1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallPtrSet.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/ADT/SmallVector.h" 64 #include "llvm/ADT/Statistic.h" 65 #include "llvm/ADT/StringRef.h" 66 #include "llvm/ADT/Twine.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/BasicAliasAnalysis.h" 70 #include "llvm/Analysis/BlockFrequencyInfo.h" 71 #include "llvm/Analysis/CFG.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// A helper function for converting Scalar types to vector types. 287 /// If the incoming type is void, we return void. If the VF is 1, we return 288 /// the scalar type. 289 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 290 if (Scalar->isVoidTy() || VF == 1) 291 return Scalar; 292 return VectorType::get(Scalar, VF); 293 } 294 295 // FIXME: The following helper functions have multiple implementations 296 // in the project. They can be effectively organized in a common Load/Store 297 // utilities unit. 298 299 /// A helper function that returns the type of loaded or stored value. 300 static Type *getMemInstValueType(Value *I) { 301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 302 "Expected Load or Store instruction"); 303 if (auto *LI = dyn_cast<LoadInst>(I)) 304 return LI->getType(); 305 return cast<StoreInst>(I)->getValueOperand()->getType(); 306 } 307 308 /// A helper function that returns the alignment of load or store instruction. 309 static unsigned getMemInstAlignment(Value *I) { 310 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 311 "Expected Load or Store instruction"); 312 if (auto *LI = dyn_cast<LoadInst>(I)) 313 return LI->getAlignment(); 314 return cast<StoreInst>(I)->getAlignment(); 315 } 316 317 /// A helper function that returns the address space of the pointer operand of 318 /// load or store instruction. 319 static unsigned getMemInstAddressSpace(Value *I) { 320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 321 "Expected Load or Store instruction"); 322 if (auto *LI = dyn_cast<LoadInst>(I)) 323 return LI->getPointerAddressSpace(); 324 return cast<StoreInst>(I)->getPointerAddressSpace(); 325 } 326 327 /// A helper function that returns true if the given type is irregular. The 328 /// type is irregular if its allocated size doesn't equal the store size of an 329 /// element of the corresponding vector type at the given vectorization factor. 330 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 331 // Determine if an array of VF elements of type Ty is "bitcast compatible" 332 // with a <VF x Ty> vector. 333 if (VF > 1) { 334 auto *VectorTy = VectorType::get(Ty, VF); 335 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 336 } 337 338 // If the vectorization factor is one, we just check if an array of type Ty 339 // requires padding between elements. 340 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 341 } 342 343 /// A helper function that returns the reciprocal of the block probability of 344 /// predicated blocks. If we return X, we are assuming the predicated block 345 /// will execute once for every X iterations of the loop header. 346 /// 347 /// TODO: We should use actual block probability here, if available. Currently, 348 /// we always assume predicated blocks have a 50% chance of executing. 349 static unsigned getReciprocalPredBlockProb() { return 2; } 350 351 /// A helper function that adds a 'fast' flag to floating-point operations. 352 static Value *addFastMathFlag(Value *V) { 353 if (isa<FPMathOperator>(V)) { 354 FastMathFlags Flags; 355 Flags.setFast(); 356 cast<Instruction>(V)->setFastMathFlags(Flags); 357 } 358 return V; 359 } 360 361 /// A helper function that returns an integer or floating-point constant with 362 /// value C. 363 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 364 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 365 : ConstantFP::get(Ty, C); 366 } 367 368 namespace llvm { 369 370 /// InnerLoopVectorizer vectorizes loops which contain only one basic 371 /// block to a specified vectorization factor (VF). 372 /// This class performs the widening of scalars into vectors, or multiple 373 /// scalars. This class also implements the following features: 374 /// * It inserts an epilogue loop for handling loops that don't have iteration 375 /// counts that are known to be a multiple of the vectorization factor. 376 /// * It handles the code generation for reduction variables. 377 /// * Scalarization (implementation using scalars) of un-vectorizable 378 /// instructions. 379 /// InnerLoopVectorizer does not perform any vectorization-legality 380 /// checks, and relies on the caller to check for the different legality 381 /// aspects. The InnerLoopVectorizer relies on the 382 /// LoopVectorizationLegality class to provide information about the induction 383 /// and reduction variables that were found to a given vectorization factor. 384 class InnerLoopVectorizer { 385 public: 386 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 387 LoopInfo *LI, DominatorTree *DT, 388 const TargetLibraryInfo *TLI, 389 const TargetTransformInfo *TTI, AssumptionCache *AC, 390 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 391 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 392 LoopVectorizationCostModel *CM) 393 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 394 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 395 Builder(PSE.getSE()->getContext()), 396 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 397 virtual ~InnerLoopVectorizer() = default; 398 399 /// Create a new empty loop. Unlink the old loop and connect the new one. 400 /// Return the pre-header block of the new loop. 401 BasicBlock *createVectorizedLoopSkeleton(); 402 403 /// Widen a single instruction within the innermost loop. 404 void widenInstruction(Instruction &I); 405 406 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 407 void fixVectorizedLoop(); 408 409 // Return true if any runtime check is added. 410 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 411 412 /// A type for vectorized values in the new loop. Each value from the 413 /// original loop, when vectorized, is represented by UF vector values in the 414 /// new unrolled loop, where UF is the unroll factor. 415 using VectorParts = SmallVector<Value *, 2>; 416 417 /// Vectorize a single PHINode in a block. This method handles the induction 418 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 419 /// arbitrary length vectors. 420 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 421 422 /// A helper function to scalarize a single Instruction in the innermost loop. 423 /// Generates a sequence of scalar instances for each lane between \p MinLane 424 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 425 /// inclusive.. 426 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 427 bool IfPredicateInstr); 428 429 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 430 /// is provided, the integer induction variable will first be truncated to 431 /// the corresponding type. 432 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 433 434 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 435 /// vector or scalar value on-demand if one is not yet available. When 436 /// vectorizing a loop, we visit the definition of an instruction before its 437 /// uses. When visiting the definition, we either vectorize or scalarize the 438 /// instruction, creating an entry for it in the corresponding map. (In some 439 /// cases, such as induction variables, we will create both vector and scalar 440 /// entries.) Then, as we encounter uses of the definition, we derive values 441 /// for each scalar or vector use unless such a value is already available. 442 /// For example, if we scalarize a definition and one of its uses is vector, 443 /// we build the required vector on-demand with an insertelement sequence 444 /// when visiting the use. Otherwise, if the use is scalar, we can use the 445 /// existing scalar definition. 446 /// 447 /// Return a value in the new loop corresponding to \p V from the original 448 /// loop at unroll index \p Part. If the value has already been vectorized, 449 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 450 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 451 /// a new vector value on-demand by inserting the scalar values into a vector 452 /// with an insertelement sequence. If the value has been neither vectorized 453 /// nor scalarized, it must be loop invariant, so we simply broadcast the 454 /// value into a vector. 455 Value *getOrCreateVectorValue(Value *V, unsigned Part); 456 457 /// Return a value in the new loop corresponding to \p V from the original 458 /// loop at unroll and vector indices \p Instance. If the value has been 459 /// vectorized but not scalarized, the necessary extractelement instruction 460 /// will be generated. 461 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 462 463 /// Construct the vector value of a scalarized value \p V one lane at a time. 464 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 465 466 /// Try to vectorize the interleaved access group that \p Instr belongs to. 467 void vectorizeInterleaveGroup(Instruction *Instr); 468 469 /// Vectorize Load and Store instructions, optionally masking the vector 470 /// operations if \p BlockInMask is non-null. 471 void vectorizeMemoryInstruction(Instruction *Instr, 472 VectorParts *BlockInMask = nullptr); 473 474 /// \brief Set the debug location in the builder using the debug location in 475 /// the instruction. 476 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 477 478 protected: 479 friend class LoopVectorizationPlanner; 480 481 /// A small list of PHINodes. 482 using PhiVector = SmallVector<PHINode *, 4>; 483 484 /// A type for scalarized values in the new loop. Each value from the 485 /// original loop, when scalarized, is represented by UF x VF scalar values 486 /// in the new unrolled loop, where UF is the unroll factor and VF is the 487 /// vectorization factor. 488 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 489 490 /// Set up the values of the IVs correctly when exiting the vector loop. 491 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 492 Value *CountRoundDown, Value *EndValue, 493 BasicBlock *MiddleBlock); 494 495 /// Create a new induction variable inside L. 496 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 497 Value *Step, Instruction *DL); 498 499 /// Handle all cross-iteration phis in the header. 500 void fixCrossIterationPHIs(); 501 502 /// Fix a first-order recurrence. This is the second phase of vectorizing 503 /// this phi node. 504 void fixFirstOrderRecurrence(PHINode *Phi); 505 506 /// Fix a reduction cross-iteration phi. This is the second phase of 507 /// vectorizing this phi node. 508 void fixReduction(PHINode *Phi); 509 510 /// \brief The Loop exit block may have single value PHI nodes with some 511 /// incoming value. While vectorizing we only handled real values 512 /// that were defined inside the loop and we should have one value for 513 /// each predecessor of its parent basic block. See PR14725. 514 void fixLCSSAPHIs(); 515 516 /// Iteratively sink the scalarized operands of a predicated instruction into 517 /// the block that was created for it. 518 void sinkScalarOperands(Instruction *PredInst); 519 520 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 521 /// represented as. 522 void truncateToMinimalBitwidths(); 523 524 /// Insert the new loop to the loop hierarchy and pass manager 525 /// and update the analysis passes. 526 void updateAnalysis(); 527 528 /// Create a broadcast instruction. This method generates a broadcast 529 /// instruction (shuffle) for loop invariant values and for the induction 530 /// value. If this is the induction variable then we extend it to N, N+1, ... 531 /// this is needed because each iteration in the loop corresponds to a SIMD 532 /// element. 533 virtual Value *getBroadcastInstrs(Value *V); 534 535 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 536 /// to each vector element of Val. The sequence starts at StartIndex. 537 /// \p Opcode is relevant for FP induction variable. 538 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 539 Instruction::BinaryOps Opcode = 540 Instruction::BinaryOpsEnd); 541 542 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 543 /// variable on which to base the steps, \p Step is the size of the step, and 544 /// \p EntryVal is the value from the original loop that maps to the steps. 545 /// Note that \p EntryVal doesn't have to be an induction variable - it 546 /// can also be a truncate instruction. 547 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 548 const InductionDescriptor &ID); 549 550 /// Create a vector induction phi node based on an existing scalar one. \p 551 /// EntryVal is the value from the original loop that maps to the vector phi 552 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 553 /// truncate instruction, instead of widening the original IV, we widen a 554 /// version of the IV truncated to \p EntryVal's type. 555 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 556 Value *Step, Instruction *EntryVal); 557 558 /// Returns true if an instruction \p I should be scalarized instead of 559 /// vectorized for the chosen vectorization factor. 560 bool shouldScalarizeInstruction(Instruction *I) const; 561 562 /// Returns true if we should generate a scalar version of \p IV. 563 bool needsScalarInduction(Instruction *IV) const; 564 565 /// If there is a cast involved in the induction variable \p ID, which should 566 /// be ignored in the vectorized loop body, this function records the 567 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 568 /// cast. We had already proved that the casted Phi is equal to the uncasted 569 /// Phi in the vectorized loop (under a runtime guard), and therefore 570 /// there is no need to vectorize the cast - the same value can be used in the 571 /// vector loop for both the Phi and the cast. 572 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 573 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 574 /// 575 /// \p EntryVal is the value from the original loop that maps to the vector 576 /// phi node and is used to distinguish what is the IV currently being 577 /// processed - original one (if \p EntryVal is a phi corresponding to the 578 /// original IV) or the "newly-created" one based on the proof mentioned above 579 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 580 /// latter case \p EntryVal is a TruncInst and we must not record anything for 581 /// that IV, but it's error-prone to expect callers of this routine to care 582 /// about that, hence this explicit parameter. 583 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 584 const Instruction *EntryVal, 585 Value *VectorLoopValue, 586 unsigned Part, 587 unsigned Lane = UINT_MAX); 588 589 /// Generate a shuffle sequence that will reverse the vector Vec. 590 virtual Value *reverseVector(Value *Vec); 591 592 /// Returns (and creates if needed) the original loop trip count. 593 Value *getOrCreateTripCount(Loop *NewLoop); 594 595 /// Returns (and creates if needed) the trip count of the widened loop. 596 Value *getOrCreateVectorTripCount(Loop *NewLoop); 597 598 /// Returns a bitcasted value to the requested vector type. 599 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 600 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 601 const DataLayout &DL); 602 603 /// Emit a bypass check to see if the vector trip count is zero, including if 604 /// it overflows. 605 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 606 607 /// Emit a bypass check to see if all of the SCEV assumptions we've 608 /// had to make are correct. 609 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 610 611 /// Emit bypass checks to check any memory assumptions we may have made. 612 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 613 614 /// Add additional metadata to \p To that was not present on \p Orig. 615 /// 616 /// Currently this is used to add the noalias annotations based on the 617 /// inserted memchecks. Use this for instructions that are *cloned* into the 618 /// vector loop. 619 void addNewMetadata(Instruction *To, const Instruction *Orig); 620 621 /// Add metadata from one instruction to another. 622 /// 623 /// This includes both the original MDs from \p From and additional ones (\see 624 /// addNewMetadata). Use this for *newly created* instructions in the vector 625 /// loop. 626 void addMetadata(Instruction *To, Instruction *From); 627 628 /// \brief Similar to the previous function but it adds the metadata to a 629 /// vector of instructions. 630 void addMetadata(ArrayRef<Value *> To, Instruction *From); 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AliasAnalysis *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 662 /// used. 663 /// 664 /// This is currently only used to add no-alias metadata based on the 665 /// memchecks. The actually versioning is performed manually. 666 std::unique_ptr<LoopVersioning> LVer; 667 668 /// The vectorization SIMD factor to use. Each vector will have this many 669 /// vector elements. 670 unsigned VF; 671 672 /// The vectorization unroll factor to use. Each scalar is vectorized to this 673 /// many different vector instructions. 674 unsigned UF; 675 676 /// The builder that we use 677 IRBuilder<> Builder; 678 679 // --- Vectorization state --- 680 681 /// The vector-loop preheader. 682 BasicBlock *LoopVectorPreHeader; 683 684 /// The scalar-loop preheader. 685 BasicBlock *LoopScalarPreHeader; 686 687 /// Middle Block between the vector and the scalar. 688 BasicBlock *LoopMiddleBlock; 689 690 /// The ExitBlock of the scalar loop. 691 BasicBlock *LoopExitBlock; 692 693 /// The vector loop body. 694 BasicBlock *LoopVectorBody; 695 696 /// The scalar loop body. 697 BasicBlock *LoopScalarBody; 698 699 /// A list of all bypass blocks. The first block is the entry of the loop. 700 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 701 702 /// The new Induction variable which was added to the new block. 703 PHINode *Induction = nullptr; 704 705 /// The induction variable of the old basic block. 706 PHINode *OldInduction = nullptr; 707 708 /// Maps values from the original loop to their corresponding values in the 709 /// vectorized loop. A key value can map to either vector values, scalar 710 /// values or both kinds of values, depending on whether the key was 711 /// vectorized and scalarized. 712 VectorizerValueMap VectorLoopValueMap; 713 714 /// Store instructions that were predicated. 715 SmallVector<Instruction *, 4> PredicatedInstructions; 716 717 /// Trip count of the original loop. 718 Value *TripCount = nullptr; 719 720 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 721 Value *VectorTripCount = nullptr; 722 723 /// The legality analysis. 724 LoopVectorizationLegality *Legal; 725 726 /// The profitablity analysis. 727 LoopVectorizationCostModel *Cost; 728 729 // Record whether runtime checks are added. 730 bool AddedSafetyChecks = false; 731 732 // Holds the end values for each induction variable. We save the end values 733 // so we can later fix-up the external users of the induction variables. 734 DenseMap<PHINode *, Value *> IVEndValues; 735 }; 736 737 class InnerLoopUnroller : public InnerLoopVectorizer { 738 public: 739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 740 LoopInfo *LI, DominatorTree *DT, 741 const TargetLibraryInfo *TLI, 742 const TargetTransformInfo *TTI, AssumptionCache *AC, 743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 744 LoopVectorizationLegality *LVL, 745 LoopVectorizationCostModel *CM) 746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 747 UnrollFactor, LVL, CM) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 752 Instruction::BinaryOps Opcode = 753 Instruction::BinaryOpsEnd) override; 754 Value *reverseVector(Value *Vec) override; 755 }; 756 757 } // end namespace llvm 758 759 /// \brief Look for a meaningful debug location on the instruction or it's 760 /// operands. 761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 762 if (!I) 763 return I; 764 765 DebugLoc Empty; 766 if (I->getDebugLoc() != Empty) 767 return I; 768 769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 771 if (OpInst->getDebugLoc() != Empty) 772 return OpInst; 773 } 774 775 return I; 776 } 777 778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 780 const DILocation *DIL = Inst->getDebugLoc(); 781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 782 !isa<DbgInfoIntrinsic>(Inst)) 783 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 784 else 785 B.SetCurrentDebugLocation(DIL); 786 } else 787 B.SetCurrentDebugLocation(DebugLoc()); 788 } 789 790 #ifndef NDEBUG 791 /// \return string containing a file name and a line # for the given loop. 792 static std::string getDebugLocString(const Loop *L) { 793 std::string Result; 794 if (L) { 795 raw_string_ostream OS(Result); 796 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 797 LoopDbgLoc.print(OS); 798 else 799 // Just print the module name. 800 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 801 OS.flush(); 802 } 803 return Result; 804 } 805 #endif 806 807 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 808 const Instruction *Orig) { 809 // If the loop was versioned with memchecks, add the corresponding no-alias 810 // metadata. 811 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 812 LVer->annotateInstWithNoAlias(To, Orig); 813 } 814 815 void InnerLoopVectorizer::addMetadata(Instruction *To, 816 Instruction *From) { 817 propagateMetadata(To, From); 818 addNewMetadata(To, From); 819 } 820 821 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 822 Instruction *From) { 823 for (Value *V : To) { 824 if (Instruction *I = dyn_cast<Instruction>(V)) 825 addMetadata(I, From); 826 } 827 } 828 829 namespace llvm { 830 831 /// \brief The group of interleaved loads/stores sharing the same stride and 832 /// close to each other. 833 /// 834 /// Each member in this group has an index starting from 0, and the largest 835 /// index should be less than interleaved factor, which is equal to the absolute 836 /// value of the access's stride. 837 /// 838 /// E.g. An interleaved load group of factor 4: 839 /// for (unsigned i = 0; i < 1024; i+=4) { 840 /// a = A[i]; // Member of index 0 841 /// b = A[i+1]; // Member of index 1 842 /// d = A[i+3]; // Member of index 3 843 /// ... 844 /// } 845 /// 846 /// An interleaved store group of factor 4: 847 /// for (unsigned i = 0; i < 1024; i+=4) { 848 /// ... 849 /// A[i] = a; // Member of index 0 850 /// A[i+1] = b; // Member of index 1 851 /// A[i+2] = c; // Member of index 2 852 /// A[i+3] = d; // Member of index 3 853 /// } 854 /// 855 /// Note: the interleaved load group could have gaps (missing members), but 856 /// the interleaved store group doesn't allow gaps. 857 class InterleaveGroup { 858 public: 859 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 860 : Align(Align), InsertPos(Instr) { 861 assert(Align && "The alignment should be non-zero"); 862 863 Factor = std::abs(Stride); 864 assert(Factor > 1 && "Invalid interleave factor"); 865 866 Reverse = Stride < 0; 867 Members[0] = Instr; 868 } 869 870 bool isReverse() const { return Reverse; } 871 unsigned getFactor() const { return Factor; } 872 unsigned getAlignment() const { return Align; } 873 unsigned getNumMembers() const { return Members.size(); } 874 875 /// \brief Try to insert a new member \p Instr with index \p Index and 876 /// alignment \p NewAlign. The index is related to the leader and it could be 877 /// negative if it is the new leader. 878 /// 879 /// \returns false if the instruction doesn't belong to the group. 880 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 881 assert(NewAlign && "The new member's alignment should be non-zero"); 882 883 int Key = Index + SmallestKey; 884 885 // Skip if there is already a member with the same index. 886 if (Members.count(Key)) 887 return false; 888 889 if (Key > LargestKey) { 890 // The largest index is always less than the interleave factor. 891 if (Index >= static_cast<int>(Factor)) 892 return false; 893 894 LargestKey = Key; 895 } else if (Key < SmallestKey) { 896 // The largest index is always less than the interleave factor. 897 if (LargestKey - Key >= static_cast<int>(Factor)) 898 return false; 899 900 SmallestKey = Key; 901 } 902 903 // It's always safe to select the minimum alignment. 904 Align = std::min(Align, NewAlign); 905 Members[Key] = Instr; 906 return true; 907 } 908 909 /// \brief Get the member with the given index \p Index 910 /// 911 /// \returns nullptr if contains no such member. 912 Instruction *getMember(unsigned Index) const { 913 int Key = SmallestKey + Index; 914 if (!Members.count(Key)) 915 return nullptr; 916 917 return Members.find(Key)->second; 918 } 919 920 /// \brief Get the index for the given member. Unlike the key in the member 921 /// map, the index starts from 0. 922 unsigned getIndex(Instruction *Instr) const { 923 for (auto I : Members) 924 if (I.second == Instr) 925 return I.first - SmallestKey; 926 927 llvm_unreachable("InterleaveGroup contains no such member"); 928 } 929 930 Instruction *getInsertPos() const { return InsertPos; } 931 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 932 933 /// Add metadata (e.g. alias info) from the instructions in this group to \p 934 /// NewInst. 935 /// 936 /// FIXME: this function currently does not add noalias metadata a'la 937 /// addNewMedata. To do that we need to compute the intersection of the 938 /// noalias info from all members. 939 void addMetadata(Instruction *NewInst) const { 940 SmallVector<Value *, 4> VL; 941 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 942 [](std::pair<int, Instruction *> p) { return p.second; }); 943 propagateMetadata(NewInst, VL); 944 } 945 946 private: 947 unsigned Factor; // Interleave Factor. 948 bool Reverse; 949 unsigned Align; 950 DenseMap<int, Instruction *> Members; 951 int SmallestKey = 0; 952 int LargestKey = 0; 953 954 // To avoid breaking dependences, vectorized instructions of an interleave 955 // group should be inserted at either the first load or the last store in 956 // program order. 957 // 958 // E.g. %even = load i32 // Insert Position 959 // %add = add i32 %even // Use of %even 960 // %odd = load i32 961 // 962 // store i32 %even 963 // %odd = add i32 // Def of %odd 964 // store i32 %odd // Insert Position 965 Instruction *InsertPos; 966 }; 967 } // end namespace llvm 968 969 namespace { 970 971 /// \brief Drive the analysis of interleaved memory accesses in the loop. 972 /// 973 /// Use this class to analyze interleaved accesses only when we can vectorize 974 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 975 /// on interleaved accesses is unsafe. 976 /// 977 /// The analysis collects interleave groups and records the relationships 978 /// between the member and the group in a map. 979 class InterleavedAccessInfo { 980 public: 981 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 982 DominatorTree *DT, LoopInfo *LI, 983 const LoopAccessInfo *LAI) 984 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 985 986 ~InterleavedAccessInfo() { 987 SmallSet<InterleaveGroup *, 4> DelSet; 988 // Avoid releasing a pointer twice. 989 for (auto &I : InterleaveGroupMap) 990 DelSet.insert(I.second); 991 for (auto *Ptr : DelSet) 992 delete Ptr; 993 } 994 995 /// \brief Analyze the interleaved accesses and collect them in interleave 996 /// groups. Substitute symbolic strides using \p Strides. 997 void analyzeInterleaving(); 998 999 /// \brief Check if \p Instr belongs to any interleave group. 1000 bool isInterleaved(Instruction *Instr) const { 1001 return InterleaveGroupMap.count(Instr); 1002 } 1003 1004 /// \brief Get the interleave group that \p Instr belongs to. 1005 /// 1006 /// \returns nullptr if doesn't have such group. 1007 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1008 if (InterleaveGroupMap.count(Instr)) 1009 return InterleaveGroupMap.find(Instr)->second; 1010 return nullptr; 1011 } 1012 1013 /// \brief Returns true if an interleaved group that may access memory 1014 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1015 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1016 1017 private: 1018 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1019 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1020 /// The interleaved access analysis can also add new predicates (for example 1021 /// by versioning strides of pointers). 1022 PredicatedScalarEvolution &PSE; 1023 1024 Loop *TheLoop; 1025 DominatorTree *DT; 1026 LoopInfo *LI; 1027 const LoopAccessInfo *LAI; 1028 1029 /// True if the loop may contain non-reversed interleaved groups with 1030 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1031 /// out-of-bounds by executing at least one scalar epilogue iteration. 1032 bool RequiresScalarEpilogue = false; 1033 1034 /// Holds the relationships between the members and the interleave group. 1035 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1036 1037 /// Holds dependences among the memory accesses in the loop. It maps a source 1038 /// access to a set of dependent sink accesses. 1039 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1040 1041 /// \brief The descriptor for a strided memory access. 1042 struct StrideDescriptor { 1043 StrideDescriptor() = default; 1044 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1045 unsigned Align) 1046 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1047 1048 // The access's stride. It is negative for a reverse access. 1049 int64_t Stride = 0; 1050 1051 // The scalar expression of this access. 1052 const SCEV *Scev = nullptr; 1053 1054 // The size of the memory object. 1055 uint64_t Size = 0; 1056 1057 // The alignment of this access. 1058 unsigned Align = 0; 1059 }; 1060 1061 /// \brief A type for holding instructions and their stride descriptors. 1062 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1063 1064 /// \brief Create a new interleave group with the given instruction \p Instr, 1065 /// stride \p Stride and alignment \p Align. 1066 /// 1067 /// \returns the newly created interleave group. 1068 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1069 unsigned Align) { 1070 assert(!InterleaveGroupMap.count(Instr) && 1071 "Already in an interleaved access group"); 1072 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1073 return InterleaveGroupMap[Instr]; 1074 } 1075 1076 /// \brief Release the group and remove all the relationships. 1077 void releaseGroup(InterleaveGroup *Group) { 1078 for (unsigned i = 0; i < Group->getFactor(); i++) 1079 if (Instruction *Member = Group->getMember(i)) 1080 InterleaveGroupMap.erase(Member); 1081 1082 delete Group; 1083 } 1084 1085 /// \brief Collect all the accesses with a constant stride in program order. 1086 void collectConstStrideAccesses( 1087 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1088 const ValueToValueMap &Strides); 1089 1090 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1091 static bool isStrided(int Stride) { 1092 unsigned Factor = std::abs(Stride); 1093 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1094 } 1095 1096 /// \brief Returns true if \p BB is a predicated block. 1097 bool isPredicated(BasicBlock *BB) const { 1098 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1099 } 1100 1101 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1102 bool areDependencesValid() const { 1103 return LAI && LAI->getDepChecker().getDependences(); 1104 } 1105 1106 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1107 /// necessary, when constructing interleaved groups. 1108 /// 1109 /// \p A must precede \p B in program order. We return false if reordering is 1110 /// not necessary or is prevented because \p A and \p B may be dependent. 1111 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1112 StrideEntry *B) const { 1113 // Code motion for interleaved accesses can potentially hoist strided loads 1114 // and sink strided stores. The code below checks the legality of the 1115 // following two conditions: 1116 // 1117 // 1. Potentially moving a strided load (B) before any store (A) that 1118 // precedes B, or 1119 // 1120 // 2. Potentially moving a strided store (A) after any load or store (B) 1121 // that A precedes. 1122 // 1123 // It's legal to reorder A and B if we know there isn't a dependence from A 1124 // to B. Note that this determination is conservative since some 1125 // dependences could potentially be reordered safely. 1126 1127 // A is potentially the source of a dependence. 1128 auto *Src = A->first; 1129 auto SrcDes = A->second; 1130 1131 // B is potentially the sink of a dependence. 1132 auto *Sink = B->first; 1133 auto SinkDes = B->second; 1134 1135 // Code motion for interleaved accesses can't violate WAR dependences. 1136 // Thus, reordering is legal if the source isn't a write. 1137 if (!Src->mayWriteToMemory()) 1138 return true; 1139 1140 // At least one of the accesses must be strided. 1141 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1142 return true; 1143 1144 // If dependence information is not available from LoopAccessInfo, 1145 // conservatively assume the instructions can't be reordered. 1146 if (!areDependencesValid()) 1147 return false; 1148 1149 // If we know there is a dependence from source to sink, assume the 1150 // instructions can't be reordered. Otherwise, reordering is legal. 1151 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1152 } 1153 1154 /// \brief Collect the dependences from LoopAccessInfo. 1155 /// 1156 /// We process the dependences once during the interleaved access analysis to 1157 /// enable constant-time dependence queries. 1158 void collectDependences() { 1159 if (!areDependencesValid()) 1160 return; 1161 auto *Deps = LAI->getDepChecker().getDependences(); 1162 for (auto Dep : *Deps) 1163 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1164 } 1165 }; 1166 1167 /// Utility class for getting and setting loop vectorizer hints in the form 1168 /// of loop metadata. 1169 /// This class keeps a number of loop annotations locally (as member variables) 1170 /// and can, upon request, write them back as metadata on the loop. It will 1171 /// initially scan the loop for existing metadata, and will update the local 1172 /// values based on information in the loop. 1173 /// We cannot write all values to metadata, as the mere presence of some info, 1174 /// for example 'force', means a decision has been made. So, we need to be 1175 /// careful NOT to add them if the user hasn't specifically asked so. 1176 class LoopVectorizeHints { 1177 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1178 1179 /// Hint - associates name and validation with the hint value. 1180 struct Hint { 1181 const char *Name; 1182 unsigned Value; // This may have to change for non-numeric values. 1183 HintKind Kind; 1184 1185 Hint(const char *Name, unsigned Value, HintKind Kind) 1186 : Name(Name), Value(Value), Kind(Kind) {} 1187 1188 bool validate(unsigned Val) { 1189 switch (Kind) { 1190 case HK_WIDTH: 1191 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1192 case HK_UNROLL: 1193 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1194 case HK_FORCE: 1195 return (Val <= 1); 1196 case HK_ISVECTORIZED: 1197 return (Val==0 || Val==1); 1198 } 1199 return false; 1200 } 1201 }; 1202 1203 /// Vectorization width. 1204 Hint Width; 1205 1206 /// Vectorization interleave factor. 1207 Hint Interleave; 1208 1209 /// Vectorization forced 1210 Hint Force; 1211 1212 /// Already Vectorized 1213 Hint IsVectorized; 1214 1215 /// Return the loop metadata prefix. 1216 static StringRef Prefix() { return "llvm.loop."; } 1217 1218 /// True if there is any unsafe math in the loop. 1219 bool PotentiallyUnsafe = false; 1220 1221 public: 1222 enum ForceKind { 1223 FK_Undefined = -1, ///< Not selected. 1224 FK_Disabled = 0, ///< Forcing disabled. 1225 FK_Enabled = 1, ///< Forcing enabled. 1226 }; 1227 1228 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1229 OptimizationRemarkEmitter &ORE) 1230 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1231 HK_WIDTH), 1232 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1233 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1234 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1235 // Populate values with existing loop metadata. 1236 getHintsFromMetadata(); 1237 1238 // force-vector-interleave overrides DisableInterleaving. 1239 if (VectorizerParams::isInterleaveForced()) 1240 Interleave.Value = VectorizerParams::VectorizationInterleave; 1241 1242 if (IsVectorized.Value != 1) 1243 // If the vectorization width and interleaving count are both 1 then 1244 // consider the loop to have been already vectorized because there's 1245 // nothing more that we can do. 1246 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1247 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1248 << "LV: Interleaving disabled by the pass manager\n"); 1249 } 1250 1251 /// Mark the loop L as already vectorized by setting the width to 1. 1252 void setAlreadyVectorized() { 1253 IsVectorized.Value = 1; 1254 Hint Hints[] = {IsVectorized}; 1255 writeHintsToMetadata(Hints); 1256 } 1257 1258 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1259 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1260 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1261 emitRemarkWithHints(); 1262 return false; 1263 } 1264 1265 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1266 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1267 emitRemarkWithHints(); 1268 return false; 1269 } 1270 1271 if (getIsVectorized() == 1) { 1272 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1273 // FIXME: Add interleave.disable metadata. This will allow 1274 // vectorize.disable to be used without disabling the pass and errors 1275 // to differentiate between disabled vectorization and a width of 1. 1276 ORE.emit([&]() { 1277 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1278 "AllDisabled", L->getStartLoc(), 1279 L->getHeader()) 1280 << "loop not vectorized: vectorization and interleaving are " 1281 "explicitly disabled, or the loop has already been " 1282 "vectorized"; 1283 }); 1284 return false; 1285 } 1286 1287 return true; 1288 } 1289 1290 /// Dumps all the hint information. 1291 void emitRemarkWithHints() const { 1292 using namespace ore; 1293 1294 ORE.emit([&]() { 1295 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1296 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1297 TheLoop->getStartLoc(), 1298 TheLoop->getHeader()) 1299 << "loop not vectorized: vectorization is explicitly disabled"; 1300 else { 1301 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1302 TheLoop->getStartLoc(), 1303 TheLoop->getHeader()); 1304 R << "loop not vectorized"; 1305 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1306 R << " (Force=" << NV("Force", true); 1307 if (Width.Value != 0) 1308 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1309 if (Interleave.Value != 0) 1310 R << ", Interleave Count=" 1311 << NV("InterleaveCount", Interleave.Value); 1312 R << ")"; 1313 } 1314 return R; 1315 } 1316 }); 1317 } 1318 1319 unsigned getWidth() const { return Width.Value; } 1320 unsigned getInterleave() const { return Interleave.Value; } 1321 unsigned getIsVectorized() const { return IsVectorized.Value; } 1322 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1323 1324 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1325 /// pass name to force the frontend to print the diagnostic. 1326 const char *vectorizeAnalysisPassName() const { 1327 if (getWidth() == 1) 1328 return LV_NAME; 1329 if (getForce() == LoopVectorizeHints::FK_Disabled) 1330 return LV_NAME; 1331 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1332 return LV_NAME; 1333 return OptimizationRemarkAnalysis::AlwaysPrint; 1334 } 1335 1336 bool allowReordering() const { 1337 // When enabling loop hints are provided we allow the vectorizer to change 1338 // the order of operations that is given by the scalar loop. This is not 1339 // enabled by default because can be unsafe or inefficient. For example, 1340 // reordering floating-point operations will change the way round-off 1341 // error accumulates in the loop. 1342 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1343 } 1344 1345 bool isPotentiallyUnsafe() const { 1346 // Avoid FP vectorization if the target is unsure about proper support. 1347 // This may be related to the SIMD unit in the target not handling 1348 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1349 // Otherwise, a sequence of vectorized loops, even without reduction, 1350 // could lead to different end results on the destination vectors. 1351 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1352 } 1353 1354 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1355 1356 private: 1357 /// Find hints specified in the loop metadata and update local values. 1358 void getHintsFromMetadata() { 1359 MDNode *LoopID = TheLoop->getLoopID(); 1360 if (!LoopID) 1361 return; 1362 1363 // First operand should refer to the loop id itself. 1364 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1365 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1366 1367 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1368 const MDString *S = nullptr; 1369 SmallVector<Metadata *, 4> Args; 1370 1371 // The expected hint is either a MDString or a MDNode with the first 1372 // operand a MDString. 1373 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1374 if (!MD || MD->getNumOperands() == 0) 1375 continue; 1376 S = dyn_cast<MDString>(MD->getOperand(0)); 1377 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1378 Args.push_back(MD->getOperand(i)); 1379 } else { 1380 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1381 assert(Args.size() == 0 && "too many arguments for MDString"); 1382 } 1383 1384 if (!S) 1385 continue; 1386 1387 // Check if the hint starts with the loop metadata prefix. 1388 StringRef Name = S->getString(); 1389 if (Args.size() == 1) 1390 setHint(Name, Args[0]); 1391 } 1392 } 1393 1394 /// Checks string hint with one operand and set value if valid. 1395 void setHint(StringRef Name, Metadata *Arg) { 1396 if (!Name.startswith(Prefix())) 1397 return; 1398 Name = Name.substr(Prefix().size(), StringRef::npos); 1399 1400 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1401 if (!C) 1402 return; 1403 unsigned Val = C->getZExtValue(); 1404 1405 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1406 for (auto H : Hints) { 1407 if (Name == H->Name) { 1408 if (H->validate(Val)) 1409 H->Value = Val; 1410 else 1411 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1412 break; 1413 } 1414 } 1415 } 1416 1417 /// Create a new hint from name / value pair. 1418 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1419 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1420 Metadata *MDs[] = {MDString::get(Context, Name), 1421 ConstantAsMetadata::get( 1422 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1423 return MDNode::get(Context, MDs); 1424 } 1425 1426 /// Matches metadata with hint name. 1427 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1428 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1429 if (!Name) 1430 return false; 1431 1432 for (auto H : HintTypes) 1433 if (Name->getString().endswith(H.Name)) 1434 return true; 1435 return false; 1436 } 1437 1438 /// Sets current hints into loop metadata, keeping other values intact. 1439 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1440 if (HintTypes.empty()) 1441 return; 1442 1443 // Reserve the first element to LoopID (see below). 1444 SmallVector<Metadata *, 4> MDs(1); 1445 // If the loop already has metadata, then ignore the existing operands. 1446 MDNode *LoopID = TheLoop->getLoopID(); 1447 if (LoopID) { 1448 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1449 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1450 // If node in update list, ignore old value. 1451 if (!matchesHintMetadataName(Node, HintTypes)) 1452 MDs.push_back(Node); 1453 } 1454 } 1455 1456 // Now, add the missing hints. 1457 for (auto H : HintTypes) 1458 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1459 1460 // Replace current metadata node with new one. 1461 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1462 MDNode *NewLoopID = MDNode::get(Context, MDs); 1463 // Set operand 0 to refer to the loop id itself. 1464 NewLoopID->replaceOperandWith(0, NewLoopID); 1465 1466 TheLoop->setLoopID(NewLoopID); 1467 } 1468 1469 /// The loop these hints belong to. 1470 const Loop *TheLoop; 1471 1472 /// Interface to emit optimization remarks. 1473 OptimizationRemarkEmitter &ORE; 1474 }; 1475 1476 } // end anonymous namespace 1477 1478 static void emitMissedWarning(Function *F, Loop *L, 1479 const LoopVectorizeHints &LH, 1480 OptimizationRemarkEmitter *ORE) { 1481 LH.emitRemarkWithHints(); 1482 1483 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1484 if (LH.getWidth() != 1) 1485 ORE->emit(DiagnosticInfoOptimizationFailure( 1486 DEBUG_TYPE, "FailedRequestedVectorization", 1487 L->getStartLoc(), L->getHeader()) 1488 << "loop not vectorized: " 1489 << "failed explicitly specified loop vectorization"); 1490 else if (LH.getInterleave() != 1) 1491 ORE->emit(DiagnosticInfoOptimizationFailure( 1492 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1493 L->getHeader()) 1494 << "loop not interleaved: " 1495 << "failed explicitly specified loop interleaving"); 1496 } 1497 } 1498 1499 namespace llvm { 1500 1501 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1502 /// to what vectorization factor. 1503 /// This class does not look at the profitability of vectorization, only the 1504 /// legality. This class has two main kinds of checks: 1505 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1506 /// will change the order of memory accesses in a way that will change the 1507 /// correctness of the program. 1508 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1509 /// checks for a number of different conditions, such as the availability of a 1510 /// single induction variable, that all types are supported and vectorize-able, 1511 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1512 /// This class is also used by InnerLoopVectorizer for identifying 1513 /// induction variable and the different reduction variables. 1514 class LoopVectorizationLegality { 1515 public: 1516 LoopVectorizationLegality( 1517 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1518 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1519 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1520 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1521 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC) 1522 : TheLoop(L), PSE(PSE), TLI(TLI), DT(DT), GetLAA(GetLAA), 1523 ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {} 1524 1525 /// ReductionList contains the reduction descriptors for all 1526 /// of the reductions that were found in the loop. 1527 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1528 1529 /// InductionList saves induction variables and maps them to the 1530 /// induction descriptor. 1531 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1532 1533 /// RecurrenceSet contains the phi nodes that are recurrences other than 1534 /// inductions and reductions. 1535 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1536 1537 /// Returns true if it is legal to vectorize this loop. 1538 /// This does not mean that it is profitable to vectorize this 1539 /// loop, only that it is legal to do so. 1540 bool canVectorize(); 1541 1542 /// Returns the primary induction variable. 1543 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1544 1545 /// Returns the reduction variables found in the loop. 1546 ReductionList *getReductionVars() { return &Reductions; } 1547 1548 /// Returns the induction variables found in the loop. 1549 InductionList *getInductionVars() { return &Inductions; } 1550 1551 /// Return the first-order recurrences found in the loop. 1552 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1553 1554 /// Return the set of instructions to sink to handle first-order recurrences. 1555 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1556 1557 /// Returns the widest induction type. 1558 Type *getWidestInductionType() { return WidestIndTy; } 1559 1560 /// Returns True if V is a Phi node of an induction variable in this loop. 1561 bool isInductionPhi(const Value *V); 1562 1563 /// Returns True if V is a cast that is part of an induction def-use chain, 1564 /// and had been proven to be redundant under a runtime guard (in other 1565 /// words, the cast has the same SCEV expression as the induction phi). 1566 bool isCastedInductionVariable(const Value *V); 1567 1568 /// Returns True if V can be considered as an induction variable in this 1569 /// loop. V can be the induction phi, or some redundant cast in the def-use 1570 /// chain of the inducion phi. 1571 bool isInductionVariable(const Value *V); 1572 1573 /// Returns True if PN is a reduction variable in this loop. 1574 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1575 1576 /// Returns True if Phi is a first-order recurrence in this loop. 1577 bool isFirstOrderRecurrence(const PHINode *Phi); 1578 1579 /// Return true if the block BB needs to be predicated in order for the loop 1580 /// to be vectorized. 1581 bool blockNeedsPredication(BasicBlock *BB); 1582 1583 /// Check if this pointer is consecutive when vectorizing. This happens 1584 /// when the last index of the GEP is the induction variable, or that the 1585 /// pointer itself is an induction variable. 1586 /// This check allows us to vectorize A[idx] into a wide load/store. 1587 /// Returns: 1588 /// 0 - Stride is unknown or non-consecutive. 1589 /// 1 - Address is consecutive. 1590 /// -1 - Address is consecutive, and decreasing. 1591 /// NOTE: This method must only be used before modifying the original scalar 1592 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1593 int isConsecutivePtr(Value *Ptr); 1594 1595 /// Returns true if the value V is uniform within the loop. 1596 bool isUniform(Value *V); 1597 1598 /// Returns the information that we collected about runtime memory check. 1599 const RuntimePointerChecking *getRuntimePointerChecking() const { 1600 return LAI->getRuntimePointerChecking(); 1601 } 1602 1603 const LoopAccessInfo *getLAI() const { return LAI; } 1604 1605 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1606 1607 uint64_t getMaxSafeRegisterWidth() const { 1608 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1609 } 1610 1611 bool hasStride(Value *V) { return LAI->hasStride(V); } 1612 1613 /// Returns true if vector representation of the instruction \p I 1614 /// requires mask. 1615 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1616 1617 unsigned getNumStores() const { return LAI->getNumStores(); } 1618 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1619 1620 // Returns true if the NoNaN attribute is set on the function. 1621 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1622 1623 private: 1624 /// Check if a single basic block loop is vectorizable. 1625 /// At this point we know that this is a loop with a constant trip count 1626 /// and we only need to check individual instructions. 1627 bool canVectorizeInstrs(); 1628 1629 /// When we vectorize loops we may change the order in which 1630 /// we read and write from memory. This method checks if it is 1631 /// legal to vectorize the code, considering only memory constrains. 1632 /// Returns true if the loop is vectorizable 1633 bool canVectorizeMemory(); 1634 1635 /// Return true if we can vectorize this loop using the IF-conversion 1636 /// transformation. 1637 bool canVectorizeWithIfConvert(); 1638 1639 /// Return true if all of the instructions in the block can be speculatively 1640 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1641 /// and we know that we can read from them without segfault. 1642 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1643 1644 /// Updates the vectorization state by adding \p Phi to the inductions list. 1645 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1646 /// better choice for the main induction than the existing one. 1647 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1648 SmallPtrSetImpl<Value *> &AllowedExit); 1649 1650 /// Create an analysis remark that explains why vectorization failed 1651 /// 1652 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1653 /// an instruction that prevents vectorization. Otherwise the loop is used 1654 /// for the location of the remark. \return the remark object that can be 1655 /// streamed to. 1656 OptimizationRemarkAnalysis 1657 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1658 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1659 RemarkName, TheLoop, I); 1660 } 1661 1662 /// \brief If an access has a symbolic strides, this maps the pointer value to 1663 /// the stride symbol. 1664 const ValueToValueMap *getSymbolicStrides() { 1665 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1666 // it's collected. This happens from canVectorizeWithIfConvert, when the 1667 // pointer is checked to reference consecutive elements suitable for a 1668 // masked access. 1669 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1670 } 1671 1672 /// The loop that we evaluate. 1673 Loop *TheLoop; 1674 1675 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1676 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1677 /// of existing SCEV assumptions. The analysis will also add a minimal set 1678 /// of new predicates if this is required to enable vectorization and 1679 /// unrolling. 1680 PredicatedScalarEvolution &PSE; 1681 1682 /// Target Library Info. 1683 TargetLibraryInfo *TLI; 1684 1685 /// Dominator Tree. 1686 DominatorTree *DT; 1687 1688 // LoopAccess analysis. 1689 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1690 1691 // And the loop-accesses info corresponding to this loop. This pointer is 1692 // null until canVectorizeMemory sets it up. 1693 const LoopAccessInfo *LAI = nullptr; 1694 1695 /// Interface to emit optimization remarks. 1696 OptimizationRemarkEmitter *ORE; 1697 1698 // --- vectorization state --- // 1699 1700 /// Holds the primary induction variable. This is the counter of the 1701 /// loop. 1702 PHINode *PrimaryInduction = nullptr; 1703 1704 /// Holds the reduction variables. 1705 ReductionList Reductions; 1706 1707 /// Holds all of the induction variables that we found in the loop. 1708 /// Notice that inductions don't need to start at zero and that induction 1709 /// variables can be pointers. 1710 InductionList Inductions; 1711 1712 /// Holds all the casts that participate in the update chain of the induction 1713 /// variables, and that have been proven to be redundant (possibly under a 1714 /// runtime guard). These casts can be ignored when creating the vectorized 1715 /// loop body. 1716 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1717 1718 /// Holds the phi nodes that are first-order recurrences. 1719 RecurrenceSet FirstOrderRecurrences; 1720 1721 /// Holds instructions that need to sink past other instructions to handle 1722 /// first-order recurrences. 1723 DenseMap<Instruction *, Instruction *> SinkAfter; 1724 1725 /// Holds the widest induction type encountered. 1726 Type *WidestIndTy = nullptr; 1727 1728 /// Allowed outside users. This holds the induction and reduction 1729 /// vars which can be accessed from outside the loop. 1730 SmallPtrSet<Value *, 4> AllowedExit; 1731 1732 /// Can we assume the absence of NaNs. 1733 bool HasFunNoNaNAttr = false; 1734 1735 /// Vectorization requirements that will go through late-evaluation. 1736 LoopVectorizationRequirements *Requirements; 1737 1738 /// Used to emit an analysis of any legality issues. 1739 LoopVectorizeHints *Hints; 1740 1741 /// The demanded bits analsyis is used to compute the minimum type size in 1742 /// which a reduction can be computed. 1743 DemandedBits *DB; 1744 1745 /// The assumption cache analysis is used to compute the minimum type size in 1746 /// which a reduction can be computed. 1747 AssumptionCache *AC; 1748 1749 /// While vectorizing these instructions we have to generate a 1750 /// call to the appropriate masked intrinsic 1751 SmallPtrSet<const Instruction *, 8> MaskedOp; 1752 }; 1753 1754 /// LoopVectorizationCostModel - estimates the expected speedups due to 1755 /// vectorization. 1756 /// In many cases vectorization is not profitable. This can happen because of 1757 /// a number of reasons. In this class we mainly attempt to predict the 1758 /// expected speedup/slowdowns due to the supported instruction set. We use the 1759 /// TargetTransformInfo to query the different backends for the cost of 1760 /// different operations. 1761 class LoopVectorizationCostModel { 1762 public: 1763 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1764 LoopInfo *LI, LoopVectorizationLegality *Legal, 1765 const TargetTransformInfo &TTI, 1766 const TargetLibraryInfo *TLI, DemandedBits *DB, 1767 AssumptionCache *AC, 1768 OptimizationRemarkEmitter *ORE, const Function *F, 1769 const LoopVectorizeHints *Hints, 1770 InterleavedAccessInfo &IAI) 1771 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1772 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1773 1774 /// \return An upper bound for the vectorization factor, or None if 1775 /// vectorization should be avoided up front. 1776 Optional<unsigned> computeMaxVF(bool OptForSize); 1777 1778 /// \return The most profitable vectorization factor and the cost of that VF. 1779 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1780 /// then this vectorization factor will be selected if vectorization is 1781 /// possible. 1782 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1783 1784 /// Setup cost-based decisions for user vectorization factor. 1785 void selectUserVectorizationFactor(unsigned UserVF) { 1786 collectUniformsAndScalars(UserVF); 1787 collectInstsToScalarize(UserVF); 1788 } 1789 1790 /// \return The size (in bits) of the smallest and widest types in the code 1791 /// that needs to be vectorized. We ignore values that remain scalar such as 1792 /// 64 bit loop indices. 1793 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1794 1795 /// \return The desired interleave count. 1796 /// If interleave count has been specified by metadata it will be returned. 1797 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1798 /// are the selected vectorization factor and the cost of the selected VF. 1799 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1800 unsigned LoopCost); 1801 1802 /// Memory access instruction may be vectorized in more than one way. 1803 /// Form of instruction after vectorization depends on cost. 1804 /// This function takes cost-based decisions for Load/Store instructions 1805 /// and collects them in a map. This decisions map is used for building 1806 /// the lists of loop-uniform and loop-scalar instructions. 1807 /// The calculated cost is saved with widening decision in order to 1808 /// avoid redundant calculations. 1809 void setCostBasedWideningDecision(unsigned VF); 1810 1811 /// \brief A struct that represents some properties of the register usage 1812 /// of a loop. 1813 struct RegisterUsage { 1814 /// Holds the number of loop invariant values that are used in the loop. 1815 unsigned LoopInvariantRegs; 1816 1817 /// Holds the maximum number of concurrent live intervals in the loop. 1818 unsigned MaxLocalUsers; 1819 }; 1820 1821 /// \return Returns information about the register usages of the loop for the 1822 /// given vectorization factors. 1823 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1824 1825 /// Collect values we want to ignore in the cost model. 1826 void collectValuesToIgnore(); 1827 1828 /// \returns The smallest bitwidth each instruction can be represented with. 1829 /// The vector equivalents of these instructions should be truncated to this 1830 /// type. 1831 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1832 return MinBWs; 1833 } 1834 1835 /// \returns True if it is more profitable to scalarize instruction \p I for 1836 /// vectorization factor \p VF. 1837 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1838 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1839 auto Scalars = InstsToScalarize.find(VF); 1840 assert(Scalars != InstsToScalarize.end() && 1841 "VF not yet analyzed for scalarization profitability"); 1842 return Scalars->second.count(I); 1843 } 1844 1845 /// Returns true if \p I is known to be uniform after vectorization. 1846 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1847 if (VF == 1) 1848 return true; 1849 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1850 auto UniformsPerVF = Uniforms.find(VF); 1851 return UniformsPerVF->second.count(I); 1852 } 1853 1854 /// Returns true if \p I is known to be scalar after vectorization. 1855 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1856 if (VF == 1) 1857 return true; 1858 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1859 auto ScalarsPerVF = Scalars.find(VF); 1860 return ScalarsPerVF->second.count(I); 1861 } 1862 1863 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1864 /// for vectorization factor \p VF. 1865 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1866 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1867 !isScalarAfterVectorization(I, VF); 1868 } 1869 1870 /// Decision that was taken during cost calculation for memory instruction. 1871 enum InstWidening { 1872 CM_Unknown, 1873 CM_Widen, // For consecutive accesses with stride +1. 1874 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1875 CM_Interleave, 1876 CM_GatherScatter, 1877 CM_Scalarize 1878 }; 1879 1880 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1881 /// instruction \p I and vector width \p VF. 1882 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1883 unsigned Cost) { 1884 assert(VF >= 2 && "Expected VF >=2"); 1885 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1886 } 1887 1888 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1889 /// interleaving group \p Grp and vector width \p VF. 1890 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1891 InstWidening W, unsigned Cost) { 1892 assert(VF >= 2 && "Expected VF >=2"); 1893 /// Broadcast this decicion to all instructions inside the group. 1894 /// But the cost will be assigned to one instruction only. 1895 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1896 if (auto *I = Grp->getMember(i)) { 1897 if (Grp->getInsertPos() == I) 1898 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1899 else 1900 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1901 } 1902 } 1903 } 1904 1905 /// Return the cost model decision for the given instruction \p I and vector 1906 /// width \p VF. Return CM_Unknown if this instruction did not pass 1907 /// through the cost modeling. 1908 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1909 assert(VF >= 2 && "Expected VF >=2"); 1910 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1911 auto Itr = WideningDecisions.find(InstOnVF); 1912 if (Itr == WideningDecisions.end()) 1913 return CM_Unknown; 1914 return Itr->second.first; 1915 } 1916 1917 /// Return the vectorization cost for the given instruction \p I and vector 1918 /// width \p VF. 1919 unsigned getWideningCost(Instruction *I, unsigned VF) { 1920 assert(VF >= 2 && "Expected VF >=2"); 1921 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1922 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1923 return WideningDecisions[InstOnVF].second; 1924 } 1925 1926 /// Return True if instruction \p I is an optimizable truncate whose operand 1927 /// is an induction variable. Such a truncate will be removed by adding a new 1928 /// induction variable with the destination type. 1929 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1930 // If the instruction is not a truncate, return false. 1931 auto *Trunc = dyn_cast<TruncInst>(I); 1932 if (!Trunc) 1933 return false; 1934 1935 // Get the source and destination types of the truncate. 1936 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1937 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1938 1939 // If the truncate is free for the given types, return false. Replacing a 1940 // free truncate with an induction variable would add an induction variable 1941 // update instruction to each iteration of the loop. We exclude from this 1942 // check the primary induction variable since it will need an update 1943 // instruction regardless. 1944 Value *Op = Trunc->getOperand(0); 1945 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1946 return false; 1947 1948 // If the truncated value is not an induction variable, return false. 1949 return Legal->isInductionPhi(Op); 1950 } 1951 1952 /// Collects the instructions to scalarize for each predicated instruction in 1953 /// the loop. 1954 void collectInstsToScalarize(unsigned VF); 1955 1956 /// Collect Uniform and Scalar values for the given \p VF. 1957 /// The sets depend on CM decision for Load/Store instructions 1958 /// that may be vectorized as interleave, gather-scatter or scalarized. 1959 void collectUniformsAndScalars(unsigned VF) { 1960 // Do the analysis once. 1961 if (VF == 1 || Uniforms.count(VF)) 1962 return; 1963 setCostBasedWideningDecision(VF); 1964 collectLoopUniforms(VF); 1965 collectLoopScalars(VF); 1966 } 1967 1968 /// Returns true if the target machine supports masked store operation 1969 /// for the given \p DataType and kind of access to \p Ptr. 1970 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1971 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1972 } 1973 1974 /// Returns true if the target machine supports masked load operation 1975 /// for the given \p DataType and kind of access to \p Ptr. 1976 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1977 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1978 } 1979 1980 /// Returns true if the target machine supports masked scatter operation 1981 /// for the given \p DataType. 1982 bool isLegalMaskedScatter(Type *DataType) { 1983 return TTI.isLegalMaskedScatter(DataType); 1984 } 1985 1986 /// Returns true if the target machine supports masked gather operation 1987 /// for the given \p DataType. 1988 bool isLegalMaskedGather(Type *DataType) { 1989 return TTI.isLegalMaskedGather(DataType); 1990 } 1991 1992 /// Returns true if the target machine can represent \p V as a masked gather 1993 /// or scatter operation. 1994 bool isLegalGatherOrScatter(Value *V) { 1995 bool LI = isa<LoadInst>(V); 1996 bool SI = isa<StoreInst>(V); 1997 if (!LI && !SI) 1998 return false; 1999 auto *Ty = getMemInstValueType(V); 2000 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 2001 } 2002 2003 /// Returns true if \p I is an instruction that will be scalarized with 2004 /// predication. Such instructions include conditional stores and 2005 /// instructions that may divide by zero. 2006 bool isScalarWithPredication(Instruction *I); 2007 2008 /// Returns true if \p I is a memory instruction with consecutive memory 2009 /// access that can be widened. 2010 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 2011 2012 /// \brief Check if \p Instr belongs to any interleaved access group. 2013 bool isAccessInterleaved(Instruction *Instr) { 2014 return InterleaveInfo.isInterleaved(Instr); 2015 } 2016 2017 /// \brief Get the interleaved access group that \p Instr belongs to. 2018 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 2019 return InterleaveInfo.getInterleaveGroup(Instr); 2020 } 2021 2022 /// \brief Returns true if an interleaved group requires a scalar iteration 2023 /// to handle accesses with gaps. 2024 bool requiresScalarEpilogue() const { 2025 return InterleaveInfo.requiresScalarEpilogue(); 2026 } 2027 2028 private: 2029 unsigned NumPredStores = 0; 2030 2031 /// \return An upper bound for the vectorization factor, larger than zero. 2032 /// One is returned if vectorization should best be avoided due to cost. 2033 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2034 2035 /// The vectorization cost is a combination of the cost itself and a boolean 2036 /// indicating whether any of the contributing operations will actually 2037 /// operate on 2038 /// vector values after type legalization in the backend. If this latter value 2039 /// is 2040 /// false, then all operations will be scalarized (i.e. no vectorization has 2041 /// actually taken place). 2042 using VectorizationCostTy = std::pair<unsigned, bool>; 2043 2044 /// Returns the expected execution cost. The unit of the cost does 2045 /// not matter because we use the 'cost' units to compare different 2046 /// vector widths. The cost that is returned is *not* normalized by 2047 /// the factor width. 2048 VectorizationCostTy expectedCost(unsigned VF); 2049 2050 /// Returns the execution time cost of an instruction for a given vector 2051 /// width. Vector width of one means scalar. 2052 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2053 2054 /// The cost-computation logic from getInstructionCost which provides 2055 /// the vector type as an output parameter. 2056 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2057 2058 /// Calculate vectorization cost of memory instruction \p I. 2059 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2060 2061 /// The cost computation for scalarized memory instruction. 2062 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2063 2064 /// The cost computation for interleaving group of memory instructions. 2065 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2066 2067 /// The cost computation for Gather/Scatter instruction. 2068 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2069 2070 /// The cost computation for widening instruction \p I with consecutive 2071 /// memory access. 2072 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2073 2074 /// The cost calculation for Load instruction \p I with uniform pointer - 2075 /// scalar load + broadcast. 2076 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2077 2078 /// Returns whether the instruction is a load or store and will be a emitted 2079 /// as a vector operation. 2080 bool isConsecutiveLoadOrStore(Instruction *I); 2081 2082 /// Returns true if an artificially high cost for emulated masked memrefs 2083 /// should be used. 2084 bool useEmulatedMaskMemRefHack(Instruction *I); 2085 2086 /// Create an analysis remark that explains why vectorization failed 2087 /// 2088 /// \p RemarkName is the identifier for the remark. \return the remark object 2089 /// that can be streamed to. 2090 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2091 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2092 RemarkName, TheLoop); 2093 } 2094 2095 /// Map of scalar integer values to the smallest bitwidth they can be legally 2096 /// represented as. The vector equivalents of these values should be truncated 2097 /// to this type. 2098 MapVector<Instruction *, uint64_t> MinBWs; 2099 2100 /// A type representing the costs for instructions if they were to be 2101 /// scalarized rather than vectorized. The entries are Instruction-Cost 2102 /// pairs. 2103 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2104 2105 /// A set containing all BasicBlocks that are known to present after 2106 /// vectorization as a predicated block. 2107 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2108 2109 /// A map holding scalar costs for different vectorization factors. The 2110 /// presence of a cost for an instruction in the mapping indicates that the 2111 /// instruction will be scalarized when vectorizing with the associated 2112 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2113 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2114 2115 /// Holds the instructions known to be uniform after vectorization. 2116 /// The data is collected per VF. 2117 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2118 2119 /// Holds the instructions known to be scalar after vectorization. 2120 /// The data is collected per VF. 2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2122 2123 /// Holds the instructions (address computations) that are forced to be 2124 /// scalarized. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2126 2127 /// Returns the expected difference in cost from scalarizing the expression 2128 /// feeding a predicated instruction \p PredInst. The instructions to 2129 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2130 /// non-negative return value implies the expression will be scalarized. 2131 /// Currently, only single-use chains are considered for scalarization. 2132 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2133 unsigned VF); 2134 2135 /// Collect the instructions that are uniform after vectorization. An 2136 /// instruction is uniform if we represent it with a single scalar value in 2137 /// the vectorized loop corresponding to each vector iteration. Examples of 2138 /// uniform instructions include pointer operands of consecutive or 2139 /// interleaved memory accesses. Note that although uniformity implies an 2140 /// instruction will be scalar, the reverse is not true. In general, a 2141 /// scalarized instruction will be represented by VF scalar values in the 2142 /// vectorized loop, each corresponding to an iteration of the original 2143 /// scalar loop. 2144 void collectLoopUniforms(unsigned VF); 2145 2146 /// Collect the instructions that are scalar after vectorization. An 2147 /// instruction is scalar if it is known to be uniform or will be scalarized 2148 /// during vectorization. Non-uniform scalarized instructions will be 2149 /// represented by VF values in the vectorized loop, each corresponding to an 2150 /// iteration of the original scalar loop. 2151 void collectLoopScalars(unsigned VF); 2152 2153 /// Keeps cost model vectorization decision and cost for instructions. 2154 /// Right now it is used for memory instructions only. 2155 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2156 std::pair<InstWidening, unsigned>>; 2157 2158 DecisionList WideningDecisions; 2159 2160 public: 2161 /// The loop that we evaluate. 2162 Loop *TheLoop; 2163 2164 /// Predicated scalar evolution analysis. 2165 PredicatedScalarEvolution &PSE; 2166 2167 /// Loop Info analysis. 2168 LoopInfo *LI; 2169 2170 /// Vectorization legality. 2171 LoopVectorizationLegality *Legal; 2172 2173 /// Vector target information. 2174 const TargetTransformInfo &TTI; 2175 2176 /// Target Library Info. 2177 const TargetLibraryInfo *TLI; 2178 2179 /// Demanded bits analysis. 2180 DemandedBits *DB; 2181 2182 /// Assumption cache. 2183 AssumptionCache *AC; 2184 2185 /// Interface to emit optimization remarks. 2186 OptimizationRemarkEmitter *ORE; 2187 2188 const Function *TheFunction; 2189 2190 /// Loop Vectorize Hint. 2191 const LoopVectorizeHints *Hints; 2192 2193 /// The interleave access information contains groups of interleaved accesses 2194 /// with the same stride and close to each other. 2195 InterleavedAccessInfo &InterleaveInfo; 2196 2197 /// Values to ignore in the cost model. 2198 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2199 2200 /// Values to ignore in the cost model when VF > 1. 2201 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2202 }; 2203 2204 } // end namespace llvm 2205 2206 namespace { 2207 2208 /// \brief This holds vectorization requirements that must be verified late in 2209 /// the process. The requirements are set by legalize and costmodel. Once 2210 /// vectorization has been determined to be possible and profitable the 2211 /// requirements can be verified by looking for metadata or compiler options. 2212 /// For example, some loops require FP commutativity which is only allowed if 2213 /// vectorization is explicitly specified or if the fast-math compiler option 2214 /// has been provided. 2215 /// Late evaluation of these requirements allows helpful diagnostics to be 2216 /// composed that tells the user what need to be done to vectorize the loop. For 2217 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2218 /// evaluation should be used only when diagnostics can generated that can be 2219 /// followed by a non-expert user. 2220 class LoopVectorizationRequirements { 2221 public: 2222 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2223 2224 void addUnsafeAlgebraInst(Instruction *I) { 2225 // First unsafe algebra instruction. 2226 if (!UnsafeAlgebraInst) 2227 UnsafeAlgebraInst = I; 2228 } 2229 2230 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2231 2232 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2233 const char *PassName = Hints.vectorizeAnalysisPassName(); 2234 bool Failed = false; 2235 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2236 ORE.emit([&]() { 2237 return OptimizationRemarkAnalysisFPCommute( 2238 PassName, "CantReorderFPOps", 2239 UnsafeAlgebraInst->getDebugLoc(), 2240 UnsafeAlgebraInst->getParent()) 2241 << "loop not vectorized: cannot prove it is safe to reorder " 2242 "floating-point operations"; 2243 }); 2244 Failed = true; 2245 } 2246 2247 // Test if runtime memcheck thresholds are exceeded. 2248 bool PragmaThresholdReached = 2249 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2250 bool ThresholdReached = 2251 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2252 if ((ThresholdReached && !Hints.allowReordering()) || 2253 PragmaThresholdReached) { 2254 ORE.emit([&]() { 2255 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2256 L->getStartLoc(), 2257 L->getHeader()) 2258 << "loop not vectorized: cannot prove it is safe to reorder " 2259 "memory operations"; 2260 }); 2261 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2262 Failed = true; 2263 } 2264 2265 return Failed; 2266 } 2267 2268 private: 2269 unsigned NumRuntimePointerChecks = 0; 2270 Instruction *UnsafeAlgebraInst = nullptr; 2271 2272 /// Interface to emit optimization remarks. 2273 OptimizationRemarkEmitter &ORE; 2274 }; 2275 2276 } // end anonymous namespace 2277 2278 static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI, 2279 SmallVectorImpl<Loop *> &V) { 2280 if (L.empty()) { 2281 LoopBlocksRPO RPOT(&L); 2282 RPOT.perform(&LI); 2283 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2284 V.push_back(&L); 2285 return; 2286 } 2287 for (Loop *InnerL : L) 2288 addAcyclicInnerLoop(*InnerL, LI, V); 2289 } 2290 2291 namespace { 2292 2293 /// The LoopVectorize Pass. 2294 struct LoopVectorize : public FunctionPass { 2295 /// Pass identification, replacement for typeid 2296 static char ID; 2297 2298 LoopVectorizePass Impl; 2299 2300 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2301 : FunctionPass(ID) { 2302 Impl.DisableUnrolling = NoUnrolling; 2303 Impl.AlwaysVectorize = AlwaysVectorize; 2304 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2305 } 2306 2307 bool runOnFunction(Function &F) override { 2308 if (skipFunction(F)) 2309 return false; 2310 2311 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2312 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2313 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2314 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2315 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2316 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2317 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2318 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2319 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2320 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2321 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2322 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2323 2324 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2325 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2326 2327 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2328 GetLAA, *ORE); 2329 } 2330 2331 void getAnalysisUsage(AnalysisUsage &AU) const override { 2332 AU.addRequired<AssumptionCacheTracker>(); 2333 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2334 AU.addRequired<DominatorTreeWrapperPass>(); 2335 AU.addRequired<LoopInfoWrapperPass>(); 2336 AU.addRequired<ScalarEvolutionWrapperPass>(); 2337 AU.addRequired<TargetTransformInfoWrapperPass>(); 2338 AU.addRequired<AAResultsWrapperPass>(); 2339 AU.addRequired<LoopAccessLegacyAnalysis>(); 2340 AU.addRequired<DemandedBitsWrapperPass>(); 2341 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2342 AU.addPreserved<LoopInfoWrapperPass>(); 2343 AU.addPreserved<DominatorTreeWrapperPass>(); 2344 AU.addPreserved<BasicAAWrapperPass>(); 2345 AU.addPreserved<GlobalsAAWrapperPass>(); 2346 } 2347 }; 2348 2349 } // end anonymous namespace 2350 2351 //===----------------------------------------------------------------------===// 2352 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2353 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2354 //===----------------------------------------------------------------------===// 2355 2356 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2357 // We need to place the broadcast of invariant variables outside the loop. 2358 Instruction *Instr = dyn_cast<Instruction>(V); 2359 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2360 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2361 2362 // Place the code for broadcasting invariant variables in the new preheader. 2363 IRBuilder<>::InsertPointGuard Guard(Builder); 2364 if (Invariant) 2365 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2366 2367 // Broadcast the scalar into all locations in the vector. 2368 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2369 2370 return Shuf; 2371 } 2372 2373 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2374 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2375 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2376 "Expected either an induction phi-node or a truncate of it!"); 2377 Value *Start = II.getStartValue(); 2378 2379 // Construct the initial value of the vector IV in the vector loop preheader 2380 auto CurrIP = Builder.saveIP(); 2381 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2382 if (isa<TruncInst>(EntryVal)) { 2383 assert(Start->getType()->isIntegerTy() && 2384 "Truncation requires an integer type"); 2385 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2386 Step = Builder.CreateTrunc(Step, TruncType); 2387 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2388 } 2389 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2390 Value *SteppedStart = 2391 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2392 2393 // We create vector phi nodes for both integer and floating-point induction 2394 // variables. Here, we determine the kind of arithmetic we will perform. 2395 Instruction::BinaryOps AddOp; 2396 Instruction::BinaryOps MulOp; 2397 if (Step->getType()->isIntegerTy()) { 2398 AddOp = Instruction::Add; 2399 MulOp = Instruction::Mul; 2400 } else { 2401 AddOp = II.getInductionOpcode(); 2402 MulOp = Instruction::FMul; 2403 } 2404 2405 // Multiply the vectorization factor by the step using integer or 2406 // floating-point arithmetic as appropriate. 2407 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2408 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2409 2410 // Create a vector splat to use in the induction update. 2411 // 2412 // FIXME: If the step is non-constant, we create the vector splat with 2413 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2414 // handle a constant vector splat. 2415 Value *SplatVF = isa<Constant>(Mul) 2416 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2417 : Builder.CreateVectorSplat(VF, Mul); 2418 Builder.restoreIP(CurrIP); 2419 2420 // We may need to add the step a number of times, depending on the unroll 2421 // factor. The last of those goes into the PHI. 2422 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2423 &*LoopVectorBody->getFirstInsertionPt()); 2424 Instruction *LastInduction = VecInd; 2425 for (unsigned Part = 0; Part < UF; ++Part) { 2426 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2427 2428 if (isa<TruncInst>(EntryVal)) 2429 addMetadata(LastInduction, EntryVal); 2430 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 2431 2432 LastInduction = cast<Instruction>(addFastMathFlag( 2433 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2434 } 2435 2436 // Move the last step to the end of the latch block. This ensures consistent 2437 // placement of all induction updates. 2438 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2439 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2440 auto *ICmp = cast<Instruction>(Br->getCondition()); 2441 LastInduction->moveBefore(ICmp); 2442 LastInduction->setName("vec.ind.next"); 2443 2444 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2445 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2446 } 2447 2448 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2449 return Cost->isScalarAfterVectorization(I, VF) || 2450 Cost->isProfitableToScalarize(I, VF); 2451 } 2452 2453 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2454 if (shouldScalarizeInstruction(IV)) 2455 return true; 2456 auto isScalarInst = [&](User *U) -> bool { 2457 auto *I = cast<Instruction>(U); 2458 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2459 }; 2460 return llvm::any_of(IV->users(), isScalarInst); 2461 } 2462 2463 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2464 const InductionDescriptor &ID, const Instruction *EntryVal, 2465 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 2466 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2467 "Expected either an induction phi-node or a truncate of it!"); 2468 2469 // This induction variable is not the phi from the original loop but the 2470 // newly-created IV based on the proof that casted Phi is equal to the 2471 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2472 // re-uses the same InductionDescriptor that original IV uses but we don't 2473 // have to do any recording in this case - that is done when original IV is 2474 // processed. 2475 if (isa<TruncInst>(EntryVal)) 2476 return; 2477 2478 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2479 if (Casts.empty()) 2480 return; 2481 // Only the first Cast instruction in the Casts vector is of interest. 2482 // The rest of the Casts (if exist) have no uses outside the 2483 // induction update chain itself. 2484 Instruction *CastInst = *Casts.begin(); 2485 if (Lane < UINT_MAX) 2486 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2487 else 2488 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2489 } 2490 2491 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2492 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2493 "Primary induction variable must have an integer type"); 2494 2495 auto II = Legal->getInductionVars()->find(IV); 2496 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2497 2498 auto ID = II->second; 2499 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2500 2501 // The scalar value to broadcast. This will be derived from the canonical 2502 // induction variable. 2503 Value *ScalarIV = nullptr; 2504 2505 // The value from the original loop to which we are mapping the new induction 2506 // variable. 2507 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2508 2509 // True if we have vectorized the induction variable. 2510 auto VectorizedIV = false; 2511 2512 // Determine if we want a scalar version of the induction variable. This is 2513 // true if the induction variable itself is not widened, or if it has at 2514 // least one user in the loop that is not widened. 2515 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2516 2517 // Generate code for the induction step. Note that induction steps are 2518 // required to be loop-invariant 2519 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2520 "Induction step should be loop invariant"); 2521 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2522 Value *Step = nullptr; 2523 if (PSE.getSE()->isSCEVable(IV->getType())) { 2524 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2525 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2526 LoopVectorPreHeader->getTerminator()); 2527 } else { 2528 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2529 } 2530 2531 // Try to create a new independent vector induction variable. If we can't 2532 // create the phi node, we will splat the scalar induction variable in each 2533 // loop iteration. 2534 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2535 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2536 VectorizedIV = true; 2537 } 2538 2539 // If we haven't yet vectorized the induction variable, or if we will create 2540 // a scalar one, we need to define the scalar induction variable and step 2541 // values. If we were given a truncation type, truncate the canonical 2542 // induction variable and step. Otherwise, derive these values from the 2543 // induction descriptor. 2544 if (!VectorizedIV || NeedsScalarIV) { 2545 ScalarIV = Induction; 2546 if (IV != OldInduction) { 2547 ScalarIV = IV->getType()->isIntegerTy() 2548 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2549 : Builder.CreateCast(Instruction::SIToFP, Induction, 2550 IV->getType()); 2551 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2552 ScalarIV->setName("offset.idx"); 2553 } 2554 if (Trunc) { 2555 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2556 assert(Step->getType()->isIntegerTy() && 2557 "Truncation requires an integer step"); 2558 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2559 Step = Builder.CreateTrunc(Step, TruncType); 2560 } 2561 } 2562 2563 // If we haven't yet vectorized the induction variable, splat the scalar 2564 // induction variable, and build the necessary step vectors. 2565 // TODO: Don't do it unless the vectorized IV is really required. 2566 if (!VectorizedIV) { 2567 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2568 for (unsigned Part = 0; Part < UF; ++Part) { 2569 Value *EntryPart = 2570 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2571 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2572 if (Trunc) 2573 addMetadata(EntryPart, Trunc); 2574 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2575 } 2576 } 2577 2578 // If an induction variable is only used for counting loop iterations or 2579 // calculating addresses, it doesn't need to be widened. Create scalar steps 2580 // that can be used by instructions we will later scalarize. Note that the 2581 // addition of the scalar steps will not increase the number of instructions 2582 // in the loop in the common case prior to InstCombine. We will be trading 2583 // one vector extract for each scalar step. 2584 if (NeedsScalarIV) 2585 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2586 } 2587 2588 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2589 Instruction::BinaryOps BinOp) { 2590 // Create and check the types. 2591 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2592 int VLen = Val->getType()->getVectorNumElements(); 2593 2594 Type *STy = Val->getType()->getScalarType(); 2595 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2596 "Induction Step must be an integer or FP"); 2597 assert(Step->getType() == STy && "Step has wrong type"); 2598 2599 SmallVector<Constant *, 8> Indices; 2600 2601 if (STy->isIntegerTy()) { 2602 // Create a vector of consecutive numbers from zero to VF. 2603 for (int i = 0; i < VLen; ++i) 2604 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2605 2606 // Add the consecutive indices to the vector value. 2607 Constant *Cv = ConstantVector::get(Indices); 2608 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2609 Step = Builder.CreateVectorSplat(VLen, Step); 2610 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2611 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2612 // which can be found from the original scalar operations. 2613 Step = Builder.CreateMul(Cv, Step); 2614 return Builder.CreateAdd(Val, Step, "induction"); 2615 } 2616 2617 // Floating point induction. 2618 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2619 "Binary Opcode should be specified for FP induction"); 2620 // Create a vector of consecutive numbers from zero to VF. 2621 for (int i = 0; i < VLen; ++i) 2622 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2623 2624 // Add the consecutive indices to the vector value. 2625 Constant *Cv = ConstantVector::get(Indices); 2626 2627 Step = Builder.CreateVectorSplat(VLen, Step); 2628 2629 // Floating point operations had to be 'fast' to enable the induction. 2630 FastMathFlags Flags; 2631 Flags.setFast(); 2632 2633 Value *MulOp = Builder.CreateFMul(Cv, Step); 2634 if (isa<Instruction>(MulOp)) 2635 // Have to check, MulOp may be a constant 2636 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2637 2638 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2639 if (isa<Instruction>(BOp)) 2640 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2641 return BOp; 2642 } 2643 2644 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2645 Instruction *EntryVal, 2646 const InductionDescriptor &ID) { 2647 // We shouldn't have to build scalar steps if we aren't vectorizing. 2648 assert(VF > 1 && "VF should be greater than one"); 2649 2650 // Get the value type and ensure it and the step have the same integer type. 2651 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2652 assert(ScalarIVTy == Step->getType() && 2653 "Val and Step should have the same type"); 2654 2655 // We build scalar steps for both integer and floating-point induction 2656 // variables. Here, we determine the kind of arithmetic we will perform. 2657 Instruction::BinaryOps AddOp; 2658 Instruction::BinaryOps MulOp; 2659 if (ScalarIVTy->isIntegerTy()) { 2660 AddOp = Instruction::Add; 2661 MulOp = Instruction::Mul; 2662 } else { 2663 AddOp = ID.getInductionOpcode(); 2664 MulOp = Instruction::FMul; 2665 } 2666 2667 // Determine the number of scalars we need to generate for each unroll 2668 // iteration. If EntryVal is uniform, we only need to generate the first 2669 // lane. Otherwise, we generate all VF values. 2670 unsigned Lanes = 2671 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2672 : VF; 2673 // Compute the scalar steps and save the results in VectorLoopValueMap. 2674 for (unsigned Part = 0; Part < UF; ++Part) { 2675 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2676 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2677 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2678 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2679 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2680 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2681 } 2682 } 2683 } 2684 2685 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2686 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2687 ValueToValueMap(); 2688 2689 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2690 if (Stride == 1 || Stride == -1) 2691 return Stride; 2692 return 0; 2693 } 2694 2695 bool LoopVectorizationLegality::isUniform(Value *V) { 2696 return LAI->isUniform(V); 2697 } 2698 2699 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2700 assert(V != Induction && "The new induction variable should not be used."); 2701 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2702 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2703 2704 // If we have a stride that is replaced by one, do it here. 2705 if (Legal->hasStride(V)) 2706 V = ConstantInt::get(V->getType(), 1); 2707 2708 // If we have a vector mapped to this value, return it. 2709 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2710 return VectorLoopValueMap.getVectorValue(V, Part); 2711 2712 // If the value has not been vectorized, check if it has been scalarized 2713 // instead. If it has been scalarized, and we actually need the value in 2714 // vector form, we will construct the vector values on demand. 2715 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2716 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2717 2718 // If we've scalarized a value, that value should be an instruction. 2719 auto *I = cast<Instruction>(V); 2720 2721 // If we aren't vectorizing, we can just copy the scalar map values over to 2722 // the vector map. 2723 if (VF == 1) { 2724 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2725 return ScalarValue; 2726 } 2727 2728 // Get the last scalar instruction we generated for V and Part. If the value 2729 // is known to be uniform after vectorization, this corresponds to lane zero 2730 // of the Part unroll iteration. Otherwise, the last instruction is the one 2731 // we created for the last vector lane of the Part unroll iteration. 2732 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2733 auto *LastInst = cast<Instruction>( 2734 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2735 2736 // Set the insert point after the last scalarized instruction. This ensures 2737 // the insertelement sequence will directly follow the scalar definitions. 2738 auto OldIP = Builder.saveIP(); 2739 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2740 Builder.SetInsertPoint(&*NewIP); 2741 2742 // However, if we are vectorizing, we need to construct the vector values. 2743 // If the value is known to be uniform after vectorization, we can just 2744 // broadcast the scalar value corresponding to lane zero for each unroll 2745 // iteration. Otherwise, we construct the vector values using insertelement 2746 // instructions. Since the resulting vectors are stored in 2747 // VectorLoopValueMap, we will only generate the insertelements once. 2748 Value *VectorValue = nullptr; 2749 if (Cost->isUniformAfterVectorization(I, VF)) { 2750 VectorValue = getBroadcastInstrs(ScalarValue); 2751 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2752 } else { 2753 // Initialize packing with insertelements to start from undef. 2754 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2755 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2756 for (unsigned Lane = 0; Lane < VF; ++Lane) 2757 packScalarIntoVectorValue(V, {Part, Lane}); 2758 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2759 } 2760 Builder.restoreIP(OldIP); 2761 return VectorValue; 2762 } 2763 2764 // If this scalar is unknown, assume that it is a constant or that it is 2765 // loop invariant. Broadcast V and save the value for future uses. 2766 Value *B = getBroadcastInstrs(V); 2767 VectorLoopValueMap.setVectorValue(V, Part, B); 2768 return B; 2769 } 2770 2771 Value * 2772 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2773 const VPIteration &Instance) { 2774 // If the value is not an instruction contained in the loop, it should 2775 // already be scalar. 2776 if (OrigLoop->isLoopInvariant(V)) 2777 return V; 2778 2779 assert(Instance.Lane > 0 2780 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2781 : true && "Uniform values only have lane zero"); 2782 2783 // If the value from the original loop has not been vectorized, it is 2784 // represented by UF x VF scalar values in the new loop. Return the requested 2785 // scalar value. 2786 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2787 return VectorLoopValueMap.getScalarValue(V, Instance); 2788 2789 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2790 // for the given unroll part. If this entry is not a vector type (i.e., the 2791 // vectorization factor is one), there is no need to generate an 2792 // extractelement instruction. 2793 auto *U = getOrCreateVectorValue(V, Instance.Part); 2794 if (!U->getType()->isVectorTy()) { 2795 assert(VF == 1 && "Value not scalarized has non-vector type"); 2796 return U; 2797 } 2798 2799 // Otherwise, the value from the original loop has been vectorized and is 2800 // represented by UF vector values. Extract and return the requested scalar 2801 // value from the appropriate vector lane. 2802 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2803 } 2804 2805 void InnerLoopVectorizer::packScalarIntoVectorValue( 2806 Value *V, const VPIteration &Instance) { 2807 assert(V != Induction && "The new induction variable should not be used."); 2808 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2809 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2810 2811 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2812 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2813 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2814 Builder.getInt32(Instance.Lane)); 2815 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2816 } 2817 2818 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2819 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2820 SmallVector<Constant *, 8> ShuffleMask; 2821 for (unsigned i = 0; i < VF; ++i) 2822 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2823 2824 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2825 ConstantVector::get(ShuffleMask), 2826 "reverse"); 2827 } 2828 2829 // Try to vectorize the interleave group that \p Instr belongs to. 2830 // 2831 // E.g. Translate following interleaved load group (factor = 3): 2832 // for (i = 0; i < N; i+=3) { 2833 // R = Pic[i]; // Member of index 0 2834 // G = Pic[i+1]; // Member of index 1 2835 // B = Pic[i+2]; // Member of index 2 2836 // ... // do something to R, G, B 2837 // } 2838 // To: 2839 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2840 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2841 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2842 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2843 // 2844 // Or translate following interleaved store group (factor = 3): 2845 // for (i = 0; i < N; i+=3) { 2846 // ... do something to R, G, B 2847 // Pic[i] = R; // Member of index 0 2848 // Pic[i+1] = G; // Member of index 1 2849 // Pic[i+2] = B; // Member of index 2 2850 // } 2851 // To: 2852 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2853 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2854 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2855 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2856 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2857 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2858 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2859 assert(Group && "Fail to get an interleaved access group."); 2860 2861 // Skip if current instruction is not the insert position. 2862 if (Instr != Group->getInsertPos()) 2863 return; 2864 2865 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2866 Value *Ptr = getLoadStorePointerOperand(Instr); 2867 2868 // Prepare for the vector type of the interleaved load/store. 2869 Type *ScalarTy = getMemInstValueType(Instr); 2870 unsigned InterleaveFactor = Group->getFactor(); 2871 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2872 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2873 2874 // Prepare for the new pointers. 2875 setDebugLocFromInst(Builder, Ptr); 2876 SmallVector<Value *, 2> NewPtrs; 2877 unsigned Index = Group->getIndex(Instr); 2878 2879 // If the group is reverse, adjust the index to refer to the last vector lane 2880 // instead of the first. We adjust the index from the first vector lane, 2881 // rather than directly getting the pointer for lane VF - 1, because the 2882 // pointer operand of the interleaved access is supposed to be uniform. For 2883 // uniform instructions, we're only required to generate a value for the 2884 // first vector lane in each unroll iteration. 2885 if (Group->isReverse()) 2886 Index += (VF - 1) * Group->getFactor(); 2887 2888 for (unsigned Part = 0; Part < UF; Part++) { 2889 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2890 2891 // Notice current instruction could be any index. Need to adjust the address 2892 // to the member of index 0. 2893 // 2894 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2895 // b = A[i]; // Member of index 0 2896 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2897 // 2898 // E.g. A[i+1] = a; // Member of index 1 2899 // A[i] = b; // Member of index 0 2900 // A[i+2] = c; // Member of index 2 (Current instruction) 2901 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2902 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2903 2904 // Cast to the vector pointer type. 2905 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2906 } 2907 2908 setDebugLocFromInst(Builder, Instr); 2909 Value *UndefVec = UndefValue::get(VecTy); 2910 2911 // Vectorize the interleaved load group. 2912 if (isa<LoadInst>(Instr)) { 2913 // For each unroll part, create a wide load for the group. 2914 SmallVector<Value *, 2> NewLoads; 2915 for (unsigned Part = 0; Part < UF; Part++) { 2916 auto *NewLoad = Builder.CreateAlignedLoad( 2917 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2918 Group->addMetadata(NewLoad); 2919 NewLoads.push_back(NewLoad); 2920 } 2921 2922 // For each member in the group, shuffle out the appropriate data from the 2923 // wide loads. 2924 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2925 Instruction *Member = Group->getMember(I); 2926 2927 // Skip the gaps in the group. 2928 if (!Member) 2929 continue; 2930 2931 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2932 for (unsigned Part = 0; Part < UF; Part++) { 2933 Value *StridedVec = Builder.CreateShuffleVector( 2934 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2935 2936 // If this member has different type, cast the result type. 2937 if (Member->getType() != ScalarTy) { 2938 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2939 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2940 } 2941 2942 if (Group->isReverse()) 2943 StridedVec = reverseVector(StridedVec); 2944 2945 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2946 } 2947 } 2948 return; 2949 } 2950 2951 // The sub vector type for current instruction. 2952 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2953 2954 // Vectorize the interleaved store group. 2955 for (unsigned Part = 0; Part < UF; Part++) { 2956 // Collect the stored vector from each member. 2957 SmallVector<Value *, 4> StoredVecs; 2958 for (unsigned i = 0; i < InterleaveFactor; i++) { 2959 // Interleaved store group doesn't allow a gap, so each index has a member 2960 Instruction *Member = Group->getMember(i); 2961 assert(Member && "Fail to get a member from an interleaved store group"); 2962 2963 Value *StoredVec = getOrCreateVectorValue( 2964 cast<StoreInst>(Member)->getValueOperand(), Part); 2965 if (Group->isReverse()) 2966 StoredVec = reverseVector(StoredVec); 2967 2968 // If this member has different type, cast it to a unified type. 2969 2970 if (StoredVec->getType() != SubVT) 2971 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2972 2973 StoredVecs.push_back(StoredVec); 2974 } 2975 2976 // Concatenate all vectors into a wide vector. 2977 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2978 2979 // Interleave the elements in the wide vector. 2980 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2981 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2982 "interleaved.vec"); 2983 2984 Instruction *NewStoreInstr = 2985 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2986 2987 Group->addMetadata(NewStoreInstr); 2988 } 2989 } 2990 2991 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2992 VectorParts *BlockInMask) { 2993 // Attempt to issue a wide load. 2994 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2995 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2996 2997 assert((LI || SI) && "Invalid Load/Store instruction"); 2998 2999 LoopVectorizationCostModel::InstWidening Decision = 3000 Cost->getWideningDecision(Instr, VF); 3001 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3002 "CM decision should be taken at this point"); 3003 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3004 return vectorizeInterleaveGroup(Instr); 3005 3006 Type *ScalarDataTy = getMemInstValueType(Instr); 3007 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3008 Value *Ptr = getLoadStorePointerOperand(Instr); 3009 unsigned Alignment = getMemInstAlignment(Instr); 3010 // An alignment of 0 means target abi alignment. We need to use the scalar's 3011 // target abi alignment in such a case. 3012 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3013 if (!Alignment) 3014 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3015 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3016 3017 // Determine if the pointer operand of the access is either consecutive or 3018 // reverse consecutive. 3019 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3020 bool ConsecutiveStride = 3021 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3022 bool CreateGatherScatter = 3023 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3024 3025 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3026 // gather/scatter. Otherwise Decision should have been to Scalarize. 3027 assert((ConsecutiveStride || CreateGatherScatter) && 3028 "The instruction should be scalarized"); 3029 3030 // Handle consecutive loads/stores. 3031 if (ConsecutiveStride) 3032 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3033 3034 VectorParts Mask; 3035 bool isMaskRequired = BlockInMask; 3036 if (isMaskRequired) 3037 Mask = *BlockInMask; 3038 3039 // Handle Stores: 3040 if (SI) { 3041 setDebugLocFromInst(Builder, SI); 3042 3043 for (unsigned Part = 0; Part < UF; ++Part) { 3044 Instruction *NewSI = nullptr; 3045 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3046 if (CreateGatherScatter) { 3047 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3048 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3049 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3050 MaskPart); 3051 } else { 3052 // Calculate the pointer for the specific unroll-part. 3053 Value *PartPtr = 3054 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3055 3056 if (Reverse) { 3057 // If we store to reverse consecutive memory locations, then we need 3058 // to reverse the order of elements in the stored value. 3059 StoredVal = reverseVector(StoredVal); 3060 // We don't want to update the value in the map as it might be used in 3061 // another expression. So don't call resetVectorValue(StoredVal). 3062 3063 // If the address is consecutive but reversed, then the 3064 // wide store needs to start at the last vector element. 3065 PartPtr = 3066 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3067 PartPtr = 3068 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3069 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3070 Mask[Part] = reverseVector(Mask[Part]); 3071 } 3072 3073 Value *VecPtr = 3074 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3075 3076 if (isMaskRequired) 3077 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3078 Mask[Part]); 3079 else 3080 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3081 } 3082 addMetadata(NewSI, SI); 3083 } 3084 return; 3085 } 3086 3087 // Handle loads. 3088 assert(LI && "Must have a load instruction"); 3089 setDebugLocFromInst(Builder, LI); 3090 for (unsigned Part = 0; Part < UF; ++Part) { 3091 Value *NewLI; 3092 if (CreateGatherScatter) { 3093 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3094 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3095 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3096 nullptr, "wide.masked.gather"); 3097 addMetadata(NewLI, LI); 3098 } else { 3099 // Calculate the pointer for the specific unroll-part. 3100 Value *PartPtr = 3101 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3102 3103 if (Reverse) { 3104 // If the address is consecutive but reversed, then the 3105 // wide load needs to start at the last vector element. 3106 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3107 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3108 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3109 Mask[Part] = reverseVector(Mask[Part]); 3110 } 3111 3112 Value *VecPtr = 3113 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3114 if (isMaskRequired) 3115 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3116 UndefValue::get(DataTy), 3117 "wide.masked.load"); 3118 else 3119 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3120 3121 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3122 addMetadata(NewLI, LI); 3123 if (Reverse) 3124 NewLI = reverseVector(NewLI); 3125 } 3126 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3127 } 3128 } 3129 3130 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3131 const VPIteration &Instance, 3132 bool IfPredicateInstr) { 3133 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3134 3135 setDebugLocFromInst(Builder, Instr); 3136 3137 // Does this instruction return a value ? 3138 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3139 3140 Instruction *Cloned = Instr->clone(); 3141 if (!IsVoidRetTy) 3142 Cloned->setName(Instr->getName() + ".cloned"); 3143 3144 // Replace the operands of the cloned instructions with their scalar 3145 // equivalents in the new loop. 3146 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3147 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3148 Cloned->setOperand(op, NewOp); 3149 } 3150 addNewMetadata(Cloned, Instr); 3151 3152 // Place the cloned scalar in the new loop. 3153 Builder.Insert(Cloned); 3154 3155 // Add the cloned scalar to the scalar map entry. 3156 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3157 3158 // If we just cloned a new assumption, add it the assumption cache. 3159 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3160 if (II->getIntrinsicID() == Intrinsic::assume) 3161 AC->registerAssumption(II); 3162 3163 // End if-block. 3164 if (IfPredicateInstr) 3165 PredicatedInstructions.push_back(Cloned); 3166 } 3167 3168 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3169 Value *End, Value *Step, 3170 Instruction *DL) { 3171 BasicBlock *Header = L->getHeader(); 3172 BasicBlock *Latch = L->getLoopLatch(); 3173 // As we're just creating this loop, it's possible no latch exists 3174 // yet. If so, use the header as this will be a single block loop. 3175 if (!Latch) 3176 Latch = Header; 3177 3178 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3179 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3180 setDebugLocFromInst(Builder, OldInst); 3181 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3182 3183 Builder.SetInsertPoint(Latch->getTerminator()); 3184 setDebugLocFromInst(Builder, OldInst); 3185 3186 // Create i+1 and fill the PHINode. 3187 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3188 Induction->addIncoming(Start, L->getLoopPreheader()); 3189 Induction->addIncoming(Next, Latch); 3190 // Create the compare. 3191 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3192 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3193 3194 // Now we have two terminators. Remove the old one from the block. 3195 Latch->getTerminator()->eraseFromParent(); 3196 3197 return Induction; 3198 } 3199 3200 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3201 if (TripCount) 3202 return TripCount; 3203 3204 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3205 // Find the loop boundaries. 3206 ScalarEvolution *SE = PSE.getSE(); 3207 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3208 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3209 "Invalid loop count"); 3210 3211 Type *IdxTy = Legal->getWidestInductionType(); 3212 3213 // The exit count might have the type of i64 while the phi is i32. This can 3214 // happen if we have an induction variable that is sign extended before the 3215 // compare. The only way that we get a backedge taken count is that the 3216 // induction variable was signed and as such will not overflow. In such a case 3217 // truncation is legal. 3218 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3219 IdxTy->getPrimitiveSizeInBits()) 3220 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3221 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3222 3223 // Get the total trip count from the count by adding 1. 3224 const SCEV *ExitCount = SE->getAddExpr( 3225 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3226 3227 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3228 3229 // Expand the trip count and place the new instructions in the preheader. 3230 // Notice that the pre-header does not change, only the loop body. 3231 SCEVExpander Exp(*SE, DL, "induction"); 3232 3233 // Count holds the overall loop count (N). 3234 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3235 L->getLoopPreheader()->getTerminator()); 3236 3237 if (TripCount->getType()->isPointerTy()) 3238 TripCount = 3239 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3240 L->getLoopPreheader()->getTerminator()); 3241 3242 return TripCount; 3243 } 3244 3245 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3246 if (VectorTripCount) 3247 return VectorTripCount; 3248 3249 Value *TC = getOrCreateTripCount(L); 3250 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3251 3252 // Now we need to generate the expression for the part of the loop that the 3253 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3254 // iterations are not required for correctness, or N - Step, otherwise. Step 3255 // is equal to the vectorization factor (number of SIMD elements) times the 3256 // unroll factor (number of SIMD instructions). 3257 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3258 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3259 3260 // If there is a non-reversed interleaved group that may speculatively access 3261 // memory out-of-bounds, we need to ensure that there will be at least one 3262 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3263 // the trip count, we set the remainder to be equal to the step. If the step 3264 // does not evenly divide the trip count, no adjustment is necessary since 3265 // there will already be scalar iterations. Note that the minimum iterations 3266 // check ensures that N >= Step. 3267 if (VF > 1 && Cost->requiresScalarEpilogue()) { 3268 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3269 R = Builder.CreateSelect(IsZero, Step, R); 3270 } 3271 3272 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3273 3274 return VectorTripCount; 3275 } 3276 3277 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3278 const DataLayout &DL) { 3279 // Verify that V is a vector type with same number of elements as DstVTy. 3280 unsigned VF = DstVTy->getNumElements(); 3281 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3282 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3283 Type *SrcElemTy = SrcVecTy->getElementType(); 3284 Type *DstElemTy = DstVTy->getElementType(); 3285 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3286 "Vector elements must have same size"); 3287 3288 // Do a direct cast if element types are castable. 3289 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3290 return Builder.CreateBitOrPointerCast(V, DstVTy); 3291 } 3292 // V cannot be directly casted to desired vector type. 3293 // May happen when V is a floating point vector but DstVTy is a vector of 3294 // pointers or vice-versa. Handle this using a two-step bitcast using an 3295 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3296 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3297 "Only one type should be a pointer type"); 3298 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3299 "Only one type should be a floating point type"); 3300 Type *IntTy = 3301 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3302 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3303 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3304 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3305 } 3306 3307 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3308 BasicBlock *Bypass) { 3309 Value *Count = getOrCreateTripCount(L); 3310 BasicBlock *BB = L->getLoopPreheader(); 3311 IRBuilder<> Builder(BB->getTerminator()); 3312 3313 // Generate code to check if the loop's trip count is less than VF * UF, or 3314 // equal to it in case a scalar epilogue is required; this implies that the 3315 // vector trip count is zero. This check also covers the case where adding one 3316 // to the backedge-taken count overflowed leading to an incorrect trip count 3317 // of zero. In this case we will also jump to the scalar loop. 3318 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3319 : ICmpInst::ICMP_ULT; 3320 Value *CheckMinIters = Builder.CreateICmp( 3321 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3322 3323 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3324 // Update dominator tree immediately if the generated block is a 3325 // LoopBypassBlock because SCEV expansions to generate loop bypass 3326 // checks may query it before the current function is finished. 3327 DT->addNewBlock(NewBB, BB); 3328 if (L->getParentLoop()) 3329 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3330 ReplaceInstWithInst(BB->getTerminator(), 3331 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3332 LoopBypassBlocks.push_back(BB); 3333 } 3334 3335 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3336 BasicBlock *BB = L->getLoopPreheader(); 3337 3338 // Generate the code to check that the SCEV assumptions that we made. 3339 // We want the new basic block to start at the first instruction in a 3340 // sequence of instructions that form a check. 3341 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3342 "scev.check"); 3343 Value *SCEVCheck = 3344 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3345 3346 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3347 if (C->isZero()) 3348 return; 3349 3350 // Create a new block containing the stride check. 3351 BB->setName("vector.scevcheck"); 3352 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3353 // Update dominator tree immediately if the generated block is a 3354 // LoopBypassBlock because SCEV expansions to generate loop bypass 3355 // checks may query it before the current function is finished. 3356 DT->addNewBlock(NewBB, BB); 3357 if (L->getParentLoop()) 3358 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3359 ReplaceInstWithInst(BB->getTerminator(), 3360 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3361 LoopBypassBlocks.push_back(BB); 3362 AddedSafetyChecks = true; 3363 } 3364 3365 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3366 BasicBlock *BB = L->getLoopPreheader(); 3367 3368 // Generate the code that checks in runtime if arrays overlap. We put the 3369 // checks into a separate block to make the more common case of few elements 3370 // faster. 3371 Instruction *FirstCheckInst; 3372 Instruction *MemRuntimeCheck; 3373 std::tie(FirstCheckInst, MemRuntimeCheck) = 3374 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3375 if (!MemRuntimeCheck) 3376 return; 3377 3378 // Create a new block containing the memory check. 3379 BB->setName("vector.memcheck"); 3380 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3381 // Update dominator tree immediately if the generated block is a 3382 // LoopBypassBlock because SCEV expansions to generate loop bypass 3383 // checks may query it before the current function is finished. 3384 DT->addNewBlock(NewBB, BB); 3385 if (L->getParentLoop()) 3386 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3387 ReplaceInstWithInst(BB->getTerminator(), 3388 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3389 LoopBypassBlocks.push_back(BB); 3390 AddedSafetyChecks = true; 3391 3392 // We currently don't use LoopVersioning for the actual loop cloning but we 3393 // still use it to add the noalias metadata. 3394 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3395 PSE.getSE()); 3396 LVer->prepareNoAliasMetadata(); 3397 } 3398 3399 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3400 /* 3401 In this function we generate a new loop. The new loop will contain 3402 the vectorized instructions while the old loop will continue to run the 3403 scalar remainder. 3404 3405 [ ] <-- loop iteration number check. 3406 / | 3407 / v 3408 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3409 | / | 3410 | / v 3411 || [ ] <-- vector pre header. 3412 |/ | 3413 | v 3414 | [ ] \ 3415 | [ ]_| <-- vector loop. 3416 | | 3417 | v 3418 | -[ ] <--- middle-block. 3419 | / | 3420 | / v 3421 -|- >[ ] <--- new preheader. 3422 | | 3423 | v 3424 | [ ] \ 3425 | [ ]_| <-- old scalar loop to handle remainder. 3426 \ | 3427 \ v 3428 >[ ] <-- exit block. 3429 ... 3430 */ 3431 3432 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3433 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3434 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3435 assert(VectorPH && "Invalid loop structure"); 3436 assert(ExitBlock && "Must have an exit block"); 3437 3438 // Some loops have a single integer induction variable, while other loops 3439 // don't. One example is c++ iterators that often have multiple pointer 3440 // induction variables. In the code below we also support a case where we 3441 // don't have a single induction variable. 3442 // 3443 // We try to obtain an induction variable from the original loop as hard 3444 // as possible. However if we don't find one that: 3445 // - is an integer 3446 // - counts from zero, stepping by one 3447 // - is the size of the widest induction variable type 3448 // then we create a new one. 3449 OldInduction = Legal->getPrimaryInduction(); 3450 Type *IdxTy = Legal->getWidestInductionType(); 3451 3452 // Split the single block loop into the two loop structure described above. 3453 BasicBlock *VecBody = 3454 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3455 BasicBlock *MiddleBlock = 3456 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3457 BasicBlock *ScalarPH = 3458 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3459 3460 // Create and register the new vector loop. 3461 Loop *Lp = LI->AllocateLoop(); 3462 Loop *ParentLoop = OrigLoop->getParentLoop(); 3463 3464 // Insert the new loop into the loop nest and register the new basic blocks 3465 // before calling any utilities such as SCEV that require valid LoopInfo. 3466 if (ParentLoop) { 3467 ParentLoop->addChildLoop(Lp); 3468 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3469 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3470 } else { 3471 LI->addTopLevelLoop(Lp); 3472 } 3473 Lp->addBasicBlockToLoop(VecBody, *LI); 3474 3475 // Find the loop boundaries. 3476 Value *Count = getOrCreateTripCount(Lp); 3477 3478 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3479 3480 // Now, compare the new count to zero. If it is zero skip the vector loop and 3481 // jump to the scalar loop. This check also covers the case where the 3482 // backedge-taken count is uint##_max: adding one to it will overflow leading 3483 // to an incorrect trip count of zero. In this (rare) case we will also jump 3484 // to the scalar loop. 3485 emitMinimumIterationCountCheck(Lp, ScalarPH); 3486 3487 // Generate the code to check any assumptions that we've made for SCEV 3488 // expressions. 3489 emitSCEVChecks(Lp, ScalarPH); 3490 3491 // Generate the code that checks in runtime if arrays overlap. We put the 3492 // checks into a separate block to make the more common case of few elements 3493 // faster. 3494 emitMemRuntimeChecks(Lp, ScalarPH); 3495 3496 // Generate the induction variable. 3497 // The loop step is equal to the vectorization factor (num of SIMD elements) 3498 // times the unroll factor (num of SIMD instructions). 3499 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3500 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3501 Induction = 3502 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3503 getDebugLocFromInstOrOperands(OldInduction)); 3504 3505 // We are going to resume the execution of the scalar loop. 3506 // Go over all of the induction variables that we found and fix the 3507 // PHIs that are left in the scalar version of the loop. 3508 // The starting values of PHI nodes depend on the counter of the last 3509 // iteration in the vectorized loop. 3510 // If we come from a bypass edge then we need to start from the original 3511 // start value. 3512 3513 // This variable saves the new starting index for the scalar loop. It is used 3514 // to test if there are any tail iterations left once the vector loop has 3515 // completed. 3516 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3517 for (auto &InductionEntry : *List) { 3518 PHINode *OrigPhi = InductionEntry.first; 3519 InductionDescriptor II = InductionEntry.second; 3520 3521 // Create phi nodes to merge from the backedge-taken check block. 3522 PHINode *BCResumeVal = PHINode::Create( 3523 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3524 Value *&EndValue = IVEndValues[OrigPhi]; 3525 if (OrigPhi == OldInduction) { 3526 // We know what the end value is. 3527 EndValue = CountRoundDown; 3528 } else { 3529 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3530 Type *StepType = II.getStep()->getType(); 3531 Instruction::CastOps CastOp = 3532 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3533 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3534 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3535 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3536 EndValue->setName("ind.end"); 3537 } 3538 3539 // The new PHI merges the original incoming value, in case of a bypass, 3540 // or the value at the end of the vectorized loop. 3541 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3542 3543 // Fix the scalar body counter (PHI node). 3544 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3545 3546 // The old induction's phi node in the scalar body needs the truncated 3547 // value. 3548 for (BasicBlock *BB : LoopBypassBlocks) 3549 BCResumeVal->addIncoming(II.getStartValue(), BB); 3550 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3551 } 3552 3553 // Add a check in the middle block to see if we have completed 3554 // all of the iterations in the first vector loop. 3555 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3556 Value *CmpN = 3557 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3558 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3559 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3560 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3561 3562 // Get ready to start creating new instructions into the vectorized body. 3563 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3564 3565 // Save the state. 3566 LoopVectorPreHeader = Lp->getLoopPreheader(); 3567 LoopScalarPreHeader = ScalarPH; 3568 LoopMiddleBlock = MiddleBlock; 3569 LoopExitBlock = ExitBlock; 3570 LoopVectorBody = VecBody; 3571 LoopScalarBody = OldBasicBlock; 3572 3573 // Keep all loop hints from the original loop on the vector loop (we'll 3574 // replace the vectorizer-specific hints below). 3575 if (MDNode *LID = OrigLoop->getLoopID()) 3576 Lp->setLoopID(LID); 3577 3578 LoopVectorizeHints Hints(Lp, true, *ORE); 3579 Hints.setAlreadyVectorized(); 3580 3581 return LoopVectorPreHeader; 3582 } 3583 3584 // Fix up external users of the induction variable. At this point, we are 3585 // in LCSSA form, with all external PHIs that use the IV having one input value, 3586 // coming from the remainder loop. We need those PHIs to also have a correct 3587 // value for the IV when arriving directly from the middle block. 3588 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3589 const InductionDescriptor &II, 3590 Value *CountRoundDown, Value *EndValue, 3591 BasicBlock *MiddleBlock) { 3592 // There are two kinds of external IV usages - those that use the value 3593 // computed in the last iteration (the PHI) and those that use the penultimate 3594 // value (the value that feeds into the phi from the loop latch). 3595 // We allow both, but they, obviously, have different values. 3596 3597 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3598 3599 DenseMap<Value *, Value *> MissingVals; 3600 3601 // An external user of the last iteration's value should see the value that 3602 // the remainder loop uses to initialize its own IV. 3603 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3604 for (User *U : PostInc->users()) { 3605 Instruction *UI = cast<Instruction>(U); 3606 if (!OrigLoop->contains(UI)) { 3607 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3608 MissingVals[UI] = EndValue; 3609 } 3610 } 3611 3612 // An external user of the penultimate value need to see EndValue - Step. 3613 // The simplest way to get this is to recompute it from the constituent SCEVs, 3614 // that is Start + (Step * (CRD - 1)). 3615 for (User *U : OrigPhi->users()) { 3616 auto *UI = cast<Instruction>(U); 3617 if (!OrigLoop->contains(UI)) { 3618 const DataLayout &DL = 3619 OrigLoop->getHeader()->getModule()->getDataLayout(); 3620 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3621 3622 IRBuilder<> B(MiddleBlock->getTerminator()); 3623 Value *CountMinusOne = B.CreateSub( 3624 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3625 Value *CMO = 3626 !II.getStep()->getType()->isIntegerTy() 3627 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3628 II.getStep()->getType()) 3629 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3630 CMO->setName("cast.cmo"); 3631 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3632 Escape->setName("ind.escape"); 3633 MissingVals[UI] = Escape; 3634 } 3635 } 3636 3637 for (auto &I : MissingVals) { 3638 PHINode *PHI = cast<PHINode>(I.first); 3639 // One corner case we have to handle is two IVs "chasing" each-other, 3640 // that is %IV2 = phi [...], [ %IV1, %latch ] 3641 // In this case, if IV1 has an external use, we need to avoid adding both 3642 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3643 // don't already have an incoming value for the middle block. 3644 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3645 PHI->addIncoming(I.second, MiddleBlock); 3646 } 3647 } 3648 3649 namespace { 3650 3651 struct CSEDenseMapInfo { 3652 static bool canHandle(const Instruction *I) { 3653 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3654 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3655 } 3656 3657 static inline Instruction *getEmptyKey() { 3658 return DenseMapInfo<Instruction *>::getEmptyKey(); 3659 } 3660 3661 static inline Instruction *getTombstoneKey() { 3662 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3663 } 3664 3665 static unsigned getHashValue(const Instruction *I) { 3666 assert(canHandle(I) && "Unknown instruction!"); 3667 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3668 I->value_op_end())); 3669 } 3670 3671 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3672 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3673 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3674 return LHS == RHS; 3675 return LHS->isIdenticalTo(RHS); 3676 } 3677 }; 3678 3679 } // end anonymous namespace 3680 3681 ///\brief Perform cse of induction variable instructions. 3682 static void cse(BasicBlock *BB) { 3683 // Perform simple cse. 3684 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3685 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3686 Instruction *In = &*I++; 3687 3688 if (!CSEDenseMapInfo::canHandle(In)) 3689 continue; 3690 3691 // Check if we can replace this instruction with any of the 3692 // visited instructions. 3693 if (Instruction *V = CSEMap.lookup(In)) { 3694 In->replaceAllUsesWith(V); 3695 In->eraseFromParent(); 3696 continue; 3697 } 3698 3699 CSEMap[In] = In; 3700 } 3701 } 3702 3703 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3704 /// convenience wrapper for the type-based getScalarizationOverhead API. 3705 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3706 const TargetTransformInfo &TTI) { 3707 if (VF == 1) 3708 return 0; 3709 3710 unsigned Cost = 0; 3711 Type *RetTy = ToVectorTy(I->getType(), VF); 3712 if (!RetTy->isVoidTy() && 3713 (!isa<LoadInst>(I) || 3714 !TTI.supportsEfficientVectorElementLoadStore())) 3715 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3716 3717 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3718 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3719 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3720 } 3721 else if (!isa<StoreInst>(I) || 3722 !TTI.supportsEfficientVectorElementLoadStore()) { 3723 SmallVector<const Value *, 4> Operands(I->operand_values()); 3724 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3725 } 3726 3727 return Cost; 3728 } 3729 3730 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3731 // Return the cost of the instruction, including scalarization overhead if it's 3732 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3733 // i.e. either vector version isn't available, or is too expensive. 3734 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3735 const TargetTransformInfo &TTI, 3736 const TargetLibraryInfo *TLI, 3737 bool &NeedToScalarize) { 3738 Function *F = CI->getCalledFunction(); 3739 StringRef FnName = CI->getCalledFunction()->getName(); 3740 Type *ScalarRetTy = CI->getType(); 3741 SmallVector<Type *, 4> Tys, ScalarTys; 3742 for (auto &ArgOp : CI->arg_operands()) 3743 ScalarTys.push_back(ArgOp->getType()); 3744 3745 // Estimate cost of scalarized vector call. The source operands are assumed 3746 // to be vectors, so we need to extract individual elements from there, 3747 // execute VF scalar calls, and then gather the result into the vector return 3748 // value. 3749 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3750 if (VF == 1) 3751 return ScalarCallCost; 3752 3753 // Compute corresponding vector type for return value and arguments. 3754 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3755 for (Type *ScalarTy : ScalarTys) 3756 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3757 3758 // Compute costs of unpacking argument values for the scalar calls and 3759 // packing the return values to a vector. 3760 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3761 3762 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3763 3764 // If we can't emit a vector call for this function, then the currently found 3765 // cost is the cost we need to return. 3766 NeedToScalarize = true; 3767 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3768 return Cost; 3769 3770 // If the corresponding vector cost is cheaper, return its cost. 3771 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3772 if (VectorCallCost < Cost) { 3773 NeedToScalarize = false; 3774 return VectorCallCost; 3775 } 3776 return Cost; 3777 } 3778 3779 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3780 // factor VF. Return the cost of the instruction, including scalarization 3781 // overhead if it's needed. 3782 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3783 const TargetTransformInfo &TTI, 3784 const TargetLibraryInfo *TLI) { 3785 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3786 assert(ID && "Expected intrinsic call!"); 3787 3788 FastMathFlags FMF; 3789 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3790 FMF = FPMO->getFastMathFlags(); 3791 3792 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3793 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3794 } 3795 3796 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3797 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3798 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3799 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3800 } 3801 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3802 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3803 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3804 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3805 } 3806 3807 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3808 // For every instruction `I` in MinBWs, truncate the operands, create a 3809 // truncated version of `I` and reextend its result. InstCombine runs 3810 // later and will remove any ext/trunc pairs. 3811 SmallPtrSet<Value *, 4> Erased; 3812 for (const auto &KV : Cost->getMinimalBitwidths()) { 3813 // If the value wasn't vectorized, we must maintain the original scalar 3814 // type. The absence of the value from VectorLoopValueMap indicates that it 3815 // wasn't vectorized. 3816 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3817 continue; 3818 for (unsigned Part = 0; Part < UF; ++Part) { 3819 Value *I = getOrCreateVectorValue(KV.first, Part); 3820 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3821 continue; 3822 Type *OriginalTy = I->getType(); 3823 Type *ScalarTruncatedTy = 3824 IntegerType::get(OriginalTy->getContext(), KV.second); 3825 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3826 OriginalTy->getVectorNumElements()); 3827 if (TruncatedTy == OriginalTy) 3828 continue; 3829 3830 IRBuilder<> B(cast<Instruction>(I)); 3831 auto ShrinkOperand = [&](Value *V) -> Value * { 3832 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3833 if (ZI->getSrcTy() == TruncatedTy) 3834 return ZI->getOperand(0); 3835 return B.CreateZExtOrTrunc(V, TruncatedTy); 3836 }; 3837 3838 // The actual instruction modification depends on the instruction type, 3839 // unfortunately. 3840 Value *NewI = nullptr; 3841 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3842 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3843 ShrinkOperand(BO->getOperand(1))); 3844 3845 // Any wrapping introduced by shrinking this operation shouldn't be 3846 // considered undefined behavior. So, we can't unconditionally copy 3847 // arithmetic wrapping flags to NewI. 3848 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3849 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3850 NewI = 3851 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3852 ShrinkOperand(CI->getOperand(1))); 3853 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3854 NewI = B.CreateSelect(SI->getCondition(), 3855 ShrinkOperand(SI->getTrueValue()), 3856 ShrinkOperand(SI->getFalseValue())); 3857 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3858 switch (CI->getOpcode()) { 3859 default: 3860 llvm_unreachable("Unhandled cast!"); 3861 case Instruction::Trunc: 3862 NewI = ShrinkOperand(CI->getOperand(0)); 3863 break; 3864 case Instruction::SExt: 3865 NewI = B.CreateSExtOrTrunc( 3866 CI->getOperand(0), 3867 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3868 break; 3869 case Instruction::ZExt: 3870 NewI = B.CreateZExtOrTrunc( 3871 CI->getOperand(0), 3872 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3873 break; 3874 } 3875 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3876 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3877 auto *O0 = B.CreateZExtOrTrunc( 3878 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3879 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3880 auto *O1 = B.CreateZExtOrTrunc( 3881 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3882 3883 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3884 } else if (isa<LoadInst>(I)) { 3885 // Don't do anything with the operands, just extend the result. 3886 continue; 3887 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3888 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3889 auto *O0 = B.CreateZExtOrTrunc( 3890 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3891 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3892 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3893 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3894 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3895 auto *O0 = B.CreateZExtOrTrunc( 3896 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3897 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3898 } else { 3899 llvm_unreachable("Unhandled instruction type!"); 3900 } 3901 3902 // Lastly, extend the result. 3903 NewI->takeName(cast<Instruction>(I)); 3904 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3905 I->replaceAllUsesWith(Res); 3906 cast<Instruction>(I)->eraseFromParent(); 3907 Erased.insert(I); 3908 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3909 } 3910 } 3911 3912 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3913 for (const auto &KV : Cost->getMinimalBitwidths()) { 3914 // If the value wasn't vectorized, we must maintain the original scalar 3915 // type. The absence of the value from VectorLoopValueMap indicates that it 3916 // wasn't vectorized. 3917 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3918 continue; 3919 for (unsigned Part = 0; Part < UF; ++Part) { 3920 Value *I = getOrCreateVectorValue(KV.first, Part); 3921 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3922 if (Inst && Inst->use_empty()) { 3923 Value *NewI = Inst->getOperand(0); 3924 Inst->eraseFromParent(); 3925 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3926 } 3927 } 3928 } 3929 } 3930 3931 void InnerLoopVectorizer::fixVectorizedLoop() { 3932 // Insert truncates and extends for any truncated instructions as hints to 3933 // InstCombine. 3934 if (VF > 1) 3935 truncateToMinimalBitwidths(); 3936 3937 // At this point every instruction in the original loop is widened to a 3938 // vector form. Now we need to fix the recurrences in the loop. These PHI 3939 // nodes are currently empty because we did not want to introduce cycles. 3940 // This is the second stage of vectorizing recurrences. 3941 fixCrossIterationPHIs(); 3942 3943 // Update the dominator tree. 3944 // 3945 // FIXME: After creating the structure of the new loop, the dominator tree is 3946 // no longer up-to-date, and it remains that way until we update it 3947 // here. An out-of-date dominator tree is problematic for SCEV, 3948 // because SCEVExpander uses it to guide code generation. The 3949 // vectorizer use SCEVExpanders in several places. Instead, we should 3950 // keep the dominator tree up-to-date as we go. 3951 updateAnalysis(); 3952 3953 // Fix-up external users of the induction variables. 3954 for (auto &Entry : *Legal->getInductionVars()) 3955 fixupIVUsers(Entry.first, Entry.second, 3956 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3957 IVEndValues[Entry.first], LoopMiddleBlock); 3958 3959 fixLCSSAPHIs(); 3960 for (Instruction *PI : PredicatedInstructions) 3961 sinkScalarOperands(&*PI); 3962 3963 // Remove redundant induction instructions. 3964 cse(LoopVectorBody); 3965 } 3966 3967 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3968 // In order to support recurrences we need to be able to vectorize Phi nodes. 3969 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3970 // stage #2: We now need to fix the recurrences by adding incoming edges to 3971 // the currently empty PHI nodes. At this point every instruction in the 3972 // original loop is widened to a vector form so we can use them to construct 3973 // the incoming edges. 3974 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3975 // Handle first-order recurrences and reductions that need to be fixed. 3976 if (Legal->isFirstOrderRecurrence(&Phi)) 3977 fixFirstOrderRecurrence(&Phi); 3978 else if (Legal->isReductionVariable(&Phi)) 3979 fixReduction(&Phi); 3980 } 3981 } 3982 3983 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3984 // This is the second phase of vectorizing first-order recurrences. An 3985 // overview of the transformation is described below. Suppose we have the 3986 // following loop. 3987 // 3988 // for (int i = 0; i < n; ++i) 3989 // b[i] = a[i] - a[i - 1]; 3990 // 3991 // There is a first-order recurrence on "a". For this loop, the shorthand 3992 // scalar IR looks like: 3993 // 3994 // scalar.ph: 3995 // s_init = a[-1] 3996 // br scalar.body 3997 // 3998 // scalar.body: 3999 // i = phi [0, scalar.ph], [i+1, scalar.body] 4000 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4001 // s2 = a[i] 4002 // b[i] = s2 - s1 4003 // br cond, scalar.body, ... 4004 // 4005 // In this example, s1 is a recurrence because it's value depends on the 4006 // previous iteration. In the first phase of vectorization, we created a 4007 // temporary value for s1. We now complete the vectorization and produce the 4008 // shorthand vector IR shown below (for VF = 4, UF = 1). 4009 // 4010 // vector.ph: 4011 // v_init = vector(..., ..., ..., a[-1]) 4012 // br vector.body 4013 // 4014 // vector.body 4015 // i = phi [0, vector.ph], [i+4, vector.body] 4016 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4017 // v2 = a[i, i+1, i+2, i+3]; 4018 // v3 = vector(v1(3), v2(0, 1, 2)) 4019 // b[i, i+1, i+2, i+3] = v2 - v3 4020 // br cond, vector.body, middle.block 4021 // 4022 // middle.block: 4023 // x = v2(3) 4024 // br scalar.ph 4025 // 4026 // scalar.ph: 4027 // s_init = phi [x, middle.block], [a[-1], otherwise] 4028 // br scalar.body 4029 // 4030 // After execution completes the vector loop, we extract the next value of 4031 // the recurrence (x) to use as the initial value in the scalar loop. 4032 4033 // Get the original loop preheader and single loop latch. 4034 auto *Preheader = OrigLoop->getLoopPreheader(); 4035 auto *Latch = OrigLoop->getLoopLatch(); 4036 4037 // Get the initial and previous values of the scalar recurrence. 4038 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4039 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4040 4041 // Create a vector from the initial value. 4042 auto *VectorInit = ScalarInit; 4043 if (VF > 1) { 4044 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4045 VectorInit = Builder.CreateInsertElement( 4046 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4047 Builder.getInt32(VF - 1), "vector.recur.init"); 4048 } 4049 4050 // We constructed a temporary phi node in the first phase of vectorization. 4051 // This phi node will eventually be deleted. 4052 Builder.SetInsertPoint( 4053 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4054 4055 // Create a phi node for the new recurrence. The current value will either be 4056 // the initial value inserted into a vector or loop-varying vector value. 4057 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4058 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4059 4060 // Get the vectorized previous value of the last part UF - 1. It appears last 4061 // among all unrolled iterations, due to the order of their construction. 4062 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4063 4064 // Set the insertion point after the previous value if it is an instruction. 4065 // Note that the previous value may have been constant-folded so it is not 4066 // guaranteed to be an instruction in the vector loop. Also, if the previous 4067 // value is a phi node, we should insert after all the phi nodes to avoid 4068 // breaking basic block verification. 4069 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4070 isa<PHINode>(PreviousLastPart)) 4071 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4072 else 4073 Builder.SetInsertPoint( 4074 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4075 4076 // We will construct a vector for the recurrence by combining the values for 4077 // the current and previous iterations. This is the required shuffle mask. 4078 SmallVector<Constant *, 8> ShuffleMask(VF); 4079 ShuffleMask[0] = Builder.getInt32(VF - 1); 4080 for (unsigned I = 1; I < VF; ++I) 4081 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4082 4083 // The vector from which to take the initial value for the current iteration 4084 // (actual or unrolled). Initially, this is the vector phi node. 4085 Value *Incoming = VecPhi; 4086 4087 // Shuffle the current and previous vector and update the vector parts. 4088 for (unsigned Part = 0; Part < UF; ++Part) { 4089 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4090 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4091 auto *Shuffle = 4092 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4093 ConstantVector::get(ShuffleMask)) 4094 : Incoming; 4095 PhiPart->replaceAllUsesWith(Shuffle); 4096 cast<Instruction>(PhiPart)->eraseFromParent(); 4097 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4098 Incoming = PreviousPart; 4099 } 4100 4101 // Fix the latch value of the new recurrence in the vector loop. 4102 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4103 4104 // Extract the last vector element in the middle block. This will be the 4105 // initial value for the recurrence when jumping to the scalar loop. 4106 auto *ExtractForScalar = Incoming; 4107 if (VF > 1) { 4108 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4109 ExtractForScalar = Builder.CreateExtractElement( 4110 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4111 } 4112 // Extract the second last element in the middle block if the 4113 // Phi is used outside the loop. We need to extract the phi itself 4114 // and not the last element (the phi update in the current iteration). This 4115 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4116 // when the scalar loop is not run at all. 4117 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4118 if (VF > 1) 4119 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4120 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4121 // When loop is unrolled without vectorizing, initialize 4122 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4123 // `Incoming`. This is analogous to the vectorized case above: extracting the 4124 // second last element when VF > 1. 4125 else if (UF > 1) 4126 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4127 4128 // Fix the initial value of the original recurrence in the scalar loop. 4129 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4130 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4131 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4132 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4133 Start->addIncoming(Incoming, BB); 4134 } 4135 4136 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4137 Phi->setName("scalar.recur"); 4138 4139 // Finally, fix users of the recurrence outside the loop. The users will need 4140 // either the last value of the scalar recurrence or the last value of the 4141 // vector recurrence we extracted in the middle block. Since the loop is in 4142 // LCSSA form, we just need to find the phi node for the original scalar 4143 // recurrence in the exit block, and then add an edge for the middle block. 4144 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4145 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4146 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4147 break; 4148 } 4149 } 4150 } 4151 4152 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4153 Constant *Zero = Builder.getInt32(0); 4154 4155 // Get it's reduction variable descriptor. 4156 assert(Legal->isReductionVariable(Phi) && 4157 "Unable to find the reduction variable"); 4158 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4159 4160 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4161 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4162 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4163 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4164 RdxDesc.getMinMaxRecurrenceKind(); 4165 setDebugLocFromInst(Builder, ReductionStartValue); 4166 4167 // We need to generate a reduction vector from the incoming scalar. 4168 // To do so, we need to generate the 'identity' vector and override 4169 // one of the elements with the incoming scalar reduction. We need 4170 // to do it in the vector-loop preheader. 4171 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4172 4173 // This is the vector-clone of the value that leaves the loop. 4174 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4175 4176 // Find the reduction identity variable. Zero for addition, or, xor, 4177 // one for multiplication, -1 for And. 4178 Value *Identity; 4179 Value *VectorStart; 4180 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4181 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4182 // MinMax reduction have the start value as their identify. 4183 if (VF == 1) { 4184 VectorStart = Identity = ReductionStartValue; 4185 } else { 4186 VectorStart = Identity = 4187 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4188 } 4189 } else { 4190 // Handle other reduction kinds: 4191 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4192 RK, VecTy->getScalarType()); 4193 if (VF == 1) { 4194 Identity = Iden; 4195 // This vector is the Identity vector where the first element is the 4196 // incoming scalar reduction. 4197 VectorStart = ReductionStartValue; 4198 } else { 4199 Identity = ConstantVector::getSplat(VF, Iden); 4200 4201 // This vector is the Identity vector where the first element is the 4202 // incoming scalar reduction. 4203 VectorStart = 4204 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4205 } 4206 } 4207 4208 // Fix the vector-loop phi. 4209 4210 // Reductions do not have to start at zero. They can start with 4211 // any loop invariant values. 4212 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4213 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4214 for (unsigned Part = 0; Part < UF; ++Part) { 4215 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4216 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4217 // Make sure to add the reduction stat value only to the 4218 // first unroll part. 4219 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4220 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4221 cast<PHINode>(VecRdxPhi) 4222 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4223 } 4224 4225 // Before each round, move the insertion point right between 4226 // the PHIs and the values we are going to write. 4227 // This allows us to write both PHINodes and the extractelement 4228 // instructions. 4229 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4230 4231 setDebugLocFromInst(Builder, LoopExitInst); 4232 4233 // If the vector reduction can be performed in a smaller type, we truncate 4234 // then extend the loop exit value to enable InstCombine to evaluate the 4235 // entire expression in the smaller type. 4236 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4237 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4238 Builder.SetInsertPoint( 4239 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4240 VectorParts RdxParts(UF); 4241 for (unsigned Part = 0; Part < UF; ++Part) { 4242 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4243 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4244 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4245 : Builder.CreateZExt(Trunc, VecTy); 4246 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4247 UI != RdxParts[Part]->user_end();) 4248 if (*UI != Trunc) { 4249 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4250 RdxParts[Part] = Extnd; 4251 } else { 4252 ++UI; 4253 } 4254 } 4255 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4256 for (unsigned Part = 0; Part < UF; ++Part) { 4257 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4258 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4259 } 4260 } 4261 4262 // Reduce all of the unrolled parts into a single vector. 4263 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4264 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4265 setDebugLocFromInst(Builder, ReducedPartRdx); 4266 for (unsigned Part = 1; Part < UF; ++Part) { 4267 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4268 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4269 // Floating point operations had to be 'fast' to enable the reduction. 4270 ReducedPartRdx = addFastMathFlag( 4271 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4272 ReducedPartRdx, "bin.rdx")); 4273 else 4274 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4275 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4276 } 4277 4278 if (VF > 1) { 4279 bool NoNaN = Legal->hasFunNoNaNAttr(); 4280 ReducedPartRdx = 4281 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4282 // If the reduction can be performed in a smaller type, we need to extend 4283 // the reduction to the wider type before we branch to the original loop. 4284 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4285 ReducedPartRdx = 4286 RdxDesc.isSigned() 4287 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4288 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4289 } 4290 4291 // Create a phi node that merges control-flow from the backedge-taken check 4292 // block and the middle block. 4293 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4294 LoopScalarPreHeader->getTerminator()); 4295 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4296 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4297 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4298 4299 // Now, we need to fix the users of the reduction variable 4300 // inside and outside of the scalar remainder loop. 4301 // We know that the loop is in LCSSA form. We need to update the 4302 // PHI nodes in the exit blocks. 4303 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4304 // All PHINodes need to have a single entry edge, or two if 4305 // we already fixed them. 4306 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4307 4308 // We found a reduction value exit-PHI. Update it with the 4309 // incoming bypass edge. 4310 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4311 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4312 } // end of the LCSSA phi scan. 4313 4314 // Fix the scalar loop reduction variable with the incoming reduction sum 4315 // from the vector body and from the backedge value. 4316 int IncomingEdgeBlockIdx = 4317 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4318 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4319 // Pick the other block. 4320 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4321 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4322 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4323 } 4324 4325 void InnerLoopVectorizer::fixLCSSAPHIs() { 4326 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4327 if (LCSSAPhi.getNumIncomingValues() == 1) { 4328 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4329 "Incoming value isn't loop invariant"); 4330 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4331 } 4332 } 4333 } 4334 4335 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4336 // The basic block and loop containing the predicated instruction. 4337 auto *PredBB = PredInst->getParent(); 4338 auto *VectorLoop = LI->getLoopFor(PredBB); 4339 4340 // Initialize a worklist with the operands of the predicated instruction. 4341 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4342 4343 // Holds instructions that we need to analyze again. An instruction may be 4344 // reanalyzed if we don't yet know if we can sink it or not. 4345 SmallVector<Instruction *, 8> InstsToReanalyze; 4346 4347 // Returns true if a given use occurs in the predicated block. Phi nodes use 4348 // their operands in their corresponding predecessor blocks. 4349 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4350 auto *I = cast<Instruction>(U.getUser()); 4351 BasicBlock *BB = I->getParent(); 4352 if (auto *Phi = dyn_cast<PHINode>(I)) 4353 BB = Phi->getIncomingBlock( 4354 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4355 return BB == PredBB; 4356 }; 4357 4358 // Iteratively sink the scalarized operands of the predicated instruction 4359 // into the block we created for it. When an instruction is sunk, it's 4360 // operands are then added to the worklist. The algorithm ends after one pass 4361 // through the worklist doesn't sink a single instruction. 4362 bool Changed; 4363 do { 4364 // Add the instructions that need to be reanalyzed to the worklist, and 4365 // reset the changed indicator. 4366 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4367 InstsToReanalyze.clear(); 4368 Changed = false; 4369 4370 while (!Worklist.empty()) { 4371 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4372 4373 // We can't sink an instruction if it is a phi node, is already in the 4374 // predicated block, is not in the loop, or may have side effects. 4375 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4376 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4377 continue; 4378 4379 // It's legal to sink the instruction if all its uses occur in the 4380 // predicated block. Otherwise, there's nothing to do yet, and we may 4381 // need to reanalyze the instruction. 4382 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4383 InstsToReanalyze.push_back(I); 4384 continue; 4385 } 4386 4387 // Move the instruction to the beginning of the predicated block, and add 4388 // it's operands to the worklist. 4389 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4390 Worklist.insert(I->op_begin(), I->op_end()); 4391 4392 // The sinking may have enabled other instructions to be sunk, so we will 4393 // need to iterate. 4394 Changed = true; 4395 } 4396 } while (Changed); 4397 } 4398 4399 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4400 unsigned VF) { 4401 assert(PN->getParent() == OrigLoop->getHeader() && 4402 "Non-header phis should have been handled elsewhere"); 4403 4404 PHINode *P = cast<PHINode>(PN); 4405 // In order to support recurrences we need to be able to vectorize Phi nodes. 4406 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4407 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4408 // this value when we vectorize all of the instructions that use the PHI. 4409 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4410 for (unsigned Part = 0; Part < UF; ++Part) { 4411 // This is phase one of vectorizing PHIs. 4412 Type *VecTy = 4413 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4414 Value *EntryPart = PHINode::Create( 4415 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4416 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4417 } 4418 return; 4419 } 4420 4421 setDebugLocFromInst(Builder, P); 4422 4423 // This PHINode must be an induction variable. 4424 // Make sure that we know about it. 4425 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4426 4427 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4428 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4429 4430 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4431 // which can be found from the original scalar operations. 4432 switch (II.getKind()) { 4433 case InductionDescriptor::IK_NoInduction: 4434 llvm_unreachable("Unknown induction"); 4435 case InductionDescriptor::IK_IntInduction: 4436 case InductionDescriptor::IK_FpInduction: 4437 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4438 case InductionDescriptor::IK_PtrInduction: { 4439 // Handle the pointer induction variable case. 4440 assert(P->getType()->isPointerTy() && "Unexpected type."); 4441 // This is the normalized GEP that starts counting at zero. 4442 Value *PtrInd = Induction; 4443 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4444 // Determine the number of scalars we need to generate for each unroll 4445 // iteration. If the instruction is uniform, we only need to generate the 4446 // first lane. Otherwise, we generate all VF values. 4447 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4448 // These are the scalar results. Notice that we don't generate vector GEPs 4449 // because scalar GEPs result in better code. 4450 for (unsigned Part = 0; Part < UF; ++Part) { 4451 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4452 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4453 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4454 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4455 SclrGep->setName("next.gep"); 4456 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4457 } 4458 } 4459 return; 4460 } 4461 } 4462 } 4463 4464 /// A helper function for checking whether an integer division-related 4465 /// instruction may divide by zero (in which case it must be predicated if 4466 /// executed conditionally in the scalar code). 4467 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4468 /// Non-zero divisors that are non compile-time constants will not be 4469 /// converted into multiplication, so we will still end up scalarizing 4470 /// the division, but can do so w/o predication. 4471 static bool mayDivideByZero(Instruction &I) { 4472 assert((I.getOpcode() == Instruction::UDiv || 4473 I.getOpcode() == Instruction::SDiv || 4474 I.getOpcode() == Instruction::URem || 4475 I.getOpcode() == Instruction::SRem) && 4476 "Unexpected instruction"); 4477 Value *Divisor = I.getOperand(1); 4478 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4479 return !CInt || CInt->isZero(); 4480 } 4481 4482 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4483 switch (I.getOpcode()) { 4484 case Instruction::Br: 4485 case Instruction::PHI: 4486 llvm_unreachable("This instruction is handled by a different recipe."); 4487 case Instruction::GetElementPtr: { 4488 // Construct a vector GEP by widening the operands of the scalar GEP as 4489 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4490 // results in a vector of pointers when at least one operand of the GEP 4491 // is vector-typed. Thus, to keep the representation compact, we only use 4492 // vector-typed operands for loop-varying values. 4493 auto *GEP = cast<GetElementPtrInst>(&I); 4494 4495 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4496 // If we are vectorizing, but the GEP has only loop-invariant operands, 4497 // the GEP we build (by only using vector-typed operands for 4498 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4499 // produce a vector of pointers, we need to either arbitrarily pick an 4500 // operand to broadcast, or broadcast a clone of the original GEP. 4501 // Here, we broadcast a clone of the original. 4502 // 4503 // TODO: If at some point we decide to scalarize instructions having 4504 // loop-invariant operands, this special case will no longer be 4505 // required. We would add the scalarization decision to 4506 // collectLoopScalars() and teach getVectorValue() to broadcast 4507 // the lane-zero scalar value. 4508 auto *Clone = Builder.Insert(GEP->clone()); 4509 for (unsigned Part = 0; Part < UF; ++Part) { 4510 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4511 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4512 addMetadata(EntryPart, GEP); 4513 } 4514 } else { 4515 // If the GEP has at least one loop-varying operand, we are sure to 4516 // produce a vector of pointers. But if we are only unrolling, we want 4517 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4518 // produce with the code below will be scalar (if VF == 1) or vector 4519 // (otherwise). Note that for the unroll-only case, we still maintain 4520 // values in the vector mapping with initVector, as we do for other 4521 // instructions. 4522 for (unsigned Part = 0; Part < UF; ++Part) { 4523 // The pointer operand of the new GEP. If it's loop-invariant, we 4524 // won't broadcast it. 4525 auto *Ptr = 4526 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4527 ? GEP->getPointerOperand() 4528 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4529 4530 // Collect all the indices for the new GEP. If any index is 4531 // loop-invariant, we won't broadcast it. 4532 SmallVector<Value *, 4> Indices; 4533 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4534 if (OrigLoop->isLoopInvariant(U.get())) 4535 Indices.push_back(U.get()); 4536 else 4537 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4538 } 4539 4540 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4541 // but it should be a vector, otherwise. 4542 auto *NewGEP = GEP->isInBounds() 4543 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4544 : Builder.CreateGEP(Ptr, Indices); 4545 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4546 "NewGEP is not a pointer vector"); 4547 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4548 addMetadata(NewGEP, GEP); 4549 } 4550 } 4551 4552 break; 4553 } 4554 case Instruction::UDiv: 4555 case Instruction::SDiv: 4556 case Instruction::SRem: 4557 case Instruction::URem: 4558 case Instruction::Add: 4559 case Instruction::FAdd: 4560 case Instruction::Sub: 4561 case Instruction::FSub: 4562 case Instruction::Mul: 4563 case Instruction::FMul: 4564 case Instruction::FDiv: 4565 case Instruction::FRem: 4566 case Instruction::Shl: 4567 case Instruction::LShr: 4568 case Instruction::AShr: 4569 case Instruction::And: 4570 case Instruction::Or: 4571 case Instruction::Xor: { 4572 // Just widen binops. 4573 auto *BinOp = cast<BinaryOperator>(&I); 4574 setDebugLocFromInst(Builder, BinOp); 4575 4576 for (unsigned Part = 0; Part < UF; ++Part) { 4577 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4578 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4579 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4580 4581 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4582 VecOp->copyIRFlags(BinOp); 4583 4584 // Use this vector value for all users of the original instruction. 4585 VectorLoopValueMap.setVectorValue(&I, Part, V); 4586 addMetadata(V, BinOp); 4587 } 4588 4589 break; 4590 } 4591 case Instruction::Select: { 4592 // Widen selects. 4593 // If the selector is loop invariant we can create a select 4594 // instruction with a scalar condition. Otherwise, use vector-select. 4595 auto *SE = PSE.getSE(); 4596 bool InvariantCond = 4597 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4598 setDebugLocFromInst(Builder, &I); 4599 4600 // The condition can be loop invariant but still defined inside the 4601 // loop. This means that we can't just use the original 'cond' value. 4602 // We have to take the 'vectorized' value and pick the first lane. 4603 // Instcombine will make this a no-op. 4604 4605 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4606 4607 for (unsigned Part = 0; Part < UF; ++Part) { 4608 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4609 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4610 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4611 Value *Sel = 4612 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4613 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4614 addMetadata(Sel, &I); 4615 } 4616 4617 break; 4618 } 4619 4620 case Instruction::ICmp: 4621 case Instruction::FCmp: { 4622 // Widen compares. Generate vector compares. 4623 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4624 auto *Cmp = dyn_cast<CmpInst>(&I); 4625 setDebugLocFromInst(Builder, Cmp); 4626 for (unsigned Part = 0; Part < UF; ++Part) { 4627 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4628 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4629 Value *C = nullptr; 4630 if (FCmp) { 4631 // Propagate fast math flags. 4632 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4633 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4634 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4635 } else { 4636 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4637 } 4638 VectorLoopValueMap.setVectorValue(&I, Part, C); 4639 addMetadata(C, &I); 4640 } 4641 4642 break; 4643 } 4644 4645 case Instruction::ZExt: 4646 case Instruction::SExt: 4647 case Instruction::FPToUI: 4648 case Instruction::FPToSI: 4649 case Instruction::FPExt: 4650 case Instruction::PtrToInt: 4651 case Instruction::IntToPtr: 4652 case Instruction::SIToFP: 4653 case Instruction::UIToFP: 4654 case Instruction::Trunc: 4655 case Instruction::FPTrunc: 4656 case Instruction::BitCast: { 4657 auto *CI = dyn_cast<CastInst>(&I); 4658 setDebugLocFromInst(Builder, CI); 4659 4660 /// Vectorize casts. 4661 Type *DestTy = 4662 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4663 4664 for (unsigned Part = 0; Part < UF; ++Part) { 4665 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4666 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4667 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4668 addMetadata(Cast, &I); 4669 } 4670 break; 4671 } 4672 4673 case Instruction::Call: { 4674 // Ignore dbg intrinsics. 4675 if (isa<DbgInfoIntrinsic>(I)) 4676 break; 4677 setDebugLocFromInst(Builder, &I); 4678 4679 Module *M = I.getParent()->getParent()->getParent(); 4680 auto *CI = cast<CallInst>(&I); 4681 4682 StringRef FnName = CI->getCalledFunction()->getName(); 4683 Function *F = CI->getCalledFunction(); 4684 Type *RetTy = ToVectorTy(CI->getType(), VF); 4685 SmallVector<Type *, 4> Tys; 4686 for (Value *ArgOperand : CI->arg_operands()) 4687 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4688 4689 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4690 4691 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4692 // version of the instruction. 4693 // Is it beneficial to perform intrinsic call compared to lib call? 4694 bool NeedToScalarize; 4695 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4696 bool UseVectorIntrinsic = 4697 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4698 assert((UseVectorIntrinsic || !NeedToScalarize) && 4699 "Instruction should be scalarized elsewhere."); 4700 4701 for (unsigned Part = 0; Part < UF; ++Part) { 4702 SmallVector<Value *, 4> Args; 4703 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4704 Value *Arg = CI->getArgOperand(i); 4705 // Some intrinsics have a scalar argument - don't replace it with a 4706 // vector. 4707 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4708 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4709 Args.push_back(Arg); 4710 } 4711 4712 Function *VectorF; 4713 if (UseVectorIntrinsic) { 4714 // Use vector version of the intrinsic. 4715 Type *TysForDecl[] = {CI->getType()}; 4716 if (VF > 1) 4717 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4718 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4719 } else { 4720 // Use vector version of the library call. 4721 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4722 assert(!VFnName.empty() && "Vector function name is empty."); 4723 VectorF = M->getFunction(VFnName); 4724 if (!VectorF) { 4725 // Generate a declaration 4726 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4727 VectorF = 4728 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4729 VectorF->copyAttributesFrom(F); 4730 } 4731 } 4732 assert(VectorF && "Can't create vector function."); 4733 4734 SmallVector<OperandBundleDef, 1> OpBundles; 4735 CI->getOperandBundlesAsDefs(OpBundles); 4736 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4737 4738 if (isa<FPMathOperator>(V)) 4739 V->copyFastMathFlags(CI); 4740 4741 VectorLoopValueMap.setVectorValue(&I, Part, V); 4742 addMetadata(V, &I); 4743 } 4744 4745 break; 4746 } 4747 4748 default: 4749 // This instruction is not vectorized by simple widening. 4750 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4751 llvm_unreachable("Unhandled instruction!"); 4752 } // end of switch. 4753 } 4754 4755 void InnerLoopVectorizer::updateAnalysis() { 4756 // Forget the original basic block. 4757 PSE.getSE()->forgetLoop(OrigLoop); 4758 4759 // Update the dominator tree information. 4760 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4761 "Entry does not dominate exit."); 4762 4763 DT->addNewBlock(LoopMiddleBlock, 4764 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4765 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4766 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4767 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4768 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4769 } 4770 4771 /// \brief Check whether it is safe to if-convert this phi node. 4772 /// 4773 /// Phi nodes with constant expressions that can trap are not safe to if 4774 /// convert. 4775 static bool canIfConvertPHINodes(BasicBlock *BB) { 4776 for (PHINode &Phi : BB->phis()) { 4777 for (Value *V : Phi.incoming_values()) 4778 if (auto *C = dyn_cast<Constant>(V)) 4779 if (C->canTrap()) 4780 return false; 4781 } 4782 return true; 4783 } 4784 4785 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4786 if (!EnableIfConversion) { 4787 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4788 << "if-conversion is disabled"); 4789 return false; 4790 } 4791 4792 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4793 4794 // A list of pointers that we can safely read and write to. 4795 SmallPtrSet<Value *, 8> SafePointes; 4796 4797 // Collect safe addresses. 4798 for (BasicBlock *BB : TheLoop->blocks()) { 4799 if (blockNeedsPredication(BB)) 4800 continue; 4801 4802 for (Instruction &I : *BB) 4803 if (auto *Ptr = getLoadStorePointerOperand(&I)) 4804 SafePointes.insert(Ptr); 4805 } 4806 4807 // Collect the blocks that need predication. 4808 BasicBlock *Header = TheLoop->getHeader(); 4809 for (BasicBlock *BB : TheLoop->blocks()) { 4810 // We don't support switch statements inside loops. 4811 if (!isa<BranchInst>(BB->getTerminator())) { 4812 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4813 << "loop contains a switch statement"); 4814 return false; 4815 } 4816 4817 // We must be able to predicate all blocks that need to be predicated. 4818 if (blockNeedsPredication(BB)) { 4819 if (!blockCanBePredicated(BB, SafePointes)) { 4820 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4821 << "control flow cannot be substituted for a select"); 4822 return false; 4823 } 4824 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4825 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4826 << "control flow cannot be substituted for a select"); 4827 return false; 4828 } 4829 } 4830 4831 // We can if-convert this loop. 4832 return true; 4833 } 4834 4835 bool LoopVectorizationLegality::canVectorize() { 4836 // Store the result and return it at the end instead of exiting early, in case 4837 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4838 bool Result = true; 4839 4840 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4841 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4842 // be canonicalized. 4843 if (!TheLoop->getLoopPreheader()) { 4844 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4845 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4846 << "loop control flow is not understood by vectorizer"); 4847 if (DoExtraAnalysis) 4848 Result = false; 4849 else 4850 return false; 4851 } 4852 4853 // FIXME: The code is currently dead, since the loop gets sent to 4854 // LoopVectorizationLegality is already an innermost loop. 4855 // 4856 // We can only vectorize innermost loops. 4857 if (!TheLoop->empty()) { 4858 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4859 << "loop is not the innermost loop"); 4860 if (DoExtraAnalysis) 4861 Result = false; 4862 else 4863 return false; 4864 } 4865 4866 // We must have a single backedge. 4867 if (TheLoop->getNumBackEdges() != 1) { 4868 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4869 << "loop control flow is not understood by vectorizer"); 4870 if (DoExtraAnalysis) 4871 Result = false; 4872 else 4873 return false; 4874 } 4875 4876 // We must have a single exiting block. 4877 if (!TheLoop->getExitingBlock()) { 4878 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4879 << "loop control flow is not understood by vectorizer"); 4880 if (DoExtraAnalysis) 4881 Result = false; 4882 else 4883 return false; 4884 } 4885 4886 // We only handle bottom-tested loops, i.e. loop in which the condition is 4887 // checked at the end of each iteration. With that we can assume that all 4888 // instructions in the loop are executed the same number of times. 4889 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4890 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4891 << "loop control flow is not understood by vectorizer"); 4892 if (DoExtraAnalysis) 4893 Result = false; 4894 else 4895 return false; 4896 } 4897 4898 // We need to have a loop header. 4899 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4900 << '\n'); 4901 4902 // Check if we can if-convert non-single-bb loops. 4903 unsigned NumBlocks = TheLoop->getNumBlocks(); 4904 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4905 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4906 if (DoExtraAnalysis) 4907 Result = false; 4908 else 4909 return false; 4910 } 4911 4912 // Check if we can vectorize the instructions and CFG in this loop. 4913 if (!canVectorizeInstrs()) { 4914 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4915 if (DoExtraAnalysis) 4916 Result = false; 4917 else 4918 return false; 4919 } 4920 4921 // Go over each instruction and look at memory deps. 4922 if (!canVectorizeMemory()) { 4923 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4924 if (DoExtraAnalysis) 4925 Result = false; 4926 else 4927 return false; 4928 } 4929 4930 DEBUG(dbgs() << "LV: We can vectorize this loop" 4931 << (LAI->getRuntimePointerChecking()->Need 4932 ? " (with a runtime bound check)" 4933 : "") 4934 << "!\n"); 4935 4936 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4937 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4938 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4939 4940 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4941 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4942 << "Too many SCEV assumptions need to be made and checked " 4943 << "at runtime"); 4944 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4945 if (DoExtraAnalysis) 4946 Result = false; 4947 else 4948 return false; 4949 } 4950 4951 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4952 // we can vectorize, and at this point we don't have any other mem analysis 4953 // which may limit our maximum vectorization factor, so just return true with 4954 // no restrictions. 4955 return Result; 4956 } 4957 4958 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4959 if (Ty->isPointerTy()) 4960 return DL.getIntPtrType(Ty); 4961 4962 // It is possible that char's or short's overflow when we ask for the loop's 4963 // trip count, work around this by changing the type size. 4964 if (Ty->getScalarSizeInBits() < 32) 4965 return Type::getInt32Ty(Ty->getContext()); 4966 4967 return Ty; 4968 } 4969 4970 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4971 Ty0 = convertPointerToIntegerType(DL, Ty0); 4972 Ty1 = convertPointerToIntegerType(DL, Ty1); 4973 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4974 return Ty0; 4975 return Ty1; 4976 } 4977 4978 /// \brief Check that the instruction has outside loop users and is not an 4979 /// identified reduction variable. 4980 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4981 SmallPtrSetImpl<Value *> &AllowedExit) { 4982 // Reduction and Induction instructions are allowed to have exit users. All 4983 // other instructions must not have external users. 4984 if (!AllowedExit.count(Inst)) 4985 // Check that all of the users of the loop are inside the BB. 4986 for (User *U : Inst->users()) { 4987 Instruction *UI = cast<Instruction>(U); 4988 // This user may be a reduction exit value. 4989 if (!TheLoop->contains(UI)) { 4990 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4991 return true; 4992 } 4993 } 4994 return false; 4995 } 4996 4997 void LoopVectorizationLegality::addInductionPhi( 4998 PHINode *Phi, const InductionDescriptor &ID, 4999 SmallPtrSetImpl<Value *> &AllowedExit) { 5000 Inductions[Phi] = ID; 5001 5002 // In case this induction also comes with casts that we know we can ignore 5003 // in the vectorized loop body, record them here. All casts could be recorded 5004 // here for ignoring, but suffices to record only the first (as it is the 5005 // only one that may bw used outside the cast sequence). 5006 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5007 if (!Casts.empty()) 5008 InductionCastsToIgnore.insert(*Casts.begin()); 5009 5010 Type *PhiTy = Phi->getType(); 5011 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5012 5013 // Get the widest type. 5014 if (!PhiTy->isFloatingPointTy()) { 5015 if (!WidestIndTy) 5016 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5017 else 5018 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5019 } 5020 5021 // Int inductions are special because we only allow one IV. 5022 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5023 ID.getConstIntStepValue() && 5024 ID.getConstIntStepValue()->isOne() && 5025 isa<Constant>(ID.getStartValue()) && 5026 cast<Constant>(ID.getStartValue())->isNullValue()) { 5027 5028 // Use the phi node with the widest type as induction. Use the last 5029 // one if there are multiple (no good reason for doing this other 5030 // than it is expedient). We've checked that it begins at zero and 5031 // steps by one, so this is a canonical induction variable. 5032 if (!PrimaryInduction || PhiTy == WidestIndTy) 5033 PrimaryInduction = Phi; 5034 } 5035 5036 // Both the PHI node itself, and the "post-increment" value feeding 5037 // back into the PHI node may have external users. 5038 // We can allow those uses, except if the SCEVs we have for them rely 5039 // on predicates that only hold within the loop, since allowing the exit 5040 // currently means re-using this SCEV outside the loop. 5041 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5042 AllowedExit.insert(Phi); 5043 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5044 } 5045 5046 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5047 } 5048 5049 bool LoopVectorizationLegality::canVectorizeInstrs() { 5050 BasicBlock *Header = TheLoop->getHeader(); 5051 5052 // Look for the attribute signaling the absence of NaNs. 5053 Function &F = *Header->getParent(); 5054 HasFunNoNaNAttr = 5055 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5056 5057 // For each block in the loop. 5058 for (BasicBlock *BB : TheLoop->blocks()) { 5059 // Scan the instructions in the block and look for hazards. 5060 for (Instruction &I : *BB) { 5061 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5062 Type *PhiTy = Phi->getType(); 5063 // Check that this PHI type is allowed. 5064 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5065 !PhiTy->isPointerTy()) { 5066 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5067 << "loop control flow is not understood by vectorizer"); 5068 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5069 return false; 5070 } 5071 5072 // If this PHINode is not in the header block, then we know that we 5073 // can convert it to select during if-conversion. No need to check if 5074 // the PHIs in this block are induction or reduction variables. 5075 if (BB != Header) { 5076 // Check that this instruction has no outside users or is an 5077 // identified reduction value with an outside user. 5078 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5079 continue; 5080 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5081 << "value could not be identified as " 5082 "an induction or reduction variable"); 5083 return false; 5084 } 5085 5086 // We only allow if-converted PHIs with exactly two incoming values. 5087 if (Phi->getNumIncomingValues() != 2) { 5088 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5089 << "control flow not understood by vectorizer"); 5090 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5091 return false; 5092 } 5093 5094 RecurrenceDescriptor RedDes; 5095 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 5096 DT)) { 5097 if (RedDes.hasUnsafeAlgebra()) 5098 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5099 AllowedExit.insert(RedDes.getLoopExitInstr()); 5100 Reductions[Phi] = RedDes; 5101 continue; 5102 } 5103 5104 InductionDescriptor ID; 5105 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5106 addInductionPhi(Phi, ID, AllowedExit); 5107 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5108 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5109 continue; 5110 } 5111 5112 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5113 SinkAfter, DT)) { 5114 FirstOrderRecurrences.insert(Phi); 5115 continue; 5116 } 5117 5118 // As a last resort, coerce the PHI to a AddRec expression 5119 // and re-try classifying it a an induction PHI. 5120 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5121 addInductionPhi(Phi, ID, AllowedExit); 5122 continue; 5123 } 5124 5125 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5126 << "value that could not be identified as " 5127 "reduction is used outside the loop"); 5128 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5129 return false; 5130 } // end of PHI handling 5131 5132 // We handle calls that: 5133 // * Are debug info intrinsics. 5134 // * Have a mapping to an IR intrinsic. 5135 // * Have a vector version available. 5136 auto *CI = dyn_cast<CallInst>(&I); 5137 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5138 !isa<DbgInfoIntrinsic>(CI) && 5139 !(CI->getCalledFunction() && TLI && 5140 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5141 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5142 << "call instruction cannot be vectorized"); 5143 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5144 return false; 5145 } 5146 5147 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5148 // second argument is the same (i.e. loop invariant) 5149 if (CI && hasVectorInstrinsicScalarOpd( 5150 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5151 auto *SE = PSE.getSE(); 5152 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5153 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5154 << "intrinsic instruction cannot be vectorized"); 5155 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5156 return false; 5157 } 5158 } 5159 5160 // Check that the instruction return type is vectorizable. 5161 // Also, we can't vectorize extractelement instructions. 5162 if ((!VectorType::isValidElementType(I.getType()) && 5163 !I.getType()->isVoidTy()) || 5164 isa<ExtractElementInst>(I)) { 5165 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5166 << "instruction return type cannot be vectorized"); 5167 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5168 return false; 5169 } 5170 5171 // Check that the stored type is vectorizable. 5172 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5173 Type *T = ST->getValueOperand()->getType(); 5174 if (!VectorType::isValidElementType(T)) { 5175 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5176 << "store instruction cannot be vectorized"); 5177 return false; 5178 } 5179 5180 // FP instructions can allow unsafe algebra, thus vectorizable by 5181 // non-IEEE-754 compliant SIMD units. 5182 // This applies to floating-point math operations and calls, not memory 5183 // operations, shuffles, or casts, as they don't change precision or 5184 // semantics. 5185 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5186 !I.isFast()) { 5187 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5188 Hints->setPotentiallyUnsafe(); 5189 } 5190 5191 // Reduction instructions are allowed to have exit users. 5192 // All other instructions must not have external users. 5193 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5194 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5195 << "value cannot be used outside the loop"); 5196 return false; 5197 } 5198 } // next instr. 5199 } 5200 5201 if (!PrimaryInduction) { 5202 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5203 if (Inductions.empty()) { 5204 ORE->emit(createMissedAnalysis("NoInductionVariable") 5205 << "loop induction variable could not be identified"); 5206 return false; 5207 } 5208 } 5209 5210 // Now we know the widest induction type, check if our found induction 5211 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5212 // will create another. 5213 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5214 PrimaryInduction = nullptr; 5215 5216 return true; 5217 } 5218 5219 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5220 // We should not collect Scalars more than once per VF. Right now, this 5221 // function is called from collectUniformsAndScalars(), which already does 5222 // this check. Collecting Scalars for VF=1 does not make any sense. 5223 assert(VF >= 2 && !Scalars.count(VF) && 5224 "This function should not be visited twice for the same VF"); 5225 5226 SmallSetVector<Instruction *, 8> Worklist; 5227 5228 // These sets are used to seed the analysis with pointers used by memory 5229 // accesses that will remain scalar. 5230 SmallSetVector<Instruction *, 8> ScalarPtrs; 5231 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5232 5233 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5234 // The pointer operands of loads and stores will be scalar as long as the 5235 // memory access is not a gather or scatter operation. The value operand of a 5236 // store will remain scalar if the store is scalarized. 5237 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5238 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5239 assert(WideningDecision != CM_Unknown && 5240 "Widening decision should be ready at this moment"); 5241 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5242 if (Ptr == Store->getValueOperand()) 5243 return WideningDecision == CM_Scalarize; 5244 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5245 "Ptr is neither a value or pointer operand"); 5246 return WideningDecision != CM_GatherScatter; 5247 }; 5248 5249 // A helper that returns true if the given value is a bitcast or 5250 // getelementptr instruction contained in the loop. 5251 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5252 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5253 isa<GetElementPtrInst>(V)) && 5254 !TheLoop->isLoopInvariant(V); 5255 }; 5256 5257 // A helper that evaluates a memory access's use of a pointer. If the use 5258 // will be a scalar use, and the pointer is only used by memory accesses, we 5259 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5260 // PossibleNonScalarPtrs. 5261 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5262 // We only care about bitcast and getelementptr instructions contained in 5263 // the loop. 5264 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5265 return; 5266 5267 // If the pointer has already been identified as scalar (e.g., if it was 5268 // also identified as uniform), there's nothing to do. 5269 auto *I = cast<Instruction>(Ptr); 5270 if (Worklist.count(I)) 5271 return; 5272 5273 // If the use of the pointer will be a scalar use, and all users of the 5274 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5275 // place the pointer in PossibleNonScalarPtrs. 5276 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5277 return isa<LoadInst>(U) || isa<StoreInst>(U); 5278 })) 5279 ScalarPtrs.insert(I); 5280 else 5281 PossibleNonScalarPtrs.insert(I); 5282 }; 5283 5284 // We seed the scalars analysis with three classes of instructions: (1) 5285 // instructions marked uniform-after-vectorization, (2) bitcast and 5286 // getelementptr instructions used by memory accesses requiring a scalar use, 5287 // and (3) pointer induction variables and their update instructions (we 5288 // currently only scalarize these). 5289 // 5290 // (1) Add to the worklist all instructions that have been identified as 5291 // uniform-after-vectorization. 5292 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5293 5294 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5295 // memory accesses requiring a scalar use. The pointer operands of loads and 5296 // stores will be scalar as long as the memory accesses is not a gather or 5297 // scatter operation. The value operand of a store will remain scalar if the 5298 // store is scalarized. 5299 for (auto *BB : TheLoop->blocks()) 5300 for (auto &I : *BB) { 5301 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5302 evaluatePtrUse(Load, Load->getPointerOperand()); 5303 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5304 evaluatePtrUse(Store, Store->getPointerOperand()); 5305 evaluatePtrUse(Store, Store->getValueOperand()); 5306 } 5307 } 5308 for (auto *I : ScalarPtrs) 5309 if (!PossibleNonScalarPtrs.count(I)) { 5310 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5311 Worklist.insert(I); 5312 } 5313 5314 // (3) Add to the worklist all pointer induction variables and their update 5315 // instructions. 5316 // 5317 // TODO: Once we are able to vectorize pointer induction variables we should 5318 // no longer insert them into the worklist here. 5319 auto *Latch = TheLoop->getLoopLatch(); 5320 for (auto &Induction : *Legal->getInductionVars()) { 5321 auto *Ind = Induction.first; 5322 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5323 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5324 continue; 5325 Worklist.insert(Ind); 5326 Worklist.insert(IndUpdate); 5327 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5328 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5329 } 5330 5331 // Insert the forced scalars. 5332 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5333 // induction variable when the PHI user is scalarized. 5334 if (ForcedScalars.count(VF)) 5335 for (auto *I : ForcedScalars.find(VF)->second) 5336 Worklist.insert(I); 5337 5338 // Expand the worklist by looking through any bitcasts and getelementptr 5339 // instructions we've already identified as scalar. This is similar to the 5340 // expansion step in collectLoopUniforms(); however, here we're only 5341 // expanding to include additional bitcasts and getelementptr instructions. 5342 unsigned Idx = 0; 5343 while (Idx != Worklist.size()) { 5344 Instruction *Dst = Worklist[Idx++]; 5345 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5346 continue; 5347 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5348 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5349 auto *J = cast<Instruction>(U); 5350 return !TheLoop->contains(J) || Worklist.count(J) || 5351 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5352 isScalarUse(J, Src)); 5353 })) { 5354 Worklist.insert(Src); 5355 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5356 } 5357 } 5358 5359 // An induction variable will remain scalar if all users of the induction 5360 // variable and induction variable update remain scalar. 5361 for (auto &Induction : *Legal->getInductionVars()) { 5362 auto *Ind = Induction.first; 5363 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5364 5365 // We already considered pointer induction variables, so there's no reason 5366 // to look at their users again. 5367 // 5368 // TODO: Once we are able to vectorize pointer induction variables we 5369 // should no longer skip over them here. 5370 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5371 continue; 5372 5373 // Determine if all users of the induction variable are scalar after 5374 // vectorization. 5375 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5376 auto *I = cast<Instruction>(U); 5377 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5378 }); 5379 if (!ScalarInd) 5380 continue; 5381 5382 // Determine if all users of the induction variable update instruction are 5383 // scalar after vectorization. 5384 auto ScalarIndUpdate = 5385 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5386 auto *I = cast<Instruction>(U); 5387 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5388 }); 5389 if (!ScalarIndUpdate) 5390 continue; 5391 5392 // The induction variable and its update instruction will remain scalar. 5393 Worklist.insert(Ind); 5394 Worklist.insert(IndUpdate); 5395 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5396 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5397 } 5398 5399 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5400 } 5401 5402 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 5403 if (!Legal->blockNeedsPredication(I->getParent())) 5404 return false; 5405 switch(I->getOpcode()) { 5406 default: 5407 break; 5408 case Instruction::Load: 5409 case Instruction::Store: { 5410 if (!Legal->isMaskRequired(I)) 5411 return false; 5412 auto *Ptr = getLoadStorePointerOperand(I); 5413 auto *Ty = getMemInstValueType(I); 5414 return isa<LoadInst>(I) ? 5415 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 5416 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 5417 } 5418 case Instruction::UDiv: 5419 case Instruction::SDiv: 5420 case Instruction::SRem: 5421 case Instruction::URem: 5422 return mayDivideByZero(*I); 5423 } 5424 return false; 5425 } 5426 5427 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 5428 unsigned VF) { 5429 // Get and ensure we have a valid memory instruction. 5430 LoadInst *LI = dyn_cast<LoadInst>(I); 5431 StoreInst *SI = dyn_cast<StoreInst>(I); 5432 assert((LI || SI) && "Invalid memory instruction"); 5433 5434 auto *Ptr = getLoadStorePointerOperand(I); 5435 5436 // In order to be widened, the pointer should be consecutive, first of all. 5437 if (!Legal->isConsecutivePtr(Ptr)) 5438 return false; 5439 5440 // If the instruction is a store located in a predicated block, it will be 5441 // scalarized. 5442 if (isScalarWithPredication(I)) 5443 return false; 5444 5445 // If the instruction's allocated size doesn't equal it's type size, it 5446 // requires padding and will be scalarized. 5447 auto &DL = I->getModule()->getDataLayout(); 5448 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5449 if (hasIrregularType(ScalarTy, DL, VF)) 5450 return false; 5451 5452 return true; 5453 } 5454 5455 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5456 // We should not collect Uniforms more than once per VF. Right now, 5457 // this function is called from collectUniformsAndScalars(), which 5458 // already does this check. Collecting Uniforms for VF=1 does not make any 5459 // sense. 5460 5461 assert(VF >= 2 && !Uniforms.count(VF) && 5462 "This function should not be visited twice for the same VF"); 5463 5464 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5465 // not analyze again. Uniforms.count(VF) will return 1. 5466 Uniforms[VF].clear(); 5467 5468 // We now know that the loop is vectorizable! 5469 // Collect instructions inside the loop that will remain uniform after 5470 // vectorization. 5471 5472 // Global values, params and instructions outside of current loop are out of 5473 // scope. 5474 auto isOutOfScope = [&](Value *V) -> bool { 5475 Instruction *I = dyn_cast<Instruction>(V); 5476 return (!I || !TheLoop->contains(I)); 5477 }; 5478 5479 SetVector<Instruction *> Worklist; 5480 BasicBlock *Latch = TheLoop->getLoopLatch(); 5481 5482 // Start with the conditional branch. If the branch condition is an 5483 // instruction contained in the loop that is only used by the branch, it is 5484 // uniform. 5485 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5486 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5487 Worklist.insert(Cmp); 5488 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5489 } 5490 5491 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5492 // are pointers that are treated like consecutive pointers during 5493 // vectorization. The pointer operands of interleaved accesses are an 5494 // example. 5495 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5496 5497 // Holds pointer operands of instructions that are possibly non-uniform. 5498 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5499 5500 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5501 InstWidening WideningDecision = getWideningDecision(I, VF); 5502 assert(WideningDecision != CM_Unknown && 5503 "Widening decision should be ready at this moment"); 5504 5505 return (WideningDecision == CM_Widen || 5506 WideningDecision == CM_Widen_Reverse || 5507 WideningDecision == CM_Interleave); 5508 }; 5509 // Iterate over the instructions in the loop, and collect all 5510 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5511 // that a consecutive-like pointer operand will be scalarized, we collect it 5512 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5513 // getelementptr instruction can be used by both vectorized and scalarized 5514 // memory instructions. For example, if a loop loads and stores from the same 5515 // location, but the store is conditional, the store will be scalarized, and 5516 // the getelementptr won't remain uniform. 5517 for (auto *BB : TheLoop->blocks()) 5518 for (auto &I : *BB) { 5519 // If there's no pointer operand, there's nothing to do. 5520 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5521 if (!Ptr) 5522 continue; 5523 5524 // True if all users of Ptr are memory accesses that have Ptr as their 5525 // pointer operand. 5526 auto UsersAreMemAccesses = 5527 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5528 return getLoadStorePointerOperand(U) == Ptr; 5529 }); 5530 5531 // Ensure the memory instruction will not be scalarized or used by 5532 // gather/scatter, making its pointer operand non-uniform. If the pointer 5533 // operand is used by any instruction other than a memory access, we 5534 // conservatively assume the pointer operand may be non-uniform. 5535 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5536 PossibleNonUniformPtrs.insert(Ptr); 5537 5538 // If the memory instruction will be vectorized and its pointer operand 5539 // is consecutive-like, or interleaving - the pointer operand should 5540 // remain uniform. 5541 else 5542 ConsecutiveLikePtrs.insert(Ptr); 5543 } 5544 5545 // Add to the Worklist all consecutive and consecutive-like pointers that 5546 // aren't also identified as possibly non-uniform. 5547 for (auto *V : ConsecutiveLikePtrs) 5548 if (!PossibleNonUniformPtrs.count(V)) { 5549 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5550 Worklist.insert(V); 5551 } 5552 5553 // Expand Worklist in topological order: whenever a new instruction 5554 // is added , its users should be either already inside Worklist, or 5555 // out of scope. It ensures a uniform instruction will only be used 5556 // by uniform instructions or out of scope instructions. 5557 unsigned idx = 0; 5558 while (idx != Worklist.size()) { 5559 Instruction *I = Worklist[idx++]; 5560 5561 for (auto OV : I->operand_values()) { 5562 if (isOutOfScope(OV)) 5563 continue; 5564 auto *OI = cast<Instruction>(OV); 5565 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5566 auto *J = cast<Instruction>(U); 5567 return !TheLoop->contains(J) || Worklist.count(J) || 5568 (OI == getLoadStorePointerOperand(J) && 5569 isUniformDecision(J, VF)); 5570 })) { 5571 Worklist.insert(OI); 5572 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5573 } 5574 } 5575 } 5576 5577 // Returns true if Ptr is the pointer operand of a memory access instruction 5578 // I, and I is known to not require scalarization. 5579 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5580 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5581 }; 5582 5583 // For an instruction to be added into Worklist above, all its users inside 5584 // the loop should also be in Worklist. However, this condition cannot be 5585 // true for phi nodes that form a cyclic dependence. We must process phi 5586 // nodes separately. An induction variable will remain uniform if all users 5587 // of the induction variable and induction variable update remain uniform. 5588 // The code below handles both pointer and non-pointer induction variables. 5589 for (auto &Induction : *Legal->getInductionVars()) { 5590 auto *Ind = Induction.first; 5591 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5592 5593 // Determine if all users of the induction variable are uniform after 5594 // vectorization. 5595 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5596 auto *I = cast<Instruction>(U); 5597 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5598 isVectorizedMemAccessUse(I, Ind); 5599 }); 5600 if (!UniformInd) 5601 continue; 5602 5603 // Determine if all users of the induction variable update instruction are 5604 // uniform after vectorization. 5605 auto UniformIndUpdate = 5606 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5607 auto *I = cast<Instruction>(U); 5608 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5609 isVectorizedMemAccessUse(I, IndUpdate); 5610 }); 5611 if (!UniformIndUpdate) 5612 continue; 5613 5614 // The induction variable and its update instruction will remain uniform. 5615 Worklist.insert(Ind); 5616 Worklist.insert(IndUpdate); 5617 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5618 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5619 } 5620 5621 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5622 } 5623 5624 bool LoopVectorizationLegality::canVectorizeMemory() { 5625 LAI = &(*GetLAA)(*TheLoop); 5626 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5627 if (LAR) { 5628 ORE->emit([&]() { 5629 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5630 "loop not vectorized: ", *LAR); 5631 }); 5632 } 5633 if (!LAI->canVectorizeMemory()) 5634 return false; 5635 5636 if (LAI->hasStoreToLoopInvariantAddress()) { 5637 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5638 << "write to a loop invariant address could not be vectorized"); 5639 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5640 return false; 5641 } 5642 5643 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5644 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5645 5646 return true; 5647 } 5648 5649 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5650 Value *In0 = const_cast<Value *>(V); 5651 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5652 if (!PN) 5653 return false; 5654 5655 return Inductions.count(PN); 5656 } 5657 5658 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5659 auto *Inst = dyn_cast<Instruction>(V); 5660 return (Inst && InductionCastsToIgnore.count(Inst)); 5661 } 5662 5663 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5664 return isInductionPhi(V) || isCastedInductionVariable(V); 5665 } 5666 5667 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5668 return FirstOrderRecurrences.count(Phi); 5669 } 5670 5671 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5672 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5673 } 5674 5675 bool LoopVectorizationLegality::blockCanBePredicated( 5676 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5677 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5678 5679 for (Instruction &I : *BB) { 5680 // Check that we don't have a constant expression that can trap as operand. 5681 for (Value *Operand : I.operands()) { 5682 if (auto *C = dyn_cast<Constant>(Operand)) 5683 if (C->canTrap()) 5684 return false; 5685 } 5686 // We might be able to hoist the load. 5687 if (I.mayReadFromMemory()) { 5688 auto *LI = dyn_cast<LoadInst>(&I); 5689 if (!LI) 5690 return false; 5691 if (!SafePtrs.count(LI->getPointerOperand())) { 5692 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5693 // Otherwise, record that the load needs (real or emulated) masking 5694 // and let the cost model decide. 5695 if (!IsAnnotatedParallel) 5696 MaskedOp.insert(LI); 5697 continue; 5698 } 5699 } 5700 5701 if (I.mayWriteToMemory()) { 5702 auto *SI = dyn_cast<StoreInst>(&I); 5703 if (!SI) 5704 return false; 5705 // Predicated store requires some form of masking: 5706 // 1) masked store HW instruction, 5707 // 2) emulation via load-blend-store (only if safe and legal to do so, 5708 // be aware on the race conditions), or 5709 // 3) element-by-element predicate check and scalar store. 5710 MaskedOp.insert(SI); 5711 continue; 5712 } 5713 if (I.mayThrow()) 5714 return false; 5715 } 5716 5717 return true; 5718 } 5719 5720 void InterleavedAccessInfo::collectConstStrideAccesses( 5721 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5722 const ValueToValueMap &Strides) { 5723 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5724 5725 // Since it's desired that the load/store instructions be maintained in 5726 // "program order" for the interleaved access analysis, we have to visit the 5727 // blocks in the loop in reverse postorder (i.e., in a topological order). 5728 // Such an ordering will ensure that any load/store that may be executed 5729 // before a second load/store will precede the second load/store in 5730 // AccessStrideInfo. 5731 LoopBlocksDFS DFS(TheLoop); 5732 DFS.perform(LI); 5733 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5734 for (auto &I : *BB) { 5735 auto *LI = dyn_cast<LoadInst>(&I); 5736 auto *SI = dyn_cast<StoreInst>(&I); 5737 if (!LI && !SI) 5738 continue; 5739 5740 Value *Ptr = getLoadStorePointerOperand(&I); 5741 // We don't check wrapping here because we don't know yet if Ptr will be 5742 // part of a full group or a group with gaps. Checking wrapping for all 5743 // pointers (even those that end up in groups with no gaps) will be overly 5744 // conservative. For full groups, wrapping should be ok since if we would 5745 // wrap around the address space we would do a memory access at nullptr 5746 // even without the transformation. The wrapping checks are therefore 5747 // deferred until after we've formed the interleaved groups. 5748 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5749 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5750 5751 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5752 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5753 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5754 5755 // An alignment of 0 means target ABI alignment. 5756 unsigned Align = getMemInstAlignment(&I); 5757 if (!Align) 5758 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5759 5760 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5761 } 5762 } 5763 5764 // Analyze interleaved accesses and collect them into interleaved load and 5765 // store groups. 5766 // 5767 // When generating code for an interleaved load group, we effectively hoist all 5768 // loads in the group to the location of the first load in program order. When 5769 // generating code for an interleaved store group, we sink all stores to the 5770 // location of the last store. This code motion can change the order of load 5771 // and store instructions and may break dependences. 5772 // 5773 // The code generation strategy mentioned above ensures that we won't violate 5774 // any write-after-read (WAR) dependences. 5775 // 5776 // E.g., for the WAR dependence: a = A[i]; // (1) 5777 // A[i] = b; // (2) 5778 // 5779 // The store group of (2) is always inserted at or below (2), and the load 5780 // group of (1) is always inserted at or above (1). Thus, the instructions will 5781 // never be reordered. All other dependences are checked to ensure the 5782 // correctness of the instruction reordering. 5783 // 5784 // The algorithm visits all memory accesses in the loop in bottom-up program 5785 // order. Program order is established by traversing the blocks in the loop in 5786 // reverse postorder when collecting the accesses. 5787 // 5788 // We visit the memory accesses in bottom-up order because it can simplify the 5789 // construction of store groups in the presence of write-after-write (WAW) 5790 // dependences. 5791 // 5792 // E.g., for the WAW dependence: A[i] = a; // (1) 5793 // A[i] = b; // (2) 5794 // A[i + 1] = c; // (3) 5795 // 5796 // We will first create a store group with (3) and (2). (1) can't be added to 5797 // this group because it and (2) are dependent. However, (1) can be grouped 5798 // with other accesses that may precede it in program order. Note that a 5799 // bottom-up order does not imply that WAW dependences should not be checked. 5800 void InterleavedAccessInfo::analyzeInterleaving() { 5801 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5802 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 5803 5804 // Holds all accesses with a constant stride. 5805 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5806 collectConstStrideAccesses(AccessStrideInfo, Strides); 5807 5808 if (AccessStrideInfo.empty()) 5809 return; 5810 5811 // Collect the dependences in the loop. 5812 collectDependences(); 5813 5814 // Holds all interleaved store groups temporarily. 5815 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5816 // Holds all interleaved load groups temporarily. 5817 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5818 5819 // Search in bottom-up program order for pairs of accesses (A and B) that can 5820 // form interleaved load or store groups. In the algorithm below, access A 5821 // precedes access B in program order. We initialize a group for B in the 5822 // outer loop of the algorithm, and then in the inner loop, we attempt to 5823 // insert each A into B's group if: 5824 // 5825 // 1. A and B have the same stride, 5826 // 2. A and B have the same memory object size, and 5827 // 3. A belongs in B's group according to its distance from B. 5828 // 5829 // Special care is taken to ensure group formation will not break any 5830 // dependences. 5831 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5832 BI != E; ++BI) { 5833 Instruction *B = BI->first; 5834 StrideDescriptor DesB = BI->second; 5835 5836 // Initialize a group for B if it has an allowable stride. Even if we don't 5837 // create a group for B, we continue with the bottom-up algorithm to ensure 5838 // we don't break any of B's dependences. 5839 InterleaveGroup *Group = nullptr; 5840 if (isStrided(DesB.Stride)) { 5841 Group = getInterleaveGroup(B); 5842 if (!Group) { 5843 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5844 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5845 } 5846 if (B->mayWriteToMemory()) 5847 StoreGroups.insert(Group); 5848 else 5849 LoadGroups.insert(Group); 5850 } 5851 5852 for (auto AI = std::next(BI); AI != E; ++AI) { 5853 Instruction *A = AI->first; 5854 StrideDescriptor DesA = AI->second; 5855 5856 // Our code motion strategy implies that we can't have dependences 5857 // between accesses in an interleaved group and other accesses located 5858 // between the first and last member of the group. Note that this also 5859 // means that a group can't have more than one member at a given offset. 5860 // The accesses in a group can have dependences with other accesses, but 5861 // we must ensure we don't extend the boundaries of the group such that 5862 // we encompass those dependent accesses. 5863 // 5864 // For example, assume we have the sequence of accesses shown below in a 5865 // stride-2 loop: 5866 // 5867 // (1, 2) is a group | A[i] = a; // (1) 5868 // | A[i-1] = b; // (2) | 5869 // A[i-3] = c; // (3) 5870 // A[i] = d; // (4) | (2, 4) is not a group 5871 // 5872 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5873 // but not with (4). If we did, the dependent access (3) would be within 5874 // the boundaries of the (2, 4) group. 5875 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5876 // If a dependence exists and A is already in a group, we know that A 5877 // must be a store since A precedes B and WAR dependences are allowed. 5878 // Thus, A would be sunk below B. We release A's group to prevent this 5879 // illegal code motion. A will then be free to form another group with 5880 // instructions that precede it. 5881 if (isInterleaved(A)) { 5882 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5883 StoreGroups.remove(StoreGroup); 5884 releaseGroup(StoreGroup); 5885 } 5886 5887 // If a dependence exists and A is not already in a group (or it was 5888 // and we just released it), B might be hoisted above A (if B is a 5889 // load) or another store might be sunk below A (if B is a store). In 5890 // either case, we can't add additional instructions to B's group. B 5891 // will only form a group with instructions that it precedes. 5892 break; 5893 } 5894 5895 // At this point, we've checked for illegal code motion. If either A or B 5896 // isn't strided, there's nothing left to do. 5897 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5898 continue; 5899 5900 // Ignore A if it's already in a group or isn't the same kind of memory 5901 // operation as B. 5902 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 5903 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 5904 // should have returned false - except for the case we asked for optimization 5905 // remarks. 5906 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 5907 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 5908 continue; 5909 5910 // Check rules 1 and 2. Ignore A if its stride or size is different from 5911 // that of B. 5912 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5913 continue; 5914 5915 // Ignore A if the memory object of A and B don't belong to the same 5916 // address space 5917 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5918 continue; 5919 5920 // Calculate the distance from A to B. 5921 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5922 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5923 if (!DistToB) 5924 continue; 5925 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5926 5927 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5928 // size. 5929 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5930 continue; 5931 5932 // Ignore A if either A or B is in a predicated block. Although we 5933 // currently prevent group formation for predicated accesses, we may be 5934 // able to relax this limitation in the future once we handle more 5935 // complicated blocks. 5936 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5937 continue; 5938 5939 // The index of A is the index of B plus A's distance to B in multiples 5940 // of the size. 5941 int IndexA = 5942 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5943 5944 // Try to insert A into B's group. 5945 if (Group->insertMember(A, IndexA, DesA.Align)) { 5946 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5947 << " into the interleave group with" << *B << '\n'); 5948 InterleaveGroupMap[A] = Group; 5949 5950 // Set the first load in program order as the insert position. 5951 if (A->mayReadFromMemory()) 5952 Group->setInsertPos(A); 5953 } 5954 } // Iteration over A accesses. 5955 } // Iteration over B accesses. 5956 5957 // Remove interleaved store groups with gaps. 5958 for (InterleaveGroup *Group : StoreGroups) 5959 if (Group->getNumMembers() != Group->getFactor()) { 5960 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5961 "to gaps.\n"); 5962 releaseGroup(Group); 5963 } 5964 // Remove interleaved groups with gaps (currently only loads) whose memory 5965 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5966 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5967 // not check wrapping (see documentation there). 5968 // FORNOW we use Assume=false; 5969 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5970 // of runtime SCEV assumptions checks (thereby potentially failing to 5971 // vectorize altogether). 5972 // Additional optional optimizations: 5973 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5974 // wrap then we can deduce that all pointers in the group don't wrap. 5975 // This means that we can forcefully peel the loop in order to only have to 5976 // check the first pointer for no-wrap. When we'll change to use Assume=true 5977 // we'll only need at most one runtime check per interleaved group. 5978 for (InterleaveGroup *Group : LoadGroups) { 5979 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5980 // load would wrap around the address space we would do a memory access at 5981 // nullptr even without the transformation. 5982 if (Group->getNumMembers() == Group->getFactor()) 5983 continue; 5984 5985 // Case 2: If first and last members of the group don't wrap this implies 5986 // that all the pointers in the group don't wrap. 5987 // So we check only group member 0 (which is always guaranteed to exist), 5988 // and group member Factor - 1; If the latter doesn't exist we rely on 5989 // peeling (if it is a non-reveresed accsess -- see Case 3). 5990 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 5991 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5992 /*ShouldCheckWrap=*/true)) { 5993 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5994 "first group member potentially pointer-wrapping.\n"); 5995 releaseGroup(Group); 5996 continue; 5997 } 5998 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 5999 if (LastMember) { 6000 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 6001 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6002 /*ShouldCheckWrap=*/true)) { 6003 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6004 "last group member potentially pointer-wrapping.\n"); 6005 releaseGroup(Group); 6006 } 6007 } else { 6008 // Case 3: A non-reversed interleaved load group with gaps: We need 6009 // to execute at least one scalar epilogue iteration. This will ensure 6010 // we don't speculatively access memory out-of-bounds. We only need 6011 // to look for a member at index factor - 1, since every group must have 6012 // a member at index zero. 6013 if (Group->isReverse()) { 6014 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6015 "a reverse access with gaps.\n"); 6016 releaseGroup(Group); 6017 continue; 6018 } 6019 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6020 RequiresScalarEpilogue = true; 6021 } 6022 } 6023 } 6024 6025 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6026 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6027 // TODO: It may by useful to do since it's still likely to be dynamically 6028 // uniform if the target can skip. 6029 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6030 6031 ORE->emit( 6032 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6033 << "runtime pointer checks needed. Not enabled for divergent target"); 6034 6035 return None; 6036 } 6037 6038 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6039 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6040 return computeFeasibleMaxVF(OptForSize, TC); 6041 6042 if (Legal->getRuntimePointerChecking()->Need) { 6043 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6044 << "runtime pointer checks needed. Enable vectorization of this " 6045 "loop with '#pragma clang loop vectorize(enable)' when " 6046 "compiling with -Os/-Oz"); 6047 DEBUG(dbgs() 6048 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6049 return None; 6050 } 6051 6052 // If we optimize the program for size, avoid creating the tail loop. 6053 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6054 6055 // If we don't know the precise trip count, don't try to vectorize. 6056 if (TC < 2) { 6057 ORE->emit( 6058 createMissedAnalysis("UnknownLoopCountComplexCFG") 6059 << "unable to calculate the loop count due to complex control flow"); 6060 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6061 return None; 6062 } 6063 6064 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6065 6066 if (TC % MaxVF != 0) { 6067 // If the trip count that we found modulo the vectorization factor is not 6068 // zero then we require a tail. 6069 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6070 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6071 // smaller MaxVF that does not require a scalar epilog. 6072 6073 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6074 << "cannot optimize for size and vectorize at the " 6075 "same time. Enable vectorization of this loop " 6076 "with '#pragma clang loop vectorize(enable)' " 6077 "when compiling with -Os/-Oz"); 6078 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6079 return None; 6080 } 6081 6082 return MaxVF; 6083 } 6084 6085 unsigned 6086 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6087 unsigned ConstTripCount) { 6088 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6089 unsigned SmallestType, WidestType; 6090 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6091 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6092 6093 // Get the maximum safe dependence distance in bits computed by LAA. 6094 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6095 // the memory accesses that is most restrictive (involved in the smallest 6096 // dependence distance). 6097 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6098 6099 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6100 6101 unsigned MaxVectorSize = WidestRegister / WidestType; 6102 6103 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6104 << WidestType << " bits.\n"); 6105 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6106 << " bits.\n"); 6107 6108 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6109 " into one vector!"); 6110 if (MaxVectorSize == 0) { 6111 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6112 MaxVectorSize = 1; 6113 return MaxVectorSize; 6114 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6115 isPowerOf2_32(ConstTripCount)) { 6116 // We need to clamp the VF to be the ConstTripCount. There is no point in 6117 // choosing a higher viable VF as done in the loop below. 6118 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6119 << ConstTripCount << "\n"); 6120 MaxVectorSize = ConstTripCount; 6121 return MaxVectorSize; 6122 } 6123 6124 unsigned MaxVF = MaxVectorSize; 6125 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 6126 (MaximizeBandwidth && !OptForSize)) { 6127 // Collect all viable vectorization factors larger than the default MaxVF 6128 // (i.e. MaxVectorSize). 6129 SmallVector<unsigned, 8> VFs; 6130 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6131 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6132 VFs.push_back(VS); 6133 6134 // For each VF calculate its register usage. 6135 auto RUs = calculateRegisterUsage(VFs); 6136 6137 // Select the largest VF which doesn't require more registers than existing 6138 // ones. 6139 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6140 for (int i = RUs.size() - 1; i >= 0; --i) { 6141 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6142 MaxVF = VFs[i]; 6143 break; 6144 } 6145 } 6146 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 6147 if (MaxVF < MinVF) { 6148 DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6149 << ") with target's minimum: " << MinVF << '\n'); 6150 MaxVF = MinVF; 6151 } 6152 } 6153 } 6154 return MaxVF; 6155 } 6156 6157 VectorizationFactor 6158 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6159 float Cost = expectedCost(1).first; 6160 const float ScalarCost = Cost; 6161 unsigned Width = 1; 6162 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6163 6164 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6165 // Ignore scalar width, because the user explicitly wants vectorization. 6166 if (ForceVectorization && MaxVF > 1) { 6167 Width = 2; 6168 Cost = expectedCost(Width).first / (float)Width; 6169 } 6170 6171 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6172 // Notice that the vector loop needs to be executed less times, so 6173 // we need to divide the cost of the vector loops by the width of 6174 // the vector elements. 6175 VectorizationCostTy C = expectedCost(i); 6176 float VectorCost = C.first / (float)i; 6177 DEBUG(dbgs() << "LV: Vector loop of width " << i 6178 << " costs: " << (int)VectorCost << ".\n"); 6179 if (!C.second && !ForceVectorization) { 6180 DEBUG( 6181 dbgs() << "LV: Not considering vector loop of width " << i 6182 << " because it will not generate any vector instructions.\n"); 6183 continue; 6184 } 6185 if (VectorCost < Cost) { 6186 Cost = VectorCost; 6187 Width = i; 6188 } 6189 } 6190 6191 if (!EnableCondStoresVectorization && NumPredStores) { 6192 ORE->emit(createMissedAnalysis("ConditionalStore") 6193 << "store that is conditionally executed prevents vectorization"); 6194 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6195 Width = 1; 6196 Cost = ScalarCost; 6197 } 6198 6199 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6200 << "LV: Vectorization seems to be not beneficial, " 6201 << "but was forced by a user.\n"); 6202 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6203 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6204 return Factor; 6205 } 6206 6207 std::pair<unsigned, unsigned> 6208 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6209 unsigned MinWidth = -1U; 6210 unsigned MaxWidth = 8; 6211 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6212 6213 // For each block. 6214 for (BasicBlock *BB : TheLoop->blocks()) { 6215 // For each instruction in the loop. 6216 for (Instruction &I : *BB) { 6217 Type *T = I.getType(); 6218 6219 // Skip ignored values. 6220 if (ValuesToIgnore.count(&I)) 6221 continue; 6222 6223 // Only examine Loads, Stores and PHINodes. 6224 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6225 continue; 6226 6227 // Examine PHI nodes that are reduction variables. Update the type to 6228 // account for the recurrence type. 6229 if (auto *PN = dyn_cast<PHINode>(&I)) { 6230 if (!Legal->isReductionVariable(PN)) 6231 continue; 6232 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6233 T = RdxDesc.getRecurrenceType(); 6234 } 6235 6236 // Examine the stored values. 6237 if (auto *ST = dyn_cast<StoreInst>(&I)) 6238 T = ST->getValueOperand()->getType(); 6239 6240 // Ignore loaded pointer types and stored pointer types that are not 6241 // vectorizable. 6242 // 6243 // FIXME: The check here attempts to predict whether a load or store will 6244 // be vectorized. We only know this for certain after a VF has 6245 // been selected. Here, we assume that if an access can be 6246 // vectorized, it will be. We should also look at extending this 6247 // optimization to non-pointer types. 6248 // 6249 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6250 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6251 continue; 6252 6253 MinWidth = std::min(MinWidth, 6254 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6255 MaxWidth = std::max(MaxWidth, 6256 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6257 } 6258 } 6259 6260 return {MinWidth, MaxWidth}; 6261 } 6262 6263 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6264 unsigned VF, 6265 unsigned LoopCost) { 6266 // -- The interleave heuristics -- 6267 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6268 // There are many micro-architectural considerations that we can't predict 6269 // at this level. For example, frontend pressure (on decode or fetch) due to 6270 // code size, or the number and capabilities of the execution ports. 6271 // 6272 // We use the following heuristics to select the interleave count: 6273 // 1. If the code has reductions, then we interleave to break the cross 6274 // iteration dependency. 6275 // 2. If the loop is really small, then we interleave to reduce the loop 6276 // overhead. 6277 // 3. We don't interleave if we think that we will spill registers to memory 6278 // due to the increased register pressure. 6279 6280 // When we optimize for size, we don't interleave. 6281 if (OptForSize) 6282 return 1; 6283 6284 // We used the distance for the interleave count. 6285 if (Legal->getMaxSafeDepDistBytes() != -1U) 6286 return 1; 6287 6288 // Do not interleave loops with a relatively small trip count. 6289 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6290 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6291 return 1; 6292 6293 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6294 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6295 << " registers\n"); 6296 6297 if (VF == 1) { 6298 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6299 TargetNumRegisters = ForceTargetNumScalarRegs; 6300 } else { 6301 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6302 TargetNumRegisters = ForceTargetNumVectorRegs; 6303 } 6304 6305 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6306 // We divide by these constants so assume that we have at least one 6307 // instruction that uses at least one register. 6308 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6309 6310 // We calculate the interleave count using the following formula. 6311 // Subtract the number of loop invariants from the number of available 6312 // registers. These registers are used by all of the interleaved instances. 6313 // Next, divide the remaining registers by the number of registers that is 6314 // required by the loop, in order to estimate how many parallel instances 6315 // fit without causing spills. All of this is rounded down if necessary to be 6316 // a power of two. We want power of two interleave count to simplify any 6317 // addressing operations or alignment considerations. 6318 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6319 R.MaxLocalUsers); 6320 6321 // Don't count the induction variable as interleaved. 6322 if (EnableIndVarRegisterHeur) 6323 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6324 std::max(1U, (R.MaxLocalUsers - 1))); 6325 6326 // Clamp the interleave ranges to reasonable counts. 6327 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6328 6329 // Check if the user has overridden the max. 6330 if (VF == 1) { 6331 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6332 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6333 } else { 6334 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6335 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6336 } 6337 6338 // If we did not calculate the cost for VF (because the user selected the VF) 6339 // then we calculate the cost of VF here. 6340 if (LoopCost == 0) 6341 LoopCost = expectedCost(VF).first; 6342 6343 // Clamp the calculated IC to be between the 1 and the max interleave count 6344 // that the target allows. 6345 if (IC > MaxInterleaveCount) 6346 IC = MaxInterleaveCount; 6347 else if (IC < 1) 6348 IC = 1; 6349 6350 // Interleave if we vectorized this loop and there is a reduction that could 6351 // benefit from interleaving. 6352 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6353 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6354 return IC; 6355 } 6356 6357 // Note that if we've already vectorized the loop we will have done the 6358 // runtime check and so interleaving won't require further checks. 6359 bool InterleavingRequiresRuntimePointerCheck = 6360 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6361 6362 // We want to interleave small loops in order to reduce the loop overhead and 6363 // potentially expose ILP opportunities. 6364 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6365 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6366 // We assume that the cost overhead is 1 and we use the cost model 6367 // to estimate the cost of the loop and interleave until the cost of the 6368 // loop overhead is about 5% of the cost of the loop. 6369 unsigned SmallIC = 6370 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6371 6372 // Interleave until store/load ports (estimated by max interleave count) are 6373 // saturated. 6374 unsigned NumStores = Legal->getNumStores(); 6375 unsigned NumLoads = Legal->getNumLoads(); 6376 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6377 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6378 6379 // If we have a scalar reduction (vector reductions are already dealt with 6380 // by this point), we can increase the critical path length if the loop 6381 // we're interleaving is inside another loop. Limit, by default to 2, so the 6382 // critical path only gets increased by one reduction operation. 6383 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6384 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6385 SmallIC = std::min(SmallIC, F); 6386 StoresIC = std::min(StoresIC, F); 6387 LoadsIC = std::min(LoadsIC, F); 6388 } 6389 6390 if (EnableLoadStoreRuntimeInterleave && 6391 std::max(StoresIC, LoadsIC) > SmallIC) { 6392 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6393 return std::max(StoresIC, LoadsIC); 6394 } 6395 6396 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6397 return SmallIC; 6398 } 6399 6400 // Interleave if this is a large loop (small loops are already dealt with by 6401 // this point) that could benefit from interleaving. 6402 bool HasReductions = !Legal->getReductionVars()->empty(); 6403 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6404 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6405 return IC; 6406 } 6407 6408 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6409 return 1; 6410 } 6411 6412 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6413 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6414 // This function calculates the register usage by measuring the highest number 6415 // of values that are alive at a single location. Obviously, this is a very 6416 // rough estimation. We scan the loop in a topological order in order and 6417 // assign a number to each instruction. We use RPO to ensure that defs are 6418 // met before their users. We assume that each instruction that has in-loop 6419 // users starts an interval. We record every time that an in-loop value is 6420 // used, so we have a list of the first and last occurrences of each 6421 // instruction. Next, we transpose this data structure into a multi map that 6422 // holds the list of intervals that *end* at a specific location. This multi 6423 // map allows us to perform a linear search. We scan the instructions linearly 6424 // and record each time that a new interval starts, by placing it in a set. 6425 // If we find this value in the multi-map then we remove it from the set. 6426 // The max register usage is the maximum size of the set. 6427 // We also search for instructions that are defined outside the loop, but are 6428 // used inside the loop. We need this number separately from the max-interval 6429 // usage number because when we unroll, loop-invariant values do not take 6430 // more register. 6431 LoopBlocksDFS DFS(TheLoop); 6432 DFS.perform(LI); 6433 6434 RegisterUsage RU; 6435 6436 // Each 'key' in the map opens a new interval. The values 6437 // of the map are the index of the 'last seen' usage of the 6438 // instruction that is the key. 6439 using IntervalMap = DenseMap<Instruction *, unsigned>; 6440 6441 // Maps instruction to its index. 6442 DenseMap<unsigned, Instruction *> IdxToInstr; 6443 // Marks the end of each interval. 6444 IntervalMap EndPoint; 6445 // Saves the list of instruction indices that are used in the loop. 6446 SmallSet<Instruction *, 8> Ends; 6447 // Saves the list of values that are used in the loop but are 6448 // defined outside the loop, such as arguments and constants. 6449 SmallPtrSet<Value *, 8> LoopInvariants; 6450 6451 unsigned Index = 0; 6452 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6453 for (Instruction &I : *BB) { 6454 IdxToInstr[Index++] = &I; 6455 6456 // Save the end location of each USE. 6457 for (Value *U : I.operands()) { 6458 auto *Instr = dyn_cast<Instruction>(U); 6459 6460 // Ignore non-instruction values such as arguments, constants, etc. 6461 if (!Instr) 6462 continue; 6463 6464 // If this instruction is outside the loop then record it and continue. 6465 if (!TheLoop->contains(Instr)) { 6466 LoopInvariants.insert(Instr); 6467 continue; 6468 } 6469 6470 // Overwrite previous end points. 6471 EndPoint[Instr] = Index; 6472 Ends.insert(Instr); 6473 } 6474 } 6475 } 6476 6477 // Saves the list of intervals that end with the index in 'key'. 6478 using InstrList = SmallVector<Instruction *, 2>; 6479 DenseMap<unsigned, InstrList> TransposeEnds; 6480 6481 // Transpose the EndPoints to a list of values that end at each index. 6482 for (auto &Interval : EndPoint) 6483 TransposeEnds[Interval.second].push_back(Interval.first); 6484 6485 SmallSet<Instruction *, 8> OpenIntervals; 6486 6487 // Get the size of the widest register. 6488 unsigned MaxSafeDepDist = -1U; 6489 if (Legal->getMaxSafeDepDistBytes() != -1U) 6490 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6491 unsigned WidestRegister = 6492 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6493 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6494 6495 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6496 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6497 6498 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6499 6500 // A lambda that gets the register usage for the given type and VF. 6501 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6502 if (Ty->isTokenTy()) 6503 return 0U; 6504 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6505 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6506 }; 6507 6508 for (unsigned int i = 0; i < Index; ++i) { 6509 Instruction *I = IdxToInstr[i]; 6510 6511 // Remove all of the instructions that end at this location. 6512 InstrList &List = TransposeEnds[i]; 6513 for (Instruction *ToRemove : List) 6514 OpenIntervals.erase(ToRemove); 6515 6516 // Ignore instructions that are never used within the loop. 6517 if (!Ends.count(I)) 6518 continue; 6519 6520 // Skip ignored values. 6521 if (ValuesToIgnore.count(I)) 6522 continue; 6523 6524 // For each VF find the maximum usage of registers. 6525 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6526 if (VFs[j] == 1) { 6527 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6528 continue; 6529 } 6530 collectUniformsAndScalars(VFs[j]); 6531 // Count the number of live intervals. 6532 unsigned RegUsage = 0; 6533 for (auto Inst : OpenIntervals) { 6534 // Skip ignored values for VF > 1. 6535 if (VecValuesToIgnore.count(Inst) || 6536 isScalarAfterVectorization(Inst, VFs[j])) 6537 continue; 6538 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6539 } 6540 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6541 } 6542 6543 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6544 << OpenIntervals.size() << '\n'); 6545 6546 // Add the current instruction to the list of open intervals. 6547 OpenIntervals.insert(I); 6548 } 6549 6550 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6551 unsigned Invariant = 0; 6552 if (VFs[i] == 1) 6553 Invariant = LoopInvariants.size(); 6554 else { 6555 for (auto Inst : LoopInvariants) 6556 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6557 } 6558 6559 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6560 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6561 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6562 6563 RU.LoopInvariantRegs = Invariant; 6564 RU.MaxLocalUsers = MaxUsages[i]; 6565 RUs[i] = RU; 6566 } 6567 6568 return RUs; 6569 } 6570 6571 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6572 // TODO: Cost model for emulated masked load/store is completely 6573 // broken. This hack guides the cost model to use an artificially 6574 // high enough value to practically disable vectorization with such 6575 // operations, except where previously deployed legality hack allowed 6576 // using very low cost values. This is to avoid regressions coming simply 6577 // from moving "masked load/store" check from legality to cost model. 6578 // Masked Load/Gather emulation was previously never allowed. 6579 // Limited number of Masked Store/Scatter emulation was allowed. 6580 assert(isScalarWithPredication(I) && 6581 "Expecting a scalar emulated instruction"); 6582 return isa<LoadInst>(I) || 6583 (isa<StoreInst>(I) && 6584 NumPredStores > NumberOfStoresToPredicate); 6585 } 6586 6587 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6588 // If we aren't vectorizing the loop, or if we've already collected the 6589 // instructions to scalarize, there's nothing to do. Collection may already 6590 // have occurred if we have a user-selected VF and are now computing the 6591 // expected cost for interleaving. 6592 if (VF < 2 || InstsToScalarize.count(VF)) 6593 return; 6594 6595 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6596 // not profitable to scalarize any instructions, the presence of VF in the 6597 // map will indicate that we've analyzed it already. 6598 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6599 6600 // Find all the instructions that are scalar with predication in the loop and 6601 // determine if it would be better to not if-convert the blocks they are in. 6602 // If so, we also record the instructions to scalarize. 6603 for (BasicBlock *BB : TheLoop->blocks()) { 6604 if (!Legal->blockNeedsPredication(BB)) 6605 continue; 6606 for (Instruction &I : *BB) 6607 if (isScalarWithPredication(&I)) { 6608 ScalarCostsTy ScalarCosts; 6609 // Do not apply discount logic if hacked cost is needed 6610 // for emulated masked memrefs. 6611 if (!useEmulatedMaskMemRefHack(&I) && 6612 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6613 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6614 // Remember that BB will remain after vectorization. 6615 PredicatedBBsAfterVectorization.insert(BB); 6616 } 6617 } 6618 } 6619 6620 int LoopVectorizationCostModel::computePredInstDiscount( 6621 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6622 unsigned VF) { 6623 assert(!isUniformAfterVectorization(PredInst, VF) && 6624 "Instruction marked uniform-after-vectorization will be predicated"); 6625 6626 // Initialize the discount to zero, meaning that the scalar version and the 6627 // vector version cost the same. 6628 int Discount = 0; 6629 6630 // Holds instructions to analyze. The instructions we visit are mapped in 6631 // ScalarCosts. Those instructions are the ones that would be scalarized if 6632 // we find that the scalar version costs less. 6633 SmallVector<Instruction *, 8> Worklist; 6634 6635 // Returns true if the given instruction can be scalarized. 6636 auto canBeScalarized = [&](Instruction *I) -> bool { 6637 // We only attempt to scalarize instructions forming a single-use chain 6638 // from the original predicated block that would otherwise be vectorized. 6639 // Although not strictly necessary, we give up on instructions we know will 6640 // already be scalar to avoid traversing chains that are unlikely to be 6641 // beneficial. 6642 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6643 isScalarAfterVectorization(I, VF)) 6644 return false; 6645 6646 // If the instruction is scalar with predication, it will be analyzed 6647 // separately. We ignore it within the context of PredInst. 6648 if (isScalarWithPredication(I)) 6649 return false; 6650 6651 // If any of the instruction's operands are uniform after vectorization, 6652 // the instruction cannot be scalarized. This prevents, for example, a 6653 // masked load from being scalarized. 6654 // 6655 // We assume we will only emit a value for lane zero of an instruction 6656 // marked uniform after vectorization, rather than VF identical values. 6657 // Thus, if we scalarize an instruction that uses a uniform, we would 6658 // create uses of values corresponding to the lanes we aren't emitting code 6659 // for. This behavior can be changed by allowing getScalarValue to clone 6660 // the lane zero values for uniforms rather than asserting. 6661 for (Use &U : I->operands()) 6662 if (auto *J = dyn_cast<Instruction>(U.get())) 6663 if (isUniformAfterVectorization(J, VF)) 6664 return false; 6665 6666 // Otherwise, we can scalarize the instruction. 6667 return true; 6668 }; 6669 6670 // Returns true if an operand that cannot be scalarized must be extracted 6671 // from a vector. We will account for this scalarization overhead below. Note 6672 // that the non-void predicated instructions are placed in their own blocks, 6673 // and their return values are inserted into vectors. Thus, an extract would 6674 // still be required. 6675 auto needsExtract = [&](Instruction *I) -> bool { 6676 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6677 }; 6678 6679 // Compute the expected cost discount from scalarizing the entire expression 6680 // feeding the predicated instruction. We currently only consider expressions 6681 // that are single-use instruction chains. 6682 Worklist.push_back(PredInst); 6683 while (!Worklist.empty()) { 6684 Instruction *I = Worklist.pop_back_val(); 6685 6686 // If we've already analyzed the instruction, there's nothing to do. 6687 if (ScalarCosts.count(I)) 6688 continue; 6689 6690 // Compute the cost of the vector instruction. Note that this cost already 6691 // includes the scalarization overhead of the predicated instruction. 6692 unsigned VectorCost = getInstructionCost(I, VF).first; 6693 6694 // Compute the cost of the scalarized instruction. This cost is the cost of 6695 // the instruction as if it wasn't if-converted and instead remained in the 6696 // predicated block. We will scale this cost by block probability after 6697 // computing the scalarization overhead. 6698 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6699 6700 // Compute the scalarization overhead of needed insertelement instructions 6701 // and phi nodes. 6702 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6703 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6704 true, false); 6705 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6706 } 6707 6708 // Compute the scalarization overhead of needed extractelement 6709 // instructions. For each of the instruction's operands, if the operand can 6710 // be scalarized, add it to the worklist; otherwise, account for the 6711 // overhead. 6712 for (Use &U : I->operands()) 6713 if (auto *J = dyn_cast<Instruction>(U.get())) { 6714 assert(VectorType::isValidElementType(J->getType()) && 6715 "Instruction has non-scalar type"); 6716 if (canBeScalarized(J)) 6717 Worklist.push_back(J); 6718 else if (needsExtract(J)) 6719 ScalarCost += TTI.getScalarizationOverhead( 6720 ToVectorTy(J->getType(),VF), false, true); 6721 } 6722 6723 // Scale the total scalar cost by block probability. 6724 ScalarCost /= getReciprocalPredBlockProb(); 6725 6726 // Compute the discount. A non-negative discount means the vector version 6727 // of the instruction costs more, and scalarizing would be beneficial. 6728 Discount += VectorCost - ScalarCost; 6729 ScalarCosts[I] = ScalarCost; 6730 } 6731 6732 return Discount; 6733 } 6734 6735 LoopVectorizationCostModel::VectorizationCostTy 6736 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6737 VectorizationCostTy Cost; 6738 6739 // For each block. 6740 for (BasicBlock *BB : TheLoop->blocks()) { 6741 VectorizationCostTy BlockCost; 6742 6743 // For each instruction in the old loop. 6744 for (Instruction &I : *BB) { 6745 // Skip dbg intrinsics. 6746 if (isa<DbgInfoIntrinsic>(I)) 6747 continue; 6748 6749 // Skip ignored values. 6750 if (ValuesToIgnore.count(&I) || 6751 (VF > 1 && VecValuesToIgnore.count(&I))) 6752 continue; 6753 6754 VectorizationCostTy C = getInstructionCost(&I, VF); 6755 6756 // Check if we should override the cost. 6757 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6758 C.first = ForceTargetInstructionCost; 6759 6760 BlockCost.first += C.first; 6761 BlockCost.second |= C.second; 6762 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6763 << VF << " For instruction: " << I << '\n'); 6764 } 6765 6766 // If we are vectorizing a predicated block, it will have been 6767 // if-converted. This means that the block's instructions (aside from 6768 // stores and instructions that may divide by zero) will now be 6769 // unconditionally executed. For the scalar case, we may not always execute 6770 // the predicated block. Thus, scale the block's cost by the probability of 6771 // executing it. 6772 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6773 BlockCost.first /= getReciprocalPredBlockProb(); 6774 6775 Cost.first += BlockCost.first; 6776 Cost.second |= BlockCost.second; 6777 } 6778 6779 return Cost; 6780 } 6781 6782 /// \brief Gets Address Access SCEV after verifying that the access pattern 6783 /// is loop invariant except the induction variable dependence. 6784 /// 6785 /// This SCEV can be sent to the Target in order to estimate the address 6786 /// calculation cost. 6787 static const SCEV *getAddressAccessSCEV( 6788 Value *Ptr, 6789 LoopVectorizationLegality *Legal, 6790 PredicatedScalarEvolution &PSE, 6791 const Loop *TheLoop) { 6792 6793 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6794 if (!Gep) 6795 return nullptr; 6796 6797 // We are looking for a gep with all loop invariant indices except for one 6798 // which should be an induction variable. 6799 auto SE = PSE.getSE(); 6800 unsigned NumOperands = Gep->getNumOperands(); 6801 for (unsigned i = 1; i < NumOperands; ++i) { 6802 Value *Opd = Gep->getOperand(i); 6803 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6804 !Legal->isInductionVariable(Opd)) 6805 return nullptr; 6806 } 6807 6808 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6809 return PSE.getSCEV(Ptr); 6810 } 6811 6812 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6813 return Legal->hasStride(I->getOperand(0)) || 6814 Legal->hasStride(I->getOperand(1)); 6815 } 6816 6817 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6818 unsigned VF) { 6819 Type *ValTy = getMemInstValueType(I); 6820 auto SE = PSE.getSE(); 6821 6822 unsigned Alignment = getMemInstAlignment(I); 6823 unsigned AS = getMemInstAddressSpace(I); 6824 Value *Ptr = getLoadStorePointerOperand(I); 6825 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6826 6827 // Figure out whether the access is strided and get the stride value 6828 // if it's known in compile time 6829 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6830 6831 // Get the cost of the scalar memory instruction and address computation. 6832 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6833 6834 Cost += VF * 6835 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6836 AS, I); 6837 6838 // Get the overhead of the extractelement and insertelement instructions 6839 // we might create due to scalarization. 6840 Cost += getScalarizationOverhead(I, VF, TTI); 6841 6842 // If we have a predicated store, it may not be executed for each vector 6843 // lane. Scale the cost by the probability of executing the predicated 6844 // block. 6845 if (isScalarWithPredication(I)) { 6846 Cost /= getReciprocalPredBlockProb(); 6847 6848 if (useEmulatedMaskMemRefHack(I)) 6849 // Artificially setting to a high enough value to practically disable 6850 // vectorization with such operations. 6851 Cost = 3000000; 6852 } 6853 6854 return Cost; 6855 } 6856 6857 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6858 unsigned VF) { 6859 Type *ValTy = getMemInstValueType(I); 6860 Type *VectorTy = ToVectorTy(ValTy, VF); 6861 unsigned Alignment = getMemInstAlignment(I); 6862 Value *Ptr = getLoadStorePointerOperand(I); 6863 unsigned AS = getMemInstAddressSpace(I); 6864 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6865 6866 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6867 "Stride should be 1 or -1 for consecutive memory access"); 6868 unsigned Cost = 0; 6869 if (Legal->isMaskRequired(I)) 6870 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6871 else 6872 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6873 6874 bool Reverse = ConsecutiveStride < 0; 6875 if (Reverse) 6876 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6877 return Cost; 6878 } 6879 6880 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6881 unsigned VF) { 6882 LoadInst *LI = cast<LoadInst>(I); 6883 Type *ValTy = LI->getType(); 6884 Type *VectorTy = ToVectorTy(ValTy, VF); 6885 unsigned Alignment = LI->getAlignment(); 6886 unsigned AS = LI->getPointerAddressSpace(); 6887 6888 return TTI.getAddressComputationCost(ValTy) + 6889 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6890 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6891 } 6892 6893 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6894 unsigned VF) { 6895 Type *ValTy = getMemInstValueType(I); 6896 Type *VectorTy = ToVectorTy(ValTy, VF); 6897 unsigned Alignment = getMemInstAlignment(I); 6898 Value *Ptr = getLoadStorePointerOperand(I); 6899 6900 return TTI.getAddressComputationCost(VectorTy) + 6901 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6902 Legal->isMaskRequired(I), Alignment); 6903 } 6904 6905 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6906 unsigned VF) { 6907 Type *ValTy = getMemInstValueType(I); 6908 Type *VectorTy = ToVectorTy(ValTy, VF); 6909 unsigned AS = getMemInstAddressSpace(I); 6910 6911 auto Group = getInterleavedAccessGroup(I); 6912 assert(Group && "Fail to get an interleaved access group."); 6913 6914 unsigned InterleaveFactor = Group->getFactor(); 6915 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6916 6917 // Holds the indices of existing members in an interleaved load group. 6918 // An interleaved store group doesn't need this as it doesn't allow gaps. 6919 SmallVector<unsigned, 4> Indices; 6920 if (isa<LoadInst>(I)) { 6921 for (unsigned i = 0; i < InterleaveFactor; i++) 6922 if (Group->getMember(i)) 6923 Indices.push_back(i); 6924 } 6925 6926 // Calculate the cost of the whole interleaved group. 6927 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6928 Group->getFactor(), Indices, 6929 Group->getAlignment(), AS); 6930 6931 if (Group->isReverse()) 6932 Cost += Group->getNumMembers() * 6933 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6934 return Cost; 6935 } 6936 6937 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6938 unsigned VF) { 6939 // Calculate scalar cost only. Vectorization cost should be ready at this 6940 // moment. 6941 if (VF == 1) { 6942 Type *ValTy = getMemInstValueType(I); 6943 unsigned Alignment = getMemInstAlignment(I); 6944 unsigned AS = getMemInstAddressSpace(I); 6945 6946 return TTI.getAddressComputationCost(ValTy) + 6947 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6948 } 6949 return getWideningCost(I, VF); 6950 } 6951 6952 LoopVectorizationCostModel::VectorizationCostTy 6953 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6954 // If we know that this instruction will remain uniform, check the cost of 6955 // the scalar version. 6956 if (isUniformAfterVectorization(I, VF)) 6957 VF = 1; 6958 6959 if (VF > 1 && isProfitableToScalarize(I, VF)) 6960 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6961 6962 // Forced scalars do not have any scalarization overhead. 6963 if (VF > 1 && ForcedScalars.count(VF) && 6964 ForcedScalars.find(VF)->second.count(I)) 6965 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6966 6967 Type *VectorTy; 6968 unsigned C = getInstructionCost(I, VF, VectorTy); 6969 6970 bool TypeNotScalarized = 6971 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6972 return VectorizationCostTy(C, TypeNotScalarized); 6973 } 6974 6975 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6976 if (VF == 1) 6977 return; 6978 NumPredStores = 0; 6979 for (BasicBlock *BB : TheLoop->blocks()) { 6980 // For each instruction in the old loop. 6981 for (Instruction &I : *BB) { 6982 Value *Ptr = getLoadStorePointerOperand(&I); 6983 if (!Ptr) 6984 continue; 6985 6986 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6987 NumPredStores++; 6988 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6989 // Scalar load + broadcast 6990 unsigned Cost = getUniformMemOpCost(&I, VF); 6991 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6992 continue; 6993 } 6994 6995 // We assume that widening is the best solution when possible. 6996 if (memoryInstructionCanBeWidened(&I, VF)) { 6997 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6998 int ConsecutiveStride = 6999 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7000 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7001 "Expected consecutive stride."); 7002 InstWidening Decision = 7003 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7004 setWideningDecision(&I, VF, Decision, Cost); 7005 continue; 7006 } 7007 7008 // Choose between Interleaving, Gather/Scatter or Scalarization. 7009 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7010 unsigned NumAccesses = 1; 7011 if (isAccessInterleaved(&I)) { 7012 auto Group = getInterleavedAccessGroup(&I); 7013 assert(Group && "Fail to get an interleaved access group."); 7014 7015 // Make one decision for the whole group. 7016 if (getWideningDecision(&I, VF) != CM_Unknown) 7017 continue; 7018 7019 NumAccesses = Group->getNumMembers(); 7020 InterleaveCost = getInterleaveGroupCost(&I, VF); 7021 } 7022 7023 unsigned GatherScatterCost = 7024 isLegalGatherOrScatter(&I) 7025 ? getGatherScatterCost(&I, VF) * NumAccesses 7026 : std::numeric_limits<unsigned>::max(); 7027 7028 unsigned ScalarizationCost = 7029 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7030 7031 // Choose better solution for the current VF, 7032 // write down this decision and use it during vectorization. 7033 unsigned Cost; 7034 InstWidening Decision; 7035 if (InterleaveCost <= GatherScatterCost && 7036 InterleaveCost < ScalarizationCost) { 7037 Decision = CM_Interleave; 7038 Cost = InterleaveCost; 7039 } else if (GatherScatterCost < ScalarizationCost) { 7040 Decision = CM_GatherScatter; 7041 Cost = GatherScatterCost; 7042 } else { 7043 Decision = CM_Scalarize; 7044 Cost = ScalarizationCost; 7045 } 7046 // If the instructions belongs to an interleave group, the whole group 7047 // receives the same decision. The whole group receives the cost, but 7048 // the cost will actually be assigned to one instruction. 7049 if (auto Group = getInterleavedAccessGroup(&I)) 7050 setWideningDecision(Group, VF, Decision, Cost); 7051 else 7052 setWideningDecision(&I, VF, Decision, Cost); 7053 } 7054 } 7055 7056 // Make sure that any load of address and any other address computation 7057 // remains scalar unless there is gather/scatter support. This avoids 7058 // inevitable extracts into address registers, and also has the benefit of 7059 // activating LSR more, since that pass can't optimize vectorized 7060 // addresses. 7061 if (TTI.prefersVectorizedAddressing()) 7062 return; 7063 7064 // Start with all scalar pointer uses. 7065 SmallPtrSet<Instruction *, 8> AddrDefs; 7066 for (BasicBlock *BB : TheLoop->blocks()) 7067 for (Instruction &I : *BB) { 7068 Instruction *PtrDef = 7069 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7070 if (PtrDef && TheLoop->contains(PtrDef) && 7071 getWideningDecision(&I, VF) != CM_GatherScatter) 7072 AddrDefs.insert(PtrDef); 7073 } 7074 7075 // Add all instructions used to generate the addresses. 7076 SmallVector<Instruction *, 4> Worklist; 7077 for (auto *I : AddrDefs) 7078 Worklist.push_back(I); 7079 while (!Worklist.empty()) { 7080 Instruction *I = Worklist.pop_back_val(); 7081 for (auto &Op : I->operands()) 7082 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7083 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7084 AddrDefs.insert(InstOp).second) 7085 Worklist.push_back(InstOp); 7086 } 7087 7088 for (auto *I : AddrDefs) { 7089 if (isa<LoadInst>(I)) { 7090 // Setting the desired widening decision should ideally be handled in 7091 // by cost functions, but since this involves the task of finding out 7092 // if the loaded register is involved in an address computation, it is 7093 // instead changed here when we know this is the case. 7094 InstWidening Decision = getWideningDecision(I, VF); 7095 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7096 // Scalarize a widened load of address. 7097 setWideningDecision(I, VF, CM_Scalarize, 7098 (VF * getMemoryInstructionCost(I, 1))); 7099 else if (auto Group = getInterleavedAccessGroup(I)) { 7100 // Scalarize an interleave group of address loads. 7101 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7102 if (Instruction *Member = Group->getMember(I)) 7103 setWideningDecision(Member, VF, CM_Scalarize, 7104 (VF * getMemoryInstructionCost(Member, 1))); 7105 } 7106 } 7107 } else 7108 // Make sure I gets scalarized and a cost estimate without 7109 // scalarization overhead. 7110 ForcedScalars[VF].insert(I); 7111 } 7112 } 7113 7114 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7115 unsigned VF, 7116 Type *&VectorTy) { 7117 Type *RetTy = I->getType(); 7118 if (canTruncateToMinimalBitwidth(I, VF)) 7119 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7120 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7121 auto SE = PSE.getSE(); 7122 7123 // TODO: We need to estimate the cost of intrinsic calls. 7124 switch (I->getOpcode()) { 7125 case Instruction::GetElementPtr: 7126 // We mark this instruction as zero-cost because the cost of GEPs in 7127 // vectorized code depends on whether the corresponding memory instruction 7128 // is scalarized or not. Therefore, we handle GEPs with the memory 7129 // instruction cost. 7130 return 0; 7131 case Instruction::Br: { 7132 // In cases of scalarized and predicated instructions, there will be VF 7133 // predicated blocks in the vectorized loop. Each branch around these 7134 // blocks requires also an extract of its vector compare i1 element. 7135 bool ScalarPredicatedBB = false; 7136 BranchInst *BI = cast<BranchInst>(I); 7137 if (VF > 1 && BI->isConditional() && 7138 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7139 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7140 ScalarPredicatedBB = true; 7141 7142 if (ScalarPredicatedBB) { 7143 // Return cost for branches around scalarized and predicated blocks. 7144 Type *Vec_i1Ty = 7145 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7146 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7147 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7148 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7149 // The back-edge branch will remain, as will all scalar branches. 7150 return TTI.getCFInstrCost(Instruction::Br); 7151 else 7152 // This branch will be eliminated by if-conversion. 7153 return 0; 7154 // Note: We currently assume zero cost for an unconditional branch inside 7155 // a predicated block since it will become a fall-through, although we 7156 // may decide in the future to call TTI for all branches. 7157 } 7158 case Instruction::PHI: { 7159 auto *Phi = cast<PHINode>(I); 7160 7161 // First-order recurrences are replaced by vector shuffles inside the loop. 7162 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7163 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7164 VectorTy, VF - 1, VectorTy); 7165 7166 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7167 // converted into select instructions. We require N - 1 selects per phi 7168 // node, where N is the number of incoming values. 7169 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7170 return (Phi->getNumIncomingValues() - 1) * 7171 TTI.getCmpSelInstrCost( 7172 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7173 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7174 7175 return TTI.getCFInstrCost(Instruction::PHI); 7176 } 7177 case Instruction::UDiv: 7178 case Instruction::SDiv: 7179 case Instruction::URem: 7180 case Instruction::SRem: 7181 // If we have a predicated instruction, it may not be executed for each 7182 // vector lane. Get the scalarization cost and scale this amount by the 7183 // probability of executing the predicated block. If the instruction is not 7184 // predicated, we fall through to the next case. 7185 if (VF > 1 && isScalarWithPredication(I)) { 7186 unsigned Cost = 0; 7187 7188 // These instructions have a non-void type, so account for the phi nodes 7189 // that we will create. This cost is likely to be zero. The phi node 7190 // cost, if any, should be scaled by the block probability because it 7191 // models a copy at the end of each predicated block. 7192 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7193 7194 // The cost of the non-predicated instruction. 7195 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7196 7197 // The cost of insertelement and extractelement instructions needed for 7198 // scalarization. 7199 Cost += getScalarizationOverhead(I, VF, TTI); 7200 7201 // Scale the cost by the probability of executing the predicated blocks. 7202 // This assumes the predicated block for each vector lane is equally 7203 // likely. 7204 return Cost / getReciprocalPredBlockProb(); 7205 } 7206 LLVM_FALLTHROUGH; 7207 case Instruction::Add: 7208 case Instruction::FAdd: 7209 case Instruction::Sub: 7210 case Instruction::FSub: 7211 case Instruction::Mul: 7212 case Instruction::FMul: 7213 case Instruction::FDiv: 7214 case Instruction::FRem: 7215 case Instruction::Shl: 7216 case Instruction::LShr: 7217 case Instruction::AShr: 7218 case Instruction::And: 7219 case Instruction::Or: 7220 case Instruction::Xor: { 7221 // Since we will replace the stride by 1 the multiplication should go away. 7222 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7223 return 0; 7224 // Certain instructions can be cheaper to vectorize if they have a constant 7225 // second vector operand. One example of this are shifts on x86. 7226 TargetTransformInfo::OperandValueKind Op1VK = 7227 TargetTransformInfo::OK_AnyValue; 7228 TargetTransformInfo::OperandValueKind Op2VK = 7229 TargetTransformInfo::OK_AnyValue; 7230 TargetTransformInfo::OperandValueProperties Op1VP = 7231 TargetTransformInfo::OP_None; 7232 TargetTransformInfo::OperandValueProperties Op2VP = 7233 TargetTransformInfo::OP_None; 7234 Value *Op2 = I->getOperand(1); 7235 7236 // Check for a splat or for a non uniform vector of constants. 7237 if (isa<ConstantInt>(Op2)) { 7238 ConstantInt *CInt = cast<ConstantInt>(Op2); 7239 if (CInt && CInt->getValue().isPowerOf2()) 7240 Op2VP = TargetTransformInfo::OP_PowerOf2; 7241 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7242 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7243 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7244 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7245 if (SplatValue) { 7246 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7247 if (CInt && CInt->getValue().isPowerOf2()) 7248 Op2VP = TargetTransformInfo::OP_PowerOf2; 7249 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7250 } 7251 } else if (Legal->isUniform(Op2)) { 7252 Op2VK = TargetTransformInfo::OK_UniformValue; 7253 } 7254 SmallVector<const Value *, 4> Operands(I->operand_values()); 7255 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7256 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7257 Op2VK, Op1VP, Op2VP, Operands); 7258 } 7259 case Instruction::Select: { 7260 SelectInst *SI = cast<SelectInst>(I); 7261 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7262 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7263 Type *CondTy = SI->getCondition()->getType(); 7264 if (!ScalarCond) 7265 CondTy = VectorType::get(CondTy, VF); 7266 7267 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7268 } 7269 case Instruction::ICmp: 7270 case Instruction::FCmp: { 7271 Type *ValTy = I->getOperand(0)->getType(); 7272 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7273 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7274 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7275 VectorTy = ToVectorTy(ValTy, VF); 7276 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7277 } 7278 case Instruction::Store: 7279 case Instruction::Load: { 7280 unsigned Width = VF; 7281 if (Width > 1) { 7282 InstWidening Decision = getWideningDecision(I, Width); 7283 assert(Decision != CM_Unknown && 7284 "CM decision should be taken at this point"); 7285 if (Decision == CM_Scalarize) 7286 Width = 1; 7287 } 7288 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7289 return getMemoryInstructionCost(I, VF); 7290 } 7291 case Instruction::ZExt: 7292 case Instruction::SExt: 7293 case Instruction::FPToUI: 7294 case Instruction::FPToSI: 7295 case Instruction::FPExt: 7296 case Instruction::PtrToInt: 7297 case Instruction::IntToPtr: 7298 case Instruction::SIToFP: 7299 case Instruction::UIToFP: 7300 case Instruction::Trunc: 7301 case Instruction::FPTrunc: 7302 case Instruction::BitCast: { 7303 // We optimize the truncation of induction variables having constant 7304 // integer steps. The cost of these truncations is the same as the scalar 7305 // operation. 7306 if (isOptimizableIVTruncate(I, VF)) { 7307 auto *Trunc = cast<TruncInst>(I); 7308 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7309 Trunc->getSrcTy(), Trunc); 7310 } 7311 7312 Type *SrcScalarTy = I->getOperand(0)->getType(); 7313 Type *SrcVecTy = 7314 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7315 if (canTruncateToMinimalBitwidth(I, VF)) { 7316 // This cast is going to be shrunk. This may remove the cast or it might 7317 // turn it into slightly different cast. For example, if MinBW == 16, 7318 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7319 // 7320 // Calculate the modified src and dest types. 7321 Type *MinVecTy = VectorTy; 7322 if (I->getOpcode() == Instruction::Trunc) { 7323 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7324 VectorTy = 7325 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7326 } else if (I->getOpcode() == Instruction::ZExt || 7327 I->getOpcode() == Instruction::SExt) { 7328 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7329 VectorTy = 7330 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7331 } 7332 } 7333 7334 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7335 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7336 } 7337 case Instruction::Call: { 7338 bool NeedToScalarize; 7339 CallInst *CI = cast<CallInst>(I); 7340 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7341 if (getVectorIntrinsicIDForCall(CI, TLI)) 7342 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7343 return CallCost; 7344 } 7345 default: 7346 // The cost of executing VF copies of the scalar instruction. This opcode 7347 // is unknown. Assume that it is the same as 'mul'. 7348 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7349 getScalarizationOverhead(I, VF, TTI); 7350 } // end of switch. 7351 } 7352 7353 char LoopVectorize::ID = 0; 7354 7355 static const char lv_name[] = "Loop Vectorization"; 7356 7357 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7358 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7359 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7360 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7361 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7362 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7363 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7364 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7365 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7366 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7367 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7368 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7369 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7370 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7371 7372 namespace llvm { 7373 7374 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7375 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7376 } 7377 7378 } // end namespace llvm 7379 7380 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7381 // Check if the pointer operand of a load or store instruction is 7382 // consecutive. 7383 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7384 return Legal->isConsecutivePtr(Ptr); 7385 return false; 7386 } 7387 7388 void LoopVectorizationCostModel::collectValuesToIgnore() { 7389 // Ignore ephemeral values. 7390 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7391 7392 // Ignore type-promoting instructions we identified during reduction 7393 // detection. 7394 for (auto &Reduction : *Legal->getReductionVars()) { 7395 RecurrenceDescriptor &RedDes = Reduction.second; 7396 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7397 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7398 } 7399 // Ignore type-casting instructions we identified during induction 7400 // detection. 7401 for (auto &Induction : *Legal->getInductionVars()) { 7402 InductionDescriptor &IndDes = Induction.second; 7403 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7404 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7405 } 7406 } 7407 7408 VectorizationFactor 7409 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7410 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7411 const VectorizationFactor NoVectorization = {1U, 0U}; 7412 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7413 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7414 return NoVectorization; 7415 7416 if (UserVF) { 7417 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7418 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7419 // Collect the instructions (and their associated costs) that will be more 7420 // profitable to scalarize. 7421 CM.selectUserVectorizationFactor(UserVF); 7422 buildVPlans(UserVF, UserVF); 7423 DEBUG(printPlans(dbgs())); 7424 return {UserVF, 0}; 7425 } 7426 7427 unsigned MaxVF = MaybeMaxVF.getValue(); 7428 assert(MaxVF != 0 && "MaxVF is zero."); 7429 7430 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7431 // Collect Uniform and Scalar instructions after vectorization with VF. 7432 CM.collectUniformsAndScalars(VF); 7433 7434 // Collect the instructions (and their associated costs) that will be more 7435 // profitable to scalarize. 7436 if (VF > 1) 7437 CM.collectInstsToScalarize(VF); 7438 } 7439 7440 buildVPlans(1, MaxVF); 7441 DEBUG(printPlans(dbgs())); 7442 if (MaxVF == 1) 7443 return NoVectorization; 7444 7445 // Select the optimal vectorization factor. 7446 return CM.selectVectorizationFactor(MaxVF); 7447 } 7448 7449 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7450 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7451 BestVF = VF; 7452 BestUF = UF; 7453 7454 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7455 return !Plan->hasVF(VF); 7456 }); 7457 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7458 } 7459 7460 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7461 DominatorTree *DT) { 7462 // Perform the actual loop transformation. 7463 7464 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7465 VPCallbackILV CallbackILV(ILV); 7466 7467 VPTransformState State{BestVF, BestUF, LI, 7468 DT, ILV.Builder, ILV.VectorLoopValueMap, 7469 &ILV, CallbackILV}; 7470 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7471 7472 //===------------------------------------------------===// 7473 // 7474 // Notice: any optimization or new instruction that go 7475 // into the code below should also be implemented in 7476 // the cost-model. 7477 // 7478 //===------------------------------------------------===// 7479 7480 // 2. Copy and widen instructions from the old loop into the new loop. 7481 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7482 VPlans.front()->execute(&State); 7483 7484 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7485 // predication, updating analyses. 7486 ILV.fixVectorizedLoop(); 7487 } 7488 7489 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7490 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7491 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7492 7493 // We create new control-flow for the vectorized loop, so the original 7494 // condition will be dead after vectorization if it's only used by the 7495 // branch. 7496 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7497 if (Cmp && Cmp->hasOneUse()) 7498 DeadInstructions.insert(Cmp); 7499 7500 // We create new "steps" for induction variable updates to which the original 7501 // induction variables map. An original update instruction will be dead if 7502 // all its users except the induction variable are dead. 7503 for (auto &Induction : *Legal->getInductionVars()) { 7504 PHINode *Ind = Induction.first; 7505 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7506 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7507 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7508 })) 7509 DeadInstructions.insert(IndUpdate); 7510 7511 // We record as "Dead" also the type-casting instructions we had identified 7512 // during induction analysis. We don't need any handling for them in the 7513 // vectorized loop because we have proven that, under a proper runtime 7514 // test guarding the vectorized loop, the value of the phi, and the casted 7515 // value of the phi, are the same. The last instruction in this casting chain 7516 // will get its scalar/vector/widened def from the scalar/vector/widened def 7517 // of the respective phi node. Any other casts in the induction def-use chain 7518 // have no other uses outside the phi update chain, and will be ignored. 7519 InductionDescriptor &IndDes = Induction.second; 7520 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7521 DeadInstructions.insert(Casts.begin(), Casts.end()); 7522 } 7523 } 7524 7525 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7526 7527 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7528 7529 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7530 Instruction::BinaryOps BinOp) { 7531 // When unrolling and the VF is 1, we only need to add a simple scalar. 7532 Type *Ty = Val->getType(); 7533 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7534 7535 if (Ty->isFloatingPointTy()) { 7536 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7537 7538 // Floating point operations had to be 'fast' to enable the unrolling. 7539 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7540 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7541 } 7542 Constant *C = ConstantInt::get(Ty, StartIdx); 7543 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7544 } 7545 7546 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7547 SmallVector<Metadata *, 4> MDs; 7548 // Reserve first location for self reference to the LoopID metadata node. 7549 MDs.push_back(nullptr); 7550 bool IsUnrollMetadata = false; 7551 MDNode *LoopID = L->getLoopID(); 7552 if (LoopID) { 7553 // First find existing loop unrolling disable metadata. 7554 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7555 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7556 if (MD) { 7557 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7558 IsUnrollMetadata = 7559 S && S->getString().startswith("llvm.loop.unroll.disable"); 7560 } 7561 MDs.push_back(LoopID->getOperand(i)); 7562 } 7563 } 7564 7565 if (!IsUnrollMetadata) { 7566 // Add runtime unroll disable metadata. 7567 LLVMContext &Context = L->getHeader()->getContext(); 7568 SmallVector<Metadata *, 1> DisableOperands; 7569 DisableOperands.push_back( 7570 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7571 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7572 MDs.push_back(DisableNode); 7573 MDNode *NewLoopID = MDNode::get(Context, MDs); 7574 // Set operand 0 to refer to the loop id itself. 7575 NewLoopID->replaceOperandWith(0, NewLoopID); 7576 L->setLoopID(NewLoopID); 7577 } 7578 } 7579 7580 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7581 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7582 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7583 bool PredicateAtRangeStart = Predicate(Range.Start); 7584 7585 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7586 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7587 Range.End = TmpVF; 7588 break; 7589 } 7590 7591 return PredicateAtRangeStart; 7592 } 7593 7594 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7595 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7596 /// of VF's starting at a given VF and extending it as much as possible. Each 7597 /// vectorization decision can potentially shorten this sub-range during 7598 /// buildVPlan(). 7599 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7600 7601 // Collect conditions feeding internal conditional branches; they need to be 7602 // represented in VPlan for it to model masking. 7603 SmallPtrSet<Value *, 1> NeedDef; 7604 7605 auto *Latch = OrigLoop->getLoopLatch(); 7606 for (BasicBlock *BB : OrigLoop->blocks()) { 7607 if (BB == Latch) 7608 continue; 7609 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7610 if (Branch && Branch->isConditional()) 7611 NeedDef.insert(Branch->getCondition()); 7612 } 7613 7614 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7615 VFRange SubRange = {VF, MaxVF + 1}; 7616 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7617 VF = SubRange.End; 7618 } 7619 } 7620 7621 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7622 BasicBlock *Dst, 7623 VPlanPtr &Plan) { 7624 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7625 7626 // Look for cached value. 7627 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7628 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7629 if (ECEntryIt != EdgeMaskCache.end()) 7630 return ECEntryIt->second; 7631 7632 VPValue *SrcMask = createBlockInMask(Src, Plan); 7633 7634 // The terminator has to be a branch inst! 7635 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7636 assert(BI && "Unexpected terminator found"); 7637 7638 if (!BI->isConditional()) 7639 return EdgeMaskCache[Edge] = SrcMask; 7640 7641 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7642 assert(EdgeMask && "No Edge Mask found for condition"); 7643 7644 if (BI->getSuccessor(0) != Dst) 7645 EdgeMask = Builder.createNot(EdgeMask); 7646 7647 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7648 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7649 7650 return EdgeMaskCache[Edge] = EdgeMask; 7651 } 7652 7653 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7654 VPlanPtr &Plan) { 7655 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7656 7657 // Look for cached value. 7658 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7659 if (BCEntryIt != BlockMaskCache.end()) 7660 return BCEntryIt->second; 7661 7662 // All-one mask is modelled as no-mask following the convention for masked 7663 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7664 VPValue *BlockMask = nullptr; 7665 7666 // Loop incoming mask is all-one. 7667 if (OrigLoop->getHeader() == BB) 7668 return BlockMaskCache[BB] = BlockMask; 7669 7670 // This is the block mask. We OR all incoming edges. 7671 for (auto *Predecessor : predecessors(BB)) { 7672 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7673 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7674 return BlockMaskCache[BB] = EdgeMask; 7675 7676 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7677 BlockMask = EdgeMask; 7678 continue; 7679 } 7680 7681 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7682 } 7683 7684 return BlockMaskCache[BB] = BlockMask; 7685 } 7686 7687 VPInterleaveRecipe * 7688 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7689 VFRange &Range) { 7690 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 7691 if (!IG) 7692 return nullptr; 7693 7694 // Now check if IG is relevant for VF's in the given range. 7695 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7696 return [=](unsigned VF) -> bool { 7697 return (VF >= 2 && // Query is illegal for VF == 1 7698 CM.getWideningDecision(I, VF) == 7699 LoopVectorizationCostModel::CM_Interleave); 7700 }; 7701 }; 7702 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7703 return nullptr; 7704 7705 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7706 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7707 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7708 assert(I == IG->getInsertPos() && 7709 "Generating a recipe for an adjunct member of an interleave group"); 7710 7711 return new VPInterleaveRecipe(IG); 7712 } 7713 7714 VPWidenMemoryInstructionRecipe * 7715 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7716 VPlanPtr &Plan) { 7717 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7718 return nullptr; 7719 7720 auto willWiden = [&](unsigned VF) -> bool { 7721 if (VF == 1) 7722 return false; 7723 if (CM.isScalarAfterVectorization(I, VF) || 7724 CM.isProfitableToScalarize(I, VF)) 7725 return false; 7726 LoopVectorizationCostModel::InstWidening Decision = 7727 CM.getWideningDecision(I, VF); 7728 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7729 "CM decision should be taken at this point."); 7730 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7731 "Interleave memory opportunity should be caught earlier."); 7732 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7733 }; 7734 7735 if (!getDecisionAndClampRange(willWiden, Range)) 7736 return nullptr; 7737 7738 VPValue *Mask = nullptr; 7739 if (Legal->isMaskRequired(I)) 7740 Mask = createBlockInMask(I->getParent(), Plan); 7741 7742 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7743 } 7744 7745 VPWidenIntOrFpInductionRecipe * 7746 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7747 VFRange &Range) { 7748 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7749 // Check if this is an integer or fp induction. If so, build the recipe that 7750 // produces its scalar and vector values. 7751 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7752 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7753 II.getKind() == InductionDescriptor::IK_FpInduction) 7754 return new VPWidenIntOrFpInductionRecipe(Phi); 7755 7756 return nullptr; 7757 } 7758 7759 // Optimize the special case where the source is a constant integer 7760 // induction variable. Notice that we can only optimize the 'trunc' case 7761 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7762 // (c) other casts depend on pointer size. 7763 7764 // Determine whether \p K is a truncation based on an induction variable that 7765 // can be optimized. 7766 auto isOptimizableIVTruncate = 7767 [&](Instruction *K) -> std::function<bool(unsigned)> { 7768 return 7769 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7770 }; 7771 7772 if (isa<TruncInst>(I) && 7773 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7774 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7775 cast<TruncInst>(I)); 7776 return nullptr; 7777 } 7778 7779 VPBlendRecipe * 7780 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7781 PHINode *Phi = dyn_cast<PHINode>(I); 7782 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7783 return nullptr; 7784 7785 // We know that all PHIs in non-header blocks are converted into selects, so 7786 // we don't have to worry about the insertion order and we can just use the 7787 // builder. At this point we generate the predication tree. There may be 7788 // duplications since this is a simple recursive scan, but future 7789 // optimizations will clean it up. 7790 7791 SmallVector<VPValue *, 2> Masks; 7792 unsigned NumIncoming = Phi->getNumIncomingValues(); 7793 for (unsigned In = 0; In < NumIncoming; In++) { 7794 VPValue *EdgeMask = 7795 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7796 assert((EdgeMask || NumIncoming == 1) && 7797 "Multiple predecessors with one having a full mask"); 7798 if (EdgeMask) 7799 Masks.push_back(EdgeMask); 7800 } 7801 return new VPBlendRecipe(Phi, Masks); 7802 } 7803 7804 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7805 VFRange &Range) { 7806 if (CM.isScalarWithPredication(I)) 7807 return false; 7808 7809 auto IsVectorizableOpcode = [](unsigned Opcode) { 7810 switch (Opcode) { 7811 case Instruction::Add: 7812 case Instruction::And: 7813 case Instruction::AShr: 7814 case Instruction::BitCast: 7815 case Instruction::Br: 7816 case Instruction::Call: 7817 case Instruction::FAdd: 7818 case Instruction::FCmp: 7819 case Instruction::FDiv: 7820 case Instruction::FMul: 7821 case Instruction::FPExt: 7822 case Instruction::FPToSI: 7823 case Instruction::FPToUI: 7824 case Instruction::FPTrunc: 7825 case Instruction::FRem: 7826 case Instruction::FSub: 7827 case Instruction::GetElementPtr: 7828 case Instruction::ICmp: 7829 case Instruction::IntToPtr: 7830 case Instruction::Load: 7831 case Instruction::LShr: 7832 case Instruction::Mul: 7833 case Instruction::Or: 7834 case Instruction::PHI: 7835 case Instruction::PtrToInt: 7836 case Instruction::SDiv: 7837 case Instruction::Select: 7838 case Instruction::SExt: 7839 case Instruction::Shl: 7840 case Instruction::SIToFP: 7841 case Instruction::SRem: 7842 case Instruction::Store: 7843 case Instruction::Sub: 7844 case Instruction::Trunc: 7845 case Instruction::UDiv: 7846 case Instruction::UIToFP: 7847 case Instruction::URem: 7848 case Instruction::Xor: 7849 case Instruction::ZExt: 7850 return true; 7851 } 7852 return false; 7853 }; 7854 7855 if (!IsVectorizableOpcode(I->getOpcode())) 7856 return false; 7857 7858 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7859 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7860 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7861 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7862 return false; 7863 } 7864 7865 auto willWiden = [&](unsigned VF) -> bool { 7866 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7867 CM.isProfitableToScalarize(I, VF))) 7868 return false; 7869 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7870 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7871 // The following case may be scalarized depending on the VF. 7872 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7873 // version of the instruction. 7874 // Is it beneficial to perform intrinsic call compared to lib call? 7875 bool NeedToScalarize; 7876 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7877 bool UseVectorIntrinsic = 7878 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7879 return UseVectorIntrinsic || !NeedToScalarize; 7880 } 7881 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7882 assert(CM.getWideningDecision(I, VF) == 7883 LoopVectorizationCostModel::CM_Scalarize && 7884 "Memory widening decisions should have been taken care by now"); 7885 return false; 7886 } 7887 return true; 7888 }; 7889 7890 if (!getDecisionAndClampRange(willWiden, Range)) 7891 return false; 7892 7893 // Success: widen this instruction. We optimize the common case where 7894 // consecutive instructions can be represented by a single recipe. 7895 if (!VPBB->empty()) { 7896 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7897 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7898 return true; 7899 } 7900 7901 VPBB->appendRecipe(new VPWidenRecipe(I)); 7902 return true; 7903 } 7904 7905 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7906 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7907 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7908 VPlanPtr &Plan) { 7909 bool IsUniform = getDecisionAndClampRange( 7910 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7911 Range); 7912 7913 bool IsPredicated = CM.isScalarWithPredication(I); 7914 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7915 7916 // Find if I uses a predicated instruction. If so, it will use its scalar 7917 // value. Avoid hoisting the insert-element which packs the scalar value into 7918 // a vector value, as that happens iff all users use the vector value. 7919 for (auto &Op : I->operands()) 7920 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7921 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7922 PredInst2Recipe[PredInst]->setAlsoPack(false); 7923 7924 // Finalize the recipe for Instr, first if it is not predicated. 7925 if (!IsPredicated) { 7926 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7927 VPBB->appendRecipe(Recipe); 7928 return VPBB; 7929 } 7930 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7931 assert(VPBB->getSuccessors().empty() && 7932 "VPBB has successors when handling predicated replication."); 7933 // Record predicated instructions for above packing optimizations. 7934 PredInst2Recipe[I] = Recipe; 7935 VPBlockBase *Region = 7936 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7937 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7938 } 7939 7940 VPRegionBlock * 7941 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7942 VPRecipeBase *PredRecipe, 7943 VPlanPtr &Plan) { 7944 // Instructions marked for predication are replicated and placed under an 7945 // if-then construct to prevent side-effects. 7946 7947 // Generate recipes to compute the block mask for this region. 7948 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7949 7950 // Build the triangular if-then region. 7951 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7952 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7953 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7954 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7955 auto *PHIRecipe = 7956 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7957 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7958 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7959 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7960 7961 // Note: first set Entry as region entry and then connect successors starting 7962 // from it in order, to propagate the "parent" of each VPBasicBlock. 7963 Entry->setTwoSuccessors(Pred, Exit); 7964 Pred->setOneSuccessor(Exit); 7965 7966 return Region; 7967 } 7968 7969 LoopVectorizationPlanner::VPlanPtr 7970 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7971 const SmallPtrSetImpl<Value *> &NeedDef) { 7972 EdgeMaskCache.clear(); 7973 BlockMaskCache.clear(); 7974 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7975 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7976 7977 // Collect instructions from the original loop that will become trivially dead 7978 // in the vectorized loop. We don't need to vectorize these instructions. For 7979 // example, original induction update instructions can become dead because we 7980 // separately emit induction "steps" when generating code for the new loop. 7981 // Similarly, we create a new latch condition when setting up the structure 7982 // of the new loop, so the old one can become dead. 7983 SmallPtrSet<Instruction *, 4> DeadInstructions; 7984 collectTriviallyDeadInstructions(DeadInstructions); 7985 7986 // Hold a mapping from predicated instructions to their recipes, in order to 7987 // fix their AlsoPack behavior if a user is determined to replicate and use a 7988 // scalar instead of vector value. 7989 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7990 7991 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7992 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7993 auto Plan = llvm::make_unique<VPlan>(VPBB); 7994 7995 // Represent values that will have defs inside VPlan. 7996 for (Value *V : NeedDef) 7997 Plan->addVPValue(V); 7998 7999 // Scan the body of the loop in a topological order to visit each basic block 8000 // after having visited its predecessor basic blocks. 8001 LoopBlocksDFS DFS(OrigLoop); 8002 DFS.perform(LI); 8003 8004 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8005 // Relevant instructions from basic block BB will be grouped into VPRecipe 8006 // ingredients and fill a new VPBasicBlock. 8007 unsigned VPBBsForBB = 0; 8008 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8009 VPBB->setOneSuccessor(FirstVPBBForBB); 8010 VPBB = FirstVPBBForBB; 8011 Builder.setInsertPoint(VPBB); 8012 8013 std::vector<Instruction *> Ingredients; 8014 8015 // Organize the ingredients to vectorize from current basic block in the 8016 // right order. 8017 for (Instruction &I : *BB) { 8018 Instruction *Instr = &I; 8019 8020 // First filter out irrelevant instructions, to ensure no recipes are 8021 // built for them. 8022 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8023 DeadInstructions.count(Instr)) 8024 continue; 8025 8026 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8027 // member of the IG, do not construct any Recipe for it. 8028 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 8029 if (IG && Instr != IG->getInsertPos() && 8030 Range.Start >= 2 && // Query is illegal for VF == 1 8031 CM.getWideningDecision(Instr, Range.Start) == 8032 LoopVectorizationCostModel::CM_Interleave) { 8033 if (SinkAfterInverse.count(Instr)) 8034 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8035 continue; 8036 } 8037 8038 // Move instructions to handle first-order recurrences, step 1: avoid 8039 // handling this instruction until after we've handled the instruction it 8040 // should follow. 8041 auto SAIt = SinkAfter.find(Instr); 8042 if (SAIt != SinkAfter.end()) { 8043 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8044 << " to vectorize a 1st order recurrence.\n"); 8045 SinkAfterInverse[SAIt->second] = Instr; 8046 continue; 8047 } 8048 8049 Ingredients.push_back(Instr); 8050 8051 // Move instructions to handle first-order recurrences, step 2: push the 8052 // instruction to be sunk at its insertion point. 8053 auto SAInvIt = SinkAfterInverse.find(Instr); 8054 if (SAInvIt != SinkAfterInverse.end()) 8055 Ingredients.push_back(SAInvIt->second); 8056 } 8057 8058 // Introduce each ingredient into VPlan. 8059 for (Instruction *Instr : Ingredients) { 8060 VPRecipeBase *Recipe = nullptr; 8061 8062 // Check if Instr should belong to an interleave memory recipe, or already 8063 // does. In the latter case Instr is irrelevant. 8064 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8065 VPBB->appendRecipe(Recipe); 8066 continue; 8067 } 8068 8069 // Check if Instr is a memory operation that should be widened. 8070 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8071 VPBB->appendRecipe(Recipe); 8072 continue; 8073 } 8074 8075 // Check if Instr should form some PHI recipe. 8076 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8077 VPBB->appendRecipe(Recipe); 8078 continue; 8079 } 8080 if ((Recipe = tryToBlend(Instr, Plan))) { 8081 VPBB->appendRecipe(Recipe); 8082 continue; 8083 } 8084 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8085 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8086 continue; 8087 } 8088 8089 // Check if Instr is to be widened by a general VPWidenRecipe, after 8090 // having first checked for specific widening recipes that deal with 8091 // Interleave Groups, Inductions and Phi nodes. 8092 if (tryToWiden(Instr, VPBB, Range)) 8093 continue; 8094 8095 // Otherwise, if all widening options failed, Instruction is to be 8096 // replicated. This may create a successor for VPBB. 8097 VPBasicBlock *NextVPBB = 8098 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8099 if (NextVPBB != VPBB) { 8100 VPBB = NextVPBB; 8101 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8102 : ""); 8103 } 8104 } 8105 } 8106 8107 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8108 // may also be empty, such as the last one VPBB, reflecting original 8109 // basic-blocks with no recipes. 8110 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8111 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8112 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8113 PreEntry->disconnectSuccessor(Entry); 8114 delete PreEntry; 8115 8116 std::string PlanName; 8117 raw_string_ostream RSO(PlanName); 8118 unsigned VF = Range.Start; 8119 Plan->addVF(VF); 8120 RSO << "Initial VPlan for VF={" << VF; 8121 for (VF *= 2; VF < Range.End; VF *= 2) { 8122 Plan->addVF(VF); 8123 RSO << "," << VF; 8124 } 8125 RSO << "},UF>=1"; 8126 RSO.flush(); 8127 Plan->setName(PlanName); 8128 8129 return Plan; 8130 } 8131 8132 Value* LoopVectorizationPlanner::VPCallbackILV:: 8133 getOrCreateVectorValues(Value *V, unsigned Part) { 8134 return ILV.getOrCreateVectorValue(V, Part); 8135 } 8136 8137 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8138 O << " +\n" 8139 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8140 IG->getInsertPos()->printAsOperand(O, false); 8141 O << "\\l\""; 8142 for (unsigned i = 0; i < IG->getFactor(); ++i) 8143 if (Instruction *I = IG->getMember(i)) 8144 O << " +\n" 8145 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8146 } 8147 8148 void VPWidenRecipe::execute(VPTransformState &State) { 8149 for (auto &Instr : make_range(Begin, End)) 8150 State.ILV->widenInstruction(Instr); 8151 } 8152 8153 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8154 assert(!State.Instance && "Int or FP induction being replicated."); 8155 State.ILV->widenIntOrFpInduction(IV, Trunc); 8156 } 8157 8158 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8159 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8160 } 8161 8162 void VPBlendRecipe::execute(VPTransformState &State) { 8163 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8164 // We know that all PHIs in non-header blocks are converted into 8165 // selects, so we don't have to worry about the insertion order and we 8166 // can just use the builder. 8167 // At this point we generate the predication tree. There may be 8168 // duplications since this is a simple recursive scan, but future 8169 // optimizations will clean it up. 8170 8171 unsigned NumIncoming = Phi->getNumIncomingValues(); 8172 8173 assert((User || NumIncoming == 1) && 8174 "Multiple predecessors with predecessors having a full mask"); 8175 // Generate a sequence of selects of the form: 8176 // SELECT(Mask3, In3, 8177 // SELECT(Mask2, In2, 8178 // ( ...))) 8179 InnerLoopVectorizer::VectorParts Entry(State.UF); 8180 for (unsigned In = 0; In < NumIncoming; ++In) { 8181 for (unsigned Part = 0; Part < State.UF; ++Part) { 8182 // We might have single edge PHIs (blocks) - use an identity 8183 // 'select' for the first PHI operand. 8184 Value *In0 = 8185 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8186 if (In == 0) 8187 Entry[Part] = In0; // Initialize with the first incoming value. 8188 else { 8189 // Select between the current value and the previous incoming edge 8190 // based on the incoming mask. 8191 Value *Cond = State.get(User->getOperand(In), Part); 8192 Entry[Part] = 8193 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8194 } 8195 } 8196 } 8197 for (unsigned Part = 0; Part < State.UF; ++Part) 8198 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8199 } 8200 8201 void VPInterleaveRecipe::execute(VPTransformState &State) { 8202 assert(!State.Instance && "Interleave group being replicated."); 8203 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8204 } 8205 8206 void VPReplicateRecipe::execute(VPTransformState &State) { 8207 if (State.Instance) { // Generate a single instance. 8208 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8209 // Insert scalar instance packing it into a vector. 8210 if (AlsoPack && State.VF > 1) { 8211 // If we're constructing lane 0, initialize to start from undef. 8212 if (State.Instance->Lane == 0) { 8213 Value *Undef = 8214 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8215 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8216 } 8217 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8218 } 8219 return; 8220 } 8221 8222 // Generate scalar instances for all VF lanes of all UF parts, unless the 8223 // instruction is uniform inwhich case generate only the first lane for each 8224 // of the UF parts. 8225 unsigned EndLane = IsUniform ? 1 : State.VF; 8226 for (unsigned Part = 0; Part < State.UF; ++Part) 8227 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8228 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8229 } 8230 8231 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8232 assert(State.Instance && "Branch on Mask works only on single instance."); 8233 8234 unsigned Part = State.Instance->Part; 8235 unsigned Lane = State.Instance->Lane; 8236 8237 Value *ConditionBit = nullptr; 8238 if (!User) // Block in mask is all-one. 8239 ConditionBit = State.Builder.getTrue(); 8240 else { 8241 VPValue *BlockInMask = User->getOperand(0); 8242 ConditionBit = State.get(BlockInMask, Part); 8243 if (ConditionBit->getType()->isVectorTy()) 8244 ConditionBit = State.Builder.CreateExtractElement( 8245 ConditionBit, State.Builder.getInt32(Lane)); 8246 } 8247 8248 // Replace the temporary unreachable terminator with a new conditional branch, 8249 // whose two destinations will be set later when they are created. 8250 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8251 assert(isa<UnreachableInst>(CurrentTerminator) && 8252 "Expected to replace unreachable terminator with conditional branch."); 8253 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8254 CondBr->setSuccessor(0, nullptr); 8255 ReplaceInstWithInst(CurrentTerminator, CondBr); 8256 } 8257 8258 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8259 assert(State.Instance && "Predicated instruction PHI works per instance."); 8260 Instruction *ScalarPredInst = cast<Instruction>( 8261 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8262 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8263 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8264 assert(PredicatingBB && "Predicated block has no single predecessor."); 8265 8266 // By current pack/unpack logic we need to generate only a single phi node: if 8267 // a vector value for the predicated instruction exists at this point it means 8268 // the instruction has vector users only, and a phi for the vector value is 8269 // needed. In this case the recipe of the predicated instruction is marked to 8270 // also do that packing, thereby "hoisting" the insert-element sequence. 8271 // Otherwise, a phi node for the scalar value is needed. 8272 unsigned Part = State.Instance->Part; 8273 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8274 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8275 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8276 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8277 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8278 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8279 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8280 } else { 8281 Type *PredInstType = PredInst->getType(); 8282 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8283 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8284 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8285 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8286 } 8287 } 8288 8289 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8290 if (!User) 8291 return State.ILV->vectorizeMemoryInstruction(&Instr); 8292 8293 // Last (and currently only) operand is a mask. 8294 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8295 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8296 for (unsigned Part = 0; Part < State.UF; ++Part) 8297 MaskValues[Part] = State.get(Mask, Part); 8298 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8299 } 8300 8301 bool LoopVectorizePass::processLoop(Loop *L) { 8302 assert(L->empty() && "Only process inner loops."); 8303 8304 #ifndef NDEBUG 8305 const std::string DebugLocStr = getDebugLocString(L); 8306 #endif /* NDEBUG */ 8307 8308 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8309 << L->getHeader()->getParent()->getName() << "\" from " 8310 << DebugLocStr << "\n"); 8311 8312 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8313 8314 DEBUG(dbgs() << "LV: Loop hints:" 8315 << " force=" 8316 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8317 ? "disabled" 8318 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8319 ? "enabled" 8320 : "?")) 8321 << " width=" << Hints.getWidth() 8322 << " unroll=" << Hints.getInterleave() << "\n"); 8323 8324 // Function containing loop 8325 Function *F = L->getHeader()->getParent(); 8326 8327 // Looking at the diagnostic output is the only way to determine if a loop 8328 // was vectorized (other than looking at the IR or machine code), so it 8329 // is important to generate an optimization remark for each loop. Most of 8330 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8331 // generated as OptimizationRemark and OptimizationRemarkMissed are 8332 // less verbose reporting vectorized loops and unvectorized loops that may 8333 // benefit from vectorization, respectively. 8334 8335 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8336 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8337 return false; 8338 } 8339 8340 PredicatedScalarEvolution PSE(*SE, *L); 8341 8342 // Check if it is legal to vectorize the loop. 8343 LoopVectorizationRequirements Requirements(*ORE); 8344 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 8345 &Requirements, &Hints, DB, AC); 8346 if (!LVL.canVectorize()) { 8347 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8348 emitMissedWarning(F, L, Hints, ORE); 8349 return false; 8350 } 8351 8352 // Check the function attributes to find out if this function should be 8353 // optimized for size. 8354 bool OptForSize = 8355 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8356 8357 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8358 // count by optimizing for size, to minimize overheads. 8359 // Prefer constant trip counts over profile data, over upper bound estimate. 8360 unsigned ExpectedTC = 0; 8361 bool HasExpectedTC = false; 8362 if (const SCEVConstant *ConstExits = 8363 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 8364 const APInt &ExitsCount = ConstExits->getAPInt(); 8365 // We are interested in small values for ExpectedTC. Skip over those that 8366 // can't fit an unsigned. 8367 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 8368 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 8369 HasExpectedTC = true; 8370 } 8371 } 8372 // ExpectedTC may be large because it's bound by a variable. Check 8373 // profiling information to validate we should vectorize. 8374 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8375 auto EstimatedTC = getLoopEstimatedTripCount(L); 8376 if (EstimatedTC) { 8377 ExpectedTC = *EstimatedTC; 8378 HasExpectedTC = true; 8379 } 8380 } 8381 if (!HasExpectedTC) { 8382 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8383 HasExpectedTC = (ExpectedTC > 0); 8384 } 8385 8386 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8387 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8388 << "This loop is worth vectorizing only if no scalar " 8389 << "iteration overheads are incurred."); 8390 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8391 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8392 else { 8393 DEBUG(dbgs() << "\n"); 8394 // Loops with a very small trip count are considered for vectorization 8395 // under OptForSize, thereby making sure the cost of their loop body is 8396 // dominant, free of runtime guards and scalar iteration overheads. 8397 OptForSize = true; 8398 } 8399 } 8400 8401 // Check the function attributes to see if implicit floats are allowed. 8402 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8403 // an integer loop and the vector instructions selected are purely integer 8404 // vector instructions? 8405 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8406 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8407 "attribute is used.\n"); 8408 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8409 "NoImplicitFloat", L) 8410 << "loop not vectorized due to NoImplicitFloat attribute"); 8411 emitMissedWarning(F, L, Hints, ORE); 8412 return false; 8413 } 8414 8415 // Check if the target supports potentially unsafe FP vectorization. 8416 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8417 // for the target we're vectorizing for, to make sure none of the 8418 // additional fp-math flags can help. 8419 if (Hints.isPotentiallyUnsafe() && 8420 TTI->isFPVectorizationPotentiallyUnsafe()) { 8421 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8422 ORE->emit( 8423 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8424 << "loop not vectorized due to unsafe FP support."); 8425 emitMissedWarning(F, L, Hints, ORE); 8426 return false; 8427 } 8428 8429 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8430 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8431 8432 // If an override option has been passed in for interleaved accesses, use it. 8433 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8434 UseInterleaved = EnableInterleavedMemAccesses; 8435 8436 // Analyze interleaved memory accesses. 8437 if (UseInterleaved) { 8438 IAI.analyzeInterleaving(); 8439 } 8440 8441 // Use the cost model. 8442 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8443 &Hints, IAI); 8444 CM.collectValuesToIgnore(); 8445 8446 // Use the planner for vectorization. 8447 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8448 8449 // Get user vectorization factor. 8450 unsigned UserVF = Hints.getWidth(); 8451 8452 // Plan how to best vectorize, return the best VF and its cost. 8453 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8454 8455 // Select the interleave count. 8456 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8457 8458 // Get user interleave count. 8459 unsigned UserIC = Hints.getInterleave(); 8460 8461 // Identify the diagnostic messages that should be produced. 8462 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8463 bool VectorizeLoop = true, InterleaveLoop = true; 8464 if (Requirements.doesNotMeet(F, L, Hints)) { 8465 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8466 "requirements.\n"); 8467 emitMissedWarning(F, L, Hints, ORE); 8468 return false; 8469 } 8470 8471 if (VF.Width == 1) { 8472 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8473 VecDiagMsg = std::make_pair( 8474 "VectorizationNotBeneficial", 8475 "the cost-model indicates that vectorization is not beneficial"); 8476 VectorizeLoop = false; 8477 } 8478 8479 if (IC == 1 && UserIC <= 1) { 8480 // Tell the user interleaving is not beneficial. 8481 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8482 IntDiagMsg = std::make_pair( 8483 "InterleavingNotBeneficial", 8484 "the cost-model indicates that interleaving is not beneficial"); 8485 InterleaveLoop = false; 8486 if (UserIC == 1) { 8487 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8488 IntDiagMsg.second += 8489 " and is explicitly disabled or interleave count is set to 1"; 8490 } 8491 } else if (IC > 1 && UserIC == 1) { 8492 // Tell the user interleaving is beneficial, but it explicitly disabled. 8493 DEBUG(dbgs() 8494 << "LV: Interleaving is beneficial but is explicitly disabled."); 8495 IntDiagMsg = std::make_pair( 8496 "InterleavingBeneficialButDisabled", 8497 "the cost-model indicates that interleaving is beneficial " 8498 "but is explicitly disabled or interleave count is set to 1"); 8499 InterleaveLoop = false; 8500 } 8501 8502 // Override IC if user provided an interleave count. 8503 IC = UserIC > 0 ? UserIC : IC; 8504 8505 // Emit diagnostic messages, if any. 8506 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8507 if (!VectorizeLoop && !InterleaveLoop) { 8508 // Do not vectorize or interleaving the loop. 8509 ORE->emit([&]() { 8510 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8511 L->getStartLoc(), L->getHeader()) 8512 << VecDiagMsg.second; 8513 }); 8514 ORE->emit([&]() { 8515 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8516 L->getStartLoc(), L->getHeader()) 8517 << IntDiagMsg.second; 8518 }); 8519 return false; 8520 } else if (!VectorizeLoop && InterleaveLoop) { 8521 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8522 ORE->emit([&]() { 8523 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8524 L->getStartLoc(), L->getHeader()) 8525 << VecDiagMsg.second; 8526 }); 8527 } else if (VectorizeLoop && !InterleaveLoop) { 8528 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8529 << DebugLocStr << '\n'); 8530 ORE->emit([&]() { 8531 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8532 L->getStartLoc(), L->getHeader()) 8533 << IntDiagMsg.second; 8534 }); 8535 } else if (VectorizeLoop && InterleaveLoop) { 8536 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8537 << DebugLocStr << '\n'); 8538 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8539 } 8540 8541 LVP.setBestPlan(VF.Width, IC); 8542 8543 using namespace ore; 8544 8545 if (!VectorizeLoop) { 8546 assert(IC > 1 && "interleave count should not be 1 or 0"); 8547 // If we decided that it is not legal to vectorize the loop, then 8548 // interleave it. 8549 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8550 &CM); 8551 LVP.executePlan(Unroller, DT); 8552 8553 ORE->emit([&]() { 8554 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8555 L->getHeader()) 8556 << "interleaved loop (interleaved count: " 8557 << NV("InterleaveCount", IC) << ")"; 8558 }); 8559 } else { 8560 // If we decided that it is *legal* to vectorize the loop, then do it. 8561 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8562 &LVL, &CM); 8563 LVP.executePlan(LB, DT); 8564 ++LoopsVectorized; 8565 8566 // Add metadata to disable runtime unrolling a scalar loop when there are 8567 // no runtime checks about strides and memory. A scalar loop that is 8568 // rarely used is not worth unrolling. 8569 if (!LB.areSafetyChecksAdded()) 8570 AddRuntimeUnrollDisableMetaData(L); 8571 8572 // Report the vectorization decision. 8573 ORE->emit([&]() { 8574 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8575 L->getHeader()) 8576 << "vectorized loop (vectorization width: " 8577 << NV("VectorizationFactor", VF.Width) 8578 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8579 }); 8580 } 8581 8582 // Mark the loop as already vectorized to avoid vectorizing again. 8583 Hints.setAlreadyVectorized(); 8584 8585 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8586 return true; 8587 } 8588 8589 bool LoopVectorizePass::runImpl( 8590 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8591 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8592 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8593 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8594 OptimizationRemarkEmitter &ORE_) { 8595 SE = &SE_; 8596 LI = &LI_; 8597 TTI = &TTI_; 8598 DT = &DT_; 8599 BFI = &BFI_; 8600 TLI = TLI_; 8601 AA = &AA_; 8602 AC = &AC_; 8603 GetLAA = &GetLAA_; 8604 DB = &DB_; 8605 ORE = &ORE_; 8606 8607 // Don't attempt if 8608 // 1. the target claims to have no vector registers, and 8609 // 2. interleaving won't help ILP. 8610 // 8611 // The second condition is necessary because, even if the target has no 8612 // vector registers, loop vectorization may still enable scalar 8613 // interleaving. 8614 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8615 return false; 8616 8617 bool Changed = false; 8618 8619 // The vectorizer requires loops to be in simplified form. 8620 // Since simplification may add new inner loops, it has to run before the 8621 // legality and profitability checks. This means running the loop vectorizer 8622 // will simplify all loops, regardless of whether anything end up being 8623 // vectorized. 8624 for (auto &L : *LI) 8625 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8626 8627 // Build up a worklist of inner-loops to vectorize. This is necessary as 8628 // the act of vectorizing or partially unrolling a loop creates new loops 8629 // and can invalidate iterators across the loops. 8630 SmallVector<Loop *, 8> Worklist; 8631 8632 for (Loop *L : *LI) 8633 addAcyclicInnerLoop(*L, *LI, Worklist); 8634 8635 LoopsAnalyzed += Worklist.size(); 8636 8637 // Now walk the identified inner loops. 8638 while (!Worklist.empty()) { 8639 Loop *L = Worklist.pop_back_val(); 8640 8641 // For the inner loops we actually process, form LCSSA to simplify the 8642 // transform. 8643 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8644 8645 Changed |= processLoop(L); 8646 } 8647 8648 // Process each loop nest in the function. 8649 return Changed; 8650 } 8651 8652 PreservedAnalyses LoopVectorizePass::run(Function &F, 8653 FunctionAnalysisManager &AM) { 8654 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8655 auto &LI = AM.getResult<LoopAnalysis>(F); 8656 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8657 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8658 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8659 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8660 auto &AA = AM.getResult<AAManager>(F); 8661 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8662 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8663 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8664 8665 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8666 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8667 [&](Loop &L) -> const LoopAccessInfo & { 8668 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8669 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8670 }; 8671 bool Changed = 8672 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8673 if (!Changed) 8674 return PreservedAnalyses::all(); 8675 PreservedAnalyses PA; 8676 PA.preserve<LoopAnalysis>(); 8677 PA.preserve<DominatorTreeAnalysis>(); 8678 PA.preserve<BasicAA>(); 8679 PA.preserve<GlobalsAA>(); 8680 return PA; 8681 } 8682