maximized element count based on the targets vector 1672 /// registers and the loop trip-count, but limited to a maximum safe VF. 1673 /// This is a helper function of computeFeasibleMaxVF. 1674 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1675 /// issue that occurred on one of the buildbots which cannot be reproduced 1676 /// without having access to the properietary compiler (see comments on 1677 /// D98509). The issue is currently under investigation and this workaround 1678 /// will be removed as soon as possible. 1679 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1680 unsigned SmallestType, 1681 unsigned WidestType, 1682 const ElementCount &MaxSafeVF, 1683 bool FoldTailByMasking); 1684 1685 /// \return the maximum legal scalable VF, based on the safe max number 1686 /// of elements. 1687 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1688 1689 /// The vectorization cost is a combination of the cost itself and a boolean 1690 /// indicating whether any of the contributing operations will actually 1691 /// operate on vector values after type legalization in the backend. If this 1692 /// latter value is false, then all operations will be scalarized (i.e. no 1693 /// vectorization has actually taken place). 1694 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1695 1696 /// Returns the expected execution cost. The unit of the cost does 1697 /// not matter because we use the 'cost' units to compare different 1698 /// vector widths. The cost that is returned is *not* normalized by 1699 /// the factor width. If \p Invalid is not nullptr, this function 1700 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1701 /// each instruction that has an Invalid cost for the given VF. 1702 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1703 VectorizationCostTy 1704 expectedCost(ElementCount VF, 1705 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1706 1707 /// Returns the execution time cost of an instruction for a given vector 1708 /// width. Vector width of one means scalar. 1709 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost-computation logic from getInstructionCost which provides 1712 /// the vector type as an output parameter. 1713 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1714 Type *&VectorTy); 1715 1716 /// Return the cost of instructions in an inloop reduction pattern, if I is 1717 /// part of that pattern. 1718 Optional<InstructionCost> 1719 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1720 TTI::TargetCostKind CostKind); 1721 1722 /// Calculate vectorization cost of memory instruction \p I. 1723 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1724 1725 /// The cost computation for scalarized memory instruction. 1726 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1727 1728 /// The cost computation for interleaving group of memory instructions. 1729 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1730 1731 /// The cost computation for Gather/Scatter instruction. 1732 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1733 1734 /// The cost computation for widening instruction \p I with consecutive 1735 /// memory access. 1736 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1739 /// Load: scalar load + broadcast. 1740 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1741 /// element) 1742 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1743 1744 /// Estimate the overhead of scalarizing an instruction. This is a 1745 /// convenience wrapper for the type-based getScalarizationOverhead API. 1746 InstructionCost getScalarizationOverhead(Instruction *I, 1747 ElementCount VF) const; 1748 1749 /// Returns whether the instruction is a load or store and will be a emitted 1750 /// as a vector operation. 1751 bool isConsecutiveLoadOrStore(Instruction *I); 1752 1753 /// Returns true if an artificially high cost for emulated masked memrefs 1754 /// should be used. 1755 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1756 1757 /// Map of scalar integer values to the smallest bitwidth they can be legally 1758 /// represented as. The vector equivalents of these values should be truncated 1759 /// to this type. 1760 MapVector<Instruction *, uint64_t> MinBWs; 1761 1762 /// A type representing the costs for instructions if they were to be 1763 /// scalarized rather than vectorized. The entries are Instruction-Cost 1764 /// pairs. 1765 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1766 1767 /// A set containing all BasicBlocks that are known to present after 1768 /// vectorization as a predicated block. 1769 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1770 1771 /// Records whether it is allowed to have the original scalar loop execute at 1772 /// least once. This may be needed as a fallback loop in case runtime 1773 /// aliasing/dependence checks fail, or to handle the tail/remainder 1774 /// iterations when the trip count is unknown or doesn't divide by the VF, 1775 /// or as a peel-loop to handle gaps in interleave-groups. 1776 /// Under optsize and when the trip count is very small we don't allow any 1777 /// iterations to execute in the scalar loop. 1778 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1779 1780 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1781 bool FoldTailByMasking = false; 1782 1783 /// A map holding scalar costs for different vectorization factors. The 1784 /// presence of a cost for an instruction in the mapping indicates that the 1785 /// instruction will be scalarized when vectorizing with the associated 1786 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1787 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1788 1789 /// Holds the instructions known to be uniform after vectorization. 1790 /// The data is collected per VF. 1791 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1792 1793 /// Holds the instructions known to be scalar after vectorization. 1794 /// The data is collected per VF. 1795 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1796 1797 /// Holds the instructions (address computations) that are forced to be 1798 /// scalarized. 1799 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1800 1801 /// PHINodes of the reductions that should be expanded in-loop along with 1802 /// their associated chains of reduction operations, in program order from top 1803 /// (PHI) to bottom 1804 ReductionChainMap InLoopReductionChains; 1805 1806 /// A Map of inloop reduction operations and their immediate chain operand. 1807 /// FIXME: This can be removed once reductions can be costed correctly in 1808 /// vplan. This was added to allow quick lookup to the inloop operations, 1809 /// without having to loop through InLoopReductionChains. 1810 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1811 1812 /// Returns the expected difference in cost from scalarizing the expression 1813 /// feeding a predicated instruction \p PredInst. The instructions to 1814 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1815 /// non-negative return value implies the expression will be scalarized. 1816 /// Currently, only single-use chains are considered for scalarization. 1817 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1818 ElementCount VF); 1819 1820 /// Collect the instructions that are uniform after vectorization. An 1821 /// instruction is uniform if we represent it with a single scalar value in 1822 /// the vectorized loop corresponding to each vector iteration. Examples of 1823 /// uniform instructions include pointer operands of consecutive or 1824 /// interleaved memory accesses. Note that although uniformity implies an 1825 /// instruction will be scalar, the reverse is not true. In general, a 1826 /// scalarized instruction will be represented by VF scalar values in the 1827 /// vectorized loop, each corresponding to an iteration of the original 1828 /// scalar loop. 1829 void collectLoopUniforms(ElementCount VF); 1830 1831 /// Collect the instructions that are scalar after vectorization. An 1832 /// instruction is scalar if it is known to be uniform or will be scalarized 1833 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1834 /// to the list if they are used by a load/store instruction that is marked as 1835 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1836 /// VF values in the vectorized loop, each corresponding to an iteration of 1837 /// the original scalar loop. 1838 void collectLoopScalars(ElementCount VF); 1839 1840 /// Keeps cost model vectorization decision and cost for instructions. 1841 /// Right now it is used for memory instructions only. 1842 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1843 std::pair<InstWidening, InstructionCost>>; 1844 1845 DecisionList WideningDecisions; 1846 1847 /// Returns true if \p V is expected to be vectorized and it needs to be 1848 /// extracted. 1849 bool needsExtract(Value *V, ElementCount VF) const { 1850 Instruction *I = dyn_cast<Instruction>(V); 1851 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1852 TheLoop->isLoopInvariant(I)) 1853 return false; 1854 1855 // Assume we can vectorize V (and hence we need extraction) if the 1856 // scalars are not computed yet. This can happen, because it is called 1857 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1858 // the scalars are collected. That should be a safe assumption in most 1859 // cases, because we check if the operands have vectorizable types 1860 // beforehand in LoopVectorizationLegality. 1861 return Scalars.find(VF) == Scalars.end() || 1862 !isScalarAfterVectorization(I, VF); 1863 }; 1864 1865 /// Returns a range containing only operands needing to be extracted. 1866 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1867 ElementCount VF) const { 1868 return SmallVector<Value *, 4>(make_filter_range( 1869 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1870 } 1871 1872 /// Determines if we have the infrastructure to vectorize loop \p L and its 1873 /// epilogue, assuming the main loop is vectorized by \p VF. 1874 bool isCandidateForEpilogueVectorization(const Loop &L, 1875 const ElementCount VF) const; 1876 1877 /// Returns true if epilogue vectorization is considered profitable, and 1878 /// false otherwise. 1879 /// \p VF is the vectorization factor chosen for the original loop. 1880 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1881 1882 public: 1883 /// The loop that we evaluate. 1884 Loop *TheLoop; 1885 1886 /// Predicated scalar evolution analysis. 1887 PredicatedScalarEvolution &PSE; 1888 1889 /// Loop Info analysis. 1890 LoopInfo *LI; 1891 1892 /// Vectorization legality. 1893 LoopVectorizationLegality *Legal; 1894 1895 /// Vector target information. 1896 const TargetTransformInfo &TTI; 1897 1898 /// Target Library Info. 1899 const TargetLibraryInfo *TLI; 1900 1901 /// Demanded bits analysis. 1902 DemandedBits *DB; 1903 1904 /// Assumption cache. 1905 AssumptionCache *AC; 1906 1907 /// Interface to emit optimization remarks. 1908 OptimizationRemarkEmitter *ORE; 1909 1910 const Function *TheFunction; 1911 1912 /// Loop Vectorize Hint. 1913 const LoopVectorizeHints *Hints; 1914 1915 /// The interleave access information contains groups of interleaved accesses 1916 /// with the same stride and close to each other. 1917 InterleavedAccessInfo &InterleaveInfo; 1918 1919 /// Values to ignore in the cost model. 1920 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1921 1922 /// Values to ignore in the cost model when VF > 1. 1923 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1924 1925 /// All element types found in the loop. 1926 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1927 1928 /// Profitable vector factors. 1929 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1930 }; 1931 } // end namespace llvm 1932 1933 /// Helper struct to manage generating runtime checks for vectorization. 1934 /// 1935 /// The runtime checks are created up-front in temporary blocks to allow better 1936 /// estimating the cost and un-linked from the existing IR. After deciding to 1937 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1938 /// temporary blocks are completely removed. 1939 class GeneratedRTChecks { 1940 /// Basic block which contains the generated SCEV checks, if any. 1941 BasicBlock *SCEVCheckBlock = nullptr; 1942 1943 /// The value representing the result of the generated SCEV checks. If it is 1944 /// nullptr, either no SCEV checks have been generated or they have been used. 1945 Value *SCEVCheckCond = nullptr; 1946 1947 /// Basic block which contains the generated memory runtime checks, if any. 1948 BasicBlock *MemCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated memory runtime checks. 1951 /// If it is nullptr, either no memory runtime checks have been generated or 1952 /// they have been used. 1953 Value *MemRuntimeCheckCond = nullptr; 1954 1955 DominatorTree *DT; 1956 LoopInfo *LI; 1957 1958 SCEVExpander SCEVExp; 1959 SCEVExpander MemCheckExp; 1960 1961 public: 1962 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1963 const DataLayout &DL) 1964 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1965 MemCheckExp(SE, DL, "scev.check") {} 1966 1967 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1968 /// accurately estimate the cost of the runtime checks. The blocks are 1969 /// un-linked from the IR and is added back during vector code generation. If 1970 /// there is no vector code generation, the check blocks are removed 1971 /// completely. 1972 void Create(Loop *L, const LoopAccessInfo &LAI, 1973 const SCEVPredicate &Pred) { 1974 1975 BasicBlock *LoopHeader = L->getHeader(); 1976 BasicBlock *Preheader = L->getLoopPreheader(); 1977 1978 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1979 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1980 // may be used by SCEVExpander. The blocks will be un-linked from their 1981 // predecessors and removed from LI & DT at the end of the function. 1982 if (!Pred.isAlwaysTrue()) { 1983 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1984 nullptr, "vector.scevcheck"); 1985 1986 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1987 &Pred, SCEVCheckBlock->getTerminator()); 1988 } 1989 1990 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1991 if (RtPtrChecking.Need) { 1992 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1993 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1994 "vector.memcheck"); 1995 1996 MemRuntimeCheckCond = 1997 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1998 RtPtrChecking.getChecks(), MemCheckExp); 1999 assert(MemRuntimeCheckCond && 2000 "no RT checks generated although RtPtrChecking " 2001 "claimed checks are required"); 2002 } 2003 2004 if (!MemCheckBlock && !SCEVCheckBlock) 2005 return; 2006 2007 // Unhook the temporary block with the checks, update various places 2008 // accordingly. 2009 if (SCEVCheckBlock) 2010 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2011 if (MemCheckBlock) 2012 MemCheckBlock->replaceAllUsesWith(Preheader); 2013 2014 if (SCEVCheckBlock) { 2015 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2016 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2017 Preheader->getTerminator()->eraseFromParent(); 2018 } 2019 if (MemCheckBlock) { 2020 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2021 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2022 Preheader->getTerminator()->eraseFromParent(); 2023 } 2024 2025 DT->changeImmediateDominator(LoopHeader, Preheader); 2026 if (MemCheckBlock) { 2027 DT->eraseNode(MemCheckBlock); 2028 LI->removeBlock(MemCheckBlock); 2029 } 2030 if (SCEVCheckBlock) { 2031 DT->eraseNode(SCEVCheckBlock); 2032 LI->removeBlock(SCEVCheckBlock); 2033 } 2034 } 2035 2036 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2037 /// unused. 2038 ~GeneratedRTChecks() { 2039 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2040 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2041 if (!SCEVCheckCond) 2042 SCEVCleaner.markResultUsed(); 2043 2044 if (!MemRuntimeCheckCond) 2045 MemCheckCleaner.markResultUsed(); 2046 2047 if (MemRuntimeCheckCond) { 2048 auto &SE = *MemCheckExp.getSE(); 2049 // Memory runtime check generation creates compares that use expanded 2050 // values. Remove them before running the SCEVExpanderCleaners. 2051 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2052 if (MemCheckExp.isInsertedInstruction(&I)) 2053 continue; 2054 SE.forgetValue(&I); 2055 I.eraseFromParent(); 2056 } 2057 } 2058 MemCheckCleaner.cleanup(); 2059 SCEVCleaner.cleanup(); 2060 2061 if (SCEVCheckCond) 2062 SCEVCheckBlock->eraseFromParent(); 2063 if (MemRuntimeCheckCond) 2064 MemCheckBlock->eraseFromParent(); 2065 } 2066 2067 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2068 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2069 /// depending on the generated condition. 2070 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2071 BasicBlock *LoopVectorPreHeader, 2072 BasicBlock *LoopExitBlock) { 2073 if (!SCEVCheckCond) 2074 return nullptr; 2075 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2076 if (C->isZero()) 2077 return nullptr; 2078 2079 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2080 2081 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2082 // Create new preheader for vector loop. 2083 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2084 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2085 2086 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2087 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 SCEVCheckBlock); 2090 2091 DT->addNewBlock(SCEVCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2093 2094 ReplaceInstWithInst( 2095 SCEVCheckBlock->getTerminator(), 2096 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2097 // Mark the check as used, to prevent it from being removed during cleanup. 2098 SCEVCheckCond = nullptr; 2099 return SCEVCheckBlock; 2100 } 2101 2102 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2103 /// the branches to branch to the vector preheader or \p Bypass, depending on 2104 /// the generated condition. 2105 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2106 BasicBlock *LoopVectorPreHeader) { 2107 // Check if we generated code that checks in runtime if arrays overlap. 2108 if (!MemRuntimeCheckCond) 2109 return nullptr; 2110 2111 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2112 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2113 MemCheckBlock); 2114 2115 DT->addNewBlock(MemCheckBlock, Pred); 2116 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2117 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2118 2119 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2120 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2121 2122 ReplaceInstWithInst( 2123 MemCheckBlock->getTerminator(), 2124 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2125 MemCheckBlock->getTerminator()->setDebugLoc( 2126 Pred->getTerminator()->getDebugLoc()); 2127 2128 // Mark the check as used, to prevent it from being removed during cleanup. 2129 MemRuntimeCheckCond = nullptr; 2130 return MemCheckBlock; 2131 } 2132 }; 2133 2134 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2135 // vectorization. The loop needs to be annotated with #pragma omp simd 2136 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2137 // vector length information is not provided, vectorization is not considered 2138 // explicit. Interleave hints are not allowed either. These limitations will be 2139 // relaxed in the future. 2140 // Please, note that we are currently forced to abuse the pragma 'clang 2141 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2142 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2143 // provides *explicit vectorization hints* (LV can bypass legal checks and 2144 // assume that vectorization is legal). However, both hints are implemented 2145 // using the same metadata (llvm.loop.vectorize, processed by 2146 // LoopVectorizeHints). This will be fixed in the future when the native IR 2147 // representation for pragma 'omp simd' is introduced. 2148 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2149 OptimizationRemarkEmitter *ORE) { 2150 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2151 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2152 2153 // Only outer loops with an explicit vectorization hint are supported. 2154 // Unannotated outer loops are ignored. 2155 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2156 return false; 2157 2158 Function *Fn = OuterLp->getHeader()->getParent(); 2159 if (!Hints.allowVectorization(Fn, OuterLp, 2160 true /*VectorizeOnlyWhenForced*/)) { 2161 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2162 return false; 2163 } 2164 2165 if (Hints.getInterleave() > 1) { 2166 // TODO: Interleave support is future work. 2167 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2168 "outer loops.\n"); 2169 Hints.emitRemarkWithHints(); 2170 return false; 2171 } 2172 2173 return true; 2174 } 2175 2176 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2177 OptimizationRemarkEmitter *ORE, 2178 SmallVectorImpl<Loop *> &V) { 2179 // Collect inner loops and outer loops without irreducible control flow. For 2180 // now, only collect outer loops that have explicit vectorization hints. If we 2181 // are stress testing the VPlan H-CFG construction, we collect the outermost 2182 // loop of every loop nest. 2183 if (L.isInnermost() || VPlanBuildStressTest || 2184 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2185 LoopBlocksRPO RPOT(&L); 2186 RPOT.perform(LI); 2187 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2188 V.push_back(&L); 2189 // TODO: Collect inner loops inside marked outer loops in case 2190 // vectorization fails for the outer loop. Do not invoke 2191 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2192 // already known to be reducible. We can use an inherited attribute for 2193 // that. 2194 return; 2195 } 2196 } 2197 for (Loop *InnerL : L) 2198 collectSupportedLoops(*InnerL, LI, ORE, V); 2199 } 2200 2201 namespace { 2202 2203 /// The LoopVectorize Pass. 2204 struct LoopVectorize : public FunctionPass { 2205 /// Pass identification, replacement for typeid 2206 static char ID; 2207 2208 LoopVectorizePass Impl; 2209 2210 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2211 bool VectorizeOnlyWhenForced = false) 2212 : FunctionPass(ID), 2213 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2214 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2215 } 2216 2217 bool runOnFunction(Function &F) override { 2218 if (skipFunction(F)) 2219 return false; 2220 2221 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2222 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2223 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2224 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2225 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2226 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2227 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2228 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2229 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2230 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2231 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2232 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2233 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2234 2235 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2236 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2237 2238 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2239 GetLAA, *ORE, PSI).MadeAnyChange; 2240 } 2241 2242 void getAnalysisUsage(AnalysisUsage &AU) const override { 2243 AU.addRequired<AssumptionCacheTracker>(); 2244 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2245 AU.addRequired<DominatorTreeWrapperPass>(); 2246 AU.addRequired<LoopInfoWrapperPass>(); 2247 AU.addRequired<ScalarEvolutionWrapperPass>(); 2248 AU.addRequired<TargetTransformInfoWrapperPass>(); 2249 AU.addRequired<AAResultsWrapperPass>(); 2250 AU.addRequired<LoopAccessLegacyAnalysis>(); 2251 AU.addRequired<DemandedBitsWrapperPass>(); 2252 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2253 AU.addRequired<InjectTLIMappingsLegacy>(); 2254 2255 // We currently do not preserve loopinfo/dominator analyses with outer loop 2256 // vectorization. Until this is addressed, mark these analyses as preserved 2257 // only for non-VPlan-native path. 2258 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2259 if (!EnableVPlanNativePath) { 2260 AU.addPreserved<LoopInfoWrapperPass>(); 2261 AU.addPreserved<DominatorTreeWrapperPass>(); 2262 } 2263 2264 AU.addPreserved<BasicAAWrapperPass>(); 2265 AU.addPreserved<GlobalsAAWrapperPass>(); 2266 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2267 } 2268 }; 2269 2270 } // end anonymous namespace 2271 2272 //===----------------------------------------------------------------------===// 2273 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2274 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2275 //===----------------------------------------------------------------------===// 2276 2277 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2278 // We need to place the broadcast of invariant variables outside the loop, 2279 // but only if it's proven safe to do so. Else, broadcast will be inside 2280 // vector loop body. 2281 Instruction *Instr = dyn_cast<Instruction>(V); 2282 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2283 (!Instr || 2284 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2285 // Place the code for broadcasting invariant variables in the new preheader. 2286 IRBuilder<>::InsertPointGuard Guard(Builder); 2287 if (SafeToHoist) 2288 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2289 2290 // Broadcast the scalar into all locations in the vector. 2291 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2292 2293 return Shuf; 2294 } 2295 2296 /// This function adds 2297 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2298 /// to each vector element of Val. The sequence starts at StartIndex. 2299 /// \p Opcode is relevant for FP induction variable. 2300 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2301 Instruction::BinaryOps BinOp, ElementCount VF, 2302 IRBuilderBase &Builder) { 2303 assert(VF.isVector() && "only vector VFs are supported"); 2304 2305 // Create and check the types. 2306 auto *ValVTy = cast<VectorType>(Val->getType()); 2307 ElementCount VLen = ValVTy->getElementCount(); 2308 2309 Type *STy = Val->getType()->getScalarType(); 2310 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2311 "Induction Step must be an integer or FP"); 2312 assert(Step->getType() == STy && "Step has wrong type"); 2313 2314 SmallVector<Constant *, 8> Indices; 2315 2316 // Create a vector of consecutive numbers from zero to VF. 2317 VectorType *InitVecValVTy = ValVTy; 2318 if (STy->isFloatingPointTy()) { 2319 Type *InitVecValSTy = 2320 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2321 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2322 } 2323 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2324 2325 // Splat the StartIdx 2326 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2327 2328 if (STy->isIntegerTy()) { 2329 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2330 Step = Builder.CreateVectorSplat(VLen, Step); 2331 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2332 // FIXME: The newly created binary instructions should contain nsw/nuw 2333 // flags, which can be found from the original scalar operations. 2334 Step = Builder.CreateMul(InitVec, Step); 2335 return Builder.CreateAdd(Val, Step, "induction"); 2336 } 2337 2338 // Floating point induction. 2339 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2340 "Binary Opcode should be specified for FP induction"); 2341 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2342 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2343 2344 Step = Builder.CreateVectorSplat(VLen, Step); 2345 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2346 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2347 } 2348 2349 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2350 /// variable on which to base the steps, \p Step is the size of the step. 2351 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2352 const InductionDescriptor &ID, VPValue *Def, 2353 VPTransformState &State) { 2354 IRBuilderBase &Builder = State.Builder; 2355 // We shouldn't have to build scalar steps if we aren't vectorizing. 2356 assert(State.VF.isVector() && "VF should be greater than one"); 2357 // Get the value type and ensure it and the step have the same integer type. 2358 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2359 assert(ScalarIVTy == Step->getType() && 2360 "Val and Step should have the same type"); 2361 2362 // We build scalar steps for both integer and floating-point induction 2363 // variables. Here, we determine the kind of arithmetic we will perform. 2364 Instruction::BinaryOps AddOp; 2365 Instruction::BinaryOps MulOp; 2366 if (ScalarIVTy->isIntegerTy()) { 2367 AddOp = Instruction::Add; 2368 MulOp = Instruction::Mul; 2369 } else { 2370 AddOp = ID.getInductionOpcode(); 2371 MulOp = Instruction::FMul; 2372 } 2373 2374 // Determine the number of scalars we need to generate for each unroll 2375 // iteration. 2376 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2377 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2378 // Compute the scalar steps and save the results in State. 2379 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2380 ScalarIVTy->getScalarSizeInBits()); 2381 Type *VecIVTy = nullptr; 2382 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2383 if (!FirstLaneOnly && State.VF.isScalable()) { 2384 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2385 UnitStepVec = 2386 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2387 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2388 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2389 } 2390 2391 for (unsigned Part = 0; Part < State.UF; ++Part) { 2392 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2393 2394 if (!FirstLaneOnly && State.VF.isScalable()) { 2395 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2396 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2397 if (ScalarIVTy->isFloatingPointTy()) 2398 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2399 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2400 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2401 State.set(Def, Add, Part); 2402 // It's useful to record the lane values too for the known minimum number 2403 // of elements so we do those below. This improves the code quality when 2404 // trying to extract the first element, for example. 2405 } 2406 2407 if (ScalarIVTy->isFloatingPointTy()) 2408 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2409 2410 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2411 Value *StartIdx = Builder.CreateBinOp( 2412 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2413 // The step returned by `createStepForVF` is a runtime-evaluated value 2414 // when VF is scalable. Otherwise, it should be folded into a Constant. 2415 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2416 "Expected StartIdx to be folded to a constant when VF is not " 2417 "scalable"); 2418 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2419 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2420 State.set(Def, Add, VPIteration(Part, Lane)); 2421 } 2422 } 2423 } 2424 2425 // Generate code for the induction step. Note that induction steps are 2426 // required to be loop-invariant 2427 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2428 Instruction *InsertBefore, 2429 Loop *OrigLoop = nullptr) { 2430 const DataLayout &DL = SE.getDataLayout(); 2431 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2432 "Induction step should be loop invariant"); 2433 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2434 return E->getValue(); 2435 2436 SCEVExpander Exp(SE, DL, "induction"); 2437 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2438 } 2439 2440 /// Compute the transformed value of Index at offset StartValue using step 2441 /// StepValue. 2442 /// For integer induction, returns StartValue + Index * StepValue. 2443 /// For pointer induction, returns StartValue[Index * StepValue]. 2444 /// FIXME: The newly created binary instructions should contain nsw/nuw 2445 /// flags, which can be found from the original scalar operations. 2446 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2447 Value *StartValue, Value *Step, 2448 const InductionDescriptor &ID) { 2449 assert(Index->getType()->getScalarType() == Step->getType() && 2450 "Index scalar type does not match StepValue type"); 2451 2452 // Note: the IR at this point is broken. We cannot use SE to create any new 2453 // SCEV and then expand it, hoping that SCEV's simplification will give us 2454 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2455 // lead to various SCEV crashes. So all we can do is to use builder and rely 2456 // on InstCombine for future simplifications. Here we handle some trivial 2457 // cases only. 2458 auto CreateAdd = [&B](Value *X, Value *Y) { 2459 assert(X->getType() == Y->getType() && "Types don't match!"); 2460 if (auto *CX = dyn_cast<ConstantInt>(X)) 2461 if (CX->isZero()) 2462 return Y; 2463 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2464 if (CY->isZero()) 2465 return X; 2466 return B.CreateAdd(X, Y); 2467 }; 2468 2469 // We allow X to be a vector type, in which case Y will potentially be 2470 // splatted into a vector with the same element count. 2471 auto CreateMul = [&B](Value *X, Value *Y) { 2472 assert(X->getType()->getScalarType() == Y->getType() && 2473 "Types don't match!"); 2474 if (auto *CX = dyn_cast<ConstantInt>(X)) 2475 if (CX->isOne()) 2476 return Y; 2477 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2478 if (CY->isOne()) 2479 return X; 2480 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2481 if (XVTy && !isa<VectorType>(Y->getType())) 2482 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2483 return B.CreateMul(X, Y); 2484 }; 2485 2486 switch (ID.getKind()) { 2487 case InductionDescriptor::IK_IntInduction: { 2488 assert(!isa<VectorType>(Index->getType()) && 2489 "Vector indices not supported for integer inductions yet"); 2490 assert(Index->getType() == StartValue->getType() && 2491 "Index type does not match StartValue type"); 2492 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2493 return B.CreateSub(StartValue, Index); 2494 auto *Offset = CreateMul(Index, Step); 2495 return CreateAdd(StartValue, Offset); 2496 } 2497 case InductionDescriptor::IK_PtrInduction: { 2498 assert(isa<Constant>(Step) && 2499 "Expected constant step for pointer induction"); 2500 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2501 } 2502 case InductionDescriptor::IK_FpInduction: { 2503 assert(!isa<VectorType>(Index->getType()) && 2504 "Vector indices not supported for FP inductions yet"); 2505 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2506 auto InductionBinOp = ID.getInductionBinOp(); 2507 assert(InductionBinOp && 2508 (InductionBinOp->getOpcode() == Instruction::FAdd || 2509 InductionBinOp->getOpcode() == Instruction::FSub) && 2510 "Original bin op should be defined for FP induction"); 2511 2512 Value *MulExp = B.CreateFMul(Step, Index); 2513 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2514 "induction"); 2515 } 2516 case InductionDescriptor::IK_NoInduction: 2517 return nullptr; 2518 } 2519 llvm_unreachable("invalid enum"); 2520 } 2521 2522 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2523 const VPIteration &Instance, 2524 VPTransformState &State) { 2525 Value *ScalarInst = State.get(Def, Instance); 2526 Value *VectorValue = State.get(Def, Instance.Part); 2527 VectorValue = Builder.CreateInsertElement( 2528 VectorValue, ScalarInst, 2529 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2530 State.set(Def, VectorValue, Instance.Part); 2531 } 2532 2533 // Return whether we allow using masked interleave-groups (for dealing with 2534 // strided loads/stores that reside in predicated blocks, or for dealing 2535 // with gaps). 2536 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2537 // If an override option has been passed in for interleaved accesses, use it. 2538 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2539 return EnableMaskedInterleavedMemAccesses; 2540 2541 return TTI.enableMaskedInterleavedAccessVectorization(); 2542 } 2543 2544 // Try to vectorize the interleave group that \p Instr belongs to. 2545 // 2546 // E.g. Translate following interleaved load group (factor = 3): 2547 // for (i = 0; i < N; i+=3) { 2548 // R = Pic[i]; // Member of index 0 2549 // G = Pic[i+1]; // Member of index 1 2550 // B = Pic[i+2]; // Member of index 2 2551 // ... // do something to R, G, B 2552 // } 2553 // To: 2554 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2555 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2556 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2557 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2558 // 2559 // Or translate following interleaved store group (factor = 3): 2560 // for (i = 0; i < N; i+=3) { 2561 // ... do something to R, G, B 2562 // Pic[i] = R; // Member of index 0 2563 // Pic[i+1] = G; // Member of index 1 2564 // Pic[i+2] = B; // Member of index 2 2565 // } 2566 // To: 2567 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2568 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2569 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2570 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2571 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2572 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2573 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2574 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2575 VPValue *BlockInMask) { 2576 Instruction *Instr = Group->getInsertPos(); 2577 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2578 2579 // Prepare for the vector type of the interleaved load/store. 2580 Type *ScalarTy = getLoadStoreType(Instr); 2581 unsigned InterleaveFactor = Group->getFactor(); 2582 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2583 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2584 2585 // Prepare for the new pointers. 2586 SmallVector<Value *, 2> AddrParts; 2587 unsigned Index = Group->getIndex(Instr); 2588 2589 // TODO: extend the masked interleaved-group support to reversed access. 2590 assert((!BlockInMask || !Group->isReverse()) && 2591 "Reversed masked interleave-group not supported."); 2592 2593 // If the group is reverse, adjust the index to refer to the last vector lane 2594 // instead of the first. We adjust the index from the first vector lane, 2595 // rather than directly getting the pointer for lane VF - 1, because the 2596 // pointer operand of the interleaved access is supposed to be uniform. For 2597 // uniform instructions, we're only required to generate a value for the 2598 // first vector lane in each unroll iteration. 2599 if (Group->isReverse()) 2600 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2601 2602 for (unsigned Part = 0; Part < UF; Part++) { 2603 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2604 setDebugLocFromInst(AddrPart); 2605 2606 // Notice current instruction could be any index. Need to adjust the address 2607 // to the member of index 0. 2608 // 2609 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2610 // b = A[i]; // Member of index 0 2611 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2612 // 2613 // E.g. A[i+1] = a; // Member of index 1 2614 // A[i] = b; // Member of index 0 2615 // A[i+2] = c; // Member of index 2 (Current instruction) 2616 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2617 2618 bool InBounds = false; 2619 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2620 InBounds = gep->isInBounds(); 2621 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2622 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2623 2624 // Cast to the vector pointer type. 2625 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2626 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2627 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2628 } 2629 2630 setDebugLocFromInst(Instr); 2631 Value *PoisonVec = PoisonValue::get(VecTy); 2632 2633 Value *MaskForGaps = nullptr; 2634 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2635 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2636 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2637 } 2638 2639 // Vectorize the interleaved load group. 2640 if (isa<LoadInst>(Instr)) { 2641 // For each unroll part, create a wide load for the group. 2642 SmallVector<Value *, 2> NewLoads; 2643 for (unsigned Part = 0; Part < UF; Part++) { 2644 Instruction *NewLoad; 2645 if (BlockInMask || MaskForGaps) { 2646 assert(useMaskedInterleavedAccesses(*TTI) && 2647 "masked interleaved groups are not allowed."); 2648 Value *GroupMask = MaskForGaps; 2649 if (BlockInMask) { 2650 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2651 Value *ShuffledMask = Builder.CreateShuffleVector( 2652 BlockInMaskPart, 2653 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2654 "interleaved.mask"); 2655 GroupMask = MaskForGaps 2656 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2657 MaskForGaps) 2658 : ShuffledMask; 2659 } 2660 NewLoad = 2661 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2662 GroupMask, PoisonVec, "wide.masked.vec"); 2663 } 2664 else 2665 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2666 Group->getAlign(), "wide.vec"); 2667 Group->addMetadata(NewLoad); 2668 NewLoads.push_back(NewLoad); 2669 } 2670 2671 // For each member in the group, shuffle out the appropriate data from the 2672 // wide loads. 2673 unsigned J = 0; 2674 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2675 Instruction *Member = Group->getMember(I); 2676 2677 // Skip the gaps in the group. 2678 if (!Member) 2679 continue; 2680 2681 auto StrideMask = 2682 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2683 for (unsigned Part = 0; Part < UF; Part++) { 2684 Value *StridedVec = Builder.CreateShuffleVector( 2685 NewLoads[Part], StrideMask, "strided.vec"); 2686 2687 // If this member has different type, cast the result type. 2688 if (Member->getType() != ScalarTy) { 2689 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2690 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2691 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2692 } 2693 2694 if (Group->isReverse()) 2695 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2696 2697 State.set(VPDefs[J], StridedVec, Part); 2698 } 2699 ++J; 2700 } 2701 return; 2702 } 2703 2704 // The sub vector type for current instruction. 2705 auto *SubVT = VectorType::get(ScalarTy, VF); 2706 2707 // Vectorize the interleaved store group. 2708 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2709 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2710 "masked interleaved groups are not allowed."); 2711 assert((!MaskForGaps || !VF.isScalable()) && 2712 "masking gaps for scalable vectors is not yet supported."); 2713 for (unsigned Part = 0; Part < UF; Part++) { 2714 // Collect the stored vector from each member. 2715 SmallVector<Value *, 4> StoredVecs; 2716 for (unsigned i = 0; i < InterleaveFactor; i++) { 2717 assert((Group->getMember(i) || MaskForGaps) && 2718 "Fail to get a member from an interleaved store group"); 2719 Instruction *Member = Group->getMember(i); 2720 2721 // Skip the gaps in the group. 2722 if (!Member) { 2723 Value *Undef = PoisonValue::get(SubVT); 2724 StoredVecs.push_back(Undef); 2725 continue; 2726 } 2727 2728 Value *StoredVec = State.get(StoredValues[i], Part); 2729 2730 if (Group->isReverse()) 2731 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2732 2733 // If this member has different type, cast it to a unified type. 2734 2735 if (StoredVec->getType() != SubVT) 2736 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2737 2738 StoredVecs.push_back(StoredVec); 2739 } 2740 2741 // Concatenate all vectors into a wide vector. 2742 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2743 2744 // Interleave the elements in the wide vector. 2745 Value *IVec = Builder.CreateShuffleVector( 2746 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2747 "interleaved.vec"); 2748 2749 Instruction *NewStoreInstr; 2750 if (BlockInMask || MaskForGaps) { 2751 Value *GroupMask = MaskForGaps; 2752 if (BlockInMask) { 2753 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2754 Value *ShuffledMask = Builder.CreateShuffleVector( 2755 BlockInMaskPart, 2756 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2757 "interleaved.mask"); 2758 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2759 ShuffledMask, MaskForGaps) 2760 : ShuffledMask; 2761 } 2762 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2763 Group->getAlign(), GroupMask); 2764 } else 2765 NewStoreInstr = 2766 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2767 2768 Group->addMetadata(NewStoreInstr); 2769 } 2770 } 2771 2772 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2773 VPReplicateRecipe *RepRecipe, 2774 const VPIteration &Instance, 2775 bool IfPredicateInstr, 2776 VPTransformState &State) { 2777 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2778 2779 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2780 // the first lane and part. 2781 if (isa<NoAliasScopeDeclInst>(Instr)) 2782 if (!Instance.isFirstIteration()) 2783 return; 2784 2785 // Does this instruction return a value ? 2786 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2787 2788 Instruction *Cloned = Instr->clone(); 2789 if (!IsVoidRetTy) 2790 Cloned->setName(Instr->getName() + ".cloned"); 2791 2792 // If the scalarized instruction contributes to the address computation of a 2793 // widen masked load/store which was in a basic block that needed predication 2794 // and is not predicated after vectorization, we can't propagate 2795 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2796 // instruction could feed a poison value to the base address of the widen 2797 // load/store. 2798 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2799 Cloned->dropPoisonGeneratingFlags(); 2800 2801 if (Instr->getDebugLoc()) 2802 setDebugLocFromInst(Instr); 2803 2804 // Replace the operands of the cloned instructions with their scalar 2805 // equivalents in the new loop. 2806 for (auto &I : enumerate(RepRecipe->operands())) { 2807 auto InputInstance = Instance; 2808 VPValue *Operand = I.value(); 2809 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2810 if (OperandR && OperandR->isUniform()) 2811 InputInstance.Lane = VPLane::getFirstLane(); 2812 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2813 } 2814 addNewMetadata(Cloned, Instr); 2815 2816 // Place the cloned scalar in the new loop. 2817 State.Builder.Insert(Cloned); 2818 2819 State.set(RepRecipe, Cloned, Instance); 2820 2821 // If we just cloned a new assumption, add it the assumption cache. 2822 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2823 AC->registerAssumption(II); 2824 2825 // End if-block. 2826 if (IfPredicateInstr) 2827 PredicatedInstructions.push_back(Cloned); 2828 } 2829 2830 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2831 if (TripCount) 2832 return TripCount; 2833 2834 assert(InsertBlock); 2835 IRBuilder<> Builder(InsertBlock->getTerminator()); 2836 // Find the loop boundaries. 2837 ScalarEvolution *SE = PSE.getSE(); 2838 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2839 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2840 "Invalid loop count"); 2841 2842 Type *IdxTy = Legal->getWidestInductionType(); 2843 assert(IdxTy && "No type for induction"); 2844 2845 // The exit count might have the type of i64 while the phi is i32. This can 2846 // happen if we have an induction variable that is sign extended before the 2847 // compare. The only way that we get a backedge taken count is that the 2848 // induction variable was signed and as such will not overflow. In such a case 2849 // truncation is legal. 2850 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2851 IdxTy->getPrimitiveSizeInBits()) 2852 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2853 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2854 2855 // Get the total trip count from the count by adding 1. 2856 const SCEV *ExitCount = SE->getAddExpr( 2857 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2858 2859 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2860 2861 // Expand the trip count and place the new instructions in the preheader. 2862 // Notice that the pre-header does not change, only the loop body. 2863 SCEVExpander Exp(*SE, DL, "induction"); 2864 2865 // Count holds the overall loop count (N). 2866 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2867 InsertBlock->getTerminator()); 2868 2869 if (TripCount->getType()->isPointerTy()) 2870 TripCount = 2871 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2872 InsertBlock->getTerminator()); 2873 2874 return TripCount; 2875 } 2876 2877 Value * 2878 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2879 if (VectorTripCount) 2880 return VectorTripCount; 2881 2882 Value *TC = getOrCreateTripCount(InsertBlock); 2883 IRBuilder<> Builder(InsertBlock->getTerminator()); 2884 2885 Type *Ty = TC->getType(); 2886 // This is where we can make the step a runtime constant. 2887 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2888 2889 // If the tail is to be folded by masking, round the number of iterations N 2890 // up to a multiple of Step instead of rounding down. This is done by first 2891 // adding Step-1 and then rounding down. Note that it's ok if this addition 2892 // overflows: the vector induction variable will eventually wrap to zero given 2893 // that it starts at zero and its Step is a power of two; the loop will then 2894 // exit, with the last early-exit vector comparison also producing all-true. 2895 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2896 // is accounted for in emitIterationCountCheck that adds an overflow check. 2897 if (Cost->foldTailByMasking()) { 2898 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2899 "VF*UF must be a power of 2 when folding tail by masking"); 2900 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2901 TC = Builder.CreateAdd( 2902 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2903 } 2904 2905 // Now we need to generate the expression for the part of the loop that the 2906 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2907 // iterations are not required for correctness, or N - Step, otherwise. Step 2908 // is equal to the vectorization factor (number of SIMD elements) times the 2909 // unroll factor (number of SIMD instructions). 2910 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2911 2912 // There are cases where we *must* run at least one iteration in the remainder 2913 // loop. See the cost model for when this can happen. If the step evenly 2914 // divides the trip count, we set the remainder to be equal to the step. If 2915 // the step does not evenly divide the trip count, no adjustment is necessary 2916 // since there will already be scalar iterations. Note that the minimum 2917 // iterations check ensures that N >= Step. 2918 if (Cost->requiresScalarEpilogue(VF)) { 2919 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2920 R = Builder.CreateSelect(IsZero, Step, R); 2921 } 2922 2923 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2924 2925 return VectorTripCount; 2926 } 2927 2928 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2929 const DataLayout &DL) { 2930 // Verify that V is a vector type with same number of elements as DstVTy. 2931 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2932 unsigned VF = DstFVTy->getNumElements(); 2933 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2934 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2935 Type *SrcElemTy = SrcVecTy->getElementType(); 2936 Type *DstElemTy = DstFVTy->getElementType(); 2937 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2938 "Vector elements must have same size"); 2939 2940 // Do a direct cast if element types are castable. 2941 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2942 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2943 } 2944 // V cannot be directly casted to desired vector type. 2945 // May happen when V is a floating point vector but DstVTy is a vector of 2946 // pointers or vice-versa. Handle this using a two-step bitcast using an 2947 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2948 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2949 "Only one type should be a pointer type"); 2950 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2951 "Only one type should be a floating point type"); 2952 Type *IntTy = 2953 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2954 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2955 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2956 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2957 } 2958 2959 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2960 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2961 // Reuse existing vector loop preheader for TC checks. 2962 // Note that new preheader block is generated for vector loop. 2963 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2964 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2965 2966 // Generate code to check if the loop's trip count is less than VF * UF, or 2967 // equal to it in case a scalar epilogue is required; this implies that the 2968 // vector trip count is zero. This check also covers the case where adding one 2969 // to the backedge-taken count overflowed leading to an incorrect trip count 2970 // of zero. In this case we will also jump to the scalar loop. 2971 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2972 : ICmpInst::ICMP_ULT; 2973 2974 // If tail is to be folded, vector loop takes care of all iterations. 2975 Type *CountTy = Count->getType(); 2976 Value *CheckMinIters = Builder.getFalse(); 2977 Value *Step = createStepForVF(Builder, CountTy, VF, UF); 2978 if (!Cost->foldTailByMasking()) 2979 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2980 else if (VF.isScalable()) { 2981 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2982 // an overflow to zero when updating induction variables and so an 2983 // additional overflow check is required before entering the vector loop. 2984 2985 // Get the maximum unsigned value for the type. 2986 Value *MaxUIntTripCount = 2987 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2988 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2989 2990 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2991 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step); 2992 } 2993 // Create new preheader for vector loop. 2994 LoopVectorPreHeader = 2995 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2996 "vector.ph"); 2997 2998 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2999 DT->getNode(Bypass)->getIDom()) && 3000 "TC check is expected to dominate Bypass"); 3001 3002 // Update dominator for Bypass & LoopExit (if needed). 3003 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3004 if (!Cost->requiresScalarEpilogue(VF)) 3005 // If there is an epilogue which must run, there's no edge from the 3006 // middle block to exit blocks and thus no need to update the immediate 3007 // dominator of the exit blocks. 3008 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3009 3010 ReplaceInstWithInst( 3011 TCCheckBlock->getTerminator(), 3012 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3013 LoopBypassBlocks.push_back(TCCheckBlock); 3014 } 3015 3016 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3017 3018 BasicBlock *const SCEVCheckBlock = 3019 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3020 if (!SCEVCheckBlock) 3021 return nullptr; 3022 3023 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3024 (OptForSizeBasedOnProfile && 3025 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3026 "Cannot SCEV check stride or overflow when optimizing for size"); 3027 3028 3029 // Update dominator only if this is first RT check. 3030 if (LoopBypassBlocks.empty()) { 3031 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3032 if (!Cost->requiresScalarEpilogue(VF)) 3033 // If there is an epilogue which must run, there's no edge from the 3034 // middle block to exit blocks and thus no need to update the immediate 3035 // dominator of the exit blocks. 3036 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3037 } 3038 3039 LoopBypassBlocks.push_back(SCEVCheckBlock); 3040 AddedSafetyChecks = true; 3041 return SCEVCheckBlock; 3042 } 3043 3044 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3045 // VPlan-native path does not do any analysis for runtime checks currently. 3046 if (EnableVPlanNativePath) 3047 return nullptr; 3048 3049 BasicBlock *const MemCheckBlock = 3050 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3051 3052 // Check if we generated code that checks in runtime if arrays overlap. We put 3053 // the checks into a separate block to make the more common case of few 3054 // elements faster. 3055 if (!MemCheckBlock) 3056 return nullptr; 3057 3058 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3059 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3060 "Cannot emit memory checks when optimizing for size, unless forced " 3061 "to vectorize."); 3062 ORE->emit([&]() { 3063 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3064 OrigLoop->getStartLoc(), 3065 OrigLoop->getHeader()) 3066 << "Code-size may be reduced by not forcing " 3067 "vectorization, or by source-code modifications " 3068 "eliminating the need for runtime checks " 3069 "(e.g., adding 'restrict')."; 3070 }); 3071 } 3072 3073 LoopBypassBlocks.push_back(MemCheckBlock); 3074 3075 AddedSafetyChecks = true; 3076 3077 // We currently don't use LoopVersioning for the actual loop cloning but we 3078 // still use it to add the noalias metadata. 3079 LVer = std::make_unique<LoopVersioning>( 3080 *Legal->getLAI(), 3081 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3082 DT, PSE.getSE()); 3083 LVer->prepareNoAliasMetadata(); 3084 return MemCheckBlock; 3085 } 3086 3087 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3088 LoopScalarBody = OrigLoop->getHeader(); 3089 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3090 assert(LoopVectorPreHeader && "Invalid loop structure"); 3091 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3092 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3093 "multiple exit loop without required epilogue?"); 3094 3095 LoopMiddleBlock = 3096 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3097 LI, nullptr, Twine(Prefix) + "middle.block"); 3098 LoopScalarPreHeader = 3099 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3100 nullptr, Twine(Prefix) + "scalar.ph"); 3101 3102 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3103 3104 // Set up the middle block terminator. Two cases: 3105 // 1) If we know that we must execute the scalar epilogue, emit an 3106 // unconditional branch. 3107 // 2) Otherwise, we must have a single unique exit block (due to how we 3108 // implement the multiple exit case). In this case, set up a conditonal 3109 // branch from the middle block to the loop scalar preheader, and the 3110 // exit block. completeLoopSkeleton will update the condition to use an 3111 // iteration check, if required to decide whether to execute the remainder. 3112 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3113 BranchInst::Create(LoopScalarPreHeader) : 3114 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3115 Builder.getTrue()); 3116 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3117 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3118 3119 // Update dominator for loop exit. During skeleton creation, only the vector 3120 // pre-header and the middle block are created. The vector loop is entirely 3121 // created during VPlan exection. 3122 if (!Cost->requiresScalarEpilogue(VF)) 3123 // If there is an epilogue which must run, there's no edge from the 3124 // middle block to exit blocks and thus no need to update the immediate 3125 // dominator of the exit blocks. 3126 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3127 } 3128 3129 void InnerLoopVectorizer::createInductionResumeValues( 3130 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3131 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3132 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3133 "Inconsistent information about additional bypass."); 3134 3135 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3136 assert(VectorTripCount && "Expected valid arguments"); 3137 // We are going to resume the execution of the scalar loop. 3138 // Go over all of the induction variables that we found and fix the 3139 // PHIs that are left in the scalar version of the loop. 3140 // The starting values of PHI nodes depend on the counter of the last 3141 // iteration in the vectorized loop. 3142 // If we come from a bypass edge then we need to start from the original 3143 // start value. 3144 Instruction *OldInduction = Legal->getPrimaryInduction(); 3145 for (auto &InductionEntry : Legal->getInductionVars()) { 3146 PHINode *OrigPhi = InductionEntry.first; 3147 InductionDescriptor II = InductionEntry.second; 3148 3149 // Create phi nodes to merge from the backedge-taken check block. 3150 PHINode *BCResumeVal = 3151 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3152 LoopScalarPreHeader->getTerminator()); 3153 // Copy original phi DL over to the new one. 3154 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3155 Value *&EndValue = IVEndValues[OrigPhi]; 3156 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3157 if (OrigPhi == OldInduction) { 3158 // We know what the end value is. 3159 EndValue = VectorTripCount; 3160 } else { 3161 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3162 3163 // Fast-math-flags propagate from the original induction instruction. 3164 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3165 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3166 3167 Type *StepType = II.getStep()->getType(); 3168 Instruction::CastOps CastOp = 3169 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3170 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3171 Value *Step = 3172 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3173 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3174 EndValue->setName("ind.end"); 3175 3176 // Compute the end value for the additional bypass (if applicable). 3177 if (AdditionalBypass.first) { 3178 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3179 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3180 StepType, true); 3181 Value *Step = 3182 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3183 VTC = 3184 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3185 EndValueFromAdditionalBypass = 3186 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3187 EndValueFromAdditionalBypass->setName("ind.end"); 3188 } 3189 } 3190 // The new PHI merges the original incoming value, in case of a bypass, 3191 // or the value at the end of the vectorized loop. 3192 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3193 3194 // Fix the scalar body counter (PHI node). 3195 // The old induction's phi node in the scalar body needs the truncated 3196 // value. 3197 for (BasicBlock *BB : LoopBypassBlocks) 3198 BCResumeVal->addIncoming(II.getStartValue(), BB); 3199 3200 if (AdditionalBypass.first) 3201 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3202 EndValueFromAdditionalBypass); 3203 3204 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3205 } 3206 } 3207 3208 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3209 // The trip counts should be cached by now. 3210 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3211 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3212 3213 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3214 3215 // Add a check in the middle block to see if we have completed 3216 // all of the iterations in the first vector loop. Three cases: 3217 // 1) If we require a scalar epilogue, there is no conditional branch as 3218 // we unconditionally branch to the scalar preheader. Do nothing. 3219 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3220 // Thus if tail is to be folded, we know we don't need to run the 3221 // remainder and we can use the previous value for the condition (true). 3222 // 3) Otherwise, construct a runtime check. 3223 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3224 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3225 Count, VectorTripCount, "cmp.n", 3226 LoopMiddleBlock->getTerminator()); 3227 3228 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3229 // of the corresponding compare because they may have ended up with 3230 // different line numbers and we want to avoid awkward line stepping while 3231 // debugging. Eg. if the compare has got a line number inside the loop. 3232 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3233 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3234 } 3235 3236 #ifdef EXPENSIVE_CHECKS 3237 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3238 #endif 3239 3240 return LoopVectorPreHeader; 3241 } 3242 3243 std::pair<BasicBlock *, Value *> 3244 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3245 /* 3246 In this function we generate a new loop. The new loop will contain 3247 the vectorized instructions while the old loop will continue to run the 3248 scalar remainder. 3249 3250 [ ] <-- loop iteration number check. 3251 / | 3252 / v 3253 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3254 | / | 3255 | / v 3256 || [ ] <-- vector pre header. 3257 |/ | 3258 | v 3259 | [ ] \ 3260 | [ ]_| <-- vector loop (created during VPlan execution). 3261 | | 3262 | v 3263 \ -[ ] <--- middle-block. 3264 \/ | 3265 /\ v 3266 | ->[ ] <--- new preheader. 3267 | | 3268 (opt) v <-- edge from middle to exit iff epilogue is not required. 3269 | [ ] \ 3270 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3271 \ | 3272 \ v 3273 >[ ] <-- exit block(s). 3274 ... 3275 */ 3276 3277 // Get the metadata of the original loop before it gets modified. 3278 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3279 3280 // Workaround! Compute the trip count of the original loop and cache it 3281 // before we start modifying the CFG. This code has a systemic problem 3282 // wherein it tries to run analysis over partially constructed IR; this is 3283 // wrong, and not simply for SCEV. The trip count of the original loop 3284 // simply happens to be prone to hitting this in practice. In theory, we 3285 // can hit the same issue for any SCEV, or ValueTracking query done during 3286 // mutation. See PR49900. 3287 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3288 3289 // Create an empty vector loop, and prepare basic blocks for the runtime 3290 // checks. 3291 createVectorLoopSkeleton(""); 3292 3293 // Now, compare the new count to zero. If it is zero skip the vector loop and 3294 // jump to the scalar loop. This check also covers the case where the 3295 // backedge-taken count is uint##_max: adding one to it will overflow leading 3296 // to an incorrect trip count of zero. In this (rare) case we will also jump 3297 // to the scalar loop. 3298 emitIterationCountCheck(LoopScalarPreHeader); 3299 3300 // Generate the code to check any assumptions that we've made for SCEV 3301 // expressions. 3302 emitSCEVChecks(LoopScalarPreHeader); 3303 3304 // Generate the code that checks in runtime if arrays overlap. We put the 3305 // checks into a separate block to make the more common case of few elements 3306 // faster. 3307 emitMemRuntimeChecks(LoopScalarPreHeader); 3308 3309 // Emit phis for the new starting index of the scalar loop. 3310 createInductionResumeValues(); 3311 3312 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3313 } 3314 3315 // Fix up external users of the induction variable. At this point, we are 3316 // in LCSSA form, with all external PHIs that use the IV having one input value, 3317 // coming from the remainder loop. We need those PHIs to also have a correct 3318 // value for the IV when arriving directly from the middle block. 3319 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3320 const InductionDescriptor &II, 3321 Value *VectorTripCount, Value *EndValue, 3322 BasicBlock *MiddleBlock, 3323 BasicBlock *VectorHeader) { 3324 // There are two kinds of external IV usages - those that use the value 3325 // computed in the last iteration (the PHI) and those that use the penultimate 3326 // value (the value that feeds into the phi from the loop latch). 3327 // We allow both, but they, obviously, have different values. 3328 3329 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3330 3331 DenseMap<Value *, Value *> MissingVals; 3332 3333 // An external user of the last iteration's value should see the value that 3334 // the remainder loop uses to initialize its own IV. 3335 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3336 for (User *U : PostInc->users()) { 3337 Instruction *UI = cast<Instruction>(U); 3338 if (!OrigLoop->contains(UI)) { 3339 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3340 MissingVals[UI] = EndValue; 3341 } 3342 } 3343 3344 // An external user of the penultimate value need to see EndValue - Step. 3345 // The simplest way to get this is to recompute it from the constituent SCEVs, 3346 // that is Start + (Step * (CRD - 1)). 3347 for (User *U : OrigPhi->users()) { 3348 auto *UI = cast<Instruction>(U); 3349 if (!OrigLoop->contains(UI)) { 3350 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3351 3352 IRBuilder<> B(MiddleBlock->getTerminator()); 3353 3354 // Fast-math-flags propagate from the original induction instruction. 3355 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3356 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3357 3358 Value *CountMinusOne = B.CreateSub( 3359 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3360 Value *CMO = 3361 !II.getStep()->getType()->isIntegerTy() 3362 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3363 II.getStep()->getType()) 3364 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3365 CMO->setName("cast.cmo"); 3366 3367 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3368 VectorHeader->getTerminator()); 3369 Value *Escape = 3370 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3371 Escape->setName("ind.escape"); 3372 MissingVals[UI] = Escape; 3373 } 3374 } 3375 3376 for (auto &I : MissingVals) { 3377 PHINode *PHI = cast<PHINode>(I.first); 3378 // One corner case we have to handle is two IVs "chasing" each-other, 3379 // that is %IV2 = phi [...], [ %IV1, %latch ] 3380 // In this case, if IV1 has an external use, we need to avoid adding both 3381 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3382 // don't already have an incoming value for the middle block. 3383 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3384 PHI->addIncoming(I.second, MiddleBlock); 3385 } 3386 } 3387 3388 namespace { 3389 3390 struct CSEDenseMapInfo { 3391 static bool canHandle(const Instruction *I) { 3392 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3393 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3394 } 3395 3396 static inline Instruction *getEmptyKey() { 3397 return DenseMapInfo<Instruction *>::getEmptyKey(); 3398 } 3399 3400 static inline Instruction *getTombstoneKey() { 3401 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3402 } 3403 3404 static unsigned getHashValue(const Instruction *I) { 3405 assert(canHandle(I) && "Unknown instruction!"); 3406 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3407 I->value_op_end())); 3408 } 3409 3410 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3411 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3412 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3413 return LHS == RHS; 3414 return LHS->isIdenticalTo(RHS); 3415 } 3416 }; 3417 3418 } // end anonymous namespace 3419 3420 ///Perform cse of induction variable instructions. 3421 static void cse(BasicBlock *BB) { 3422 // Perform simple cse. 3423 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3424 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3425 if (!CSEDenseMapInfo::canHandle(&In)) 3426 continue; 3427 3428 // Check if we can replace this instruction with any of the 3429 // visited instructions. 3430 if (Instruction *V = CSEMap.lookup(&In)) { 3431 In.replaceAllUsesWith(V); 3432 In.eraseFromParent(); 3433 continue; 3434 } 3435 3436 CSEMap[&In] = &In; 3437 } 3438 } 3439 3440 InstructionCost 3441 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3442 bool &NeedToScalarize) const { 3443 Function *F = CI->getCalledFunction(); 3444 Type *ScalarRetTy = CI->getType(); 3445 SmallVector<Type *, 4> Tys, ScalarTys; 3446 for (auto &ArgOp : CI->args()) 3447 ScalarTys.push_back(ArgOp->getType()); 3448 3449 // Estimate cost of scalarized vector call. The source operands are assumed 3450 // to be vectors, so we need to extract individual elements from there, 3451 // execute VF scalar calls, and then gather the result into the vector return 3452 // value. 3453 InstructionCost ScalarCallCost = 3454 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3455 if (VF.isScalar()) 3456 return ScalarCallCost; 3457 3458 // Compute corresponding vector type for return value and arguments. 3459 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3460 for (Type *ScalarTy : ScalarTys) 3461 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3462 3463 // Compute costs of unpacking argument values for the scalar calls and 3464 // packing the return values to a vector. 3465 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3466 3467 InstructionCost Cost = 3468 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3469 3470 // If we can't emit a vector call for this function, then the currently found 3471 // cost is the cost we need to return. 3472 NeedToScalarize = true; 3473 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3474 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3475 3476 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3477 return Cost; 3478 3479 // If the corresponding vector cost is cheaper, return its cost. 3480 InstructionCost VectorCallCost = 3481 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3482 if (VectorCallCost < Cost) { 3483 NeedToScalarize = false; 3484 Cost = VectorCallCost; 3485 } 3486 return Cost; 3487 } 3488 3489 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3490 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3491 return Elt; 3492 return VectorType::get(Elt, VF); 3493 } 3494 3495 InstructionCost 3496 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3497 ElementCount VF) const { 3498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3499 assert(ID && "Expected intrinsic call!"); 3500 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3501 FastMathFlags FMF; 3502 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3503 FMF = FPMO->getFastMathFlags(); 3504 3505 SmallVector<const Value *> Arguments(CI->args()); 3506 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3507 SmallVector<Type *> ParamTys; 3508 std::transform(FTy->param_begin(), FTy->param_end(), 3509 std::back_inserter(ParamTys), 3510 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3511 3512 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3513 dyn_cast<IntrinsicInst>(CI)); 3514 return TTI.getIntrinsicInstrCost(CostAttrs, 3515 TargetTransformInfo::TCK_RecipThroughput); 3516 } 3517 3518 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3519 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3520 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3521 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3522 } 3523 3524 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3525 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3526 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3527 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3528 } 3529 3530 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3531 // For every instruction `I` in MinBWs, truncate the operands, create a 3532 // truncated version of `I` and reextend its result. InstCombine runs 3533 // later and will remove any ext/trunc pairs. 3534 SmallPtrSet<Value *, 4> Erased; 3535 for (const auto &KV : Cost->getMinimalBitwidths()) { 3536 // If the value wasn't vectorized, we must maintain the original scalar 3537 // type. The absence of the value from State indicates that it 3538 // wasn't vectorized. 3539 // FIXME: Should not rely on getVPValue at this point. 3540 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3541 if (!State.hasAnyVectorValue(Def)) 3542 continue; 3543 for (unsigned Part = 0; Part < UF; ++Part) { 3544 Value *I = State.get(Def, Part); 3545 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3546 continue; 3547 Type *OriginalTy = I->getType(); 3548 Type *ScalarTruncatedTy = 3549 IntegerType::get(OriginalTy->getContext(), KV.second); 3550 auto *TruncatedTy = VectorType::get( 3551 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3552 if (TruncatedTy == OriginalTy) 3553 continue; 3554 3555 IRBuilder<> B(cast<Instruction>(I)); 3556 auto ShrinkOperand = [&](Value *V) -> Value * { 3557 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3558 if (ZI->getSrcTy() == TruncatedTy) 3559 return ZI->getOperand(0); 3560 return B.CreateZExtOrTrunc(V, TruncatedTy); 3561 }; 3562 3563 // The actual instruction modification depends on the instruction type, 3564 // unfortunately. 3565 Value *NewI = nullptr; 3566 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3567 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3568 ShrinkOperand(BO->getOperand(1))); 3569 3570 // Any wrapping introduced by shrinking this operation shouldn't be 3571 // considered undefined behavior. So, we can't unconditionally copy 3572 // arithmetic wrapping flags to NewI. 3573 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3574 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3575 NewI = 3576 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3577 ShrinkOperand(CI->getOperand(1))); 3578 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3579 NewI = B.CreateSelect(SI->getCondition(), 3580 ShrinkOperand(SI->getTrueValue()), 3581 ShrinkOperand(SI->getFalseValue())); 3582 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3583 switch (CI->getOpcode()) { 3584 default: 3585 llvm_unreachable("Unhandled cast!"); 3586 case Instruction::Trunc: 3587 NewI = ShrinkOperand(CI->getOperand(0)); 3588 break; 3589 case Instruction::SExt: 3590 NewI = B.CreateSExtOrTrunc( 3591 CI->getOperand(0), 3592 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3593 break; 3594 case Instruction::ZExt: 3595 NewI = B.CreateZExtOrTrunc( 3596 CI->getOperand(0), 3597 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3598 break; 3599 } 3600 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3601 auto Elements0 = 3602 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3605 auto Elements1 = 3606 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3607 auto *O1 = B.CreateZExtOrTrunc( 3608 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3609 3610 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3611 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3612 // Don't do anything with the operands, just extend the result. 3613 continue; 3614 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3615 auto Elements = 3616 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3617 auto *O0 = B.CreateZExtOrTrunc( 3618 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3619 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3620 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3621 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3622 auto Elements = 3623 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3624 auto *O0 = B.CreateZExtOrTrunc( 3625 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3626 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3627 } else { 3628 // If we don't know what to do, be conservative and don't do anything. 3629 continue; 3630 } 3631 3632 // Lastly, extend the result. 3633 NewI->takeName(cast<Instruction>(I)); 3634 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3635 I->replaceAllUsesWith(Res); 3636 cast<Instruction>(I)->eraseFromParent(); 3637 Erased.insert(I); 3638 State.reset(Def, Res, Part); 3639 } 3640 } 3641 3642 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3643 for (const auto &KV : Cost->getMinimalBitwidths()) { 3644 // If the value wasn't vectorized, we must maintain the original scalar 3645 // type. The absence of the value from State indicates that it 3646 // wasn't vectorized. 3647 // FIXME: Should not rely on getVPValue at this point. 3648 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3649 if (!State.hasAnyVectorValue(Def)) 3650 continue; 3651 for (unsigned Part = 0; Part < UF; ++Part) { 3652 Value *I = State.get(Def, Part); 3653 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3654 if (Inst && Inst->use_empty()) { 3655 Value *NewI = Inst->getOperand(0); 3656 Inst->eraseFromParent(); 3657 State.reset(Def, NewI, Part); 3658 } 3659 } 3660 } 3661 } 3662 3663 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3664 VPlan &Plan) { 3665 // Insert truncates and extends for any truncated instructions as hints to 3666 // InstCombine. 3667 if (VF.isVector()) 3668 truncateToMinimalBitwidths(State); 3669 3670 // Fix widened non-induction PHIs by setting up the PHI operands. 3671 if (OrigPHIsToFix.size()) { 3672 assert(EnableVPlanNativePath && 3673 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3674 fixNonInductionPHIs(State); 3675 } 3676 3677 // At this point every instruction in the original loop is widened to a 3678 // vector form. Now we need to fix the recurrences in the loop. These PHI 3679 // nodes are currently empty because we did not want to introduce cycles. 3680 // This is the second stage of vectorizing recurrences. 3681 fixCrossIterationPHIs(State); 3682 3683 // Forget the original basic block. 3684 PSE.getSE()->forgetLoop(OrigLoop); 3685 3686 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock(); 3687 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3688 // If we inserted an edge from the middle block to the unique exit block, 3689 // update uses outside the loop (phis) to account for the newly inserted 3690 // edge. 3691 if (!Cost->requiresScalarEpilogue(VF)) { 3692 // Fix-up external users of the induction variables. 3693 for (auto &Entry : Legal->getInductionVars()) 3694 fixupIVUsers(Entry.first, Entry.second, 3695 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3696 IVEndValues[Entry.first], LoopMiddleBlock, 3697 VectorLoop->getHeader()); 3698 3699 fixLCSSAPHIs(State); 3700 } 3701 3702 for (Instruction *PI : PredicatedInstructions) 3703 sinkScalarOperands(&*PI); 3704 3705 // Remove redundant induction instructions. 3706 cse(VectorLoop->getHeader()); 3707 3708 // Set/update profile weights for the vector and remainder loops as original 3709 // loop iterations are now distributed among them. Note that original loop 3710 // represented by LoopScalarBody becomes remainder loop after vectorization. 3711 // 3712 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3713 // end up getting slightly roughened result but that should be OK since 3714 // profile is not inherently precise anyway. Note also possible bypass of 3715 // vector code caused by legality checks is ignored, assigning all the weight 3716 // to the vector loop, optimistically. 3717 // 3718 // For scalable vectorization we can't know at compile time how many iterations 3719 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3720 // vscale of '1'. 3721 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3722 LI->getLoopFor(LoopScalarBody), 3723 VF.getKnownMinValue() * UF); 3724 } 3725 3726 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3727 // In order to support recurrences we need to be able to vectorize Phi nodes. 3728 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3729 // stage #2: We now need to fix the recurrences by adding incoming edges to 3730 // the currently empty PHI nodes. At this point every instruction in the 3731 // original loop is widened to a vector form so we can use them to construct 3732 // the incoming edges. 3733 VPBasicBlock *Header = 3734 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3735 for (VPRecipeBase &R : Header->phis()) { 3736 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3737 fixReduction(ReductionPhi, State); 3738 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3739 fixFirstOrderRecurrence(FOR, State); 3740 } 3741 } 3742 3743 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3744 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3745 // This is the second phase of vectorizing first-order recurrences. An 3746 // overview of the transformation is described below. Suppose we have the 3747 // following loop. 3748 // 3749 // for (int i = 0; i < n; ++i) 3750 // b[i] = a[i] - a[i - 1]; 3751 // 3752 // There is a first-order recurrence on "a". For this loop, the shorthand 3753 // scalar IR looks like: 3754 // 3755 // scalar.ph: 3756 // s_init = a[-1] 3757 // br scalar.body 3758 // 3759 // scalar.body: 3760 // i = phi [0, scalar.ph], [i+1, scalar.body] 3761 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3762 // s2 = a[i] 3763 // b[i] = s2 - s1 3764 // br cond, scalar.body, ... 3765 // 3766 // In this example, s1 is a recurrence because it's value depends on the 3767 // previous iteration. In the first phase of vectorization, we created a 3768 // vector phi v1 for s1. We now complete the vectorization and produce the 3769 // shorthand vector IR shown below (for VF = 4, UF = 1). 3770 // 3771 // vector.ph: 3772 // v_init = vector(..., ..., ..., a[-1]) 3773 // br vector.body 3774 // 3775 // vector.body 3776 // i = phi [0, vector.ph], [i+4, vector.body] 3777 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3778 // v2 = a[i, i+1, i+2, i+3]; 3779 // v3 = vector(v1(3), v2(0, 1, 2)) 3780 // b[i, i+1, i+2, i+3] = v2 - v3 3781 // br cond, vector.body, middle.block 3782 // 3783 // middle.block: 3784 // x = v2(3) 3785 // br scalar.ph 3786 // 3787 // scalar.ph: 3788 // s_init = phi [x, middle.block], [a[-1], otherwise] 3789 // br scalar.body 3790 // 3791 // After execution completes the vector loop, we extract the next value of 3792 // the recurrence (x) to use as the initial value in the scalar loop. 3793 3794 // Extract the last vector element in the middle block. This will be the 3795 // initial value for the recurrence when jumping to the scalar loop. 3796 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3797 Value *Incoming = State.get(PreviousDef, UF - 1); 3798 auto *ExtractForScalar = Incoming; 3799 auto *IdxTy = Builder.getInt32Ty(); 3800 if (VF.isVector()) { 3801 auto *One = ConstantInt::get(IdxTy, 1); 3802 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3803 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3804 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3805 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3806 "vector.recur.extract"); 3807 } 3808 // Extract the second last element in the middle block if the 3809 // Phi is used outside the loop. We need to extract the phi itself 3810 // and not the last element (the phi update in the current iteration). This 3811 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3812 // when the scalar loop is not run at all. 3813 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3814 if (VF.isVector()) { 3815 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3816 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3817 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3818 Incoming, Idx, "vector.recur.extract.for.phi"); 3819 } else if (UF > 1) 3820 // When loop is unrolled without vectorizing, initialize 3821 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3822 // of `Incoming`. This is analogous to the vectorized case above: extracting 3823 // the second last element when VF > 1. 3824 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3825 3826 // Fix the initial value of the original recurrence in the scalar loop. 3827 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3828 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3829 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3830 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3831 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3832 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3833 Start->addIncoming(Incoming, BB); 3834 } 3835 3836 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3837 Phi->setName("scalar.recur"); 3838 3839 // Finally, fix users of the recurrence outside the loop. The users will need 3840 // either the last value of the scalar recurrence or the last value of the 3841 // vector recurrence we extracted in the middle block. Since the loop is in 3842 // LCSSA form, we just need to find all the phi nodes for the original scalar 3843 // recurrence in the exit block, and then add an edge for the middle block. 3844 // Note that LCSSA does not imply single entry when the original scalar loop 3845 // had multiple exiting edges (as we always run the last iteration in the 3846 // scalar epilogue); in that case, there is no edge from middle to exit and 3847 // and thus no phis which needed updated. 3848 if (!Cost->requiresScalarEpilogue(VF)) 3849 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3850 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3851 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3852 } 3853 3854 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3855 VPTransformState &State) { 3856 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3857 // Get it's reduction variable descriptor. 3858 assert(Legal->isReductionVariable(OrigPhi) && 3859 "Unable to find the reduction variable"); 3860 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3861 3862 RecurKind RK = RdxDesc.getRecurrenceKind(); 3863 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3864 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3865 setDebugLocFromInst(ReductionStartValue); 3866 3867 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3868 // This is the vector-clone of the value that leaves the loop. 3869 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3870 3871 // Wrap flags are in general invalid after vectorization, clear them. 3872 clearReductionWrapFlags(RdxDesc, State); 3873 3874 // Before each round, move the insertion point right between 3875 // the PHIs and the values we are going to write. 3876 // This allows us to write both PHINodes and the extractelement 3877 // instructions. 3878 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3879 3880 setDebugLocFromInst(LoopExitInst); 3881 3882 Type *PhiTy = OrigPhi->getType(); 3883 3884 VPBasicBlock *LatchVPBB = 3885 PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock(); 3886 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3887 // If tail is folded by masking, the vector value to leave the loop should be 3888 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3889 // instead of the former. For an inloop reduction the reduction will already 3890 // be predicated, and does not need to be handled here. 3891 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3892 for (unsigned Part = 0; Part < UF; ++Part) { 3893 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3894 Value *Sel = nullptr; 3895 for (User *U : VecLoopExitInst->users()) { 3896 if (isa<SelectInst>(U)) { 3897 assert(!Sel && "Reduction exit feeding two selects"); 3898 Sel = U; 3899 } else 3900 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3901 } 3902 assert(Sel && "Reduction exit feeds no select"); 3903 State.reset(LoopExitInstDef, Sel, Part); 3904 3905 // If the target can create a predicated operator for the reduction at no 3906 // extra cost in the loop (for example a predicated vadd), it can be 3907 // cheaper for the select to remain in the loop than be sunk out of it, 3908 // and so use the select value for the phi instead of the old 3909 // LoopExitValue. 3910 if (PreferPredicatedReductionSelect || 3911 TTI->preferPredicatedReductionSelect( 3912 RdxDesc.getOpcode(), PhiTy, 3913 TargetTransformInfo::ReductionFlags())) { 3914 auto *VecRdxPhi = 3915 cast<PHINode>(State.get(PhiR, Part)); 3916 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3917 } 3918 } 3919 } 3920 3921 // If the vector reduction can be performed in a smaller type, we truncate 3922 // then extend the loop exit value to enable InstCombine to evaluate the 3923 // entire expression in the smaller type. 3924 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3925 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3926 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3927 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3928 VectorParts RdxParts(UF); 3929 for (unsigned Part = 0; Part < UF; ++Part) { 3930 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3931 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3932 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3933 : Builder.CreateZExt(Trunc, VecTy); 3934 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3935 if (U != Trunc) { 3936 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3937 RdxParts[Part] = Extnd; 3938 } 3939 } 3940 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3941 for (unsigned Part = 0; Part < UF; ++Part) { 3942 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3943 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3944 } 3945 } 3946 3947 // Reduce all of the unrolled parts into a single vector. 3948 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3949 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3950 3951 // The middle block terminator has already been assigned a DebugLoc here (the 3952 // OrigLoop's single latch terminator). We want the whole middle block to 3953 // appear to execute on this line because: (a) it is all compiler generated, 3954 // (b) these instructions are always executed after evaluating the latch 3955 // conditional branch, and (c) other passes may add new predecessors which 3956 // terminate on this line. This is the easiest way to ensure we don't 3957 // accidentally cause an extra step back into the loop while debugging. 3958 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3959 if (PhiR->isOrdered()) 3960 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3961 else { 3962 // Floating-point operations should have some FMF to enable the reduction. 3963 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3964 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3965 for (unsigned Part = 1; Part < UF; ++Part) { 3966 Value *RdxPart = State.get(LoopExitInstDef, Part); 3967 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3968 ReducedPartRdx = Builder.CreateBinOp( 3969 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3970 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3971 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3972 ReducedPartRdx, RdxPart); 3973 else 3974 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3975 } 3976 } 3977 3978 // Create the reduction after the loop. Note that inloop reductions create the 3979 // target reduction in the loop using a Reduction recipe. 3980 if (VF.isVector() && !PhiR->isInLoop()) { 3981 ReducedPartRdx = 3982 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3983 // If the reduction can be performed in a smaller type, we need to extend 3984 // the reduction to the wider type before we branch to the original loop. 3985 if (PhiTy != RdxDesc.getRecurrenceType()) 3986 ReducedPartRdx = RdxDesc.isSigned() 3987 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3988 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3989 } 3990 3991 PHINode *ResumePhi = 3992 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3993 3994 // Create a phi node that merges control-flow from the backedge-taken check 3995 // block and the middle block. 3996 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3997 LoopScalarPreHeader->getTerminator()); 3998 3999 // If we are fixing reductions in the epilogue loop then we should already 4000 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4001 // we carry over the incoming values correctly. 4002 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4003 if (Incoming == LoopMiddleBlock) 4004 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4005 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4006 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4007 Incoming); 4008 else 4009 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4010 } 4011 4012 // Set the resume value for this reduction 4013 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4014 4015 // If there were stores of the reduction value to a uniform memory address 4016 // inside the loop, create the final store here. 4017 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4018 StoreInst *NewSI = 4019 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4020 propagateMetadata(NewSI, SI); 4021 4022 // If the reduction value is used in other places, 4023 // then let the code below create PHI's for that. 4024 } 4025 4026 // Now, we need to fix the users of the reduction variable 4027 // inside and outside of the scalar remainder loop. 4028 4029 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4030 // in the exit blocks. See comment on analogous loop in 4031 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4032 if (!Cost->requiresScalarEpilogue(VF)) 4033 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4034 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4035 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4036 4037 // Fix the scalar loop reduction variable with the incoming reduction sum 4038 // from the vector body and from the backedge value. 4039 int IncomingEdgeBlockIdx = 4040 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4041 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4042 // Pick the other block. 4043 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4044 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4045 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4046 } 4047 4048 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4049 VPTransformState &State) { 4050 RecurKind RK = RdxDesc.getRecurrenceKind(); 4051 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4052 return; 4053 4054 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4055 assert(LoopExitInstr && "null loop exit instruction"); 4056 SmallVector<Instruction *, 8> Worklist; 4057 SmallPtrSet<Instruction *, 8> Visited; 4058 Worklist.push_back(LoopExitInstr); 4059 Visited.insert(LoopExitInstr); 4060 4061 while (!Worklist.empty()) { 4062 Instruction *Cur = Worklist.pop_back_val(); 4063 if (isa<OverflowingBinaryOperator>(Cur)) 4064 for (unsigned Part = 0; Part < UF; ++Part) { 4065 // FIXME: Should not rely on getVPValue at this point. 4066 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4067 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4068 } 4069 4070 for (User *U : Cur->users()) { 4071 Instruction *UI = cast<Instruction>(U); 4072 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4073 Visited.insert(UI).second) 4074 Worklist.push_back(UI); 4075 } 4076 } 4077 } 4078 4079 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4080 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4081 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4082 // Some phis were already hand updated by the reduction and recurrence 4083 // code above, leave them alone. 4084 continue; 4085 4086 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4087 // Non-instruction incoming values will have only one value. 4088 4089 VPLane Lane = VPLane::getFirstLane(); 4090 if (isa<Instruction>(IncomingValue) && 4091 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4092 VF)) 4093 Lane = VPLane::getLastLaneForVF(VF); 4094 4095 // Can be a loop invariant incoming value or the last scalar value to be 4096 // extracted from the vectorized loop. 4097 // FIXME: Should not rely on getVPValue at this point. 4098 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4099 Value *lastIncomingValue = 4100 OrigLoop->isLoopInvariant(IncomingValue) 4101 ? IncomingValue 4102 : State.get(State.Plan->getVPValue(IncomingValue, true), 4103 VPIteration(UF - 1, Lane)); 4104 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4105 } 4106 } 4107 4108 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4109 // The basic block and loop containing the predicated instruction. 4110 auto *PredBB = PredInst->getParent(); 4111 auto *VectorLoop = LI->getLoopFor(PredBB); 4112 4113 // Initialize a worklist with the operands of the predicated instruction. 4114 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4115 4116 // Holds instructions that we need to analyze again. An instruction may be 4117 // reanalyzed if we don't yet know if we can sink it or not. 4118 SmallVector<Instruction *, 8> InstsToReanalyze; 4119 4120 // Returns true if a given use occurs in the predicated block. Phi nodes use 4121 // their operands in their corresponding predecessor blocks. 4122 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4123 auto *I = cast<Instruction>(U.getUser()); 4124 BasicBlock *BB = I->getParent(); 4125 if (auto *Phi = dyn_cast<PHINode>(I)) 4126 BB = Phi->getIncomingBlock( 4127 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4128 return BB == PredBB; 4129 }; 4130 4131 // Iteratively sink the scalarized operands of the predicated instruction 4132 // into the block we created for it. When an instruction is sunk, it's 4133 // operands are then added to the worklist. The algorithm ends after one pass 4134 // through the worklist doesn't sink a single instruction. 4135 bool Changed; 4136 do { 4137 // Add the instructions that need to be reanalyzed to the worklist, and 4138 // reset the changed indicator. 4139 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4140 InstsToReanalyze.clear(); 4141 Changed = false; 4142 4143 while (!Worklist.empty()) { 4144 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4145 4146 // We can't sink an instruction if it is a phi node, is not in the loop, 4147 // or may have side effects. 4148 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4149 I->mayHaveSideEffects()) 4150 continue; 4151 4152 // If the instruction is already in PredBB, check if we can sink its 4153 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4154 // sinking the scalar instruction I, hence it appears in PredBB; but it 4155 // may have failed to sink I's operands (recursively), which we try 4156 // (again) here. 4157 if (I->getParent() == PredBB) { 4158 Worklist.insert(I->op_begin(), I->op_end()); 4159 continue; 4160 } 4161 4162 // It's legal to sink the instruction if all its uses occur in the 4163 // predicated block. Otherwise, there's nothing to do yet, and we may 4164 // need to reanalyze the instruction. 4165 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4166 InstsToReanalyze.push_back(I); 4167 continue; 4168 } 4169 4170 // Move the instruction to the beginning of the predicated block, and add 4171 // it's operands to the worklist. 4172 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4173 Worklist.insert(I->op_begin(), I->op_end()); 4174 4175 // The sinking may have enabled other instructions to be sunk, so we will 4176 // need to iterate. 4177 Changed = true; 4178 } 4179 } while (Changed); 4180 } 4181 4182 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4183 for (PHINode *OrigPhi : OrigPHIsToFix) { 4184 VPWidenPHIRecipe *VPPhi = 4185 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4186 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4187 // Make sure the builder has a valid insert point. 4188 Builder.SetInsertPoint(NewPhi); 4189 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4190 VPValue *Inc = VPPhi->getIncomingValue(i); 4191 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4192 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4193 } 4194 } 4195 } 4196 4197 bool InnerLoopVectorizer::useOrderedReductions( 4198 const RecurrenceDescriptor &RdxDesc) { 4199 return Cost->useOrderedReductions(RdxDesc); 4200 } 4201 4202 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4203 VPWidenPHIRecipe *PhiR, 4204 VPTransformState &State) { 4205 assert(EnableVPlanNativePath && 4206 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4207 // Currently we enter here in the VPlan-native path for non-induction 4208 // PHIs where all control flow is uniform. We simply widen these PHIs. 4209 // Create a vector phi with no operands - the vector phi operands will be 4210 // set at the end of vector code generation. 4211 Type *VecTy = (State.VF.isScalar()) 4212 ? PN->getType() 4213 : VectorType::get(PN->getType(), State.VF); 4214 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4215 State.set(PhiR, VecPhi, 0); 4216 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4217 } 4218 4219 /// A helper function for checking whether an integer division-related 4220 /// instruction may divide by zero (in which case it must be predicated if 4221 /// executed conditionally in the scalar code). 4222 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4223 /// Non-zero divisors that are non compile-time constants will not be 4224 /// converted into multiplication, so we will still end up scalarizing 4225 /// the division, but can do so w/o predication. 4226 static bool mayDivideByZero(Instruction &I) { 4227 assert((I.getOpcode() == Instruction::UDiv || 4228 I.getOpcode() == Instruction::SDiv || 4229 I.getOpcode() == Instruction::URem || 4230 I.getOpcode() == Instruction::SRem) && 4231 "Unexpected instruction"); 4232 Value *Divisor = I.getOperand(1); 4233 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4234 return !CInt || CInt->isZero(); 4235 } 4236 4237 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4238 VPUser &ArgOperands, 4239 VPTransformState &State) { 4240 assert(!isa<DbgInfoIntrinsic>(I) && 4241 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4242 setDebugLocFromInst(&I); 4243 4244 Module *M = I.getParent()->getParent()->getParent(); 4245 auto *CI = cast<CallInst>(&I); 4246 4247 SmallVector<Type *, 4> Tys; 4248 for (Value *ArgOperand : CI->args()) 4249 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4250 4251 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4252 4253 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4254 // version of the instruction. 4255 // Is it beneficial to perform intrinsic call compared to lib call? 4256 bool NeedToScalarize = false; 4257 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4258 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4259 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4260 assert((UseVectorIntrinsic || !NeedToScalarize) && 4261 "Instruction should be scalarized elsewhere."); 4262 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4263 "Either the intrinsic cost or vector call cost must be valid"); 4264 4265 for (unsigned Part = 0; Part < UF; ++Part) { 4266 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4267 SmallVector<Value *, 4> Args; 4268 for (auto &I : enumerate(ArgOperands.operands())) { 4269 // Some intrinsics have a scalar argument - don't replace it with a 4270 // vector. 4271 Value *Arg; 4272 if (!UseVectorIntrinsic || 4273 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4274 Arg = State.get(I.value(), Part); 4275 else 4276 Arg = State.get(I.value(), VPIteration(0, 0)); 4277 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4278 TysForDecl.push_back(Arg->getType()); 4279 Args.push_back(Arg); 4280 } 4281 4282 Function *VectorF; 4283 if (UseVectorIntrinsic) { 4284 // Use vector version of the intrinsic. 4285 if (VF.isVector()) 4286 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4287 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4288 assert(VectorF && "Can't retrieve vector intrinsic."); 4289 } else { 4290 // Use vector version of the function call. 4291 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4292 #ifndef NDEBUG 4293 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4294 "Can't create vector function."); 4295 #endif 4296 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4297 } 4298 SmallVector<OperandBundleDef, 1> OpBundles; 4299 CI->getOperandBundlesAsDefs(OpBundles); 4300 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4301 4302 if (isa<FPMathOperator>(V)) 4303 V->copyFastMathFlags(CI); 4304 4305 State.set(Def, V, Part); 4306 addMetadata(V, &I); 4307 } 4308 } 4309 4310 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4311 // We should not collect Scalars more than once per VF. Right now, this 4312 // function is called from collectUniformsAndScalars(), which already does 4313 // this check. Collecting Scalars for VF=1 does not make any sense. 4314 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4315 "This function should not be visited twice for the same VF"); 4316 4317 // This avoids any chances of creating a REPLICATE recipe during planning 4318 // since that would result in generation of scalarized code during execution, 4319 // which is not supported for scalable vectors. 4320 if (VF.isScalable()) { 4321 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4322 return; 4323 } 4324 4325 SmallSetVector<Instruction *, 8> Worklist; 4326 4327 // These sets are used to seed the analysis with pointers used by memory 4328 // accesses that will remain scalar. 4329 SmallSetVector<Instruction *, 8> ScalarPtrs; 4330 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4331 auto *Latch = TheLoop->getLoopLatch(); 4332 4333 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4334 // The pointer operands of loads and stores will be scalar as long as the 4335 // memory access is not a gather or scatter operation. The value operand of a 4336 // store will remain scalar if the store is scalarized. 4337 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4338 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4339 assert(WideningDecision != CM_Unknown && 4340 "Widening decision should be ready at this moment"); 4341 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4342 if (Ptr == Store->getValueOperand()) 4343 return WideningDecision == CM_Scalarize; 4344 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4345 "Ptr is neither a value or pointer operand"); 4346 return WideningDecision != CM_GatherScatter; 4347 }; 4348 4349 // A helper that returns true if the given value is a bitcast or 4350 // getelementptr instruction contained in the loop. 4351 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4352 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4353 isa<GetElementPtrInst>(V)) && 4354 !TheLoop->isLoopInvariant(V); 4355 }; 4356 4357 // A helper that evaluates a memory access's use of a pointer. If the use will 4358 // be a scalar use and the pointer is only used by memory accesses, we place 4359 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4360 // PossibleNonScalarPtrs. 4361 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4362 // We only care about bitcast and getelementptr instructions contained in 4363 // the loop. 4364 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4365 return; 4366 4367 // If the pointer has already been identified as scalar (e.g., if it was 4368 // also identified as uniform), there's nothing to do. 4369 auto *I = cast<Instruction>(Ptr); 4370 if (Worklist.count(I)) 4371 return; 4372 4373 // If the use of the pointer will be a scalar use, and all users of the 4374 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4375 // place the pointer in PossibleNonScalarPtrs. 4376 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4377 return isa<LoadInst>(U) || isa<StoreInst>(U); 4378 })) 4379 ScalarPtrs.insert(I); 4380 else 4381 PossibleNonScalarPtrs.insert(I); 4382 }; 4383 4384 // We seed the scalars analysis with three classes of instructions: (1) 4385 // instructions marked uniform-after-vectorization and (2) bitcast, 4386 // getelementptr and (pointer) phi instructions used by memory accesses 4387 // requiring a scalar use. 4388 // 4389 // (1) Add to the worklist all instructions that have been identified as 4390 // uniform-after-vectorization. 4391 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4392 4393 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4394 // memory accesses requiring a scalar use. The pointer operands of loads and 4395 // stores will be scalar as long as the memory accesses is not a gather or 4396 // scatter operation. The value operand of a store will remain scalar if the 4397 // store is scalarized. 4398 for (auto *BB : TheLoop->blocks()) 4399 for (auto &I : *BB) { 4400 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4401 evaluatePtrUse(Load, Load->getPointerOperand()); 4402 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4403 evaluatePtrUse(Store, Store->getPointerOperand()); 4404 evaluatePtrUse(Store, Store->getValueOperand()); 4405 } 4406 } 4407 for (auto *I : ScalarPtrs) 4408 if (!PossibleNonScalarPtrs.count(I)) { 4409 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4410 Worklist.insert(I); 4411 } 4412 4413 // Insert the forced scalars. 4414 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4415 // induction variable when the PHI user is scalarized. 4416 auto ForcedScalar = ForcedScalars.find(VF); 4417 if (ForcedScalar != ForcedScalars.end()) 4418 for (auto *I : ForcedScalar->second) 4419 Worklist.insert(I); 4420 4421 // Expand the worklist by looking through any bitcasts and getelementptr 4422 // instructions we've already identified as scalar. This is similar to the 4423 // expansion step in collectLoopUniforms(); however, here we're only 4424 // expanding to include additional bitcasts and getelementptr instructions. 4425 unsigned Idx = 0; 4426 while (Idx != Worklist.size()) { 4427 Instruction *Dst = Worklist[Idx++]; 4428 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4429 continue; 4430 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4431 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4432 auto *J = cast<Instruction>(U); 4433 return !TheLoop->contains(J) || Worklist.count(J) || 4434 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4435 isScalarUse(J, Src)); 4436 })) { 4437 Worklist.insert(Src); 4438 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4439 } 4440 } 4441 4442 // An induction variable will remain scalar if all users of the induction 4443 // variable and induction variable update remain scalar. 4444 for (auto &Induction : Legal->getInductionVars()) { 4445 auto *Ind = Induction.first; 4446 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4447 4448 // If tail-folding is applied, the primary induction variable will be used 4449 // to feed a vector compare. 4450 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4451 continue; 4452 4453 // Returns true if \p Indvar is a pointer induction that is used directly by 4454 // load/store instruction \p I. 4455 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4456 Instruction *I) { 4457 return Induction.second.getKind() == 4458 InductionDescriptor::IK_PtrInduction && 4459 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4460 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4461 }; 4462 4463 // Determine if all users of the induction variable are scalar after 4464 // vectorization. 4465 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4466 auto *I = cast<Instruction>(U); 4467 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4468 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4469 }); 4470 if (!ScalarInd) 4471 continue; 4472 4473 // Determine if all users of the induction variable update instruction are 4474 // scalar after vectorization. 4475 auto ScalarIndUpdate = 4476 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4477 auto *I = cast<Instruction>(U); 4478 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4479 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4480 }); 4481 if (!ScalarIndUpdate) 4482 continue; 4483 4484 // The induction variable and its update instruction will remain scalar. 4485 Worklist.insert(Ind); 4486 Worklist.insert(IndUpdate); 4487 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4488 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4489 << "\n"); 4490 } 4491 4492 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4493 } 4494 4495 bool LoopVectorizationCostModel::isScalarWithPredication( 4496 Instruction *I, ElementCount VF) const { 4497 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4498 return false; 4499 switch(I->getOpcode()) { 4500 default: 4501 break; 4502 case Instruction::Load: 4503 case Instruction::Store: { 4504 if (!Legal->isMaskRequired(I)) 4505 return false; 4506 auto *Ptr = getLoadStorePointerOperand(I); 4507 auto *Ty = getLoadStoreType(I); 4508 Type *VTy = Ty; 4509 if (VF.isVector()) 4510 VTy = VectorType::get(Ty, VF); 4511 const Align Alignment = getLoadStoreAlignment(I); 4512 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4513 TTI.isLegalMaskedGather(VTy, Alignment)) 4514 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4515 TTI.isLegalMaskedScatter(VTy, Alignment)); 4516 } 4517 case Instruction::UDiv: 4518 case Instruction::SDiv: 4519 case Instruction::SRem: 4520 case Instruction::URem: 4521 return mayDivideByZero(*I); 4522 } 4523 return false; 4524 } 4525 4526 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4527 Instruction *I, ElementCount VF) { 4528 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4529 assert(getWideningDecision(I, VF) == CM_Unknown && 4530 "Decision should not be set yet."); 4531 auto *Group = getInterleavedAccessGroup(I); 4532 assert(Group && "Must have a group."); 4533 4534 // If the instruction's allocated size doesn't equal it's type size, it 4535 // requires padding and will be scalarized. 4536 auto &DL = I->getModule()->getDataLayout(); 4537 auto *ScalarTy = getLoadStoreType(I); 4538 if (hasIrregularType(ScalarTy, DL)) 4539 return false; 4540 4541 // If the group involves a non-integral pointer, we may not be able to 4542 // losslessly cast all values to a common type. 4543 unsigned InterleaveFactor = Group->getFactor(); 4544 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4545 for (unsigned i = 0; i < InterleaveFactor; i++) { 4546 Instruction *Member = Group->getMember(i); 4547 if (!Member) 4548 continue; 4549 auto *MemberTy = getLoadStoreType(Member); 4550 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4551 // Don't coerce non-integral pointers to integers or vice versa. 4552 if (MemberNI != ScalarNI) { 4553 // TODO: Consider adding special nullptr value case here 4554 return false; 4555 } else if (MemberNI && ScalarNI && 4556 ScalarTy->getPointerAddressSpace() != 4557 MemberTy->getPointerAddressSpace()) { 4558 return false; 4559 } 4560 } 4561 4562 // Check if masking is required. 4563 // A Group may need masking for one of two reasons: it resides in a block that 4564 // needs predication, or it was decided to use masking to deal with gaps 4565 // (either a gap at the end of a load-access that may result in a speculative 4566 // load, or any gaps in a store-access). 4567 bool PredicatedAccessRequiresMasking = 4568 blockNeedsPredicationForAnyReason(I->getParent()) && 4569 Legal->isMaskRequired(I); 4570 bool LoadAccessWithGapsRequiresEpilogMasking = 4571 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4572 !isScalarEpilogueAllowed(); 4573 bool StoreAccessWithGapsRequiresMasking = 4574 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4575 if (!PredicatedAccessRequiresMasking && 4576 !LoadAccessWithGapsRequiresEpilogMasking && 4577 !StoreAccessWithGapsRequiresMasking) 4578 return true; 4579 4580 // If masked interleaving is required, we expect that the user/target had 4581 // enabled it, because otherwise it either wouldn't have been created or 4582 // it should have been invalidated by the CostModel. 4583 assert(useMaskedInterleavedAccesses(TTI) && 4584 "Masked interleave-groups for predicated accesses are not enabled."); 4585 4586 if (Group->isReverse()) 4587 return false; 4588 4589 auto *Ty = getLoadStoreType(I); 4590 const Align Alignment = getLoadStoreAlignment(I); 4591 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4592 : TTI.isLegalMaskedStore(Ty, Alignment); 4593 } 4594 4595 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4596 Instruction *I, ElementCount VF) { 4597 // Get and ensure we have a valid memory instruction. 4598 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4599 4600 auto *Ptr = getLoadStorePointerOperand(I); 4601 auto *ScalarTy = getLoadStoreType(I); 4602 4603 // In order to be widened, the pointer should be consecutive, first of all. 4604 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4605 return false; 4606 4607 // If the instruction is a store located in a predicated block, it will be 4608 // scalarized. 4609 if (isScalarWithPredication(I, VF)) 4610 return false; 4611 4612 // If the instruction's allocated size doesn't equal it's type size, it 4613 // requires padding and will be scalarized. 4614 auto &DL = I->getModule()->getDataLayout(); 4615 if (hasIrregularType(ScalarTy, DL)) 4616 return false; 4617 4618 return true; 4619 } 4620 4621 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4622 // We should not collect Uniforms more than once per VF. Right now, 4623 // this function is called from collectUniformsAndScalars(), which 4624 // already does this check. Collecting Uniforms for VF=1 does not make any 4625 // sense. 4626 4627 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4628 "This function should not be visited twice for the same VF"); 4629 4630 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4631 // not analyze again. Uniforms.count(VF) will return 1. 4632 Uniforms[VF].clear(); 4633 4634 // We now know that the loop is vectorizable! 4635 // Collect instructions inside the loop that will remain uniform after 4636 // vectorization. 4637 4638 // Global values, params and instructions outside of current loop are out of 4639 // scope. 4640 auto isOutOfScope = [&](Value *V) -> bool { 4641 Instruction *I = dyn_cast<Instruction>(V); 4642 return (!I || !TheLoop->contains(I)); 4643 }; 4644 4645 // Worklist containing uniform instructions demanding lane 0. 4646 SetVector<Instruction *> Worklist; 4647 BasicBlock *Latch = TheLoop->getLoopLatch(); 4648 4649 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4650 // that are scalar with predication must not be considered uniform after 4651 // vectorization, because that would create an erroneous replicating region 4652 // where only a single instance out of VF should be formed. 4653 // TODO: optimize such seldom cases if found important, see PR40816. 4654 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4655 if (isOutOfScope(I)) { 4656 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4657 << *I << "\n"); 4658 return; 4659 } 4660 if (isScalarWithPredication(I, VF)) { 4661 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4662 << *I << "\n"); 4663 return; 4664 } 4665 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4666 Worklist.insert(I); 4667 }; 4668 4669 // Start with the conditional branch. If the branch condition is an 4670 // instruction contained in the loop that is only used by the branch, it is 4671 // uniform. 4672 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4673 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4674 addToWorklistIfAllowed(Cmp); 4675 4676 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4677 InstWidening WideningDecision = getWideningDecision(I, VF); 4678 assert(WideningDecision != CM_Unknown && 4679 "Widening decision should be ready at this moment"); 4680 4681 // A uniform memory op is itself uniform. We exclude uniform stores 4682 // here as they demand the last lane, not the first one. 4683 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4684 assert(WideningDecision == CM_Scalarize); 4685 return true; 4686 } 4687 4688 return (WideningDecision == CM_Widen || 4689 WideningDecision == CM_Widen_Reverse || 4690 WideningDecision == CM_Interleave); 4691 }; 4692 4693 4694 // Returns true if Ptr is the pointer operand of a memory access instruction 4695 // I, and I is known to not require scalarization. 4696 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4697 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4698 }; 4699 4700 // Holds a list of values which are known to have at least one uniform use. 4701 // Note that there may be other uses which aren't uniform. A "uniform use" 4702 // here is something which only demands lane 0 of the unrolled iterations; 4703 // it does not imply that all lanes produce the same value (e.g. this is not 4704 // the usual meaning of uniform) 4705 SetVector<Value *> HasUniformUse; 4706 4707 // Scan the loop for instructions which are either a) known to have only 4708 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4709 for (auto *BB : TheLoop->blocks()) 4710 for (auto &I : *BB) { 4711 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4712 switch (II->getIntrinsicID()) { 4713 case Intrinsic::sideeffect: 4714 case Intrinsic::experimental_noalias_scope_decl: 4715 case Intrinsic::assume: 4716 case Intrinsic::lifetime_start: 4717 case Intrinsic::lifetime_end: 4718 if (TheLoop->hasLoopInvariantOperands(&I)) 4719 addToWorklistIfAllowed(&I); 4720 break; 4721 default: 4722 break; 4723 } 4724 } 4725 4726 // ExtractValue instructions must be uniform, because the operands are 4727 // known to be loop-invariant. 4728 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4729 assert(isOutOfScope(EVI->getAggregateOperand()) && 4730 "Expected aggregate value to be loop invariant"); 4731 addToWorklistIfAllowed(EVI); 4732 continue; 4733 } 4734 4735 // If there's no pointer operand, there's nothing to do. 4736 auto *Ptr = getLoadStorePointerOperand(&I); 4737 if (!Ptr) 4738 continue; 4739 4740 // A uniform memory op is itself uniform. We exclude uniform stores 4741 // here as they demand the last lane, not the first one. 4742 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4743 addToWorklistIfAllowed(&I); 4744 4745 if (isUniformDecision(&I, VF)) { 4746 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4747 HasUniformUse.insert(Ptr); 4748 } 4749 } 4750 4751 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4752 // demanding) users. Since loops are assumed to be in LCSSA form, this 4753 // disallows uses outside the loop as well. 4754 for (auto *V : HasUniformUse) { 4755 if (isOutOfScope(V)) 4756 continue; 4757 auto *I = cast<Instruction>(V); 4758 auto UsersAreMemAccesses = 4759 llvm::all_of(I->users(), [&](User *U) -> bool { 4760 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4761 }); 4762 if (UsersAreMemAccesses) 4763 addToWorklistIfAllowed(I); 4764 } 4765 4766 // Expand Worklist in topological order: whenever a new instruction 4767 // is added , its users should be already inside Worklist. It ensures 4768 // a uniform instruction will only be used by uniform instructions. 4769 unsigned idx = 0; 4770 while (idx != Worklist.size()) { 4771 Instruction *I = Worklist[idx++]; 4772 4773 for (auto OV : I->operand_values()) { 4774 // isOutOfScope operands cannot be uniform instructions. 4775 if (isOutOfScope(OV)) 4776 continue; 4777 // First order recurrence Phi's should typically be considered 4778 // non-uniform. 4779 auto *OP = dyn_cast<PHINode>(OV); 4780 if (OP && Legal->isFirstOrderRecurrence(OP)) 4781 continue; 4782 // If all the users of the operand are uniform, then add the 4783 // operand into the uniform worklist. 4784 auto *OI = cast<Instruction>(OV); 4785 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4786 auto *J = cast<Instruction>(U); 4787 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4788 })) 4789 addToWorklistIfAllowed(OI); 4790 } 4791 } 4792 4793 // For an instruction to be added into Worklist above, all its users inside 4794 // the loop should also be in Worklist. However, this condition cannot be 4795 // true for phi nodes that form a cyclic dependence. We must process phi 4796 // nodes separately. An induction variable will remain uniform if all users 4797 // of the induction variable and induction variable update remain uniform. 4798 // The code below handles both pointer and non-pointer induction variables. 4799 for (auto &Induction : Legal->getInductionVars()) { 4800 auto *Ind = Induction.first; 4801 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4802 4803 // Determine if all users of the induction variable are uniform after 4804 // vectorization. 4805 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4806 auto *I = cast<Instruction>(U); 4807 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4808 isVectorizedMemAccessUse(I, Ind); 4809 }); 4810 if (!UniformInd) 4811 continue; 4812 4813 // Determine if all users of the induction variable update instruction are 4814 // uniform after vectorization. 4815 auto UniformIndUpdate = 4816 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4817 auto *I = cast<Instruction>(U); 4818 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4819 isVectorizedMemAccessUse(I, IndUpdate); 4820 }); 4821 if (!UniformIndUpdate) 4822 continue; 4823 4824 // The induction variable and its update instruction will remain uniform. 4825 addToWorklistIfAllowed(Ind); 4826 addToWorklistIfAllowed(IndUpdate); 4827 } 4828 4829 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4830 } 4831 4832 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4833 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4834 4835 if (Legal->getRuntimePointerChecking()->Need) { 4836 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4837 "runtime pointer checks needed. Enable vectorization of this " 4838 "loop with '#pragma clang loop vectorize(enable)' when " 4839 "compiling with -Os/-Oz", 4840 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4841 return true; 4842 } 4843 4844 if (!PSE.getPredicate().isAlwaysTrue()) { 4845 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4846 "runtime SCEV checks needed. Enable vectorization of this " 4847 "loop with '#pragma clang loop vectorize(enable)' when " 4848 "compiling with -Os/-Oz", 4849 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4850 return true; 4851 } 4852 4853 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4854 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4855 reportVectorizationFailure("Runtime stride check for small trip count", 4856 "runtime stride == 1 checks needed. Enable vectorization of " 4857 "this loop without such check by compiling with -Os/-Oz", 4858 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4859 return true; 4860 } 4861 4862 return false; 4863 } 4864 4865 ElementCount 4866 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4867 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4868 return ElementCount::getScalable(0); 4869 4870 if (Hints->isScalableVectorizationDisabled()) { 4871 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4872 "ScalableVectorizationDisabled", ORE, TheLoop); 4873 return ElementCount::getScalable(0); 4874 } 4875 4876 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4877 4878 auto MaxScalableVF = ElementCount::getScalable( 4879 std::numeric_limits<ElementCount::ScalarTy>::max()); 4880 4881 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4882 // FIXME: While for scalable vectors this is currently sufficient, this should 4883 // be replaced by a more detailed mechanism that filters out specific VFs, 4884 // instead of invalidating vectorization for a whole set of VFs based on the 4885 // MaxVF. 4886 4887 // Disable scalable vectorization if the loop contains unsupported reductions. 4888 if (!canVectorizeReductions(MaxScalableVF)) { 4889 reportVectorizationInfo( 4890 "Scalable vectorization not supported for the reduction " 4891 "operations found in this loop.", 4892 "ScalableVFUnfeasible", ORE, TheLoop); 4893 return ElementCount::getScalable(0); 4894 } 4895 4896 // Disable scalable vectorization if the loop contains any instructions 4897 // with element types not supported for scalable vectors. 4898 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4899 return !Ty->isVoidTy() && 4900 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4901 })) { 4902 reportVectorizationInfo("Scalable vectorization is not supported " 4903 "for all element types found in this loop.", 4904 "ScalableVFUnfeasible", ORE, TheLoop); 4905 return ElementCount::getScalable(0); 4906 } 4907 4908 if (Legal->isSafeForAnyVectorWidth()) 4909 return MaxScalableVF; 4910 4911 // Limit MaxScalableVF by the maximum safe dependence distance. 4912 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4913 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4914 MaxVScale = 4915 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4916 MaxScalableVF = ElementCount::getScalable( 4917 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4918 if (!MaxScalableVF) 4919 reportVectorizationInfo( 4920 "Max legal vector width too small, scalable vectorization " 4921 "unfeasible.", 4922 "ScalableVFUnfeasible", ORE, TheLoop); 4923 4924 return MaxScalableVF; 4925 } 4926 4927 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4928 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4929 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4930 unsigned SmallestType, WidestType; 4931 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4932 4933 // Get the maximum safe dependence distance in bits computed by LAA. 4934 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4935 // the memory accesses that is most restrictive (involved in the smallest 4936 // dependence distance). 4937 unsigned MaxSafeElements = 4938 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4939 4940 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4941 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4942 4943 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4944 << ".\n"); 4945 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4946 << ".\n"); 4947 4948 // First analyze the UserVF, fall back if the UserVF should be ignored. 4949 if (UserVF) { 4950 auto MaxSafeUserVF = 4951 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4952 4953 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4954 // If `VF=vscale x N` is safe, then so is `VF=N` 4955 if (UserVF.isScalable()) 4956 return FixedScalableVFPair( 4957 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4958 else 4959 return UserVF; 4960 } 4961 4962 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4963 4964 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4965 // is better to ignore the hint and let the compiler choose a suitable VF. 4966 if (!UserVF.isScalable()) { 4967 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4968 << " is unsafe, clamping to max safe VF=" 4969 << MaxSafeFixedVF << ".\n"); 4970 ORE->emit([&]() { 4971 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4972 TheLoop->getStartLoc(), 4973 TheLoop->getHeader()) 4974 << "User-specified vectorization factor " 4975 << ore::NV("UserVectorizationFactor", UserVF) 4976 << " is unsafe, clamping to maximum safe vectorization factor " 4977 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4978 }); 4979 return MaxSafeFixedVF; 4980 } 4981 4982 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4983 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4984 << " is ignored because scalable vectors are not " 4985 "available.\n"); 4986 ORE->emit([&]() { 4987 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4988 TheLoop->getStartLoc(), 4989 TheLoop->getHeader()) 4990 << "User-specified vectorization factor " 4991 << ore::NV("UserVectorizationFactor", UserVF) 4992 << " is ignored because the target does not support scalable " 4993 "vectors. The compiler will pick a more suitable value."; 4994 }); 4995 } else { 4996 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4997 << " is unsafe. Ignoring scalable UserVF.\n"); 4998 ORE->emit([&]() { 4999 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5000 TheLoop->getStartLoc(), 5001 TheLoop->getHeader()) 5002 << "User-specified vectorization factor " 5003 << ore::NV("UserVectorizationFactor", UserVF) 5004 << " is unsafe. Ignoring the hint to let the compiler pick a " 5005 "more suitable value."; 5006 }); 5007 } 5008 } 5009 5010 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5011 << " / " << WidestType << " bits.\n"); 5012 5013 FixedScalableVFPair Result(ElementCount::getFixed(1), 5014 ElementCount::getScalable(0)); 5015 if (auto MaxVF = 5016 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5017 MaxSafeFixedVF, FoldTailByMasking)) 5018 Result.FixedVF = MaxVF; 5019 5020 if (auto MaxVF = 5021 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5022 MaxSafeScalableVF, FoldTailByMasking)) 5023 if (MaxVF.isScalable()) { 5024 Result.ScalableVF = MaxVF; 5025 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5026 << "\n"); 5027 } 5028 5029 return Result; 5030 } 5031 5032 FixedScalableVFPair 5033 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5034 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5035 // TODO: It may by useful to do since it's still likely to be dynamically 5036 // uniform if the target can skip. 5037 reportVectorizationFailure( 5038 "Not inserting runtime ptr check for divergent target", 5039 "runtime pointer checks needed. Not enabled for divergent target", 5040 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5041 return FixedScalableVFPair::getNone(); 5042 } 5043 5044 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5045 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5046 if (TC == 1) { 5047 reportVectorizationFailure("Single iteration (non) loop", 5048 "loop trip count is one, irrelevant for vectorization", 5049 "SingleIterationLoop", ORE, TheLoop); 5050 return FixedScalableVFPair::getNone(); 5051 } 5052 5053 switch (ScalarEpilogueStatus) { 5054 case CM_ScalarEpilogueAllowed: 5055 return computeFeasibleMaxVF(TC, UserVF, false); 5056 case CM_ScalarEpilogueNotAllowedUsePredicate: 5057 LLVM_FALLTHROUGH; 5058 case CM_ScalarEpilogueNotNeededUsePredicate: 5059 LLVM_DEBUG( 5060 dbgs() << "LV: vector predicate hint/switch found.\n" 5061 << "LV: Not allowing scalar epilogue, creating predicated " 5062 << "vector loop.\n"); 5063 break; 5064 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5065 // fallthrough as a special case of OptForSize 5066 case CM_ScalarEpilogueNotAllowedOptSize: 5067 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5068 LLVM_DEBUG( 5069 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5070 else 5071 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5072 << "count.\n"); 5073 5074 // Bail if runtime checks are required, which are not good when optimising 5075 // for size. 5076 if (runtimeChecksRequired()) 5077 return FixedScalableVFPair::getNone(); 5078 5079 break; 5080 } 5081 5082 // The only loops we can vectorize without a scalar epilogue, are loops with 5083 // a bottom-test and a single exiting block. We'd have to handle the fact 5084 // that not every instruction executes on the last iteration. This will 5085 // require a lane mask which varies through the vector loop body. (TODO) 5086 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5087 // If there was a tail-folding hint/switch, but we can't fold the tail by 5088 // masking, fallback to a vectorization with a scalar epilogue. 5089 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5090 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5091 "scalar epilogue instead.\n"); 5092 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5093 return computeFeasibleMaxVF(TC, UserVF, false); 5094 } 5095 return FixedScalableVFPair::getNone(); 5096 } 5097 5098 // Now try the tail folding 5099 5100 // Invalidate interleave groups that require an epilogue if we can't mask 5101 // the interleave-group. 5102 if (!useMaskedInterleavedAccesses(TTI)) { 5103 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5104 "No decisions should have been taken at this point"); 5105 // Note: There is no need to invalidate any cost modeling decisions here, as 5106 // non where taken so far. 5107 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5108 } 5109 5110 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5111 // Avoid tail folding if the trip count is known to be a multiple of any VF 5112 // we chose. 5113 // FIXME: The condition below pessimises the case for fixed-width vectors, 5114 // when scalable VFs are also candidates for vectorization. 5115 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5116 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5117 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5118 "MaxFixedVF must be a power of 2"); 5119 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5120 : MaxFixedVF.getFixedValue(); 5121 ScalarEvolution *SE = PSE.getSE(); 5122 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5123 const SCEV *ExitCount = SE->getAddExpr( 5124 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5125 const SCEV *Rem = SE->getURemExpr( 5126 SE->applyLoopGuards(ExitCount, TheLoop), 5127 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5128 if (Rem->isZero()) { 5129 // Accept MaxFixedVF if we do not have a tail. 5130 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5131 return MaxFactors; 5132 } 5133 } 5134 5135 // For scalable vectors don't use tail folding for low trip counts or 5136 // optimizing for code size. We only permit this if the user has explicitly 5137 // requested it. 5138 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5139 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5140 MaxFactors.ScalableVF.isVector()) 5141 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5142 5143 // If we don't know the precise trip count, or if the trip count that we 5144 // found modulo the vectorization factor is not zero, try to fold the tail 5145 // by masking. 5146 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5147 if (Legal->prepareToFoldTailByMasking()) { 5148 FoldTailByMasking = true; 5149 return MaxFactors; 5150 } 5151 5152 // If there was a tail-folding hint/switch, but we can't fold the tail by 5153 // masking, fallback to a vectorization with a scalar epilogue. 5154 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5155 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5156 "scalar epilogue instead.\n"); 5157 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5158 return MaxFactors; 5159 } 5160 5161 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5162 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5163 return FixedScalableVFPair::getNone(); 5164 } 5165 5166 if (TC == 0) { 5167 reportVectorizationFailure( 5168 "Unable to calculate the loop count due to complex control flow", 5169 "unable to calculate the loop count due to complex control flow", 5170 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5171 return FixedScalableVFPair::getNone(); 5172 } 5173 5174 reportVectorizationFailure( 5175 "Cannot optimize for size and vectorize at the same time.", 5176 "cannot optimize for size and vectorize at the same time. " 5177 "Enable vectorization of this loop with '#pragma clang loop " 5178 "vectorize(enable)' when compiling with -Os/-Oz", 5179 "NoTailLoopWithOptForSize", ORE, TheLoop); 5180 return FixedScalableVFPair::getNone(); 5181 } 5182 5183 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5184 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5185 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5186 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5187 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5188 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5189 : TargetTransformInfo::RGK_FixedWidthVector); 5190 5191 // Convenience function to return the minimum of two ElementCounts. 5192 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5193 assert((LHS.isScalable() == RHS.isScalable()) && 5194 "Scalable flags must match"); 5195 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5196 }; 5197 5198 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5199 // Note that both WidestRegister and WidestType may not be a powers of 2. 5200 auto MaxVectorElementCount = ElementCount::get( 5201 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5202 ComputeScalableMaxVF); 5203 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5204 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5205 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5206 5207 if (!MaxVectorElementCount) { 5208 LLVM_DEBUG(dbgs() << "LV: The target has no " 5209 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5210 << " vector registers.\n"); 5211 return ElementCount::getFixed(1); 5212 } 5213 5214 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5215 if (ConstTripCount && 5216 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5217 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5218 // If loop trip count (TC) is known at compile time there is no point in 5219 // choosing VF greater than TC (as done in the loop below). Select maximum 5220 // power of two which doesn't exceed TC. 5221 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5222 // when the TC is less than or equal to the known number of lanes. 5223 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5224 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5225 "exceeding the constant trip count: " 5226 << ClampedConstTripCount << "\n"); 5227 return ElementCount::getFixed(ClampedConstTripCount); 5228 } 5229 5230 ElementCount MaxVF = MaxVectorElementCount; 5231 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5232 TTI.shouldMaximizeVectorBandwidth())) { 5233 auto MaxVectorElementCountMaxBW = ElementCount::get( 5234 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5235 ComputeScalableMaxVF); 5236 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5237 5238 // Collect all viable vectorization factors larger than the default MaxVF 5239 // (i.e. MaxVectorElementCount). 5240 SmallVector<ElementCount, 8> VFs; 5241 for (ElementCount VS = MaxVectorElementCount * 2; 5242 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5243 VFs.push_back(VS); 5244 5245 // For each VF calculate its register usage. 5246 auto RUs = calculateRegisterUsage(VFs); 5247 5248 // Select the largest VF which doesn't require more registers than existing 5249 // ones. 5250 for (int i = RUs.size() - 1; i >= 0; --i) { 5251 bool Selected = true; 5252 for (auto &pair : RUs[i].MaxLocalUsers) { 5253 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5254 if (pair.second > TargetNumRegisters) 5255 Selected = false; 5256 } 5257 if (Selected) { 5258 MaxVF = VFs[i]; 5259 break; 5260 } 5261 } 5262 if (ElementCount MinVF = 5263 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5264 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5265 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5266 << ") with target's minimum: " << MinVF << '\n'); 5267 MaxVF = MinVF; 5268 } 5269 } 5270 5271 // Invalidate any widening decisions we might have made, in case the loop 5272 // requires prediction (decided later), but we have already made some 5273 // load/store widening decisions. 5274 invalidateCostModelingDecisions(); 5275 } 5276 return MaxVF; 5277 } 5278 5279 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5280 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5281 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5282 auto Min = Attr.getVScaleRangeMin(); 5283 auto Max = Attr.getVScaleRangeMax(); 5284 if (Max && Min == Max) 5285 return Max; 5286 } 5287 5288 return TTI.getVScaleForTuning(); 5289 } 5290 5291 bool LoopVectorizationCostModel::isMoreProfitable( 5292 const VectorizationFactor &A, const VectorizationFactor &B) const { 5293 InstructionCost CostA = A.Cost; 5294 InstructionCost CostB = B.Cost; 5295 5296 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5297 5298 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5299 MaxTripCount) { 5300 // If we are folding the tail and the trip count is a known (possibly small) 5301 // constant, the trip count will be rounded up to an integer number of 5302 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5303 // which we compare directly. When not folding the tail, the total cost will 5304 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5305 // approximated with the per-lane cost below instead of using the tripcount 5306 // as here. 5307 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5308 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5309 return RTCostA < RTCostB; 5310 } 5311 5312 // Improve estimate for the vector width if it is scalable. 5313 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5314 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5315 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5316 if (A.Width.isScalable()) 5317 EstimatedWidthA *= VScale.getValue(); 5318 if (B.Width.isScalable()) 5319 EstimatedWidthB *= VScale.getValue(); 5320 } 5321 5322 // Assume vscale may be larger than 1 (or the value being tuned for), 5323 // so that scalable vectorization is slightly favorable over fixed-width 5324 // vectorization. 5325 if (A.Width.isScalable() && !B.Width.isScalable()) 5326 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5327 5328 // To avoid the need for FP division: 5329 // (CostA / A.Width) < (CostB / B.Width) 5330 // <=> (CostA * B.Width) < (CostB * A.Width) 5331 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5332 } 5333 5334 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5335 const ElementCountSet &VFCandidates) { 5336 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5337 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5338 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5339 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5340 "Expected Scalar VF to be a candidate"); 5341 5342 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5343 VectorizationFactor ChosenFactor = ScalarCost; 5344 5345 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5346 if (ForceVectorization && VFCandidates.size() > 1) { 5347 // Ignore scalar width, because the user explicitly wants vectorization. 5348 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5349 // evaluation. 5350 ChosenFactor.Cost = InstructionCost::getMax(); 5351 } 5352 5353 SmallVector<InstructionVFPair> InvalidCosts; 5354 for (const auto &i : VFCandidates) { 5355 // The cost for scalar VF=1 is already calculated, so ignore it. 5356 if (i.isScalar()) 5357 continue; 5358 5359 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5360 VectorizationFactor Candidate(i, C.first); 5361 5362 #ifndef NDEBUG 5363 unsigned AssumedMinimumVscale = 1; 5364 if (Optional<unsigned> VScale = getVScaleForTuning()) 5365 AssumedMinimumVscale = VScale.getValue(); 5366 unsigned Width = 5367 Candidate.Width.isScalable() 5368 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5369 : Candidate.Width.getFixedValue(); 5370 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5371 << " costs: " << (Candidate.Cost / Width)); 5372 if (i.isScalable()) 5373 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5374 << AssumedMinimumVscale << ")"); 5375 LLVM_DEBUG(dbgs() << ".\n"); 5376 #endif 5377 5378 if (!C.second && !ForceVectorization) { 5379 LLVM_DEBUG( 5380 dbgs() << "LV: Not considering vector loop of width " << i 5381 << " because it will not generate any vector instructions.\n"); 5382 continue; 5383 } 5384 5385 // If profitable add it to ProfitableVF list. 5386 if (isMoreProfitable(Candidate, ScalarCost)) 5387 ProfitableVFs.push_back(Candidate); 5388 5389 if (isMoreProfitable(Candidate, ChosenFactor)) 5390 ChosenFactor = Candidate; 5391 } 5392 5393 // Emit a report of VFs with invalid costs in the loop. 5394 if (!InvalidCosts.empty()) { 5395 // Group the remarks per instruction, keeping the instruction order from 5396 // InvalidCosts. 5397 std::map<Instruction *, unsigned> Numbering; 5398 unsigned I = 0; 5399 for (auto &Pair : InvalidCosts) 5400 if (!Numbering.count(Pair.first)) 5401 Numbering[Pair.first] = I++; 5402 5403 // Sort the list, first on instruction(number) then on VF. 5404 llvm::sort(InvalidCosts, 5405 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5406 if (Numbering[A.first] != Numbering[B.first]) 5407 return Numbering[A.first] < Numbering[B.first]; 5408 ElementCountComparator ECC; 5409 return ECC(A.second, B.second); 5410 }); 5411 5412 // For a list of ordered instruction-vf pairs: 5413 // [(load, vf1), (load, vf2), (store, vf1)] 5414 // Group the instructions together to emit separate remarks for: 5415 // load (vf1, vf2) 5416 // store (vf1) 5417 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5418 auto Subset = ArrayRef<InstructionVFPair>(); 5419 do { 5420 if (Subset.empty()) 5421 Subset = Tail.take_front(1); 5422 5423 Instruction *I = Subset.front().first; 5424 5425 // If the next instruction is different, or if there are no other pairs, 5426 // emit a remark for the collated subset. e.g. 5427 // [(load, vf1), (load, vf2))] 5428 // to emit: 5429 // remark: invalid costs for 'load' at VF=(vf, vf2) 5430 if (Subset == Tail || Tail[Subset.size()].first != I) { 5431 std::string OutString; 5432 raw_string_ostream OS(OutString); 5433 assert(!Subset.empty() && "Unexpected empty range"); 5434 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5435 for (auto &Pair : Subset) 5436 OS << (Pair.second == Subset.front().second ? "" : ", ") 5437 << Pair.second; 5438 OS << "):"; 5439 if (auto *CI = dyn_cast<CallInst>(I)) 5440 OS << " call to " << CI->getCalledFunction()->getName(); 5441 else 5442 OS << " " << I->getOpcodeName(); 5443 OS.flush(); 5444 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5445 Tail = Tail.drop_front(Subset.size()); 5446 Subset = {}; 5447 } else 5448 // Grow the subset by one element 5449 Subset = Tail.take_front(Subset.size() + 1); 5450 } while (!Tail.empty()); 5451 } 5452 5453 if (!EnableCondStoresVectorization && NumPredStores) { 5454 reportVectorizationFailure("There are conditional stores.", 5455 "store that is conditionally executed prevents vectorization", 5456 "ConditionalStore", ORE, TheLoop); 5457 ChosenFactor = ScalarCost; 5458 } 5459 5460 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5461 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5462 << "LV: Vectorization seems to be not beneficial, " 5463 << "but was forced by a user.\n"); 5464 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5465 return ChosenFactor; 5466 } 5467 5468 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5469 const Loop &L, ElementCount VF) const { 5470 // Cross iteration phis such as reductions need special handling and are 5471 // currently unsupported. 5472 if (any_of(L.getHeader()->phis(), 5473 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5474 return false; 5475 5476 // Phis with uses outside of the loop require special handling and are 5477 // currently unsupported. 5478 for (auto &Entry : Legal->getInductionVars()) { 5479 // Look for uses of the value of the induction at the last iteration. 5480 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5481 for (User *U : PostInc->users()) 5482 if (!L.contains(cast<Instruction>(U))) 5483 return false; 5484 // Look for uses of penultimate value of the induction. 5485 for (User *U : Entry.first->users()) 5486 if (!L.contains(cast<Instruction>(U))) 5487 return false; 5488 } 5489 5490 // Induction variables that are widened require special handling that is 5491 // currently not supported. 5492 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5493 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5494 this->isProfitableToScalarize(Entry.first, VF)); 5495 })) 5496 return false; 5497 5498 // Epilogue vectorization code has not been auditted to ensure it handles 5499 // non-latch exits properly. It may be fine, but it needs auditted and 5500 // tested. 5501 if (L.getExitingBlock() != L.getLoopLatch()) 5502 return false; 5503 5504 return true; 5505 } 5506 5507 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5508 const ElementCount VF) const { 5509 // FIXME: We need a much better cost-model to take different parameters such 5510 // as register pressure, code size increase and cost of extra branches into 5511 // account. For now we apply a very crude heuristic and only consider loops 5512 // with vectorization factors larger than a certain value. 5513 // We also consider epilogue vectorization unprofitable for targets that don't 5514 // consider interleaving beneficial (eg. MVE). 5515 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5516 return false; 5517 // FIXME: We should consider changing the threshold for scalable 5518 // vectors to take VScaleForTuning into account. 5519 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5520 return true; 5521 return false; 5522 } 5523 5524 VectorizationFactor 5525 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5526 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5527 VectorizationFactor Result = VectorizationFactor::Disabled(); 5528 if (!EnableEpilogueVectorization) { 5529 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5530 return Result; 5531 } 5532 5533 if (!isScalarEpilogueAllowed()) { 5534 LLVM_DEBUG( 5535 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5536 "allowed.\n";); 5537 return Result; 5538 } 5539 5540 // Not really a cost consideration, but check for unsupported cases here to 5541 // simplify the logic. 5542 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5543 LLVM_DEBUG( 5544 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5545 "not a supported candidate.\n";); 5546 return Result; 5547 } 5548 5549 if (EpilogueVectorizationForceVF > 1) { 5550 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5551 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5552 if (LVP.hasPlanWithVF(ForcedEC)) 5553 return {ForcedEC, 0}; 5554 else { 5555 LLVM_DEBUG( 5556 dbgs() 5557 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5558 return Result; 5559 } 5560 } 5561 5562 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5563 TheLoop->getHeader()->getParent()->hasMinSize()) { 5564 LLVM_DEBUG( 5565 dbgs() 5566 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5567 return Result; 5568 } 5569 5570 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5571 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5572 "this loop\n"); 5573 return Result; 5574 } 5575 5576 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5577 // the main loop handles 8 lanes per iteration. We could still benefit from 5578 // vectorizing the epilogue loop with VF=4. 5579 ElementCount EstimatedRuntimeVF = MainLoopVF; 5580 if (MainLoopVF.isScalable()) { 5581 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5582 if (Optional<unsigned> VScale = getVScaleForTuning()) 5583 EstimatedRuntimeVF *= VScale.getValue(); 5584 } 5585 5586 for (auto &NextVF : ProfitableVFs) 5587 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5588 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5589 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5590 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5591 LVP.hasPlanWithVF(NextVF.Width)) 5592 Result = NextVF; 5593 5594 if (Result != VectorizationFactor::Disabled()) 5595 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5596 << Result.Width << "\n";); 5597 return Result; 5598 } 5599 5600 std::pair<unsigned, unsigned> 5601 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5602 unsigned MinWidth = -1U; 5603 unsigned MaxWidth = 8; 5604 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5605 // For in-loop reductions, no element types are added to ElementTypesInLoop 5606 // if there are no loads/stores in the loop. In this case, check through the 5607 // reduction variables to determine the maximum width. 5608 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5609 // Reset MaxWidth so that we can find the smallest type used by recurrences 5610 // in the loop. 5611 MaxWidth = -1U; 5612 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5613 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5614 // When finding the min width used by the recurrence we need to account 5615 // for casts on the input operands of the recurrence. 5616 MaxWidth = std::min<unsigned>( 5617 MaxWidth, std::min<unsigned>( 5618 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5619 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5620 } 5621 } else { 5622 for (Type *T : ElementTypesInLoop) { 5623 MinWidth = std::min<unsigned>( 5624 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5625 MaxWidth = std::max<unsigned>( 5626 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5627 } 5628 } 5629 return {MinWidth, MaxWidth}; 5630 } 5631 5632 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5633 ElementTypesInLoop.clear(); 5634 // For each block. 5635 for (BasicBlock *BB : TheLoop->blocks()) { 5636 // For each instruction in the loop. 5637 for (Instruction &I : BB->instructionsWithoutDebug()) { 5638 Type *T = I.getType(); 5639 5640 // Skip ignored values. 5641 if (ValuesToIgnore.count(&I)) 5642 continue; 5643 5644 // Only examine Loads, Stores and PHINodes. 5645 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5646 continue; 5647 5648 // Examine PHI nodes that are reduction variables. Update the type to 5649 // account for the recurrence type. 5650 if (auto *PN = dyn_cast<PHINode>(&I)) { 5651 if (!Legal->isReductionVariable(PN)) 5652 continue; 5653 const RecurrenceDescriptor &RdxDesc = 5654 Legal->getReductionVars().find(PN)->second; 5655 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5656 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5657 RdxDesc.getRecurrenceType(), 5658 TargetTransformInfo::ReductionFlags())) 5659 continue; 5660 T = RdxDesc.getRecurrenceType(); 5661 } 5662 5663 // Examine the stored values. 5664 if (auto *ST = dyn_cast<StoreInst>(&I)) 5665 T = ST->getValueOperand()->getType(); 5666 5667 assert(T->isSized() && 5668 "Expected the load/store/recurrence type to be sized"); 5669 5670 ElementTypesInLoop.insert(T); 5671 } 5672 } 5673 } 5674 5675 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5676 unsigned LoopCost) { 5677 // -- The interleave heuristics -- 5678 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5679 // There are many micro-architectural considerations that we can't predict 5680 // at this level. For example, frontend pressure (on decode or fetch) due to 5681 // code size, or the number and capabilities of the execution ports. 5682 // 5683 // We use the following heuristics to select the interleave count: 5684 // 1. If the code has reductions, then we interleave to break the cross 5685 // iteration dependency. 5686 // 2. If the loop is really small, then we interleave to reduce the loop 5687 // overhead. 5688 // 3. We don't interleave if we think that we will spill registers to memory 5689 // due to the increased register pressure. 5690 5691 if (!isScalarEpilogueAllowed()) 5692 return 1; 5693 5694 // We used the distance for the interleave count. 5695 if (Legal->getMaxSafeDepDistBytes() != -1U) 5696 return 1; 5697 5698 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5699 const bool HasReductions = !Legal->getReductionVars().empty(); 5700 // Do not interleave loops with a relatively small known or estimated trip 5701 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5702 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5703 // because with the above conditions interleaving can expose ILP and break 5704 // cross iteration dependences for reductions. 5705 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5706 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5707 return 1; 5708 5709 // If we did not calculate the cost for VF (because the user selected the VF) 5710 // then we calculate the cost of VF here. 5711 if (LoopCost == 0) { 5712 InstructionCost C = expectedCost(VF).first; 5713 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5714 LoopCost = *C.getValue(); 5715 5716 // Loop body is free and there is no need for interleaving. 5717 if (LoopCost == 0) 5718 return 1; 5719 } 5720 5721 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5722 // We divide by these constants so assume that we have at least one 5723 // instruction that uses at least one register. 5724 for (auto& pair : R.MaxLocalUsers) { 5725 pair.second = std::max(pair.second, 1U); 5726 } 5727 5728 // We calculate the interleave count using the following formula. 5729 // Subtract the number of loop invariants from the number of available 5730 // registers. These registers are used by all of the interleaved instances. 5731 // Next, divide the remaining registers by the number of registers that is 5732 // required by the loop, in order to estimate how many parallel instances 5733 // fit without causing spills. All of this is rounded down if necessary to be 5734 // a power of two. We want power of two interleave count to simplify any 5735 // addressing operations or alignment considerations. 5736 // We also want power of two interleave counts to ensure that the induction 5737 // variable of the vector loop wraps to zero, when tail is folded by masking; 5738 // this currently happens when OptForSize, in which case IC is set to 1 above. 5739 unsigned IC = UINT_MAX; 5740 5741 for (auto& pair : R.MaxLocalUsers) { 5742 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5743 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5744 << " registers of " 5745 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5746 if (VF.isScalar()) { 5747 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5748 TargetNumRegisters = ForceTargetNumScalarRegs; 5749 } else { 5750 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5751 TargetNumRegisters = ForceTargetNumVectorRegs; 5752 } 5753 unsigned MaxLocalUsers = pair.second; 5754 unsigned LoopInvariantRegs = 0; 5755 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5756 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5757 5758 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5759 // Don't count the induction variable as interleaved. 5760 if (EnableIndVarRegisterHeur) { 5761 TmpIC = 5762 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5763 std::max(1U, (MaxLocalUsers - 1))); 5764 } 5765 5766 IC = std::min(IC, TmpIC); 5767 } 5768 5769 // Clamp the interleave ranges to reasonable counts. 5770 unsigned MaxInterleaveCount = 5771 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5772 5773 // Check if the user has overridden the max. 5774 if (VF.isScalar()) { 5775 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5776 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5777 } else { 5778 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5779 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5780 } 5781 5782 // If trip count is known or estimated compile time constant, limit the 5783 // interleave count to be less than the trip count divided by VF, provided it 5784 // is at least 1. 5785 // 5786 // For scalable vectors we can't know if interleaving is beneficial. It may 5787 // not be beneficial for small loops if none of the lanes in the second vector 5788 // iterations is enabled. However, for larger loops, there is likely to be a 5789 // similar benefit as for fixed-width vectors. For now, we choose to leave 5790 // the InterleaveCount as if vscale is '1', although if some information about 5791 // the vector is known (e.g. min vector size), we can make a better decision. 5792 if (BestKnownTC) { 5793 MaxInterleaveCount = 5794 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5795 // Make sure MaxInterleaveCount is greater than 0. 5796 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5797 } 5798 5799 assert(MaxInterleaveCount > 0 && 5800 "Maximum interleave count must be greater than 0"); 5801 5802 // Clamp the calculated IC to be between the 1 and the max interleave count 5803 // that the target and trip count allows. 5804 if (IC > MaxInterleaveCount) 5805 IC = MaxInterleaveCount; 5806 else 5807 // Make sure IC is greater than 0. 5808 IC = std::max(1u, IC); 5809 5810 assert(IC > 0 && "Interleave count must be greater than 0."); 5811 5812 // Interleave if we vectorized this loop and there is a reduction that could 5813 // benefit from interleaving. 5814 if (VF.isVector() && HasReductions) { 5815 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5816 return IC; 5817 } 5818 5819 // For any scalar loop that either requires runtime checks or predication we 5820 // are better off leaving this to the unroller. Note that if we've already 5821 // vectorized the loop we will have done the runtime check and so interleaving 5822 // won't require further checks. 5823 bool ScalarInterleavingRequiresPredication = 5824 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5825 return Legal->blockNeedsPredication(BB); 5826 })); 5827 bool ScalarInterleavingRequiresRuntimePointerCheck = 5828 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5829 5830 // We want to interleave small loops in order to reduce the loop overhead and 5831 // potentially expose ILP opportunities. 5832 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5833 << "LV: IC is " << IC << '\n' 5834 << "LV: VF is " << VF << '\n'); 5835 const bool AggressivelyInterleaveReductions = 5836 TTI.enableAggressiveInterleaving(HasReductions); 5837 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5838 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5839 // We assume that the cost overhead is 1 and we use the cost model 5840 // to estimate the cost of the loop and interleave until the cost of the 5841 // loop overhead is about 5% of the cost of the loop. 5842 unsigned SmallIC = 5843 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5844 5845 // Interleave until store/load ports (estimated by max interleave count) are 5846 // saturated. 5847 unsigned NumStores = Legal->getNumStores(); 5848 unsigned NumLoads = Legal->getNumLoads(); 5849 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5850 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5851 5852 // There is little point in interleaving for reductions containing selects 5853 // and compares when VF=1 since it may just create more overhead than it's 5854 // worth for loops with small trip counts. This is because we still have to 5855 // do the final reduction after the loop. 5856 bool HasSelectCmpReductions = 5857 HasReductions && 5858 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5859 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5860 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5861 RdxDesc.getRecurrenceKind()); 5862 }); 5863 if (HasSelectCmpReductions) { 5864 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5865 return 1; 5866 } 5867 5868 // If we have a scalar reduction (vector reductions are already dealt with 5869 // by this point), we can increase the critical path length if the loop 5870 // we're interleaving is inside another loop. For tree-wise reductions 5871 // set the limit to 2, and for ordered reductions it's best to disable 5872 // interleaving entirely. 5873 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5874 bool HasOrderedReductions = 5875 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5876 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5877 return RdxDesc.isOrdered(); 5878 }); 5879 if (HasOrderedReductions) { 5880 LLVM_DEBUG( 5881 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5882 return 1; 5883 } 5884 5885 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5886 SmallIC = std::min(SmallIC, F); 5887 StoresIC = std::min(StoresIC, F); 5888 LoadsIC = std::min(LoadsIC, F); 5889 } 5890 5891 if (EnableLoadStoreRuntimeInterleave && 5892 std::max(StoresIC, LoadsIC) > SmallIC) { 5893 LLVM_DEBUG( 5894 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5895 return std::max(StoresIC, LoadsIC); 5896 } 5897 5898 // If there are scalar reductions and TTI has enabled aggressive 5899 // interleaving for reductions, we will interleave to expose ILP. 5900 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5901 AggressivelyInterleaveReductions) { 5902 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5903 // Interleave no less than SmallIC but not as aggressive as the normal IC 5904 // to satisfy the rare situation when resources are too limited. 5905 return std::max(IC / 2, SmallIC); 5906 } else { 5907 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5908 return SmallIC; 5909 } 5910 } 5911 5912 // Interleave if this is a large loop (small loops are already dealt with by 5913 // this point) that could benefit from interleaving. 5914 if (AggressivelyInterleaveReductions) { 5915 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5916 return IC; 5917 } 5918 5919 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5920 return 1; 5921 } 5922 5923 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5924 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5925 // This function calculates the register usage by measuring the highest number 5926 // of values that are alive at a single location. Obviously, this is a very 5927 // rough estimation. We scan the loop in a topological order in order and 5928 // assign a number to each instruction. We use RPO to ensure that defs are 5929 // met before their users. We assume that each instruction that has in-loop 5930 // users starts an interval. We record every time that an in-loop value is 5931 // used, so we have a list of the first and last occurrences of each 5932 // instruction. Next, we transpose this data structure into a multi map that 5933 // holds the list of intervals that *end* at a specific location. This multi 5934 // map allows us to perform a linear search. We scan the instructions linearly 5935 // and record each time that a new interval starts, by placing it in a set. 5936 // If we find this value in the multi-map then we remove it from the set. 5937 // The max register usage is the maximum size of the set. 5938 // We also search for instructions that are defined outside the loop, but are 5939 // used inside the loop. We need this number separately from the max-interval 5940 // usage number because when we unroll, loop-invariant values do not take 5941 // more register. 5942 LoopBlocksDFS DFS(TheLoop); 5943 DFS.perform(LI); 5944 5945 RegisterUsage RU; 5946 5947 // Each 'key' in the map opens a new interval. The values 5948 // of the map are the index of the 'last seen' usage of the 5949 // instruction that is the key. 5950 using IntervalMap = DenseMap<Instruction *, unsigned>; 5951 5952 // Maps instruction to its index. 5953 SmallVector<Instruction *, 64> IdxToInstr; 5954 // Marks the end of each interval. 5955 IntervalMap EndPoint; 5956 // Saves the list of instruction indices that are used in the loop. 5957 SmallPtrSet<Instruction *, 8> Ends; 5958 // Saves the list of values that are used in the loop but are 5959 // defined outside the loop, such as arguments and constants. 5960 SmallPtrSet<Value *, 8> LoopInvariants; 5961 5962 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5963 for (Instruction &I : BB->instructionsWithoutDebug()) { 5964 IdxToInstr.push_back(&I); 5965 5966 // Save the end location of each USE. 5967 for (Value *U : I.operands()) { 5968 auto *Instr = dyn_cast<Instruction>(U); 5969 5970 // Ignore non-instruction values such as arguments, constants, etc. 5971 if (!Instr) 5972 continue; 5973 5974 // If this instruction is outside the loop then record it and continue. 5975 if (!TheLoop->contains(Instr)) { 5976 LoopInvariants.insert(Instr); 5977 continue; 5978 } 5979 5980 // Overwrite previous end points. 5981 EndPoint[Instr] = IdxToInstr.size(); 5982 Ends.insert(Instr); 5983 } 5984 } 5985 } 5986 5987 // Saves the list of intervals that end with the index in 'key'. 5988 using InstrList = SmallVector<Instruction *, 2>; 5989 DenseMap<unsigned, InstrList> TransposeEnds; 5990 5991 // Transpose the EndPoints to a list of values that end at each index. 5992 for (auto &Interval : EndPoint) 5993 TransposeEnds[Interval.second].push_back(Interval.first); 5994 5995 SmallPtrSet<Instruction *, 8> OpenIntervals; 5996 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5997 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5998 5999 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6000 6001 // A lambda that gets the register usage for the given type and VF. 6002 const auto &TTICapture = TTI; 6003 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6004 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6005 return 0; 6006 InstructionCost::CostType RegUsage = 6007 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6008 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6009 "Nonsensical values for register usage."); 6010 return RegUsage; 6011 }; 6012 6013 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6014 Instruction *I = IdxToInstr[i]; 6015 6016 // Remove all of the instructions that end at this location. 6017 InstrList &List = TransposeEnds[i]; 6018 for (Instruction *ToRemove : List) 6019 OpenIntervals.erase(ToRemove); 6020 6021 // Ignore instructions that are never used within the loop. 6022 if (!Ends.count(I)) 6023 continue; 6024 6025 // Skip ignored values. 6026 if (ValuesToIgnore.count(I)) 6027 continue; 6028 6029 // For each VF find the maximum usage of registers. 6030 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6031 // Count the number of live intervals. 6032 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6033 6034 if (VFs[j].isScalar()) { 6035 for (auto Inst : OpenIntervals) { 6036 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6037 if (RegUsage.find(ClassID) == RegUsage.end()) 6038 RegUsage[ClassID] = 1; 6039 else 6040 RegUsage[ClassID] += 1; 6041 } 6042 } else { 6043 collectUniformsAndScalars(VFs[j]); 6044 for (auto Inst : OpenIntervals) { 6045 // Skip ignored values for VF > 1. 6046 if (VecValuesToIgnore.count(Inst)) 6047 continue; 6048 if (isScalarAfterVectorization(Inst, VFs[j])) { 6049 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6050 if (RegUsage.find(ClassID) == RegUsage.end()) 6051 RegUsage[ClassID] = 1; 6052 else 6053 RegUsage[ClassID] += 1; 6054 } else { 6055 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6056 if (RegUsage.find(ClassID) == RegUsage.end()) 6057 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6058 else 6059 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6060 } 6061 } 6062 } 6063 6064 for (auto& pair : RegUsage) { 6065 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6066 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6067 else 6068 MaxUsages[j][pair.first] = pair.second; 6069 } 6070 } 6071 6072 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6073 << OpenIntervals.size() << '\n'); 6074 6075 // Add the current instruction to the list of open intervals. 6076 OpenIntervals.insert(I); 6077 } 6078 6079 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6080 SmallMapVector<unsigned, unsigned, 4> Invariant; 6081 6082 for (auto Inst : LoopInvariants) { 6083 unsigned Usage = 6084 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6085 unsigned ClassID = 6086 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6087 if (Invariant.find(ClassID) == Invariant.end()) 6088 Invariant[ClassID] = Usage; 6089 else 6090 Invariant[ClassID] += Usage; 6091 } 6092 6093 LLVM_DEBUG({ 6094 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6095 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6096 << " item\n"; 6097 for (const auto &pair : MaxUsages[i]) { 6098 dbgs() << "LV(REG): RegisterClass: " 6099 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6100 << " registers\n"; 6101 } 6102 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6103 << " item\n"; 6104 for (const auto &pair : Invariant) { 6105 dbgs() << "LV(REG): RegisterClass: " 6106 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6107 << " registers\n"; 6108 } 6109 }); 6110 6111 RU.LoopInvariantRegs = Invariant; 6112 RU.MaxLocalUsers = MaxUsages[i]; 6113 RUs[i] = RU; 6114 } 6115 6116 return RUs; 6117 } 6118 6119 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6120 ElementCount VF) { 6121 // TODO: Cost model for emulated masked load/store is completely 6122 // broken. This hack guides the cost model to use an artificially 6123 // high enough value to practically disable vectorization with such 6124 // operations, except where previously deployed legality hack allowed 6125 // using very low cost values. This is to avoid regressions coming simply 6126 // from moving "masked load/store" check from legality to cost model. 6127 // Masked Load/Gather emulation was previously never allowed. 6128 // Limited number of Masked Store/Scatter emulation was allowed. 6129 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6130 return isa<LoadInst>(I) || 6131 (isa<StoreInst>(I) && 6132 NumPredStores > NumberOfStoresToPredicate); 6133 } 6134 6135 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6136 // If we aren't vectorizing the loop, or if we've already collected the 6137 // instructions to scalarize, there's nothing to do. Collection may already 6138 // have occurred if we have a user-selected VF and are now computing the 6139 // expected cost for interleaving. 6140 if (VF.isScalar() || VF.isZero() || 6141 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6142 return; 6143 6144 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6145 // not profitable to scalarize any instructions, the presence of VF in the 6146 // map will indicate that we've analyzed it already. 6147 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6148 6149 // Find all the instructions that are scalar with predication in the loop and 6150 // determine if it would be better to not if-convert the blocks they are in. 6151 // If so, we also record the instructions to scalarize. 6152 for (BasicBlock *BB : TheLoop->blocks()) { 6153 if (!blockNeedsPredicationForAnyReason(BB)) 6154 continue; 6155 for (Instruction &I : *BB) 6156 if (isScalarWithPredication(&I, VF)) { 6157 ScalarCostsTy ScalarCosts; 6158 // Do not apply discount if scalable, because that would lead to 6159 // invalid scalarization costs. 6160 // Do not apply discount logic if hacked cost is needed 6161 // for emulated masked memrefs. 6162 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6163 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6164 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6165 // Remember that BB will remain after vectorization. 6166 PredicatedBBsAfterVectorization.insert(BB); 6167 } 6168 } 6169 } 6170 6171 int LoopVectorizationCostModel::computePredInstDiscount( 6172 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6173 assert(!isUniformAfterVectorization(PredInst, VF) && 6174 "Instruction marked uniform-after-vectorization will be predicated"); 6175 6176 // Initialize the discount to zero, meaning that the scalar version and the 6177 // vector version cost the same. 6178 InstructionCost Discount = 0; 6179 6180 // Holds instructions to analyze. The instructions we visit are mapped in 6181 // ScalarCosts. Those instructions are the ones that would be scalarized if 6182 // we find that the scalar version costs less. 6183 SmallVector<Instruction *, 8> Worklist; 6184 6185 // Returns true if the given instruction can be scalarized. 6186 auto canBeScalarized = [&](Instruction *I) -> bool { 6187 // We only attempt to scalarize instructions forming a single-use chain 6188 // from the original predicated block that would otherwise be vectorized. 6189 // Although not strictly necessary, we give up on instructions we know will 6190 // already be scalar to avoid traversing chains that are unlikely to be 6191 // beneficial. 6192 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6193 isScalarAfterVectorization(I, VF)) 6194 return false; 6195 6196 // If the instruction is scalar with predication, it will be analyzed 6197 // separately. We ignore it within the context of PredInst. 6198 if (isScalarWithPredication(I, VF)) 6199 return false; 6200 6201 // If any of the instruction's operands are uniform after vectorization, 6202 // the instruction cannot be scalarized. This prevents, for example, a 6203 // masked load from being scalarized. 6204 // 6205 // We assume we will only emit a value for lane zero of an instruction 6206 // marked uniform after vectorization, rather than VF identical values. 6207 // Thus, if we scalarize an instruction that uses a uniform, we would 6208 // create uses of values corresponding to the lanes we aren't emitting code 6209 // for. This behavior can be changed by allowing getScalarValue to clone 6210 // the lane zero values for uniforms rather than asserting. 6211 for (Use &U : I->operands()) 6212 if (auto *J = dyn_cast<Instruction>(U.get())) 6213 if (isUniformAfterVectorization(J, VF)) 6214 return false; 6215 6216 // Otherwise, we can scalarize the instruction. 6217 return true; 6218 }; 6219 6220 // Compute the expected cost discount from scalarizing the entire expression 6221 // feeding the predicated instruction. We currently only consider expressions 6222 // that are single-use instruction chains. 6223 Worklist.push_back(PredInst); 6224 while (!Worklist.empty()) { 6225 Instruction *I = Worklist.pop_back_val(); 6226 6227 // If we've already analyzed the instruction, there's nothing to do. 6228 if (ScalarCosts.find(I) != ScalarCosts.end()) 6229 continue; 6230 6231 // Compute the cost of the vector instruction. Note that this cost already 6232 // includes the scalarization overhead of the predicated instruction. 6233 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6234 6235 // Compute the cost of the scalarized instruction. This cost is the cost of 6236 // the instruction as if it wasn't if-converted and instead remained in the 6237 // predicated block. We will scale this cost by block probability after 6238 // computing the scalarization overhead. 6239 InstructionCost ScalarCost = 6240 VF.getFixedValue() * 6241 getInstructionCost(I, ElementCount::getFixed(1)).first; 6242 6243 // Compute the scalarization overhead of needed insertelement instructions 6244 // and phi nodes. 6245 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6246 ScalarCost += TTI.getScalarizationOverhead( 6247 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6248 APInt::getAllOnes(VF.getFixedValue()), true, false); 6249 ScalarCost += 6250 VF.getFixedValue() * 6251 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6252 } 6253 6254 // Compute the scalarization overhead of needed extractelement 6255 // instructions. For each of the instruction's operands, if the operand can 6256 // be scalarized, add it to the worklist; otherwise, account for the 6257 // overhead. 6258 for (Use &U : I->operands()) 6259 if (auto *J = dyn_cast<Instruction>(U.get())) { 6260 assert(VectorType::isValidElementType(J->getType()) && 6261 "Instruction has non-scalar type"); 6262 if (canBeScalarized(J)) 6263 Worklist.push_back(J); 6264 else if (needsExtract(J, VF)) { 6265 ScalarCost += TTI.getScalarizationOverhead( 6266 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6267 APInt::getAllOnes(VF.getFixedValue()), false, true); 6268 } 6269 } 6270 6271 // Scale the total scalar cost by block probability. 6272 ScalarCost /= getReciprocalPredBlockProb(); 6273 6274 // Compute the discount. A non-negative discount means the vector version 6275 // of the instruction costs more, and scalarizing would be beneficial. 6276 Discount += VectorCost - ScalarCost; 6277 ScalarCosts[I] = ScalarCost; 6278 } 6279 6280 return *Discount.getValue(); 6281 } 6282 6283 LoopVectorizationCostModel::VectorizationCostTy 6284 LoopVectorizationCostModel::expectedCost( 6285 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6286 VectorizationCostTy Cost; 6287 6288 // For each block. 6289 for (BasicBlock *BB : TheLoop->blocks()) { 6290 VectorizationCostTy BlockCost; 6291 6292 // For each instruction in the old loop. 6293 for (Instruction &I : BB->instructionsWithoutDebug()) { 6294 // Skip ignored values. 6295 if (ValuesToIgnore.count(&I) || 6296 (VF.isVector() && VecValuesToIgnore.count(&I))) 6297 continue; 6298 6299 VectorizationCostTy C = getInstructionCost(&I, VF); 6300 6301 // Check if we should override the cost. 6302 if (C.first.isValid() && 6303 ForceTargetInstructionCost.getNumOccurrences() > 0) 6304 C.first = InstructionCost(ForceTargetInstructionCost); 6305 6306 // Keep a list of instructions with invalid costs. 6307 if (Invalid && !C.first.isValid()) 6308 Invalid->emplace_back(&I, VF); 6309 6310 BlockCost.first += C.first; 6311 BlockCost.second |= C.second; 6312 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6313 << " for VF " << VF << " For instruction: " << I 6314 << '\n'); 6315 } 6316 6317 // If we are vectorizing a predicated block, it will have been 6318 // if-converted. This means that the block's instructions (aside from 6319 // stores and instructions that may divide by zero) will now be 6320 // unconditionally executed. For the scalar case, we may not always execute 6321 // the predicated block, if it is an if-else block. Thus, scale the block's 6322 // cost by the probability of executing it. blockNeedsPredication from 6323 // Legal is used so as to not include all blocks in tail folded loops. 6324 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6325 BlockCost.first /= getReciprocalPredBlockProb(); 6326 6327 Cost.first += BlockCost.first; 6328 Cost.second |= BlockCost.second; 6329 } 6330 6331 return Cost; 6332 } 6333 6334 /// Gets Address Access SCEV after verifying that the access pattern 6335 /// is loop invariant except the induction variable dependence. 6336 /// 6337 /// This SCEV can be sent to the Target in order to estimate the address 6338 /// calculation cost. 6339 static const SCEV *getAddressAccessSCEV( 6340 Value *Ptr, 6341 LoopVectorizationLegality *Legal, 6342 PredicatedScalarEvolution &PSE, 6343 const Loop *TheLoop) { 6344 6345 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6346 if (!Gep) 6347 return nullptr; 6348 6349 // We are looking for a gep with all loop invariant indices except for one 6350 // which should be an induction variable. 6351 auto SE = PSE.getSE(); 6352 unsigned NumOperands = Gep->getNumOperands(); 6353 for (unsigned i = 1; i < NumOperands; ++i) { 6354 Value *Opd = Gep->getOperand(i); 6355 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6356 !Legal->isInductionVariable(Opd)) 6357 return nullptr; 6358 } 6359 6360 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6361 return PSE.getSCEV(Ptr); 6362 } 6363 6364 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6365 return Legal->hasStride(I->getOperand(0)) || 6366 Legal->hasStride(I->getOperand(1)); 6367 } 6368 6369 InstructionCost 6370 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6371 ElementCount VF) { 6372 assert(VF.isVector() && 6373 "Scalarization cost of instruction implies vectorization."); 6374 if (VF.isScalable()) 6375 return InstructionCost::getInvalid(); 6376 6377 Type *ValTy = getLoadStoreType(I); 6378 auto SE = PSE.getSE(); 6379 6380 unsigned AS = getLoadStoreAddressSpace(I); 6381 Value *Ptr = getLoadStorePointerOperand(I); 6382 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6383 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6384 // that it is being called from this specific place. 6385 6386 // Figure out whether the access is strided and get the stride value 6387 // if it's known in compile time 6388 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6389 6390 // Get the cost of the scalar memory instruction and address computation. 6391 InstructionCost Cost = 6392 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6393 6394 // Don't pass *I here, since it is scalar but will actually be part of a 6395 // vectorized loop where the user of it is a vectorized instruction. 6396 const Align Alignment = getLoadStoreAlignment(I); 6397 Cost += VF.getKnownMinValue() * 6398 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6399 AS, TTI::TCK_RecipThroughput); 6400 6401 // Get the overhead of the extractelement and insertelement instructions 6402 // we might create due to scalarization. 6403 Cost += getScalarizationOverhead(I, VF); 6404 6405 // If we have a predicated load/store, it will need extra i1 extracts and 6406 // conditional branches, but may not be executed for each vector lane. Scale 6407 // the cost by the probability of executing the predicated block. 6408 if (isPredicatedInst(I, VF)) { 6409 Cost /= getReciprocalPredBlockProb(); 6410 6411 // Add the cost of an i1 extract and a branch 6412 auto *Vec_i1Ty = 6413 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6414 Cost += TTI.getScalarizationOverhead( 6415 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6416 /*Insert=*/false, /*Extract=*/true); 6417 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6418 6419 if (useEmulatedMaskMemRefHack(I, VF)) 6420 // Artificially setting to a high enough value to practically disable 6421 // vectorization with such operations. 6422 Cost = 3000000; 6423 } 6424 6425 return Cost; 6426 } 6427 6428 InstructionCost 6429 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6430 ElementCount VF) { 6431 Type *ValTy = getLoadStoreType(I); 6432 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6433 Value *Ptr = getLoadStorePointerOperand(I); 6434 unsigned AS = getLoadStoreAddressSpace(I); 6435 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6436 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6437 6438 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6439 "Stride should be 1 or -1 for consecutive memory access"); 6440 const Align Alignment = getLoadStoreAlignment(I); 6441 InstructionCost Cost = 0; 6442 if (Legal->isMaskRequired(I)) 6443 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6444 CostKind); 6445 else 6446 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6447 CostKind, I); 6448 6449 bool Reverse = ConsecutiveStride < 0; 6450 if (Reverse) 6451 Cost += 6452 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6453 return Cost; 6454 } 6455 6456 InstructionCost 6457 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6458 ElementCount VF) { 6459 assert(Legal->isUniformMemOp(*I)); 6460 6461 Type *ValTy = getLoadStoreType(I); 6462 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6463 const Align Alignment = getLoadStoreAlignment(I); 6464 unsigned AS = getLoadStoreAddressSpace(I); 6465 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6466 if (isa<LoadInst>(I)) { 6467 return TTI.getAddressComputationCost(ValTy) + 6468 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6469 CostKind) + 6470 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6471 } 6472 StoreInst *SI = cast<StoreInst>(I); 6473 6474 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6475 return TTI.getAddressComputationCost(ValTy) + 6476 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6477 CostKind) + 6478 (isLoopInvariantStoreValue 6479 ? 0 6480 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6481 VF.getKnownMinValue() - 1)); 6482 } 6483 6484 InstructionCost 6485 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6486 ElementCount VF) { 6487 Type *ValTy = getLoadStoreType(I); 6488 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6489 const Align Alignment = getLoadStoreAlignment(I); 6490 const Value *Ptr = getLoadStorePointerOperand(I); 6491 6492 return TTI.getAddressComputationCost(VectorTy) + 6493 TTI.getGatherScatterOpCost( 6494 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6495 TargetTransformInfo::TCK_RecipThroughput, I); 6496 } 6497 6498 InstructionCost 6499 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6500 ElementCount VF) { 6501 // TODO: Once we have support for interleaving with scalable vectors 6502 // we can calculate the cost properly here. 6503 if (VF.isScalable()) 6504 return InstructionCost::getInvalid(); 6505 6506 Type *ValTy = getLoadStoreType(I); 6507 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6508 unsigned AS = getLoadStoreAddressSpace(I); 6509 6510 auto Group = getInterleavedAccessGroup(I); 6511 assert(Group && "Fail to get an interleaved access group."); 6512 6513 unsigned InterleaveFactor = Group->getFactor(); 6514 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6515 6516 // Holds the indices of existing members in the interleaved group. 6517 SmallVector<unsigned, 4> Indices; 6518 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6519 if (Group->getMember(IF)) 6520 Indices.push_back(IF); 6521 6522 // Calculate the cost of the whole interleaved group. 6523 bool UseMaskForGaps = 6524 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6525 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6526 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6527 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6528 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6529 6530 if (Group->isReverse()) { 6531 // TODO: Add support for reversed masked interleaved access. 6532 assert(!Legal->isMaskRequired(I) && 6533 "Reverse masked interleaved access not supported."); 6534 Cost += 6535 Group->getNumMembers() * 6536 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6537 } 6538 return Cost; 6539 } 6540 6541 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6542 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6543 using namespace llvm::PatternMatch; 6544 // Early exit for no inloop reductions 6545 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6546 return None; 6547 auto *VectorTy = cast<VectorType>(Ty); 6548 6549 // We are looking for a pattern of, and finding the minimal acceptable cost: 6550 // reduce(mul(ext(A), ext(B))) or 6551 // reduce(mul(A, B)) or 6552 // reduce(ext(A)) or 6553 // reduce(A). 6554 // The basic idea is that we walk down the tree to do that, finding the root 6555 // reduction instruction in InLoopReductionImmediateChains. From there we find 6556 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6557 // of the components. If the reduction cost is lower then we return it for the 6558 // reduction instruction and 0 for the other instructions in the pattern. If 6559 // it is not we return an invalid cost specifying the orignal cost method 6560 // should be used. 6561 Instruction *RetI = I; 6562 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6563 if (!RetI->hasOneUser()) 6564 return None; 6565 RetI = RetI->user_back(); 6566 } 6567 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6568 RetI->user_back()->getOpcode() == Instruction::Add) { 6569 if (!RetI->hasOneUser()) 6570 return None; 6571 RetI = RetI->user_back(); 6572 } 6573 6574 // Test if the found instruction is a reduction, and if not return an invalid 6575 // cost specifying the parent to use the original cost modelling. 6576 if (!InLoopReductionImmediateChains.count(RetI)) 6577 return None; 6578 6579 // Find the reduction this chain is a part of and calculate the basic cost of 6580 // the reduction on its own. 6581 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6582 Instruction *ReductionPhi = LastChain; 6583 while (!isa<PHINode>(ReductionPhi)) 6584 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6585 6586 const RecurrenceDescriptor &RdxDesc = 6587 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6588 6589 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6590 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6591 6592 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6593 // normal fmul instruction to the cost of the fadd reduction. 6594 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6595 BaseCost += 6596 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6597 6598 // If we're using ordered reductions then we can just return the base cost 6599 // here, since getArithmeticReductionCost calculates the full ordered 6600 // reduction cost when FP reassociation is not allowed. 6601 if (useOrderedReductions(RdxDesc)) 6602 return BaseCost; 6603 6604 // Get the operand that was not the reduction chain and match it to one of the 6605 // patterns, returning the better cost if it is found. 6606 Instruction *RedOp = RetI->getOperand(1) == LastChain 6607 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6608 : dyn_cast<Instruction>(RetI->getOperand(1)); 6609 6610 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6611 6612 Instruction *Op0, *Op1; 6613 if (RedOp && 6614 match(RedOp, 6615 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6616 match(Op0, m_ZExtOrSExt(m_Value())) && 6617 Op0->getOpcode() == Op1->getOpcode() && 6618 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6619 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6620 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6621 6622 // Matched reduce(ext(mul(ext(A), ext(B))) 6623 // Note that the extend opcodes need to all match, or if A==B they will have 6624 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6625 // which is equally fine. 6626 bool IsUnsigned = isa<ZExtInst>(Op0); 6627 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6628 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6629 6630 InstructionCost ExtCost = 6631 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6632 TTI::CastContextHint::None, CostKind, Op0); 6633 InstructionCost MulCost = 6634 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6635 InstructionCost Ext2Cost = 6636 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6637 TTI::CastContextHint::None, CostKind, RedOp); 6638 6639 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6640 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6641 CostKind); 6642 6643 if (RedCost.isValid() && 6644 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6645 return I == RetI ? RedCost : 0; 6646 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6647 !TheLoop->isLoopInvariant(RedOp)) { 6648 // Matched reduce(ext(A)) 6649 bool IsUnsigned = isa<ZExtInst>(RedOp); 6650 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6651 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6652 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6653 CostKind); 6654 6655 InstructionCost ExtCost = 6656 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6657 TTI::CastContextHint::None, CostKind, RedOp); 6658 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6659 return I == RetI ? RedCost : 0; 6660 } else if (RedOp && 6661 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6662 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6663 Op0->getOpcode() == Op1->getOpcode() && 6664 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6665 bool IsUnsigned = isa<ZExtInst>(Op0); 6666 Type *Op0Ty = Op0->getOperand(0)->getType(); 6667 Type *Op1Ty = Op1->getOperand(0)->getType(); 6668 Type *LargestOpTy = 6669 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6670 : Op0Ty; 6671 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6672 6673 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6674 // different sizes. We take the largest type as the ext to reduce, and add 6675 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6676 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6677 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6678 TTI::CastContextHint::None, CostKind, Op0); 6679 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6680 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6681 TTI::CastContextHint::None, CostKind, Op1); 6682 InstructionCost MulCost = 6683 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6684 6685 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6686 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6687 CostKind); 6688 InstructionCost ExtraExtCost = 0; 6689 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6690 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6691 ExtraExtCost = TTI.getCastInstrCost( 6692 ExtraExtOp->getOpcode(), ExtType, 6693 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6694 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6695 } 6696 6697 if (RedCost.isValid() && 6698 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6699 return I == RetI ? RedCost : 0; 6700 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6701 // Matched reduce(mul()) 6702 InstructionCost MulCost = 6703 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6704 6705 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6706 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6707 CostKind); 6708 6709 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6710 return I == RetI ? RedCost : 0; 6711 } 6712 } 6713 6714 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6715 } 6716 6717 InstructionCost 6718 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6719 ElementCount VF) { 6720 // Calculate scalar cost only. Vectorization cost should be ready at this 6721 // moment. 6722 if (VF.isScalar()) { 6723 Type *ValTy = getLoadStoreType(I); 6724 const Align Alignment = getLoadStoreAlignment(I); 6725 unsigned AS = getLoadStoreAddressSpace(I); 6726 6727 return TTI.getAddressComputationCost(ValTy) + 6728 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6729 TTI::TCK_RecipThroughput, I); 6730 } 6731 return getWideningCost(I, VF); 6732 } 6733 6734 LoopVectorizationCostModel::VectorizationCostTy 6735 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6736 ElementCount VF) { 6737 // If we know that this instruction will remain uniform, check the cost of 6738 // the scalar version. 6739 if (isUniformAfterVectorization(I, VF)) 6740 VF = ElementCount::getFixed(1); 6741 6742 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6743 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6744 6745 // Forced scalars do not have any scalarization overhead. 6746 auto ForcedScalar = ForcedScalars.find(VF); 6747 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6748 auto InstSet = ForcedScalar->second; 6749 if (InstSet.count(I)) 6750 return VectorizationCostTy( 6751 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6752 VF.getKnownMinValue()), 6753 false); 6754 } 6755 6756 Type *VectorTy; 6757 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6758 6759 bool TypeNotScalarized = false; 6760 if (VF.isVector() && VectorTy->isVectorTy()) { 6761 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6762 if (NumParts) 6763 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6764 else 6765 C = InstructionCost::getInvalid(); 6766 } 6767 return VectorizationCostTy(C, TypeNotScalarized); 6768 } 6769 6770 InstructionCost 6771 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6772 ElementCount VF) const { 6773 6774 // There is no mechanism yet to create a scalable scalarization loop, 6775 // so this is currently Invalid. 6776 if (VF.isScalable()) 6777 return InstructionCost::getInvalid(); 6778 6779 if (VF.isScalar()) 6780 return 0; 6781 6782 InstructionCost Cost = 0; 6783 Type *RetTy = ToVectorTy(I->getType(), VF); 6784 if (!RetTy->isVoidTy() && 6785 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6786 Cost += TTI.getScalarizationOverhead( 6787 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6788 false); 6789 6790 // Some targets keep addresses scalar. 6791 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6792 return Cost; 6793 6794 // Some targets support efficient element stores. 6795 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6796 return Cost; 6797 6798 // Collect operands to consider. 6799 CallInst *CI = dyn_cast<CallInst>(I); 6800 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6801 6802 // Skip operands that do not require extraction/scalarization and do not incur 6803 // any overhead. 6804 SmallVector<Type *> Tys; 6805 for (auto *V : filterExtractingOperands(Ops, VF)) 6806 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6807 return Cost + TTI.getOperandsScalarizationOverhead( 6808 filterExtractingOperands(Ops, VF), Tys); 6809 } 6810 6811 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6812 if (VF.isScalar()) 6813 return; 6814 NumPredStores = 0; 6815 for (BasicBlock *BB : TheLoop->blocks()) { 6816 // For each instruction in the old loop. 6817 for (Instruction &I : *BB) { 6818 Value *Ptr = getLoadStorePointerOperand(&I); 6819 if (!Ptr) 6820 continue; 6821 6822 // TODO: We should generate better code and update the cost model for 6823 // predicated uniform stores. Today they are treated as any other 6824 // predicated store (see added test cases in 6825 // invariant-store-vectorization.ll). 6826 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6827 NumPredStores++; 6828 6829 if (Legal->isUniformMemOp(I)) { 6830 // TODO: Avoid replicating loads and stores instead of 6831 // relying on instcombine to remove them. 6832 // Load: Scalar load + broadcast 6833 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6834 InstructionCost Cost; 6835 if (isa<StoreInst>(&I) && VF.isScalable() && 6836 isLegalGatherOrScatter(&I, VF)) { 6837 Cost = getGatherScatterCost(&I, VF); 6838 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6839 } else { 6840 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6841 "Cannot yet scalarize uniform stores"); 6842 Cost = getUniformMemOpCost(&I, VF); 6843 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6844 } 6845 continue; 6846 } 6847 6848 // We assume that widening is the best solution when possible. 6849 if (memoryInstructionCanBeWidened(&I, VF)) { 6850 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6851 int ConsecutiveStride = Legal->isConsecutivePtr( 6852 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6853 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6854 "Expected consecutive stride."); 6855 InstWidening Decision = 6856 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6857 setWideningDecision(&I, VF, Decision, Cost); 6858 continue; 6859 } 6860 6861 // Choose between Interleaving, Gather/Scatter or Scalarization. 6862 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6863 unsigned NumAccesses = 1; 6864 if (isAccessInterleaved(&I)) { 6865 auto Group = getInterleavedAccessGroup(&I); 6866 assert(Group && "Fail to get an interleaved access group."); 6867 6868 // Make one decision for the whole group. 6869 if (getWideningDecision(&I, VF) != CM_Unknown) 6870 continue; 6871 6872 NumAccesses = Group->getNumMembers(); 6873 if (interleavedAccessCanBeWidened(&I, VF)) 6874 InterleaveCost = getInterleaveGroupCost(&I, VF); 6875 } 6876 6877 InstructionCost GatherScatterCost = 6878 isLegalGatherOrScatter(&I, VF) 6879 ? getGatherScatterCost(&I, VF) * NumAccesses 6880 : InstructionCost::getInvalid(); 6881 6882 InstructionCost ScalarizationCost = 6883 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6884 6885 // Choose better solution for the current VF, 6886 // write down this decision and use it during vectorization. 6887 InstructionCost Cost; 6888 InstWidening Decision; 6889 if (InterleaveCost <= GatherScatterCost && 6890 InterleaveCost < ScalarizationCost) { 6891 Decision = CM_Interleave; 6892 Cost = InterleaveCost; 6893 } else if (GatherScatterCost < ScalarizationCost) { 6894 Decision = CM_GatherScatter; 6895 Cost = GatherScatterCost; 6896 } else { 6897 Decision = CM_Scalarize; 6898 Cost = ScalarizationCost; 6899 } 6900 // If the instructions belongs to an interleave group, the whole group 6901 // receives the same decision. The whole group receives the cost, but 6902 // the cost will actually be assigned to one instruction. 6903 if (auto Group = getInterleavedAccessGroup(&I)) 6904 setWideningDecision(Group, VF, Decision, Cost); 6905 else 6906 setWideningDecision(&I, VF, Decision, Cost); 6907 } 6908 } 6909 6910 // Make sure that any load of address and any other address computation 6911 // remains scalar unless there is gather/scatter support. This avoids 6912 // inevitable extracts into address registers, and also has the benefit of 6913 // activating LSR more, since that pass can't optimize vectorized 6914 // addresses. 6915 if (TTI.prefersVectorizedAddressing()) 6916 return; 6917 6918 // Start with all scalar pointer uses. 6919 SmallPtrSet<Instruction *, 8> AddrDefs; 6920 for (BasicBlock *BB : TheLoop->blocks()) 6921 for (Instruction &I : *BB) { 6922 Instruction *PtrDef = 6923 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6924 if (PtrDef && TheLoop->contains(PtrDef) && 6925 getWideningDecision(&I, VF) != CM_GatherScatter) 6926 AddrDefs.insert(PtrDef); 6927 } 6928 6929 // Add all instructions used to generate the addresses. 6930 SmallVector<Instruction *, 4> Worklist; 6931 append_range(Worklist, AddrDefs); 6932 while (!Worklist.empty()) { 6933 Instruction *I = Worklist.pop_back_val(); 6934 for (auto &Op : I->operands()) 6935 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6936 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6937 AddrDefs.insert(InstOp).second) 6938 Worklist.push_back(InstOp); 6939 } 6940 6941 for (auto *I : AddrDefs) { 6942 if (isa<LoadInst>(I)) { 6943 // Setting the desired widening decision should ideally be handled in 6944 // by cost functions, but since this involves the task of finding out 6945 // if the loaded register is involved in an address computation, it is 6946 // instead changed here when we know this is the case. 6947 InstWidening Decision = getWideningDecision(I, VF); 6948 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6949 // Scalarize a widened load of address. 6950 setWideningDecision( 6951 I, VF, CM_Scalarize, 6952 (VF.getKnownMinValue() * 6953 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6954 else if (auto Group = getInterleavedAccessGroup(I)) { 6955 // Scalarize an interleave group of address loads. 6956 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6957 if (Instruction *Member = Group->getMember(I)) 6958 setWideningDecision( 6959 Member, VF, CM_Scalarize, 6960 (VF.getKnownMinValue() * 6961 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6962 } 6963 } 6964 } else 6965 // Make sure I gets scalarized and a cost estimate without 6966 // scalarization overhead. 6967 ForcedScalars[VF].insert(I); 6968 } 6969 } 6970 6971 InstructionCost 6972 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6973 Type *&VectorTy) { 6974 Type *RetTy = I->getType(); 6975 if (canTruncateToMinimalBitwidth(I, VF)) 6976 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6977 auto SE = PSE.getSE(); 6978 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6979 6980 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6981 ElementCount VF) -> bool { 6982 if (VF.isScalar()) 6983 return true; 6984 6985 auto Scalarized = InstsToScalarize.find(VF); 6986 assert(Scalarized != InstsToScalarize.end() && 6987 "VF not yet analyzed for scalarization profitability"); 6988 return !Scalarized->second.count(I) && 6989 llvm::all_of(I->users(), [&](User *U) { 6990 auto *UI = cast<Instruction>(U); 6991 return !Scalarized->second.count(UI); 6992 }); 6993 }; 6994 (void) hasSingleCopyAfterVectorization; 6995 6996 if (isScalarAfterVectorization(I, VF)) { 6997 // With the exception of GEPs and PHIs, after scalarization there should 6998 // only be one copy of the instruction generated in the loop. This is 6999 // because the VF is either 1, or any instructions that need scalarizing 7000 // have already been dealt with by the the time we get here. As a result, 7001 // it means we don't have to multiply the instruction cost by VF. 7002 assert(I->getOpcode() == Instruction::GetElementPtr || 7003 I->getOpcode() == Instruction::PHI || 7004 (I->getOpcode() == Instruction::BitCast && 7005 I->getType()->isPointerTy()) || 7006 hasSingleCopyAfterVectorization(I, VF)); 7007 VectorTy = RetTy; 7008 } else 7009 VectorTy = ToVectorTy(RetTy, VF); 7010 7011 // TODO: We need to estimate the cost of intrinsic calls. 7012 switch (I->getOpcode()) { 7013 case Instruction::GetElementPtr: 7014 // We mark this instruction as zero-cost because the cost of GEPs in 7015 // vectorized code depends on whether the corresponding memory instruction 7016 // is scalarized or not. Therefore, we handle GEPs with the memory 7017 // instruction cost. 7018 return 0; 7019 case Instruction::Br: { 7020 // In cases of scalarized and predicated instructions, there will be VF 7021 // predicated blocks in the vectorized loop. Each branch around these 7022 // blocks requires also an extract of its vector compare i1 element. 7023 bool ScalarPredicatedBB = false; 7024 BranchInst *BI = cast<BranchInst>(I); 7025 if (VF.isVector() && BI->isConditional() && 7026 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7027 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7028 ScalarPredicatedBB = true; 7029 7030 if (ScalarPredicatedBB) { 7031 // Not possible to scalarize scalable vector with predicated instructions. 7032 if (VF.isScalable()) 7033 return InstructionCost::getInvalid(); 7034 // Return cost for branches around scalarized and predicated blocks. 7035 auto *Vec_i1Ty = 7036 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7037 return ( 7038 TTI.getScalarizationOverhead( 7039 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7040 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7041 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7042 // The back-edge branch will remain, as will all scalar branches. 7043 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7044 else 7045 // This branch will be eliminated by if-conversion. 7046 return 0; 7047 // Note: We currently assume zero cost for an unconditional branch inside 7048 // a predicated block since it will become a fall-through, although we 7049 // may decide in the future to call TTI for all branches. 7050 } 7051 case Instruction::PHI: { 7052 auto *Phi = cast<PHINode>(I); 7053 7054 // First-order recurrences are replaced by vector shuffles inside the loop. 7055 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7056 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7057 return TTI.getShuffleCost( 7058 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7059 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7060 7061 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7062 // converted into select instructions. We require N - 1 selects per phi 7063 // node, where N is the number of incoming values. 7064 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7065 return (Phi->getNumIncomingValues() - 1) * 7066 TTI.getCmpSelInstrCost( 7067 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7068 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7069 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7070 7071 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7072 } 7073 case Instruction::UDiv: 7074 case Instruction::SDiv: 7075 case Instruction::URem: 7076 case Instruction::SRem: 7077 // If we have a predicated instruction, it may not be executed for each 7078 // vector lane. Get the scalarization cost and scale this amount by the 7079 // probability of executing the predicated block. If the instruction is not 7080 // predicated, we fall through to the next case. 7081 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7082 InstructionCost Cost = 0; 7083 7084 // These instructions have a non-void type, so account for the phi nodes 7085 // that we will create. This cost is likely to be zero. The phi node 7086 // cost, if any, should be scaled by the block probability because it 7087 // models a copy at the end of each predicated block. 7088 Cost += VF.getKnownMinValue() * 7089 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7090 7091 // The cost of the non-predicated instruction. 7092 Cost += VF.getKnownMinValue() * 7093 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7094 7095 // The cost of insertelement and extractelement instructions needed for 7096 // scalarization. 7097 Cost += getScalarizationOverhead(I, VF); 7098 7099 // Scale the cost by the probability of executing the predicated blocks. 7100 // This assumes the predicated block for each vector lane is equally 7101 // likely. 7102 return Cost / getReciprocalPredBlockProb(); 7103 } 7104 LLVM_FALLTHROUGH; 7105 case Instruction::Add: 7106 case Instruction::FAdd: 7107 case Instruction::Sub: 7108 case Instruction::FSub: 7109 case Instruction::Mul: 7110 case Instruction::FMul: 7111 case Instruction::FDiv: 7112 case Instruction::FRem: 7113 case Instruction::Shl: 7114 case Instruction::LShr: 7115 case Instruction::AShr: 7116 case Instruction::And: 7117 case Instruction::Or: 7118 case Instruction::Xor: { 7119 // Since we will replace the stride by 1 the multiplication should go away. 7120 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7121 return 0; 7122 7123 // Detect reduction patterns 7124 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7125 return *RedCost; 7126 7127 // Certain instructions can be cheaper to vectorize if they have a constant 7128 // second vector operand. One example of this are shifts on x86. 7129 Value *Op2 = I->getOperand(1); 7130 TargetTransformInfo::OperandValueProperties Op2VP; 7131 TargetTransformInfo::OperandValueKind Op2VK = 7132 TTI.getOperandInfo(Op2, Op2VP); 7133 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7134 Op2VK = TargetTransformInfo::OK_UniformValue; 7135 7136 SmallVector<const Value *, 4> Operands(I->operand_values()); 7137 return TTI.getArithmeticInstrCost( 7138 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7139 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7140 } 7141 case Instruction::FNeg: { 7142 return TTI.getArithmeticInstrCost( 7143 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7144 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7145 TargetTransformInfo::OP_None, I->getOperand(0), I); 7146 } 7147 case Instruction::Select: { 7148 SelectInst *SI = cast<SelectInst>(I); 7149 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7150 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7151 7152 const Value *Op0, *Op1; 7153 using namespace llvm::PatternMatch; 7154 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7155 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7156 // select x, y, false --> x & y 7157 // select x, true, y --> x | y 7158 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7159 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7160 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7161 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7162 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7163 Op1->getType()->getScalarSizeInBits() == 1); 7164 7165 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7166 return TTI.getArithmeticInstrCost( 7167 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7168 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7169 } 7170 7171 Type *CondTy = SI->getCondition()->getType(); 7172 if (!ScalarCond) 7173 CondTy = VectorType::get(CondTy, VF); 7174 7175 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7176 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7177 Pred = Cmp->getPredicate(); 7178 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7179 CostKind, I); 7180 } 7181 case Instruction::ICmp: 7182 case Instruction::FCmp: { 7183 Type *ValTy = I->getOperand(0)->getType(); 7184 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7185 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7186 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7187 VectorTy = ToVectorTy(ValTy, VF); 7188 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7189 cast<CmpInst>(I)->getPredicate(), CostKind, 7190 I); 7191 } 7192 case Instruction::Store: 7193 case Instruction::Load: { 7194 ElementCount Width = VF; 7195 if (Width.isVector()) { 7196 InstWidening Decision = getWideningDecision(I, Width); 7197 assert(Decision != CM_Unknown && 7198 "CM decision should be taken at this point"); 7199 if (Decision == CM_Scalarize) 7200 Width = ElementCount::getFixed(1); 7201 } 7202 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7203 return getMemoryInstructionCost(I, VF); 7204 } 7205 case Instruction::BitCast: 7206 if (I->getType()->isPointerTy()) 7207 return 0; 7208 LLVM_FALLTHROUGH; 7209 case Instruction::ZExt: 7210 case Instruction::SExt: 7211 case Instruction::FPToUI: 7212 case Instruction::FPToSI: 7213 case Instruction::FPExt: 7214 case Instruction::PtrToInt: 7215 case Instruction::IntToPtr: 7216 case Instruction::SIToFP: 7217 case Instruction::UIToFP: 7218 case Instruction::Trunc: 7219 case Instruction::FPTrunc: { 7220 // Computes the CastContextHint from a Load/Store instruction. 7221 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7222 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7223 "Expected a load or a store!"); 7224 7225 if (VF.isScalar() || !TheLoop->contains(I)) 7226 return TTI::CastContextHint::Normal; 7227 7228 switch (getWideningDecision(I, VF)) { 7229 case LoopVectorizationCostModel::CM_GatherScatter: 7230 return TTI::CastContextHint::GatherScatter; 7231 case LoopVectorizationCostModel::CM_Interleave: 7232 return TTI::CastContextHint::Interleave; 7233 case LoopVectorizationCostModel::CM_Scalarize: 7234 case LoopVectorizationCostModel::CM_Widen: 7235 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7236 : TTI::CastContextHint::Normal; 7237 case LoopVectorizationCostModel::CM_Widen_Reverse: 7238 return TTI::CastContextHint::Reversed; 7239 case LoopVectorizationCostModel::CM_Unknown: 7240 llvm_unreachable("Instr did not go through cost modelling?"); 7241 } 7242 7243 llvm_unreachable("Unhandled case!"); 7244 }; 7245 7246 unsigned Opcode = I->getOpcode(); 7247 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7248 // For Trunc, the context is the only user, which must be a StoreInst. 7249 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7250 if (I->hasOneUse()) 7251 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7252 CCH = ComputeCCH(Store); 7253 } 7254 // For Z/Sext, the context is the operand, which must be a LoadInst. 7255 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7256 Opcode == Instruction::FPExt) { 7257 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7258 CCH = ComputeCCH(Load); 7259 } 7260 7261 // We optimize the truncation of induction variables having constant 7262 // integer steps. The cost of these truncations is the same as the scalar 7263 // operation. 7264 if (isOptimizableIVTruncate(I, VF)) { 7265 auto *Trunc = cast<TruncInst>(I); 7266 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7267 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7268 } 7269 7270 // Detect reduction patterns 7271 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7272 return *RedCost; 7273 7274 Type *SrcScalarTy = I->getOperand(0)->getType(); 7275 Type *SrcVecTy = 7276 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7277 if (canTruncateToMinimalBitwidth(I, VF)) { 7278 // This cast is going to be shrunk. This may remove the cast or it might 7279 // turn it into slightly different cast. For example, if MinBW == 16, 7280 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7281 // 7282 // Calculate the modified src and dest types. 7283 Type *MinVecTy = VectorTy; 7284 if (Opcode == Instruction::Trunc) { 7285 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7286 VectorTy = 7287 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7288 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7289 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7290 VectorTy = 7291 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7292 } 7293 } 7294 7295 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7296 } 7297 case Instruction::Call: { 7298 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7299 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7300 return *RedCost; 7301 bool NeedToScalarize; 7302 CallInst *CI = cast<CallInst>(I); 7303 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7304 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7305 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7306 return std::min(CallCost, IntrinsicCost); 7307 } 7308 return CallCost; 7309 } 7310 case Instruction::ExtractValue: 7311 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7312 case Instruction::Alloca: 7313 // We cannot easily widen alloca to a scalable alloca, as 7314 // the result would need to be a vector of pointers. 7315 if (VF.isScalable()) 7316 return InstructionCost::getInvalid(); 7317 LLVM_FALLTHROUGH; 7318 default: 7319 // This opcode is unknown. Assume that it is the same as 'mul'. 7320 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7321 } // end of switch. 7322 } 7323 7324 char LoopVectorize::ID = 0; 7325 7326 static const char lv_name[] = "Loop Vectorization"; 7327 7328 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7329 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7330 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7331 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7332 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7333 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7334 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7335 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7336 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7338 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7339 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7340 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7341 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7342 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7343 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7344 7345 namespace llvm { 7346 7347 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7348 7349 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7350 bool VectorizeOnlyWhenForced) { 7351 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7352 } 7353 7354 } // end namespace llvm 7355 7356 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7357 // Check if the pointer operand of a load or store instruction is 7358 // consecutive. 7359 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7360 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7361 return false; 7362 } 7363 7364 void LoopVectorizationCostModel::collectValuesToIgnore() { 7365 // Ignore ephemeral values. 7366 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7367 7368 // Find all stores to invariant variables. Since they are going to sink 7369 // outside the loop we do not need calculate cost for them. 7370 for (BasicBlock *BB : TheLoop->blocks()) 7371 for (Instruction &I : *BB) { 7372 StoreInst *SI; 7373 if ((SI = dyn_cast<StoreInst>(&I)) && 7374 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7375 ValuesToIgnore.insert(&I); 7376 } 7377 7378 // Ignore type-promoting instructions we identified during reduction 7379 // detection. 7380 for (auto &Reduction : Legal->getReductionVars()) { 7381 const RecurrenceDescriptor &RedDes = Reduction.second; 7382 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7383 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7384 } 7385 // Ignore type-casting instructions we identified during induction 7386 // detection. 7387 for (auto &Induction : Legal->getInductionVars()) { 7388 const InductionDescriptor &IndDes = Induction.second; 7389 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7390 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7391 } 7392 } 7393 7394 void LoopVectorizationCostModel::collectInLoopReductions() { 7395 for (auto &Reduction : Legal->getReductionVars()) { 7396 PHINode *Phi = Reduction.first; 7397 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7398 7399 // We don't collect reductions that are type promoted (yet). 7400 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7401 continue; 7402 7403 // If the target would prefer this reduction to happen "in-loop", then we 7404 // want to record it as such. 7405 unsigned Opcode = RdxDesc.getOpcode(); 7406 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7407 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7408 TargetTransformInfo::ReductionFlags())) 7409 continue; 7410 7411 // Check that we can correctly put the reductions into the loop, by 7412 // finding the chain of operations that leads from the phi to the loop 7413 // exit value. 7414 SmallVector<Instruction *, 4> ReductionOperations = 7415 RdxDesc.getReductionOpChain(Phi, TheLoop); 7416 bool InLoop = !ReductionOperations.empty(); 7417 if (InLoop) { 7418 InLoopReductionChains[Phi] = ReductionOperations; 7419 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7420 Instruction *LastChain = Phi; 7421 for (auto *I : ReductionOperations) { 7422 InLoopReductionImmediateChains[I] = LastChain; 7423 LastChain = I; 7424 } 7425 } 7426 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7427 << " reduction for phi: " << *Phi << "\n"); 7428 } 7429 } 7430 7431 // TODO: we could return a pair of values that specify the max VF and 7432 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7433 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7434 // doesn't have a cost model that can choose which plan to execute if 7435 // more than one is generated. 7436 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7437 LoopVectorizationCostModel &CM) { 7438 unsigned WidestType; 7439 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7440 return WidestVectorRegBits / WidestType; 7441 } 7442 7443 VectorizationFactor 7444 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7445 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7446 ElementCount VF = UserVF; 7447 // Outer loop handling: They may require CFG and instruction level 7448 // transformations before even evaluating whether vectorization is profitable. 7449 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7450 // the vectorization pipeline. 7451 if (!OrigLoop->isInnermost()) { 7452 // If the user doesn't provide a vectorization factor, determine a 7453 // reasonable one. 7454 if (UserVF.isZero()) { 7455 VF = ElementCount::getFixed(determineVPlanVF( 7456 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7457 .getFixedSize(), 7458 CM)); 7459 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7460 7461 // Make sure we have a VF > 1 for stress testing. 7462 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7463 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7464 << "overriding computed VF.\n"); 7465 VF = ElementCount::getFixed(4); 7466 } 7467 } 7468 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7469 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7470 "VF needs to be a power of two"); 7471 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7472 << "VF " << VF << " to build VPlans.\n"); 7473 buildVPlans(VF, VF); 7474 7475 // For VPlan build stress testing, we bail out after VPlan construction. 7476 if (VPlanBuildStressTest) 7477 return VectorizationFactor::Disabled(); 7478 7479 return {VF, 0 /*Cost*/}; 7480 } 7481 7482 LLVM_DEBUG( 7483 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7484 "VPlan-native path.\n"); 7485 return VectorizationFactor::Disabled(); 7486 } 7487 7488 Optional<VectorizationFactor> 7489 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7490 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7491 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7492 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7493 return None; 7494 7495 // Invalidate interleave groups if all blocks of loop will be predicated. 7496 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7497 !useMaskedInterleavedAccesses(*TTI)) { 7498 LLVM_DEBUG( 7499 dbgs() 7500 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7501 "which requires masked-interleaved support.\n"); 7502 if (CM.InterleaveInfo.invalidateGroups()) 7503 // Invalidating interleave groups also requires invalidating all decisions 7504 // based on them, which includes widening decisions and uniform and scalar 7505 // values. 7506 CM.invalidateCostModelingDecisions(); 7507 } 7508 7509 ElementCount MaxUserVF = 7510 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7511 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7512 if (!UserVF.isZero() && UserVFIsLegal) { 7513 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7514 "VF needs to be a power of two"); 7515 // Collect the instructions (and their associated costs) that will be more 7516 // profitable to scalarize. 7517 if (CM.selectUserVectorizationFactor(UserVF)) { 7518 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7519 CM.collectInLoopReductions(); 7520 buildVPlansWithVPRecipes(UserVF, UserVF); 7521 LLVM_DEBUG(printPlans(dbgs())); 7522 return {{UserVF, 0}}; 7523 } else 7524 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7525 "InvalidCost", ORE, OrigLoop); 7526 } 7527 7528 // Populate the set of Vectorization Factor Candidates. 7529 ElementCountSet VFCandidates; 7530 for (auto VF = ElementCount::getFixed(1); 7531 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7532 VFCandidates.insert(VF); 7533 for (auto VF = ElementCount::getScalable(1); 7534 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7535 VFCandidates.insert(VF); 7536 7537 for (const auto &VF : VFCandidates) { 7538 // Collect Uniform and Scalar instructions after vectorization with VF. 7539 CM.collectUniformsAndScalars(VF); 7540 7541 // Collect the instructions (and their associated costs) that will be more 7542 // profitable to scalarize. 7543 if (VF.isVector()) 7544 CM.collectInstsToScalarize(VF); 7545 } 7546 7547 CM.collectInLoopReductions(); 7548 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7549 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7550 7551 LLVM_DEBUG(printPlans(dbgs())); 7552 if (!MaxFactors.hasVector()) 7553 return VectorizationFactor::Disabled(); 7554 7555 // Select the optimal vectorization factor. 7556 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7557 7558 // Check if it is profitable to vectorize with runtime checks. 7559 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7560 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7561 bool PragmaThresholdReached = 7562 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7563 bool ThresholdReached = 7564 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7565 if ((ThresholdReached && !Hints.allowReordering()) || 7566 PragmaThresholdReached) { 7567 ORE->emit([&]() { 7568 return OptimizationRemarkAnalysisAliasing( 7569 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7570 OrigLoop->getHeader()) 7571 << "loop not vectorized: cannot prove it is safe to reorder " 7572 "memory operations"; 7573 }); 7574 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7575 Hints.emitRemarkWithHints(); 7576 return VectorizationFactor::Disabled(); 7577 } 7578 } 7579 return SelectedVF; 7580 } 7581 7582 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7583 assert(count_if(VPlans, 7584 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7585 1 && 7586 "Best VF has not a single VPlan."); 7587 7588 for (const VPlanPtr &Plan : VPlans) { 7589 if (Plan->hasVF(VF)) 7590 return *Plan.get(); 7591 } 7592 llvm_unreachable("No plan found!"); 7593 } 7594 7595 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7596 SmallVector<Metadata *, 4> MDs; 7597 // Reserve first location for self reference to the LoopID metadata node. 7598 MDs.push_back(nullptr); 7599 bool IsUnrollMetadata = false; 7600 MDNode *LoopID = L->getLoopID(); 7601 if (LoopID) { 7602 // First find existing loop unrolling disable metadata. 7603 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7604 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7605 if (MD) { 7606 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7607 IsUnrollMetadata = 7608 S && S->getString().startswith("llvm.loop.unroll.disable"); 7609 } 7610 MDs.push_back(LoopID->getOperand(i)); 7611 } 7612 } 7613 7614 if (!IsUnrollMetadata) { 7615 // Add runtime unroll disable metadata. 7616 LLVMContext &Context = L->getHeader()->getContext(); 7617 SmallVector<Metadata *, 1> DisableOperands; 7618 DisableOperands.push_back( 7619 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7620 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7621 MDs.push_back(DisableNode); 7622 MDNode *NewLoopID = MDNode::get(Context, MDs); 7623 // Set operand 0 to refer to the loop id itself. 7624 NewLoopID->replaceOperandWith(0, NewLoopID); 7625 L->setLoopID(NewLoopID); 7626 } 7627 } 7628 7629 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7630 VPlan &BestVPlan, 7631 InnerLoopVectorizer &ILV, 7632 DominatorTree *DT) { 7633 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7634 << '\n'); 7635 7636 // Perform the actual loop transformation. 7637 7638 // 1. Set up the skeleton for vectorization, including vector pre-header and 7639 // middle block. The vector loop is created during VPlan execution. 7640 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7641 Value *CanonicalIVStartValue; 7642 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7643 ILV.createVectorizedLoopSkeleton(); 7644 ILV.collectPoisonGeneratingRecipes(State); 7645 7646 ILV.printDebugTracesAtStart(); 7647 7648 //===------------------------------------------------===// 7649 // 7650 // Notice: any optimization or new instruction that go 7651 // into the code below should also be implemented in 7652 // the cost-model. 7653 // 7654 //===------------------------------------------------===// 7655 7656 // 2. Copy and widen instructions from the old loop into the new loop. 7657 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7658 ILV.getOrCreateVectorTripCount(nullptr), 7659 CanonicalIVStartValue, State); 7660 BestVPlan.execute(&State); 7661 7662 // Keep all loop hints from the original loop on the vector loop (we'll 7663 // replace the vectorizer-specific hints below). 7664 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7665 7666 Optional<MDNode *> VectorizedLoopID = 7667 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7668 LLVMLoopVectorizeFollowupVectorized}); 7669 7670 VPBasicBlock *HeaderVPBB = 7671 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7672 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7673 if (VectorizedLoopID.hasValue()) 7674 L->setLoopID(VectorizedLoopID.getValue()); 7675 else { 7676 // Keep all loop hints from the original loop on the vector loop (we'll 7677 // replace the vectorizer-specific hints below). 7678 if (MDNode *LID = OrigLoop->getLoopID()) 7679 L->setLoopID(LID); 7680 7681 LoopVectorizeHints Hints(L, true, *ORE); 7682 Hints.setAlreadyVectorized(); 7683 } 7684 // Disable runtime unrolling when vectorizing the epilogue loop. 7685 if (CanonicalIVStartValue) 7686 AddRuntimeUnrollDisableMetaData(L); 7687 7688 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7689 // predication, updating analyses. 7690 ILV.fixVectorizedLoop(State, BestVPlan); 7691 7692 ILV.printDebugTracesAtEnd(); 7693 } 7694 7695 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7696 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7697 for (const auto &Plan : VPlans) 7698 if (PrintVPlansInDotFormat) 7699 Plan->printDOT(O); 7700 else 7701 Plan->print(O); 7702 } 7703 #endif 7704 7705 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7706 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7707 7708 // We create new control-flow for the vectorized loop, so the original exit 7709 // conditions will be dead after vectorization if it's only used by the 7710 // terminator 7711 SmallVector<BasicBlock*> ExitingBlocks; 7712 OrigLoop->getExitingBlocks(ExitingBlocks); 7713 for (auto *BB : ExitingBlocks) { 7714 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7715 if (!Cmp || !Cmp->hasOneUse()) 7716 continue; 7717 7718 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7719 if (!DeadInstructions.insert(Cmp).second) 7720 continue; 7721 7722 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7723 // TODO: can recurse through operands in general 7724 for (Value *Op : Cmp->operands()) { 7725 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7726 DeadInstructions.insert(cast<Instruction>(Op)); 7727 } 7728 } 7729 7730 // We create new "steps" for induction variable updates to which the original 7731 // induction variables map. An original update instruction will be dead if 7732 // all its users except the induction variable are dead. 7733 auto *Latch = OrigLoop->getLoopLatch(); 7734 for (auto &Induction : Legal->getInductionVars()) { 7735 PHINode *Ind = Induction.first; 7736 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7737 7738 // If the tail is to be folded by masking, the primary induction variable, 7739 // if exists, isn't dead: it will be used for masking. Don't kill it. 7740 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7741 continue; 7742 7743 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7744 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7745 })) 7746 DeadInstructions.insert(IndUpdate); 7747 } 7748 } 7749 7750 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7751 7752 //===--------------------------------------------------------------------===// 7753 // EpilogueVectorizerMainLoop 7754 //===--------------------------------------------------------------------===// 7755 7756 /// This function is partially responsible for generating the control flow 7757 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7758 std::pair<BasicBlock *, Value *> 7759 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7760 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7761 7762 // Workaround! Compute the trip count of the original loop and cache it 7763 // before we start modifying the CFG. This code has a systemic problem 7764 // wherein it tries to run analysis over partially constructed IR; this is 7765 // wrong, and not simply for SCEV. The trip count of the original loop 7766 // simply happens to be prone to hitting this in practice. In theory, we 7767 // can hit the same issue for any SCEV, or ValueTracking query done during 7768 // mutation. See PR49900. 7769 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7770 createVectorLoopSkeleton(""); 7771 7772 // Generate the code to check the minimum iteration count of the vector 7773 // epilogue (see below). 7774 EPI.EpilogueIterationCountCheck = 7775 emitIterationCountCheck(LoopScalarPreHeader, true); 7776 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7777 7778 // Generate the code to check any assumptions that we've made for SCEV 7779 // expressions. 7780 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7781 7782 // Generate the code that checks at runtime if arrays overlap. We put the 7783 // checks into a separate block to make the more common case of few elements 7784 // faster. 7785 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7786 7787 // Generate the iteration count check for the main loop, *after* the check 7788 // for the epilogue loop, so that the path-length is shorter for the case 7789 // that goes directly through the vector epilogue. The longer-path length for 7790 // the main loop is compensated for, by the gain from vectorizing the larger 7791 // trip count. Note: the branch will get updated later on when we vectorize 7792 // the epilogue. 7793 EPI.MainLoopIterationCountCheck = 7794 emitIterationCountCheck(LoopScalarPreHeader, false); 7795 7796 // Generate the induction variable. 7797 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7798 7799 // Skip induction resume value creation here because they will be created in 7800 // the second pass. If we created them here, they wouldn't be used anyway, 7801 // because the vplan in the second pass still contains the inductions from the 7802 // original loop. 7803 7804 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7805 } 7806 7807 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7808 LLVM_DEBUG({ 7809 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7810 << "Main Loop VF:" << EPI.MainLoopVF 7811 << ", Main Loop UF:" << EPI.MainLoopUF 7812 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7813 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7814 }); 7815 } 7816 7817 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7818 DEBUG_WITH_TYPE(VerboseDebug, { 7819 dbgs() << "intermediate fn:\n" 7820 << *OrigLoop->getHeader()->getParent() << "\n"; 7821 }); 7822 } 7823 7824 BasicBlock * 7825 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7826 bool ForEpilogue) { 7827 assert(Bypass && "Expected valid bypass basic block."); 7828 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7829 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7830 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7831 // Reuse existing vector loop preheader for TC checks. 7832 // Note that new preheader block is generated for vector loop. 7833 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7834 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7835 7836 // Generate code to check if the loop's trip count is less than VF * UF of the 7837 // main vector loop. 7838 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7839 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7840 7841 Value *CheckMinIters = Builder.CreateICmp( 7842 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7843 "min.iters.check"); 7844 7845 if (!ForEpilogue) 7846 TCCheckBlock->setName("vector.main.loop.iter.check"); 7847 7848 // Create new preheader for vector loop. 7849 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7850 DT, LI, nullptr, "vector.ph"); 7851 7852 if (ForEpilogue) { 7853 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7854 DT->getNode(Bypass)->getIDom()) && 7855 "TC check is expected to dominate Bypass"); 7856 7857 // Update dominator for Bypass & LoopExit. 7858 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7859 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7860 // For loops with multiple exits, there's no edge from the middle block 7861 // to exit blocks (as the epilogue must run) and thus no need to update 7862 // the immediate dominator of the exit blocks. 7863 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7864 7865 LoopBypassBlocks.push_back(TCCheckBlock); 7866 7867 // Save the trip count so we don't have to regenerate it in the 7868 // vec.epilog.iter.check. This is safe to do because the trip count 7869 // generated here dominates the vector epilog iter check. 7870 EPI.TripCount = Count; 7871 } 7872 7873 ReplaceInstWithInst( 7874 TCCheckBlock->getTerminator(), 7875 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7876 7877 return TCCheckBlock; 7878 } 7879 7880 //===--------------------------------------------------------------------===// 7881 // EpilogueVectorizerEpilogueLoop 7882 //===--------------------------------------------------------------------===// 7883 7884 /// This function is partially responsible for generating the control flow 7885 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7886 std::pair<BasicBlock *, Value *> 7887 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7888 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7889 createVectorLoopSkeleton("vec.epilog."); 7890 7891 // Now, compare the remaining count and if there aren't enough iterations to 7892 // execute the vectorized epilogue skip to the scalar part. 7893 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7894 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7895 LoopVectorPreHeader = 7896 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7897 LI, nullptr, "vec.epilog.ph"); 7898 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7899 VecEpilogueIterationCountCheck); 7900 7901 // Adjust the control flow taking the state info from the main loop 7902 // vectorization into account. 7903 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7904 "expected this to be saved from the previous pass."); 7905 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7906 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7907 7908 DT->changeImmediateDominator(LoopVectorPreHeader, 7909 EPI.MainLoopIterationCountCheck); 7910 7911 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7912 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7913 7914 if (EPI.SCEVSafetyCheck) 7915 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7916 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7917 if (EPI.MemSafetyCheck) 7918 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7919 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7920 7921 DT->changeImmediateDominator( 7922 VecEpilogueIterationCountCheck, 7923 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7924 7925 DT->changeImmediateDominator(LoopScalarPreHeader, 7926 EPI.EpilogueIterationCountCheck); 7927 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7928 // If there is an epilogue which must run, there's no edge from the 7929 // middle block to exit blocks and thus no need to update the immediate 7930 // dominator of the exit blocks. 7931 DT->changeImmediateDominator(LoopExitBlock, 7932 EPI.EpilogueIterationCountCheck); 7933 7934 // Keep track of bypass blocks, as they feed start values to the induction 7935 // phis in the scalar loop preheader. 7936 if (EPI.SCEVSafetyCheck) 7937 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7938 if (EPI.MemSafetyCheck) 7939 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7940 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7941 7942 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7943 // merge control-flow from the latch block and the middle block. Update the 7944 // incoming values here and move the Phi into the preheader. 7945 SmallVector<PHINode *, 4> PhisInBlock; 7946 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7947 PhisInBlock.push_back(&Phi); 7948 7949 for (PHINode *Phi : PhisInBlock) { 7950 Phi->replaceIncomingBlockWith( 7951 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7952 VecEpilogueIterationCountCheck); 7953 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7954 if (EPI.SCEVSafetyCheck) 7955 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7956 if (EPI.MemSafetyCheck) 7957 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7958 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7959 } 7960 7961 // Generate a resume induction for the vector epilogue and put it in the 7962 // vector epilogue preheader 7963 Type *IdxTy = Legal->getWidestInductionType(); 7964 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7965 LoopVectorPreHeader->getFirstNonPHI()); 7966 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7967 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7968 EPI.MainLoopIterationCountCheck); 7969 7970 // Generate induction resume values. These variables save the new starting 7971 // indexes for the scalar loop. They are used to test if there are any tail 7972 // iterations left once the vector loop has completed. 7973 // Note that when the vectorized epilogue is skipped due to iteration count 7974 // check, then the resume value for the induction variable comes from 7975 // the trip count of the main vector loop, hence passing the AdditionalBypass 7976 // argument. 7977 createInductionResumeValues({VecEpilogueIterationCountCheck, 7978 EPI.VectorTripCount} /* AdditionalBypass */); 7979 7980 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7981 } 7982 7983 BasicBlock * 7984 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7985 BasicBlock *Bypass, BasicBlock *Insert) { 7986 7987 assert(EPI.TripCount && 7988 "Expected trip count to have been safed in the first pass."); 7989 assert( 7990 (!isa<Instruction>(EPI.TripCount) || 7991 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7992 "saved trip count does not dominate insertion point."); 7993 Value *TC = EPI.TripCount; 7994 IRBuilder<> Builder(Insert->getTerminator()); 7995 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7996 7997 // Generate code to check if the loop's trip count is less than VF * UF of the 7998 // vector epilogue loop. 7999 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8000 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8001 8002 Value *CheckMinIters = 8003 Builder.CreateICmp(P, Count, 8004 createStepForVF(Builder, Count->getType(), 8005 EPI.EpilogueVF, EPI.EpilogueUF), 8006 "min.epilog.iters.check"); 8007 8008 ReplaceInstWithInst( 8009 Insert->getTerminator(), 8010 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8011 8012 LoopBypassBlocks.push_back(Insert); 8013 return Insert; 8014 } 8015 8016 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8017 LLVM_DEBUG({ 8018 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8019 << "Epilogue Loop VF:" << EPI.EpilogueVF 8020 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8021 }); 8022 } 8023 8024 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8025 DEBUG_WITH_TYPE(VerboseDebug, { 8026 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8027 }); 8028 } 8029 8030 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8031 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8032 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8033 bool PredicateAtRangeStart = Predicate(Range.Start); 8034 8035 for (ElementCount TmpVF = Range.Start * 2; 8036 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8037 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8038 Range.End = TmpVF; 8039 break; 8040 } 8041 8042 return PredicateAtRangeStart; 8043 } 8044 8045 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8046 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8047 /// of VF's starting at a given VF and extending it as much as possible. Each 8048 /// vectorization decision can potentially shorten this sub-range during 8049 /// buildVPlan(). 8050 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8051 ElementCount MaxVF) { 8052 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8053 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8054 VFRange SubRange = {VF, MaxVFPlusOne}; 8055 VPlans.push_back(buildVPlan(SubRange)); 8056 VF = SubRange.End; 8057 } 8058 } 8059 8060 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8061 VPlanPtr &Plan) { 8062 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8063 8064 // Look for cached value. 8065 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8066 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8067 if (ECEntryIt != EdgeMaskCache.end()) 8068 return ECEntryIt->second; 8069 8070 VPValue *SrcMask = createBlockInMask(Src, Plan); 8071 8072 // The terminator has to be a branch inst! 8073 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8074 assert(BI && "Unexpected terminator found"); 8075 8076 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8077 return EdgeMaskCache[Edge] = SrcMask; 8078 8079 // If source is an exiting block, we know the exit edge is dynamically dead 8080 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8081 // adding uses of an otherwise potentially dead instruction. 8082 if (OrigLoop->isLoopExiting(Src)) 8083 return EdgeMaskCache[Edge] = SrcMask; 8084 8085 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8086 assert(EdgeMask && "No Edge Mask found for condition"); 8087 8088 if (BI->getSuccessor(0) != Dst) 8089 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8090 8091 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8092 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8093 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8094 // The select version does not introduce new UB if SrcMask is false and 8095 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8096 VPValue *False = Plan->getOrAddVPValue( 8097 ConstantInt::getFalse(BI->getCondition()->getType())); 8098 EdgeMask = 8099 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8100 } 8101 8102 return EdgeMaskCache[Edge] = EdgeMask; 8103 } 8104 8105 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8106 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8107 8108 // Look for cached value. 8109 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8110 if (BCEntryIt != BlockMaskCache.end()) 8111 return BCEntryIt->second; 8112 8113 // All-one mask is modelled as no-mask following the convention for masked 8114 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8115 VPValue *BlockMask = nullptr; 8116 8117 if (OrigLoop->getHeader() == BB) { 8118 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8119 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8120 8121 // Introduce the early-exit compare IV <= BTC to form header block mask. 8122 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8123 // constructing the desired canonical IV in the header block as its first 8124 // non-phi instructions. 8125 assert(CM.foldTailByMasking() && "must fold the tail"); 8126 VPBasicBlock *HeaderVPBB = 8127 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8128 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8129 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8130 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8131 8132 VPBuilder::InsertPointGuard Guard(Builder); 8133 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8134 if (CM.TTI.emitGetActiveLaneMask()) { 8135 VPValue *TC = Plan->getOrCreateTripCount(); 8136 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8137 } else { 8138 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8139 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8140 } 8141 return BlockMaskCache[BB] = BlockMask; 8142 } 8143 8144 // This is the block mask. We OR all incoming edges. 8145 for (auto *Predecessor : predecessors(BB)) { 8146 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8147 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8148 return BlockMaskCache[BB] = EdgeMask; 8149 8150 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8151 BlockMask = EdgeMask; 8152 continue; 8153 } 8154 8155 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8156 } 8157 8158 return BlockMaskCache[BB] = BlockMask; 8159 } 8160 8161 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8162 ArrayRef<VPValue *> Operands, 8163 VFRange &Range, 8164 VPlanPtr &Plan) { 8165 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8166 "Must be called with either a load or store"); 8167 8168 auto willWiden = [&](ElementCount VF) -> bool { 8169 if (VF.isScalar()) 8170 return false; 8171 LoopVectorizationCostModel::InstWidening Decision = 8172 CM.getWideningDecision(I, VF); 8173 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8174 "CM decision should be taken at this point."); 8175 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8176 return true; 8177 if (CM.isScalarAfterVectorization(I, VF) || 8178 CM.isProfitableToScalarize(I, VF)) 8179 return false; 8180 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8181 }; 8182 8183 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8184 return nullptr; 8185 8186 VPValue *Mask = nullptr; 8187 if (Legal->isMaskRequired(I)) 8188 Mask = createBlockInMask(I->getParent(), Plan); 8189 8190 // Determine if the pointer operand of the access is either consecutive or 8191 // reverse consecutive. 8192 LoopVectorizationCostModel::InstWidening Decision = 8193 CM.getWideningDecision(I, Range.Start); 8194 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8195 bool Consecutive = 8196 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8197 8198 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8199 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8200 Consecutive, Reverse); 8201 8202 StoreInst *Store = cast<StoreInst>(I); 8203 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8204 Mask, Consecutive, Reverse); 8205 } 8206 8207 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8208 /// insert a recipe to expand the step for the induction recipe. 8209 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8210 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8211 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8212 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8213 // Returns true if an instruction \p I should be scalarized instead of 8214 // vectorized for the chosen vectorization factor. 8215 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8216 return CM.isScalarAfterVectorization(I, VF) || 8217 CM.isProfitableToScalarize(I, VF); 8218 }; 8219 8220 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8221 [&](ElementCount VF) { 8222 // Returns true if we should generate a scalar version of \p IV. 8223 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8224 return true; 8225 auto isScalarInst = [&](User *U) -> bool { 8226 auto *I = cast<Instruction>(U); 8227 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8228 }; 8229 return any_of(PhiOrTrunc->users(), isScalarInst); 8230 }, 8231 Range); 8232 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8233 [&](ElementCount VF) { 8234 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8235 }, 8236 Range); 8237 assert(IndDesc.getStartValue() == 8238 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8239 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8240 "step must be loop invariant"); 8241 8242 VPValue *Step = 8243 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8244 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8245 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8246 NeedsScalarIV, !NeedsScalarIVOnly); 8247 } 8248 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8249 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8250 NeedsScalarIV, !NeedsScalarIVOnly); 8251 } 8252 8253 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8254 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8255 8256 // Check if this is an integer or fp induction. If so, build the recipe that 8257 // produces its scalar and vector values. 8258 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8259 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8260 *PSE.getSE(), *OrigLoop, Range); 8261 8262 // Check if this is pointer induction. If so, build the recipe for it. 8263 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8264 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8265 *PSE.getSE()); 8266 return nullptr; 8267 } 8268 8269 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8270 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8271 // Optimize the special case where the source is a constant integer 8272 // induction variable. Notice that we can only optimize the 'trunc' case 8273 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8274 // (c) other casts depend on pointer size. 8275 8276 // Determine whether \p K is a truncation based on an induction variable that 8277 // can be optimized. 8278 auto isOptimizableIVTruncate = 8279 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8280 return [=](ElementCount VF) -> bool { 8281 return CM.isOptimizableIVTruncate(K, VF); 8282 }; 8283 }; 8284 8285 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8286 isOptimizableIVTruncate(I), Range)) { 8287 8288 auto *Phi = cast<PHINode>(I->getOperand(0)); 8289 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8290 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8291 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8292 *PSE.getSE(), *OrigLoop, Range); 8293 } 8294 return nullptr; 8295 } 8296 8297 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8298 ArrayRef<VPValue *> Operands, 8299 VPlanPtr &Plan) { 8300 // If all incoming values are equal, the incoming VPValue can be used directly 8301 // instead of creating a new VPBlendRecipe. 8302 VPValue *FirstIncoming = Operands[0]; 8303 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8304 return FirstIncoming == Inc; 8305 })) { 8306 return Operands[0]; 8307 } 8308 8309 unsigned NumIncoming = Phi->getNumIncomingValues(); 8310 // For in-loop reductions, we do not need to create an additional select. 8311 VPValue *InLoopVal = nullptr; 8312 for (unsigned In = 0; In < NumIncoming; In++) { 8313 PHINode *PhiOp = 8314 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8315 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8316 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8317 InLoopVal = Operands[In]; 8318 } 8319 } 8320 8321 assert((!InLoopVal || NumIncoming == 2) && 8322 "Found an in-loop reduction for PHI with unexpected number of " 8323 "incoming values"); 8324 if (InLoopVal) 8325 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8326 8327 // We know that all PHIs in non-header blocks are converted into selects, so 8328 // we don't have to worry about the insertion order and we can just use the 8329 // builder. At this point we generate the predication tree. There may be 8330 // duplications since this is a simple recursive scan, but future 8331 // optimizations will clean it up. 8332 SmallVector<VPValue *, 2> OperandsWithMask; 8333 8334 for (unsigned In = 0; In < NumIncoming; In++) { 8335 VPValue *EdgeMask = 8336 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8337 assert((EdgeMask || NumIncoming == 1) && 8338 "Multiple predecessors with one having a full mask"); 8339 OperandsWithMask.push_back(Operands[In]); 8340 if (EdgeMask) 8341 OperandsWithMask.push_back(EdgeMask); 8342 } 8343 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8344 } 8345 8346 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8347 ArrayRef<VPValue *> Operands, 8348 VFRange &Range) const { 8349 8350 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8351 [this, CI](ElementCount VF) { 8352 return CM.isScalarWithPredication(CI, VF); 8353 }, 8354 Range); 8355 8356 if (IsPredicated) 8357 return nullptr; 8358 8359 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8360 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8361 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8362 ID == Intrinsic::pseudoprobe || 8363 ID == Intrinsic::experimental_noalias_scope_decl)) 8364 return nullptr; 8365 8366 auto willWiden = [&](ElementCount VF) -> bool { 8367 if (VF.isScalar()) 8368 return false; 8369 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8370 // The following case may be scalarized depending on the VF. 8371 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8372 // version of the instruction. 8373 // Is it beneficial to perform intrinsic call compared to lib call? 8374 bool NeedToScalarize = false; 8375 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8376 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8377 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8378 return UseVectorIntrinsic || !NeedToScalarize; 8379 }; 8380 8381 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8382 return nullptr; 8383 8384 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8385 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8386 } 8387 8388 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8389 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8390 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8391 // Instruction should be widened, unless it is scalar after vectorization, 8392 // scalarization is profitable or it is predicated. 8393 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8394 return CM.isScalarAfterVectorization(I, VF) || 8395 CM.isProfitableToScalarize(I, VF) || 8396 CM.isScalarWithPredication(I, VF); 8397 }; 8398 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8399 Range); 8400 } 8401 8402 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8403 ArrayRef<VPValue *> Operands) const { 8404 auto IsVectorizableOpcode = [](unsigned Opcode) { 8405 switch (Opcode) { 8406 case Instruction::Add: 8407 case Instruction::And: 8408 case Instruction::AShr: 8409 case Instruction::BitCast: 8410 case Instruction::FAdd: 8411 case Instruction::FCmp: 8412 case Instruction::FDiv: 8413 case Instruction::FMul: 8414 case Instruction::FNeg: 8415 case Instruction::FPExt: 8416 case Instruction::FPToSI: 8417 case Instruction::FPToUI: 8418 case Instruction::FPTrunc: 8419 case Instruction::FRem: 8420 case Instruction::FSub: 8421 case Instruction::ICmp: 8422 case Instruction::IntToPtr: 8423 case Instruction::LShr: 8424 case Instruction::Mul: 8425 case Instruction::Or: 8426 case Instruction::PtrToInt: 8427 case Instruction::SDiv: 8428 case Instruction::Select: 8429 case Instruction::SExt: 8430 case Instruction::Shl: 8431 case Instruction::SIToFP: 8432 case Instruction::SRem: 8433 case Instruction::Sub: 8434 case Instruction::Trunc: 8435 case Instruction::UDiv: 8436 case Instruction::UIToFP: 8437 case Instruction::URem: 8438 case Instruction::Xor: 8439 case Instruction::ZExt: 8440 return true; 8441 } 8442 return false; 8443 }; 8444 8445 if (!IsVectorizableOpcode(I->getOpcode())) 8446 return nullptr; 8447 8448 // Success: widen this instruction. 8449 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8450 } 8451 8452 void VPRecipeBuilder::fixHeaderPhis() { 8453 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8454 for (VPHeaderPHIRecipe *R : PhisToFix) { 8455 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8456 VPRecipeBase *IncR = 8457 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8458 R->addOperand(IncR->getVPSingleValue()); 8459 } 8460 } 8461 8462 VPBasicBlock *VPRecipeBuilder::handleReplication( 8463 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8464 VPlanPtr &Plan) { 8465 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8466 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8467 Range); 8468 8469 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8470 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8471 Range); 8472 8473 // Even if the instruction is not marked as uniform, there are certain 8474 // intrinsic calls that can be effectively treated as such, so we check for 8475 // them here. Conservatively, we only do this for scalable vectors, since 8476 // for fixed-width VFs we can always fall back on full scalarization. 8477 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8478 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8479 case Intrinsic::assume: 8480 case Intrinsic::lifetime_start: 8481 case Intrinsic::lifetime_end: 8482 // For scalable vectors if one of the operands is variant then we still 8483 // want to mark as uniform, which will generate one instruction for just 8484 // the first lane of the vector. We can't scalarize the call in the same 8485 // way as for fixed-width vectors because we don't know how many lanes 8486 // there are. 8487 // 8488 // The reasons for doing it this way for scalable vectors are: 8489 // 1. For the assume intrinsic generating the instruction for the first 8490 // lane is still be better than not generating any at all. For 8491 // example, the input may be a splat across all lanes. 8492 // 2. For the lifetime start/end intrinsics the pointer operand only 8493 // does anything useful when the input comes from a stack object, 8494 // which suggests it should always be uniform. For non-stack objects 8495 // the effect is to poison the object, which still allows us to 8496 // remove the call. 8497 IsUniform = true; 8498 break; 8499 default: 8500 break; 8501 } 8502 } 8503 8504 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8505 IsUniform, IsPredicated); 8506 setRecipe(I, Recipe); 8507 Plan->addVPValue(I, Recipe); 8508 8509 // Find if I uses a predicated instruction. If so, it will use its scalar 8510 // value. Avoid hoisting the insert-element which packs the scalar value into 8511 // a vector value, as that happens iff all users use the vector value. 8512 for (VPValue *Op : Recipe->operands()) { 8513 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8514 if (!PredR) 8515 continue; 8516 auto *RepR = 8517 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8518 assert(RepR->isPredicated() && 8519 "expected Replicate recipe to be predicated"); 8520 RepR->setAlsoPack(false); 8521 } 8522 8523 // Finalize the recipe for Instr, first if it is not predicated. 8524 if (!IsPredicated) { 8525 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8526 VPBB->appendRecipe(Recipe); 8527 return VPBB; 8528 } 8529 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8530 8531 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8532 assert(SingleSucc && "VPBB must have a single successor when handling " 8533 "predicated replication."); 8534 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8535 // Record predicated instructions for above packing optimizations. 8536 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8537 VPBlockUtils::insertBlockAfter(Region, VPBB); 8538 auto *RegSucc = new VPBasicBlock(); 8539 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8540 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8541 return RegSucc; 8542 } 8543 8544 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8545 VPRecipeBase *PredRecipe, 8546 VPlanPtr &Plan) { 8547 // Instructions marked for predication are replicated and placed under an 8548 // if-then construct to prevent side-effects. 8549 8550 // Generate recipes to compute the block mask for this region. 8551 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8552 8553 // Build the triangular if-then region. 8554 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8555 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8556 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8557 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8558 auto *PHIRecipe = Instr->getType()->isVoidTy() 8559 ? nullptr 8560 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8561 if (PHIRecipe) { 8562 Plan->removeVPValueFor(Instr); 8563 Plan->addVPValue(Instr, PHIRecipe); 8564 } 8565 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8566 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8567 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8568 8569 // Note: first set Entry as region entry and then connect successors starting 8570 // from it in order, to propagate the "parent" of each VPBasicBlock. 8571 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8572 VPBlockUtils::connectBlocks(Pred, Exit); 8573 8574 return Region; 8575 } 8576 8577 VPRecipeOrVPValueTy 8578 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8579 ArrayRef<VPValue *> Operands, 8580 VFRange &Range, VPlanPtr &Plan) { 8581 // First, check for specific widening recipes that deal with calls, memory 8582 // operations, inductions and Phi nodes. 8583 if (auto *CI = dyn_cast<CallInst>(Instr)) 8584 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8585 8586 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8587 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8588 8589 VPRecipeBase *Recipe; 8590 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8591 if (Phi->getParent() != OrigLoop->getHeader()) 8592 return tryToBlend(Phi, Operands, Plan); 8593 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8594 return toVPRecipeResult(Recipe); 8595 8596 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8597 assert((Legal->isReductionVariable(Phi) || 8598 Legal->isFirstOrderRecurrence(Phi)) && 8599 "can only widen reductions and first-order recurrences here"); 8600 VPValue *StartV = Operands[0]; 8601 if (Legal->isReductionVariable(Phi)) { 8602 const RecurrenceDescriptor &RdxDesc = 8603 Legal->getReductionVars().find(Phi)->second; 8604 assert(RdxDesc.getRecurrenceStartValue() == 8605 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8606 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8607 CM.isInLoopReduction(Phi), 8608 CM.useOrderedReductions(RdxDesc)); 8609 } else { 8610 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8611 } 8612 8613 // Record the incoming value from the backedge, so we can add the incoming 8614 // value from the backedge after all recipes have been created. 8615 recordRecipeOf(cast<Instruction>( 8616 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8617 PhisToFix.push_back(PhiRecipe); 8618 return toVPRecipeResult(PhiRecipe); 8619 } 8620 8621 if (isa<TruncInst>(Instr) && 8622 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8623 Range, *Plan))) 8624 return toVPRecipeResult(Recipe); 8625 8626 if (!shouldWiden(Instr, Range)) 8627 return nullptr; 8628 8629 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8630 return toVPRecipeResult(new VPWidenGEPRecipe( 8631 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8632 8633 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8634 bool InvariantCond = 8635 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8636 return toVPRecipeResult(new VPWidenSelectRecipe( 8637 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8638 } 8639 8640 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8641 } 8642 8643 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8644 ElementCount MaxVF) { 8645 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8646 8647 // Collect instructions from the original loop that will become trivially dead 8648 // in the vectorized loop. We don't need to vectorize these instructions. For 8649 // example, original induction update instructions can become dead because we 8650 // separately emit induction "steps" when generating code for the new loop. 8651 // Similarly, we create a new latch condition when setting up the structure 8652 // of the new loop, so the old one can become dead. 8653 SmallPtrSet<Instruction *, 4> DeadInstructions; 8654 collectTriviallyDeadInstructions(DeadInstructions); 8655 8656 // Add assume instructions we need to drop to DeadInstructions, to prevent 8657 // them from being added to the VPlan. 8658 // TODO: We only need to drop assumes in blocks that get flattend. If the 8659 // control flow is preserved, we should keep them. 8660 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8661 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8662 8663 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8664 // Dead instructions do not need sinking. Remove them from SinkAfter. 8665 for (Instruction *I : DeadInstructions) 8666 SinkAfter.erase(I); 8667 8668 // Cannot sink instructions after dead instructions (there won't be any 8669 // recipes for them). Instead, find the first non-dead previous instruction. 8670 for (auto &P : Legal->getSinkAfter()) { 8671 Instruction *SinkTarget = P.second; 8672 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8673 (void)FirstInst; 8674 while (DeadInstructions.contains(SinkTarget)) { 8675 assert( 8676 SinkTarget != FirstInst && 8677 "Must find a live instruction (at least the one feeding the " 8678 "first-order recurrence PHI) before reaching beginning of the block"); 8679 SinkTarget = SinkTarget->getPrevNode(); 8680 assert(SinkTarget != P.first && 8681 "sink source equals target, no sinking required"); 8682 } 8683 P.second = SinkTarget; 8684 } 8685 8686 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8687 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8688 VFRange SubRange = {VF, MaxVFPlusOne}; 8689 VPlans.push_back( 8690 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8691 VF = SubRange.End; 8692 } 8693 } 8694 8695 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8696 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8697 // BranchOnCount VPInstruction to the latch. 8698 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8699 bool HasNUW, bool IsVPlanNative) { 8700 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8701 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8702 8703 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8704 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8705 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8706 Header->insert(CanonicalIVPHI, Header->begin()); 8707 8708 auto *CanonicalIVIncrement = 8709 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8710 : VPInstruction::CanonicalIVIncrement, 8711 {CanonicalIVPHI}, DL); 8712 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8713 8714 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8715 if (IsVPlanNative) 8716 EB->setCondBit(nullptr); 8717 EB->appendRecipe(CanonicalIVIncrement); 8718 8719 auto *BranchOnCount = 8720 new VPInstruction(VPInstruction::BranchOnCount, 8721 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8722 EB->appendRecipe(BranchOnCount); 8723 } 8724 8725 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8726 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8727 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8728 8729 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8730 8731 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8732 8733 // --------------------------------------------------------------------------- 8734 // Pre-construction: record ingredients whose recipes we'll need to further 8735 // process after constructing the initial VPlan. 8736 // --------------------------------------------------------------------------- 8737 8738 // Mark instructions we'll need to sink later and their targets as 8739 // ingredients whose recipe we'll need to record. 8740 for (auto &Entry : SinkAfter) { 8741 RecipeBuilder.recordRecipeOf(Entry.first); 8742 RecipeBuilder.recordRecipeOf(Entry.second); 8743 } 8744 for (auto &Reduction : CM.getInLoopReductionChains()) { 8745 PHINode *Phi = Reduction.first; 8746 RecurKind Kind = 8747 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8748 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8749 8750 RecipeBuilder.recordRecipeOf(Phi); 8751 for (auto &R : ReductionOperations) { 8752 RecipeBuilder.recordRecipeOf(R); 8753 // For min/max reductions, where we have a pair of icmp/select, we also 8754 // need to record the ICmp recipe, so it can be removed later. 8755 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8756 "Only min/max recurrences allowed for inloop reductions"); 8757 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8758 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8759 } 8760 } 8761 8762 // For each interleave group which is relevant for this (possibly trimmed) 8763 // Range, add it to the set of groups to be later applied to the VPlan and add 8764 // placeholders for its members' Recipes which we'll be replacing with a 8765 // single VPInterleaveRecipe. 8766 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8767 auto applyIG = [IG, this](ElementCount VF) -> bool { 8768 return (VF.isVector() && // Query is illegal for VF == 1 8769 CM.getWideningDecision(IG->getInsertPos(), VF) == 8770 LoopVectorizationCostModel::CM_Interleave); 8771 }; 8772 if (!getDecisionAndClampRange(applyIG, Range)) 8773 continue; 8774 InterleaveGroups.insert(IG); 8775 for (unsigned i = 0; i < IG->getFactor(); i++) 8776 if (Instruction *Member = IG->getMember(i)) 8777 RecipeBuilder.recordRecipeOf(Member); 8778 }; 8779 8780 // --------------------------------------------------------------------------- 8781 // Build initial VPlan: Scan the body of the loop in a topological order to 8782 // visit each basic block after having visited its predecessor basic blocks. 8783 // --------------------------------------------------------------------------- 8784 8785 // Create initial VPlan skeleton, starting with a block for the pre-header, 8786 // followed by a region for the vector loop, followed by the middle block. The 8787 // skeleton vector loop region contains a header and latch block. 8788 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8789 auto Plan = std::make_unique<VPlan>(Preheader); 8790 8791 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8792 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8793 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8794 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8795 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8796 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8797 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8798 8799 Instruction *DLInst = 8800 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8801 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8802 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8803 !CM.foldTailByMasking(), false); 8804 8805 // Scan the body of the loop in a topological order to visit each basic block 8806 // after having visited its predecessor basic blocks. 8807 LoopBlocksDFS DFS(OrigLoop); 8808 DFS.perform(LI); 8809 8810 VPBasicBlock *VPBB = HeaderVPBB; 8811 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8812 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8813 // Relevant instructions from basic block BB will be grouped into VPRecipe 8814 // ingredients and fill a new VPBasicBlock. 8815 unsigned VPBBsForBB = 0; 8816 if (VPBB != HeaderVPBB) 8817 VPBB->setName(BB->getName()); 8818 Builder.setInsertPoint(VPBB); 8819 8820 // Introduce each ingredient into VPlan. 8821 // TODO: Model and preserve debug intrinsics in VPlan. 8822 for (Instruction &I : BB->instructionsWithoutDebug()) { 8823 Instruction *Instr = &I; 8824 8825 // First filter out irrelevant instructions, to ensure no recipes are 8826 // built for them. 8827 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8828 continue; 8829 8830 SmallVector<VPValue *, 4> Operands; 8831 auto *Phi = dyn_cast<PHINode>(Instr); 8832 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8833 Operands.push_back(Plan->getOrAddVPValue( 8834 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8835 } else { 8836 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8837 Operands = {OpRange.begin(), OpRange.end()}; 8838 } 8839 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8840 Instr, Operands, Range, Plan)) { 8841 // If Instr can be simplified to an existing VPValue, use it. 8842 if (RecipeOrValue.is<VPValue *>()) { 8843 auto *VPV = RecipeOrValue.get<VPValue *>(); 8844 Plan->addVPValue(Instr, VPV); 8845 // If the re-used value is a recipe, register the recipe for the 8846 // instruction, in case the recipe for Instr needs to be recorded. 8847 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8848 RecipeBuilder.setRecipe(Instr, R); 8849 continue; 8850 } 8851 // Otherwise, add the new recipe. 8852 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8853 for (auto *Def : Recipe->definedValues()) { 8854 auto *UV = Def->getUnderlyingValue(); 8855 Plan->addVPValue(UV, Def); 8856 } 8857 8858 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8859 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8860 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8861 // of the header block. That can happen for truncates of induction 8862 // variables. Those recipes are moved to the phi section of the header 8863 // block after applying SinkAfter, which relies on the original 8864 // position of the trunc. 8865 assert(isa<TruncInst>(Instr)); 8866 InductionsToMove.push_back( 8867 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8868 } 8869 RecipeBuilder.setRecipe(Instr, Recipe); 8870 VPBB->appendRecipe(Recipe); 8871 continue; 8872 } 8873 8874 // Invariant stores inside loop will be deleted and a single store 8875 // with the final reduction value will be added to the exit block 8876 StoreInst *SI; 8877 if ((SI = dyn_cast<StoreInst>(&I)) && 8878 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8879 continue; 8880 8881 // Otherwise, if all widening options failed, Instruction is to be 8882 // replicated. This may create a successor for VPBB. 8883 VPBasicBlock *NextVPBB = 8884 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8885 if (NextVPBB != VPBB) { 8886 VPBB = NextVPBB; 8887 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8888 : ""); 8889 } 8890 } 8891 8892 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8893 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8894 } 8895 8896 HeaderVPBB->setName("vector.body"); 8897 8898 // Fold the last, empty block into its predecessor. 8899 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8900 assert(VPBB && "expected to fold last (empty) block"); 8901 // After here, VPBB should not be used. 8902 VPBB = nullptr; 8903 8904 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8905 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8906 "entry block must be set to a VPRegionBlock having a non-empty entry " 8907 "VPBasicBlock"); 8908 RecipeBuilder.fixHeaderPhis(); 8909 8910 // --------------------------------------------------------------------------- 8911 // Transform initial VPlan: Apply previously taken decisions, in order, to 8912 // bring the VPlan to its final state. 8913 // --------------------------------------------------------------------------- 8914 8915 // Apply Sink-After legal constraints. 8916 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8917 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8918 if (Region && Region->isReplicator()) { 8919 assert(Region->getNumSuccessors() == 1 && 8920 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8921 assert(R->getParent()->size() == 1 && 8922 "A recipe in an original replicator region must be the only " 8923 "recipe in its block"); 8924 return Region; 8925 } 8926 return nullptr; 8927 }; 8928 for (auto &Entry : SinkAfter) { 8929 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8930 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8931 8932 auto *TargetRegion = GetReplicateRegion(Target); 8933 auto *SinkRegion = GetReplicateRegion(Sink); 8934 if (!SinkRegion) { 8935 // If the sink source is not a replicate region, sink the recipe directly. 8936 if (TargetRegion) { 8937 // The target is in a replication region, make sure to move Sink to 8938 // the block after it, not into the replication region itself. 8939 VPBasicBlock *NextBlock = 8940 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8941 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8942 } else 8943 Sink->moveAfter(Target); 8944 continue; 8945 } 8946 8947 // The sink source is in a replicate region. Unhook the region from the CFG. 8948 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8949 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8950 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8951 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8952 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8953 8954 if (TargetRegion) { 8955 // The target recipe is also in a replicate region, move the sink region 8956 // after the target region. 8957 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8958 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8959 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8960 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8961 } else { 8962 // The sink source is in a replicate region, we need to move the whole 8963 // replicate region, which should only contain a single recipe in the 8964 // main block. 8965 auto *SplitBlock = 8966 Target->getParent()->splitAt(std::next(Target->getIterator())); 8967 8968 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8969 8970 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8971 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8972 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8973 } 8974 } 8975 8976 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8977 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8978 8979 // Now that sink-after is done, move induction recipes for optimized truncates 8980 // to the phi section of the header block. 8981 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8982 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8983 8984 // Adjust the recipes for any inloop reductions. 8985 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8986 RecipeBuilder, Range.Start); 8987 8988 // Introduce a recipe to combine the incoming and previous values of a 8989 // first-order recurrence. 8990 for (VPRecipeBase &R : 8991 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8992 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8993 if (!RecurPhi) 8994 continue; 8995 8996 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8997 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8998 auto *Region = GetReplicateRegion(PrevRecipe); 8999 if (Region) 9000 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9001 if (Region || PrevRecipe->isPhi()) 9002 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9003 else 9004 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9005 9006 auto *RecurSplice = cast<VPInstruction>( 9007 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9008 {RecurPhi, RecurPhi->getBackedgeValue()})); 9009 9010 RecurPhi->replaceAllUsesWith(RecurSplice); 9011 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9012 // all users. 9013 RecurSplice->setOperand(0, RecurPhi); 9014 } 9015 9016 // Interleave memory: for each Interleave Group we marked earlier as relevant 9017 // for this VPlan, replace the Recipes widening its memory instructions with a 9018 // single VPInterleaveRecipe at its insertion point. 9019 for (auto IG : InterleaveGroups) { 9020 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9021 RecipeBuilder.getRecipe(IG->getInsertPos())); 9022 SmallVector<VPValue *, 4> StoredValues; 9023 for (unsigned i = 0; i < IG->getFactor(); ++i) 9024 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9025 auto *StoreR = 9026 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9027 StoredValues.push_back(StoreR->getStoredValue()); 9028 } 9029 9030 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9031 Recipe->getMask()); 9032 VPIG->insertBefore(Recipe); 9033 unsigned J = 0; 9034 for (unsigned i = 0; i < IG->getFactor(); ++i) 9035 if (Instruction *Member = IG->getMember(i)) { 9036 if (!Member->getType()->isVoidTy()) { 9037 VPValue *OriginalV = Plan->getVPValue(Member); 9038 Plan->removeVPValueFor(Member); 9039 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9040 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9041 J++; 9042 } 9043 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9044 } 9045 } 9046 9047 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9048 // in ways that accessing values using original IR values is incorrect. 9049 Plan->disableValue2VPValue(); 9050 9051 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9052 VPlanTransforms::sinkScalarOperands(*Plan); 9053 VPlanTransforms::mergeReplicateRegions(*Plan); 9054 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9055 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9056 9057 std::string PlanName; 9058 raw_string_ostream RSO(PlanName); 9059 ElementCount VF = Range.Start; 9060 Plan->addVF(VF); 9061 RSO << "Initial VPlan for VF={" << VF; 9062 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9063 Plan->addVF(VF); 9064 RSO << "," << VF; 9065 } 9066 RSO << "},UF>=1"; 9067 RSO.flush(); 9068 Plan->setName(PlanName); 9069 9070 // Fold Exit block into its predecessor if possible. 9071 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9072 // VPBasicBlock as exit. 9073 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9074 9075 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9076 return Plan; 9077 } 9078 9079 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9080 // Outer loop handling: They may require CFG and instruction level 9081 // transformations before even evaluating whether vectorization is profitable. 9082 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9083 // the vectorization pipeline. 9084 assert(!OrigLoop->isInnermost()); 9085 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9086 9087 // Create new empty VPlan 9088 auto Plan = std::make_unique<VPlan>(); 9089 9090 // Build hierarchical CFG 9091 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9092 HCFGBuilder.buildHierarchicalCFG(); 9093 9094 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9095 VF *= 2) 9096 Plan->addVF(VF); 9097 9098 if (EnableVPlanPredication) { 9099 VPlanPredicator VPP(*Plan); 9100 VPP.predicate(); 9101 9102 // Avoid running transformation to recipes until masked code generation in 9103 // VPlan-native path is in place. 9104 return Plan; 9105 } 9106 9107 SmallPtrSet<Instruction *, 1> DeadInstructions; 9108 VPlanTransforms::VPInstructionsToVPRecipes( 9109 OrigLoop, Plan, 9110 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9111 DeadInstructions, *PSE.getSE()); 9112 9113 // Update plan to be compatible with the inner loop vectorizer for 9114 // code-generation. 9115 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion(); 9116 VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock(); 9117 VPBasicBlock *Exit = LoopRegion->getExitBasicBlock(); 9118 VPBlockBase *Latch = Exit->getSinglePredecessor(); 9119 VPBlockBase *Header = Preheader->getSingleSuccessor(); 9120 9121 // 1. Move preheader block out of main vector loop. 9122 Preheader->setParent(LoopRegion->getParent()); 9123 VPBlockUtils::disconnectBlocks(Preheader, Header); 9124 VPBlockUtils::connectBlocks(Preheader, LoopRegion); 9125 Plan->setEntry(Preheader); 9126 9127 // 2. Disconnect backedge and exit block. 9128 VPBlockUtils::disconnectBlocks(Latch, Header); 9129 VPBlockUtils::disconnectBlocks(Latch, Exit); 9130 9131 // 3. Update entry and exit of main vector loop region. 9132 LoopRegion->setEntry(Header); 9133 LoopRegion->setExit(Latch); 9134 9135 // 4. Remove exit block. 9136 delete Exit; 9137 9138 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9139 true, true); 9140 return Plan; 9141 } 9142 9143 // Adjust the recipes for reductions. For in-loop reductions the chain of 9144 // instructions leading from the loop exit instr to the phi need to be converted 9145 // to reductions, with one operand being vector and the other being the scalar 9146 // reduction chain. For other reductions, a select is introduced between the phi 9147 // and live-out recipes when folding the tail. 9148 void LoopVectorizationPlanner::adjustRecipesForReductions( 9149 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9150 ElementCount MinVF) { 9151 for (auto &Reduction : CM.getInLoopReductionChains()) { 9152 PHINode *Phi = Reduction.first; 9153 const RecurrenceDescriptor &RdxDesc = 9154 Legal->getReductionVars().find(Phi)->second; 9155 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9156 9157 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9158 continue; 9159 9160 // ReductionOperations are orders top-down from the phi's use to the 9161 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9162 // which of the two operands will remain scalar and which will be reduced. 9163 // For minmax the chain will be the select instructions. 9164 Instruction *Chain = Phi; 9165 for (Instruction *R : ReductionOperations) { 9166 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9167 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9168 9169 VPValue *ChainOp = Plan->getVPValue(Chain); 9170 unsigned FirstOpId; 9171 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9172 "Only min/max recurrences allowed for inloop reductions"); 9173 // Recognize a call to the llvm.fmuladd intrinsic. 9174 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9175 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9176 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9177 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9178 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9179 "Expected to replace a VPWidenSelectSC"); 9180 FirstOpId = 1; 9181 } else { 9182 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9183 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9184 "Expected to replace a VPWidenSC"); 9185 FirstOpId = 0; 9186 } 9187 unsigned VecOpId = 9188 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9189 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9190 9191 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9192 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9193 : nullptr; 9194 9195 if (IsFMulAdd) { 9196 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9197 // need to create an fmul recipe to use as the vector operand for the 9198 // fadd reduction. 9199 VPInstruction *FMulRecipe = new VPInstruction( 9200 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9201 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9202 WidenRecipe->getParent()->insert(FMulRecipe, 9203 WidenRecipe->getIterator()); 9204 VecOp = FMulRecipe; 9205 } 9206 VPReductionRecipe *RedRecipe = 9207 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9208 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9209 Plan->removeVPValueFor(R); 9210 Plan->addVPValue(R, RedRecipe); 9211 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9212 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9213 WidenRecipe->eraseFromParent(); 9214 9215 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9216 VPRecipeBase *CompareRecipe = 9217 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9218 assert(isa<VPWidenRecipe>(CompareRecipe) && 9219 "Expected to replace a VPWidenSC"); 9220 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9221 "Expected no remaining users"); 9222 CompareRecipe->eraseFromParent(); 9223 } 9224 Chain = R; 9225 } 9226 } 9227 9228 // If tail is folded by masking, introduce selects between the phi 9229 // and the live-out instruction of each reduction, at the beginning of the 9230 // dedicated latch block. 9231 if (CM.foldTailByMasking()) { 9232 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9233 for (VPRecipeBase &R : 9234 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9235 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9236 if (!PhiR || PhiR->isInLoop()) 9237 continue; 9238 VPValue *Cond = 9239 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9240 VPValue *Red = PhiR->getBackedgeValue(); 9241 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9242 "reduction recipe must be defined before latch"); 9243 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9244 } 9245 } 9246 } 9247 9248 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9249 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9250 VPSlotTracker &SlotTracker) const { 9251 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9252 IG->getInsertPos()->printAsOperand(O, false); 9253 O << ", "; 9254 getAddr()->printAsOperand(O, SlotTracker); 9255 VPValue *Mask = getMask(); 9256 if (Mask) { 9257 O << ", "; 9258 Mask->printAsOperand(O, SlotTracker); 9259 } 9260 9261 unsigned OpIdx = 0; 9262 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9263 if (!IG->getMember(i)) 9264 continue; 9265 if (getNumStoreOperands() > 0) { 9266 O << "\n" << Indent << " store "; 9267 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9268 O << " to index " << i; 9269 } else { 9270 O << "\n" << Indent << " "; 9271 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9272 O << " = load from index " << i; 9273 } 9274 ++OpIdx; 9275 } 9276 } 9277 #endif 9278 9279 void VPWidenCallRecipe::execute(VPTransformState &State) { 9280 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9281 *this, State); 9282 } 9283 9284 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9285 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9286 State.ILV->setDebugLocFromInst(&I); 9287 9288 // The condition can be loop invariant but still defined inside the 9289 // loop. This means that we can't just use the original 'cond' value. 9290 // We have to take the 'vectorized' value and pick the first lane. 9291 // Instcombine will make this a no-op. 9292 auto *InvarCond = 9293 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9294 9295 for (unsigned Part = 0; Part < State.UF; ++Part) { 9296 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9297 Value *Op0 = State.get(getOperand(1), Part); 9298 Value *Op1 = State.get(getOperand(2), Part); 9299 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9300 State.set(this, Sel, Part); 9301 State.ILV->addMetadata(Sel, &I); 9302 } 9303 } 9304 9305 void VPWidenRecipe::execute(VPTransformState &State) { 9306 auto &I = *cast<Instruction>(getUnderlyingValue()); 9307 auto &Builder = State.Builder; 9308 switch (I.getOpcode()) { 9309 case Instruction::Call: 9310 case Instruction::Br: 9311 case Instruction::PHI: 9312 case Instruction::GetElementPtr: 9313 case Instruction::Select: 9314 llvm_unreachable("This instruction is handled by a different recipe."); 9315 case Instruction::UDiv: 9316 case Instruction::SDiv: 9317 case Instruction::SRem: 9318 case Instruction::URem: 9319 case Instruction::Add: 9320 case Instruction::FAdd: 9321 case Instruction::Sub: 9322 case Instruction::FSub: 9323 case Instruction::FNeg: 9324 case Instruction::Mul: 9325 case Instruction::FMul: 9326 case Instruction::FDiv: 9327 case Instruction::FRem: 9328 case Instruction::Shl: 9329 case Instruction::LShr: 9330 case Instruction::AShr: 9331 case Instruction::And: 9332 case Instruction::Or: 9333 case Instruction::Xor: { 9334 // Just widen unops and binops. 9335 State.ILV->setDebugLocFromInst(&I); 9336 9337 for (unsigned Part = 0; Part < State.UF; ++Part) { 9338 SmallVector<Value *, 2> Ops; 9339 for (VPValue *VPOp : operands()) 9340 Ops.push_back(State.get(VPOp, Part)); 9341 9342 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9343 9344 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9345 VecOp->copyIRFlags(&I); 9346 9347 // If the instruction is vectorized and was in a basic block that needed 9348 // predication, we can't propagate poison-generating flags (nuw/nsw, 9349 // exact, etc.). The control flow has been linearized and the 9350 // instruction is no longer guarded by the predicate, which could make 9351 // the flag properties to no longer hold. 9352 if (State.MayGeneratePoisonRecipes.contains(this)) 9353 VecOp->dropPoisonGeneratingFlags(); 9354 } 9355 9356 // Use this vector value for all users of the original instruction. 9357 State.set(this, V, Part); 9358 State.ILV->addMetadata(V, &I); 9359 } 9360 9361 break; 9362 } 9363 case Instruction::ICmp: 9364 case Instruction::FCmp: { 9365 // Widen compares. Generate vector compares. 9366 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9367 auto *Cmp = cast<CmpInst>(&I); 9368 State.ILV->setDebugLocFromInst(Cmp); 9369 for (unsigned Part = 0; Part < State.UF; ++Part) { 9370 Value *A = State.get(getOperand(0), Part); 9371 Value *B = State.get(getOperand(1), Part); 9372 Value *C = nullptr; 9373 if (FCmp) { 9374 // Propagate fast math flags. 9375 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9376 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9377 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9378 } else { 9379 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9380 } 9381 State.set(this, C, Part); 9382 State.ILV->addMetadata(C, &I); 9383 } 9384 9385 break; 9386 } 9387 9388 case Instruction::ZExt: 9389 case Instruction::SExt: 9390 case Instruction::FPToUI: 9391 case Instruction::FPToSI: 9392 case Instruction::FPExt: 9393 case Instruction::PtrToInt: 9394 case Instruction::IntToPtr: 9395 case Instruction::SIToFP: 9396 case Instruction::UIToFP: 9397 case Instruction::Trunc: 9398 case Instruction::FPTrunc: 9399 case Instruction::BitCast: { 9400 auto *CI = cast<CastInst>(&I); 9401 State.ILV->setDebugLocFromInst(CI); 9402 9403 /// Vectorize casts. 9404 Type *DestTy = (State.VF.isScalar()) 9405 ? CI->getType() 9406 : VectorType::get(CI->getType(), State.VF); 9407 9408 for (unsigned Part = 0; Part < State.UF; ++Part) { 9409 Value *A = State.get(getOperand(0), Part); 9410 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9411 State.set(this, Cast, Part); 9412 State.ILV->addMetadata(Cast, &I); 9413 } 9414 break; 9415 } 9416 default: 9417 // This instruction is not vectorized by simple widening. 9418 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9419 llvm_unreachable("Unhandled instruction!"); 9420 } // end of switch. 9421 } 9422 9423 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9424 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9425 // Construct a vector GEP by widening the operands of the scalar GEP as 9426 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9427 // results in a vector of pointers when at least one operand of the GEP 9428 // is vector-typed. Thus, to keep the representation compact, we only use 9429 // vector-typed operands for loop-varying values. 9430 9431 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9432 // If we are vectorizing, but the GEP has only loop-invariant operands, 9433 // the GEP we build (by only using vector-typed operands for 9434 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9435 // produce a vector of pointers, we need to either arbitrarily pick an 9436 // operand to broadcast, or broadcast a clone of the original GEP. 9437 // Here, we broadcast a clone of the original. 9438 // 9439 // TODO: If at some point we decide to scalarize instructions having 9440 // loop-invariant operands, this special case will no longer be 9441 // required. We would add the scalarization decision to 9442 // collectLoopScalars() and teach getVectorValue() to broadcast 9443 // the lane-zero scalar value. 9444 auto *Clone = State.Builder.Insert(GEP->clone()); 9445 for (unsigned Part = 0; Part < State.UF; ++Part) { 9446 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9447 State.set(this, EntryPart, Part); 9448 State.ILV->addMetadata(EntryPart, GEP); 9449 } 9450 } else { 9451 // If the GEP has at least one loop-varying operand, we are sure to 9452 // produce a vector of pointers. But if we are only unrolling, we want 9453 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9454 // produce with the code below will be scalar (if VF == 1) or vector 9455 // (otherwise). Note that for the unroll-only case, we still maintain 9456 // values in the vector mapping with initVector, as we do for other 9457 // instructions. 9458 for (unsigned Part = 0; Part < State.UF; ++Part) { 9459 // The pointer operand of the new GEP. If it's loop-invariant, we 9460 // won't broadcast it. 9461 auto *Ptr = IsPtrLoopInvariant 9462 ? State.get(getOperand(0), VPIteration(0, 0)) 9463 : State.get(getOperand(0), Part); 9464 9465 // Collect all the indices for the new GEP. If any index is 9466 // loop-invariant, we won't broadcast it. 9467 SmallVector<Value *, 4> Indices; 9468 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9469 VPValue *Operand = getOperand(I); 9470 if (IsIndexLoopInvariant[I - 1]) 9471 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9472 else 9473 Indices.push_back(State.get(Operand, Part)); 9474 } 9475 9476 // If the GEP instruction is vectorized and was in a basic block that 9477 // needed predication, we can't propagate the poison-generating 'inbounds' 9478 // flag. The control flow has been linearized and the GEP is no longer 9479 // guarded by the predicate, which could make the 'inbounds' properties to 9480 // no longer hold. 9481 bool IsInBounds = 9482 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9483 9484 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9485 // but it should be a vector, otherwise. 9486 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr, 9487 Indices, "", IsInBounds); 9488 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9489 "NewGEP is not a pointer vector"); 9490 State.set(this, NewGEP, Part); 9491 State.ILV->addMetadata(NewGEP, GEP); 9492 } 9493 } 9494 } 9495 9496 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9497 assert(!State.Instance && "Int or FP induction being replicated."); 9498 9499 Value *Start = getStartValue()->getLiveInIRValue(); 9500 const InductionDescriptor &ID = getInductionDescriptor(); 9501 TruncInst *Trunc = getTruncInst(); 9502 IRBuilderBase &Builder = State.Builder; 9503 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9504 assert(State.VF.isVector() && "must have vector VF"); 9505 9506 // The value from the original loop to which we are mapping the new induction 9507 // variable. 9508 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9509 9510 // Fast-math-flags propagate from the original induction instruction. 9511 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9512 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9513 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9514 9515 // Now do the actual transformations, and start with fetching the step value. 9516 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9517 9518 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9519 "Expected either an induction phi-node or a truncate of it!"); 9520 9521 // Construct the initial value of the vector IV in the vector loop preheader 9522 auto CurrIP = Builder.saveIP(); 9523 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9524 Builder.SetInsertPoint(VectorPH->getTerminator()); 9525 if (isa<TruncInst>(EntryVal)) { 9526 assert(Start->getType()->isIntegerTy() && 9527 "Truncation requires an integer type"); 9528 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9529 Step = Builder.CreateTrunc(Step, TruncType); 9530 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9531 } 9532 9533 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9534 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9535 Value *SteppedStart = getStepVector( 9536 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9537 9538 // We create vector phi nodes for both integer and floating-point induction 9539 // variables. Here, we determine the kind of arithmetic we will perform. 9540 Instruction::BinaryOps AddOp; 9541 Instruction::BinaryOps MulOp; 9542 if (Step->getType()->isIntegerTy()) { 9543 AddOp = Instruction::Add; 9544 MulOp = Instruction::Mul; 9545 } else { 9546 AddOp = ID.getInductionOpcode(); 9547 MulOp = Instruction::FMul; 9548 } 9549 9550 // Multiply the vectorization factor by the step using integer or 9551 // floating-point arithmetic as appropriate. 9552 Type *StepType = Step->getType(); 9553 Value *RuntimeVF; 9554 if (Step->getType()->isFloatingPointTy()) 9555 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9556 else 9557 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9558 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9559 9560 // Create a vector splat to use in the induction update. 9561 // 9562 // FIXME: If the step is non-constant, we create the vector splat with 9563 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9564 // handle a constant vector splat. 9565 Value *SplatVF = isa<Constant>(Mul) 9566 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9567 : Builder.CreateVectorSplat(State.VF, Mul); 9568 Builder.restoreIP(CurrIP); 9569 9570 // We may need to add the step a number of times, depending on the unroll 9571 // factor. The last of those goes into the PHI. 9572 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9573 &*State.CFG.PrevBB->getFirstInsertionPt()); 9574 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9575 Instruction *LastInduction = VecInd; 9576 for (unsigned Part = 0; Part < State.UF; ++Part) { 9577 State.set(this, LastInduction, Part); 9578 9579 if (isa<TruncInst>(EntryVal)) 9580 State.ILV->addMetadata(LastInduction, EntryVal); 9581 9582 LastInduction = cast<Instruction>( 9583 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9584 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9585 } 9586 9587 LastInduction->setName("vec.ind.next"); 9588 VecInd->addIncoming(SteppedStart, VectorPH); 9589 // Add induction update using an incorrect block temporarily. The phi node 9590 // will be fixed after VPlan execution. Note that at this point the latch 9591 // block cannot be used, as it does not exist yet. 9592 // TODO: Model increment value in VPlan, by turning the recipe into a 9593 // multi-def and a subclass of VPHeaderPHIRecipe. 9594 VecInd->addIncoming(LastInduction, VectorPH); 9595 } 9596 9597 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9598 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9599 "Not a pointer induction according to InductionDescriptor!"); 9600 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9601 "Unexpected type."); 9602 9603 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9604 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9605 9606 if (all_of(users(), [this](const VPUser *U) { 9607 return cast<VPRecipeBase>(U)->usesScalars(this); 9608 })) { 9609 // This is the normalized GEP that starts counting at zero. 9610 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9611 CanonicalIV, IndDesc.getStep()->getType()); 9612 // Determine the number of scalars we need to generate for each unroll 9613 // iteration. If the instruction is uniform, we only need to generate the 9614 // first lane. Otherwise, we generate all VF values. 9615 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9616 assert((IsUniform || !State.VF.isScalable()) && 9617 "Cannot scalarize a scalable VF"); 9618 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9619 9620 for (unsigned Part = 0; Part < State.UF; ++Part) { 9621 Value *PartStart = 9622 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9623 9624 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9625 Value *Idx = State.Builder.CreateAdd( 9626 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9627 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9628 9629 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9630 State.CFG.PrevBB->getTerminator()); 9631 Value *SclrGep = emitTransformedIndex( 9632 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9633 SclrGep->setName("next.gep"); 9634 State.set(this, SclrGep, VPIteration(Part, Lane)); 9635 } 9636 } 9637 return; 9638 } 9639 9640 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9641 "Induction step not a SCEV constant!"); 9642 Type *PhiType = IndDesc.getStep()->getType(); 9643 9644 // Build a pointer phi 9645 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9646 Type *ScStValueType = ScalarStartValue->getType(); 9647 PHINode *NewPointerPhi = 9648 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9649 9650 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9651 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9652 9653 // A pointer induction, performed by using a gep 9654 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9655 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9656 9657 const SCEV *ScalarStep = IndDesc.getStep(); 9658 SCEVExpander Exp(SE, DL, "induction"); 9659 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9660 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9661 Value *NumUnrolledElems = 9662 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9663 Value *InductionGEP = GetElementPtrInst::Create( 9664 IndDesc.getElementType(), NewPointerPhi, 9665 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9666 InductionLoc); 9667 // Add induction update using an incorrect block temporarily. The phi node 9668 // will be fixed after VPlan execution. Note that at this point the latch 9669 // block cannot be used, as it does not exist yet. 9670 // TODO: Model increment value in VPlan, by turning the recipe into a 9671 // multi-def and a subclass of VPHeaderPHIRecipe. 9672 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9673 9674 // Create UF many actual address geps that use the pointer 9675 // phi as base and a vectorized version of the step value 9676 // (<step*0, ..., step*N>) as offset. 9677 for (unsigned Part = 0; Part < State.UF; ++Part) { 9678 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9679 Value *StartOffsetScalar = 9680 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9681 Value *StartOffset = 9682 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9683 // Create a vector of consecutive numbers from zero to VF. 9684 StartOffset = State.Builder.CreateAdd( 9685 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9686 9687 Value *GEP = State.Builder.CreateGEP( 9688 IndDesc.getElementType(), NewPointerPhi, 9689 State.Builder.CreateMul( 9690 StartOffset, 9691 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9692 "vector.gep")); 9693 State.set(this, GEP, Part); 9694 } 9695 } 9696 9697 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9698 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9699 9700 // Fast-math-flags propagate from the original induction instruction. 9701 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9702 if (IndDesc.getInductionBinOp() && 9703 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9704 State.Builder.setFastMathFlags( 9705 IndDesc.getInductionBinOp()->getFastMathFlags()); 9706 9707 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9708 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9709 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9710 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9711 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9712 ScalarIV = 9713 Ty->isIntegerTy() 9714 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9715 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9716 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9717 getStartValue()->getLiveInIRValue(), Step, 9718 IndDesc); 9719 ScalarIV->setName("offset.idx"); 9720 } 9721 if (TruncToTy) { 9722 assert(Step->getType()->isIntegerTy() && 9723 "Truncation requires an integer step"); 9724 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9725 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9726 } 9727 return ScalarIV; 9728 }; 9729 9730 Value *ScalarIV = CreateScalarIV(Step); 9731 if (State.VF.isVector()) { 9732 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9733 return; 9734 } 9735 9736 for (unsigned Part = 0; Part < State.UF; ++Part) { 9737 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9738 Value *EntryPart; 9739 if (Step->getType()->isFloatingPointTy()) { 9740 Value *StartIdx = 9741 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9742 // Floating-point operations inherit FMF via the builder's flags. 9743 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9744 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9745 ScalarIV, MulOp); 9746 } else { 9747 Value *StartIdx = 9748 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9749 EntryPart = State.Builder.CreateAdd( 9750 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9751 } 9752 State.set(this, EntryPart, Part); 9753 } 9754 } 9755 9756 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9757 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9758 State); 9759 } 9760 9761 void VPBlendRecipe::execute(VPTransformState &State) { 9762 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9763 // We know that all PHIs in non-header blocks are converted into 9764 // selects, so we don't have to worry about the insertion order and we 9765 // can just use the builder. 9766 // At this point we generate the predication tree. There may be 9767 // duplications since this is a simple recursive scan, but future 9768 // optimizations will clean it up. 9769 9770 unsigned NumIncoming = getNumIncomingValues(); 9771 9772 // Generate a sequence of selects of the form: 9773 // SELECT(Mask3, In3, 9774 // SELECT(Mask2, In2, 9775 // SELECT(Mask1, In1, 9776 // In0))) 9777 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9778 // are essentially undef are taken from In0. 9779 InnerLoopVectorizer::VectorParts Entry(State.UF); 9780 for (unsigned In = 0; In < NumIncoming; ++In) { 9781 for (unsigned Part = 0; Part < State.UF; ++Part) { 9782 // We might have single edge PHIs (blocks) - use an identity 9783 // 'select' for the first PHI operand. 9784 Value *In0 = State.get(getIncomingValue(In), Part); 9785 if (In == 0) 9786 Entry[Part] = In0; // Initialize with the first incoming value. 9787 else { 9788 // Select between the current value and the previous incoming edge 9789 // based on the incoming mask. 9790 Value *Cond = State.get(getMask(In), Part); 9791 Entry[Part] = 9792 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9793 } 9794 } 9795 } 9796 for (unsigned Part = 0; Part < State.UF; ++Part) 9797 State.set(this, Entry[Part], Part); 9798 } 9799 9800 void VPInterleaveRecipe::execute(VPTransformState &State) { 9801 assert(!State.Instance && "Interleave group being replicated."); 9802 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9803 getStoredValues(), getMask()); 9804 } 9805 9806 void VPReductionRecipe::execute(VPTransformState &State) { 9807 assert(!State.Instance && "Reduction being replicated."); 9808 Value *PrevInChain = State.get(getChainOp(), 0); 9809 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9810 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9811 // Propagate the fast-math flags carried by the underlying instruction. 9812 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9813 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9814 for (unsigned Part = 0; Part < State.UF; ++Part) { 9815 Value *NewVecOp = State.get(getVecOp(), Part); 9816 if (VPValue *Cond = getCondOp()) { 9817 Value *NewCond = State.get(Cond, Part); 9818 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9819 Value *Iden = RdxDesc->getRecurrenceIdentity( 9820 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9821 Value *IdenVec = 9822 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9823 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9824 NewVecOp = Select; 9825 } 9826 Value *NewRed; 9827 Value *NextInChain; 9828 if (IsOrdered) { 9829 if (State.VF.isVector()) 9830 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9831 PrevInChain); 9832 else 9833 NewRed = State.Builder.CreateBinOp( 9834 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9835 NewVecOp); 9836 PrevInChain = NewRed; 9837 } else { 9838 PrevInChain = State.get(getChainOp(), Part); 9839 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9840 } 9841 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9842 NextInChain = 9843 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9844 NewRed, PrevInChain); 9845 } else if (IsOrdered) 9846 NextInChain = NewRed; 9847 else 9848 NextInChain = State.Builder.CreateBinOp( 9849 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9850 PrevInChain); 9851 State.set(this, NextInChain, Part); 9852 } 9853 } 9854 9855 void VPReplicateRecipe::execute(VPTransformState &State) { 9856 if (State.Instance) { // Generate a single instance. 9857 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9858 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9859 IsPredicated, State); 9860 // Insert scalar instance packing it into a vector. 9861 if (AlsoPack && State.VF.isVector()) { 9862 // If we're constructing lane 0, initialize to start from poison. 9863 if (State.Instance->Lane.isFirstLane()) { 9864 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9865 Value *Poison = PoisonValue::get( 9866 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9867 State.set(this, Poison, State.Instance->Part); 9868 } 9869 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9870 } 9871 return; 9872 } 9873 9874 // Generate scalar instances for all VF lanes of all UF parts, unless the 9875 // instruction is uniform inwhich case generate only the first lane for each 9876 // of the UF parts. 9877 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9878 assert((!State.VF.isScalable() || IsUniform) && 9879 "Can't scalarize a scalable vector"); 9880 for (unsigned Part = 0; Part < State.UF; ++Part) 9881 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9882 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9883 VPIteration(Part, Lane), IsPredicated, 9884 State); 9885 } 9886 9887 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9888 assert(State.Instance && "Branch on Mask works only on single instance."); 9889 9890 unsigned Part = State.Instance->Part; 9891 unsigned Lane = State.Instance->Lane.getKnownLane(); 9892 9893 Value *ConditionBit = nullptr; 9894 VPValue *BlockInMask = getMask(); 9895 if (BlockInMask) { 9896 ConditionBit = State.get(BlockInMask, Part); 9897 if (ConditionBit->getType()->isVectorTy()) 9898 ConditionBit = State.Builder.CreateExtractElement( 9899 ConditionBit, State.Builder.getInt32(Lane)); 9900 } else // Block in mask is all-one. 9901 ConditionBit = State.Builder.getTrue(); 9902 9903 // Replace the temporary unreachable terminator with a new conditional branch, 9904 // whose two destinations will be set later when they are created. 9905 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9906 assert(isa<UnreachableInst>(CurrentTerminator) && 9907 "Expected to replace unreachable terminator with conditional branch."); 9908 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9909 CondBr->setSuccessor(0, nullptr); 9910 ReplaceInstWithInst(CurrentTerminator, CondBr); 9911 } 9912 9913 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9914 assert(State.Instance && "Predicated instruction PHI works per instance."); 9915 Instruction *ScalarPredInst = 9916 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9917 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9918 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9919 assert(PredicatingBB && "Predicated block has no single predecessor."); 9920 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9921 "operand must be VPReplicateRecipe"); 9922 9923 // By current pack/unpack logic we need to generate only a single phi node: if 9924 // a vector value for the predicated instruction exists at this point it means 9925 // the instruction has vector users only, and a phi for the vector value is 9926 // needed. In this case the recipe of the predicated instruction is marked to 9927 // also do that packing, thereby "hoisting" the insert-element sequence. 9928 // Otherwise, a phi node for the scalar value is needed. 9929 unsigned Part = State.Instance->Part; 9930 if (State.hasVectorValue(getOperand(0), Part)) { 9931 Value *VectorValue = State.get(getOperand(0), Part); 9932 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9933 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9934 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9935 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9936 if (State.hasVectorValue(this, Part)) 9937 State.reset(this, VPhi, Part); 9938 else 9939 State.set(this, VPhi, Part); 9940 // NOTE: Currently we need to update the value of the operand, so the next 9941 // predicated iteration inserts its generated value in the correct vector. 9942 State.reset(getOperand(0), VPhi, Part); 9943 } else { 9944 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9945 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9946 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9947 PredicatingBB); 9948 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9949 if (State.hasScalarValue(this, *State.Instance)) 9950 State.reset(this, Phi, *State.Instance); 9951 else 9952 State.set(this, Phi, *State.Instance); 9953 // NOTE: Currently we need to update the value of the operand, so the next 9954 // predicated iteration inserts its generated value in the correct vector. 9955 State.reset(getOperand(0), Phi, *State.Instance); 9956 } 9957 } 9958 9959 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9960 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9961 9962 // Attempt to issue a wide load. 9963 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9964 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9965 9966 assert((LI || SI) && "Invalid Load/Store instruction"); 9967 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9968 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9969 9970 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9971 9972 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9973 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9974 bool CreateGatherScatter = !Consecutive; 9975 9976 auto &Builder = State.Builder; 9977 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9978 bool isMaskRequired = getMask(); 9979 if (isMaskRequired) 9980 for (unsigned Part = 0; Part < State.UF; ++Part) 9981 BlockInMaskParts[Part] = State.get(getMask(), Part); 9982 9983 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9984 // Calculate the pointer for the specific unroll-part. 9985 GetElementPtrInst *PartPtr = nullptr; 9986 9987 bool InBounds = false; 9988 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9989 InBounds = gep->isInBounds(); 9990 if (Reverse) { 9991 // If the address is consecutive but reversed, then the 9992 // wide store needs to start at the last vector element. 9993 // RunTimeVF = VScale * VF.getKnownMinValue() 9994 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9995 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9996 // NumElt = -Part * RunTimeVF 9997 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9998 // LastLane = 1 - RunTimeVF 9999 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 10000 PartPtr = 10001 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 10002 PartPtr->setIsInBounds(InBounds); 10003 PartPtr = cast<GetElementPtrInst>( 10004 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 10005 PartPtr->setIsInBounds(InBounds); 10006 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 10007 BlockInMaskParts[Part] = 10008 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 10009 } else { 10010 Value *Increment = 10011 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10012 PartPtr = cast<GetElementPtrInst>( 10013 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10014 PartPtr->setIsInBounds(InBounds); 10015 } 10016 10017 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10018 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10019 }; 10020 10021 // Handle Stores: 10022 if (SI) { 10023 State.ILV->setDebugLocFromInst(SI); 10024 10025 for (unsigned Part = 0; Part < State.UF; ++Part) { 10026 Instruction *NewSI = nullptr; 10027 Value *StoredVal = State.get(StoredValue, Part); 10028 if (CreateGatherScatter) { 10029 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10030 Value *VectorGep = State.get(getAddr(), Part); 10031 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10032 MaskPart); 10033 } else { 10034 if (Reverse) { 10035 // If we store to reverse consecutive memory locations, then we need 10036 // to reverse the order of elements in the stored value. 10037 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10038 // We don't want to update the value in the map as it might be used in 10039 // another expression. So don't call resetVectorValue(StoredVal). 10040 } 10041 auto *VecPtr = 10042 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10043 if (isMaskRequired) 10044 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10045 BlockInMaskParts[Part]); 10046 else 10047 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10048 } 10049 State.ILV->addMetadata(NewSI, SI); 10050 } 10051 return; 10052 } 10053 10054 // Handle loads. 10055 assert(LI && "Must have a load instruction"); 10056 State.ILV->setDebugLocFromInst(LI); 10057 for (unsigned Part = 0; Part < State.UF; ++Part) { 10058 Value *NewLI; 10059 if (CreateGatherScatter) { 10060 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10061 Value *VectorGep = State.get(getAddr(), Part); 10062 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10063 nullptr, "wide.masked.gather"); 10064 State.ILV->addMetadata(NewLI, LI); 10065 } else { 10066 auto *VecPtr = 10067 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10068 if (isMaskRequired) 10069 NewLI = Builder.CreateMaskedLoad( 10070 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10071 PoisonValue::get(DataTy), "wide.masked.load"); 10072 else 10073 NewLI = 10074 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10075 10076 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10077 State.ILV->addMetadata(NewLI, LI); 10078 if (Reverse) 10079 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10080 } 10081 10082 State.set(this, NewLI, Part); 10083 } 10084 } 10085 10086 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10087 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10088 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10089 // for predication. 10090 static ScalarEpilogueLowering getScalarEpilogueLowering( 10091 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10092 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10093 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10094 LoopVectorizationLegality &LVL) { 10095 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10096 // don't look at hints or options, and don't request a scalar epilogue. 10097 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10098 // LoopAccessInfo (due to code dependency and not being able to reliably get 10099 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10100 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10101 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10102 // back to the old way and vectorize with versioning when forced. See D81345.) 10103 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10104 PGSOQueryType::IRPass) && 10105 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10106 return CM_ScalarEpilogueNotAllowedOptSize; 10107 10108 // 2) If set, obey the directives 10109 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10110 switch (PreferPredicateOverEpilogue) { 10111 case PreferPredicateTy::ScalarEpilogue: 10112 return CM_ScalarEpilogueAllowed; 10113 case PreferPredicateTy::PredicateElseScalarEpilogue: 10114 return CM_ScalarEpilogueNotNeededUsePredicate; 10115 case PreferPredicateTy::PredicateOrDontVectorize: 10116 return CM_ScalarEpilogueNotAllowedUsePredicate; 10117 }; 10118 } 10119 10120 // 3) If set, obey the hints 10121 switch (Hints.getPredicate()) { 10122 case LoopVectorizeHints::FK_Enabled: 10123 return CM_ScalarEpilogueNotNeededUsePredicate; 10124 case LoopVectorizeHints::FK_Disabled: 10125 return CM_ScalarEpilogueAllowed; 10126 }; 10127 10128 // 4) if the TTI hook indicates this is profitable, request predication. 10129 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10130 LVL.getLAI())) 10131 return CM_ScalarEpilogueNotNeededUsePredicate; 10132 10133 return CM_ScalarEpilogueAllowed; 10134 } 10135 10136 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10137 // If Values have been set for this Def return the one relevant for \p Part. 10138 if (hasVectorValue(Def, Part)) 10139 return Data.PerPartOutput[Def][Part]; 10140 10141 if (!hasScalarValue(Def, {Part, 0})) { 10142 Value *IRV = Def->getLiveInIRValue(); 10143 Value *B = ILV->getBroadcastInstrs(IRV); 10144 set(Def, B, Part); 10145 return B; 10146 } 10147 10148 Value *ScalarValue = get(Def, {Part, 0}); 10149 // If we aren't vectorizing, we can just copy the scalar map values over 10150 // to the vector map. 10151 if (VF.isScalar()) { 10152 set(Def, ScalarValue, Part); 10153 return ScalarValue; 10154 } 10155 10156 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10157 bool IsUniform = RepR && RepR->isUniform(); 10158 10159 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10160 // Check if there is a scalar value for the selected lane. 10161 if (!hasScalarValue(Def, {Part, LastLane})) { 10162 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10163 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10164 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10165 "unexpected recipe found to be invariant"); 10166 IsUniform = true; 10167 LastLane = 0; 10168 } 10169 10170 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10171 // Set the insert point after the last scalarized instruction or after the 10172 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10173 // will directly follow the scalar definitions. 10174 auto OldIP = Builder.saveIP(); 10175 auto NewIP = 10176 isa<PHINode>(LastInst) 10177 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10178 : std::next(BasicBlock::iterator(LastInst)); 10179 Builder.SetInsertPoint(&*NewIP); 10180 10181 // However, if we are vectorizing, we need to construct the vector values. 10182 // If the value is known to be uniform after vectorization, we can just 10183 // broadcast the scalar value corresponding to lane zero for each unroll 10184 // iteration. Otherwise, we construct the vector values using 10185 // insertelement instructions. Since the resulting vectors are stored in 10186 // State, we will only generate the insertelements once. 10187 Value *VectorValue = nullptr; 10188 if (IsUniform) { 10189 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10190 set(Def, VectorValue, Part); 10191 } else { 10192 // Initialize packing with insertelements to start from undef. 10193 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10194 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10195 set(Def, Undef, Part); 10196 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10197 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10198 VectorValue = get(Def, Part); 10199 } 10200 Builder.restoreIP(OldIP); 10201 return VectorValue; 10202 } 10203 10204 // Process the loop in the VPlan-native vectorization path. This path builds 10205 // VPlan upfront in the vectorization pipeline, which allows to apply 10206 // VPlan-to-VPlan transformations from the very beginning without modifying the 10207 // input LLVM IR. 10208 static bool processLoopInVPlanNativePath( 10209 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10210 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10211 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10212 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10213 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10214 LoopVectorizationRequirements &Requirements) { 10215 10216 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10217 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10218 return false; 10219 } 10220 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10221 Function *F = L->getHeader()->getParent(); 10222 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10223 10224 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10225 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10226 10227 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10228 &Hints, IAI); 10229 // Use the planner for outer loop vectorization. 10230 // TODO: CM is not used at this point inside the planner. Turn CM into an 10231 // optional argument if we don't need it in the future. 10232 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10233 Requirements, ORE); 10234 10235 // Get user vectorization factor. 10236 ElementCount UserVF = Hints.getWidth(); 10237 10238 CM.collectElementTypesForWidening(); 10239 10240 // Plan how to best vectorize, return the best VF and its cost. 10241 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10242 10243 // If we are stress testing VPlan builds, do not attempt to generate vector 10244 // code. Masked vector code generation support will follow soon. 10245 // Also, do not attempt to vectorize if no vector code will be produced. 10246 if (VPlanBuildStressTest || EnableVPlanPredication || 10247 VectorizationFactor::Disabled() == VF) 10248 return false; 10249 10250 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10251 10252 { 10253 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10254 F->getParent()->getDataLayout()); 10255 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10256 &CM, BFI, PSI, Checks); 10257 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10258 << L->getHeader()->getParent()->getName() << "\"\n"); 10259 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10260 } 10261 10262 // Mark the loop as already vectorized to avoid vectorizing again. 10263 Hints.setAlreadyVectorized(); 10264 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10265 return true; 10266 } 10267 10268 // Emit a remark if there are stores to floats that required a floating point 10269 // extension. If the vectorized loop was generated with floating point there 10270 // will be a performance penalty from the conversion overhead and the change in 10271 // the vector width. 10272 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10273 SmallVector<Instruction *, 4> Worklist; 10274 for (BasicBlock *BB : L->getBlocks()) { 10275 for (Instruction &Inst : *BB) { 10276 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10277 if (S->getValueOperand()->getType()->isFloatTy()) 10278 Worklist.push_back(S); 10279 } 10280 } 10281 } 10282 10283 // Traverse the floating point stores upwards searching, for floating point 10284 // conversions. 10285 SmallPtrSet<const Instruction *, 4> Visited; 10286 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10287 while (!Worklist.empty()) { 10288 auto *I = Worklist.pop_back_val(); 10289 if (!L->contains(I)) 10290 continue; 10291 if (!Visited.insert(I).second) 10292 continue; 10293 10294 // Emit a remark if the floating point store required a floating 10295 // point conversion. 10296 // TODO: More work could be done to identify the root cause such as a 10297 // constant or a function return type and point the user to it. 10298 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10299 ORE->emit([&]() { 10300 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10301 I->getDebugLoc(), L->getHeader()) 10302 << "floating point conversion changes vector width. " 10303 << "Mixed floating point precision requires an up/down " 10304 << "cast that will negatively impact performance."; 10305 }); 10306 10307 for (Use &Op : I->operands()) 10308 if (auto *OpI = dyn_cast<Instruction>(Op)) 10309 Worklist.push_back(OpI); 10310 } 10311 } 10312 10313 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10314 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10315 !EnableLoopInterleaving), 10316 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10317 !EnableLoopVectorization) {} 10318 10319 bool LoopVectorizePass::processLoop(Loop *L) { 10320 assert((EnableVPlanNativePath || L->isInnermost()) && 10321 "VPlan-native path is not enabled. Only process inner loops."); 10322 10323 #ifndef NDEBUG 10324 const std::string DebugLocStr = getDebugLocString(L); 10325 #endif /* NDEBUG */ 10326 10327 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10328 << L->getHeader()->getParent()->getName() << "' from " 10329 << DebugLocStr << "\n"); 10330 10331 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10332 10333 LLVM_DEBUG( 10334 dbgs() << "LV: Loop hints:" 10335 << " force=" 10336 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10337 ? "disabled" 10338 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10339 ? "enabled" 10340 : "?")) 10341 << " width=" << Hints.getWidth() 10342 << " interleave=" << Hints.getInterleave() << "\n"); 10343 10344 // Function containing loop 10345 Function *F = L->getHeader()->getParent(); 10346 10347 // Looking at the diagnostic output is the only way to determine if a loop 10348 // was vectorized (other than looking at the IR or machine code), so it 10349 // is important to generate an optimization remark for each loop. Most of 10350 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10351 // generated as OptimizationRemark and OptimizationRemarkMissed are 10352 // less verbose reporting vectorized loops and unvectorized loops that may 10353 // benefit from vectorization, respectively. 10354 10355 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10356 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10357 return false; 10358 } 10359 10360 PredicatedScalarEvolution PSE(*SE, *L); 10361 10362 // Check if it is legal to vectorize the loop. 10363 LoopVectorizationRequirements Requirements; 10364 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10365 &Requirements, &Hints, DB, AC, BFI, PSI); 10366 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10367 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10368 Hints.emitRemarkWithHints(); 10369 return false; 10370 } 10371 10372 // Check the function attributes and profiles to find out if this function 10373 // should be optimized for size. 10374 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10375 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10376 10377 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10378 // here. They may require CFG and instruction level transformations before 10379 // even evaluating whether vectorization is profitable. Since we cannot modify 10380 // the incoming IR, we need to build VPlan upfront in the vectorization 10381 // pipeline. 10382 if (!L->isInnermost()) 10383 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10384 ORE, BFI, PSI, Hints, Requirements); 10385 10386 assert(L->isInnermost() && "Inner loop expected."); 10387 10388 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10389 // count by optimizing for size, to minimize overheads. 10390 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10391 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10392 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10393 << "This loop is worth vectorizing only if no scalar " 10394 << "iteration overheads are incurred."); 10395 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10396 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10397 else { 10398 LLVM_DEBUG(dbgs() << "\n"); 10399 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10400 } 10401 } 10402 10403 // Check the function attributes to see if implicit floats are allowed. 10404 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10405 // an integer loop and the vector instructions selected are purely integer 10406 // vector instructions? 10407 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10408 reportVectorizationFailure( 10409 "Can't vectorize when the NoImplicitFloat attribute is used", 10410 "loop not vectorized due to NoImplicitFloat attribute", 10411 "NoImplicitFloat", ORE, L); 10412 Hints.emitRemarkWithHints(); 10413 return false; 10414 } 10415 10416 // Check if the target supports potentially unsafe FP vectorization. 10417 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10418 // for the target we're vectorizing for, to make sure none of the 10419 // additional fp-math flags can help. 10420 if (Hints.isPotentiallyUnsafe() && 10421 TTI->isFPVectorizationPotentiallyUnsafe()) { 10422 reportVectorizationFailure( 10423 "Potentially unsafe FP op prevents vectorization", 10424 "loop not vectorized due to unsafe FP support.", 10425 "UnsafeFP", ORE, L); 10426 Hints.emitRemarkWithHints(); 10427 return false; 10428 } 10429 10430 bool AllowOrderedReductions; 10431 // If the flag is set, use that instead and override the TTI behaviour. 10432 if (ForceOrderedReductions.getNumOccurrences() > 0) 10433 AllowOrderedReductions = ForceOrderedReductions; 10434 else 10435 AllowOrderedReductions = TTI->enableOrderedReductions(); 10436 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10437 ORE->emit([&]() { 10438 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10439 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10440 ExactFPMathInst->getDebugLoc(), 10441 ExactFPMathInst->getParent()) 10442 << "loop not vectorized: cannot prove it is safe to reorder " 10443 "floating-point operations"; 10444 }); 10445 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10446 "reorder floating-point operations\n"); 10447 Hints.emitRemarkWithHints(); 10448 return false; 10449 } 10450 10451 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10452 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10453 10454 // If an override option has been passed in for interleaved accesses, use it. 10455 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10456 UseInterleaved = EnableInterleavedMemAccesses; 10457 10458 // Analyze interleaved memory accesses. 10459 if (UseInterleaved) { 10460 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10461 } 10462 10463 // Use the cost model. 10464 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10465 F, &Hints, IAI); 10466 CM.collectValuesToIgnore(); 10467 CM.collectElementTypesForWidening(); 10468 10469 // Use the planner for vectorization. 10470 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10471 Requirements, ORE); 10472 10473 // Get user vectorization factor and interleave count. 10474 ElementCount UserVF = Hints.getWidth(); 10475 unsigned UserIC = Hints.getInterleave(); 10476 10477 // Plan how to best vectorize, return the best VF and its cost. 10478 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10479 10480 VectorizationFactor VF = VectorizationFactor::Disabled(); 10481 unsigned IC = 1; 10482 10483 if (MaybeVF) { 10484 VF = *MaybeVF; 10485 // Select the interleave count. 10486 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10487 } 10488 10489 // Identify the diagnostic messages that should be produced. 10490 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10491 bool VectorizeLoop = true, InterleaveLoop = true; 10492 if (VF.Width.isScalar()) { 10493 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10494 VecDiagMsg = std::make_pair( 10495 "VectorizationNotBeneficial", 10496 "the cost-model indicates that vectorization is not beneficial"); 10497 VectorizeLoop = false; 10498 } 10499 10500 if (!MaybeVF && UserIC > 1) { 10501 // Tell the user interleaving was avoided up-front, despite being explicitly 10502 // requested. 10503 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10504 "interleaving should be avoided up front\n"); 10505 IntDiagMsg = std::make_pair( 10506 "InterleavingAvoided", 10507 "Ignoring UserIC, because interleaving was avoided up front"); 10508 InterleaveLoop = false; 10509 } else if (IC == 1 && UserIC <= 1) { 10510 // Tell the user interleaving is not beneficial. 10511 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10512 IntDiagMsg = std::make_pair( 10513 "InterleavingNotBeneficial", 10514 "the cost-model indicates that interleaving is not beneficial"); 10515 InterleaveLoop = false; 10516 if (UserIC == 1) { 10517 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10518 IntDiagMsg.second += 10519 " and is explicitly disabled or interleave count is set to 1"; 10520 } 10521 } else if (IC > 1 && UserIC == 1) { 10522 // Tell the user interleaving is beneficial, but it explicitly disabled. 10523 LLVM_DEBUG( 10524 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10525 IntDiagMsg = std::make_pair( 10526 "InterleavingBeneficialButDisabled", 10527 "the cost-model indicates that interleaving is beneficial " 10528 "but is explicitly disabled or interleave count is set to 1"); 10529 InterleaveLoop = false; 10530 } 10531 10532 // Override IC if user provided an interleave count. 10533 IC = UserIC > 0 ? UserIC : IC; 10534 10535 // Emit diagnostic messages, if any. 10536 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10537 if (!VectorizeLoop && !InterleaveLoop) { 10538 // Do not vectorize or interleaving the loop. 10539 ORE->emit([&]() { 10540 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10541 L->getStartLoc(), L->getHeader()) 10542 << VecDiagMsg.second; 10543 }); 10544 ORE->emit([&]() { 10545 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10546 L->getStartLoc(), L->getHeader()) 10547 << IntDiagMsg.second; 10548 }); 10549 return false; 10550 } else if (!VectorizeLoop && InterleaveLoop) { 10551 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10552 ORE->emit([&]() { 10553 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10554 L->getStartLoc(), L->getHeader()) 10555 << VecDiagMsg.second; 10556 }); 10557 } else if (VectorizeLoop && !InterleaveLoop) { 10558 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10559 << ") in " << DebugLocStr << '\n'); 10560 ORE->emit([&]() { 10561 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10562 L->getStartLoc(), L->getHeader()) 10563 << IntDiagMsg.second; 10564 }); 10565 } else if (VectorizeLoop && InterleaveLoop) { 10566 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10567 << ") in " << DebugLocStr << '\n'); 10568 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10569 } 10570 10571 bool DisableRuntimeUnroll = false; 10572 MDNode *OrigLoopID = L->getLoopID(); 10573 { 10574 // Optimistically generate runtime checks. Drop them if they turn out to not 10575 // be profitable. Limit the scope of Checks, so the cleanup happens 10576 // immediately after vector codegeneration is done. 10577 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10578 F->getParent()->getDataLayout()); 10579 if (!VF.Width.isScalar() || IC > 1) 10580 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10581 10582 using namespace ore; 10583 if (!VectorizeLoop) { 10584 assert(IC > 1 && "interleave count should not be 1 or 0"); 10585 // If we decided that it is not legal to vectorize the loop, then 10586 // interleave it. 10587 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10588 &CM, BFI, PSI, Checks); 10589 10590 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10591 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10592 10593 ORE->emit([&]() { 10594 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10595 L->getHeader()) 10596 << "interleaved loop (interleaved count: " 10597 << NV("InterleaveCount", IC) << ")"; 10598 }); 10599 } else { 10600 // If we decided that it is *legal* to vectorize the loop, then do it. 10601 10602 // Consider vectorizing the epilogue too if it's profitable. 10603 VectorizationFactor EpilogueVF = 10604 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10605 if (EpilogueVF.Width.isVector()) { 10606 10607 // The first pass vectorizes the main loop and creates a scalar epilogue 10608 // to be vectorized by executing the plan (potentially with a different 10609 // factor) again shortly afterwards. 10610 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10611 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10612 EPI, &LVL, &CM, BFI, PSI, Checks); 10613 10614 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10615 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10616 DT); 10617 ++LoopsVectorized; 10618 10619 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10620 formLCSSARecursively(*L, *DT, LI, SE); 10621 10622 // Second pass vectorizes the epilogue and adjusts the control flow 10623 // edges from the first pass. 10624 EPI.MainLoopVF = EPI.EpilogueVF; 10625 EPI.MainLoopUF = EPI.EpilogueUF; 10626 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10627 ORE, EPI, &LVL, &CM, BFI, PSI, 10628 Checks); 10629 10630 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10631 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock()->setName( 10632 "vec.epilog.vector.body"); 10633 10634 // Ensure that the start values for any VPReductionPHIRecipes are 10635 // updated before vectorising the epilogue loop. 10636 VPBasicBlock *Header = 10637 BestEpiPlan.getVectorLoopRegion()->getEntryBasicBlock(); 10638 for (VPRecipeBase &R : Header->phis()) { 10639 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10640 if (auto *Resume = MainILV.getReductionResumeValue( 10641 ReductionPhi->getRecurrenceDescriptor())) { 10642 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10643 ReductionPhi->setOperand(0, StartVal); 10644 } 10645 } 10646 } 10647 10648 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10649 DT); 10650 ++LoopsEpilogueVectorized; 10651 10652 if (!MainILV.areSafetyChecksAdded()) 10653 DisableRuntimeUnroll = true; 10654 } else { 10655 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10656 &LVL, &CM, BFI, PSI, Checks); 10657 10658 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10659 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10660 ++LoopsVectorized; 10661 10662 // Add metadata to disable runtime unrolling a scalar loop when there 10663 // are no runtime checks about strides and memory. A scalar loop that is 10664 // rarely used is not worth unrolling. 10665 if (!LB.areSafetyChecksAdded()) 10666 DisableRuntimeUnroll = true; 10667 } 10668 // Report the vectorization decision. 10669 ORE->emit([&]() { 10670 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10671 L->getHeader()) 10672 << "vectorized loop (vectorization width: " 10673 << NV("VectorizationFactor", VF.Width) 10674 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10675 }); 10676 } 10677 10678 if (ORE->allowExtraAnalysis(LV_NAME)) 10679 checkMixedPrecision(L, ORE); 10680 } 10681 10682 Optional<MDNode *> RemainderLoopID = 10683 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10684 LLVMLoopVectorizeFollowupEpilogue}); 10685 if (RemainderLoopID.hasValue()) { 10686 L->setLoopID(RemainderLoopID.getValue()); 10687 } else { 10688 if (DisableRuntimeUnroll) 10689 AddRuntimeUnrollDisableMetaData(L); 10690 10691 // Mark the loop as already vectorized to avoid vectorizing again. 10692 Hints.setAlreadyVectorized(); 10693 } 10694 10695 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10696 return true; 10697 } 10698 10699 LoopVectorizeResult LoopVectorizePass::runImpl( 10700 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10701 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10702 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10703 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10704 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10705 SE = &SE_; 10706 LI = &LI_; 10707 TTI = &TTI_; 10708 DT = &DT_; 10709 BFI = &BFI_; 10710 TLI = TLI_; 10711 AA = &AA_; 10712 AC = &AC_; 10713 GetLAA = &GetLAA_; 10714 DB = &DB_; 10715 ORE = &ORE_; 10716 PSI = PSI_; 10717 10718 // Don't attempt if 10719 // 1. the target claims to have no vector registers, and 10720 // 2. interleaving won't help ILP. 10721 // 10722 // The second condition is necessary because, even if the target has no 10723 // vector registers, loop vectorization may still enable scalar 10724 // interleaving. 10725 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10726 TTI->getMaxInterleaveFactor(1) < 2) 10727 return LoopVectorizeResult(false, false); 10728 10729 bool Changed = false, CFGChanged = false; 10730 10731 // The vectorizer requires loops to be in simplified form. 10732 // Since simplification may add new inner loops, it has to run before the 10733 // legality and profitability checks. This means running the loop vectorizer 10734 // will simplify all loops, regardless of whether anything end up being 10735 // vectorized. 10736 for (auto &L : *LI) 10737 Changed |= CFGChanged |= 10738 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10739 10740 // Build up a worklist of inner-loops to vectorize. This is necessary as 10741 // the act of vectorizing or partially unrolling a loop creates new loops 10742 // and can invalidate iterators across the loops. 10743 SmallVector<Loop *, 8> Worklist; 10744 10745 for (Loop *L : *LI) 10746 collectSupportedLoops(*L, LI, ORE, Worklist); 10747 10748 LoopsAnalyzed += Worklist.size(); 10749 10750 // Now walk the identified inner loops. 10751 while (!Worklist.empty()) { 10752 Loop *L = Worklist.pop_back_val(); 10753 10754 // For the inner loops we actually process, form LCSSA to simplify the 10755 // transform. 10756 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10757 10758 Changed |= CFGChanged |= processLoop(L); 10759 } 10760 10761 // Process each loop nest in the function. 10762 return LoopVectorizeResult(Changed, CFGChanged); 10763 } 10764 10765 PreservedAnalyses LoopVectorizePass::run(Function &F, 10766 FunctionAnalysisManager &AM) { 10767 auto &LI = AM.getResult<LoopAnalysis>(F); 10768 // There are no loops in the function. Return before computing other expensive 10769 // analyses. 10770 if (LI.empty()) 10771 return PreservedAnalyses::all(); 10772 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10773 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10774 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10775 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10776 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10777 auto &AA = AM.getResult<AAManager>(F); 10778 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10779 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10780 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10781 10782 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10783 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10784 [&](Loop &L) -> const LoopAccessInfo & { 10785 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10786 TLI, TTI, nullptr, nullptr, nullptr}; 10787 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10788 }; 10789 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10790 ProfileSummaryInfo *PSI = 10791 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10792 LoopVectorizeResult Result = 10793 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10794 if (!Result.MadeAnyChange) 10795 return PreservedAnalyses::all(); 10796 PreservedAnalyses PA; 10797 10798 // We currently do not preserve loopinfo/dominator analyses with outer loop 10799 // vectorization. Until this is addressed, mark these analyses as preserved 10800 // only for non-VPlan-native path. 10801 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10802 if (!EnableVPlanNativePath) { 10803 PA.preserve<LoopAnalysis>(); 10804 PA.preserve<DominatorTreeAnalysis>(); 10805 } 10806 10807 if (Result.MadeCFGChange) { 10808 // Making CFG changes likely means a loop got vectorized. Indicate that 10809 // extra simplification passes should be run. 10810 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10811 // be run if runtime checks have been added. 10812 AM.getResult<ShouldRunExtraVectorPasses>(F); 10813 PA.preserve<ShouldRunExtraVectorPasses>(); 10814 } else { 10815 PA.preserveSet<CFGAnalyses>(); 10816 } 10817 return PA; 10818 } 10819 10820 void LoopVectorizePass::printPipeline( 10821 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10822 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10823 OS, MapClassName2PassName); 10824 10825 OS << "<"; 10826 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10827 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10828 OS << ">"; 10829 } 10830