1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, const InductionDescriptor &ID, 514 Value *Start, TruncInst *Trunc, VPValue *Def, 515 VPTransformState &State, Value *CanonicalIV); 516 517 /// Construct the vector value of a scalarized value \p V one lane at a time. 518 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 519 VPTransformState &State); 520 521 /// Try to vectorize interleaved access group \p Group with the base address 522 /// given in \p Addr, optionally masking the vector operations if \p 523 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 524 /// values in the vectorized loop. 525 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 526 ArrayRef<VPValue *> VPDefs, 527 VPTransformState &State, VPValue *Addr, 528 ArrayRef<VPValue *> StoredValues, 529 VPValue *BlockInMask = nullptr); 530 531 /// Set the debug location in the builder \p Ptr using the debug location in 532 /// \p V. If \p Ptr is None then it uses the class member's Builder. 533 void setDebugLocFromInst(const Value *V, 534 Optional<IRBuilder<> *> CustomBuilder = None); 535 536 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 537 void fixNonInductionPHIs(VPTransformState &State); 538 539 /// Returns true if the reordering of FP operations is not allowed, but we are 540 /// able to vectorize with strict in-order reductions for the given RdxDesc. 541 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 542 543 /// Create a broadcast instruction. This method generates a broadcast 544 /// instruction (shuffle) for loop invariant values and for the induction 545 /// value. If this is the induction variable then we extend it to N, N+1, ... 546 /// this is needed because each iteration in the loop corresponds to a SIMD 547 /// element. 548 virtual Value *getBroadcastInstrs(Value *V); 549 550 /// Add metadata from one instruction to another. 551 /// 552 /// This includes both the original MDs from \p From and additional ones (\see 553 /// addNewMetadata). Use this for *newly created* instructions in the vector 554 /// loop. 555 void addMetadata(Instruction *To, Instruction *From); 556 557 /// Similar to the previous function but it adds the metadata to a 558 /// vector of instructions. 559 void addMetadata(ArrayRef<Value *> To, Instruction *From); 560 561 protected: 562 friend class LoopVectorizationPlanner; 563 564 /// A small list of PHINodes. 565 using PhiVector = SmallVector<PHINode *, 4>; 566 567 /// A type for scalarized values in the new loop. Each value from the 568 /// original loop, when scalarized, is represented by UF x VF scalar values 569 /// in the new unrolled loop, where UF is the unroll factor and VF is the 570 /// vectorization factor. 571 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 572 573 /// Set up the values of the IVs correctly when exiting the vector loop. 574 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 575 Value *CountRoundDown, Value *EndValue, 576 BasicBlock *MiddleBlock); 577 578 /// Introduce a conditional branch (on true, condition to be set later) at the 579 /// end of the header=latch connecting it to itself (across the backedge) and 580 /// to the exit block of \p L. 581 void createHeaderBranch(Loop *L); 582 583 /// Handle all cross-iteration phis in the header. 584 void fixCrossIterationPHIs(VPTransformState &State); 585 586 /// Create the exit value of first order recurrences in the middle block and 587 /// update their users. 588 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 589 VPTransformState &State); 590 591 /// Create code for the loop exit value of the reduction. 592 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 593 594 /// Clear NSW/NUW flags from reduction instructions if necessary. 595 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 596 VPTransformState &State); 597 598 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 599 /// means we need to add the appropriate incoming value from the middle 600 /// block as exiting edges from the scalar epilogue loop (if present) are 601 /// already in place, and we exit the vector loop exclusively to the middle 602 /// block. 603 void fixLCSSAPHIs(VPTransformState &State); 604 605 /// Iteratively sink the scalarized operands of a predicated instruction into 606 /// the block that was created for it. 607 void sinkScalarOperands(Instruction *PredInst); 608 609 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 610 /// represented as. 611 void truncateToMinimalBitwidths(VPTransformState &State); 612 613 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 614 /// variable on which to base the steps, \p Step is the size of the step, and 615 /// \p EntryVal is the value from the original loop that maps to the steps. 616 /// Note that \p EntryVal doesn't have to be an induction variable - it 617 /// can also be a truncate instruction. 618 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 619 const InductionDescriptor &ID, VPValue *Def, 620 VPTransformState &State); 621 622 /// Create a vector induction phi node based on an existing scalar one. \p 623 /// EntryVal is the value from the original loop that maps to the vector phi 624 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 625 /// truncate instruction, instead of widening the original IV, we widen a 626 /// version of the IV truncated to \p EntryVal's type. 627 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 628 Value *Step, Value *Start, 629 Instruction *EntryVal, VPValue *Def, 630 VPTransformState &State); 631 632 /// Returns true if an instruction \p I should be scalarized instead of 633 /// vectorized for the chosen vectorization factor. 634 bool shouldScalarizeInstruction(Instruction *I) const; 635 636 /// Returns true if we should generate a scalar version of \p IV. 637 bool needsScalarInduction(Instruction *IV) const; 638 639 /// Returns (and creates if needed) the original loop trip count. 640 Value *getOrCreateTripCount(Loop *NewLoop); 641 642 /// Returns (and creates if needed) the trip count of the widened loop. 643 Value *getOrCreateVectorTripCount(Loop *NewLoop); 644 645 /// Returns a bitcasted value to the requested vector type. 646 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 647 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 648 const DataLayout &DL); 649 650 /// Emit a bypass check to see if the vector trip count is zero, including if 651 /// it overflows. 652 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 653 654 /// Emit a bypass check to see if all of the SCEV assumptions we've 655 /// had to make are correct. Returns the block containing the checks or 656 /// nullptr if no checks have been added. 657 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 658 659 /// Emit bypass checks to check any memory assumptions we may have made. 660 /// Returns the block containing the checks or nullptr if no checks have been 661 /// added. 662 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 663 664 /// Compute the transformed value of Index at offset StartValue using step 665 /// StepValue. 666 /// For integer induction, returns StartValue + Index * StepValue. 667 /// For pointer induction, returns StartValue[Index * StepValue]. 668 /// FIXME: The newly created binary instructions should contain nsw/nuw 669 /// flags, which can be found from the original scalar operations. 670 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 671 const DataLayout &DL, 672 const InductionDescriptor &ID, 673 BasicBlock *VectorHeader) const; 674 675 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 676 /// vector loop preheader, middle block and scalar preheader. Also 677 /// allocate a loop object for the new vector loop and return it. 678 Loop *createVectorLoopSkeleton(StringRef Prefix); 679 680 /// Create new phi nodes for the induction variables to resume iteration count 681 /// in the scalar epilogue, from where the vectorized loop left off. 682 /// In cases where the loop skeleton is more complicated (eg. epilogue 683 /// vectorization) and the resume values can come from an additional bypass 684 /// block, the \p AdditionalBypass pair provides information about the bypass 685 /// block and the end value on the edge from bypass to this loop. 686 void createInductionResumeValues( 687 Loop *L, 688 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 689 690 /// Complete the loop skeleton by adding debug MDs, creating appropriate 691 /// conditional branches in the middle block, preparing the builder and 692 /// running the verifier. Take in the vector loop \p L as argument, and return 693 /// the preheader of the completed vector loop. 694 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 695 696 /// Add additional metadata to \p To that was not present on \p Orig. 697 /// 698 /// Currently this is used to add the noalias annotations based on the 699 /// inserted memchecks. Use this for instructions that are *cloned* into the 700 /// vector loop. 701 void addNewMetadata(Instruction *To, const Instruction *Orig); 702 703 /// Collect poison-generating recipes that may generate a poison value that is 704 /// used after vectorization, even when their operands are not poison. Those 705 /// recipes meet the following conditions: 706 /// * Contribute to the address computation of a recipe generating a widen 707 /// memory load/store (VPWidenMemoryInstructionRecipe or 708 /// VPInterleaveRecipe). 709 /// * Such a widen memory load/store has at least one underlying Instruction 710 /// that is in a basic block that needs predication and after vectorization 711 /// the generated instruction won't be predicated. 712 void collectPoisonGeneratingRecipes(VPTransformState &State); 713 714 /// Allow subclasses to override and print debug traces before/after vplan 715 /// execution, when trace information is requested. 716 virtual void printDebugTracesAtStart(){}; 717 virtual void printDebugTracesAtEnd(){}; 718 719 /// The original loop. 720 Loop *OrigLoop; 721 722 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 723 /// dynamic knowledge to simplify SCEV expressions and converts them to a 724 /// more usable form. 725 PredicatedScalarEvolution &PSE; 726 727 /// Loop Info. 728 LoopInfo *LI; 729 730 /// Dominator Tree. 731 DominatorTree *DT; 732 733 /// Alias Analysis. 734 AAResults *AA; 735 736 /// Target Library Info. 737 const TargetLibraryInfo *TLI; 738 739 /// Target Transform Info. 740 const TargetTransformInfo *TTI; 741 742 /// Assumption Cache. 743 AssumptionCache *AC; 744 745 /// Interface to emit optimization remarks. 746 OptimizationRemarkEmitter *ORE; 747 748 /// LoopVersioning. It's only set up (non-null) if memchecks were 749 /// used. 750 /// 751 /// This is currently only used to add no-alias metadata based on the 752 /// memchecks. The actually versioning is performed manually. 753 std::unique_ptr<LoopVersioning> LVer; 754 755 /// The vectorization SIMD factor to use. Each vector will have this many 756 /// vector elements. 757 ElementCount VF; 758 759 /// The vectorization unroll factor to use. Each scalar is vectorized to this 760 /// many different vector instructions. 761 unsigned UF; 762 763 /// The builder that we use 764 IRBuilder<> Builder; 765 766 // --- Vectorization state --- 767 768 /// The vector-loop preheader. 769 BasicBlock *LoopVectorPreHeader; 770 771 /// The scalar-loop preheader. 772 BasicBlock *LoopScalarPreHeader; 773 774 /// Middle Block between the vector and the scalar. 775 BasicBlock *LoopMiddleBlock; 776 777 /// The unique ExitBlock of the scalar loop if one exists. Note that 778 /// there can be multiple exiting edges reaching this block. 779 BasicBlock *LoopExitBlock; 780 781 /// The vector loop body. 782 BasicBlock *LoopVectorBody; 783 784 /// The scalar loop body. 785 BasicBlock *LoopScalarBody; 786 787 /// A list of all bypass blocks. The first block is the entry of the loop. 788 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 789 790 /// Store instructions that were predicated. 791 SmallVector<Instruction *, 4> PredicatedInstructions; 792 793 /// Trip count of the original loop. 794 Value *TripCount = nullptr; 795 796 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 797 Value *VectorTripCount = nullptr; 798 799 /// The legality analysis. 800 LoopVectorizationLegality *Legal; 801 802 /// The profitablity analysis. 803 LoopVectorizationCostModel *Cost; 804 805 // Record whether runtime checks are added. 806 bool AddedSafetyChecks = false; 807 808 // Holds the end values for each induction variable. We save the end values 809 // so we can later fix-up the external users of the induction variables. 810 DenseMap<PHINode *, Value *> IVEndValues; 811 812 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 813 // fixed up at the end of vector code generation. 814 SmallVector<PHINode *, 8> OrigPHIsToFix; 815 816 /// BFI and PSI are used to check for profile guided size optimizations. 817 BlockFrequencyInfo *BFI; 818 ProfileSummaryInfo *PSI; 819 820 // Whether this loop should be optimized for size based on profile guided size 821 // optimizatios. 822 bool OptForSizeBasedOnProfile; 823 824 /// Structure to hold information about generated runtime checks, responsible 825 /// for cleaning the checks, if vectorization turns out unprofitable. 826 GeneratedRTChecks &RTChecks; 827 }; 828 829 class InnerLoopUnroller : public InnerLoopVectorizer { 830 public: 831 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, DominatorTree *DT, 833 const TargetLibraryInfo *TLI, 834 const TargetTransformInfo *TTI, AssumptionCache *AC, 835 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 836 LoopVectorizationLegality *LVL, 837 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 838 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 839 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 840 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 841 BFI, PSI, Check) {} 842 843 private: 844 Value *getBroadcastInstrs(Value *V) override; 845 }; 846 847 /// Encapsulate information regarding vectorization of a loop and its epilogue. 848 /// This information is meant to be updated and used across two stages of 849 /// epilogue vectorization. 850 struct EpilogueLoopVectorizationInfo { 851 ElementCount MainLoopVF = ElementCount::getFixed(0); 852 unsigned MainLoopUF = 0; 853 ElementCount EpilogueVF = ElementCount::getFixed(0); 854 unsigned EpilogueUF = 0; 855 BasicBlock *MainLoopIterationCountCheck = nullptr; 856 BasicBlock *EpilogueIterationCountCheck = nullptr; 857 BasicBlock *SCEVSafetyCheck = nullptr; 858 BasicBlock *MemSafetyCheck = nullptr; 859 Value *TripCount = nullptr; 860 Value *VectorTripCount = nullptr; 861 862 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 863 ElementCount EVF, unsigned EUF) 864 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 865 assert(EUF == 1 && 866 "A high UF for the epilogue loop is likely not beneficial."); 867 } 868 }; 869 870 /// An extension of the inner loop vectorizer that creates a skeleton for a 871 /// vectorized loop that has its epilogue (residual) also vectorized. 872 /// The idea is to run the vplan on a given loop twice, firstly to setup the 873 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 874 /// from the first step and vectorize the epilogue. This is achieved by 875 /// deriving two concrete strategy classes from this base class and invoking 876 /// them in succession from the loop vectorizer planner. 877 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 878 public: 879 InnerLoopAndEpilogueVectorizer( 880 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 881 DominatorTree *DT, const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 884 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 885 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 886 GeneratedRTChecks &Checks) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 889 Checks), 890 EPI(EPI) {} 891 892 // Override this function to handle the more complex control flow around the 893 // three loops. 894 std::pair<BasicBlock *, Value *> 895 createVectorizedLoopSkeleton() final override { 896 return createEpilogueVectorizedLoopSkeleton(); 897 } 898 899 /// The interface for creating a vectorized skeleton using one of two 900 /// different strategies, each corresponding to one execution of the vplan 901 /// as described above. 902 virtual std::pair<BasicBlock *, Value *> 903 createEpilogueVectorizedLoopSkeleton() = 0; 904 905 /// Holds and updates state information required to vectorize the main loop 906 /// and its epilogue in two separate passes. This setup helps us avoid 907 /// regenerating and recomputing runtime safety checks. It also helps us to 908 /// shorten the iteration-count-check path length for the cases where the 909 /// iteration count of the loop is so small that the main vector loop is 910 /// completely skipped. 911 EpilogueLoopVectorizationInfo &EPI; 912 }; 913 914 /// A specialized derived class of inner loop vectorizer that performs 915 /// vectorization of *main* loops in the process of vectorizing loops and their 916 /// epilogues. 917 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 918 public: 919 EpilogueVectorizerMainLoop( 920 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 921 DominatorTree *DT, const TargetLibraryInfo *TLI, 922 const TargetTransformInfo *TTI, AssumptionCache *AC, 923 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 924 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 925 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 926 GeneratedRTChecks &Check) 927 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 928 EPI, LVL, CM, BFI, PSI, Check) {} 929 /// Implements the interface for creating a vectorized skeleton using the 930 /// *main loop* strategy (ie the first pass of vplan execution). 931 std::pair<BasicBlock *, Value *> 932 createEpilogueVectorizedLoopSkeleton() final override; 933 934 protected: 935 /// Emits an iteration count bypass check once for the main loop (when \p 936 /// ForEpilogue is false) and once for the epilogue loop (when \p 937 /// ForEpilogue is true). 938 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 939 bool ForEpilogue); 940 void printDebugTracesAtStart() override; 941 void printDebugTracesAtEnd() override; 942 }; 943 944 // A specialized derived class of inner loop vectorizer that performs 945 // vectorization of *epilogue* loops in the process of vectorizing loops and 946 // their epilogues. 947 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 948 public: 949 EpilogueVectorizerEpilogueLoop( 950 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 951 DominatorTree *DT, const TargetLibraryInfo *TLI, 952 const TargetTransformInfo *TTI, AssumptionCache *AC, 953 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 954 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 955 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 956 GeneratedRTChecks &Checks) 957 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 958 EPI, LVL, CM, BFI, PSI, Checks) {} 959 /// Implements the interface for creating a vectorized skeleton using the 960 /// *epilogue loop* strategy (ie the second pass of vplan execution). 961 std::pair<BasicBlock *, Value *> 962 createEpilogueVectorizedLoopSkeleton() final override; 963 964 protected: 965 /// Emits an iteration count bypass check after the main vector loop has 966 /// finished to see if there are any iterations left to execute by either 967 /// the vector epilogue or the scalar epilogue. 968 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 969 BasicBlock *Bypass, 970 BasicBlock *Insert); 971 void printDebugTracesAtStart() override; 972 void printDebugTracesAtEnd() override; 973 }; 974 } // end namespace llvm 975 976 /// Look for a meaningful debug location on the instruction or it's 977 /// operands. 978 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 979 if (!I) 980 return I; 981 982 DebugLoc Empty; 983 if (I->getDebugLoc() != Empty) 984 return I; 985 986 for (Use &Op : I->operands()) { 987 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 988 if (OpInst->getDebugLoc() != Empty) 989 return OpInst; 990 } 991 992 return I; 993 } 994 995 void InnerLoopVectorizer::setDebugLocFromInst( 996 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 997 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 998 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 999 const DILocation *DIL = Inst->getDebugLoc(); 1000 1001 // When a FSDiscriminator is enabled, we don't need to add the multiply 1002 // factors to the discriminators. 1003 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1004 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1005 // FIXME: For scalable vectors, assume vscale=1. 1006 auto NewDIL = 1007 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1008 if (NewDIL) 1009 B->SetCurrentDebugLocation(NewDIL.getValue()); 1010 else 1011 LLVM_DEBUG(dbgs() 1012 << "Failed to create new discriminator: " 1013 << DIL->getFilename() << " Line: " << DIL->getLine()); 1014 } else 1015 B->SetCurrentDebugLocation(DIL); 1016 } else 1017 B->SetCurrentDebugLocation(DebugLoc()); 1018 } 1019 1020 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1021 /// is passed, the message relates to that particular instruction. 1022 #ifndef NDEBUG 1023 static void debugVectorizationMessage(const StringRef Prefix, 1024 const StringRef DebugMsg, 1025 Instruction *I) { 1026 dbgs() << "LV: " << Prefix << DebugMsg; 1027 if (I != nullptr) 1028 dbgs() << " " << *I; 1029 else 1030 dbgs() << '.'; 1031 dbgs() << '\n'; 1032 } 1033 #endif 1034 1035 /// Create an analysis remark that explains why vectorization failed 1036 /// 1037 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1038 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1039 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1040 /// the location of the remark. \return the remark object that can be 1041 /// streamed to. 1042 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1043 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1044 Value *CodeRegion = TheLoop->getHeader(); 1045 DebugLoc DL = TheLoop->getStartLoc(); 1046 1047 if (I) { 1048 CodeRegion = I->getParent(); 1049 // If there is no debug location attached to the instruction, revert back to 1050 // using the loop's. 1051 if (I->getDebugLoc()) 1052 DL = I->getDebugLoc(); 1053 } 1054 1055 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1056 } 1057 1058 namespace llvm { 1059 1060 /// Return a value for Step multiplied by VF. 1061 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1062 int64_t Step) { 1063 assert(Ty->isIntegerTy() && "Expected an integer step"); 1064 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1065 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1066 } 1067 1068 /// Return the runtime value for VF. 1069 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1070 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1071 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1072 } 1073 1074 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1075 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1076 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1077 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1078 return B.CreateUIToFP(RuntimeVF, FTy); 1079 } 1080 1081 void reportVectorizationFailure(const StringRef DebugMsg, 1082 const StringRef OREMsg, const StringRef ORETag, 1083 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1084 Instruction *I) { 1085 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1086 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1087 ORE->emit( 1088 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1089 << "loop not vectorized: " << OREMsg); 1090 } 1091 1092 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1093 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1094 Instruction *I) { 1095 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1096 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1097 ORE->emit( 1098 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1099 << Msg); 1100 } 1101 1102 } // end namespace llvm 1103 1104 #ifndef NDEBUG 1105 /// \return string containing a file name and a line # for the given loop. 1106 static std::string getDebugLocString(const Loop *L) { 1107 std::string Result; 1108 if (L) { 1109 raw_string_ostream OS(Result); 1110 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1111 LoopDbgLoc.print(OS); 1112 else 1113 // Just print the module name. 1114 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1115 OS.flush(); 1116 } 1117 return Result; 1118 } 1119 #endif 1120 1121 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1122 const Instruction *Orig) { 1123 // If the loop was versioned with memchecks, add the corresponding no-alias 1124 // metadata. 1125 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1126 LVer->annotateInstWithNoAlias(To, Orig); 1127 } 1128 1129 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1130 VPTransformState &State) { 1131 1132 // Collect recipes in the backward slice of `Root` that may generate a poison 1133 // value that is used after vectorization. 1134 SmallPtrSet<VPRecipeBase *, 16> Visited; 1135 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1136 SmallVector<VPRecipeBase *, 16> Worklist; 1137 Worklist.push_back(Root); 1138 1139 // Traverse the backward slice of Root through its use-def chain. 1140 while (!Worklist.empty()) { 1141 VPRecipeBase *CurRec = Worklist.back(); 1142 Worklist.pop_back(); 1143 1144 if (!Visited.insert(CurRec).second) 1145 continue; 1146 1147 // Prune search if we find another recipe generating a widen memory 1148 // instruction. Widen memory instructions involved in address computation 1149 // will lead to gather/scatter instructions, which don't need to be 1150 // handled. 1151 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1152 isa<VPInterleaveRecipe>(CurRec) || 1153 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1154 continue; 1155 1156 // This recipe contributes to the address computation of a widen 1157 // load/store. Collect recipe if its underlying instruction has 1158 // poison-generating flags. 1159 Instruction *Instr = CurRec->getUnderlyingInstr(); 1160 if (Instr && Instr->hasPoisonGeneratingFlags()) 1161 State.MayGeneratePoisonRecipes.insert(CurRec); 1162 1163 // Add new definitions to the worklist. 1164 for (VPValue *operand : CurRec->operands()) 1165 if (VPDef *OpDef = operand->getDef()) 1166 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1167 } 1168 }); 1169 1170 // Traverse all the recipes in the VPlan and collect the poison-generating 1171 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1172 // VPInterleaveRecipe. 1173 auto Iter = depth_first( 1174 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1175 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1176 for (VPRecipeBase &Recipe : *VPBB) { 1177 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1178 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1179 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1180 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1181 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1182 collectPoisonGeneratingInstrsInBackwardSlice( 1183 cast<VPRecipeBase>(AddrDef)); 1184 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1185 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1186 if (AddrDef) { 1187 // Check if any member of the interleave group needs predication. 1188 const InterleaveGroup<Instruction> *InterGroup = 1189 InterleaveRec->getInterleaveGroup(); 1190 bool NeedPredication = false; 1191 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1192 I < NumMembers; ++I) { 1193 Instruction *Member = InterGroup->getMember(I); 1194 if (Member) 1195 NeedPredication |= 1196 Legal->blockNeedsPredication(Member->getParent()); 1197 } 1198 1199 if (NeedPredication) 1200 collectPoisonGeneratingInstrsInBackwardSlice( 1201 cast<VPRecipeBase>(AddrDef)); 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 void InnerLoopVectorizer::addMetadata(Instruction *To, 1209 Instruction *From) { 1210 propagateMetadata(To, From); 1211 addNewMetadata(To, From); 1212 } 1213 1214 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1215 Instruction *From) { 1216 for (Value *V : To) { 1217 if (Instruction *I = dyn_cast<Instruction>(V)) 1218 addMetadata(I, From); 1219 } 1220 } 1221 1222 namespace llvm { 1223 1224 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1225 // lowered. 1226 enum ScalarEpilogueLowering { 1227 1228 // The default: allowing scalar epilogues. 1229 CM_ScalarEpilogueAllowed, 1230 1231 // Vectorization with OptForSize: don't allow epilogues. 1232 CM_ScalarEpilogueNotAllowedOptSize, 1233 1234 // A special case of vectorisation with OptForSize: loops with a very small 1235 // trip count are considered for vectorization under OptForSize, thereby 1236 // making sure the cost of their loop body is dominant, free of runtime 1237 // guards and scalar iteration overheads. 1238 CM_ScalarEpilogueNotAllowedLowTripLoop, 1239 1240 // Loop hint predicate indicating an epilogue is undesired. 1241 CM_ScalarEpilogueNotNeededUsePredicate, 1242 1243 // Directive indicating we must either tail fold or not vectorize 1244 CM_ScalarEpilogueNotAllowedUsePredicate 1245 }; 1246 1247 /// ElementCountComparator creates a total ordering for ElementCount 1248 /// for the purposes of using it in a set structure. 1249 struct ElementCountComparator { 1250 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1251 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1252 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1253 } 1254 }; 1255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1256 1257 /// LoopVectorizationCostModel - estimates the expected speedups due to 1258 /// vectorization. 1259 /// In many cases vectorization is not profitable. This can happen because of 1260 /// a number of reasons. In this class we mainly attempt to predict the 1261 /// expected speedup/slowdowns due to the supported instruction set. We use the 1262 /// TargetTransformInfo to query the different backends for the cost of 1263 /// different operations. 1264 class LoopVectorizationCostModel { 1265 public: 1266 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1267 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1268 LoopVectorizationLegality *Legal, 1269 const TargetTransformInfo &TTI, 1270 const TargetLibraryInfo *TLI, DemandedBits *DB, 1271 AssumptionCache *AC, 1272 OptimizationRemarkEmitter *ORE, const Function *F, 1273 const LoopVectorizeHints *Hints, 1274 InterleavedAccessInfo &IAI) 1275 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1276 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1277 Hints(Hints), InterleaveInfo(IAI) {} 1278 1279 /// \return An upper bound for the vectorization factors (both fixed and 1280 /// scalable). If the factors are 0, vectorization and interleaving should be 1281 /// avoided up front. 1282 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1283 1284 /// \return True if runtime checks are required for vectorization, and false 1285 /// otherwise. 1286 bool runtimeChecksRequired(); 1287 1288 /// \return The most profitable vectorization factor and the cost of that VF. 1289 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1290 /// then this vectorization factor will be selected if vectorization is 1291 /// possible. 1292 VectorizationFactor 1293 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1294 1295 VectorizationFactor 1296 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1297 const LoopVectorizationPlanner &LVP); 1298 1299 /// Setup cost-based decisions for user vectorization factor. 1300 /// \return true if the UserVF is a feasible VF to be chosen. 1301 bool selectUserVectorizationFactor(ElementCount UserVF) { 1302 collectUniformsAndScalars(UserVF); 1303 collectInstsToScalarize(UserVF); 1304 return expectedCost(UserVF).first.isValid(); 1305 } 1306 1307 /// \return The size (in bits) of the smallest and widest types in the code 1308 /// that needs to be vectorized. We ignore values that remain scalar such as 1309 /// 64 bit loop indices. 1310 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1311 1312 /// \return The desired interleave count. 1313 /// If interleave count has been specified by metadata it will be returned. 1314 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1315 /// are the selected vectorization factor and the cost of the selected VF. 1316 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1317 1318 /// Memory access instruction may be vectorized in more than one way. 1319 /// Form of instruction after vectorization depends on cost. 1320 /// This function takes cost-based decisions for Load/Store instructions 1321 /// and collects them in a map. This decisions map is used for building 1322 /// the lists of loop-uniform and loop-scalar instructions. 1323 /// The calculated cost is saved with widening decision in order to 1324 /// avoid redundant calculations. 1325 void setCostBasedWideningDecision(ElementCount VF); 1326 1327 /// A struct that represents some properties of the register usage 1328 /// of a loop. 1329 struct RegisterUsage { 1330 /// Holds the number of loop invariant values that are used in the loop. 1331 /// The key is ClassID of target-provided register class. 1332 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1333 /// Holds the maximum number of concurrent live intervals in the loop. 1334 /// The key is ClassID of target-provided register class. 1335 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1336 }; 1337 1338 /// \return Returns information about the register usages of the loop for the 1339 /// given vectorization factors. 1340 SmallVector<RegisterUsage, 8> 1341 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1342 1343 /// Collect values we want to ignore in the cost model. 1344 void collectValuesToIgnore(); 1345 1346 /// Collect all element types in the loop for which widening is needed. 1347 void collectElementTypesForWidening(); 1348 1349 /// Split reductions into those that happen in the loop, and those that happen 1350 /// outside. In loop reductions are collected into InLoopReductionChains. 1351 void collectInLoopReductions(); 1352 1353 /// Returns true if we should use strict in-order reductions for the given 1354 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1355 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1356 /// of FP operations. 1357 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1358 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1359 } 1360 1361 /// \returns The smallest bitwidth each instruction can be represented with. 1362 /// The vector equivalents of these instructions should be truncated to this 1363 /// type. 1364 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1365 return MinBWs; 1366 } 1367 1368 /// \returns True if it is more profitable to scalarize instruction \p I for 1369 /// vectorization factor \p VF. 1370 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1371 assert(VF.isVector() && 1372 "Profitable to scalarize relevant only for VF > 1."); 1373 1374 // Cost model is not run in the VPlan-native path - return conservative 1375 // result until this changes. 1376 if (EnableVPlanNativePath) 1377 return false; 1378 1379 auto Scalars = InstsToScalarize.find(VF); 1380 assert(Scalars != InstsToScalarize.end() && 1381 "VF not yet analyzed for scalarization profitability"); 1382 return Scalars->second.find(I) != Scalars->second.end(); 1383 } 1384 1385 /// Returns true if \p I is known to be uniform after vectorization. 1386 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1387 if (VF.isScalar()) 1388 return true; 1389 1390 // Cost model is not run in the VPlan-native path - return conservative 1391 // result until this changes. 1392 if (EnableVPlanNativePath) 1393 return false; 1394 1395 auto UniformsPerVF = Uniforms.find(VF); 1396 assert(UniformsPerVF != Uniforms.end() && 1397 "VF not yet analyzed for uniformity"); 1398 return UniformsPerVF->second.count(I); 1399 } 1400 1401 /// Returns true if \p I is known to be scalar after vectorization. 1402 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1403 if (VF.isScalar()) 1404 return true; 1405 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return false; 1410 1411 auto ScalarsPerVF = Scalars.find(VF); 1412 assert(ScalarsPerVF != Scalars.end() && 1413 "Scalar values are not calculated for VF"); 1414 return ScalarsPerVF->second.count(I); 1415 } 1416 1417 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1418 /// for vectorization factor \p VF. 1419 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1420 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1421 !isProfitableToScalarize(I, VF) && 1422 !isScalarAfterVectorization(I, VF); 1423 } 1424 1425 /// Decision that was taken during cost calculation for memory instruction. 1426 enum InstWidening { 1427 CM_Unknown, 1428 CM_Widen, // For consecutive accesses with stride +1. 1429 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1430 CM_Interleave, 1431 CM_GatherScatter, 1432 CM_Scalarize 1433 }; 1434 1435 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1436 /// instruction \p I and vector width \p VF. 1437 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1438 InstructionCost Cost) { 1439 assert(VF.isVector() && "Expected VF >=2"); 1440 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1441 } 1442 1443 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1444 /// interleaving group \p Grp and vector width \p VF. 1445 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1446 ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 /// Broadcast this decicion to all instructions inside the group. 1450 /// But the cost will be assigned to one instruction only. 1451 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1452 if (auto *I = Grp->getMember(i)) { 1453 if (Grp->getInsertPos() == I) 1454 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1455 else 1456 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1457 } 1458 } 1459 } 1460 1461 /// Return the cost model decision for the given instruction \p I and vector 1462 /// width \p VF. Return CM_Unknown if this instruction did not pass 1463 /// through the cost modeling. 1464 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1465 assert(VF.isVector() && "Expected VF to be a vector VF"); 1466 // Cost model is not run in the VPlan-native path - return conservative 1467 // result until this changes. 1468 if (EnableVPlanNativePath) 1469 return CM_GatherScatter; 1470 1471 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1472 auto Itr = WideningDecisions.find(InstOnVF); 1473 if (Itr == WideningDecisions.end()) 1474 return CM_Unknown; 1475 return Itr->second.first; 1476 } 1477 1478 /// Return the vectorization cost for the given instruction \p I and vector 1479 /// width \p VF. 1480 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1481 assert(VF.isVector() && "Expected VF >=2"); 1482 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1483 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1484 "The cost is not calculated"); 1485 return WideningDecisions[InstOnVF].second; 1486 } 1487 1488 /// Return True if instruction \p I is an optimizable truncate whose operand 1489 /// is an induction variable. Such a truncate will be removed by adding a new 1490 /// induction variable with the destination type. 1491 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1492 // If the instruction is not a truncate, return false. 1493 auto *Trunc = dyn_cast<TruncInst>(I); 1494 if (!Trunc) 1495 return false; 1496 1497 // Get the source and destination types of the truncate. 1498 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1499 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1500 1501 // If the truncate is free for the given types, return false. Replacing a 1502 // free truncate with an induction variable would add an induction variable 1503 // update instruction to each iteration of the loop. We exclude from this 1504 // check the primary induction variable since it will need an update 1505 // instruction regardless. 1506 Value *Op = Trunc->getOperand(0); 1507 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1508 return false; 1509 1510 // If the truncated value is not an induction variable, return false. 1511 return Legal->isInductionPhi(Op); 1512 } 1513 1514 /// Collects the instructions to scalarize for each predicated instruction in 1515 /// the loop. 1516 void collectInstsToScalarize(ElementCount VF); 1517 1518 /// Collect Uniform and Scalar values for the given \p VF. 1519 /// The sets depend on CM decision for Load/Store instructions 1520 /// that may be vectorized as interleave, gather-scatter or scalarized. 1521 void collectUniformsAndScalars(ElementCount VF) { 1522 // Do the analysis once. 1523 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1524 return; 1525 setCostBasedWideningDecision(VF); 1526 collectLoopUniforms(VF); 1527 collectLoopScalars(VF); 1528 } 1529 1530 /// Returns true if the target machine supports masked store operation 1531 /// for the given \p DataType and kind of access to \p Ptr. 1532 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1533 return Legal->isConsecutivePtr(DataType, Ptr) && 1534 TTI.isLegalMaskedStore(DataType, Alignment); 1535 } 1536 1537 /// Returns true if the target machine supports masked load operation 1538 /// for the given \p DataType and kind of access to \p Ptr. 1539 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1540 return Legal->isConsecutivePtr(DataType, Ptr) && 1541 TTI.isLegalMaskedLoad(DataType, Alignment); 1542 } 1543 1544 /// Returns true if the target machine can represent \p V as a masked gather 1545 /// or scatter operation. 1546 bool isLegalGatherOrScatter(Value *V) { 1547 bool LI = isa<LoadInst>(V); 1548 bool SI = isa<StoreInst>(V); 1549 if (!LI && !SI) 1550 return false; 1551 auto *Ty = getLoadStoreType(V); 1552 Align Align = getLoadStoreAlignment(V); 1553 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1554 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1555 } 1556 1557 /// Returns true if the target machine supports all of the reduction 1558 /// variables found for the given VF. 1559 bool canVectorizeReductions(ElementCount VF) const { 1560 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1561 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1562 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1563 })); 1564 } 1565 1566 /// Returns true if \p I is an instruction that will be scalarized with 1567 /// predication. Such instructions include conditional stores and 1568 /// instructions that may divide by zero. 1569 /// If a non-zero VF has been calculated, we check if I will be scalarized 1570 /// predication for that VF. 1571 bool isScalarWithPredication(Instruction *I) const; 1572 1573 // Returns true if \p I is an instruction that will be predicated either 1574 // through scalar predication or masked load/store or masked gather/scatter. 1575 // Superset of instructions that return true for isScalarWithPredication. 1576 bool isPredicatedInst(Instruction *I, bool IsKnownUniform = false) { 1577 // When we know the load is uniform and the original scalar loop was not 1578 // predicated we don't need to mark it as a predicated instruction. Any 1579 // vectorised blocks created when tail-folding are something artificial we 1580 // have introduced and we know there is always at least one active lane. 1581 // That's why we call Legal->blockNeedsPredication here because it doesn't 1582 // query tail-folding. 1583 if (IsKnownUniform && isa<LoadInst>(I) && 1584 !Legal->blockNeedsPredication(I->getParent())) 1585 return false; 1586 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1587 return false; 1588 // Loads and stores that need some form of masked operation are predicated 1589 // instructions. 1590 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1591 return Legal->isMaskRequired(I); 1592 return isScalarWithPredication(I); 1593 } 1594 1595 /// Returns true if \p I is a memory instruction with consecutive memory 1596 /// access that can be widened. 1597 bool 1598 memoryInstructionCanBeWidened(Instruction *I, 1599 ElementCount VF = ElementCount::getFixed(1)); 1600 1601 /// Returns true if \p I is a memory instruction in an interleaved-group 1602 /// of memory accesses that can be vectorized with wide vector loads/stores 1603 /// and shuffles. 1604 bool 1605 interleavedAccessCanBeWidened(Instruction *I, 1606 ElementCount VF = ElementCount::getFixed(1)); 1607 1608 /// Check if \p Instr belongs to any interleaved access group. 1609 bool isAccessInterleaved(Instruction *Instr) { 1610 return InterleaveInfo.isInterleaved(Instr); 1611 } 1612 1613 /// Get the interleaved access group that \p Instr belongs to. 1614 const InterleaveGroup<Instruction> * 1615 getInterleavedAccessGroup(Instruction *Instr) { 1616 return InterleaveInfo.getInterleaveGroup(Instr); 1617 } 1618 1619 /// Returns true if we're required to use a scalar epilogue for at least 1620 /// the final iteration of the original loop. 1621 bool requiresScalarEpilogue(ElementCount VF) const { 1622 if (!isScalarEpilogueAllowed()) 1623 return false; 1624 // If we might exit from anywhere but the latch, must run the exiting 1625 // iteration in scalar form. 1626 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1627 return true; 1628 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1629 } 1630 1631 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1632 /// loop hint annotation. 1633 bool isScalarEpilogueAllowed() const { 1634 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1635 } 1636 1637 /// Returns true if all loop blocks should be masked to fold tail loop. 1638 bool foldTailByMasking() const { return FoldTailByMasking; } 1639 1640 /// Returns true if the instructions in this block requires predication 1641 /// for any reason, e.g. because tail folding now requires a predicate 1642 /// or because the block in the original loop was predicated. 1643 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1644 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1645 } 1646 1647 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1648 /// nodes to the chain of instructions representing the reductions. Uses a 1649 /// MapVector to ensure deterministic iteration order. 1650 using ReductionChainMap = 1651 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1652 1653 /// Return the chain of instructions representing an inloop reduction. 1654 const ReductionChainMap &getInLoopReductionChains() const { 1655 return InLoopReductionChains; 1656 } 1657 1658 /// Returns true if the Phi is part of an inloop reduction. 1659 bool isInLoopReduction(PHINode *Phi) const { 1660 return InLoopReductionChains.count(Phi); 1661 } 1662 1663 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1664 /// with factor VF. Return the cost of the instruction, including 1665 /// scalarization overhead if it's needed. 1666 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1667 1668 /// Estimate cost of a call instruction CI if it were vectorized with factor 1669 /// VF. Return the cost of the instruction, including scalarization overhead 1670 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1671 /// scalarized - 1672 /// i.e. either vector version isn't available, or is too expensive. 1673 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1674 bool &NeedToScalarize) const; 1675 1676 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1677 /// that of B. 1678 bool isMoreProfitable(const VectorizationFactor &A, 1679 const VectorizationFactor &B) const; 1680 1681 /// Invalidates decisions already taken by the cost model. 1682 void invalidateCostModelingDecisions() { 1683 WideningDecisions.clear(); 1684 Uniforms.clear(); 1685 Scalars.clear(); 1686 } 1687 1688 private: 1689 unsigned NumPredStores = 0; 1690 1691 /// \return An upper bound for the vectorization factors for both 1692 /// fixed and scalable vectorization, where the minimum-known number of 1693 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1694 /// disabled or unsupported, then the scalable part will be equal to 1695 /// ElementCount::getScalable(0). 1696 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1697 ElementCount UserVF, 1698 bool FoldTailByMasking); 1699 1700 /// \return the maximized element count based on the targets vector 1701 /// registers and the loop trip-count, but limited to a maximum safe VF. 1702 /// This is a helper function of computeFeasibleMaxVF. 1703 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1704 /// issue that occurred on one of the buildbots which cannot be reproduced 1705 /// without having access to the properietary compiler (see comments on 1706 /// D98509). The issue is currently under investigation and this workaround 1707 /// will be removed as soon as possible. 1708 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1709 unsigned SmallestType, 1710 unsigned WidestType, 1711 const ElementCount &MaxSafeVF, 1712 bool FoldTailByMasking); 1713 1714 /// \return the maximum legal scalable VF, based on the safe max number 1715 /// of elements. 1716 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1717 1718 /// The vectorization cost is a combination of the cost itself and a boolean 1719 /// indicating whether any of the contributing operations will actually 1720 /// operate on vector values after type legalization in the backend. If this 1721 /// latter value is false, then all operations will be scalarized (i.e. no 1722 /// vectorization has actually taken place). 1723 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1724 1725 /// Returns the expected execution cost. The unit of the cost does 1726 /// not matter because we use the 'cost' units to compare different 1727 /// vector widths. The cost that is returned is *not* normalized by 1728 /// the factor width. If \p Invalid is not nullptr, this function 1729 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1730 /// each instruction that has an Invalid cost for the given VF. 1731 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1732 VectorizationCostTy 1733 expectedCost(ElementCount VF, 1734 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1735 1736 /// Returns the execution time cost of an instruction for a given vector 1737 /// width. Vector width of one means scalar. 1738 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1739 1740 /// The cost-computation logic from getInstructionCost which provides 1741 /// the vector type as an output parameter. 1742 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1743 Type *&VectorTy); 1744 1745 /// Return the cost of instructions in an inloop reduction pattern, if I is 1746 /// part of that pattern. 1747 Optional<InstructionCost> 1748 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1749 TTI::TargetCostKind CostKind); 1750 1751 /// Calculate vectorization cost of memory instruction \p I. 1752 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1753 1754 /// The cost computation for scalarized memory instruction. 1755 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1756 1757 /// The cost computation for interleaving group of memory instructions. 1758 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1759 1760 /// The cost computation for Gather/Scatter instruction. 1761 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1762 1763 /// The cost computation for widening instruction \p I with consecutive 1764 /// memory access. 1765 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1768 /// Load: scalar load + broadcast. 1769 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1770 /// element) 1771 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1772 1773 /// Estimate the overhead of scalarizing an instruction. This is a 1774 /// convenience wrapper for the type-based getScalarizationOverhead API. 1775 InstructionCost getScalarizationOverhead(Instruction *I, 1776 ElementCount VF) const; 1777 1778 /// Returns whether the instruction is a load or store and will be a emitted 1779 /// as a vector operation. 1780 bool isConsecutiveLoadOrStore(Instruction *I); 1781 1782 /// Returns true if an artificially high cost for emulated masked memrefs 1783 /// should be used. 1784 bool useEmulatedMaskMemRefHack(Instruction *I); 1785 1786 /// Map of scalar integer values to the smallest bitwidth they can be legally 1787 /// represented as. The vector equivalents of these values should be truncated 1788 /// to this type. 1789 MapVector<Instruction *, uint64_t> MinBWs; 1790 1791 /// A type representing the costs for instructions if they were to be 1792 /// scalarized rather than vectorized. The entries are Instruction-Cost 1793 /// pairs. 1794 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1795 1796 /// A set containing all BasicBlocks that are known to present after 1797 /// vectorization as a predicated block. 1798 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1799 1800 /// Records whether it is allowed to have the original scalar loop execute at 1801 /// least once. This may be needed as a fallback loop in case runtime 1802 /// aliasing/dependence checks fail, or to handle the tail/remainder 1803 /// iterations when the trip count is unknown or doesn't divide by the VF, 1804 /// or as a peel-loop to handle gaps in interleave-groups. 1805 /// Under optsize and when the trip count is very small we don't allow any 1806 /// iterations to execute in the scalar loop. 1807 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1808 1809 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1810 bool FoldTailByMasking = false; 1811 1812 /// A map holding scalar costs for different vectorization factors. The 1813 /// presence of a cost for an instruction in the mapping indicates that the 1814 /// instruction will be scalarized when vectorizing with the associated 1815 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1816 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1817 1818 /// Holds the instructions known to be uniform after vectorization. 1819 /// The data is collected per VF. 1820 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1821 1822 /// Holds the instructions known to be scalar after vectorization. 1823 /// The data is collected per VF. 1824 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1825 1826 /// Holds the instructions (address computations) that are forced to be 1827 /// scalarized. 1828 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1829 1830 /// PHINodes of the reductions that should be expanded in-loop along with 1831 /// their associated chains of reduction operations, in program order from top 1832 /// (PHI) to bottom 1833 ReductionChainMap InLoopReductionChains; 1834 1835 /// A Map of inloop reduction operations and their immediate chain operand. 1836 /// FIXME: This can be removed once reductions can be costed correctly in 1837 /// vplan. This was added to allow quick lookup to the inloop operations, 1838 /// without having to loop through InLoopReductionChains. 1839 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1840 1841 /// Returns the expected difference in cost from scalarizing the expression 1842 /// feeding a predicated instruction \p PredInst. The instructions to 1843 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1844 /// non-negative return value implies the expression will be scalarized. 1845 /// Currently, only single-use chains are considered for scalarization. 1846 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1847 ElementCount VF); 1848 1849 /// Collect the instructions that are uniform after vectorization. An 1850 /// instruction is uniform if we represent it with a single scalar value in 1851 /// the vectorized loop corresponding to each vector iteration. Examples of 1852 /// uniform instructions include pointer operands of consecutive or 1853 /// interleaved memory accesses. Note that although uniformity implies an 1854 /// instruction will be scalar, the reverse is not true. In general, a 1855 /// scalarized instruction will be represented by VF scalar values in the 1856 /// vectorized loop, each corresponding to an iteration of the original 1857 /// scalar loop. 1858 void collectLoopUniforms(ElementCount VF); 1859 1860 /// Collect the instructions that are scalar after vectorization. An 1861 /// instruction is scalar if it is known to be uniform or will be scalarized 1862 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1863 /// to the list if they are used by a load/store instruction that is marked as 1864 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1865 /// VF values in the vectorized loop, each corresponding to an iteration of 1866 /// the original scalar loop. 1867 void collectLoopScalars(ElementCount VF); 1868 1869 /// Keeps cost model vectorization decision and cost for instructions. 1870 /// Right now it is used for memory instructions only. 1871 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1872 std::pair<InstWidening, InstructionCost>>; 1873 1874 DecisionList WideningDecisions; 1875 1876 /// Returns true if \p V is expected to be vectorized and it needs to be 1877 /// extracted. 1878 bool needsExtract(Value *V, ElementCount VF) const { 1879 Instruction *I = dyn_cast<Instruction>(V); 1880 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1881 TheLoop->isLoopInvariant(I)) 1882 return false; 1883 1884 // Assume we can vectorize V (and hence we need extraction) if the 1885 // scalars are not computed yet. This can happen, because it is called 1886 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1887 // the scalars are collected. That should be a safe assumption in most 1888 // cases, because we check if the operands have vectorizable types 1889 // beforehand in LoopVectorizationLegality. 1890 return Scalars.find(VF) == Scalars.end() || 1891 !isScalarAfterVectorization(I, VF); 1892 }; 1893 1894 /// Returns a range containing only operands needing to be extracted. 1895 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1896 ElementCount VF) const { 1897 return SmallVector<Value *, 4>(make_filter_range( 1898 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1899 } 1900 1901 /// Determines if we have the infrastructure to vectorize loop \p L and its 1902 /// epilogue, assuming the main loop is vectorized by \p VF. 1903 bool isCandidateForEpilogueVectorization(const Loop &L, 1904 const ElementCount VF) const; 1905 1906 /// Returns true if epilogue vectorization is considered profitable, and 1907 /// false otherwise. 1908 /// \p VF is the vectorization factor chosen for the original loop. 1909 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1910 1911 public: 1912 /// The loop that we evaluate. 1913 Loop *TheLoop; 1914 1915 /// Predicated scalar evolution analysis. 1916 PredicatedScalarEvolution &PSE; 1917 1918 /// Loop Info analysis. 1919 LoopInfo *LI; 1920 1921 /// Vectorization legality. 1922 LoopVectorizationLegality *Legal; 1923 1924 /// Vector target information. 1925 const TargetTransformInfo &TTI; 1926 1927 /// Target Library Info. 1928 const TargetLibraryInfo *TLI; 1929 1930 /// Demanded bits analysis. 1931 DemandedBits *DB; 1932 1933 /// Assumption cache. 1934 AssumptionCache *AC; 1935 1936 /// Interface to emit optimization remarks. 1937 OptimizationRemarkEmitter *ORE; 1938 1939 const Function *TheFunction; 1940 1941 /// Loop Vectorize Hint. 1942 const LoopVectorizeHints *Hints; 1943 1944 /// The interleave access information contains groups of interleaved accesses 1945 /// with the same stride and close to each other. 1946 InterleavedAccessInfo &InterleaveInfo; 1947 1948 /// Values to ignore in the cost model. 1949 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1950 1951 /// Values to ignore in the cost model when VF > 1. 1952 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1953 1954 /// All element types found in the loop. 1955 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1956 1957 /// Profitable vector factors. 1958 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1959 }; 1960 } // end namespace llvm 1961 1962 /// Helper struct to manage generating runtime checks for vectorization. 1963 /// 1964 /// The runtime checks are created up-front in temporary blocks to allow better 1965 /// estimating the cost and un-linked from the existing IR. After deciding to 1966 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1967 /// temporary blocks are completely removed. 1968 class GeneratedRTChecks { 1969 /// Basic block which contains the generated SCEV checks, if any. 1970 BasicBlock *SCEVCheckBlock = nullptr; 1971 1972 /// The value representing the result of the generated SCEV checks. If it is 1973 /// nullptr, either no SCEV checks have been generated or they have been used. 1974 Value *SCEVCheckCond = nullptr; 1975 1976 /// Basic block which contains the generated memory runtime checks, if any. 1977 BasicBlock *MemCheckBlock = nullptr; 1978 1979 /// The value representing the result of the generated memory runtime checks. 1980 /// If it is nullptr, either no memory runtime checks have been generated or 1981 /// they have been used. 1982 Value *MemRuntimeCheckCond = nullptr; 1983 1984 DominatorTree *DT; 1985 LoopInfo *LI; 1986 1987 SCEVExpander SCEVExp; 1988 SCEVExpander MemCheckExp; 1989 1990 public: 1991 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1992 const DataLayout &DL) 1993 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1994 MemCheckExp(SE, DL, "scev.check") {} 1995 1996 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1997 /// accurately estimate the cost of the runtime checks. The blocks are 1998 /// un-linked from the IR and is added back during vector code generation. If 1999 /// there is no vector code generation, the check blocks are removed 2000 /// completely. 2001 void Create(Loop *L, const LoopAccessInfo &LAI, 2002 const SCEVUnionPredicate &UnionPred) { 2003 2004 BasicBlock *LoopHeader = L->getHeader(); 2005 BasicBlock *Preheader = L->getLoopPreheader(); 2006 2007 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2008 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2009 // may be used by SCEVExpander. The blocks will be un-linked from their 2010 // predecessors and removed from LI & DT at the end of the function. 2011 if (!UnionPred.isAlwaysTrue()) { 2012 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2013 nullptr, "vector.scevcheck"); 2014 2015 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2016 &UnionPred, SCEVCheckBlock->getTerminator()); 2017 } 2018 2019 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2020 if (RtPtrChecking.Need) { 2021 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2022 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2023 "vector.memcheck"); 2024 2025 MemRuntimeCheckCond = 2026 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2027 RtPtrChecking.getChecks(), MemCheckExp); 2028 assert(MemRuntimeCheckCond && 2029 "no RT checks generated although RtPtrChecking " 2030 "claimed checks are required"); 2031 } 2032 2033 if (!MemCheckBlock && !SCEVCheckBlock) 2034 return; 2035 2036 // Unhook the temporary block with the checks, update various places 2037 // accordingly. 2038 if (SCEVCheckBlock) 2039 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2040 if (MemCheckBlock) 2041 MemCheckBlock->replaceAllUsesWith(Preheader); 2042 2043 if (SCEVCheckBlock) { 2044 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2045 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2046 Preheader->getTerminator()->eraseFromParent(); 2047 } 2048 if (MemCheckBlock) { 2049 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2050 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2051 Preheader->getTerminator()->eraseFromParent(); 2052 } 2053 2054 DT->changeImmediateDominator(LoopHeader, Preheader); 2055 if (MemCheckBlock) { 2056 DT->eraseNode(MemCheckBlock); 2057 LI->removeBlock(MemCheckBlock); 2058 } 2059 if (SCEVCheckBlock) { 2060 DT->eraseNode(SCEVCheckBlock); 2061 LI->removeBlock(SCEVCheckBlock); 2062 } 2063 } 2064 2065 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2066 /// unused. 2067 ~GeneratedRTChecks() { 2068 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2069 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2070 if (!SCEVCheckCond) 2071 SCEVCleaner.markResultUsed(); 2072 2073 if (!MemRuntimeCheckCond) 2074 MemCheckCleaner.markResultUsed(); 2075 2076 if (MemRuntimeCheckCond) { 2077 auto &SE = *MemCheckExp.getSE(); 2078 // Memory runtime check generation creates compares that use expanded 2079 // values. Remove them before running the SCEVExpanderCleaners. 2080 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2081 if (MemCheckExp.isInsertedInstruction(&I)) 2082 continue; 2083 SE.forgetValue(&I); 2084 I.eraseFromParent(); 2085 } 2086 } 2087 MemCheckCleaner.cleanup(); 2088 SCEVCleaner.cleanup(); 2089 2090 if (SCEVCheckCond) 2091 SCEVCheckBlock->eraseFromParent(); 2092 if (MemRuntimeCheckCond) 2093 MemCheckBlock->eraseFromParent(); 2094 } 2095 2096 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2097 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2098 /// depending on the generated condition. 2099 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2100 BasicBlock *LoopVectorPreHeader, 2101 BasicBlock *LoopExitBlock) { 2102 if (!SCEVCheckCond) 2103 return nullptr; 2104 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2105 if (C->isZero()) 2106 return nullptr; 2107 2108 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2109 2110 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2111 // Create new preheader for vector loop. 2112 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2113 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2114 2115 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2116 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2117 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2118 SCEVCheckBlock); 2119 2120 DT->addNewBlock(SCEVCheckBlock, Pred); 2121 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2122 2123 ReplaceInstWithInst( 2124 SCEVCheckBlock->getTerminator(), 2125 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2126 // Mark the check as used, to prevent it from being removed during cleanup. 2127 SCEVCheckCond = nullptr; 2128 return SCEVCheckBlock; 2129 } 2130 2131 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2132 /// the branches to branch to the vector preheader or \p Bypass, depending on 2133 /// the generated condition. 2134 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2135 BasicBlock *LoopVectorPreHeader) { 2136 // Check if we generated code that checks in runtime if arrays overlap. 2137 if (!MemRuntimeCheckCond) 2138 return nullptr; 2139 2140 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2141 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2142 MemCheckBlock); 2143 2144 DT->addNewBlock(MemCheckBlock, Pred); 2145 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2146 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2147 2148 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2149 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2150 2151 ReplaceInstWithInst( 2152 MemCheckBlock->getTerminator(), 2153 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2154 MemCheckBlock->getTerminator()->setDebugLoc( 2155 Pred->getTerminator()->getDebugLoc()); 2156 2157 // Mark the check as used, to prevent it from being removed during cleanup. 2158 MemRuntimeCheckCond = nullptr; 2159 return MemCheckBlock; 2160 } 2161 }; 2162 2163 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2164 // vectorization. The loop needs to be annotated with #pragma omp simd 2165 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2166 // vector length information is not provided, vectorization is not considered 2167 // explicit. Interleave hints are not allowed either. These limitations will be 2168 // relaxed in the future. 2169 // Please, note that we are currently forced to abuse the pragma 'clang 2170 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2171 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2172 // provides *explicit vectorization hints* (LV can bypass legal checks and 2173 // assume that vectorization is legal). However, both hints are implemented 2174 // using the same metadata (llvm.loop.vectorize, processed by 2175 // LoopVectorizeHints). This will be fixed in the future when the native IR 2176 // representation for pragma 'omp simd' is introduced. 2177 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2178 OptimizationRemarkEmitter *ORE) { 2179 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2180 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2181 2182 // Only outer loops with an explicit vectorization hint are supported. 2183 // Unannotated outer loops are ignored. 2184 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2185 return false; 2186 2187 Function *Fn = OuterLp->getHeader()->getParent(); 2188 if (!Hints.allowVectorization(Fn, OuterLp, 2189 true /*VectorizeOnlyWhenForced*/)) { 2190 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2191 return false; 2192 } 2193 2194 if (Hints.getInterleave() > 1) { 2195 // TODO: Interleave support is future work. 2196 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2197 "outer loops.\n"); 2198 Hints.emitRemarkWithHints(); 2199 return false; 2200 } 2201 2202 return true; 2203 } 2204 2205 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2206 OptimizationRemarkEmitter *ORE, 2207 SmallVectorImpl<Loop *> &V) { 2208 // Collect inner loops and outer loops without irreducible control flow. For 2209 // now, only collect outer loops that have explicit vectorization hints. If we 2210 // are stress testing the VPlan H-CFG construction, we collect the outermost 2211 // loop of every loop nest. 2212 if (L.isInnermost() || VPlanBuildStressTest || 2213 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2214 LoopBlocksRPO RPOT(&L); 2215 RPOT.perform(LI); 2216 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2217 V.push_back(&L); 2218 // TODO: Collect inner loops inside marked outer loops in case 2219 // vectorization fails for the outer loop. Do not invoke 2220 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2221 // already known to be reducible. We can use an inherited attribute for 2222 // that. 2223 return; 2224 } 2225 } 2226 for (Loop *InnerL : L) 2227 collectSupportedLoops(*InnerL, LI, ORE, V); 2228 } 2229 2230 namespace { 2231 2232 /// The LoopVectorize Pass. 2233 struct LoopVectorize : public FunctionPass { 2234 /// Pass identification, replacement for typeid 2235 static char ID; 2236 2237 LoopVectorizePass Impl; 2238 2239 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2240 bool VectorizeOnlyWhenForced = false) 2241 : FunctionPass(ID), 2242 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2243 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2244 } 2245 2246 bool runOnFunction(Function &F) override { 2247 if (skipFunction(F)) 2248 return false; 2249 2250 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2251 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2252 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2253 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2254 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2255 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2256 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2257 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2258 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2259 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2260 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2261 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2262 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2263 2264 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2265 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2266 2267 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2268 GetLAA, *ORE, PSI).MadeAnyChange; 2269 } 2270 2271 void getAnalysisUsage(AnalysisUsage &AU) const override { 2272 AU.addRequired<AssumptionCacheTracker>(); 2273 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2274 AU.addRequired<DominatorTreeWrapperPass>(); 2275 AU.addRequired<LoopInfoWrapperPass>(); 2276 AU.addRequired<ScalarEvolutionWrapperPass>(); 2277 AU.addRequired<TargetTransformInfoWrapperPass>(); 2278 AU.addRequired<AAResultsWrapperPass>(); 2279 AU.addRequired<LoopAccessLegacyAnalysis>(); 2280 AU.addRequired<DemandedBitsWrapperPass>(); 2281 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2282 AU.addRequired<InjectTLIMappingsLegacy>(); 2283 2284 // We currently do not preserve loopinfo/dominator analyses with outer loop 2285 // vectorization. Until this is addressed, mark these analyses as preserved 2286 // only for non-VPlan-native path. 2287 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2288 if (!EnableVPlanNativePath) { 2289 AU.addPreserved<LoopInfoWrapperPass>(); 2290 AU.addPreserved<DominatorTreeWrapperPass>(); 2291 } 2292 2293 AU.addPreserved<BasicAAWrapperPass>(); 2294 AU.addPreserved<GlobalsAAWrapperPass>(); 2295 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2296 } 2297 }; 2298 2299 } // end anonymous namespace 2300 2301 //===----------------------------------------------------------------------===// 2302 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2303 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2304 //===----------------------------------------------------------------------===// 2305 2306 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2307 // We need to place the broadcast of invariant variables outside the loop, 2308 // but only if it's proven safe to do so. Else, broadcast will be inside 2309 // vector loop body. 2310 Instruction *Instr = dyn_cast<Instruction>(V); 2311 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2312 (!Instr || 2313 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2314 // Place the code for broadcasting invariant variables in the new preheader. 2315 IRBuilder<>::InsertPointGuard Guard(Builder); 2316 if (SafeToHoist) 2317 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2318 2319 // Broadcast the scalar into all locations in the vector. 2320 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2321 2322 return Shuf; 2323 } 2324 2325 /// This function adds 2326 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2327 /// to each vector element of Val. The sequence starts at StartIndex. 2328 /// \p Opcode is relevant for FP induction variable. 2329 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2330 Instruction::BinaryOps BinOp, ElementCount VF, 2331 IRBuilder<> &Builder) { 2332 if (VF.isScalar()) { 2333 // When unrolling and the VF is 1, we only need to add a simple scalar. 2334 Type *Ty = Val->getType(); 2335 assert(!Ty->isVectorTy() && "Val must be a scalar"); 2336 2337 if (Ty->isFloatingPointTy()) { 2338 // Floating-point operations inherit FMF via the builder's flags. 2339 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 2340 return Builder.CreateBinOp(BinOp, Val, MulOp); 2341 } 2342 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), 2343 "induction"); 2344 } 2345 2346 // Create and check the types. 2347 auto *ValVTy = cast<VectorType>(Val->getType()); 2348 ElementCount VLen = ValVTy->getElementCount(); 2349 2350 Type *STy = Val->getType()->getScalarType(); 2351 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2352 "Induction Step must be an integer or FP"); 2353 assert(Step->getType() == STy && "Step has wrong type"); 2354 2355 SmallVector<Constant *, 8> Indices; 2356 2357 // Create a vector of consecutive numbers from zero to VF. 2358 VectorType *InitVecValVTy = ValVTy; 2359 Type *InitVecValSTy = STy; 2360 if (STy->isFloatingPointTy()) { 2361 InitVecValSTy = 2362 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2363 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2364 } 2365 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2366 2367 // Splat the StartIdx 2368 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2369 2370 if (STy->isIntegerTy()) { 2371 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2372 Step = Builder.CreateVectorSplat(VLen, Step); 2373 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2374 // FIXME: The newly created binary instructions should contain nsw/nuw 2375 // flags, which can be found from the original scalar operations. 2376 Step = Builder.CreateMul(InitVec, Step); 2377 return Builder.CreateAdd(Val, Step, "induction"); 2378 } 2379 2380 // Floating point induction. 2381 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2382 "Binary Opcode should be specified for FP induction"); 2383 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2384 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2385 2386 Step = Builder.CreateVectorSplat(VLen, Step); 2387 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2388 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2389 } 2390 2391 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2392 const InductionDescriptor &II, Value *Step, Value *Start, 2393 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2394 IRBuilder<> &Builder = State.Builder; 2395 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2396 "Expected either an induction phi-node or a truncate of it!"); 2397 2398 // Construct the initial value of the vector IV in the vector loop preheader 2399 auto CurrIP = Builder.saveIP(); 2400 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2401 if (isa<TruncInst>(EntryVal)) { 2402 assert(Start->getType()->isIntegerTy() && 2403 "Truncation requires an integer type"); 2404 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2405 Step = Builder.CreateTrunc(Step, TruncType); 2406 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2407 } 2408 2409 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2410 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2411 Value *SteppedStart = getStepVector( 2412 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2413 2414 // We create vector phi nodes for both integer and floating-point induction 2415 // variables. Here, we determine the kind of arithmetic we will perform. 2416 Instruction::BinaryOps AddOp; 2417 Instruction::BinaryOps MulOp; 2418 if (Step->getType()->isIntegerTy()) { 2419 AddOp = Instruction::Add; 2420 MulOp = Instruction::Mul; 2421 } else { 2422 AddOp = II.getInductionOpcode(); 2423 MulOp = Instruction::FMul; 2424 } 2425 2426 // Multiply the vectorization factor by the step using integer or 2427 // floating-point arithmetic as appropriate. 2428 Type *StepType = Step->getType(); 2429 Value *RuntimeVF; 2430 if (Step->getType()->isFloatingPointTy()) 2431 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2432 else 2433 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2434 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2435 2436 // Create a vector splat to use in the induction update. 2437 // 2438 // FIXME: If the step is non-constant, we create the vector splat with 2439 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2440 // handle a constant vector splat. 2441 Value *SplatVF = isa<Constant>(Mul) 2442 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2443 : Builder.CreateVectorSplat(State.VF, Mul); 2444 Builder.restoreIP(CurrIP); 2445 2446 // We may need to add the step a number of times, depending on the unroll 2447 // factor. The last of those goes into the PHI. 2448 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2449 &*LoopVectorBody->getFirstInsertionPt()); 2450 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2451 Instruction *LastInduction = VecInd; 2452 for (unsigned Part = 0; Part < UF; ++Part) { 2453 State.set(Def, LastInduction, Part); 2454 2455 if (isa<TruncInst>(EntryVal)) 2456 addMetadata(LastInduction, EntryVal); 2457 2458 LastInduction = cast<Instruction>( 2459 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2460 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2461 } 2462 2463 // Move the last step to the end of the latch block. This ensures consistent 2464 // placement of all induction updates. 2465 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2466 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2467 LastInduction->moveBefore(Br); 2468 LastInduction->setName("vec.ind.next"); 2469 2470 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2471 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2472 } 2473 2474 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2475 return Cost->isScalarAfterVectorization(I, VF) || 2476 Cost->isProfitableToScalarize(I, VF); 2477 } 2478 2479 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2480 if (shouldScalarizeInstruction(IV)) 2481 return true; 2482 auto isScalarInst = [&](User *U) -> bool { 2483 auto *I = cast<Instruction>(U); 2484 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2485 }; 2486 return llvm::any_of(IV->users(), isScalarInst); 2487 } 2488 2489 /// Returns true if \p ID starts at 0 and has a step of 1. 2490 static bool isCanonicalID(const InductionDescriptor &ID) { 2491 if (!ID.getConstIntStepValue() || !ID.getConstIntStepValue()->isOne()) 2492 return false; 2493 auto *StartC = dyn_cast<ConstantInt>(ID.getStartValue()); 2494 return StartC && StartC->isZero(); 2495 } 2496 2497 void InnerLoopVectorizer::widenIntOrFpInduction( 2498 PHINode *IV, const InductionDescriptor &ID, Value *Start, TruncInst *Trunc, 2499 VPValue *Def, VPTransformState &State, Value *CanonicalIV) { 2500 IRBuilder<> &Builder = State.Builder; 2501 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2502 assert(!State.VF.isZero() && "VF must be non-zero"); 2503 2504 // The value from the original loop to which we are mapping the new induction 2505 // variable. 2506 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2507 2508 auto &DL = EntryVal->getModule()->getDataLayout(); 2509 2510 // Generate code for the induction step. Note that induction steps are 2511 // required to be loop-invariant 2512 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2513 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2514 "Induction step should be loop invariant"); 2515 if (PSE.getSE()->isSCEVable(IV->getType())) { 2516 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2517 return Exp.expandCodeFor(Step, Step->getType(), 2518 State.CFG.VectorPreHeader->getTerminator()); 2519 } 2520 return cast<SCEVUnknown>(Step)->getValue(); 2521 }; 2522 2523 // The scalar value to broadcast. This is derived from the canonical 2524 // induction variable. If a truncation type is given, truncate the canonical 2525 // induction variable and step. Otherwise, derive these values from the 2526 // induction descriptor. 2527 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2528 Value *ScalarIV = CanonicalIV; 2529 Type *NeededType = IV->getType(); 2530 if (!isCanonicalID(ID) || ScalarIV->getType() != NeededType) { 2531 ScalarIV = 2532 NeededType->isIntegerTy() 2533 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2534 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2535 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2536 State.CFG.PrevBB); 2537 ScalarIV->setName("offset.idx"); 2538 } 2539 if (Trunc) { 2540 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2541 assert(Step->getType()->isIntegerTy() && 2542 "Truncation requires an integer step"); 2543 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2544 Step = Builder.CreateTrunc(Step, TruncType); 2545 } 2546 return ScalarIV; 2547 }; 2548 2549 // Create the vector values from the scalar IV, in the absence of creating a 2550 // vector IV. 2551 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2552 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2553 for (unsigned Part = 0; Part < UF; ++Part) { 2554 Value *StartIdx; 2555 if (Step->getType()->isFloatingPointTy()) 2556 StartIdx = 2557 getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part); 2558 else 2559 StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part); 2560 2561 Value *EntryPart = 2562 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(), 2563 State.VF, State.Builder); 2564 State.set(Def, EntryPart, Part); 2565 if (Trunc) 2566 addMetadata(EntryPart, Trunc); 2567 } 2568 }; 2569 2570 // Fast-math-flags propagate from the original induction instruction. 2571 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2572 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2573 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2574 2575 // Now do the actual transformations, and start with creating the step value. 2576 Value *Step = CreateStepValue(ID.getStep()); 2577 if (State.VF.isScalar()) { 2578 Value *ScalarIV = CreateScalarIV(Step); 2579 CreateSplatIV(ScalarIV, Step); 2580 return; 2581 } 2582 2583 // Determine if we want a scalar version of the induction variable. This is 2584 // true if the induction variable itself is not widened, or if it has at 2585 // least one user in the loop that is not widened. 2586 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2587 if (!NeedsScalarIV) { 2588 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2589 return; 2590 } 2591 2592 // Try to create a new independent vector induction variable. If we can't 2593 // create the phi node, we will splat the scalar induction variable in each 2594 // loop iteration. 2595 if (!shouldScalarizeInstruction(EntryVal)) { 2596 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2597 Value *ScalarIV = CreateScalarIV(Step); 2598 // Create scalar steps that can be used by instructions we will later 2599 // scalarize. Note that the addition of the scalar steps will not increase 2600 // the number of instructions in the loop in the common case prior to 2601 // InstCombine. We will be trading one vector extract for each scalar step. 2602 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2603 return; 2604 } 2605 2606 // All IV users are scalar instructions, so only emit a scalar IV, not a 2607 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2608 // predicate used by the masked loads/stores. 2609 Value *ScalarIV = CreateScalarIV(Step); 2610 if (!Cost->isScalarEpilogueAllowed()) 2611 CreateSplatIV(ScalarIV, Step); 2612 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2613 } 2614 2615 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2616 Instruction *EntryVal, 2617 const InductionDescriptor &ID, 2618 VPValue *Def, 2619 VPTransformState &State) { 2620 IRBuilder<> &Builder = State.Builder; 2621 // We shouldn't have to build scalar steps if we aren't vectorizing. 2622 assert(State.VF.isVector() && "VF should be greater than one"); 2623 // Get the value type and ensure it and the step have the same integer type. 2624 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2625 assert(ScalarIVTy == Step->getType() && 2626 "Val and Step should have the same type"); 2627 2628 // We build scalar steps for both integer and floating-point induction 2629 // variables. Here, we determine the kind of arithmetic we will perform. 2630 Instruction::BinaryOps AddOp; 2631 Instruction::BinaryOps MulOp; 2632 if (ScalarIVTy->isIntegerTy()) { 2633 AddOp = Instruction::Add; 2634 MulOp = Instruction::Mul; 2635 } else { 2636 AddOp = ID.getInductionOpcode(); 2637 MulOp = Instruction::FMul; 2638 } 2639 2640 // Determine the number of scalars we need to generate for each unroll 2641 // iteration. If EntryVal is uniform, we only need to generate the first 2642 // lane. Otherwise, we generate all VF values. 2643 bool IsUniform = 2644 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF); 2645 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 2646 // Compute the scalar steps and save the results in State. 2647 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2648 ScalarIVTy->getScalarSizeInBits()); 2649 Type *VecIVTy = nullptr; 2650 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2651 if (!IsUniform && State.VF.isScalable()) { 2652 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2653 UnitStepVec = 2654 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2655 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2656 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2657 } 2658 2659 for (unsigned Part = 0; Part < State.UF; ++Part) { 2660 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2661 2662 if (!IsUniform && State.VF.isScalable()) { 2663 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2664 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2665 if (ScalarIVTy->isFloatingPointTy()) 2666 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2667 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2668 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2669 State.set(Def, Add, Part); 2670 // It's useful to record the lane values too for the known minimum number 2671 // of elements so we do those below. This improves the code quality when 2672 // trying to extract the first element, for example. 2673 } 2674 2675 if (ScalarIVTy->isFloatingPointTy()) 2676 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2677 2678 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2679 Value *StartIdx = Builder.CreateBinOp( 2680 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2681 // The step returned by `createStepForVF` is a runtime-evaluated value 2682 // when VF is scalable. Otherwise, it should be folded into a Constant. 2683 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2684 "Expected StartIdx to be folded to a constant when VF is not " 2685 "scalable"); 2686 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2687 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2688 State.set(Def, Add, VPIteration(Part, Lane)); 2689 } 2690 } 2691 } 2692 2693 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2694 const VPIteration &Instance, 2695 VPTransformState &State) { 2696 Value *ScalarInst = State.get(Def, Instance); 2697 Value *VectorValue = State.get(Def, Instance.Part); 2698 VectorValue = Builder.CreateInsertElement( 2699 VectorValue, ScalarInst, 2700 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2701 State.set(Def, VectorValue, Instance.Part); 2702 } 2703 2704 // Return whether we allow using masked interleave-groups (for dealing with 2705 // strided loads/stores that reside in predicated blocks, or for dealing 2706 // with gaps). 2707 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2708 // If an override option has been passed in for interleaved accesses, use it. 2709 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2710 return EnableMaskedInterleavedMemAccesses; 2711 2712 return TTI.enableMaskedInterleavedAccessVectorization(); 2713 } 2714 2715 // Try to vectorize the interleave group that \p Instr belongs to. 2716 // 2717 // E.g. Translate following interleaved load group (factor = 3): 2718 // for (i = 0; i < N; i+=3) { 2719 // R = Pic[i]; // Member of index 0 2720 // G = Pic[i+1]; // Member of index 1 2721 // B = Pic[i+2]; // Member of index 2 2722 // ... // do something to R, G, B 2723 // } 2724 // To: 2725 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2726 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2727 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2728 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2729 // 2730 // Or translate following interleaved store group (factor = 3): 2731 // for (i = 0; i < N; i+=3) { 2732 // ... do something to R, G, B 2733 // Pic[i] = R; // Member of index 0 2734 // Pic[i+1] = G; // Member of index 1 2735 // Pic[i+2] = B; // Member of index 2 2736 // } 2737 // To: 2738 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2739 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2740 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2741 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2742 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2743 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2744 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2745 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2746 VPValue *BlockInMask) { 2747 Instruction *Instr = Group->getInsertPos(); 2748 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2749 2750 // Prepare for the vector type of the interleaved load/store. 2751 Type *ScalarTy = getLoadStoreType(Instr); 2752 unsigned InterleaveFactor = Group->getFactor(); 2753 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2754 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2755 2756 // Prepare for the new pointers. 2757 SmallVector<Value *, 2> AddrParts; 2758 unsigned Index = Group->getIndex(Instr); 2759 2760 // TODO: extend the masked interleaved-group support to reversed access. 2761 assert((!BlockInMask || !Group->isReverse()) && 2762 "Reversed masked interleave-group not supported."); 2763 2764 // If the group is reverse, adjust the index to refer to the last vector lane 2765 // instead of the first. We adjust the index from the first vector lane, 2766 // rather than directly getting the pointer for lane VF - 1, because the 2767 // pointer operand of the interleaved access is supposed to be uniform. For 2768 // uniform instructions, we're only required to generate a value for the 2769 // first vector lane in each unroll iteration. 2770 if (Group->isReverse()) 2771 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2772 2773 for (unsigned Part = 0; Part < UF; Part++) { 2774 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2775 setDebugLocFromInst(AddrPart); 2776 2777 // Notice current instruction could be any index. Need to adjust the address 2778 // to the member of index 0. 2779 // 2780 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2781 // b = A[i]; // Member of index 0 2782 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2783 // 2784 // E.g. A[i+1] = a; // Member of index 1 2785 // A[i] = b; // Member of index 0 2786 // A[i+2] = c; // Member of index 2 (Current instruction) 2787 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2788 2789 bool InBounds = false; 2790 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2791 InBounds = gep->isInBounds(); 2792 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2793 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2794 2795 // Cast to the vector pointer type. 2796 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2797 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2798 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2799 } 2800 2801 setDebugLocFromInst(Instr); 2802 Value *PoisonVec = PoisonValue::get(VecTy); 2803 2804 Value *MaskForGaps = nullptr; 2805 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2806 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2807 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2808 } 2809 2810 // Vectorize the interleaved load group. 2811 if (isa<LoadInst>(Instr)) { 2812 // For each unroll part, create a wide load for the group. 2813 SmallVector<Value *, 2> NewLoads; 2814 for (unsigned Part = 0; Part < UF; Part++) { 2815 Instruction *NewLoad; 2816 if (BlockInMask || MaskForGaps) { 2817 assert(useMaskedInterleavedAccesses(*TTI) && 2818 "masked interleaved groups are not allowed."); 2819 Value *GroupMask = MaskForGaps; 2820 if (BlockInMask) { 2821 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2822 Value *ShuffledMask = Builder.CreateShuffleVector( 2823 BlockInMaskPart, 2824 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2825 "interleaved.mask"); 2826 GroupMask = MaskForGaps 2827 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2828 MaskForGaps) 2829 : ShuffledMask; 2830 } 2831 NewLoad = 2832 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2833 GroupMask, PoisonVec, "wide.masked.vec"); 2834 } 2835 else 2836 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2837 Group->getAlign(), "wide.vec"); 2838 Group->addMetadata(NewLoad); 2839 NewLoads.push_back(NewLoad); 2840 } 2841 2842 // For each member in the group, shuffle out the appropriate data from the 2843 // wide loads. 2844 unsigned J = 0; 2845 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2846 Instruction *Member = Group->getMember(I); 2847 2848 // Skip the gaps in the group. 2849 if (!Member) 2850 continue; 2851 2852 auto StrideMask = 2853 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2854 for (unsigned Part = 0; Part < UF; Part++) { 2855 Value *StridedVec = Builder.CreateShuffleVector( 2856 NewLoads[Part], StrideMask, "strided.vec"); 2857 2858 // If this member has different type, cast the result type. 2859 if (Member->getType() != ScalarTy) { 2860 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2861 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2862 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2863 } 2864 2865 if (Group->isReverse()) 2866 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2867 2868 State.set(VPDefs[J], StridedVec, Part); 2869 } 2870 ++J; 2871 } 2872 return; 2873 } 2874 2875 // The sub vector type for current instruction. 2876 auto *SubVT = VectorType::get(ScalarTy, VF); 2877 2878 // Vectorize the interleaved store group. 2879 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2880 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2881 "masked interleaved groups are not allowed."); 2882 assert((!MaskForGaps || !VF.isScalable()) && 2883 "masking gaps for scalable vectors is not yet supported."); 2884 for (unsigned Part = 0; Part < UF; Part++) { 2885 // Collect the stored vector from each member. 2886 SmallVector<Value *, 4> StoredVecs; 2887 for (unsigned i = 0; i < InterleaveFactor; i++) { 2888 assert((Group->getMember(i) || MaskForGaps) && 2889 "Fail to get a member from an interleaved store group"); 2890 Instruction *Member = Group->getMember(i); 2891 2892 // Skip the gaps in the group. 2893 if (!Member) { 2894 Value *Undef = PoisonValue::get(SubVT); 2895 StoredVecs.push_back(Undef); 2896 continue; 2897 } 2898 2899 Value *StoredVec = State.get(StoredValues[i], Part); 2900 2901 if (Group->isReverse()) 2902 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2903 2904 // If this member has different type, cast it to a unified type. 2905 2906 if (StoredVec->getType() != SubVT) 2907 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2908 2909 StoredVecs.push_back(StoredVec); 2910 } 2911 2912 // Concatenate all vectors into a wide vector. 2913 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2914 2915 // Interleave the elements in the wide vector. 2916 Value *IVec = Builder.CreateShuffleVector( 2917 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2918 "interleaved.vec"); 2919 2920 Instruction *NewStoreInstr; 2921 if (BlockInMask || MaskForGaps) { 2922 Value *GroupMask = MaskForGaps; 2923 if (BlockInMask) { 2924 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2925 Value *ShuffledMask = Builder.CreateShuffleVector( 2926 BlockInMaskPart, 2927 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2928 "interleaved.mask"); 2929 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2930 ShuffledMask, MaskForGaps) 2931 : ShuffledMask; 2932 } 2933 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2934 Group->getAlign(), GroupMask); 2935 } else 2936 NewStoreInstr = 2937 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2938 2939 Group->addMetadata(NewStoreInstr); 2940 } 2941 } 2942 2943 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2944 VPReplicateRecipe *RepRecipe, 2945 const VPIteration &Instance, 2946 bool IfPredicateInstr, 2947 VPTransformState &State) { 2948 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2949 2950 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2951 // the first lane and part. 2952 if (isa<NoAliasScopeDeclInst>(Instr)) 2953 if (!Instance.isFirstIteration()) 2954 return; 2955 2956 setDebugLocFromInst(Instr); 2957 2958 // Does this instruction return a value ? 2959 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2960 2961 Instruction *Cloned = Instr->clone(); 2962 if (!IsVoidRetTy) 2963 Cloned->setName(Instr->getName() + ".cloned"); 2964 2965 // If the scalarized instruction contributes to the address computation of a 2966 // widen masked load/store which was in a basic block that needed predication 2967 // and is not predicated after vectorization, we can't propagate 2968 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2969 // instruction could feed a poison value to the base address of the widen 2970 // load/store. 2971 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2972 Cloned->dropPoisonGeneratingFlags(); 2973 2974 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2975 Builder.GetInsertPoint()); 2976 // Replace the operands of the cloned instructions with their scalar 2977 // equivalents in the new loop. 2978 for (auto &I : enumerate(RepRecipe->operands())) { 2979 auto InputInstance = Instance; 2980 VPValue *Operand = I.value(); 2981 if (State.Plan->isUniformAfterVectorization(Operand)) 2982 InputInstance.Lane = VPLane::getFirstLane(); 2983 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2984 } 2985 addNewMetadata(Cloned, Instr); 2986 2987 // Place the cloned scalar in the new loop. 2988 Builder.Insert(Cloned); 2989 2990 State.set(RepRecipe, Cloned, Instance); 2991 2992 // If we just cloned a new assumption, add it the assumption cache. 2993 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2994 AC->registerAssumption(II); 2995 2996 // End if-block. 2997 if (IfPredicateInstr) 2998 PredicatedInstructions.push_back(Cloned); 2999 } 3000 3001 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 3002 BasicBlock *Header = L->getHeader(); 3003 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 3004 3005 IRBuilder<> B(Header->getTerminator()); 3006 Instruction *OldInst = 3007 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 3008 setDebugLocFromInst(OldInst, &B); 3009 3010 // Connect the header to the exit and header blocks and replace the old 3011 // terminator. 3012 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 3013 3014 // Now we have two terminators. Remove the old one from the block. 3015 Header->getTerminator()->eraseFromParent(); 3016 } 3017 3018 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3019 if (TripCount) 3020 return TripCount; 3021 3022 assert(L && "Create Trip Count for null loop."); 3023 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3024 // Find the loop boundaries. 3025 ScalarEvolution *SE = PSE.getSE(); 3026 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3027 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3028 "Invalid loop count"); 3029 3030 Type *IdxTy = Legal->getWidestInductionType(); 3031 assert(IdxTy && "No type for induction"); 3032 3033 // The exit count might have the type of i64 while the phi is i32. This can 3034 // happen if we have an induction variable that is sign extended before the 3035 // compare. The only way that we get a backedge taken count is that the 3036 // induction variable was signed and as such will not overflow. In such a case 3037 // truncation is legal. 3038 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3039 IdxTy->getPrimitiveSizeInBits()) 3040 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3041 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3042 3043 // Get the total trip count from the count by adding 1. 3044 const SCEV *ExitCount = SE->getAddExpr( 3045 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3046 3047 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3048 3049 // Expand the trip count and place the new instructions in the preheader. 3050 // Notice that the pre-header does not change, only the loop body. 3051 SCEVExpander Exp(*SE, DL, "induction"); 3052 3053 // Count holds the overall loop count (N). 3054 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3055 L->getLoopPreheader()->getTerminator()); 3056 3057 if (TripCount->getType()->isPointerTy()) 3058 TripCount = 3059 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3060 L->getLoopPreheader()->getTerminator()); 3061 3062 return TripCount; 3063 } 3064 3065 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3066 if (VectorTripCount) 3067 return VectorTripCount; 3068 3069 Value *TC = getOrCreateTripCount(L); 3070 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3071 3072 Type *Ty = TC->getType(); 3073 // This is where we can make the step a runtime constant. 3074 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3075 3076 // If the tail is to be folded by masking, round the number of iterations N 3077 // up to a multiple of Step instead of rounding down. This is done by first 3078 // adding Step-1 and then rounding down. Note that it's ok if this addition 3079 // overflows: the vector induction variable will eventually wrap to zero given 3080 // that it starts at zero and its Step is a power of two; the loop will then 3081 // exit, with the last early-exit vector comparison also producing all-true. 3082 if (Cost->foldTailByMasking()) { 3083 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3084 "VF*UF must be a power of 2 when folding tail by masking"); 3085 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3086 TC = Builder.CreateAdd( 3087 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3088 } 3089 3090 // Now we need to generate the expression for the part of the loop that the 3091 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3092 // iterations are not required for correctness, or N - Step, otherwise. Step 3093 // is equal to the vectorization factor (number of SIMD elements) times the 3094 // unroll factor (number of SIMD instructions). 3095 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3096 3097 // There are cases where we *must* run at least one iteration in the remainder 3098 // loop. See the cost model for when this can happen. If the step evenly 3099 // divides the trip count, we set the remainder to be equal to the step. If 3100 // the step does not evenly divide the trip count, no adjustment is necessary 3101 // since there will already be scalar iterations. Note that the minimum 3102 // iterations check ensures that N >= Step. 3103 if (Cost->requiresScalarEpilogue(VF)) { 3104 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3105 R = Builder.CreateSelect(IsZero, Step, R); 3106 } 3107 3108 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3109 3110 return VectorTripCount; 3111 } 3112 3113 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3114 const DataLayout &DL) { 3115 // Verify that V is a vector type with same number of elements as DstVTy. 3116 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3117 unsigned VF = DstFVTy->getNumElements(); 3118 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3119 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3120 Type *SrcElemTy = SrcVecTy->getElementType(); 3121 Type *DstElemTy = DstFVTy->getElementType(); 3122 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3123 "Vector elements must have same size"); 3124 3125 // Do a direct cast if element types are castable. 3126 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3127 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3128 } 3129 // V cannot be directly casted to desired vector type. 3130 // May happen when V is a floating point vector but DstVTy is a vector of 3131 // pointers or vice-versa. Handle this using a two-step bitcast using an 3132 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3133 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3134 "Only one type should be a pointer type"); 3135 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3136 "Only one type should be a floating point type"); 3137 Type *IntTy = 3138 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3139 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3140 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3141 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3142 } 3143 3144 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3145 BasicBlock *Bypass) { 3146 Value *Count = getOrCreateTripCount(L); 3147 // Reuse existing vector loop preheader for TC checks. 3148 // Note that new preheader block is generated for vector loop. 3149 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3150 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3151 3152 // Generate code to check if the loop's trip count is less than VF * UF, or 3153 // equal to it in case a scalar epilogue is required; this implies that the 3154 // vector trip count is zero. This check also covers the case where adding one 3155 // to the backedge-taken count overflowed leading to an incorrect trip count 3156 // of zero. In this case we will also jump to the scalar loop. 3157 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3158 : ICmpInst::ICMP_ULT; 3159 3160 // If tail is to be folded, vector loop takes care of all iterations. 3161 Value *CheckMinIters = Builder.getFalse(); 3162 if (!Cost->foldTailByMasking()) { 3163 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3164 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3165 } 3166 // Create new preheader for vector loop. 3167 LoopVectorPreHeader = 3168 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3169 "vector.ph"); 3170 3171 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3172 DT->getNode(Bypass)->getIDom()) && 3173 "TC check is expected to dominate Bypass"); 3174 3175 // Update dominator for Bypass & LoopExit (if needed). 3176 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3177 if (!Cost->requiresScalarEpilogue(VF)) 3178 // If there is an epilogue which must run, there's no edge from the 3179 // middle block to exit blocks and thus no need to update the immediate 3180 // dominator of the exit blocks. 3181 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3182 3183 ReplaceInstWithInst( 3184 TCCheckBlock->getTerminator(), 3185 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3186 LoopBypassBlocks.push_back(TCCheckBlock); 3187 } 3188 3189 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3190 3191 BasicBlock *const SCEVCheckBlock = 3192 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3193 if (!SCEVCheckBlock) 3194 return nullptr; 3195 3196 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3197 (OptForSizeBasedOnProfile && 3198 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3199 "Cannot SCEV check stride or overflow when optimizing for size"); 3200 3201 3202 // Update dominator only if this is first RT check. 3203 if (LoopBypassBlocks.empty()) { 3204 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3205 if (!Cost->requiresScalarEpilogue(VF)) 3206 // If there is an epilogue which must run, there's no edge from the 3207 // middle block to exit blocks and thus no need to update the immediate 3208 // dominator of the exit blocks. 3209 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3210 } 3211 3212 LoopBypassBlocks.push_back(SCEVCheckBlock); 3213 AddedSafetyChecks = true; 3214 return SCEVCheckBlock; 3215 } 3216 3217 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3218 BasicBlock *Bypass) { 3219 // VPlan-native path does not do any analysis for runtime checks currently. 3220 if (EnableVPlanNativePath) 3221 return nullptr; 3222 3223 BasicBlock *const MemCheckBlock = 3224 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3225 3226 // Check if we generated code that checks in runtime if arrays overlap. We put 3227 // the checks into a separate block to make the more common case of few 3228 // elements faster. 3229 if (!MemCheckBlock) 3230 return nullptr; 3231 3232 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3233 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3234 "Cannot emit memory checks when optimizing for size, unless forced " 3235 "to vectorize."); 3236 ORE->emit([&]() { 3237 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3238 L->getStartLoc(), L->getHeader()) 3239 << "Code-size may be reduced by not forcing " 3240 "vectorization, or by source-code modifications " 3241 "eliminating the need for runtime checks " 3242 "(e.g., adding 'restrict')."; 3243 }); 3244 } 3245 3246 LoopBypassBlocks.push_back(MemCheckBlock); 3247 3248 AddedSafetyChecks = true; 3249 3250 // We currently don't use LoopVersioning for the actual loop cloning but we 3251 // still use it to add the noalias metadata. 3252 LVer = std::make_unique<LoopVersioning>( 3253 *Legal->getLAI(), 3254 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3255 DT, PSE.getSE()); 3256 LVer->prepareNoAliasMetadata(); 3257 return MemCheckBlock; 3258 } 3259 3260 Value *InnerLoopVectorizer::emitTransformedIndex( 3261 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3262 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3263 3264 SCEVExpander Exp(*SE, DL, "induction"); 3265 auto Step = ID.getStep(); 3266 auto StartValue = ID.getStartValue(); 3267 assert(Index->getType()->getScalarType() == Step->getType() && 3268 "Index scalar type does not match StepValue type"); 3269 3270 // Note: the IR at this point is broken. We cannot use SE to create any new 3271 // SCEV and then expand it, hoping that SCEV's simplification will give us 3272 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3273 // lead to various SCEV crashes. So all we can do is to use builder and rely 3274 // on InstCombine for future simplifications. Here we handle some trivial 3275 // cases only. 3276 auto CreateAdd = [&B](Value *X, Value *Y) { 3277 assert(X->getType() == Y->getType() && "Types don't match!"); 3278 if (auto *CX = dyn_cast<ConstantInt>(X)) 3279 if (CX->isZero()) 3280 return Y; 3281 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3282 if (CY->isZero()) 3283 return X; 3284 return B.CreateAdd(X, Y); 3285 }; 3286 3287 // We allow X to be a vector type, in which case Y will potentially be 3288 // splatted into a vector with the same element count. 3289 auto CreateMul = [&B](Value *X, Value *Y) { 3290 assert(X->getType()->getScalarType() == Y->getType() && 3291 "Types don't match!"); 3292 if (auto *CX = dyn_cast<ConstantInt>(X)) 3293 if (CX->isOne()) 3294 return Y; 3295 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3296 if (CY->isOne()) 3297 return X; 3298 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3299 if (XVTy && !isa<VectorType>(Y->getType())) 3300 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3301 return B.CreateMul(X, Y); 3302 }; 3303 3304 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3305 // loop, choose the end of the vector loop header (=VectorHeader), because 3306 // the DomTree is not kept up-to-date for additional blocks generated in the 3307 // vector loop. By using the header as insertion point, we guarantee that the 3308 // expanded instructions dominate all their uses. 3309 auto GetInsertPoint = [this, &B, VectorHeader]() { 3310 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3311 if (InsertBB != LoopVectorBody && 3312 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3313 return VectorHeader->getTerminator(); 3314 return &*B.GetInsertPoint(); 3315 }; 3316 3317 switch (ID.getKind()) { 3318 case InductionDescriptor::IK_IntInduction: { 3319 assert(!isa<VectorType>(Index->getType()) && 3320 "Vector indices not supported for integer inductions yet"); 3321 assert(Index->getType() == StartValue->getType() && 3322 "Index type does not match StartValue type"); 3323 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3324 return B.CreateSub(StartValue, Index); 3325 auto *Offset = CreateMul( 3326 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3327 return CreateAdd(StartValue, Offset); 3328 } 3329 case InductionDescriptor::IK_PtrInduction: { 3330 assert(isa<SCEVConstant>(Step) && 3331 "Expected constant step for pointer induction"); 3332 return B.CreateGEP( 3333 ID.getElementType(), StartValue, 3334 CreateMul(Index, 3335 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3336 GetInsertPoint()))); 3337 } 3338 case InductionDescriptor::IK_FpInduction: { 3339 assert(!isa<VectorType>(Index->getType()) && 3340 "Vector indices not supported for FP inductions yet"); 3341 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3342 auto InductionBinOp = ID.getInductionBinOp(); 3343 assert(InductionBinOp && 3344 (InductionBinOp->getOpcode() == Instruction::FAdd || 3345 InductionBinOp->getOpcode() == Instruction::FSub) && 3346 "Original bin op should be defined for FP induction"); 3347 3348 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3349 Value *MulExp = B.CreateFMul(StepValue, Index); 3350 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3351 "induction"); 3352 } 3353 case InductionDescriptor::IK_NoInduction: 3354 return nullptr; 3355 } 3356 llvm_unreachable("invalid enum"); 3357 } 3358 3359 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3360 LoopScalarBody = OrigLoop->getHeader(); 3361 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3362 assert(LoopVectorPreHeader && "Invalid loop structure"); 3363 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3364 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3365 "multiple exit loop without required epilogue?"); 3366 3367 LoopMiddleBlock = 3368 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3369 LI, nullptr, Twine(Prefix) + "middle.block"); 3370 LoopScalarPreHeader = 3371 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3372 nullptr, Twine(Prefix) + "scalar.ph"); 3373 3374 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3375 3376 // Set up the middle block terminator. Two cases: 3377 // 1) If we know that we must execute the scalar epilogue, emit an 3378 // unconditional branch. 3379 // 2) Otherwise, we must have a single unique exit block (due to how we 3380 // implement the multiple exit case). In this case, set up a conditonal 3381 // branch from the middle block to the loop scalar preheader, and the 3382 // exit block. completeLoopSkeleton will update the condition to use an 3383 // iteration check, if required to decide whether to execute the remainder. 3384 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3385 BranchInst::Create(LoopScalarPreHeader) : 3386 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3387 Builder.getTrue()); 3388 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3389 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3390 3391 // We intentionally don't let SplitBlock to update LoopInfo since 3392 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3393 // LoopVectorBody is explicitly added to the correct place few lines later. 3394 LoopVectorBody = 3395 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3396 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3397 3398 // Update dominator for loop exit. 3399 if (!Cost->requiresScalarEpilogue(VF)) 3400 // If there is an epilogue which must run, there's no edge from the 3401 // middle block to exit blocks and thus no need to update the immediate 3402 // dominator of the exit blocks. 3403 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3404 3405 // Create and register the new vector loop. 3406 Loop *Lp = LI->AllocateLoop(); 3407 Loop *ParentLoop = OrigLoop->getParentLoop(); 3408 3409 // Insert the new loop into the loop nest and register the new basic blocks 3410 // before calling any utilities such as SCEV that require valid LoopInfo. 3411 if (ParentLoop) { 3412 ParentLoop->addChildLoop(Lp); 3413 } else { 3414 LI->addTopLevelLoop(Lp); 3415 } 3416 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3417 return Lp; 3418 } 3419 3420 void InnerLoopVectorizer::createInductionResumeValues( 3421 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3422 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3423 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3424 "Inconsistent information about additional bypass."); 3425 3426 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3427 assert(VectorTripCount && L && "Expected valid arguments"); 3428 // We are going to resume the execution of the scalar loop. 3429 // Go over all of the induction variables that we found and fix the 3430 // PHIs that are left in the scalar version of the loop. 3431 // The starting values of PHI nodes depend on the counter of the last 3432 // iteration in the vectorized loop. 3433 // If we come from a bypass edge then we need to start from the original 3434 // start value. 3435 Instruction *OldInduction = Legal->getPrimaryInduction(); 3436 for (auto &InductionEntry : Legal->getInductionVars()) { 3437 PHINode *OrigPhi = InductionEntry.first; 3438 InductionDescriptor II = InductionEntry.second; 3439 3440 // Create phi nodes to merge from the backedge-taken check block. 3441 PHINode *BCResumeVal = 3442 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3443 LoopScalarPreHeader->getTerminator()); 3444 // Copy original phi DL over to the new one. 3445 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3446 Value *&EndValue = IVEndValues[OrigPhi]; 3447 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3448 if (OrigPhi == OldInduction) { 3449 // We know what the end value is. 3450 EndValue = VectorTripCount; 3451 } else { 3452 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3453 3454 // Fast-math-flags propagate from the original induction instruction. 3455 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3456 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3457 3458 Type *StepType = II.getStep()->getType(); 3459 Instruction::CastOps CastOp = 3460 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3461 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3462 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3463 EndValue = 3464 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3465 EndValue->setName("ind.end"); 3466 3467 // Compute the end value for the additional bypass (if applicable). 3468 if (AdditionalBypass.first) { 3469 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3470 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3471 StepType, true); 3472 CRD = 3473 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3474 EndValueFromAdditionalBypass = 3475 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3476 EndValueFromAdditionalBypass->setName("ind.end"); 3477 } 3478 } 3479 // The new PHI merges the original incoming value, in case of a bypass, 3480 // or the value at the end of the vectorized loop. 3481 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3482 3483 // Fix the scalar body counter (PHI node). 3484 // The old induction's phi node in the scalar body needs the truncated 3485 // value. 3486 for (BasicBlock *BB : LoopBypassBlocks) 3487 BCResumeVal->addIncoming(II.getStartValue(), BB); 3488 3489 if (AdditionalBypass.first) 3490 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3491 EndValueFromAdditionalBypass); 3492 3493 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3494 } 3495 } 3496 3497 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3498 MDNode *OrigLoopID) { 3499 assert(L && "Expected valid loop."); 3500 3501 // The trip counts should be cached by now. 3502 Value *Count = getOrCreateTripCount(L); 3503 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3504 3505 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3506 3507 // Add a check in the middle block to see if we have completed 3508 // all of the iterations in the first vector loop. Three cases: 3509 // 1) If we require a scalar epilogue, there is no conditional branch as 3510 // we unconditionally branch to the scalar preheader. Do nothing. 3511 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3512 // Thus if tail is to be folded, we know we don't need to run the 3513 // remainder and we can use the previous value for the condition (true). 3514 // 3) Otherwise, construct a runtime check. 3515 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3516 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3517 Count, VectorTripCount, "cmp.n", 3518 LoopMiddleBlock->getTerminator()); 3519 3520 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3521 // of the corresponding compare because they may have ended up with 3522 // different line numbers and we want to avoid awkward line stepping while 3523 // debugging. Eg. if the compare has got a line number inside the loop. 3524 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3525 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3526 } 3527 3528 // Get ready to start creating new instructions into the vectorized body. 3529 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3530 "Inconsistent vector loop preheader"); 3531 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3532 3533 #ifdef EXPENSIVE_CHECKS 3534 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3535 LI->verify(*DT); 3536 #endif 3537 3538 return LoopVectorPreHeader; 3539 } 3540 3541 std::pair<BasicBlock *, Value *> 3542 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3543 /* 3544 In this function we generate a new loop. The new loop will contain 3545 the vectorized instructions while the old loop will continue to run the 3546 scalar remainder. 3547 3548 [ ] <-- loop iteration number check. 3549 / | 3550 / v 3551 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3552 | / | 3553 | / v 3554 || [ ] <-- vector pre header. 3555 |/ | 3556 | v 3557 | [ ] \ 3558 | [ ]_| <-- vector loop. 3559 | | 3560 | v 3561 \ -[ ] <--- middle-block. 3562 \/ | 3563 /\ v 3564 | ->[ ] <--- new preheader. 3565 | | 3566 (opt) v <-- edge from middle to exit iff epilogue is not required. 3567 | [ ] \ 3568 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3569 \ | 3570 \ v 3571 >[ ] <-- exit block(s). 3572 ... 3573 */ 3574 3575 // Get the metadata of the original loop before it gets modified. 3576 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3577 3578 // Workaround! Compute the trip count of the original loop and cache it 3579 // before we start modifying the CFG. This code has a systemic problem 3580 // wherein it tries to run analysis over partially constructed IR; this is 3581 // wrong, and not simply for SCEV. The trip count of the original loop 3582 // simply happens to be prone to hitting this in practice. In theory, we 3583 // can hit the same issue for any SCEV, or ValueTracking query done during 3584 // mutation. See PR49900. 3585 getOrCreateTripCount(OrigLoop); 3586 3587 // Create an empty vector loop, and prepare basic blocks for the runtime 3588 // checks. 3589 Loop *Lp = createVectorLoopSkeleton(""); 3590 3591 // Now, compare the new count to zero. If it is zero skip the vector loop and 3592 // jump to the scalar loop. This check also covers the case where the 3593 // backedge-taken count is uint##_max: adding one to it will overflow leading 3594 // to an incorrect trip count of zero. In this (rare) case we will also jump 3595 // to the scalar loop. 3596 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3597 3598 // Generate the code to check any assumptions that we've made for SCEV 3599 // expressions. 3600 emitSCEVChecks(Lp, LoopScalarPreHeader); 3601 3602 // Generate the code that checks in runtime if arrays overlap. We put the 3603 // checks into a separate block to make the more common case of few elements 3604 // faster. 3605 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3606 3607 createHeaderBranch(Lp); 3608 3609 // Emit phis for the new starting index of the scalar loop. 3610 createInductionResumeValues(Lp); 3611 3612 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3613 } 3614 3615 // Fix up external users of the induction variable. At this point, we are 3616 // in LCSSA form, with all external PHIs that use the IV having one input value, 3617 // coming from the remainder loop. We need those PHIs to also have a correct 3618 // value for the IV when arriving directly from the middle block. 3619 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3620 const InductionDescriptor &II, 3621 Value *CountRoundDown, Value *EndValue, 3622 BasicBlock *MiddleBlock) { 3623 // There are two kinds of external IV usages - those that use the value 3624 // computed in the last iteration (the PHI) and those that use the penultimate 3625 // value (the value that feeds into the phi from the loop latch). 3626 // We allow both, but they, obviously, have different values. 3627 3628 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3629 3630 DenseMap<Value *, Value *> MissingVals; 3631 3632 // An external user of the last iteration's value should see the value that 3633 // the remainder loop uses to initialize its own IV. 3634 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3635 for (User *U : PostInc->users()) { 3636 Instruction *UI = cast<Instruction>(U); 3637 if (!OrigLoop->contains(UI)) { 3638 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3639 MissingVals[UI] = EndValue; 3640 } 3641 } 3642 3643 // An external user of the penultimate value need to see EndValue - Step. 3644 // The simplest way to get this is to recompute it from the constituent SCEVs, 3645 // that is Start + (Step * (CRD - 1)). 3646 for (User *U : OrigPhi->users()) { 3647 auto *UI = cast<Instruction>(U); 3648 if (!OrigLoop->contains(UI)) { 3649 const DataLayout &DL = 3650 OrigLoop->getHeader()->getModule()->getDataLayout(); 3651 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3652 3653 IRBuilder<> B(MiddleBlock->getTerminator()); 3654 3655 // Fast-math-flags propagate from the original induction instruction. 3656 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3657 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3658 3659 Value *CountMinusOne = B.CreateSub( 3660 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3661 Value *CMO = 3662 !II.getStep()->getType()->isIntegerTy() 3663 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3664 II.getStep()->getType()) 3665 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3666 CMO->setName("cast.cmo"); 3667 Value *Escape = 3668 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3669 Escape->setName("ind.escape"); 3670 MissingVals[UI] = Escape; 3671 } 3672 } 3673 3674 for (auto &I : MissingVals) { 3675 PHINode *PHI = cast<PHINode>(I.first); 3676 // One corner case we have to handle is two IVs "chasing" each-other, 3677 // that is %IV2 = phi [...], [ %IV1, %latch ] 3678 // In this case, if IV1 has an external use, we need to avoid adding both 3679 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3680 // don't already have an incoming value for the middle block. 3681 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3682 PHI->addIncoming(I.second, MiddleBlock); 3683 } 3684 } 3685 3686 namespace { 3687 3688 struct CSEDenseMapInfo { 3689 static bool canHandle(const Instruction *I) { 3690 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3691 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3692 } 3693 3694 static inline Instruction *getEmptyKey() { 3695 return DenseMapInfo<Instruction *>::getEmptyKey(); 3696 } 3697 3698 static inline Instruction *getTombstoneKey() { 3699 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3700 } 3701 3702 static unsigned getHashValue(const Instruction *I) { 3703 assert(canHandle(I) && "Unknown instruction!"); 3704 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3705 I->value_op_end())); 3706 } 3707 3708 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3709 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3710 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3711 return LHS == RHS; 3712 return LHS->isIdenticalTo(RHS); 3713 } 3714 }; 3715 3716 } // end anonymous namespace 3717 3718 ///Perform cse of induction variable instructions. 3719 static void cse(BasicBlock *BB) { 3720 // Perform simple cse. 3721 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3722 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3723 if (!CSEDenseMapInfo::canHandle(&In)) 3724 continue; 3725 3726 // Check if we can replace this instruction with any of the 3727 // visited instructions. 3728 if (Instruction *V = CSEMap.lookup(&In)) { 3729 In.replaceAllUsesWith(V); 3730 In.eraseFromParent(); 3731 continue; 3732 } 3733 3734 CSEMap[&In] = &In; 3735 } 3736 } 3737 3738 InstructionCost 3739 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3740 bool &NeedToScalarize) const { 3741 Function *F = CI->getCalledFunction(); 3742 Type *ScalarRetTy = CI->getType(); 3743 SmallVector<Type *, 4> Tys, ScalarTys; 3744 for (auto &ArgOp : CI->args()) 3745 ScalarTys.push_back(ArgOp->getType()); 3746 3747 // Estimate cost of scalarized vector call. The source operands are assumed 3748 // to be vectors, so we need to extract individual elements from there, 3749 // execute VF scalar calls, and then gather the result into the vector return 3750 // value. 3751 InstructionCost ScalarCallCost = 3752 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3753 if (VF.isScalar()) 3754 return ScalarCallCost; 3755 3756 // Compute corresponding vector type for return value and arguments. 3757 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3758 for (Type *ScalarTy : ScalarTys) 3759 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3760 3761 // Compute costs of unpacking argument values for the scalar calls and 3762 // packing the return values to a vector. 3763 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3764 3765 InstructionCost Cost = 3766 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3767 3768 // If we can't emit a vector call for this function, then the currently found 3769 // cost is the cost we need to return. 3770 NeedToScalarize = true; 3771 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3772 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3773 3774 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3775 return Cost; 3776 3777 // If the corresponding vector cost is cheaper, return its cost. 3778 InstructionCost VectorCallCost = 3779 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3780 if (VectorCallCost < Cost) { 3781 NeedToScalarize = false; 3782 Cost = VectorCallCost; 3783 } 3784 return Cost; 3785 } 3786 3787 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3788 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3789 return Elt; 3790 return VectorType::get(Elt, VF); 3791 } 3792 3793 InstructionCost 3794 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3795 ElementCount VF) const { 3796 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3797 assert(ID && "Expected intrinsic call!"); 3798 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3799 FastMathFlags FMF; 3800 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3801 FMF = FPMO->getFastMathFlags(); 3802 3803 SmallVector<const Value *> Arguments(CI->args()); 3804 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3805 SmallVector<Type *> ParamTys; 3806 std::transform(FTy->param_begin(), FTy->param_end(), 3807 std::back_inserter(ParamTys), 3808 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3809 3810 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3811 dyn_cast<IntrinsicInst>(CI)); 3812 return TTI.getIntrinsicInstrCost(CostAttrs, 3813 TargetTransformInfo::TCK_RecipThroughput); 3814 } 3815 3816 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3817 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3818 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3819 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3820 } 3821 3822 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3823 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3824 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3825 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3826 } 3827 3828 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3829 // For every instruction `I` in MinBWs, truncate the operands, create a 3830 // truncated version of `I` and reextend its result. InstCombine runs 3831 // later and will remove any ext/trunc pairs. 3832 SmallPtrSet<Value *, 4> Erased; 3833 for (const auto &KV : Cost->getMinimalBitwidths()) { 3834 // If the value wasn't vectorized, we must maintain the original scalar 3835 // type. The absence of the value from State indicates that it 3836 // wasn't vectorized. 3837 // FIXME: Should not rely on getVPValue at this point. 3838 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3839 if (!State.hasAnyVectorValue(Def)) 3840 continue; 3841 for (unsigned Part = 0; Part < UF; ++Part) { 3842 Value *I = State.get(Def, Part); 3843 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3844 continue; 3845 Type *OriginalTy = I->getType(); 3846 Type *ScalarTruncatedTy = 3847 IntegerType::get(OriginalTy->getContext(), KV.second); 3848 auto *TruncatedTy = VectorType::get( 3849 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3850 if (TruncatedTy == OriginalTy) 3851 continue; 3852 3853 IRBuilder<> B(cast<Instruction>(I)); 3854 auto ShrinkOperand = [&](Value *V) -> Value * { 3855 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3856 if (ZI->getSrcTy() == TruncatedTy) 3857 return ZI->getOperand(0); 3858 return B.CreateZExtOrTrunc(V, TruncatedTy); 3859 }; 3860 3861 // The actual instruction modification depends on the instruction type, 3862 // unfortunately. 3863 Value *NewI = nullptr; 3864 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3865 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3866 ShrinkOperand(BO->getOperand(1))); 3867 3868 // Any wrapping introduced by shrinking this operation shouldn't be 3869 // considered undefined behavior. So, we can't unconditionally copy 3870 // arithmetic wrapping flags to NewI. 3871 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3872 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3873 NewI = 3874 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3875 ShrinkOperand(CI->getOperand(1))); 3876 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3877 NewI = B.CreateSelect(SI->getCondition(), 3878 ShrinkOperand(SI->getTrueValue()), 3879 ShrinkOperand(SI->getFalseValue())); 3880 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3881 switch (CI->getOpcode()) { 3882 default: 3883 llvm_unreachable("Unhandled cast!"); 3884 case Instruction::Trunc: 3885 NewI = ShrinkOperand(CI->getOperand(0)); 3886 break; 3887 case Instruction::SExt: 3888 NewI = B.CreateSExtOrTrunc( 3889 CI->getOperand(0), 3890 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3891 break; 3892 case Instruction::ZExt: 3893 NewI = B.CreateZExtOrTrunc( 3894 CI->getOperand(0), 3895 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3896 break; 3897 } 3898 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3899 auto Elements0 = 3900 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3901 auto *O0 = B.CreateZExtOrTrunc( 3902 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3903 auto Elements1 = 3904 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3905 auto *O1 = B.CreateZExtOrTrunc( 3906 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3907 3908 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3909 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3910 // Don't do anything with the operands, just extend the result. 3911 continue; 3912 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3913 auto Elements = 3914 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3915 auto *O0 = B.CreateZExtOrTrunc( 3916 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3917 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3918 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3919 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3920 auto Elements = 3921 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3922 auto *O0 = B.CreateZExtOrTrunc( 3923 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3924 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3925 } else { 3926 // If we don't know what to do, be conservative and don't do anything. 3927 continue; 3928 } 3929 3930 // Lastly, extend the result. 3931 NewI->takeName(cast<Instruction>(I)); 3932 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3933 I->replaceAllUsesWith(Res); 3934 cast<Instruction>(I)->eraseFromParent(); 3935 Erased.insert(I); 3936 State.reset(Def, Res, Part); 3937 } 3938 } 3939 3940 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3941 for (const auto &KV : Cost->getMinimalBitwidths()) { 3942 // If the value wasn't vectorized, we must maintain the original scalar 3943 // type. The absence of the value from State indicates that it 3944 // wasn't vectorized. 3945 // FIXME: Should not rely on getVPValue at this point. 3946 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3947 if (!State.hasAnyVectorValue(Def)) 3948 continue; 3949 for (unsigned Part = 0; Part < UF; ++Part) { 3950 Value *I = State.get(Def, Part); 3951 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3952 if (Inst && Inst->use_empty()) { 3953 Value *NewI = Inst->getOperand(0); 3954 Inst->eraseFromParent(); 3955 State.reset(Def, NewI, Part); 3956 } 3957 } 3958 } 3959 } 3960 3961 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3962 // Insert truncates and extends for any truncated instructions as hints to 3963 // InstCombine. 3964 if (VF.isVector()) 3965 truncateToMinimalBitwidths(State); 3966 3967 // Fix widened non-induction PHIs by setting up the PHI operands. 3968 if (OrigPHIsToFix.size()) { 3969 assert(EnableVPlanNativePath && 3970 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3971 fixNonInductionPHIs(State); 3972 } 3973 3974 // At this point every instruction in the original loop is widened to a 3975 // vector form. Now we need to fix the recurrences in the loop. These PHI 3976 // nodes are currently empty because we did not want to introduce cycles. 3977 // This is the second stage of vectorizing recurrences. 3978 fixCrossIterationPHIs(State); 3979 3980 // Forget the original basic block. 3981 PSE.getSE()->forgetLoop(OrigLoop); 3982 3983 // If we inserted an edge from the middle block to the unique exit block, 3984 // update uses outside the loop (phis) to account for the newly inserted 3985 // edge. 3986 if (!Cost->requiresScalarEpilogue(VF)) { 3987 // Fix-up external users of the induction variables. 3988 for (auto &Entry : Legal->getInductionVars()) 3989 fixupIVUsers(Entry.first, Entry.second, 3990 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3991 IVEndValues[Entry.first], LoopMiddleBlock); 3992 3993 fixLCSSAPHIs(State); 3994 } 3995 3996 for (Instruction *PI : PredicatedInstructions) 3997 sinkScalarOperands(&*PI); 3998 3999 // Remove redundant induction instructions. 4000 cse(LoopVectorBody); 4001 4002 // Set/update profile weights for the vector and remainder loops as original 4003 // loop iterations are now distributed among them. Note that original loop 4004 // represented by LoopScalarBody becomes remainder loop after vectorization. 4005 // 4006 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4007 // end up getting slightly roughened result but that should be OK since 4008 // profile is not inherently precise anyway. Note also possible bypass of 4009 // vector code caused by legality checks is ignored, assigning all the weight 4010 // to the vector loop, optimistically. 4011 // 4012 // For scalable vectorization we can't know at compile time how many iterations 4013 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4014 // vscale of '1'. 4015 setProfileInfoAfterUnrolling( 4016 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4017 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4018 } 4019 4020 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4021 // In order to support recurrences we need to be able to vectorize Phi nodes. 4022 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4023 // stage #2: We now need to fix the recurrences by adding incoming edges to 4024 // the currently empty PHI nodes. At this point every instruction in the 4025 // original loop is widened to a vector form so we can use them to construct 4026 // the incoming edges. 4027 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4028 for (VPRecipeBase &R : Header->phis()) { 4029 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4030 fixReduction(ReductionPhi, State); 4031 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4032 fixFirstOrderRecurrence(FOR, State); 4033 } 4034 } 4035 4036 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4037 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4038 // This is the second phase of vectorizing first-order recurrences. An 4039 // overview of the transformation is described below. Suppose we have the 4040 // following loop. 4041 // 4042 // for (int i = 0; i < n; ++i) 4043 // b[i] = a[i] - a[i - 1]; 4044 // 4045 // There is a first-order recurrence on "a". For this loop, the shorthand 4046 // scalar IR looks like: 4047 // 4048 // scalar.ph: 4049 // s_init = a[-1] 4050 // br scalar.body 4051 // 4052 // scalar.body: 4053 // i = phi [0, scalar.ph], [i+1, scalar.body] 4054 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4055 // s2 = a[i] 4056 // b[i] = s2 - s1 4057 // br cond, scalar.body, ... 4058 // 4059 // In this example, s1 is a recurrence because it's value depends on the 4060 // previous iteration. In the first phase of vectorization, we created a 4061 // vector phi v1 for s1. We now complete the vectorization and produce the 4062 // shorthand vector IR shown below (for VF = 4, UF = 1). 4063 // 4064 // vector.ph: 4065 // v_init = vector(..., ..., ..., a[-1]) 4066 // br vector.body 4067 // 4068 // vector.body 4069 // i = phi [0, vector.ph], [i+4, vector.body] 4070 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4071 // v2 = a[i, i+1, i+2, i+3]; 4072 // v3 = vector(v1(3), v2(0, 1, 2)) 4073 // b[i, i+1, i+2, i+3] = v2 - v3 4074 // br cond, vector.body, middle.block 4075 // 4076 // middle.block: 4077 // x = v2(3) 4078 // br scalar.ph 4079 // 4080 // scalar.ph: 4081 // s_init = phi [x, middle.block], [a[-1], otherwise] 4082 // br scalar.body 4083 // 4084 // After execution completes the vector loop, we extract the next value of 4085 // the recurrence (x) to use as the initial value in the scalar loop. 4086 4087 // Extract the last vector element in the middle block. This will be the 4088 // initial value for the recurrence when jumping to the scalar loop. 4089 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4090 Value *Incoming = State.get(PreviousDef, UF - 1); 4091 auto *ExtractForScalar = Incoming; 4092 auto *IdxTy = Builder.getInt32Ty(); 4093 if (VF.isVector()) { 4094 auto *One = ConstantInt::get(IdxTy, 1); 4095 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4096 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4097 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4098 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4099 "vector.recur.extract"); 4100 } 4101 // Extract the second last element in the middle block if the 4102 // Phi is used outside the loop. We need to extract the phi itself 4103 // and not the last element (the phi update in the current iteration). This 4104 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4105 // when the scalar loop is not run at all. 4106 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4107 if (VF.isVector()) { 4108 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4109 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4110 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4111 Incoming, Idx, "vector.recur.extract.for.phi"); 4112 } else if (UF > 1) 4113 // When loop is unrolled without vectorizing, initialize 4114 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4115 // of `Incoming`. This is analogous to the vectorized case above: extracting 4116 // the second last element when VF > 1. 4117 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4118 4119 // Fix the initial value of the original recurrence in the scalar loop. 4120 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4121 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4122 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4123 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4124 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4125 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4126 Start->addIncoming(Incoming, BB); 4127 } 4128 4129 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4130 Phi->setName("scalar.recur"); 4131 4132 // Finally, fix users of the recurrence outside the loop. The users will need 4133 // either the last value of the scalar recurrence or the last value of the 4134 // vector recurrence we extracted in the middle block. Since the loop is in 4135 // LCSSA form, we just need to find all the phi nodes for the original scalar 4136 // recurrence in the exit block, and then add an edge for the middle block. 4137 // Note that LCSSA does not imply single entry when the original scalar loop 4138 // had multiple exiting edges (as we always run the last iteration in the 4139 // scalar epilogue); in that case, there is no edge from middle to exit and 4140 // and thus no phis which needed updated. 4141 if (!Cost->requiresScalarEpilogue(VF)) 4142 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4143 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4144 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4145 } 4146 4147 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4148 VPTransformState &State) { 4149 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4150 // Get it's reduction variable descriptor. 4151 assert(Legal->isReductionVariable(OrigPhi) && 4152 "Unable to find the reduction variable"); 4153 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4154 4155 RecurKind RK = RdxDesc.getRecurrenceKind(); 4156 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4157 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4158 setDebugLocFromInst(ReductionStartValue); 4159 4160 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4161 // This is the vector-clone of the value that leaves the loop. 4162 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4163 4164 // Wrap flags are in general invalid after vectorization, clear them. 4165 clearReductionWrapFlags(RdxDesc, State); 4166 4167 // Before each round, move the insertion point right between 4168 // the PHIs and the values we are going to write. 4169 // This allows us to write both PHINodes and the extractelement 4170 // instructions. 4171 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4172 4173 setDebugLocFromInst(LoopExitInst); 4174 4175 Type *PhiTy = OrigPhi->getType(); 4176 // If tail is folded by masking, the vector value to leave the loop should be 4177 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4178 // instead of the former. For an inloop reduction the reduction will already 4179 // be predicated, and does not need to be handled here. 4180 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4181 for (unsigned Part = 0; Part < UF; ++Part) { 4182 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4183 Value *Sel = nullptr; 4184 for (User *U : VecLoopExitInst->users()) { 4185 if (isa<SelectInst>(U)) { 4186 assert(!Sel && "Reduction exit feeding two selects"); 4187 Sel = U; 4188 } else 4189 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4190 } 4191 assert(Sel && "Reduction exit feeds no select"); 4192 State.reset(LoopExitInstDef, Sel, Part); 4193 4194 // If the target can create a predicated operator for the reduction at no 4195 // extra cost in the loop (for example a predicated vadd), it can be 4196 // cheaper for the select to remain in the loop than be sunk out of it, 4197 // and so use the select value for the phi instead of the old 4198 // LoopExitValue. 4199 if (PreferPredicatedReductionSelect || 4200 TTI->preferPredicatedReductionSelect( 4201 RdxDesc.getOpcode(), PhiTy, 4202 TargetTransformInfo::ReductionFlags())) { 4203 auto *VecRdxPhi = 4204 cast<PHINode>(State.get(PhiR, Part)); 4205 VecRdxPhi->setIncomingValueForBlock( 4206 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4207 } 4208 } 4209 } 4210 4211 // If the vector reduction can be performed in a smaller type, we truncate 4212 // then extend the loop exit value to enable InstCombine to evaluate the 4213 // entire expression in the smaller type. 4214 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4215 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4216 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4217 Builder.SetInsertPoint( 4218 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4219 VectorParts RdxParts(UF); 4220 for (unsigned Part = 0; Part < UF; ++Part) { 4221 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4222 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4223 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4224 : Builder.CreateZExt(Trunc, VecTy); 4225 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4226 if (U != Trunc) { 4227 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4228 RdxParts[Part] = Extnd; 4229 } 4230 } 4231 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4232 for (unsigned Part = 0; Part < UF; ++Part) { 4233 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4234 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4235 } 4236 } 4237 4238 // Reduce all of the unrolled parts into a single vector. 4239 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4240 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4241 4242 // The middle block terminator has already been assigned a DebugLoc here (the 4243 // OrigLoop's single latch terminator). We want the whole middle block to 4244 // appear to execute on this line because: (a) it is all compiler generated, 4245 // (b) these instructions are always executed after evaluating the latch 4246 // conditional branch, and (c) other passes may add new predecessors which 4247 // terminate on this line. This is the easiest way to ensure we don't 4248 // accidentally cause an extra step back into the loop while debugging. 4249 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4250 if (PhiR->isOrdered()) 4251 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4252 else { 4253 // Floating-point operations should have some FMF to enable the reduction. 4254 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4255 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4256 for (unsigned Part = 1; Part < UF; ++Part) { 4257 Value *RdxPart = State.get(LoopExitInstDef, Part); 4258 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4259 ReducedPartRdx = Builder.CreateBinOp( 4260 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4261 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4262 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4263 ReducedPartRdx, RdxPart); 4264 else 4265 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4266 } 4267 } 4268 4269 // Create the reduction after the loop. Note that inloop reductions create the 4270 // target reduction in the loop using a Reduction recipe. 4271 if (VF.isVector() && !PhiR->isInLoop()) { 4272 ReducedPartRdx = 4273 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4274 // If the reduction can be performed in a smaller type, we need to extend 4275 // the reduction to the wider type before we branch to the original loop. 4276 if (PhiTy != RdxDesc.getRecurrenceType()) 4277 ReducedPartRdx = RdxDesc.isSigned() 4278 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4279 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4280 } 4281 4282 // Create a phi node that merges control-flow from the backedge-taken check 4283 // block and the middle block. 4284 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4285 LoopScalarPreHeader->getTerminator()); 4286 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4287 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4288 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4289 4290 // Now, we need to fix the users of the reduction variable 4291 // inside and outside of the scalar remainder loop. 4292 4293 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4294 // in the exit blocks. See comment on analogous loop in 4295 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4296 if (!Cost->requiresScalarEpilogue(VF)) 4297 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4298 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4299 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4300 4301 // Fix the scalar loop reduction variable with the incoming reduction sum 4302 // from the vector body and from the backedge value. 4303 int IncomingEdgeBlockIdx = 4304 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4305 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4306 // Pick the other block. 4307 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4308 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4309 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4310 } 4311 4312 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4313 VPTransformState &State) { 4314 RecurKind RK = RdxDesc.getRecurrenceKind(); 4315 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4316 return; 4317 4318 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4319 assert(LoopExitInstr && "null loop exit instruction"); 4320 SmallVector<Instruction *, 8> Worklist; 4321 SmallPtrSet<Instruction *, 8> Visited; 4322 Worklist.push_back(LoopExitInstr); 4323 Visited.insert(LoopExitInstr); 4324 4325 while (!Worklist.empty()) { 4326 Instruction *Cur = Worklist.pop_back_val(); 4327 if (isa<OverflowingBinaryOperator>(Cur)) 4328 for (unsigned Part = 0; Part < UF; ++Part) { 4329 // FIXME: Should not rely on getVPValue at this point. 4330 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4331 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4332 } 4333 4334 for (User *U : Cur->users()) { 4335 Instruction *UI = cast<Instruction>(U); 4336 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4337 Visited.insert(UI).second) 4338 Worklist.push_back(UI); 4339 } 4340 } 4341 } 4342 4343 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4344 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4345 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4346 // Some phis were already hand updated by the reduction and recurrence 4347 // code above, leave them alone. 4348 continue; 4349 4350 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4351 // Non-instruction incoming values will have only one value. 4352 4353 VPLane Lane = VPLane::getFirstLane(); 4354 if (isa<Instruction>(IncomingValue) && 4355 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4356 VF)) 4357 Lane = VPLane::getLastLaneForVF(VF); 4358 4359 // Can be a loop invariant incoming value or the last scalar value to be 4360 // extracted from the vectorized loop. 4361 // FIXME: Should not rely on getVPValue at this point. 4362 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4363 Value *lastIncomingValue = 4364 OrigLoop->isLoopInvariant(IncomingValue) 4365 ? IncomingValue 4366 : State.get(State.Plan->getVPValue(IncomingValue, true), 4367 VPIteration(UF - 1, Lane)); 4368 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4369 } 4370 } 4371 4372 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4373 // The basic block and loop containing the predicated instruction. 4374 auto *PredBB = PredInst->getParent(); 4375 auto *VectorLoop = LI->getLoopFor(PredBB); 4376 4377 // Initialize a worklist with the operands of the predicated instruction. 4378 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4379 4380 // Holds instructions that we need to analyze again. An instruction may be 4381 // reanalyzed if we don't yet know if we can sink it or not. 4382 SmallVector<Instruction *, 8> InstsToReanalyze; 4383 4384 // Returns true if a given use occurs in the predicated block. Phi nodes use 4385 // their operands in their corresponding predecessor blocks. 4386 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4387 auto *I = cast<Instruction>(U.getUser()); 4388 BasicBlock *BB = I->getParent(); 4389 if (auto *Phi = dyn_cast<PHINode>(I)) 4390 BB = Phi->getIncomingBlock( 4391 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4392 return BB == PredBB; 4393 }; 4394 4395 // Iteratively sink the scalarized operands of the predicated instruction 4396 // into the block we created for it. When an instruction is sunk, it's 4397 // operands are then added to the worklist. The algorithm ends after one pass 4398 // through the worklist doesn't sink a single instruction. 4399 bool Changed; 4400 do { 4401 // Add the instructions that need to be reanalyzed to the worklist, and 4402 // reset the changed indicator. 4403 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4404 InstsToReanalyze.clear(); 4405 Changed = false; 4406 4407 while (!Worklist.empty()) { 4408 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4409 4410 // We can't sink an instruction if it is a phi node, is not in the loop, 4411 // or may have side effects. 4412 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4413 I->mayHaveSideEffects()) 4414 continue; 4415 4416 // If the instruction is already in PredBB, check if we can sink its 4417 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4418 // sinking the scalar instruction I, hence it appears in PredBB; but it 4419 // may have failed to sink I's operands (recursively), which we try 4420 // (again) here. 4421 if (I->getParent() == PredBB) { 4422 Worklist.insert(I->op_begin(), I->op_end()); 4423 continue; 4424 } 4425 4426 // It's legal to sink the instruction if all its uses occur in the 4427 // predicated block. Otherwise, there's nothing to do yet, and we may 4428 // need to reanalyze the instruction. 4429 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4430 InstsToReanalyze.push_back(I); 4431 continue; 4432 } 4433 4434 // Move the instruction to the beginning of the predicated block, and add 4435 // it's operands to the worklist. 4436 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4437 Worklist.insert(I->op_begin(), I->op_end()); 4438 4439 // The sinking may have enabled other instructions to be sunk, so we will 4440 // need to iterate. 4441 Changed = true; 4442 } 4443 } while (Changed); 4444 } 4445 4446 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4447 for (PHINode *OrigPhi : OrigPHIsToFix) { 4448 VPWidenPHIRecipe *VPPhi = 4449 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4450 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4451 // Make sure the builder has a valid insert point. 4452 Builder.SetInsertPoint(NewPhi); 4453 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4454 VPValue *Inc = VPPhi->getIncomingValue(i); 4455 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4456 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4457 } 4458 } 4459 } 4460 4461 bool InnerLoopVectorizer::useOrderedReductions( 4462 const RecurrenceDescriptor &RdxDesc) { 4463 return Cost->useOrderedReductions(RdxDesc); 4464 } 4465 4466 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4467 VPWidenPHIRecipe *PhiR, 4468 VPTransformState &State) { 4469 PHINode *P = cast<PHINode>(PN); 4470 if (EnableVPlanNativePath) { 4471 // Currently we enter here in the VPlan-native path for non-induction 4472 // PHIs where all control flow is uniform. We simply widen these PHIs. 4473 // Create a vector phi with no operands - the vector phi operands will be 4474 // set at the end of vector code generation. 4475 Type *VecTy = (State.VF.isScalar()) 4476 ? PN->getType() 4477 : VectorType::get(PN->getType(), State.VF); 4478 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4479 State.set(PhiR, VecPhi, 0); 4480 OrigPHIsToFix.push_back(P); 4481 4482 return; 4483 } 4484 4485 assert(PN->getParent() == OrigLoop->getHeader() && 4486 "Non-header phis should have been handled elsewhere"); 4487 4488 // In order to support recurrences we need to be able to vectorize Phi nodes. 4489 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4490 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4491 // this value when we vectorize all of the instructions that use the PHI. 4492 4493 assert(!Legal->isReductionVariable(P) && 4494 "reductions should be handled elsewhere"); 4495 4496 setDebugLocFromInst(P); 4497 4498 // This PHINode must be an induction variable. 4499 // Make sure that we know about it. 4500 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4501 4502 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4503 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4504 4505 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4506 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4507 4508 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4509 // which can be found from the original scalar operations. 4510 switch (II.getKind()) { 4511 case InductionDescriptor::IK_NoInduction: 4512 llvm_unreachable("Unknown induction"); 4513 case InductionDescriptor::IK_IntInduction: 4514 case InductionDescriptor::IK_FpInduction: 4515 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4516 case InductionDescriptor::IK_PtrInduction: { 4517 // Handle the pointer induction variable case. 4518 assert(P->getType()->isPointerTy() && "Unexpected type."); 4519 4520 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4521 // This is the normalized GEP that starts counting at zero. 4522 Value *PtrInd = 4523 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4524 // Determine the number of scalars we need to generate for each unroll 4525 // iteration. If the instruction is uniform, we only need to generate the 4526 // first lane. Otherwise, we generate all VF values. 4527 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4528 assert((IsUniform || !State.VF.isScalable()) && 4529 "Cannot scalarize a scalable VF"); 4530 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4531 4532 for (unsigned Part = 0; Part < UF; ++Part) { 4533 Value *PartStart = 4534 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4535 4536 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4537 Value *Idx = Builder.CreateAdd( 4538 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4539 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4540 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4541 DL, II, State.CFG.PrevBB); 4542 SclrGep->setName("next.gep"); 4543 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4544 } 4545 } 4546 return; 4547 } 4548 assert(isa<SCEVConstant>(II.getStep()) && 4549 "Induction step not a SCEV constant!"); 4550 Type *PhiType = II.getStep()->getType(); 4551 4552 // Build a pointer phi 4553 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4554 Type *ScStValueType = ScalarStartValue->getType(); 4555 PHINode *NewPointerPhi = 4556 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4557 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4558 4559 // A pointer induction, performed by using a gep 4560 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4561 Instruction *InductionLoc = LoopLatch->getTerminator(); 4562 const SCEV *ScalarStep = II.getStep(); 4563 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4564 Value *ScalarStepValue = 4565 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4566 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4567 Value *NumUnrolledElems = 4568 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4569 Value *InductionGEP = GetElementPtrInst::Create( 4570 II.getElementType(), NewPointerPhi, 4571 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4572 InductionLoc); 4573 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4574 4575 // Create UF many actual address geps that use the pointer 4576 // phi as base and a vectorized version of the step value 4577 // (<step*0, ..., step*N>) as offset. 4578 for (unsigned Part = 0; Part < State.UF; ++Part) { 4579 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4580 Value *StartOffsetScalar = 4581 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4582 Value *StartOffset = 4583 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4584 // Create a vector of consecutive numbers from zero to VF. 4585 StartOffset = 4586 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4587 4588 Value *GEP = Builder.CreateGEP( 4589 II.getElementType(), NewPointerPhi, 4590 Builder.CreateMul( 4591 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4592 "vector.gep")); 4593 State.set(PhiR, GEP, Part); 4594 } 4595 } 4596 } 4597 } 4598 4599 /// A helper function for checking whether an integer division-related 4600 /// instruction may divide by zero (in which case it must be predicated if 4601 /// executed conditionally in the scalar code). 4602 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4603 /// Non-zero divisors that are non compile-time constants will not be 4604 /// converted into multiplication, so we will still end up scalarizing 4605 /// the division, but can do so w/o predication. 4606 static bool mayDivideByZero(Instruction &I) { 4607 assert((I.getOpcode() == Instruction::UDiv || 4608 I.getOpcode() == Instruction::SDiv || 4609 I.getOpcode() == Instruction::URem || 4610 I.getOpcode() == Instruction::SRem) && 4611 "Unexpected instruction"); 4612 Value *Divisor = I.getOperand(1); 4613 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4614 return !CInt || CInt->isZero(); 4615 } 4616 4617 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4618 VPUser &ArgOperands, 4619 VPTransformState &State) { 4620 assert(!isa<DbgInfoIntrinsic>(I) && 4621 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4622 setDebugLocFromInst(&I); 4623 4624 Module *M = I.getParent()->getParent()->getParent(); 4625 auto *CI = cast<CallInst>(&I); 4626 4627 SmallVector<Type *, 4> Tys; 4628 for (Value *ArgOperand : CI->args()) 4629 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4630 4631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4632 4633 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4634 // version of the instruction. 4635 // Is it beneficial to perform intrinsic call compared to lib call? 4636 bool NeedToScalarize = false; 4637 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4638 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4639 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4640 assert((UseVectorIntrinsic || !NeedToScalarize) && 4641 "Instruction should be scalarized elsewhere."); 4642 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4643 "Either the intrinsic cost or vector call cost must be valid"); 4644 4645 for (unsigned Part = 0; Part < UF; ++Part) { 4646 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4647 SmallVector<Value *, 4> Args; 4648 for (auto &I : enumerate(ArgOperands.operands())) { 4649 // Some intrinsics have a scalar argument - don't replace it with a 4650 // vector. 4651 Value *Arg; 4652 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4653 Arg = State.get(I.value(), Part); 4654 else { 4655 Arg = State.get(I.value(), VPIteration(0, 0)); 4656 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4657 TysForDecl.push_back(Arg->getType()); 4658 } 4659 Args.push_back(Arg); 4660 } 4661 4662 Function *VectorF; 4663 if (UseVectorIntrinsic) { 4664 // Use vector version of the intrinsic. 4665 if (VF.isVector()) 4666 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4667 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4668 assert(VectorF && "Can't retrieve vector intrinsic."); 4669 } else { 4670 // Use vector version of the function call. 4671 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4672 #ifndef NDEBUG 4673 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4674 "Can't create vector function."); 4675 #endif 4676 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4677 } 4678 SmallVector<OperandBundleDef, 1> OpBundles; 4679 CI->getOperandBundlesAsDefs(OpBundles); 4680 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4681 4682 if (isa<FPMathOperator>(V)) 4683 V->copyFastMathFlags(CI); 4684 4685 State.set(Def, V, Part); 4686 addMetadata(V, &I); 4687 } 4688 } 4689 4690 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4691 // We should not collect Scalars more than once per VF. Right now, this 4692 // function is called from collectUniformsAndScalars(), which already does 4693 // this check. Collecting Scalars for VF=1 does not make any sense. 4694 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4695 "This function should not be visited twice for the same VF"); 4696 4697 SmallSetVector<Instruction *, 8> Worklist; 4698 4699 // These sets are used to seed the analysis with pointers used by memory 4700 // accesses that will remain scalar. 4701 SmallSetVector<Instruction *, 8> ScalarPtrs; 4702 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4703 auto *Latch = TheLoop->getLoopLatch(); 4704 4705 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4706 // The pointer operands of loads and stores will be scalar as long as the 4707 // memory access is not a gather or scatter operation. The value operand of a 4708 // store will remain scalar if the store is scalarized. 4709 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4710 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4711 assert(WideningDecision != CM_Unknown && 4712 "Widening decision should be ready at this moment"); 4713 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4714 if (Ptr == Store->getValueOperand()) 4715 return WideningDecision == CM_Scalarize; 4716 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4717 "Ptr is neither a value or pointer operand"); 4718 return WideningDecision != CM_GatherScatter; 4719 }; 4720 4721 // A helper that returns true if the given value is a bitcast or 4722 // getelementptr instruction contained in the loop. 4723 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4724 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4725 isa<GetElementPtrInst>(V)) && 4726 !TheLoop->isLoopInvariant(V); 4727 }; 4728 4729 // A helper that evaluates a memory access's use of a pointer. If the use will 4730 // be a scalar use and the pointer is only used by memory accesses, we place 4731 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4732 // PossibleNonScalarPtrs. 4733 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4734 // We only care about bitcast and getelementptr instructions contained in 4735 // the loop. 4736 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4737 return; 4738 4739 // If the pointer has already been identified as scalar (e.g., if it was 4740 // also identified as uniform), there's nothing to do. 4741 auto *I = cast<Instruction>(Ptr); 4742 if (Worklist.count(I)) 4743 return; 4744 4745 // If the use of the pointer will be a scalar use, and all users of the 4746 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4747 // place the pointer in PossibleNonScalarPtrs. 4748 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4749 return isa<LoadInst>(U) || isa<StoreInst>(U); 4750 })) 4751 ScalarPtrs.insert(I); 4752 else 4753 PossibleNonScalarPtrs.insert(I); 4754 }; 4755 4756 // We seed the scalars analysis with three classes of instructions: (1) 4757 // instructions marked uniform-after-vectorization and (2) bitcast, 4758 // getelementptr and (pointer) phi instructions used by memory accesses 4759 // requiring a scalar use. 4760 // 4761 // (1) Add to the worklist all instructions that have been identified as 4762 // uniform-after-vectorization. 4763 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4764 4765 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4766 // memory accesses requiring a scalar use. The pointer operands of loads and 4767 // stores will be scalar as long as the memory accesses is not a gather or 4768 // scatter operation. The value operand of a store will remain scalar if the 4769 // store is scalarized. 4770 for (auto *BB : TheLoop->blocks()) 4771 for (auto &I : *BB) { 4772 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4773 evaluatePtrUse(Load, Load->getPointerOperand()); 4774 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4775 evaluatePtrUse(Store, Store->getPointerOperand()); 4776 evaluatePtrUse(Store, Store->getValueOperand()); 4777 } 4778 } 4779 for (auto *I : ScalarPtrs) 4780 if (!PossibleNonScalarPtrs.count(I)) { 4781 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4782 Worklist.insert(I); 4783 } 4784 4785 // Insert the forced scalars. 4786 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4787 // induction variable when the PHI user is scalarized. 4788 auto ForcedScalar = ForcedScalars.find(VF); 4789 if (ForcedScalar != ForcedScalars.end()) 4790 for (auto *I : ForcedScalar->second) 4791 Worklist.insert(I); 4792 4793 // Expand the worklist by looking through any bitcasts and getelementptr 4794 // instructions we've already identified as scalar. This is similar to the 4795 // expansion step in collectLoopUniforms(); however, here we're only 4796 // expanding to include additional bitcasts and getelementptr instructions. 4797 unsigned Idx = 0; 4798 while (Idx != Worklist.size()) { 4799 Instruction *Dst = Worklist[Idx++]; 4800 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4801 continue; 4802 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4803 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4804 auto *J = cast<Instruction>(U); 4805 return !TheLoop->contains(J) || Worklist.count(J) || 4806 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4807 isScalarUse(J, Src)); 4808 })) { 4809 Worklist.insert(Src); 4810 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4811 } 4812 } 4813 4814 // An induction variable will remain scalar if all users of the induction 4815 // variable and induction variable update remain scalar. 4816 for (auto &Induction : Legal->getInductionVars()) { 4817 auto *Ind = Induction.first; 4818 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4819 4820 // If tail-folding is applied, the primary induction variable will be used 4821 // to feed a vector compare. 4822 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4823 continue; 4824 4825 // Returns true if \p Indvar is a pointer induction that is used directly by 4826 // load/store instruction \p I. 4827 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4828 Instruction *I) { 4829 return Induction.second.getKind() == 4830 InductionDescriptor::IK_PtrInduction && 4831 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4832 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4833 }; 4834 4835 // Determine if all users of the induction variable are scalar after 4836 // vectorization. 4837 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4838 auto *I = cast<Instruction>(U); 4839 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4840 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4841 }); 4842 if (!ScalarInd) 4843 continue; 4844 4845 // Determine if all users of the induction variable update instruction are 4846 // scalar after vectorization. 4847 auto ScalarIndUpdate = 4848 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4849 auto *I = cast<Instruction>(U); 4850 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4851 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4852 }); 4853 if (!ScalarIndUpdate) 4854 continue; 4855 4856 // The induction variable and its update instruction will remain scalar. 4857 Worklist.insert(Ind); 4858 Worklist.insert(IndUpdate); 4859 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4860 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4861 << "\n"); 4862 } 4863 4864 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4865 } 4866 4867 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 4868 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4869 return false; 4870 switch(I->getOpcode()) { 4871 default: 4872 break; 4873 case Instruction::Load: 4874 case Instruction::Store: { 4875 if (!Legal->isMaskRequired(I)) 4876 return false; 4877 auto *Ptr = getLoadStorePointerOperand(I); 4878 auto *Ty = getLoadStoreType(I); 4879 const Align Alignment = getLoadStoreAlignment(I); 4880 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4881 TTI.isLegalMaskedGather(Ty, Alignment)) 4882 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4883 TTI.isLegalMaskedScatter(Ty, Alignment)); 4884 } 4885 case Instruction::UDiv: 4886 case Instruction::SDiv: 4887 case Instruction::SRem: 4888 case Instruction::URem: 4889 return mayDivideByZero(*I); 4890 } 4891 return false; 4892 } 4893 4894 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4895 Instruction *I, ElementCount VF) { 4896 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4897 assert(getWideningDecision(I, VF) == CM_Unknown && 4898 "Decision should not be set yet."); 4899 auto *Group = getInterleavedAccessGroup(I); 4900 assert(Group && "Must have a group."); 4901 4902 // If the instruction's allocated size doesn't equal it's type size, it 4903 // requires padding and will be scalarized. 4904 auto &DL = I->getModule()->getDataLayout(); 4905 auto *ScalarTy = getLoadStoreType(I); 4906 if (hasIrregularType(ScalarTy, DL)) 4907 return false; 4908 4909 // Check if masking is required. 4910 // A Group may need masking for one of two reasons: it resides in a block that 4911 // needs predication, or it was decided to use masking to deal with gaps 4912 // (either a gap at the end of a load-access that may result in a speculative 4913 // load, or any gaps in a store-access). 4914 bool PredicatedAccessRequiresMasking = 4915 blockNeedsPredicationForAnyReason(I->getParent()) && 4916 Legal->isMaskRequired(I); 4917 bool LoadAccessWithGapsRequiresEpilogMasking = 4918 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4919 !isScalarEpilogueAllowed(); 4920 bool StoreAccessWithGapsRequiresMasking = 4921 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4922 if (!PredicatedAccessRequiresMasking && 4923 !LoadAccessWithGapsRequiresEpilogMasking && 4924 !StoreAccessWithGapsRequiresMasking) 4925 return true; 4926 4927 // If masked interleaving is required, we expect that the user/target had 4928 // enabled it, because otherwise it either wouldn't have been created or 4929 // it should have been invalidated by the CostModel. 4930 assert(useMaskedInterleavedAccesses(TTI) && 4931 "Masked interleave-groups for predicated accesses are not enabled."); 4932 4933 if (Group->isReverse()) 4934 return false; 4935 4936 auto *Ty = getLoadStoreType(I); 4937 const Align Alignment = getLoadStoreAlignment(I); 4938 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4939 : TTI.isLegalMaskedStore(Ty, Alignment); 4940 } 4941 4942 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4943 Instruction *I, ElementCount VF) { 4944 // Get and ensure we have a valid memory instruction. 4945 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4946 4947 auto *Ptr = getLoadStorePointerOperand(I); 4948 auto *ScalarTy = getLoadStoreType(I); 4949 4950 // In order to be widened, the pointer should be consecutive, first of all. 4951 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4952 return false; 4953 4954 // If the instruction is a store located in a predicated block, it will be 4955 // scalarized. 4956 if (isScalarWithPredication(I)) 4957 return false; 4958 4959 // If the instruction's allocated size doesn't equal it's type size, it 4960 // requires padding and will be scalarized. 4961 auto &DL = I->getModule()->getDataLayout(); 4962 if (hasIrregularType(ScalarTy, DL)) 4963 return false; 4964 4965 return true; 4966 } 4967 4968 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4969 // We should not collect Uniforms more than once per VF. Right now, 4970 // this function is called from collectUniformsAndScalars(), which 4971 // already does this check. Collecting Uniforms for VF=1 does not make any 4972 // sense. 4973 4974 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4975 "This function should not be visited twice for the same VF"); 4976 4977 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4978 // not analyze again. Uniforms.count(VF) will return 1. 4979 Uniforms[VF].clear(); 4980 4981 // We now know that the loop is vectorizable! 4982 // Collect instructions inside the loop that will remain uniform after 4983 // vectorization. 4984 4985 // Global values, params and instructions outside of current loop are out of 4986 // scope. 4987 auto isOutOfScope = [&](Value *V) -> bool { 4988 Instruction *I = dyn_cast<Instruction>(V); 4989 return (!I || !TheLoop->contains(I)); 4990 }; 4991 4992 // Worklist containing uniform instructions demanding lane 0. 4993 SetVector<Instruction *> Worklist; 4994 BasicBlock *Latch = TheLoop->getLoopLatch(); 4995 4996 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4997 // that are scalar with predication must not be considered uniform after 4998 // vectorization, because that would create an erroneous replicating region 4999 // where only a single instance out of VF should be formed. 5000 // TODO: optimize such seldom cases if found important, see PR40816. 5001 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5002 if (isOutOfScope(I)) { 5003 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5004 << *I << "\n"); 5005 return; 5006 } 5007 if (isScalarWithPredication(I)) { 5008 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5009 << *I << "\n"); 5010 return; 5011 } 5012 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5013 Worklist.insert(I); 5014 }; 5015 5016 // Start with the conditional branch. If the branch condition is an 5017 // instruction contained in the loop that is only used by the branch, it is 5018 // uniform. 5019 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5020 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5021 addToWorklistIfAllowed(Cmp); 5022 5023 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5024 InstWidening WideningDecision = getWideningDecision(I, VF); 5025 assert(WideningDecision != CM_Unknown && 5026 "Widening decision should be ready at this moment"); 5027 5028 // A uniform memory op is itself uniform. We exclude uniform stores 5029 // here as they demand the last lane, not the first one. 5030 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5031 assert(WideningDecision == CM_Scalarize); 5032 return true; 5033 } 5034 5035 return (WideningDecision == CM_Widen || 5036 WideningDecision == CM_Widen_Reverse || 5037 WideningDecision == CM_Interleave); 5038 }; 5039 5040 5041 // Returns true if Ptr is the pointer operand of a memory access instruction 5042 // I, and I is known to not require scalarization. 5043 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5044 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5045 }; 5046 5047 // Holds a list of values which are known to have at least one uniform use. 5048 // Note that there may be other uses which aren't uniform. A "uniform use" 5049 // here is something which only demands lane 0 of the unrolled iterations; 5050 // it does not imply that all lanes produce the same value (e.g. this is not 5051 // the usual meaning of uniform) 5052 SetVector<Value *> HasUniformUse; 5053 5054 // Scan the loop for instructions which are either a) known to have only 5055 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5056 for (auto *BB : TheLoop->blocks()) 5057 for (auto &I : *BB) { 5058 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5059 switch (II->getIntrinsicID()) { 5060 case Intrinsic::sideeffect: 5061 case Intrinsic::experimental_noalias_scope_decl: 5062 case Intrinsic::assume: 5063 case Intrinsic::lifetime_start: 5064 case Intrinsic::lifetime_end: 5065 if (TheLoop->hasLoopInvariantOperands(&I)) 5066 addToWorklistIfAllowed(&I); 5067 break; 5068 default: 5069 break; 5070 } 5071 } 5072 5073 // ExtractValue instructions must be uniform, because the operands are 5074 // known to be loop-invariant. 5075 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5076 assert(isOutOfScope(EVI->getAggregateOperand()) && 5077 "Expected aggregate value to be loop invariant"); 5078 addToWorklistIfAllowed(EVI); 5079 continue; 5080 } 5081 5082 // If there's no pointer operand, there's nothing to do. 5083 auto *Ptr = getLoadStorePointerOperand(&I); 5084 if (!Ptr) 5085 continue; 5086 5087 // A uniform memory op is itself uniform. We exclude uniform stores 5088 // here as they demand the last lane, not the first one. 5089 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5090 addToWorklistIfAllowed(&I); 5091 5092 if (isUniformDecision(&I, VF)) { 5093 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5094 HasUniformUse.insert(Ptr); 5095 } 5096 } 5097 5098 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5099 // demanding) users. Since loops are assumed to be in LCSSA form, this 5100 // disallows uses outside the loop as well. 5101 for (auto *V : HasUniformUse) { 5102 if (isOutOfScope(V)) 5103 continue; 5104 auto *I = cast<Instruction>(V); 5105 auto UsersAreMemAccesses = 5106 llvm::all_of(I->users(), [&](User *U) -> bool { 5107 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5108 }); 5109 if (UsersAreMemAccesses) 5110 addToWorklistIfAllowed(I); 5111 } 5112 5113 // Expand Worklist in topological order: whenever a new instruction 5114 // is added , its users should be already inside Worklist. It ensures 5115 // a uniform instruction will only be used by uniform instructions. 5116 unsigned idx = 0; 5117 while (idx != Worklist.size()) { 5118 Instruction *I = Worklist[idx++]; 5119 5120 for (auto OV : I->operand_values()) { 5121 // isOutOfScope operands cannot be uniform instructions. 5122 if (isOutOfScope(OV)) 5123 continue; 5124 // First order recurrence Phi's should typically be considered 5125 // non-uniform. 5126 auto *OP = dyn_cast<PHINode>(OV); 5127 if (OP && Legal->isFirstOrderRecurrence(OP)) 5128 continue; 5129 // If all the users of the operand are uniform, then add the 5130 // operand into the uniform worklist. 5131 auto *OI = cast<Instruction>(OV); 5132 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5133 auto *J = cast<Instruction>(U); 5134 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5135 })) 5136 addToWorklistIfAllowed(OI); 5137 } 5138 } 5139 5140 // For an instruction to be added into Worklist above, all its users inside 5141 // the loop should also be in Worklist. However, this condition cannot be 5142 // true for phi nodes that form a cyclic dependence. We must process phi 5143 // nodes separately. An induction variable will remain uniform if all users 5144 // of the induction variable and induction variable update remain uniform. 5145 // The code below handles both pointer and non-pointer induction variables. 5146 for (auto &Induction : Legal->getInductionVars()) { 5147 auto *Ind = Induction.first; 5148 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5149 5150 // Determine if all users of the induction variable are uniform after 5151 // vectorization. 5152 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5153 auto *I = cast<Instruction>(U); 5154 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5155 isVectorizedMemAccessUse(I, Ind); 5156 }); 5157 if (!UniformInd) 5158 continue; 5159 5160 // Determine if all users of the induction variable update instruction are 5161 // uniform after vectorization. 5162 auto UniformIndUpdate = 5163 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5164 auto *I = cast<Instruction>(U); 5165 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5166 isVectorizedMemAccessUse(I, IndUpdate); 5167 }); 5168 if (!UniformIndUpdate) 5169 continue; 5170 5171 // The induction variable and its update instruction will remain uniform. 5172 addToWorklistIfAllowed(Ind); 5173 addToWorklistIfAllowed(IndUpdate); 5174 } 5175 5176 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5177 } 5178 5179 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5180 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5181 5182 if (Legal->getRuntimePointerChecking()->Need) { 5183 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5184 "runtime pointer checks needed. Enable vectorization of this " 5185 "loop with '#pragma clang loop vectorize(enable)' when " 5186 "compiling with -Os/-Oz", 5187 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5188 return true; 5189 } 5190 5191 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5192 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5193 "runtime SCEV checks needed. Enable vectorization of this " 5194 "loop with '#pragma clang loop vectorize(enable)' when " 5195 "compiling with -Os/-Oz", 5196 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5197 return true; 5198 } 5199 5200 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5201 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5202 reportVectorizationFailure("Runtime stride check for small trip count", 5203 "runtime stride == 1 checks needed. Enable vectorization of " 5204 "this loop without such check by compiling with -Os/-Oz", 5205 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5206 return true; 5207 } 5208 5209 return false; 5210 } 5211 5212 ElementCount 5213 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5214 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5215 return ElementCount::getScalable(0); 5216 5217 if (Hints->isScalableVectorizationDisabled()) { 5218 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5219 "ScalableVectorizationDisabled", ORE, TheLoop); 5220 return ElementCount::getScalable(0); 5221 } 5222 5223 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5224 5225 auto MaxScalableVF = ElementCount::getScalable( 5226 std::numeric_limits<ElementCount::ScalarTy>::max()); 5227 5228 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5229 // FIXME: While for scalable vectors this is currently sufficient, this should 5230 // be replaced by a more detailed mechanism that filters out specific VFs, 5231 // instead of invalidating vectorization for a whole set of VFs based on the 5232 // MaxVF. 5233 5234 // Disable scalable vectorization if the loop contains unsupported reductions. 5235 if (!canVectorizeReductions(MaxScalableVF)) { 5236 reportVectorizationInfo( 5237 "Scalable vectorization not supported for the reduction " 5238 "operations found in this loop.", 5239 "ScalableVFUnfeasible", ORE, TheLoop); 5240 return ElementCount::getScalable(0); 5241 } 5242 5243 // Disable scalable vectorization if the loop contains any instructions 5244 // with element types not supported for scalable vectors. 5245 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5246 return !Ty->isVoidTy() && 5247 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5248 })) { 5249 reportVectorizationInfo("Scalable vectorization is not supported " 5250 "for all element types found in this loop.", 5251 "ScalableVFUnfeasible", ORE, TheLoop); 5252 return ElementCount::getScalable(0); 5253 } 5254 5255 if (Legal->isSafeForAnyVectorWidth()) 5256 return MaxScalableVF; 5257 5258 // Limit MaxScalableVF by the maximum safe dependence distance. 5259 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5260 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5261 MaxVScale = 5262 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5263 MaxScalableVF = ElementCount::getScalable( 5264 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5265 if (!MaxScalableVF) 5266 reportVectorizationInfo( 5267 "Max legal vector width too small, scalable vectorization " 5268 "unfeasible.", 5269 "ScalableVFUnfeasible", ORE, TheLoop); 5270 5271 return MaxScalableVF; 5272 } 5273 5274 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5275 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5276 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5277 unsigned SmallestType, WidestType; 5278 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5279 5280 // Get the maximum safe dependence distance in bits computed by LAA. 5281 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5282 // the memory accesses that is most restrictive (involved in the smallest 5283 // dependence distance). 5284 unsigned MaxSafeElements = 5285 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5286 5287 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5288 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5289 5290 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5291 << ".\n"); 5292 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5293 << ".\n"); 5294 5295 // First analyze the UserVF, fall back if the UserVF should be ignored. 5296 if (UserVF) { 5297 auto MaxSafeUserVF = 5298 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5299 5300 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5301 // If `VF=vscale x N` is safe, then so is `VF=N` 5302 if (UserVF.isScalable()) 5303 return FixedScalableVFPair( 5304 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5305 else 5306 return UserVF; 5307 } 5308 5309 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5310 5311 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5312 // is better to ignore the hint and let the compiler choose a suitable VF. 5313 if (!UserVF.isScalable()) { 5314 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5315 << " is unsafe, clamping to max safe VF=" 5316 << MaxSafeFixedVF << ".\n"); 5317 ORE->emit([&]() { 5318 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5319 TheLoop->getStartLoc(), 5320 TheLoop->getHeader()) 5321 << "User-specified vectorization factor " 5322 << ore::NV("UserVectorizationFactor", UserVF) 5323 << " is unsafe, clamping to maximum safe vectorization factor " 5324 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5325 }); 5326 return MaxSafeFixedVF; 5327 } 5328 5329 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5330 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5331 << " is ignored because scalable vectors are not " 5332 "available.\n"); 5333 ORE->emit([&]() { 5334 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5335 TheLoop->getStartLoc(), 5336 TheLoop->getHeader()) 5337 << "User-specified vectorization factor " 5338 << ore::NV("UserVectorizationFactor", UserVF) 5339 << " is ignored because the target does not support scalable " 5340 "vectors. The compiler will pick a more suitable value."; 5341 }); 5342 } else { 5343 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5344 << " is unsafe. Ignoring scalable UserVF.\n"); 5345 ORE->emit([&]() { 5346 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5347 TheLoop->getStartLoc(), 5348 TheLoop->getHeader()) 5349 << "User-specified vectorization factor " 5350 << ore::NV("UserVectorizationFactor", UserVF) 5351 << " is unsafe. Ignoring the hint to let the compiler pick a " 5352 "more suitable value."; 5353 }); 5354 } 5355 } 5356 5357 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5358 << " / " << WidestType << " bits.\n"); 5359 5360 FixedScalableVFPair Result(ElementCount::getFixed(1), 5361 ElementCount::getScalable(0)); 5362 if (auto MaxVF = 5363 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5364 MaxSafeFixedVF, FoldTailByMasking)) 5365 Result.FixedVF = MaxVF; 5366 5367 if (auto MaxVF = 5368 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5369 MaxSafeScalableVF, FoldTailByMasking)) 5370 if (MaxVF.isScalable()) { 5371 Result.ScalableVF = MaxVF; 5372 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5373 << "\n"); 5374 } 5375 5376 return Result; 5377 } 5378 5379 FixedScalableVFPair 5380 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5381 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5382 // TODO: It may by useful to do since it's still likely to be dynamically 5383 // uniform if the target can skip. 5384 reportVectorizationFailure( 5385 "Not inserting runtime ptr check for divergent target", 5386 "runtime pointer checks needed. Not enabled for divergent target", 5387 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5388 return FixedScalableVFPair::getNone(); 5389 } 5390 5391 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5392 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5393 if (TC == 1) { 5394 reportVectorizationFailure("Single iteration (non) loop", 5395 "loop trip count is one, irrelevant for vectorization", 5396 "SingleIterationLoop", ORE, TheLoop); 5397 return FixedScalableVFPair::getNone(); 5398 } 5399 5400 switch (ScalarEpilogueStatus) { 5401 case CM_ScalarEpilogueAllowed: 5402 return computeFeasibleMaxVF(TC, UserVF, false); 5403 case CM_ScalarEpilogueNotAllowedUsePredicate: 5404 LLVM_FALLTHROUGH; 5405 case CM_ScalarEpilogueNotNeededUsePredicate: 5406 LLVM_DEBUG( 5407 dbgs() << "LV: vector predicate hint/switch found.\n" 5408 << "LV: Not allowing scalar epilogue, creating predicated " 5409 << "vector loop.\n"); 5410 break; 5411 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5412 // fallthrough as a special case of OptForSize 5413 case CM_ScalarEpilogueNotAllowedOptSize: 5414 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5415 LLVM_DEBUG( 5416 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5417 else 5418 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5419 << "count.\n"); 5420 5421 // Bail if runtime checks are required, which are not good when optimising 5422 // for size. 5423 if (runtimeChecksRequired()) 5424 return FixedScalableVFPair::getNone(); 5425 5426 break; 5427 } 5428 5429 // The only loops we can vectorize without a scalar epilogue, are loops with 5430 // a bottom-test and a single exiting block. We'd have to handle the fact 5431 // that not every instruction executes on the last iteration. This will 5432 // require a lane mask which varies through the vector loop body. (TODO) 5433 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5434 // If there was a tail-folding hint/switch, but we can't fold the tail by 5435 // masking, fallback to a vectorization with a scalar epilogue. 5436 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5437 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5438 "scalar epilogue instead.\n"); 5439 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5440 return computeFeasibleMaxVF(TC, UserVF, false); 5441 } 5442 return FixedScalableVFPair::getNone(); 5443 } 5444 5445 // Now try the tail folding 5446 5447 // Invalidate interleave groups that require an epilogue if we can't mask 5448 // the interleave-group. 5449 if (!useMaskedInterleavedAccesses(TTI)) { 5450 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5451 "No decisions should have been taken at this point"); 5452 // Note: There is no need to invalidate any cost modeling decisions here, as 5453 // non where taken so far. 5454 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5455 } 5456 5457 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5458 // Avoid tail folding if the trip count is known to be a multiple of any VF 5459 // we chose. 5460 // FIXME: The condition below pessimises the case for fixed-width vectors, 5461 // when scalable VFs are also candidates for vectorization. 5462 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5463 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5464 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5465 "MaxFixedVF must be a power of 2"); 5466 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5467 : MaxFixedVF.getFixedValue(); 5468 ScalarEvolution *SE = PSE.getSE(); 5469 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5470 const SCEV *ExitCount = SE->getAddExpr( 5471 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5472 const SCEV *Rem = SE->getURemExpr( 5473 SE->applyLoopGuards(ExitCount, TheLoop), 5474 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5475 if (Rem->isZero()) { 5476 // Accept MaxFixedVF if we do not have a tail. 5477 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5478 return MaxFactors; 5479 } 5480 } 5481 5482 // For scalable vectors don't use tail folding for low trip counts or 5483 // optimizing for code size. We only permit this if the user has explicitly 5484 // requested it. 5485 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5486 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5487 MaxFactors.ScalableVF.isVector()) 5488 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5489 5490 // If we don't know the precise trip count, or if the trip count that we 5491 // found modulo the vectorization factor is not zero, try to fold the tail 5492 // by masking. 5493 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5494 if (Legal->prepareToFoldTailByMasking()) { 5495 FoldTailByMasking = true; 5496 return MaxFactors; 5497 } 5498 5499 // If there was a tail-folding hint/switch, but we can't fold the tail by 5500 // masking, fallback to a vectorization with a scalar epilogue. 5501 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5502 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5503 "scalar epilogue instead.\n"); 5504 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5505 return MaxFactors; 5506 } 5507 5508 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5509 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5510 return FixedScalableVFPair::getNone(); 5511 } 5512 5513 if (TC == 0) { 5514 reportVectorizationFailure( 5515 "Unable to calculate the loop count due to complex control flow", 5516 "unable to calculate the loop count due to complex control flow", 5517 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5518 return FixedScalableVFPair::getNone(); 5519 } 5520 5521 reportVectorizationFailure( 5522 "Cannot optimize for size and vectorize at the same time.", 5523 "cannot optimize for size and vectorize at the same time. " 5524 "Enable vectorization of this loop with '#pragma clang loop " 5525 "vectorize(enable)' when compiling with -Os/-Oz", 5526 "NoTailLoopWithOptForSize", ORE, TheLoop); 5527 return FixedScalableVFPair::getNone(); 5528 } 5529 5530 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5531 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5532 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5533 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5534 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5535 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5536 : TargetTransformInfo::RGK_FixedWidthVector); 5537 5538 // Convenience function to return the minimum of two ElementCounts. 5539 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5540 assert((LHS.isScalable() == RHS.isScalable()) && 5541 "Scalable flags must match"); 5542 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5543 }; 5544 5545 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5546 // Note that both WidestRegister and WidestType may not be a powers of 2. 5547 auto MaxVectorElementCount = ElementCount::get( 5548 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5549 ComputeScalableMaxVF); 5550 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5551 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5552 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5553 5554 if (!MaxVectorElementCount) { 5555 LLVM_DEBUG(dbgs() << "LV: The target has no " 5556 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5557 << " vector registers.\n"); 5558 return ElementCount::getFixed(1); 5559 } 5560 5561 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5562 if (ConstTripCount && 5563 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5564 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5565 // If loop trip count (TC) is known at compile time there is no point in 5566 // choosing VF greater than TC (as done in the loop below). Select maximum 5567 // power of two which doesn't exceed TC. 5568 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5569 // when the TC is less than or equal to the known number of lanes. 5570 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5571 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5572 "exceeding the constant trip count: " 5573 << ClampedConstTripCount << "\n"); 5574 return ElementCount::getFixed(ClampedConstTripCount); 5575 } 5576 5577 ElementCount MaxVF = MaxVectorElementCount; 5578 if (TTI.shouldMaximizeVectorBandwidth() || 5579 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5580 auto MaxVectorElementCountMaxBW = ElementCount::get( 5581 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5582 ComputeScalableMaxVF); 5583 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5584 5585 // Collect all viable vectorization factors larger than the default MaxVF 5586 // (i.e. MaxVectorElementCount). 5587 SmallVector<ElementCount, 8> VFs; 5588 for (ElementCount VS = MaxVectorElementCount * 2; 5589 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5590 VFs.push_back(VS); 5591 5592 // For each VF calculate its register usage. 5593 auto RUs = calculateRegisterUsage(VFs); 5594 5595 // Select the largest VF which doesn't require more registers than existing 5596 // ones. 5597 for (int i = RUs.size() - 1; i >= 0; --i) { 5598 bool Selected = true; 5599 for (auto &pair : RUs[i].MaxLocalUsers) { 5600 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5601 if (pair.second > TargetNumRegisters) 5602 Selected = false; 5603 } 5604 if (Selected) { 5605 MaxVF = VFs[i]; 5606 break; 5607 } 5608 } 5609 if (ElementCount MinVF = 5610 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5611 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5612 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5613 << ") with target's minimum: " << MinVF << '\n'); 5614 MaxVF = MinVF; 5615 } 5616 } 5617 } 5618 return MaxVF; 5619 } 5620 5621 bool LoopVectorizationCostModel::isMoreProfitable( 5622 const VectorizationFactor &A, const VectorizationFactor &B) const { 5623 InstructionCost CostA = A.Cost; 5624 InstructionCost CostB = B.Cost; 5625 5626 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5627 5628 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5629 MaxTripCount) { 5630 // If we are folding the tail and the trip count is a known (possibly small) 5631 // constant, the trip count will be rounded up to an integer number of 5632 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5633 // which we compare directly. When not folding the tail, the total cost will 5634 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5635 // approximated with the per-lane cost below instead of using the tripcount 5636 // as here. 5637 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5638 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5639 return RTCostA < RTCostB; 5640 } 5641 5642 // Improve estimate for the vector width if it is scalable. 5643 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5644 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5645 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5646 if (A.Width.isScalable()) 5647 EstimatedWidthA *= VScale.getValue(); 5648 if (B.Width.isScalable()) 5649 EstimatedWidthB *= VScale.getValue(); 5650 } 5651 5652 // Assume vscale may be larger than 1 (or the value being tuned for), 5653 // so that scalable vectorization is slightly favorable over fixed-width 5654 // vectorization. 5655 if (A.Width.isScalable() && !B.Width.isScalable()) 5656 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5657 5658 // To avoid the need for FP division: 5659 // (CostA / A.Width) < (CostB / B.Width) 5660 // <=> (CostA * B.Width) < (CostB * A.Width) 5661 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5662 } 5663 5664 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5665 const ElementCountSet &VFCandidates) { 5666 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5667 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5668 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5669 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5670 "Expected Scalar VF to be a candidate"); 5671 5672 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5673 VectorizationFactor ChosenFactor = ScalarCost; 5674 5675 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5676 if (ForceVectorization && VFCandidates.size() > 1) { 5677 // Ignore scalar width, because the user explicitly wants vectorization. 5678 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5679 // evaluation. 5680 ChosenFactor.Cost = InstructionCost::getMax(); 5681 } 5682 5683 SmallVector<InstructionVFPair> InvalidCosts; 5684 for (const auto &i : VFCandidates) { 5685 // The cost for scalar VF=1 is already calculated, so ignore it. 5686 if (i.isScalar()) 5687 continue; 5688 5689 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5690 VectorizationFactor Candidate(i, C.first); 5691 5692 #ifndef NDEBUG 5693 unsigned AssumedMinimumVscale = 1; 5694 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5695 AssumedMinimumVscale = VScale.getValue(); 5696 unsigned Width = 5697 Candidate.Width.isScalable() 5698 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5699 : Candidate.Width.getFixedValue(); 5700 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5701 << " costs: " << (Candidate.Cost / Width)); 5702 if (i.isScalable()) 5703 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5704 << AssumedMinimumVscale << ")"); 5705 LLVM_DEBUG(dbgs() << ".\n"); 5706 #endif 5707 5708 if (!C.second && !ForceVectorization) { 5709 LLVM_DEBUG( 5710 dbgs() << "LV: Not considering vector loop of width " << i 5711 << " because it will not generate any vector instructions.\n"); 5712 continue; 5713 } 5714 5715 // If profitable add it to ProfitableVF list. 5716 if (isMoreProfitable(Candidate, ScalarCost)) 5717 ProfitableVFs.push_back(Candidate); 5718 5719 if (isMoreProfitable(Candidate, ChosenFactor)) 5720 ChosenFactor = Candidate; 5721 } 5722 5723 // Emit a report of VFs with invalid costs in the loop. 5724 if (!InvalidCosts.empty()) { 5725 // Group the remarks per instruction, keeping the instruction order from 5726 // InvalidCosts. 5727 std::map<Instruction *, unsigned> Numbering; 5728 unsigned I = 0; 5729 for (auto &Pair : InvalidCosts) 5730 if (!Numbering.count(Pair.first)) 5731 Numbering[Pair.first] = I++; 5732 5733 // Sort the list, first on instruction(number) then on VF. 5734 llvm::sort(InvalidCosts, 5735 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5736 if (Numbering[A.first] != Numbering[B.first]) 5737 return Numbering[A.first] < Numbering[B.first]; 5738 ElementCountComparator ECC; 5739 return ECC(A.second, B.second); 5740 }); 5741 5742 // For a list of ordered instruction-vf pairs: 5743 // [(load, vf1), (load, vf2), (store, vf1)] 5744 // Group the instructions together to emit separate remarks for: 5745 // load (vf1, vf2) 5746 // store (vf1) 5747 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5748 auto Subset = ArrayRef<InstructionVFPair>(); 5749 do { 5750 if (Subset.empty()) 5751 Subset = Tail.take_front(1); 5752 5753 Instruction *I = Subset.front().first; 5754 5755 // If the next instruction is different, or if there are no other pairs, 5756 // emit a remark for the collated subset. e.g. 5757 // [(load, vf1), (load, vf2))] 5758 // to emit: 5759 // remark: invalid costs for 'load' at VF=(vf, vf2) 5760 if (Subset == Tail || Tail[Subset.size()].first != I) { 5761 std::string OutString; 5762 raw_string_ostream OS(OutString); 5763 assert(!Subset.empty() && "Unexpected empty range"); 5764 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5765 for (auto &Pair : Subset) 5766 OS << (Pair.second == Subset.front().second ? "" : ", ") 5767 << Pair.second; 5768 OS << "):"; 5769 if (auto *CI = dyn_cast<CallInst>(I)) 5770 OS << " call to " << CI->getCalledFunction()->getName(); 5771 else 5772 OS << " " << I->getOpcodeName(); 5773 OS.flush(); 5774 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5775 Tail = Tail.drop_front(Subset.size()); 5776 Subset = {}; 5777 } else 5778 // Grow the subset by one element 5779 Subset = Tail.take_front(Subset.size() + 1); 5780 } while (!Tail.empty()); 5781 } 5782 5783 if (!EnableCondStoresVectorization && NumPredStores) { 5784 reportVectorizationFailure("There are conditional stores.", 5785 "store that is conditionally executed prevents vectorization", 5786 "ConditionalStore", ORE, TheLoop); 5787 ChosenFactor = ScalarCost; 5788 } 5789 5790 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5791 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5792 << "LV: Vectorization seems to be not beneficial, " 5793 << "but was forced by a user.\n"); 5794 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5795 return ChosenFactor; 5796 } 5797 5798 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5799 const Loop &L, ElementCount VF) const { 5800 // Cross iteration phis such as reductions need special handling and are 5801 // currently unsupported. 5802 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5803 return Legal->isFirstOrderRecurrence(&Phi) || 5804 Legal->isReductionVariable(&Phi); 5805 })) 5806 return false; 5807 5808 // Phis with uses outside of the loop require special handling and are 5809 // currently unsupported. 5810 for (auto &Entry : Legal->getInductionVars()) { 5811 // Look for uses of the value of the induction at the last iteration. 5812 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5813 for (User *U : PostInc->users()) 5814 if (!L.contains(cast<Instruction>(U))) 5815 return false; 5816 // Look for uses of penultimate value of the induction. 5817 for (User *U : Entry.first->users()) 5818 if (!L.contains(cast<Instruction>(U))) 5819 return false; 5820 } 5821 5822 // Induction variables that are widened require special handling that is 5823 // currently not supported. 5824 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5825 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5826 this->isProfitableToScalarize(Entry.first, VF)); 5827 })) 5828 return false; 5829 5830 // Epilogue vectorization code has not been auditted to ensure it handles 5831 // non-latch exits properly. It may be fine, but it needs auditted and 5832 // tested. 5833 if (L.getExitingBlock() != L.getLoopLatch()) 5834 return false; 5835 5836 return true; 5837 } 5838 5839 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5840 const ElementCount VF) const { 5841 // FIXME: We need a much better cost-model to take different parameters such 5842 // as register pressure, code size increase and cost of extra branches into 5843 // account. For now we apply a very crude heuristic and only consider loops 5844 // with vectorization factors larger than a certain value. 5845 // We also consider epilogue vectorization unprofitable for targets that don't 5846 // consider interleaving beneficial (eg. MVE). 5847 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5848 return false; 5849 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5850 return true; 5851 return false; 5852 } 5853 5854 VectorizationFactor 5855 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5856 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5857 VectorizationFactor Result = VectorizationFactor::Disabled(); 5858 if (!EnableEpilogueVectorization) { 5859 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5860 return Result; 5861 } 5862 5863 if (!isScalarEpilogueAllowed()) { 5864 LLVM_DEBUG( 5865 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5866 "allowed.\n";); 5867 return Result; 5868 } 5869 5870 // Not really a cost consideration, but check for unsupported cases here to 5871 // simplify the logic. 5872 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5873 LLVM_DEBUG( 5874 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5875 "not a supported candidate.\n";); 5876 return Result; 5877 } 5878 5879 if (EpilogueVectorizationForceVF > 1) { 5880 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5881 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5882 if (LVP.hasPlanWithVF(ForcedEC)) 5883 return {ForcedEC, 0}; 5884 else { 5885 LLVM_DEBUG( 5886 dbgs() 5887 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5888 return Result; 5889 } 5890 } 5891 5892 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5893 TheLoop->getHeader()->getParent()->hasMinSize()) { 5894 LLVM_DEBUG( 5895 dbgs() 5896 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5897 return Result; 5898 } 5899 5900 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5901 if (MainLoopVF.isScalable()) 5902 LLVM_DEBUG( 5903 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 5904 "yet supported. Converting to fixed-width (VF=" 5905 << FixedMainLoopVF << ") instead\n"); 5906 5907 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 5908 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5909 "this loop\n"); 5910 return Result; 5911 } 5912 5913 for (auto &NextVF : ProfitableVFs) 5914 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 5915 (Result.Width.getFixedValue() == 1 || 5916 isMoreProfitable(NextVF, Result)) && 5917 LVP.hasPlanWithVF(NextVF.Width)) 5918 Result = NextVF; 5919 5920 if (Result != VectorizationFactor::Disabled()) 5921 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5922 << Result.Width.getFixedValue() << "\n";); 5923 return Result; 5924 } 5925 5926 std::pair<unsigned, unsigned> 5927 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5928 unsigned MinWidth = -1U; 5929 unsigned MaxWidth = 8; 5930 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5931 // For in-loop reductions, no element types are added to ElementTypesInLoop 5932 // if there are no loads/stores in the loop. In this case, check through the 5933 // reduction variables to determine the maximum width. 5934 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5935 // Reset MaxWidth so that we can find the smallest type used by recurrences 5936 // in the loop. 5937 MaxWidth = -1U; 5938 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5939 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5940 // When finding the min width used by the recurrence we need to account 5941 // for casts on the input operands of the recurrence. 5942 MaxWidth = std::min<unsigned>( 5943 MaxWidth, std::min<unsigned>( 5944 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5945 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5946 } 5947 } else { 5948 for (Type *T : ElementTypesInLoop) { 5949 MinWidth = std::min<unsigned>( 5950 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5951 MaxWidth = std::max<unsigned>( 5952 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5953 } 5954 } 5955 return {MinWidth, MaxWidth}; 5956 } 5957 5958 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5959 ElementTypesInLoop.clear(); 5960 // For each block. 5961 for (BasicBlock *BB : TheLoop->blocks()) { 5962 // For each instruction in the loop. 5963 for (Instruction &I : BB->instructionsWithoutDebug()) { 5964 Type *T = I.getType(); 5965 5966 // Skip ignored values. 5967 if (ValuesToIgnore.count(&I)) 5968 continue; 5969 5970 // Only examine Loads, Stores and PHINodes. 5971 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5972 continue; 5973 5974 // Examine PHI nodes that are reduction variables. Update the type to 5975 // account for the recurrence type. 5976 if (auto *PN = dyn_cast<PHINode>(&I)) { 5977 if (!Legal->isReductionVariable(PN)) 5978 continue; 5979 const RecurrenceDescriptor &RdxDesc = 5980 Legal->getReductionVars().find(PN)->second; 5981 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5982 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5983 RdxDesc.getRecurrenceType(), 5984 TargetTransformInfo::ReductionFlags())) 5985 continue; 5986 T = RdxDesc.getRecurrenceType(); 5987 } 5988 5989 // Examine the stored values. 5990 if (auto *ST = dyn_cast<StoreInst>(&I)) 5991 T = ST->getValueOperand()->getType(); 5992 5993 assert(T->isSized() && 5994 "Expected the load/store/recurrence type to be sized"); 5995 5996 ElementTypesInLoop.insert(T); 5997 } 5998 } 5999 } 6000 6001 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6002 unsigned LoopCost) { 6003 // -- The interleave heuristics -- 6004 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6005 // There are many micro-architectural considerations that we can't predict 6006 // at this level. For example, frontend pressure (on decode or fetch) due to 6007 // code size, or the number and capabilities of the execution ports. 6008 // 6009 // We use the following heuristics to select the interleave count: 6010 // 1. If the code has reductions, then we interleave to break the cross 6011 // iteration dependency. 6012 // 2. If the loop is really small, then we interleave to reduce the loop 6013 // overhead. 6014 // 3. We don't interleave if we think that we will spill registers to memory 6015 // due to the increased register pressure. 6016 6017 if (!isScalarEpilogueAllowed()) 6018 return 1; 6019 6020 // We used the distance for the interleave count. 6021 if (Legal->getMaxSafeDepDistBytes() != -1U) 6022 return 1; 6023 6024 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6025 const bool HasReductions = !Legal->getReductionVars().empty(); 6026 // Do not interleave loops with a relatively small known or estimated trip 6027 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6028 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6029 // because with the above conditions interleaving can expose ILP and break 6030 // cross iteration dependences for reductions. 6031 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6032 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6033 return 1; 6034 6035 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6036 // We divide by these constants so assume that we have at least one 6037 // instruction that uses at least one register. 6038 for (auto& pair : R.MaxLocalUsers) { 6039 pair.second = std::max(pair.second, 1U); 6040 } 6041 6042 // We calculate the interleave count using the following formula. 6043 // Subtract the number of loop invariants from the number of available 6044 // registers. These registers are used by all of the interleaved instances. 6045 // Next, divide the remaining registers by the number of registers that is 6046 // required by the loop, in order to estimate how many parallel instances 6047 // fit without causing spills. All of this is rounded down if necessary to be 6048 // a power of two. We want power of two interleave count to simplify any 6049 // addressing operations or alignment considerations. 6050 // We also want power of two interleave counts to ensure that the induction 6051 // variable of the vector loop wraps to zero, when tail is folded by masking; 6052 // this currently happens when OptForSize, in which case IC is set to 1 above. 6053 unsigned IC = UINT_MAX; 6054 6055 for (auto& pair : R.MaxLocalUsers) { 6056 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6057 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6058 << " registers of " 6059 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6060 if (VF.isScalar()) { 6061 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6062 TargetNumRegisters = ForceTargetNumScalarRegs; 6063 } else { 6064 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6065 TargetNumRegisters = ForceTargetNumVectorRegs; 6066 } 6067 unsigned MaxLocalUsers = pair.second; 6068 unsigned LoopInvariantRegs = 0; 6069 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6070 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6071 6072 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6073 // Don't count the induction variable as interleaved. 6074 if (EnableIndVarRegisterHeur) { 6075 TmpIC = 6076 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6077 std::max(1U, (MaxLocalUsers - 1))); 6078 } 6079 6080 IC = std::min(IC, TmpIC); 6081 } 6082 6083 // Clamp the interleave ranges to reasonable counts. 6084 unsigned MaxInterleaveCount = 6085 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6086 6087 // Check if the user has overridden the max. 6088 if (VF.isScalar()) { 6089 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6090 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6091 } else { 6092 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6093 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6094 } 6095 6096 // If trip count is known or estimated compile time constant, limit the 6097 // interleave count to be less than the trip count divided by VF, provided it 6098 // is at least 1. 6099 // 6100 // For scalable vectors we can't know if interleaving is beneficial. It may 6101 // not be beneficial for small loops if none of the lanes in the second vector 6102 // iterations is enabled. However, for larger loops, there is likely to be a 6103 // similar benefit as for fixed-width vectors. For now, we choose to leave 6104 // the InterleaveCount as if vscale is '1', although if some information about 6105 // the vector is known (e.g. min vector size), we can make a better decision. 6106 if (BestKnownTC) { 6107 MaxInterleaveCount = 6108 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6109 // Make sure MaxInterleaveCount is greater than 0. 6110 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6111 } 6112 6113 assert(MaxInterleaveCount > 0 && 6114 "Maximum interleave count must be greater than 0"); 6115 6116 // Clamp the calculated IC to be between the 1 and the max interleave count 6117 // that the target and trip count allows. 6118 if (IC > MaxInterleaveCount) 6119 IC = MaxInterleaveCount; 6120 else 6121 // Make sure IC is greater than 0. 6122 IC = std::max(1u, IC); 6123 6124 assert(IC > 0 && "Interleave count must be greater than 0."); 6125 6126 // If we did not calculate the cost for VF (because the user selected the VF) 6127 // then we calculate the cost of VF here. 6128 if (LoopCost == 0) { 6129 InstructionCost C = expectedCost(VF).first; 6130 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6131 LoopCost = *C.getValue(); 6132 } 6133 6134 assert(LoopCost && "Non-zero loop cost expected"); 6135 6136 // Interleave if we vectorized this loop and there is a reduction that could 6137 // benefit from interleaving. 6138 if (VF.isVector() && HasReductions) { 6139 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6140 return IC; 6141 } 6142 6143 // Note that if we've already vectorized the loop we will have done the 6144 // runtime check and so interleaving won't require further checks. 6145 bool InterleavingRequiresRuntimePointerCheck = 6146 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6147 6148 // We want to interleave small loops in order to reduce the loop overhead and 6149 // potentially expose ILP opportunities. 6150 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6151 << "LV: IC is " << IC << '\n' 6152 << "LV: VF is " << VF << '\n'); 6153 const bool AggressivelyInterleaveReductions = 6154 TTI.enableAggressiveInterleaving(HasReductions); 6155 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6156 // We assume that the cost overhead is 1 and we use the cost model 6157 // to estimate the cost of the loop and interleave until the cost of the 6158 // loop overhead is about 5% of the cost of the loop. 6159 unsigned SmallIC = 6160 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6161 6162 // Interleave until store/load ports (estimated by max interleave count) are 6163 // saturated. 6164 unsigned NumStores = Legal->getNumStores(); 6165 unsigned NumLoads = Legal->getNumLoads(); 6166 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6167 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6168 6169 // There is little point in interleaving for reductions containing selects 6170 // and compares when VF=1 since it may just create more overhead than it's 6171 // worth for loops with small trip counts. This is because we still have to 6172 // do the final reduction after the loop. 6173 bool HasSelectCmpReductions = 6174 HasReductions && 6175 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6176 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6177 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6178 RdxDesc.getRecurrenceKind()); 6179 }); 6180 if (HasSelectCmpReductions) { 6181 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6182 return 1; 6183 } 6184 6185 // If we have a scalar reduction (vector reductions are already dealt with 6186 // by this point), we can increase the critical path length if the loop 6187 // we're interleaving is inside another loop. For tree-wise reductions 6188 // set the limit to 2, and for ordered reductions it's best to disable 6189 // interleaving entirely. 6190 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6191 bool HasOrderedReductions = 6192 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6193 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6194 return RdxDesc.isOrdered(); 6195 }); 6196 if (HasOrderedReductions) { 6197 LLVM_DEBUG( 6198 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6199 return 1; 6200 } 6201 6202 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6203 SmallIC = std::min(SmallIC, F); 6204 StoresIC = std::min(StoresIC, F); 6205 LoadsIC = std::min(LoadsIC, F); 6206 } 6207 6208 if (EnableLoadStoreRuntimeInterleave && 6209 std::max(StoresIC, LoadsIC) > SmallIC) { 6210 LLVM_DEBUG( 6211 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6212 return std::max(StoresIC, LoadsIC); 6213 } 6214 6215 // If there are scalar reductions and TTI has enabled aggressive 6216 // interleaving for reductions, we will interleave to expose ILP. 6217 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6218 AggressivelyInterleaveReductions) { 6219 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6220 // Interleave no less than SmallIC but not as aggressive as the normal IC 6221 // to satisfy the rare situation when resources are too limited. 6222 return std::max(IC / 2, SmallIC); 6223 } else { 6224 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6225 return SmallIC; 6226 } 6227 } 6228 6229 // Interleave if this is a large loop (small loops are already dealt with by 6230 // this point) that could benefit from interleaving. 6231 if (AggressivelyInterleaveReductions) { 6232 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6233 return IC; 6234 } 6235 6236 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6237 return 1; 6238 } 6239 6240 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6241 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6242 // This function calculates the register usage by measuring the highest number 6243 // of values that are alive at a single location. Obviously, this is a very 6244 // rough estimation. We scan the loop in a topological order in order and 6245 // assign a number to each instruction. We use RPO to ensure that defs are 6246 // met before their users. We assume that each instruction that has in-loop 6247 // users starts an interval. We record every time that an in-loop value is 6248 // used, so we have a list of the first and last occurrences of each 6249 // instruction. Next, we transpose this data structure into a multi map that 6250 // holds the list of intervals that *end* at a specific location. This multi 6251 // map allows us to perform a linear search. We scan the instructions linearly 6252 // and record each time that a new interval starts, by placing it in a set. 6253 // If we find this value in the multi-map then we remove it from the set. 6254 // The max register usage is the maximum size of the set. 6255 // We also search for instructions that are defined outside the loop, but are 6256 // used inside the loop. We need this number separately from the max-interval 6257 // usage number because when we unroll, loop-invariant values do not take 6258 // more register. 6259 LoopBlocksDFS DFS(TheLoop); 6260 DFS.perform(LI); 6261 6262 RegisterUsage RU; 6263 6264 // Each 'key' in the map opens a new interval. The values 6265 // of the map are the index of the 'last seen' usage of the 6266 // instruction that is the key. 6267 using IntervalMap = DenseMap<Instruction *, unsigned>; 6268 6269 // Maps instruction to its index. 6270 SmallVector<Instruction *, 64> IdxToInstr; 6271 // Marks the end of each interval. 6272 IntervalMap EndPoint; 6273 // Saves the list of instruction indices that are used in the loop. 6274 SmallPtrSet<Instruction *, 8> Ends; 6275 // Saves the list of values that are used in the loop but are 6276 // defined outside the loop, such as arguments and constants. 6277 SmallPtrSet<Value *, 8> LoopInvariants; 6278 6279 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6280 for (Instruction &I : BB->instructionsWithoutDebug()) { 6281 IdxToInstr.push_back(&I); 6282 6283 // Save the end location of each USE. 6284 for (Value *U : I.operands()) { 6285 auto *Instr = dyn_cast<Instruction>(U); 6286 6287 // Ignore non-instruction values such as arguments, constants, etc. 6288 if (!Instr) 6289 continue; 6290 6291 // If this instruction is outside the loop then record it and continue. 6292 if (!TheLoop->contains(Instr)) { 6293 LoopInvariants.insert(Instr); 6294 continue; 6295 } 6296 6297 // Overwrite previous end points. 6298 EndPoint[Instr] = IdxToInstr.size(); 6299 Ends.insert(Instr); 6300 } 6301 } 6302 } 6303 6304 // Saves the list of intervals that end with the index in 'key'. 6305 using InstrList = SmallVector<Instruction *, 2>; 6306 DenseMap<unsigned, InstrList> TransposeEnds; 6307 6308 // Transpose the EndPoints to a list of values that end at each index. 6309 for (auto &Interval : EndPoint) 6310 TransposeEnds[Interval.second].push_back(Interval.first); 6311 6312 SmallPtrSet<Instruction *, 8> OpenIntervals; 6313 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6314 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6315 6316 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6317 6318 // A lambda that gets the register usage for the given type and VF. 6319 const auto &TTICapture = TTI; 6320 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6321 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6322 return 0; 6323 InstructionCost::CostType RegUsage = 6324 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6325 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6326 "Nonsensical values for register usage."); 6327 return RegUsage; 6328 }; 6329 6330 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6331 Instruction *I = IdxToInstr[i]; 6332 6333 // Remove all of the instructions that end at this location. 6334 InstrList &List = TransposeEnds[i]; 6335 for (Instruction *ToRemove : List) 6336 OpenIntervals.erase(ToRemove); 6337 6338 // Ignore instructions that are never used within the loop. 6339 if (!Ends.count(I)) 6340 continue; 6341 6342 // Skip ignored values. 6343 if (ValuesToIgnore.count(I)) 6344 continue; 6345 6346 // For each VF find the maximum usage of registers. 6347 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6348 // Count the number of live intervals. 6349 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6350 6351 if (VFs[j].isScalar()) { 6352 for (auto Inst : OpenIntervals) { 6353 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6354 if (RegUsage.find(ClassID) == RegUsage.end()) 6355 RegUsage[ClassID] = 1; 6356 else 6357 RegUsage[ClassID] += 1; 6358 } 6359 } else { 6360 collectUniformsAndScalars(VFs[j]); 6361 for (auto Inst : OpenIntervals) { 6362 // Skip ignored values for VF > 1. 6363 if (VecValuesToIgnore.count(Inst)) 6364 continue; 6365 if (isScalarAfterVectorization(Inst, VFs[j])) { 6366 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6367 if (RegUsage.find(ClassID) == RegUsage.end()) 6368 RegUsage[ClassID] = 1; 6369 else 6370 RegUsage[ClassID] += 1; 6371 } else { 6372 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6373 if (RegUsage.find(ClassID) == RegUsage.end()) 6374 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6375 else 6376 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6377 } 6378 } 6379 } 6380 6381 for (auto& pair : RegUsage) { 6382 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6383 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6384 else 6385 MaxUsages[j][pair.first] = pair.second; 6386 } 6387 } 6388 6389 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6390 << OpenIntervals.size() << '\n'); 6391 6392 // Add the current instruction to the list of open intervals. 6393 OpenIntervals.insert(I); 6394 } 6395 6396 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6397 SmallMapVector<unsigned, unsigned, 4> Invariant; 6398 6399 for (auto Inst : LoopInvariants) { 6400 unsigned Usage = 6401 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6402 unsigned ClassID = 6403 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6404 if (Invariant.find(ClassID) == Invariant.end()) 6405 Invariant[ClassID] = Usage; 6406 else 6407 Invariant[ClassID] += Usage; 6408 } 6409 6410 LLVM_DEBUG({ 6411 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6412 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6413 << " item\n"; 6414 for (const auto &pair : MaxUsages[i]) { 6415 dbgs() << "LV(REG): RegisterClass: " 6416 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6417 << " registers\n"; 6418 } 6419 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6420 << " item\n"; 6421 for (const auto &pair : Invariant) { 6422 dbgs() << "LV(REG): RegisterClass: " 6423 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6424 << " registers\n"; 6425 } 6426 }); 6427 6428 RU.LoopInvariantRegs = Invariant; 6429 RU.MaxLocalUsers = MaxUsages[i]; 6430 RUs[i] = RU; 6431 } 6432 6433 return RUs; 6434 } 6435 6436 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6437 // TODO: Cost model for emulated masked load/store is completely 6438 // broken. This hack guides the cost model to use an artificially 6439 // high enough value to practically disable vectorization with such 6440 // operations, except where previously deployed legality hack allowed 6441 // using very low cost values. This is to avoid regressions coming simply 6442 // from moving "masked load/store" check from legality to cost model. 6443 // Masked Load/Gather emulation was previously never allowed. 6444 // Limited number of Masked Store/Scatter emulation was allowed. 6445 assert(isPredicatedInst(I) && 6446 "Expecting a scalar emulated instruction"); 6447 return isa<LoadInst>(I) || 6448 (isa<StoreInst>(I) && 6449 NumPredStores > NumberOfStoresToPredicate); 6450 } 6451 6452 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6453 // If we aren't vectorizing the loop, or if we've already collected the 6454 // instructions to scalarize, there's nothing to do. Collection may already 6455 // have occurred if we have a user-selected VF and are now computing the 6456 // expected cost for interleaving. 6457 if (VF.isScalar() || VF.isZero() || 6458 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6459 return; 6460 6461 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6462 // not profitable to scalarize any instructions, the presence of VF in the 6463 // map will indicate that we've analyzed it already. 6464 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6465 6466 // Find all the instructions that are scalar with predication in the loop and 6467 // determine if it would be better to not if-convert the blocks they are in. 6468 // If so, we also record the instructions to scalarize. 6469 for (BasicBlock *BB : TheLoop->blocks()) { 6470 if (!blockNeedsPredicationForAnyReason(BB)) 6471 continue; 6472 for (Instruction &I : *BB) 6473 if (isScalarWithPredication(&I)) { 6474 ScalarCostsTy ScalarCosts; 6475 // Do not apply discount if scalable, because that would lead to 6476 // invalid scalarization costs. 6477 // Do not apply discount logic if hacked cost is needed 6478 // for emulated masked memrefs. 6479 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6480 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6481 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6482 // Remember that BB will remain after vectorization. 6483 PredicatedBBsAfterVectorization.insert(BB); 6484 } 6485 } 6486 } 6487 6488 int LoopVectorizationCostModel::computePredInstDiscount( 6489 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6490 assert(!isUniformAfterVectorization(PredInst, VF) && 6491 "Instruction marked uniform-after-vectorization will be predicated"); 6492 6493 // Initialize the discount to zero, meaning that the scalar version and the 6494 // vector version cost the same. 6495 InstructionCost Discount = 0; 6496 6497 // Holds instructions to analyze. The instructions we visit are mapped in 6498 // ScalarCosts. Those instructions are the ones that would be scalarized if 6499 // we find that the scalar version costs less. 6500 SmallVector<Instruction *, 8> Worklist; 6501 6502 // Returns true if the given instruction can be scalarized. 6503 auto canBeScalarized = [&](Instruction *I) -> bool { 6504 // We only attempt to scalarize instructions forming a single-use chain 6505 // from the original predicated block that would otherwise be vectorized. 6506 // Although not strictly necessary, we give up on instructions we know will 6507 // already be scalar to avoid traversing chains that are unlikely to be 6508 // beneficial. 6509 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6510 isScalarAfterVectorization(I, VF)) 6511 return false; 6512 6513 // If the instruction is scalar with predication, it will be analyzed 6514 // separately. We ignore it within the context of PredInst. 6515 if (isScalarWithPredication(I)) 6516 return false; 6517 6518 // If any of the instruction's operands are uniform after vectorization, 6519 // the instruction cannot be scalarized. This prevents, for example, a 6520 // masked load from being scalarized. 6521 // 6522 // We assume we will only emit a value for lane zero of an instruction 6523 // marked uniform after vectorization, rather than VF identical values. 6524 // Thus, if we scalarize an instruction that uses a uniform, we would 6525 // create uses of values corresponding to the lanes we aren't emitting code 6526 // for. This behavior can be changed by allowing getScalarValue to clone 6527 // the lane zero values for uniforms rather than asserting. 6528 for (Use &U : I->operands()) 6529 if (auto *J = dyn_cast<Instruction>(U.get())) 6530 if (isUniformAfterVectorization(J, VF)) 6531 return false; 6532 6533 // Otherwise, we can scalarize the instruction. 6534 return true; 6535 }; 6536 6537 // Compute the expected cost discount from scalarizing the entire expression 6538 // feeding the predicated instruction. We currently only consider expressions 6539 // that are single-use instruction chains. 6540 Worklist.push_back(PredInst); 6541 while (!Worklist.empty()) { 6542 Instruction *I = Worklist.pop_back_val(); 6543 6544 // If we've already analyzed the instruction, there's nothing to do. 6545 if (ScalarCosts.find(I) != ScalarCosts.end()) 6546 continue; 6547 6548 // Compute the cost of the vector instruction. Note that this cost already 6549 // includes the scalarization overhead of the predicated instruction. 6550 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6551 6552 // Compute the cost of the scalarized instruction. This cost is the cost of 6553 // the instruction as if it wasn't if-converted and instead remained in the 6554 // predicated block. We will scale this cost by block probability after 6555 // computing the scalarization overhead. 6556 InstructionCost ScalarCost = 6557 VF.getFixedValue() * 6558 getInstructionCost(I, ElementCount::getFixed(1)).first; 6559 6560 // Compute the scalarization overhead of needed insertelement instructions 6561 // and phi nodes. 6562 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6563 ScalarCost += TTI.getScalarizationOverhead( 6564 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6565 APInt::getAllOnes(VF.getFixedValue()), true, false); 6566 ScalarCost += 6567 VF.getFixedValue() * 6568 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6569 } 6570 6571 // Compute the scalarization overhead of needed extractelement 6572 // instructions. For each of the instruction's operands, if the operand can 6573 // be scalarized, add it to the worklist; otherwise, account for the 6574 // overhead. 6575 for (Use &U : I->operands()) 6576 if (auto *J = dyn_cast<Instruction>(U.get())) { 6577 assert(VectorType::isValidElementType(J->getType()) && 6578 "Instruction has non-scalar type"); 6579 if (canBeScalarized(J)) 6580 Worklist.push_back(J); 6581 else if (needsExtract(J, VF)) { 6582 ScalarCost += TTI.getScalarizationOverhead( 6583 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6584 APInt::getAllOnes(VF.getFixedValue()), false, true); 6585 } 6586 } 6587 6588 // Scale the total scalar cost by block probability. 6589 ScalarCost /= getReciprocalPredBlockProb(); 6590 6591 // Compute the discount. A non-negative discount means the vector version 6592 // of the instruction costs more, and scalarizing would be beneficial. 6593 Discount += VectorCost - ScalarCost; 6594 ScalarCosts[I] = ScalarCost; 6595 } 6596 6597 return *Discount.getValue(); 6598 } 6599 6600 LoopVectorizationCostModel::VectorizationCostTy 6601 LoopVectorizationCostModel::expectedCost( 6602 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6603 VectorizationCostTy Cost; 6604 6605 // For each block. 6606 for (BasicBlock *BB : TheLoop->blocks()) { 6607 VectorizationCostTy BlockCost; 6608 6609 // For each instruction in the old loop. 6610 for (Instruction &I : BB->instructionsWithoutDebug()) { 6611 // Skip ignored values. 6612 if (ValuesToIgnore.count(&I) || 6613 (VF.isVector() && VecValuesToIgnore.count(&I))) 6614 continue; 6615 6616 VectorizationCostTy C = getInstructionCost(&I, VF); 6617 6618 // Check if we should override the cost. 6619 if (C.first.isValid() && 6620 ForceTargetInstructionCost.getNumOccurrences() > 0) 6621 C.first = InstructionCost(ForceTargetInstructionCost); 6622 6623 // Keep a list of instructions with invalid costs. 6624 if (Invalid && !C.first.isValid()) 6625 Invalid->emplace_back(&I, VF); 6626 6627 BlockCost.first += C.first; 6628 BlockCost.second |= C.second; 6629 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6630 << " for VF " << VF << " For instruction: " << I 6631 << '\n'); 6632 } 6633 6634 // If we are vectorizing a predicated block, it will have been 6635 // if-converted. This means that the block's instructions (aside from 6636 // stores and instructions that may divide by zero) will now be 6637 // unconditionally executed. For the scalar case, we may not always execute 6638 // the predicated block, if it is an if-else block. Thus, scale the block's 6639 // cost by the probability of executing it. blockNeedsPredication from 6640 // Legal is used so as to not include all blocks in tail folded loops. 6641 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6642 BlockCost.first /= getReciprocalPredBlockProb(); 6643 6644 Cost.first += BlockCost.first; 6645 Cost.second |= BlockCost.second; 6646 } 6647 6648 return Cost; 6649 } 6650 6651 /// Gets Address Access SCEV after verifying that the access pattern 6652 /// is loop invariant except the induction variable dependence. 6653 /// 6654 /// This SCEV can be sent to the Target in order to estimate the address 6655 /// calculation cost. 6656 static const SCEV *getAddressAccessSCEV( 6657 Value *Ptr, 6658 LoopVectorizationLegality *Legal, 6659 PredicatedScalarEvolution &PSE, 6660 const Loop *TheLoop) { 6661 6662 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6663 if (!Gep) 6664 return nullptr; 6665 6666 // We are looking for a gep with all loop invariant indices except for one 6667 // which should be an induction variable. 6668 auto SE = PSE.getSE(); 6669 unsigned NumOperands = Gep->getNumOperands(); 6670 for (unsigned i = 1; i < NumOperands; ++i) { 6671 Value *Opd = Gep->getOperand(i); 6672 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6673 !Legal->isInductionVariable(Opd)) 6674 return nullptr; 6675 } 6676 6677 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6678 return PSE.getSCEV(Ptr); 6679 } 6680 6681 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6682 return Legal->hasStride(I->getOperand(0)) || 6683 Legal->hasStride(I->getOperand(1)); 6684 } 6685 6686 InstructionCost 6687 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6688 ElementCount VF) { 6689 assert(VF.isVector() && 6690 "Scalarization cost of instruction implies vectorization."); 6691 if (VF.isScalable()) 6692 return InstructionCost::getInvalid(); 6693 6694 Type *ValTy = getLoadStoreType(I); 6695 auto SE = PSE.getSE(); 6696 6697 unsigned AS = getLoadStoreAddressSpace(I); 6698 Value *Ptr = getLoadStorePointerOperand(I); 6699 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6700 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6701 // that it is being called from this specific place. 6702 6703 // Figure out whether the access is strided and get the stride value 6704 // if it's known in compile time 6705 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6706 6707 // Get the cost of the scalar memory instruction and address computation. 6708 InstructionCost Cost = 6709 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6710 6711 // Don't pass *I here, since it is scalar but will actually be part of a 6712 // vectorized loop where the user of it is a vectorized instruction. 6713 const Align Alignment = getLoadStoreAlignment(I); 6714 Cost += VF.getKnownMinValue() * 6715 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6716 AS, TTI::TCK_RecipThroughput); 6717 6718 // Get the overhead of the extractelement and insertelement instructions 6719 // we might create due to scalarization. 6720 Cost += getScalarizationOverhead(I, VF); 6721 6722 // If we have a predicated load/store, it will need extra i1 extracts and 6723 // conditional branches, but may not be executed for each vector lane. Scale 6724 // the cost by the probability of executing the predicated block. 6725 if (isPredicatedInst(I)) { 6726 Cost /= getReciprocalPredBlockProb(); 6727 6728 // Add the cost of an i1 extract and a branch 6729 auto *Vec_i1Ty = 6730 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6731 Cost += TTI.getScalarizationOverhead( 6732 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6733 /*Insert=*/false, /*Extract=*/true); 6734 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6735 6736 if (useEmulatedMaskMemRefHack(I)) 6737 // Artificially setting to a high enough value to practically disable 6738 // vectorization with such operations. 6739 Cost = 3000000; 6740 } 6741 6742 return Cost; 6743 } 6744 6745 InstructionCost 6746 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6747 ElementCount VF) { 6748 Type *ValTy = getLoadStoreType(I); 6749 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6750 Value *Ptr = getLoadStorePointerOperand(I); 6751 unsigned AS = getLoadStoreAddressSpace(I); 6752 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6753 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6754 6755 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6756 "Stride should be 1 or -1 for consecutive memory access"); 6757 const Align Alignment = getLoadStoreAlignment(I); 6758 InstructionCost Cost = 0; 6759 if (Legal->isMaskRequired(I)) 6760 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6761 CostKind); 6762 else 6763 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6764 CostKind, I); 6765 6766 bool Reverse = ConsecutiveStride < 0; 6767 if (Reverse) 6768 Cost += 6769 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6770 return Cost; 6771 } 6772 6773 InstructionCost 6774 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6775 ElementCount VF) { 6776 assert(Legal->isUniformMemOp(*I)); 6777 6778 Type *ValTy = getLoadStoreType(I); 6779 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6780 const Align Alignment = getLoadStoreAlignment(I); 6781 unsigned AS = getLoadStoreAddressSpace(I); 6782 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6783 if (isa<LoadInst>(I)) { 6784 return TTI.getAddressComputationCost(ValTy) + 6785 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6786 CostKind) + 6787 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6788 } 6789 StoreInst *SI = cast<StoreInst>(I); 6790 6791 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6792 return TTI.getAddressComputationCost(ValTy) + 6793 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6794 CostKind) + 6795 (isLoopInvariantStoreValue 6796 ? 0 6797 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6798 VF.getKnownMinValue() - 1)); 6799 } 6800 6801 InstructionCost 6802 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6803 ElementCount VF) { 6804 Type *ValTy = getLoadStoreType(I); 6805 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6806 const Align Alignment = getLoadStoreAlignment(I); 6807 const Value *Ptr = getLoadStorePointerOperand(I); 6808 6809 return TTI.getAddressComputationCost(VectorTy) + 6810 TTI.getGatherScatterOpCost( 6811 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6812 TargetTransformInfo::TCK_RecipThroughput, I); 6813 } 6814 6815 InstructionCost 6816 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6817 ElementCount VF) { 6818 // TODO: Once we have support for interleaving with scalable vectors 6819 // we can calculate the cost properly here. 6820 if (VF.isScalable()) 6821 return InstructionCost::getInvalid(); 6822 6823 Type *ValTy = getLoadStoreType(I); 6824 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6825 unsigned AS = getLoadStoreAddressSpace(I); 6826 6827 auto Group = getInterleavedAccessGroup(I); 6828 assert(Group && "Fail to get an interleaved access group."); 6829 6830 unsigned InterleaveFactor = Group->getFactor(); 6831 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6832 6833 // Holds the indices of existing members in the interleaved group. 6834 SmallVector<unsigned, 4> Indices; 6835 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6836 if (Group->getMember(IF)) 6837 Indices.push_back(IF); 6838 6839 // Calculate the cost of the whole interleaved group. 6840 bool UseMaskForGaps = 6841 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6842 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6843 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6844 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6845 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6846 6847 if (Group->isReverse()) { 6848 // TODO: Add support for reversed masked interleaved access. 6849 assert(!Legal->isMaskRequired(I) && 6850 "Reverse masked interleaved access not supported."); 6851 Cost += 6852 Group->getNumMembers() * 6853 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6854 } 6855 return Cost; 6856 } 6857 6858 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6859 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6860 using namespace llvm::PatternMatch; 6861 // Early exit for no inloop reductions 6862 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6863 return None; 6864 auto *VectorTy = cast<VectorType>(Ty); 6865 6866 // We are looking for a pattern of, and finding the minimal acceptable cost: 6867 // reduce(mul(ext(A), ext(B))) or 6868 // reduce(mul(A, B)) or 6869 // reduce(ext(A)) or 6870 // reduce(A). 6871 // The basic idea is that we walk down the tree to do that, finding the root 6872 // reduction instruction in InLoopReductionImmediateChains. From there we find 6873 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6874 // of the components. If the reduction cost is lower then we return it for the 6875 // reduction instruction and 0 for the other instructions in the pattern. If 6876 // it is not we return an invalid cost specifying the orignal cost method 6877 // should be used. 6878 Instruction *RetI = I; 6879 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6880 if (!RetI->hasOneUser()) 6881 return None; 6882 RetI = RetI->user_back(); 6883 } 6884 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6885 RetI->user_back()->getOpcode() == Instruction::Add) { 6886 if (!RetI->hasOneUser()) 6887 return None; 6888 RetI = RetI->user_back(); 6889 } 6890 6891 // Test if the found instruction is a reduction, and if not return an invalid 6892 // cost specifying the parent to use the original cost modelling. 6893 if (!InLoopReductionImmediateChains.count(RetI)) 6894 return None; 6895 6896 // Find the reduction this chain is a part of and calculate the basic cost of 6897 // the reduction on its own. 6898 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6899 Instruction *ReductionPhi = LastChain; 6900 while (!isa<PHINode>(ReductionPhi)) 6901 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6902 6903 const RecurrenceDescriptor &RdxDesc = 6904 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6905 6906 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6907 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6908 6909 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6910 // normal fmul instruction to the cost of the fadd reduction. 6911 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6912 BaseCost += 6913 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6914 6915 // If we're using ordered reductions then we can just return the base cost 6916 // here, since getArithmeticReductionCost calculates the full ordered 6917 // reduction cost when FP reassociation is not allowed. 6918 if (useOrderedReductions(RdxDesc)) 6919 return BaseCost; 6920 6921 // Get the operand that was not the reduction chain and match it to one of the 6922 // patterns, returning the better cost if it is found. 6923 Instruction *RedOp = RetI->getOperand(1) == LastChain 6924 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6925 : dyn_cast<Instruction>(RetI->getOperand(1)); 6926 6927 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6928 6929 Instruction *Op0, *Op1; 6930 if (RedOp && 6931 match(RedOp, 6932 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6933 match(Op0, m_ZExtOrSExt(m_Value())) && 6934 Op0->getOpcode() == Op1->getOpcode() && 6935 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6936 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6937 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6938 6939 // Matched reduce(ext(mul(ext(A), ext(B))) 6940 // Note that the extend opcodes need to all match, or if A==B they will have 6941 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6942 // which is equally fine. 6943 bool IsUnsigned = isa<ZExtInst>(Op0); 6944 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6945 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6946 6947 InstructionCost ExtCost = 6948 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6949 TTI::CastContextHint::None, CostKind, Op0); 6950 InstructionCost MulCost = 6951 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6952 InstructionCost Ext2Cost = 6953 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6954 TTI::CastContextHint::None, CostKind, RedOp); 6955 6956 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6957 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6958 CostKind); 6959 6960 if (RedCost.isValid() && 6961 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6962 return I == RetI ? RedCost : 0; 6963 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6964 !TheLoop->isLoopInvariant(RedOp)) { 6965 // Matched reduce(ext(A)) 6966 bool IsUnsigned = isa<ZExtInst>(RedOp); 6967 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6968 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6969 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6970 CostKind); 6971 6972 InstructionCost ExtCost = 6973 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6974 TTI::CastContextHint::None, CostKind, RedOp); 6975 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6976 return I == RetI ? RedCost : 0; 6977 } else if (RedOp && 6978 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6979 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6980 Op0->getOpcode() == Op1->getOpcode() && 6981 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6982 bool IsUnsigned = isa<ZExtInst>(Op0); 6983 Type *Op0Ty = Op0->getOperand(0)->getType(); 6984 Type *Op1Ty = Op1->getOperand(0)->getType(); 6985 Type *LargestOpTy = 6986 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6987 : Op0Ty; 6988 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6989 6990 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6991 // different sizes. We take the largest type as the ext to reduce, and add 6992 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6993 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6994 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6995 TTI::CastContextHint::None, CostKind, Op0); 6996 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6997 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6998 TTI::CastContextHint::None, CostKind, Op1); 6999 InstructionCost MulCost = 7000 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7001 7002 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7003 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7004 CostKind); 7005 InstructionCost ExtraExtCost = 0; 7006 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7007 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7008 ExtraExtCost = TTI.getCastInstrCost( 7009 ExtraExtOp->getOpcode(), ExtType, 7010 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7011 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7012 } 7013 7014 if (RedCost.isValid() && 7015 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7016 return I == RetI ? RedCost : 0; 7017 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7018 // Matched reduce(mul()) 7019 InstructionCost MulCost = 7020 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7021 7022 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7023 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7024 CostKind); 7025 7026 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7027 return I == RetI ? RedCost : 0; 7028 } 7029 } 7030 7031 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7032 } 7033 7034 InstructionCost 7035 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7036 ElementCount VF) { 7037 // Calculate scalar cost only. Vectorization cost should be ready at this 7038 // moment. 7039 if (VF.isScalar()) { 7040 Type *ValTy = getLoadStoreType(I); 7041 const Align Alignment = getLoadStoreAlignment(I); 7042 unsigned AS = getLoadStoreAddressSpace(I); 7043 7044 return TTI.getAddressComputationCost(ValTy) + 7045 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7046 TTI::TCK_RecipThroughput, I); 7047 } 7048 return getWideningCost(I, VF); 7049 } 7050 7051 LoopVectorizationCostModel::VectorizationCostTy 7052 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7053 ElementCount VF) { 7054 // If we know that this instruction will remain uniform, check the cost of 7055 // the scalar version. 7056 if (isUniformAfterVectorization(I, VF)) 7057 VF = ElementCount::getFixed(1); 7058 7059 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7060 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7061 7062 // Forced scalars do not have any scalarization overhead. 7063 auto ForcedScalar = ForcedScalars.find(VF); 7064 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7065 auto InstSet = ForcedScalar->second; 7066 if (InstSet.count(I)) 7067 return VectorizationCostTy( 7068 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7069 VF.getKnownMinValue()), 7070 false); 7071 } 7072 7073 Type *VectorTy; 7074 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7075 7076 bool TypeNotScalarized = false; 7077 if (VF.isVector() && VectorTy->isVectorTy()) { 7078 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7079 if (NumParts) 7080 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7081 else 7082 C = InstructionCost::getInvalid(); 7083 } 7084 return VectorizationCostTy(C, TypeNotScalarized); 7085 } 7086 7087 InstructionCost 7088 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7089 ElementCount VF) const { 7090 7091 // There is no mechanism yet to create a scalable scalarization loop, 7092 // so this is currently Invalid. 7093 if (VF.isScalable()) 7094 return InstructionCost::getInvalid(); 7095 7096 if (VF.isScalar()) 7097 return 0; 7098 7099 InstructionCost Cost = 0; 7100 Type *RetTy = ToVectorTy(I->getType(), VF); 7101 if (!RetTy->isVoidTy() && 7102 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7103 Cost += TTI.getScalarizationOverhead( 7104 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7105 false); 7106 7107 // Some targets keep addresses scalar. 7108 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7109 return Cost; 7110 7111 // Some targets support efficient element stores. 7112 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7113 return Cost; 7114 7115 // Collect operands to consider. 7116 CallInst *CI = dyn_cast<CallInst>(I); 7117 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7118 7119 // Skip operands that do not require extraction/scalarization and do not incur 7120 // any overhead. 7121 SmallVector<Type *> Tys; 7122 for (auto *V : filterExtractingOperands(Ops, VF)) 7123 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7124 return Cost + TTI.getOperandsScalarizationOverhead( 7125 filterExtractingOperands(Ops, VF), Tys); 7126 } 7127 7128 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7129 if (VF.isScalar()) 7130 return; 7131 NumPredStores = 0; 7132 for (BasicBlock *BB : TheLoop->blocks()) { 7133 // For each instruction in the old loop. 7134 for (Instruction &I : *BB) { 7135 Value *Ptr = getLoadStorePointerOperand(&I); 7136 if (!Ptr) 7137 continue; 7138 7139 // TODO: We should generate better code and update the cost model for 7140 // predicated uniform stores. Today they are treated as any other 7141 // predicated store (see added test cases in 7142 // invariant-store-vectorization.ll). 7143 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7144 NumPredStores++; 7145 7146 if (Legal->isUniformMemOp(I)) { 7147 // TODO: Avoid replicating loads and stores instead of 7148 // relying on instcombine to remove them. 7149 // Load: Scalar load + broadcast 7150 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7151 InstructionCost Cost; 7152 if (isa<StoreInst>(&I) && VF.isScalable() && 7153 isLegalGatherOrScatter(&I)) { 7154 Cost = getGatherScatterCost(&I, VF); 7155 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7156 } else { 7157 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7158 "Cannot yet scalarize uniform stores"); 7159 Cost = getUniformMemOpCost(&I, VF); 7160 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7161 } 7162 continue; 7163 } 7164 7165 // We assume that widening is the best solution when possible. 7166 if (memoryInstructionCanBeWidened(&I, VF)) { 7167 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7168 int ConsecutiveStride = Legal->isConsecutivePtr( 7169 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7170 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7171 "Expected consecutive stride."); 7172 InstWidening Decision = 7173 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7174 setWideningDecision(&I, VF, Decision, Cost); 7175 continue; 7176 } 7177 7178 // Choose between Interleaving, Gather/Scatter or Scalarization. 7179 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7180 unsigned NumAccesses = 1; 7181 if (isAccessInterleaved(&I)) { 7182 auto Group = getInterleavedAccessGroup(&I); 7183 assert(Group && "Fail to get an interleaved access group."); 7184 7185 // Make one decision for the whole group. 7186 if (getWideningDecision(&I, VF) != CM_Unknown) 7187 continue; 7188 7189 NumAccesses = Group->getNumMembers(); 7190 if (interleavedAccessCanBeWidened(&I, VF)) 7191 InterleaveCost = getInterleaveGroupCost(&I, VF); 7192 } 7193 7194 InstructionCost GatherScatterCost = 7195 isLegalGatherOrScatter(&I) 7196 ? getGatherScatterCost(&I, VF) * NumAccesses 7197 : InstructionCost::getInvalid(); 7198 7199 InstructionCost ScalarizationCost = 7200 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7201 7202 // Choose better solution for the current VF, 7203 // write down this decision and use it during vectorization. 7204 InstructionCost Cost; 7205 InstWidening Decision; 7206 if (InterleaveCost <= GatherScatterCost && 7207 InterleaveCost < ScalarizationCost) { 7208 Decision = CM_Interleave; 7209 Cost = InterleaveCost; 7210 } else if (GatherScatterCost < ScalarizationCost) { 7211 Decision = CM_GatherScatter; 7212 Cost = GatherScatterCost; 7213 } else { 7214 Decision = CM_Scalarize; 7215 Cost = ScalarizationCost; 7216 } 7217 // If the instructions belongs to an interleave group, the whole group 7218 // receives the same decision. The whole group receives the cost, but 7219 // the cost will actually be assigned to one instruction. 7220 if (auto Group = getInterleavedAccessGroup(&I)) 7221 setWideningDecision(Group, VF, Decision, Cost); 7222 else 7223 setWideningDecision(&I, VF, Decision, Cost); 7224 } 7225 } 7226 7227 // Make sure that any load of address and any other address computation 7228 // remains scalar unless there is gather/scatter support. This avoids 7229 // inevitable extracts into address registers, and also has the benefit of 7230 // activating LSR more, since that pass can't optimize vectorized 7231 // addresses. 7232 if (TTI.prefersVectorizedAddressing()) 7233 return; 7234 7235 // Start with all scalar pointer uses. 7236 SmallPtrSet<Instruction *, 8> AddrDefs; 7237 for (BasicBlock *BB : TheLoop->blocks()) 7238 for (Instruction &I : *BB) { 7239 Instruction *PtrDef = 7240 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7241 if (PtrDef && TheLoop->contains(PtrDef) && 7242 getWideningDecision(&I, VF) != CM_GatherScatter) 7243 AddrDefs.insert(PtrDef); 7244 } 7245 7246 // Add all instructions used to generate the addresses. 7247 SmallVector<Instruction *, 4> Worklist; 7248 append_range(Worklist, AddrDefs); 7249 while (!Worklist.empty()) { 7250 Instruction *I = Worklist.pop_back_val(); 7251 for (auto &Op : I->operands()) 7252 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7253 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7254 AddrDefs.insert(InstOp).second) 7255 Worklist.push_back(InstOp); 7256 } 7257 7258 for (auto *I : AddrDefs) { 7259 if (isa<LoadInst>(I)) { 7260 // Setting the desired widening decision should ideally be handled in 7261 // by cost functions, but since this involves the task of finding out 7262 // if the loaded register is involved in an address computation, it is 7263 // instead changed here when we know this is the case. 7264 InstWidening Decision = getWideningDecision(I, VF); 7265 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7266 // Scalarize a widened load of address. 7267 setWideningDecision( 7268 I, VF, CM_Scalarize, 7269 (VF.getKnownMinValue() * 7270 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7271 else if (auto Group = getInterleavedAccessGroup(I)) { 7272 // Scalarize an interleave group of address loads. 7273 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7274 if (Instruction *Member = Group->getMember(I)) 7275 setWideningDecision( 7276 Member, VF, CM_Scalarize, 7277 (VF.getKnownMinValue() * 7278 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7279 } 7280 } 7281 } else 7282 // Make sure I gets scalarized and a cost estimate without 7283 // scalarization overhead. 7284 ForcedScalars[VF].insert(I); 7285 } 7286 } 7287 7288 InstructionCost 7289 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7290 Type *&VectorTy) { 7291 Type *RetTy = I->getType(); 7292 if (canTruncateToMinimalBitwidth(I, VF)) 7293 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7294 auto SE = PSE.getSE(); 7295 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7296 7297 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7298 ElementCount VF) -> bool { 7299 if (VF.isScalar()) 7300 return true; 7301 7302 auto Scalarized = InstsToScalarize.find(VF); 7303 assert(Scalarized != InstsToScalarize.end() && 7304 "VF not yet analyzed for scalarization profitability"); 7305 return !Scalarized->second.count(I) && 7306 llvm::all_of(I->users(), [&](User *U) { 7307 auto *UI = cast<Instruction>(U); 7308 return !Scalarized->second.count(UI); 7309 }); 7310 }; 7311 (void) hasSingleCopyAfterVectorization; 7312 7313 if (isScalarAfterVectorization(I, VF)) { 7314 // With the exception of GEPs and PHIs, after scalarization there should 7315 // only be one copy of the instruction generated in the loop. This is 7316 // because the VF is either 1, or any instructions that need scalarizing 7317 // have already been dealt with by the the time we get here. As a result, 7318 // it means we don't have to multiply the instruction cost by VF. 7319 assert(I->getOpcode() == Instruction::GetElementPtr || 7320 I->getOpcode() == Instruction::PHI || 7321 (I->getOpcode() == Instruction::BitCast && 7322 I->getType()->isPointerTy()) || 7323 hasSingleCopyAfterVectorization(I, VF)); 7324 VectorTy = RetTy; 7325 } else 7326 VectorTy = ToVectorTy(RetTy, VF); 7327 7328 // TODO: We need to estimate the cost of intrinsic calls. 7329 switch (I->getOpcode()) { 7330 case Instruction::GetElementPtr: 7331 // We mark this instruction as zero-cost because the cost of GEPs in 7332 // vectorized code depends on whether the corresponding memory instruction 7333 // is scalarized or not. Therefore, we handle GEPs with the memory 7334 // instruction cost. 7335 return 0; 7336 case Instruction::Br: { 7337 // In cases of scalarized and predicated instructions, there will be VF 7338 // predicated blocks in the vectorized loop. Each branch around these 7339 // blocks requires also an extract of its vector compare i1 element. 7340 bool ScalarPredicatedBB = false; 7341 BranchInst *BI = cast<BranchInst>(I); 7342 if (VF.isVector() && BI->isConditional() && 7343 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7344 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7345 ScalarPredicatedBB = true; 7346 7347 if (ScalarPredicatedBB) { 7348 // Not possible to scalarize scalable vector with predicated instructions. 7349 if (VF.isScalable()) 7350 return InstructionCost::getInvalid(); 7351 // Return cost for branches around scalarized and predicated blocks. 7352 auto *Vec_i1Ty = 7353 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7354 return ( 7355 TTI.getScalarizationOverhead( 7356 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7357 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7358 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7359 // The back-edge branch will remain, as will all scalar branches. 7360 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7361 else 7362 // This branch will be eliminated by if-conversion. 7363 return 0; 7364 // Note: We currently assume zero cost for an unconditional branch inside 7365 // a predicated block since it will become a fall-through, although we 7366 // may decide in the future to call TTI for all branches. 7367 } 7368 case Instruction::PHI: { 7369 auto *Phi = cast<PHINode>(I); 7370 7371 // First-order recurrences are replaced by vector shuffles inside the loop. 7372 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7373 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7374 return TTI.getShuffleCost( 7375 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7376 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7377 7378 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7379 // converted into select instructions. We require N - 1 selects per phi 7380 // node, where N is the number of incoming values. 7381 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7382 return (Phi->getNumIncomingValues() - 1) * 7383 TTI.getCmpSelInstrCost( 7384 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7385 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7386 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7387 7388 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7389 } 7390 case Instruction::UDiv: 7391 case Instruction::SDiv: 7392 case Instruction::URem: 7393 case Instruction::SRem: 7394 // If we have a predicated instruction, it may not be executed for each 7395 // vector lane. Get the scalarization cost and scale this amount by the 7396 // probability of executing the predicated block. If the instruction is not 7397 // predicated, we fall through to the next case. 7398 if (VF.isVector() && isScalarWithPredication(I)) { 7399 InstructionCost Cost = 0; 7400 7401 // These instructions have a non-void type, so account for the phi nodes 7402 // that we will create. This cost is likely to be zero. The phi node 7403 // cost, if any, should be scaled by the block probability because it 7404 // models a copy at the end of each predicated block. 7405 Cost += VF.getKnownMinValue() * 7406 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7407 7408 // The cost of the non-predicated instruction. 7409 Cost += VF.getKnownMinValue() * 7410 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7411 7412 // The cost of insertelement and extractelement instructions needed for 7413 // scalarization. 7414 Cost += getScalarizationOverhead(I, VF); 7415 7416 // Scale the cost by the probability of executing the predicated blocks. 7417 // This assumes the predicated block for each vector lane is equally 7418 // likely. 7419 return Cost / getReciprocalPredBlockProb(); 7420 } 7421 LLVM_FALLTHROUGH; 7422 case Instruction::Add: 7423 case Instruction::FAdd: 7424 case Instruction::Sub: 7425 case Instruction::FSub: 7426 case Instruction::Mul: 7427 case Instruction::FMul: 7428 case Instruction::FDiv: 7429 case Instruction::FRem: 7430 case Instruction::Shl: 7431 case Instruction::LShr: 7432 case Instruction::AShr: 7433 case Instruction::And: 7434 case Instruction::Or: 7435 case Instruction::Xor: { 7436 // Since we will replace the stride by 1 the multiplication should go away. 7437 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7438 return 0; 7439 7440 // Detect reduction patterns 7441 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7442 return *RedCost; 7443 7444 // Certain instructions can be cheaper to vectorize if they have a constant 7445 // second vector operand. One example of this are shifts on x86. 7446 Value *Op2 = I->getOperand(1); 7447 TargetTransformInfo::OperandValueProperties Op2VP; 7448 TargetTransformInfo::OperandValueKind Op2VK = 7449 TTI.getOperandInfo(Op2, Op2VP); 7450 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7451 Op2VK = TargetTransformInfo::OK_UniformValue; 7452 7453 SmallVector<const Value *, 4> Operands(I->operand_values()); 7454 return TTI.getArithmeticInstrCost( 7455 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7456 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7457 } 7458 case Instruction::FNeg: { 7459 return TTI.getArithmeticInstrCost( 7460 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7461 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7462 TargetTransformInfo::OP_None, I->getOperand(0), I); 7463 } 7464 case Instruction::Select: { 7465 SelectInst *SI = cast<SelectInst>(I); 7466 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7467 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7468 7469 const Value *Op0, *Op1; 7470 using namespace llvm::PatternMatch; 7471 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7472 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7473 // select x, y, false --> x & y 7474 // select x, true, y --> x | y 7475 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7476 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7477 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7478 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7479 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7480 Op1->getType()->getScalarSizeInBits() == 1); 7481 7482 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7483 return TTI.getArithmeticInstrCost( 7484 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7485 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7486 } 7487 7488 Type *CondTy = SI->getCondition()->getType(); 7489 if (!ScalarCond) 7490 CondTy = VectorType::get(CondTy, VF); 7491 7492 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7493 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7494 Pred = Cmp->getPredicate(); 7495 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7496 CostKind, I); 7497 } 7498 case Instruction::ICmp: 7499 case Instruction::FCmp: { 7500 Type *ValTy = I->getOperand(0)->getType(); 7501 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7502 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7503 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7504 VectorTy = ToVectorTy(ValTy, VF); 7505 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7506 cast<CmpInst>(I)->getPredicate(), CostKind, 7507 I); 7508 } 7509 case Instruction::Store: 7510 case Instruction::Load: { 7511 ElementCount Width = VF; 7512 if (Width.isVector()) { 7513 InstWidening Decision = getWideningDecision(I, Width); 7514 assert(Decision != CM_Unknown && 7515 "CM decision should be taken at this point"); 7516 if (Decision == CM_Scalarize) 7517 Width = ElementCount::getFixed(1); 7518 } 7519 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7520 return getMemoryInstructionCost(I, VF); 7521 } 7522 case Instruction::BitCast: 7523 if (I->getType()->isPointerTy()) 7524 return 0; 7525 LLVM_FALLTHROUGH; 7526 case Instruction::ZExt: 7527 case Instruction::SExt: 7528 case Instruction::FPToUI: 7529 case Instruction::FPToSI: 7530 case Instruction::FPExt: 7531 case Instruction::PtrToInt: 7532 case Instruction::IntToPtr: 7533 case Instruction::SIToFP: 7534 case Instruction::UIToFP: 7535 case Instruction::Trunc: 7536 case Instruction::FPTrunc: { 7537 // Computes the CastContextHint from a Load/Store instruction. 7538 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7539 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7540 "Expected a load or a store!"); 7541 7542 if (VF.isScalar() || !TheLoop->contains(I)) 7543 return TTI::CastContextHint::Normal; 7544 7545 switch (getWideningDecision(I, VF)) { 7546 case LoopVectorizationCostModel::CM_GatherScatter: 7547 return TTI::CastContextHint::GatherScatter; 7548 case LoopVectorizationCostModel::CM_Interleave: 7549 return TTI::CastContextHint::Interleave; 7550 case LoopVectorizationCostModel::CM_Scalarize: 7551 case LoopVectorizationCostModel::CM_Widen: 7552 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7553 : TTI::CastContextHint::Normal; 7554 case LoopVectorizationCostModel::CM_Widen_Reverse: 7555 return TTI::CastContextHint::Reversed; 7556 case LoopVectorizationCostModel::CM_Unknown: 7557 llvm_unreachable("Instr did not go through cost modelling?"); 7558 } 7559 7560 llvm_unreachable("Unhandled case!"); 7561 }; 7562 7563 unsigned Opcode = I->getOpcode(); 7564 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7565 // For Trunc, the context is the only user, which must be a StoreInst. 7566 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7567 if (I->hasOneUse()) 7568 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7569 CCH = ComputeCCH(Store); 7570 } 7571 // For Z/Sext, the context is the operand, which must be a LoadInst. 7572 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7573 Opcode == Instruction::FPExt) { 7574 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7575 CCH = ComputeCCH(Load); 7576 } 7577 7578 // We optimize the truncation of induction variables having constant 7579 // integer steps. The cost of these truncations is the same as the scalar 7580 // operation. 7581 if (isOptimizableIVTruncate(I, VF)) { 7582 auto *Trunc = cast<TruncInst>(I); 7583 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7584 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7585 } 7586 7587 // Detect reduction patterns 7588 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7589 return *RedCost; 7590 7591 Type *SrcScalarTy = I->getOperand(0)->getType(); 7592 Type *SrcVecTy = 7593 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7594 if (canTruncateToMinimalBitwidth(I, VF)) { 7595 // This cast is going to be shrunk. This may remove the cast or it might 7596 // turn it into slightly different cast. For example, if MinBW == 16, 7597 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7598 // 7599 // Calculate the modified src and dest types. 7600 Type *MinVecTy = VectorTy; 7601 if (Opcode == Instruction::Trunc) { 7602 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7603 VectorTy = 7604 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7605 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7606 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7607 VectorTy = 7608 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7609 } 7610 } 7611 7612 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7613 } 7614 case Instruction::Call: { 7615 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7616 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7617 return *RedCost; 7618 bool NeedToScalarize; 7619 CallInst *CI = cast<CallInst>(I); 7620 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7621 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7622 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7623 return std::min(CallCost, IntrinsicCost); 7624 } 7625 return CallCost; 7626 } 7627 case Instruction::ExtractValue: 7628 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7629 case Instruction::Alloca: 7630 // We cannot easily widen alloca to a scalable alloca, as 7631 // the result would need to be a vector of pointers. 7632 if (VF.isScalable()) 7633 return InstructionCost::getInvalid(); 7634 LLVM_FALLTHROUGH; 7635 default: 7636 // This opcode is unknown. Assume that it is the same as 'mul'. 7637 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7638 } // end of switch. 7639 } 7640 7641 char LoopVectorize::ID = 0; 7642 7643 static const char lv_name[] = "Loop Vectorization"; 7644 7645 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7646 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7647 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7648 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7649 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7650 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7651 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7653 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7654 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7655 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7656 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7657 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7658 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7659 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7660 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7661 7662 namespace llvm { 7663 7664 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7665 7666 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7667 bool VectorizeOnlyWhenForced) { 7668 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7669 } 7670 7671 } // end namespace llvm 7672 7673 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7674 // Check if the pointer operand of a load or store instruction is 7675 // consecutive. 7676 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7677 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7678 return false; 7679 } 7680 7681 void LoopVectorizationCostModel::collectValuesToIgnore() { 7682 // Ignore ephemeral values. 7683 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7684 7685 // Ignore type-promoting instructions we identified during reduction 7686 // detection. 7687 for (auto &Reduction : Legal->getReductionVars()) { 7688 const RecurrenceDescriptor &RedDes = Reduction.second; 7689 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7690 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7691 } 7692 // Ignore type-casting instructions we identified during induction 7693 // detection. 7694 for (auto &Induction : Legal->getInductionVars()) { 7695 const InductionDescriptor &IndDes = Induction.second; 7696 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7697 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7698 } 7699 } 7700 7701 void LoopVectorizationCostModel::collectInLoopReductions() { 7702 for (auto &Reduction : Legal->getReductionVars()) { 7703 PHINode *Phi = Reduction.first; 7704 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7705 7706 // We don't collect reductions that are type promoted (yet). 7707 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7708 continue; 7709 7710 // If the target would prefer this reduction to happen "in-loop", then we 7711 // want to record it as such. 7712 unsigned Opcode = RdxDesc.getOpcode(); 7713 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7714 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7715 TargetTransformInfo::ReductionFlags())) 7716 continue; 7717 7718 // Check that we can correctly put the reductions into the loop, by 7719 // finding the chain of operations that leads from the phi to the loop 7720 // exit value. 7721 SmallVector<Instruction *, 4> ReductionOperations = 7722 RdxDesc.getReductionOpChain(Phi, TheLoop); 7723 bool InLoop = !ReductionOperations.empty(); 7724 if (InLoop) { 7725 InLoopReductionChains[Phi] = ReductionOperations; 7726 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7727 Instruction *LastChain = Phi; 7728 for (auto *I : ReductionOperations) { 7729 InLoopReductionImmediateChains[I] = LastChain; 7730 LastChain = I; 7731 } 7732 } 7733 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7734 << " reduction for phi: " << *Phi << "\n"); 7735 } 7736 } 7737 7738 // TODO: we could return a pair of values that specify the max VF and 7739 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7740 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7741 // doesn't have a cost model that can choose which plan to execute if 7742 // more than one is generated. 7743 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7744 LoopVectorizationCostModel &CM) { 7745 unsigned WidestType; 7746 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7747 return WidestVectorRegBits / WidestType; 7748 } 7749 7750 VectorizationFactor 7751 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7752 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7753 ElementCount VF = UserVF; 7754 // Outer loop handling: They may require CFG and instruction level 7755 // transformations before even evaluating whether vectorization is profitable. 7756 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7757 // the vectorization pipeline. 7758 if (!OrigLoop->isInnermost()) { 7759 // If the user doesn't provide a vectorization factor, determine a 7760 // reasonable one. 7761 if (UserVF.isZero()) { 7762 VF = ElementCount::getFixed(determineVPlanVF( 7763 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7764 .getFixedSize(), 7765 CM)); 7766 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7767 7768 // Make sure we have a VF > 1 for stress testing. 7769 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7770 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7771 << "overriding computed VF.\n"); 7772 VF = ElementCount::getFixed(4); 7773 } 7774 } 7775 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7776 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7777 "VF needs to be a power of two"); 7778 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7779 << "VF " << VF << " to build VPlans.\n"); 7780 buildVPlans(VF, VF); 7781 7782 // For VPlan build stress testing, we bail out after VPlan construction. 7783 if (VPlanBuildStressTest) 7784 return VectorizationFactor::Disabled(); 7785 7786 return {VF, 0 /*Cost*/}; 7787 } 7788 7789 LLVM_DEBUG( 7790 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7791 "VPlan-native path.\n"); 7792 return VectorizationFactor::Disabled(); 7793 } 7794 7795 Optional<VectorizationFactor> 7796 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7797 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7798 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7799 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7800 return None; 7801 7802 // Invalidate interleave groups if all blocks of loop will be predicated. 7803 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7804 !useMaskedInterleavedAccesses(*TTI)) { 7805 LLVM_DEBUG( 7806 dbgs() 7807 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7808 "which requires masked-interleaved support.\n"); 7809 if (CM.InterleaveInfo.invalidateGroups()) 7810 // Invalidating interleave groups also requires invalidating all decisions 7811 // based on them, which includes widening decisions and uniform and scalar 7812 // values. 7813 CM.invalidateCostModelingDecisions(); 7814 } 7815 7816 ElementCount MaxUserVF = 7817 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7818 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7819 if (!UserVF.isZero() && UserVFIsLegal) { 7820 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7821 "VF needs to be a power of two"); 7822 // Collect the instructions (and their associated costs) that will be more 7823 // profitable to scalarize. 7824 if (CM.selectUserVectorizationFactor(UserVF)) { 7825 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7826 CM.collectInLoopReductions(); 7827 buildVPlansWithVPRecipes(UserVF, UserVF); 7828 LLVM_DEBUG(printPlans(dbgs())); 7829 return {{UserVF, 0}}; 7830 } else 7831 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7832 "InvalidCost", ORE, OrigLoop); 7833 } 7834 7835 // Populate the set of Vectorization Factor Candidates. 7836 ElementCountSet VFCandidates; 7837 for (auto VF = ElementCount::getFixed(1); 7838 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7839 VFCandidates.insert(VF); 7840 for (auto VF = ElementCount::getScalable(1); 7841 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7842 VFCandidates.insert(VF); 7843 7844 for (const auto &VF : VFCandidates) { 7845 // Collect Uniform and Scalar instructions after vectorization with VF. 7846 CM.collectUniformsAndScalars(VF); 7847 7848 // Collect the instructions (and their associated costs) that will be more 7849 // profitable to scalarize. 7850 if (VF.isVector()) 7851 CM.collectInstsToScalarize(VF); 7852 } 7853 7854 CM.collectInLoopReductions(); 7855 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7856 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7857 7858 LLVM_DEBUG(printPlans(dbgs())); 7859 if (!MaxFactors.hasVector()) 7860 return VectorizationFactor::Disabled(); 7861 7862 // Select the optimal vectorization factor. 7863 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7864 7865 // Check if it is profitable to vectorize with runtime checks. 7866 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7867 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7868 bool PragmaThresholdReached = 7869 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7870 bool ThresholdReached = 7871 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7872 if ((ThresholdReached && !Hints.allowReordering()) || 7873 PragmaThresholdReached) { 7874 ORE->emit([&]() { 7875 return OptimizationRemarkAnalysisAliasing( 7876 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7877 OrigLoop->getHeader()) 7878 << "loop not vectorized: cannot prove it is safe to reorder " 7879 "memory operations"; 7880 }); 7881 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7882 Hints.emitRemarkWithHints(); 7883 return VectorizationFactor::Disabled(); 7884 } 7885 } 7886 return SelectedVF; 7887 } 7888 7889 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7890 assert(count_if(VPlans, 7891 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7892 1 && 7893 "Best VF has not a single VPlan."); 7894 7895 for (const VPlanPtr &Plan : VPlans) { 7896 if (Plan->hasVF(VF)) 7897 return *Plan.get(); 7898 } 7899 llvm_unreachable("No plan found!"); 7900 } 7901 7902 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7903 VPlan &BestVPlan, 7904 InnerLoopVectorizer &ILV, 7905 DominatorTree *DT) { 7906 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7907 << '\n'); 7908 7909 // Perform the actual loop transformation. 7910 7911 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7912 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7913 Value *CanonicalIVStartValue; 7914 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7915 ILV.createVectorizedLoopSkeleton(); 7916 ILV.collectPoisonGeneratingRecipes(State); 7917 7918 ILV.printDebugTracesAtStart(); 7919 7920 //===------------------------------------------------===// 7921 // 7922 // Notice: any optimization or new instruction that go 7923 // into the code below should also be implemented in 7924 // the cost-model. 7925 // 7926 //===------------------------------------------------===// 7927 7928 // 2. Copy and widen instructions from the old loop into the new loop. 7929 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7930 ILV.getOrCreateVectorTripCount(nullptr), 7931 CanonicalIVStartValue, State); 7932 BestVPlan.execute(&State); 7933 7934 // Keep all loop hints from the original loop on the vector loop (we'll 7935 // replace the vectorizer-specific hints below). 7936 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7937 7938 Optional<MDNode *> VectorizedLoopID = 7939 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7940 LLVMLoopVectorizeFollowupVectorized}); 7941 7942 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7943 if (VectorizedLoopID.hasValue()) 7944 L->setLoopID(VectorizedLoopID.getValue()); 7945 else { 7946 // Keep all loop hints from the original loop on the vector loop (we'll 7947 // replace the vectorizer-specific hints below). 7948 if (MDNode *LID = OrigLoop->getLoopID()) 7949 L->setLoopID(LID); 7950 7951 LoopVectorizeHints Hints(L, true, *ORE); 7952 Hints.setAlreadyVectorized(); 7953 } 7954 7955 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7956 // predication, updating analyses. 7957 ILV.fixVectorizedLoop(State); 7958 7959 ILV.printDebugTracesAtEnd(); 7960 } 7961 7962 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7963 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7964 for (const auto &Plan : VPlans) 7965 if (PrintVPlansInDotFormat) 7966 Plan->printDOT(O); 7967 else 7968 Plan->print(O); 7969 } 7970 #endif 7971 7972 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7973 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7974 7975 // We create new control-flow for the vectorized loop, so the original exit 7976 // conditions will be dead after vectorization if it's only used by the 7977 // terminator 7978 SmallVector<BasicBlock*> ExitingBlocks; 7979 OrigLoop->getExitingBlocks(ExitingBlocks); 7980 for (auto *BB : ExitingBlocks) { 7981 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7982 if (!Cmp || !Cmp->hasOneUse()) 7983 continue; 7984 7985 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7986 if (!DeadInstructions.insert(Cmp).second) 7987 continue; 7988 7989 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7990 // TODO: can recurse through operands in general 7991 for (Value *Op : Cmp->operands()) { 7992 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7993 DeadInstructions.insert(cast<Instruction>(Op)); 7994 } 7995 } 7996 7997 // We create new "steps" for induction variable updates to which the original 7998 // induction variables map. An original update instruction will be dead if 7999 // all its users except the induction variable are dead. 8000 auto *Latch = OrigLoop->getLoopLatch(); 8001 for (auto &Induction : Legal->getInductionVars()) { 8002 PHINode *Ind = Induction.first; 8003 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8004 8005 // If the tail is to be folded by masking, the primary induction variable, 8006 // if exists, isn't dead: it will be used for masking. Don't kill it. 8007 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8008 continue; 8009 8010 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8011 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8012 })) 8013 DeadInstructions.insert(IndUpdate); 8014 } 8015 } 8016 8017 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8018 8019 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8020 SmallVector<Metadata *, 4> MDs; 8021 // Reserve first location for self reference to the LoopID metadata node. 8022 MDs.push_back(nullptr); 8023 bool IsUnrollMetadata = false; 8024 MDNode *LoopID = L->getLoopID(); 8025 if (LoopID) { 8026 // First find existing loop unrolling disable metadata. 8027 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8028 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8029 if (MD) { 8030 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8031 IsUnrollMetadata = 8032 S && S->getString().startswith("llvm.loop.unroll.disable"); 8033 } 8034 MDs.push_back(LoopID->getOperand(i)); 8035 } 8036 } 8037 8038 if (!IsUnrollMetadata) { 8039 // Add runtime unroll disable metadata. 8040 LLVMContext &Context = L->getHeader()->getContext(); 8041 SmallVector<Metadata *, 1> DisableOperands; 8042 DisableOperands.push_back( 8043 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8044 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8045 MDs.push_back(DisableNode); 8046 MDNode *NewLoopID = MDNode::get(Context, MDs); 8047 // Set operand 0 to refer to the loop id itself. 8048 NewLoopID->replaceOperandWith(0, NewLoopID); 8049 L->setLoopID(NewLoopID); 8050 } 8051 } 8052 8053 //===--------------------------------------------------------------------===// 8054 // EpilogueVectorizerMainLoop 8055 //===--------------------------------------------------------------------===// 8056 8057 /// This function is partially responsible for generating the control flow 8058 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8059 std::pair<BasicBlock *, Value *> 8060 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8061 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8062 Loop *Lp = createVectorLoopSkeleton(""); 8063 8064 // Generate the code to check the minimum iteration count of the vector 8065 // epilogue (see below). 8066 EPI.EpilogueIterationCountCheck = 8067 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8068 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8069 8070 // Generate the code to check any assumptions that we've made for SCEV 8071 // expressions. 8072 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8073 8074 // Generate the code that checks at runtime if arrays overlap. We put the 8075 // checks into a separate block to make the more common case of few elements 8076 // faster. 8077 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8078 8079 // Generate the iteration count check for the main loop, *after* the check 8080 // for the epilogue loop, so that the path-length is shorter for the case 8081 // that goes directly through the vector epilogue. The longer-path length for 8082 // the main loop is compensated for, by the gain from vectorizing the larger 8083 // trip count. Note: the branch will get updated later on when we vectorize 8084 // the epilogue. 8085 EPI.MainLoopIterationCountCheck = 8086 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8087 8088 // Generate the induction variable. 8089 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8090 EPI.VectorTripCount = CountRoundDown; 8091 createHeaderBranch(Lp); 8092 8093 // Skip induction resume value creation here because they will be created in 8094 // the second pass. If we created them here, they wouldn't be used anyway, 8095 // because the vplan in the second pass still contains the inductions from the 8096 // original loop. 8097 8098 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8099 } 8100 8101 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8102 LLVM_DEBUG({ 8103 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8104 << "Main Loop VF:" << EPI.MainLoopVF 8105 << ", Main Loop UF:" << EPI.MainLoopUF 8106 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8107 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8108 }); 8109 } 8110 8111 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8112 DEBUG_WITH_TYPE(VerboseDebug, { 8113 dbgs() << "intermediate fn:\n" 8114 << *OrigLoop->getHeader()->getParent() << "\n"; 8115 }); 8116 } 8117 8118 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8119 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8120 assert(L && "Expected valid Loop."); 8121 assert(Bypass && "Expected valid bypass basic block."); 8122 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8123 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8124 Value *Count = getOrCreateTripCount(L); 8125 // Reuse existing vector loop preheader for TC checks. 8126 // Note that new preheader block is generated for vector loop. 8127 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8128 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8129 8130 // Generate code to check if the loop's trip count is less than VF * UF of the 8131 // main vector loop. 8132 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8133 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8134 8135 Value *CheckMinIters = Builder.CreateICmp( 8136 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8137 "min.iters.check"); 8138 8139 if (!ForEpilogue) 8140 TCCheckBlock->setName("vector.main.loop.iter.check"); 8141 8142 // Create new preheader for vector loop. 8143 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8144 DT, LI, nullptr, "vector.ph"); 8145 8146 if (ForEpilogue) { 8147 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8148 DT->getNode(Bypass)->getIDom()) && 8149 "TC check is expected to dominate Bypass"); 8150 8151 // Update dominator for Bypass & LoopExit. 8152 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8153 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8154 // For loops with multiple exits, there's no edge from the middle block 8155 // to exit blocks (as the epilogue must run) and thus no need to update 8156 // the immediate dominator of the exit blocks. 8157 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8158 8159 LoopBypassBlocks.push_back(TCCheckBlock); 8160 8161 // Save the trip count so we don't have to regenerate it in the 8162 // vec.epilog.iter.check. This is safe to do because the trip count 8163 // generated here dominates the vector epilog iter check. 8164 EPI.TripCount = Count; 8165 } 8166 8167 ReplaceInstWithInst( 8168 TCCheckBlock->getTerminator(), 8169 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8170 8171 return TCCheckBlock; 8172 } 8173 8174 //===--------------------------------------------------------------------===// 8175 // EpilogueVectorizerEpilogueLoop 8176 //===--------------------------------------------------------------------===// 8177 8178 /// This function is partially responsible for generating the control flow 8179 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8180 std::pair<BasicBlock *, Value *> 8181 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8182 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8183 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8184 8185 // Now, compare the remaining count and if there aren't enough iterations to 8186 // execute the vectorized epilogue skip to the scalar part. 8187 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8188 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8189 LoopVectorPreHeader = 8190 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8191 LI, nullptr, "vec.epilog.ph"); 8192 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8193 VecEpilogueIterationCountCheck); 8194 8195 // Adjust the control flow taking the state info from the main loop 8196 // vectorization into account. 8197 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8198 "expected this to be saved from the previous pass."); 8199 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8200 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8201 8202 DT->changeImmediateDominator(LoopVectorPreHeader, 8203 EPI.MainLoopIterationCountCheck); 8204 8205 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8206 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8207 8208 if (EPI.SCEVSafetyCheck) 8209 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8210 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8211 if (EPI.MemSafetyCheck) 8212 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8213 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8214 8215 DT->changeImmediateDominator( 8216 VecEpilogueIterationCountCheck, 8217 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8218 8219 DT->changeImmediateDominator(LoopScalarPreHeader, 8220 EPI.EpilogueIterationCountCheck); 8221 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8222 // If there is an epilogue which must run, there's no edge from the 8223 // middle block to exit blocks and thus no need to update the immediate 8224 // dominator of the exit blocks. 8225 DT->changeImmediateDominator(LoopExitBlock, 8226 EPI.EpilogueIterationCountCheck); 8227 8228 // Keep track of bypass blocks, as they feed start values to the induction 8229 // phis in the scalar loop preheader. 8230 if (EPI.SCEVSafetyCheck) 8231 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8232 if (EPI.MemSafetyCheck) 8233 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8234 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8235 8236 // Generate a resume induction for the vector epilogue and put it in the 8237 // vector epilogue preheader 8238 Type *IdxTy = Legal->getWidestInductionType(); 8239 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8240 LoopVectorPreHeader->getFirstNonPHI()); 8241 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8242 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8243 EPI.MainLoopIterationCountCheck); 8244 8245 // Generate the induction variable. 8246 createHeaderBranch(Lp); 8247 8248 // Generate induction resume values. These variables save the new starting 8249 // indexes for the scalar loop. They are used to test if there are any tail 8250 // iterations left once the vector loop has completed. 8251 // Note that when the vectorized epilogue is skipped due to iteration count 8252 // check, then the resume value for the induction variable comes from 8253 // the trip count of the main vector loop, hence passing the AdditionalBypass 8254 // argument. 8255 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8256 EPI.VectorTripCount} /* AdditionalBypass */); 8257 8258 AddRuntimeUnrollDisableMetaData(Lp); 8259 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8260 } 8261 8262 BasicBlock * 8263 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8264 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8265 8266 assert(EPI.TripCount && 8267 "Expected trip count to have been safed in the first pass."); 8268 assert( 8269 (!isa<Instruction>(EPI.TripCount) || 8270 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8271 "saved trip count does not dominate insertion point."); 8272 Value *TC = EPI.TripCount; 8273 IRBuilder<> Builder(Insert->getTerminator()); 8274 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8275 8276 // Generate code to check if the loop's trip count is less than VF * UF of the 8277 // vector epilogue loop. 8278 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8279 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8280 8281 Value *CheckMinIters = 8282 Builder.CreateICmp(P, Count, 8283 createStepForVF(Builder, Count->getType(), 8284 EPI.EpilogueVF, EPI.EpilogueUF), 8285 "min.epilog.iters.check"); 8286 8287 ReplaceInstWithInst( 8288 Insert->getTerminator(), 8289 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8290 8291 LoopBypassBlocks.push_back(Insert); 8292 return Insert; 8293 } 8294 8295 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8296 LLVM_DEBUG({ 8297 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8298 << "Epilogue Loop VF:" << EPI.EpilogueVF 8299 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8300 }); 8301 } 8302 8303 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8304 DEBUG_WITH_TYPE(VerboseDebug, { 8305 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8306 }); 8307 } 8308 8309 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8310 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8311 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8312 bool PredicateAtRangeStart = Predicate(Range.Start); 8313 8314 for (ElementCount TmpVF = Range.Start * 2; 8315 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8316 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8317 Range.End = TmpVF; 8318 break; 8319 } 8320 8321 return PredicateAtRangeStart; 8322 } 8323 8324 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8325 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8326 /// of VF's starting at a given VF and extending it as much as possible. Each 8327 /// vectorization decision can potentially shorten this sub-range during 8328 /// buildVPlan(). 8329 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8330 ElementCount MaxVF) { 8331 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8332 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8333 VFRange SubRange = {VF, MaxVFPlusOne}; 8334 VPlans.push_back(buildVPlan(SubRange)); 8335 VF = SubRange.End; 8336 } 8337 } 8338 8339 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8340 VPlanPtr &Plan) { 8341 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8342 8343 // Look for cached value. 8344 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8345 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8346 if (ECEntryIt != EdgeMaskCache.end()) 8347 return ECEntryIt->second; 8348 8349 VPValue *SrcMask = createBlockInMask(Src, Plan); 8350 8351 // The terminator has to be a branch inst! 8352 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8353 assert(BI && "Unexpected terminator found"); 8354 8355 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8356 return EdgeMaskCache[Edge] = SrcMask; 8357 8358 // If source is an exiting block, we know the exit edge is dynamically dead 8359 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8360 // adding uses of an otherwise potentially dead instruction. 8361 if (OrigLoop->isLoopExiting(Src)) 8362 return EdgeMaskCache[Edge] = SrcMask; 8363 8364 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8365 assert(EdgeMask && "No Edge Mask found for condition"); 8366 8367 if (BI->getSuccessor(0) != Dst) 8368 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8369 8370 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8371 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8372 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8373 // The select version does not introduce new UB if SrcMask is false and 8374 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8375 VPValue *False = Plan->getOrAddVPValue( 8376 ConstantInt::getFalse(BI->getCondition()->getType())); 8377 EdgeMask = 8378 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8379 } 8380 8381 return EdgeMaskCache[Edge] = EdgeMask; 8382 } 8383 8384 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8385 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8386 8387 // Look for cached value. 8388 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8389 if (BCEntryIt != BlockMaskCache.end()) 8390 return BCEntryIt->second; 8391 8392 // All-one mask is modelled as no-mask following the convention for masked 8393 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8394 VPValue *BlockMask = nullptr; 8395 8396 if (OrigLoop->getHeader() == BB) { 8397 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8398 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8399 8400 // Introduce the early-exit compare IV <= BTC to form header block mask. 8401 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8402 // constructing the desired canonical IV in the header block as its first 8403 // non-phi instructions. 8404 assert(CM.foldTailByMasking() && "must fold the tail"); 8405 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8406 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8407 8408 VPValue *IV = nullptr; 8409 if (Legal->getPrimaryInduction()) 8410 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8411 else { 8412 auto *IVRecipe = new VPWidenCanonicalIVRecipe(); 8413 HeaderVPBB->insert(IVRecipe, NewInsertionPoint); 8414 IV = IVRecipe; 8415 } 8416 8417 VPBuilder::InsertPointGuard Guard(Builder); 8418 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8419 if (CM.TTI.emitGetActiveLaneMask()) { 8420 VPValue *TC = Plan->getOrCreateTripCount(); 8421 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8422 } else { 8423 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8424 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8425 } 8426 return BlockMaskCache[BB] = BlockMask; 8427 } 8428 8429 // This is the block mask. We OR all incoming edges. 8430 for (auto *Predecessor : predecessors(BB)) { 8431 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8432 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8433 return BlockMaskCache[BB] = EdgeMask; 8434 8435 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8436 BlockMask = EdgeMask; 8437 continue; 8438 } 8439 8440 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8441 } 8442 8443 return BlockMaskCache[BB] = BlockMask; 8444 } 8445 8446 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8447 ArrayRef<VPValue *> Operands, 8448 VFRange &Range, 8449 VPlanPtr &Plan) { 8450 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8451 "Must be called with either a load or store"); 8452 8453 auto willWiden = [&](ElementCount VF) -> bool { 8454 if (VF.isScalar()) 8455 return false; 8456 LoopVectorizationCostModel::InstWidening Decision = 8457 CM.getWideningDecision(I, VF); 8458 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8459 "CM decision should be taken at this point."); 8460 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8461 return true; 8462 if (CM.isScalarAfterVectorization(I, VF) || 8463 CM.isProfitableToScalarize(I, VF)) 8464 return false; 8465 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8466 }; 8467 8468 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8469 return nullptr; 8470 8471 VPValue *Mask = nullptr; 8472 if (Legal->isMaskRequired(I)) 8473 Mask = createBlockInMask(I->getParent(), Plan); 8474 8475 // Determine if the pointer operand of the access is either consecutive or 8476 // reverse consecutive. 8477 LoopVectorizationCostModel::InstWidening Decision = 8478 CM.getWideningDecision(I, Range.Start); 8479 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8480 bool Consecutive = 8481 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8482 8483 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8484 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8485 Consecutive, Reverse); 8486 8487 StoreInst *Store = cast<StoreInst>(I); 8488 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8489 Mask, Consecutive, Reverse); 8490 } 8491 8492 VPWidenIntOrFpInductionRecipe * 8493 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8494 ArrayRef<VPValue *> Operands) const { 8495 // Check if this is an integer or fp induction. If so, build the recipe that 8496 // produces its scalar and vector values. 8497 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) { 8498 assert(II->getStartValue() == 8499 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8500 return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II); 8501 } 8502 8503 return nullptr; 8504 } 8505 8506 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8507 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8508 VPlan &Plan) const { 8509 // Optimize the special case where the source is a constant integer 8510 // induction variable. Notice that we can only optimize the 'trunc' case 8511 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8512 // (c) other casts depend on pointer size. 8513 8514 // Determine whether \p K is a truncation based on an induction variable that 8515 // can be optimized. 8516 auto isOptimizableIVTruncate = 8517 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8518 return [=](ElementCount VF) -> bool { 8519 return CM.isOptimizableIVTruncate(K, VF); 8520 }; 8521 }; 8522 8523 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8524 isOptimizableIVTruncate(I), Range)) { 8525 8526 auto *Phi = cast<PHINode>(I->getOperand(0)); 8527 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8528 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8529 return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I); 8530 } 8531 return nullptr; 8532 } 8533 8534 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8535 ArrayRef<VPValue *> Operands, 8536 VPlanPtr &Plan) { 8537 // If all incoming values are equal, the incoming VPValue can be used directly 8538 // instead of creating a new VPBlendRecipe. 8539 VPValue *FirstIncoming = Operands[0]; 8540 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8541 return FirstIncoming == Inc; 8542 })) { 8543 return Operands[0]; 8544 } 8545 8546 // We know that all PHIs in non-header blocks are converted into selects, so 8547 // we don't have to worry about the insertion order and we can just use the 8548 // builder. At this point we generate the predication tree. There may be 8549 // duplications since this is a simple recursive scan, but future 8550 // optimizations will clean it up. 8551 SmallVector<VPValue *, 2> OperandsWithMask; 8552 unsigned NumIncoming = Phi->getNumIncomingValues(); 8553 8554 for (unsigned In = 0; In < NumIncoming; In++) { 8555 VPValue *EdgeMask = 8556 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8557 assert((EdgeMask || NumIncoming == 1) && 8558 "Multiple predecessors with one having a full mask"); 8559 OperandsWithMask.push_back(Operands[In]); 8560 if (EdgeMask) 8561 OperandsWithMask.push_back(EdgeMask); 8562 } 8563 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8564 } 8565 8566 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8567 ArrayRef<VPValue *> Operands, 8568 VFRange &Range) const { 8569 8570 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8571 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8572 Range); 8573 8574 if (IsPredicated) 8575 return nullptr; 8576 8577 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8578 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8579 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8580 ID == Intrinsic::pseudoprobe || 8581 ID == Intrinsic::experimental_noalias_scope_decl)) 8582 return nullptr; 8583 8584 auto willWiden = [&](ElementCount VF) -> bool { 8585 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8586 // The following case may be scalarized depending on the VF. 8587 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8588 // version of the instruction. 8589 // Is it beneficial to perform intrinsic call compared to lib call? 8590 bool NeedToScalarize = false; 8591 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8592 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8593 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8594 return UseVectorIntrinsic || !NeedToScalarize; 8595 }; 8596 8597 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8598 return nullptr; 8599 8600 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8601 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8602 } 8603 8604 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8605 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8606 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8607 // Instruction should be widened, unless it is scalar after vectorization, 8608 // scalarization is profitable or it is predicated. 8609 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8610 return CM.isScalarAfterVectorization(I, VF) || 8611 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8612 }; 8613 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8614 Range); 8615 } 8616 8617 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8618 ArrayRef<VPValue *> Operands) const { 8619 auto IsVectorizableOpcode = [](unsigned Opcode) { 8620 switch (Opcode) { 8621 case Instruction::Add: 8622 case Instruction::And: 8623 case Instruction::AShr: 8624 case Instruction::BitCast: 8625 case Instruction::FAdd: 8626 case Instruction::FCmp: 8627 case Instruction::FDiv: 8628 case Instruction::FMul: 8629 case Instruction::FNeg: 8630 case Instruction::FPExt: 8631 case Instruction::FPToSI: 8632 case Instruction::FPToUI: 8633 case Instruction::FPTrunc: 8634 case Instruction::FRem: 8635 case Instruction::FSub: 8636 case Instruction::ICmp: 8637 case Instruction::IntToPtr: 8638 case Instruction::LShr: 8639 case Instruction::Mul: 8640 case Instruction::Or: 8641 case Instruction::PtrToInt: 8642 case Instruction::SDiv: 8643 case Instruction::Select: 8644 case Instruction::SExt: 8645 case Instruction::Shl: 8646 case Instruction::SIToFP: 8647 case Instruction::SRem: 8648 case Instruction::Sub: 8649 case Instruction::Trunc: 8650 case Instruction::UDiv: 8651 case Instruction::UIToFP: 8652 case Instruction::URem: 8653 case Instruction::Xor: 8654 case Instruction::ZExt: 8655 return true; 8656 } 8657 return false; 8658 }; 8659 8660 if (!IsVectorizableOpcode(I->getOpcode())) 8661 return nullptr; 8662 8663 // Success: widen this instruction. 8664 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8665 } 8666 8667 void VPRecipeBuilder::fixHeaderPhis() { 8668 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8669 for (VPHeaderPHIRecipe *R : PhisToFix) { 8670 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8671 VPRecipeBase *IncR = 8672 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8673 R->addOperand(IncR->getVPSingleValue()); 8674 } 8675 } 8676 8677 VPBasicBlock *VPRecipeBuilder::handleReplication( 8678 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8679 VPlanPtr &Plan) { 8680 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8681 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8682 Range); 8683 8684 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8685 [&](ElementCount VF) { return CM.isPredicatedInst(I, IsUniform); }, 8686 Range); 8687 8688 // Even if the instruction is not marked as uniform, there are certain 8689 // intrinsic calls that can be effectively treated as such, so we check for 8690 // them here. Conservatively, we only do this for scalable vectors, since 8691 // for fixed-width VFs we can always fall back on full scalarization. 8692 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8693 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8694 case Intrinsic::assume: 8695 case Intrinsic::lifetime_start: 8696 case Intrinsic::lifetime_end: 8697 // For scalable vectors if one of the operands is variant then we still 8698 // want to mark as uniform, which will generate one instruction for just 8699 // the first lane of the vector. We can't scalarize the call in the same 8700 // way as for fixed-width vectors because we don't know how many lanes 8701 // there are. 8702 // 8703 // The reasons for doing it this way for scalable vectors are: 8704 // 1. For the assume intrinsic generating the instruction for the first 8705 // lane is still be better than not generating any at all. For 8706 // example, the input may be a splat across all lanes. 8707 // 2. For the lifetime start/end intrinsics the pointer operand only 8708 // does anything useful when the input comes from a stack object, 8709 // which suggests it should always be uniform. For non-stack objects 8710 // the effect is to poison the object, which still allows us to 8711 // remove the call. 8712 IsUniform = true; 8713 break; 8714 default: 8715 break; 8716 } 8717 } 8718 8719 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8720 IsUniform, IsPredicated); 8721 setRecipe(I, Recipe); 8722 Plan->addVPValue(I, Recipe); 8723 8724 // Find if I uses a predicated instruction. If so, it will use its scalar 8725 // value. Avoid hoisting the insert-element which packs the scalar value into 8726 // a vector value, as that happens iff all users use the vector value. 8727 for (VPValue *Op : Recipe->operands()) { 8728 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8729 if (!PredR) 8730 continue; 8731 auto *RepR = 8732 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8733 assert(RepR->isPredicated() && 8734 "expected Replicate recipe to be predicated"); 8735 RepR->setAlsoPack(false); 8736 } 8737 8738 // Finalize the recipe for Instr, first if it is not predicated. 8739 if (!IsPredicated) { 8740 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8741 VPBB->appendRecipe(Recipe); 8742 return VPBB; 8743 } 8744 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8745 8746 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8747 assert(SingleSucc && "VPBB must have a single successor when handling " 8748 "predicated replication."); 8749 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8750 // Record predicated instructions for above packing optimizations. 8751 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8752 VPBlockUtils::insertBlockAfter(Region, VPBB); 8753 auto *RegSucc = new VPBasicBlock(); 8754 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8755 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8756 return RegSucc; 8757 } 8758 8759 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8760 VPRecipeBase *PredRecipe, 8761 VPlanPtr &Plan) { 8762 // Instructions marked for predication are replicated and placed under an 8763 // if-then construct to prevent side-effects. 8764 8765 // Generate recipes to compute the block mask for this region. 8766 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8767 8768 // Build the triangular if-then region. 8769 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8770 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8771 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8772 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8773 auto *PHIRecipe = Instr->getType()->isVoidTy() 8774 ? nullptr 8775 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8776 if (PHIRecipe) { 8777 Plan->removeVPValueFor(Instr); 8778 Plan->addVPValue(Instr, PHIRecipe); 8779 } 8780 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8781 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8782 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8783 8784 // Note: first set Entry as region entry and then connect successors starting 8785 // from it in order, to propagate the "parent" of each VPBasicBlock. 8786 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8787 VPBlockUtils::connectBlocks(Pred, Exit); 8788 8789 return Region; 8790 } 8791 8792 VPRecipeOrVPValueTy 8793 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8794 ArrayRef<VPValue *> Operands, 8795 VFRange &Range, VPlanPtr &Plan) { 8796 // First, check for specific widening recipes that deal with calls, memory 8797 // operations, inductions and Phi nodes. 8798 if (auto *CI = dyn_cast<CallInst>(Instr)) 8799 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8800 8801 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8802 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8803 8804 VPRecipeBase *Recipe; 8805 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8806 if (Phi->getParent() != OrigLoop->getHeader()) 8807 return tryToBlend(Phi, Operands, Plan); 8808 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8809 return toVPRecipeResult(Recipe); 8810 8811 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8812 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8813 VPValue *StartV = Operands[0]; 8814 if (Legal->isReductionVariable(Phi)) { 8815 const RecurrenceDescriptor &RdxDesc = 8816 Legal->getReductionVars().find(Phi)->second; 8817 assert(RdxDesc.getRecurrenceStartValue() == 8818 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8819 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8820 CM.isInLoopReduction(Phi), 8821 CM.useOrderedReductions(RdxDesc)); 8822 } else { 8823 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8824 } 8825 8826 // Record the incoming value from the backedge, so we can add the incoming 8827 // value from the backedge after all recipes have been created. 8828 recordRecipeOf(cast<Instruction>( 8829 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8830 PhisToFix.push_back(PhiRecipe); 8831 } else { 8832 // TODO: record backedge value for remaining pointer induction phis. 8833 assert(Phi->getType()->isPointerTy() && 8834 "only pointer phis should be handled here"); 8835 assert(Legal->getInductionVars().count(Phi) && 8836 "Not an induction variable"); 8837 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8838 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8839 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8840 } 8841 8842 return toVPRecipeResult(PhiRecipe); 8843 } 8844 8845 if (isa<TruncInst>(Instr) && 8846 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8847 Range, *Plan))) 8848 return toVPRecipeResult(Recipe); 8849 8850 if (!shouldWiden(Instr, Range)) 8851 return nullptr; 8852 8853 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8854 return toVPRecipeResult(new VPWidenGEPRecipe( 8855 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8856 8857 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8858 bool InvariantCond = 8859 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8860 return toVPRecipeResult(new VPWidenSelectRecipe( 8861 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8862 } 8863 8864 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8865 } 8866 8867 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8868 ElementCount MaxVF) { 8869 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8870 8871 // Collect instructions from the original loop that will become trivially dead 8872 // in the vectorized loop. We don't need to vectorize these instructions. For 8873 // example, original induction update instructions can become dead because we 8874 // separately emit induction "steps" when generating code for the new loop. 8875 // Similarly, we create a new latch condition when setting up the structure 8876 // of the new loop, so the old one can become dead. 8877 SmallPtrSet<Instruction *, 4> DeadInstructions; 8878 collectTriviallyDeadInstructions(DeadInstructions); 8879 8880 // Add assume instructions we need to drop to DeadInstructions, to prevent 8881 // them from being added to the VPlan. 8882 // TODO: We only need to drop assumes in blocks that get flattend. If the 8883 // control flow is preserved, we should keep them. 8884 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8885 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8886 8887 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8888 // Dead instructions do not need sinking. Remove them from SinkAfter. 8889 for (Instruction *I : DeadInstructions) 8890 SinkAfter.erase(I); 8891 8892 // Cannot sink instructions after dead instructions (there won't be any 8893 // recipes for them). Instead, find the first non-dead previous instruction. 8894 for (auto &P : Legal->getSinkAfter()) { 8895 Instruction *SinkTarget = P.second; 8896 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8897 (void)FirstInst; 8898 while (DeadInstructions.contains(SinkTarget)) { 8899 assert( 8900 SinkTarget != FirstInst && 8901 "Must find a live instruction (at least the one feeding the " 8902 "first-order recurrence PHI) before reaching beginning of the block"); 8903 SinkTarget = SinkTarget->getPrevNode(); 8904 assert(SinkTarget != P.first && 8905 "sink source equals target, no sinking required"); 8906 } 8907 P.second = SinkTarget; 8908 } 8909 8910 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8911 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8912 VFRange SubRange = {VF, MaxVFPlusOne}; 8913 VPlans.push_back( 8914 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8915 VF = SubRange.End; 8916 } 8917 } 8918 8919 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header and a 8920 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF to the 8921 // latch. 8922 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8923 bool HasNUW, bool IsVPlanNative) { 8924 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8925 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8926 8927 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8928 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8929 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8930 if (IsVPlanNative) 8931 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8932 Header->insert(CanonicalIVPHI, Header->begin()); 8933 8934 auto *CanonicalIVIncrement = 8935 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8936 : VPInstruction::CanonicalIVIncrement, 8937 {CanonicalIVPHI}, DL); 8938 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8939 8940 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8941 if (IsVPlanNative) 8942 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8943 EB->appendRecipe(CanonicalIVIncrement); 8944 } 8945 8946 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8947 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8948 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8949 8950 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8951 8952 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8953 8954 // --------------------------------------------------------------------------- 8955 // Pre-construction: record ingredients whose recipes we'll need to further 8956 // process after constructing the initial VPlan. 8957 // --------------------------------------------------------------------------- 8958 8959 // Mark instructions we'll need to sink later and their targets as 8960 // ingredients whose recipe we'll need to record. 8961 for (auto &Entry : SinkAfter) { 8962 RecipeBuilder.recordRecipeOf(Entry.first); 8963 RecipeBuilder.recordRecipeOf(Entry.second); 8964 } 8965 for (auto &Reduction : CM.getInLoopReductionChains()) { 8966 PHINode *Phi = Reduction.first; 8967 RecurKind Kind = 8968 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8969 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8970 8971 RecipeBuilder.recordRecipeOf(Phi); 8972 for (auto &R : ReductionOperations) { 8973 RecipeBuilder.recordRecipeOf(R); 8974 // For min/max reducitons, where we have a pair of icmp/select, we also 8975 // need to record the ICmp recipe, so it can be removed later. 8976 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8977 "Only min/max recurrences allowed for inloop reductions"); 8978 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8979 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8980 } 8981 } 8982 8983 // For each interleave group which is relevant for this (possibly trimmed) 8984 // Range, add it to the set of groups to be later applied to the VPlan and add 8985 // placeholders for its members' Recipes which we'll be replacing with a 8986 // single VPInterleaveRecipe. 8987 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8988 auto applyIG = [IG, this](ElementCount VF) -> bool { 8989 return (VF.isVector() && // Query is illegal for VF == 1 8990 CM.getWideningDecision(IG->getInsertPos(), VF) == 8991 LoopVectorizationCostModel::CM_Interleave); 8992 }; 8993 if (!getDecisionAndClampRange(applyIG, Range)) 8994 continue; 8995 InterleaveGroups.insert(IG); 8996 for (unsigned i = 0; i < IG->getFactor(); i++) 8997 if (Instruction *Member = IG->getMember(i)) 8998 RecipeBuilder.recordRecipeOf(Member); 8999 }; 9000 9001 // --------------------------------------------------------------------------- 9002 // Build initial VPlan: Scan the body of the loop in a topological order to 9003 // visit each basic block after having visited its predecessor basic blocks. 9004 // --------------------------------------------------------------------------- 9005 9006 // Create initial VPlan skeleton, with separate header and latch blocks. 9007 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9008 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9009 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9010 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9011 auto Plan = std::make_unique<VPlan>(TopRegion); 9012 9013 Instruction *DLInst = 9014 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9015 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9016 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9017 !CM.foldTailByMasking(), false); 9018 9019 // Scan the body of the loop in a topological order to visit each basic block 9020 // after having visited its predecessor basic blocks. 9021 LoopBlocksDFS DFS(OrigLoop); 9022 DFS.perform(LI); 9023 9024 VPBasicBlock *VPBB = HeaderVPBB; 9025 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9026 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9027 // Relevant instructions from basic block BB will be grouped into VPRecipe 9028 // ingredients and fill a new VPBasicBlock. 9029 unsigned VPBBsForBB = 0; 9030 VPBB->setName(BB->getName()); 9031 Builder.setInsertPoint(VPBB); 9032 9033 // Introduce each ingredient into VPlan. 9034 // TODO: Model and preserve debug instrinsics in VPlan. 9035 for (Instruction &I : BB->instructionsWithoutDebug()) { 9036 Instruction *Instr = &I; 9037 9038 // First filter out irrelevant instructions, to ensure no recipes are 9039 // built for them. 9040 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9041 continue; 9042 9043 SmallVector<VPValue *, 4> Operands; 9044 auto *Phi = dyn_cast<PHINode>(Instr); 9045 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9046 Operands.push_back(Plan->getOrAddVPValue( 9047 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9048 } else { 9049 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9050 Operands = {OpRange.begin(), OpRange.end()}; 9051 } 9052 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9053 Instr, Operands, Range, Plan)) { 9054 // If Instr can be simplified to an existing VPValue, use it. 9055 if (RecipeOrValue.is<VPValue *>()) { 9056 auto *VPV = RecipeOrValue.get<VPValue *>(); 9057 Plan->addVPValue(Instr, VPV); 9058 // If the re-used value is a recipe, register the recipe for the 9059 // instruction, in case the recipe for Instr needs to be recorded. 9060 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9061 RecipeBuilder.setRecipe(Instr, R); 9062 continue; 9063 } 9064 // Otherwise, add the new recipe. 9065 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9066 for (auto *Def : Recipe->definedValues()) { 9067 auto *UV = Def->getUnderlyingValue(); 9068 Plan->addVPValue(UV, Def); 9069 } 9070 9071 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9072 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9073 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9074 // of the header block. That can happen for truncates of induction 9075 // variables. Those recipes are moved to the phi section of the header 9076 // block after applying SinkAfter, which relies on the original 9077 // position of the trunc. 9078 assert(isa<TruncInst>(Instr)); 9079 InductionsToMove.push_back( 9080 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9081 } 9082 RecipeBuilder.setRecipe(Instr, Recipe); 9083 VPBB->appendRecipe(Recipe); 9084 continue; 9085 } 9086 9087 // Otherwise, if all widening options failed, Instruction is to be 9088 // replicated. This may create a successor for VPBB. 9089 VPBasicBlock *NextVPBB = 9090 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9091 if (NextVPBB != VPBB) { 9092 VPBB = NextVPBB; 9093 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9094 : ""); 9095 } 9096 } 9097 9098 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9099 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9100 } 9101 9102 // Fold the last, empty block into its predecessor. 9103 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9104 assert(VPBB && "expected to fold last (empty) block"); 9105 // After here, VPBB should not be used. 9106 VPBB = nullptr; 9107 9108 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9109 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9110 "entry block must be set to a VPRegionBlock having a non-empty entry " 9111 "VPBasicBlock"); 9112 RecipeBuilder.fixHeaderPhis(); 9113 9114 // --------------------------------------------------------------------------- 9115 // Transform initial VPlan: Apply previously taken decisions, in order, to 9116 // bring the VPlan to its final state. 9117 // --------------------------------------------------------------------------- 9118 9119 // Apply Sink-After legal constraints. 9120 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9121 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9122 if (Region && Region->isReplicator()) { 9123 assert(Region->getNumSuccessors() == 1 && 9124 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9125 assert(R->getParent()->size() == 1 && 9126 "A recipe in an original replicator region must be the only " 9127 "recipe in its block"); 9128 return Region; 9129 } 9130 return nullptr; 9131 }; 9132 for (auto &Entry : SinkAfter) { 9133 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9134 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9135 9136 auto *TargetRegion = GetReplicateRegion(Target); 9137 auto *SinkRegion = GetReplicateRegion(Sink); 9138 if (!SinkRegion) { 9139 // If the sink source is not a replicate region, sink the recipe directly. 9140 if (TargetRegion) { 9141 // The target is in a replication region, make sure to move Sink to 9142 // the block after it, not into the replication region itself. 9143 VPBasicBlock *NextBlock = 9144 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9145 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9146 } else 9147 Sink->moveAfter(Target); 9148 continue; 9149 } 9150 9151 // The sink source is in a replicate region. Unhook the region from the CFG. 9152 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9153 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9154 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9155 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9156 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9157 9158 if (TargetRegion) { 9159 // The target recipe is also in a replicate region, move the sink region 9160 // after the target region. 9161 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9162 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9163 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9164 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9165 } else { 9166 // The sink source is in a replicate region, we need to move the whole 9167 // replicate region, which should only contain a single recipe in the 9168 // main block. 9169 auto *SplitBlock = 9170 Target->getParent()->splitAt(std::next(Target->getIterator())); 9171 9172 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9173 9174 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9175 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9176 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9177 } 9178 } 9179 9180 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9181 9182 // Now that sink-after is done, move induction recipes for optimized truncates 9183 // to the phi section of the header block. 9184 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9185 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9186 9187 // Adjust the recipes for any inloop reductions. 9188 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9189 RecipeBuilder, Range.Start); 9190 9191 // Introduce a recipe to combine the incoming and previous values of a 9192 // first-order recurrence. 9193 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9194 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9195 if (!RecurPhi) 9196 continue; 9197 9198 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9199 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9200 auto *Region = GetReplicateRegion(PrevRecipe); 9201 if (Region) 9202 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9203 if (Region || PrevRecipe->isPhi()) 9204 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9205 else 9206 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9207 9208 auto *RecurSplice = cast<VPInstruction>( 9209 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9210 {RecurPhi, RecurPhi->getBackedgeValue()})); 9211 9212 RecurPhi->replaceAllUsesWith(RecurSplice); 9213 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9214 // all users. 9215 RecurSplice->setOperand(0, RecurPhi); 9216 } 9217 9218 // Interleave memory: for each Interleave Group we marked earlier as relevant 9219 // for this VPlan, replace the Recipes widening its memory instructions with a 9220 // single VPInterleaveRecipe at its insertion point. 9221 for (auto IG : InterleaveGroups) { 9222 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9223 RecipeBuilder.getRecipe(IG->getInsertPos())); 9224 SmallVector<VPValue *, 4> StoredValues; 9225 for (unsigned i = 0; i < IG->getFactor(); ++i) 9226 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9227 auto *StoreR = 9228 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9229 StoredValues.push_back(StoreR->getStoredValue()); 9230 } 9231 9232 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9233 Recipe->getMask()); 9234 VPIG->insertBefore(Recipe); 9235 unsigned J = 0; 9236 for (unsigned i = 0; i < IG->getFactor(); ++i) 9237 if (Instruction *Member = IG->getMember(i)) { 9238 if (!Member->getType()->isVoidTy()) { 9239 VPValue *OriginalV = Plan->getVPValue(Member); 9240 Plan->removeVPValueFor(Member); 9241 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9242 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9243 J++; 9244 } 9245 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9246 } 9247 } 9248 9249 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9250 // in ways that accessing values using original IR values is incorrect. 9251 Plan->disableValue2VPValue(); 9252 9253 VPlanTransforms::sinkScalarOperands(*Plan); 9254 VPlanTransforms::mergeReplicateRegions(*Plan); 9255 9256 std::string PlanName; 9257 raw_string_ostream RSO(PlanName); 9258 ElementCount VF = Range.Start; 9259 Plan->addVF(VF); 9260 RSO << "Initial VPlan for VF={" << VF; 9261 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9262 Plan->addVF(VF); 9263 RSO << "," << VF; 9264 } 9265 RSO << "},UF>=1"; 9266 RSO.flush(); 9267 Plan->setName(PlanName); 9268 9269 // Fold Exit block into its predecessor if possible. 9270 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9271 // VPBasicBlock as exit. 9272 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9273 9274 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9275 return Plan; 9276 } 9277 9278 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9279 // Outer loop handling: They may require CFG and instruction level 9280 // transformations before even evaluating whether vectorization is profitable. 9281 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9282 // the vectorization pipeline. 9283 assert(!OrigLoop->isInnermost()); 9284 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9285 9286 // Create new empty VPlan 9287 auto Plan = std::make_unique<VPlan>(); 9288 9289 // Build hierarchical CFG 9290 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9291 HCFGBuilder.buildHierarchicalCFG(); 9292 9293 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9294 VF *= 2) 9295 Plan->addVF(VF); 9296 9297 if (EnableVPlanPredication) { 9298 VPlanPredicator VPP(*Plan); 9299 VPP.predicate(); 9300 9301 // Avoid running transformation to recipes until masked code generation in 9302 // VPlan-native path is in place. 9303 return Plan; 9304 } 9305 9306 SmallPtrSet<Instruction *, 1> DeadInstructions; 9307 VPlanTransforms::VPInstructionsToVPRecipes( 9308 OrigLoop, Plan, 9309 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9310 DeadInstructions, *PSE.getSE()); 9311 9312 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9313 true, true); 9314 return Plan; 9315 } 9316 9317 // Adjust the recipes for reductions. For in-loop reductions the chain of 9318 // instructions leading from the loop exit instr to the phi need to be converted 9319 // to reductions, with one operand being vector and the other being the scalar 9320 // reduction chain. For other reductions, a select is introduced between the phi 9321 // and live-out recipes when folding the tail. 9322 void LoopVectorizationPlanner::adjustRecipesForReductions( 9323 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9324 ElementCount MinVF) { 9325 for (auto &Reduction : CM.getInLoopReductionChains()) { 9326 PHINode *Phi = Reduction.first; 9327 const RecurrenceDescriptor &RdxDesc = 9328 Legal->getReductionVars().find(Phi)->second; 9329 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9330 9331 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9332 continue; 9333 9334 // ReductionOperations are orders top-down from the phi's use to the 9335 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9336 // which of the two operands will remain scalar and which will be reduced. 9337 // For minmax the chain will be the select instructions. 9338 Instruction *Chain = Phi; 9339 for (Instruction *R : ReductionOperations) { 9340 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9341 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9342 9343 VPValue *ChainOp = Plan->getVPValue(Chain); 9344 unsigned FirstOpId; 9345 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9346 "Only min/max recurrences allowed for inloop reductions"); 9347 // Recognize a call to the llvm.fmuladd intrinsic. 9348 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9349 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9350 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9351 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9352 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9353 "Expected to replace a VPWidenSelectSC"); 9354 FirstOpId = 1; 9355 } else { 9356 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9357 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9358 "Expected to replace a VPWidenSC"); 9359 FirstOpId = 0; 9360 } 9361 unsigned VecOpId = 9362 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9363 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9364 9365 auto *CondOp = CM.foldTailByMasking() 9366 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9367 : nullptr; 9368 9369 if (IsFMulAdd) { 9370 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9371 // need to create an fmul recipe to use as the vector operand for the 9372 // fadd reduction. 9373 VPInstruction *FMulRecipe = new VPInstruction( 9374 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9375 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9376 WidenRecipe->getParent()->insert(FMulRecipe, 9377 WidenRecipe->getIterator()); 9378 VecOp = FMulRecipe; 9379 } 9380 VPReductionRecipe *RedRecipe = 9381 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9382 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9383 Plan->removeVPValueFor(R); 9384 Plan->addVPValue(R, RedRecipe); 9385 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9386 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9387 WidenRecipe->eraseFromParent(); 9388 9389 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9390 VPRecipeBase *CompareRecipe = 9391 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9392 assert(isa<VPWidenRecipe>(CompareRecipe) && 9393 "Expected to replace a VPWidenSC"); 9394 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9395 "Expected no remaining users"); 9396 CompareRecipe->eraseFromParent(); 9397 } 9398 Chain = R; 9399 } 9400 } 9401 9402 // If tail is folded by masking, introduce selects between the phi 9403 // and the live-out instruction of each reduction, at the end of the latch. 9404 if (CM.foldTailByMasking()) { 9405 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9406 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9407 if (!PhiR || PhiR->isInLoop()) 9408 continue; 9409 Builder.setInsertPoint(LatchVPBB); 9410 VPValue *Cond = 9411 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9412 VPValue *Red = PhiR->getBackedgeValue(); 9413 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9414 } 9415 } 9416 } 9417 9418 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9419 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9420 VPSlotTracker &SlotTracker) const { 9421 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9422 IG->getInsertPos()->printAsOperand(O, false); 9423 O << ", "; 9424 getAddr()->printAsOperand(O, SlotTracker); 9425 VPValue *Mask = getMask(); 9426 if (Mask) { 9427 O << ", "; 9428 Mask->printAsOperand(O, SlotTracker); 9429 } 9430 9431 unsigned OpIdx = 0; 9432 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9433 if (!IG->getMember(i)) 9434 continue; 9435 if (getNumStoreOperands() > 0) { 9436 O << "\n" << Indent << " store "; 9437 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9438 O << " to index " << i; 9439 } else { 9440 O << "\n" << Indent << " "; 9441 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9442 O << " = load from index " << i; 9443 } 9444 ++OpIdx; 9445 } 9446 } 9447 #endif 9448 9449 void VPWidenCallRecipe::execute(VPTransformState &State) { 9450 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9451 *this, State); 9452 } 9453 9454 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9455 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9456 State.ILV->setDebugLocFromInst(&I); 9457 9458 // The condition can be loop invariant but still defined inside the 9459 // loop. This means that we can't just use the original 'cond' value. 9460 // We have to take the 'vectorized' value and pick the first lane. 9461 // Instcombine will make this a no-op. 9462 auto *InvarCond = 9463 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9464 9465 for (unsigned Part = 0; Part < State.UF; ++Part) { 9466 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9467 Value *Op0 = State.get(getOperand(1), Part); 9468 Value *Op1 = State.get(getOperand(2), Part); 9469 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9470 State.set(this, Sel, Part); 9471 State.ILV->addMetadata(Sel, &I); 9472 } 9473 } 9474 9475 void VPWidenRecipe::execute(VPTransformState &State) { 9476 auto &I = *cast<Instruction>(getUnderlyingValue()); 9477 auto &Builder = State.Builder; 9478 switch (I.getOpcode()) { 9479 case Instruction::Call: 9480 case Instruction::Br: 9481 case Instruction::PHI: 9482 case Instruction::GetElementPtr: 9483 case Instruction::Select: 9484 llvm_unreachable("This instruction is handled by a different recipe."); 9485 case Instruction::UDiv: 9486 case Instruction::SDiv: 9487 case Instruction::SRem: 9488 case Instruction::URem: 9489 case Instruction::Add: 9490 case Instruction::FAdd: 9491 case Instruction::Sub: 9492 case Instruction::FSub: 9493 case Instruction::FNeg: 9494 case Instruction::Mul: 9495 case Instruction::FMul: 9496 case Instruction::FDiv: 9497 case Instruction::FRem: 9498 case Instruction::Shl: 9499 case Instruction::LShr: 9500 case Instruction::AShr: 9501 case Instruction::And: 9502 case Instruction::Or: 9503 case Instruction::Xor: { 9504 // Just widen unops and binops. 9505 State.ILV->setDebugLocFromInst(&I); 9506 9507 for (unsigned Part = 0; Part < State.UF; ++Part) { 9508 SmallVector<Value *, 2> Ops; 9509 for (VPValue *VPOp : operands()) 9510 Ops.push_back(State.get(VPOp, Part)); 9511 9512 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9513 9514 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9515 VecOp->copyIRFlags(&I); 9516 9517 // If the instruction is vectorized and was in a basic block that needed 9518 // predication, we can't propagate poison-generating flags (nuw/nsw, 9519 // exact, etc.). The control flow has been linearized and the 9520 // instruction is no longer guarded by the predicate, which could make 9521 // the flag properties to no longer hold. 9522 if (State.MayGeneratePoisonRecipes.contains(this)) 9523 VecOp->dropPoisonGeneratingFlags(); 9524 } 9525 9526 // Use this vector value for all users of the original instruction. 9527 State.set(this, V, Part); 9528 State.ILV->addMetadata(V, &I); 9529 } 9530 9531 break; 9532 } 9533 case Instruction::ICmp: 9534 case Instruction::FCmp: { 9535 // Widen compares. Generate vector compares. 9536 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9537 auto *Cmp = cast<CmpInst>(&I); 9538 State.ILV->setDebugLocFromInst(Cmp); 9539 for (unsigned Part = 0; Part < State.UF; ++Part) { 9540 Value *A = State.get(getOperand(0), Part); 9541 Value *B = State.get(getOperand(1), Part); 9542 Value *C = nullptr; 9543 if (FCmp) { 9544 // Propagate fast math flags. 9545 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9546 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9547 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9548 } else { 9549 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9550 } 9551 State.set(this, C, Part); 9552 State.ILV->addMetadata(C, &I); 9553 } 9554 9555 break; 9556 } 9557 9558 case Instruction::ZExt: 9559 case Instruction::SExt: 9560 case Instruction::FPToUI: 9561 case Instruction::FPToSI: 9562 case Instruction::FPExt: 9563 case Instruction::PtrToInt: 9564 case Instruction::IntToPtr: 9565 case Instruction::SIToFP: 9566 case Instruction::UIToFP: 9567 case Instruction::Trunc: 9568 case Instruction::FPTrunc: 9569 case Instruction::BitCast: { 9570 auto *CI = cast<CastInst>(&I); 9571 State.ILV->setDebugLocFromInst(CI); 9572 9573 /// Vectorize casts. 9574 Type *DestTy = (State.VF.isScalar()) 9575 ? CI->getType() 9576 : VectorType::get(CI->getType(), State.VF); 9577 9578 for (unsigned Part = 0; Part < State.UF; ++Part) { 9579 Value *A = State.get(getOperand(0), Part); 9580 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9581 State.set(this, Cast, Part); 9582 State.ILV->addMetadata(Cast, &I); 9583 } 9584 break; 9585 } 9586 default: 9587 // This instruction is not vectorized by simple widening. 9588 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9589 llvm_unreachable("Unhandled instruction!"); 9590 } // end of switch. 9591 } 9592 9593 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9594 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9595 // Construct a vector GEP by widening the operands of the scalar GEP as 9596 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9597 // results in a vector of pointers when at least one operand of the GEP 9598 // is vector-typed. Thus, to keep the representation compact, we only use 9599 // vector-typed operands for loop-varying values. 9600 9601 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9602 // If we are vectorizing, but the GEP has only loop-invariant operands, 9603 // the GEP we build (by only using vector-typed operands for 9604 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9605 // produce a vector of pointers, we need to either arbitrarily pick an 9606 // operand to broadcast, or broadcast a clone of the original GEP. 9607 // Here, we broadcast a clone of the original. 9608 // 9609 // TODO: If at some point we decide to scalarize instructions having 9610 // loop-invariant operands, this special case will no longer be 9611 // required. We would add the scalarization decision to 9612 // collectLoopScalars() and teach getVectorValue() to broadcast 9613 // the lane-zero scalar value. 9614 auto *Clone = State.Builder.Insert(GEP->clone()); 9615 for (unsigned Part = 0; Part < State.UF; ++Part) { 9616 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9617 State.set(this, EntryPart, Part); 9618 State.ILV->addMetadata(EntryPart, GEP); 9619 } 9620 } else { 9621 // If the GEP has at least one loop-varying operand, we are sure to 9622 // produce a vector of pointers. But if we are only unrolling, we want 9623 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9624 // produce with the code below will be scalar (if VF == 1) or vector 9625 // (otherwise). Note that for the unroll-only case, we still maintain 9626 // values in the vector mapping with initVector, as we do for other 9627 // instructions. 9628 for (unsigned Part = 0; Part < State.UF; ++Part) { 9629 // The pointer operand of the new GEP. If it's loop-invariant, we 9630 // won't broadcast it. 9631 auto *Ptr = IsPtrLoopInvariant 9632 ? State.get(getOperand(0), VPIteration(0, 0)) 9633 : State.get(getOperand(0), Part); 9634 9635 // Collect all the indices for the new GEP. If any index is 9636 // loop-invariant, we won't broadcast it. 9637 SmallVector<Value *, 4> Indices; 9638 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9639 VPValue *Operand = getOperand(I); 9640 if (IsIndexLoopInvariant[I - 1]) 9641 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9642 else 9643 Indices.push_back(State.get(Operand, Part)); 9644 } 9645 9646 // If the GEP instruction is vectorized and was in a basic block that 9647 // needed predication, we can't propagate the poison-generating 'inbounds' 9648 // flag. The control flow has been linearized and the GEP is no longer 9649 // guarded by the predicate, which could make the 'inbounds' properties to 9650 // no longer hold. 9651 bool IsInBounds = 9652 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9653 9654 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9655 // but it should be a vector, otherwise. 9656 auto *NewGEP = IsInBounds 9657 ? State.Builder.CreateInBoundsGEP( 9658 GEP->getSourceElementType(), Ptr, Indices) 9659 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9660 Ptr, Indices); 9661 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9662 "NewGEP is not a pointer vector"); 9663 State.set(this, NewGEP, Part); 9664 State.ILV->addMetadata(NewGEP, GEP); 9665 } 9666 } 9667 } 9668 9669 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9670 assert(!State.Instance && "Int or FP induction being replicated."); 9671 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9672 State.ILV->widenIntOrFpInduction(IV, getInductionDescriptor(), 9673 getStartValue()->getLiveInIRValue(), 9674 getTruncInst(), this, State, CanonicalIV); 9675 } 9676 9677 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9678 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9679 State); 9680 } 9681 9682 void VPBlendRecipe::execute(VPTransformState &State) { 9683 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9684 // We know that all PHIs in non-header blocks are converted into 9685 // selects, so we don't have to worry about the insertion order and we 9686 // can just use the builder. 9687 // At this point we generate the predication tree. There may be 9688 // duplications since this is a simple recursive scan, but future 9689 // optimizations will clean it up. 9690 9691 unsigned NumIncoming = getNumIncomingValues(); 9692 9693 // Generate a sequence of selects of the form: 9694 // SELECT(Mask3, In3, 9695 // SELECT(Mask2, In2, 9696 // SELECT(Mask1, In1, 9697 // In0))) 9698 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9699 // are essentially undef are taken from In0. 9700 InnerLoopVectorizer::VectorParts Entry(State.UF); 9701 for (unsigned In = 0; In < NumIncoming; ++In) { 9702 for (unsigned Part = 0; Part < State.UF; ++Part) { 9703 // We might have single edge PHIs (blocks) - use an identity 9704 // 'select' for the first PHI operand. 9705 Value *In0 = State.get(getIncomingValue(In), Part); 9706 if (In == 0) 9707 Entry[Part] = In0; // Initialize with the first incoming value. 9708 else { 9709 // Select between the current value and the previous incoming edge 9710 // based on the incoming mask. 9711 Value *Cond = State.get(getMask(In), Part); 9712 Entry[Part] = 9713 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9714 } 9715 } 9716 } 9717 for (unsigned Part = 0; Part < State.UF; ++Part) 9718 State.set(this, Entry[Part], Part); 9719 } 9720 9721 void VPInterleaveRecipe::execute(VPTransformState &State) { 9722 assert(!State.Instance && "Interleave group being replicated."); 9723 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9724 getStoredValues(), getMask()); 9725 } 9726 9727 void VPReductionRecipe::execute(VPTransformState &State) { 9728 assert(!State.Instance && "Reduction being replicated."); 9729 Value *PrevInChain = State.get(getChainOp(), 0); 9730 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9731 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9732 // Propagate the fast-math flags carried by the underlying instruction. 9733 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9734 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9735 for (unsigned Part = 0; Part < State.UF; ++Part) { 9736 Value *NewVecOp = State.get(getVecOp(), Part); 9737 if (VPValue *Cond = getCondOp()) { 9738 Value *NewCond = State.get(Cond, Part); 9739 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9740 Value *Iden = RdxDesc->getRecurrenceIdentity( 9741 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9742 Value *IdenVec = 9743 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9744 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9745 NewVecOp = Select; 9746 } 9747 Value *NewRed; 9748 Value *NextInChain; 9749 if (IsOrdered) { 9750 if (State.VF.isVector()) 9751 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9752 PrevInChain); 9753 else 9754 NewRed = State.Builder.CreateBinOp( 9755 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9756 NewVecOp); 9757 PrevInChain = NewRed; 9758 } else { 9759 PrevInChain = State.get(getChainOp(), Part); 9760 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9761 } 9762 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9763 NextInChain = 9764 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9765 NewRed, PrevInChain); 9766 } else if (IsOrdered) 9767 NextInChain = NewRed; 9768 else 9769 NextInChain = State.Builder.CreateBinOp( 9770 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9771 PrevInChain); 9772 State.set(this, NextInChain, Part); 9773 } 9774 } 9775 9776 void VPReplicateRecipe::execute(VPTransformState &State) { 9777 if (State.Instance) { // Generate a single instance. 9778 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9779 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9780 IsPredicated, State); 9781 // Insert scalar instance packing it into a vector. 9782 if (AlsoPack && State.VF.isVector()) { 9783 // If we're constructing lane 0, initialize to start from poison. 9784 if (State.Instance->Lane.isFirstLane()) { 9785 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9786 Value *Poison = PoisonValue::get( 9787 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9788 State.set(this, Poison, State.Instance->Part); 9789 } 9790 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9791 } 9792 return; 9793 } 9794 9795 // Generate scalar instances for all VF lanes of all UF parts, unless the 9796 // instruction is uniform inwhich case generate only the first lane for each 9797 // of the UF parts. 9798 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9799 assert((!State.VF.isScalable() || IsUniform) && 9800 "Can't scalarize a scalable vector"); 9801 for (unsigned Part = 0; Part < State.UF; ++Part) 9802 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9803 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9804 VPIteration(Part, Lane), IsPredicated, 9805 State); 9806 } 9807 9808 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9809 assert(State.Instance && "Branch on Mask works only on single instance."); 9810 9811 unsigned Part = State.Instance->Part; 9812 unsigned Lane = State.Instance->Lane.getKnownLane(); 9813 9814 Value *ConditionBit = nullptr; 9815 VPValue *BlockInMask = getMask(); 9816 if (BlockInMask) { 9817 ConditionBit = State.get(BlockInMask, Part); 9818 if (ConditionBit->getType()->isVectorTy()) 9819 ConditionBit = State.Builder.CreateExtractElement( 9820 ConditionBit, State.Builder.getInt32(Lane)); 9821 } else // Block in mask is all-one. 9822 ConditionBit = State.Builder.getTrue(); 9823 9824 // Replace the temporary unreachable terminator with a new conditional branch, 9825 // whose two destinations will be set later when they are created. 9826 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9827 assert(isa<UnreachableInst>(CurrentTerminator) && 9828 "Expected to replace unreachable terminator with conditional branch."); 9829 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9830 CondBr->setSuccessor(0, nullptr); 9831 ReplaceInstWithInst(CurrentTerminator, CondBr); 9832 } 9833 9834 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9835 assert(State.Instance && "Predicated instruction PHI works per instance."); 9836 Instruction *ScalarPredInst = 9837 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9838 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9839 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9840 assert(PredicatingBB && "Predicated block has no single predecessor."); 9841 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9842 "operand must be VPReplicateRecipe"); 9843 9844 // By current pack/unpack logic we need to generate only a single phi node: if 9845 // a vector value for the predicated instruction exists at this point it means 9846 // the instruction has vector users only, and a phi for the vector value is 9847 // needed. In this case the recipe of the predicated instruction is marked to 9848 // also do that packing, thereby "hoisting" the insert-element sequence. 9849 // Otherwise, a phi node for the scalar value is needed. 9850 unsigned Part = State.Instance->Part; 9851 if (State.hasVectorValue(getOperand(0), Part)) { 9852 Value *VectorValue = State.get(getOperand(0), Part); 9853 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9854 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9855 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9856 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9857 if (State.hasVectorValue(this, Part)) 9858 State.reset(this, VPhi, Part); 9859 else 9860 State.set(this, VPhi, Part); 9861 // NOTE: Currently we need to update the value of the operand, so the next 9862 // predicated iteration inserts its generated value in the correct vector. 9863 State.reset(getOperand(0), VPhi, Part); 9864 } else { 9865 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9866 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9867 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9868 PredicatingBB); 9869 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9870 if (State.hasScalarValue(this, *State.Instance)) 9871 State.reset(this, Phi, *State.Instance); 9872 else 9873 State.set(this, Phi, *State.Instance); 9874 // NOTE: Currently we need to update the value of the operand, so the next 9875 // predicated iteration inserts its generated value in the correct vector. 9876 State.reset(getOperand(0), Phi, *State.Instance); 9877 } 9878 } 9879 9880 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9881 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9882 9883 // Attempt to issue a wide load. 9884 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9885 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9886 9887 assert((LI || SI) && "Invalid Load/Store instruction"); 9888 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9889 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9890 9891 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9892 9893 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9894 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9895 bool CreateGatherScatter = !Consecutive; 9896 9897 auto &Builder = State.Builder; 9898 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9899 bool isMaskRequired = getMask(); 9900 if (isMaskRequired) 9901 for (unsigned Part = 0; Part < State.UF; ++Part) 9902 BlockInMaskParts[Part] = State.get(getMask(), Part); 9903 9904 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9905 // Calculate the pointer for the specific unroll-part. 9906 GetElementPtrInst *PartPtr = nullptr; 9907 9908 bool InBounds = false; 9909 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9910 InBounds = gep->isInBounds(); 9911 if (Reverse) { 9912 // If the address is consecutive but reversed, then the 9913 // wide store needs to start at the last vector element. 9914 // RunTimeVF = VScale * VF.getKnownMinValue() 9915 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9916 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9917 // NumElt = -Part * RunTimeVF 9918 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9919 // LastLane = 1 - RunTimeVF 9920 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9921 PartPtr = 9922 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9923 PartPtr->setIsInBounds(InBounds); 9924 PartPtr = cast<GetElementPtrInst>( 9925 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9926 PartPtr->setIsInBounds(InBounds); 9927 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9928 BlockInMaskParts[Part] = 9929 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9930 } else { 9931 Value *Increment = 9932 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9933 PartPtr = cast<GetElementPtrInst>( 9934 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9935 PartPtr->setIsInBounds(InBounds); 9936 } 9937 9938 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9939 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9940 }; 9941 9942 // Handle Stores: 9943 if (SI) { 9944 State.ILV->setDebugLocFromInst(SI); 9945 9946 for (unsigned Part = 0; Part < State.UF; ++Part) { 9947 Instruction *NewSI = nullptr; 9948 Value *StoredVal = State.get(StoredValue, Part); 9949 if (CreateGatherScatter) { 9950 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9951 Value *VectorGep = State.get(getAddr(), Part); 9952 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9953 MaskPart); 9954 } else { 9955 if (Reverse) { 9956 // If we store to reverse consecutive memory locations, then we need 9957 // to reverse the order of elements in the stored value. 9958 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9959 // We don't want to update the value in the map as it might be used in 9960 // another expression. So don't call resetVectorValue(StoredVal). 9961 } 9962 auto *VecPtr = 9963 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9964 if (isMaskRequired) 9965 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9966 BlockInMaskParts[Part]); 9967 else 9968 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9969 } 9970 State.ILV->addMetadata(NewSI, SI); 9971 } 9972 return; 9973 } 9974 9975 // Handle loads. 9976 assert(LI && "Must have a load instruction"); 9977 State.ILV->setDebugLocFromInst(LI); 9978 for (unsigned Part = 0; Part < State.UF; ++Part) { 9979 Value *NewLI; 9980 if (CreateGatherScatter) { 9981 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9982 Value *VectorGep = State.get(getAddr(), Part); 9983 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9984 nullptr, "wide.masked.gather"); 9985 State.ILV->addMetadata(NewLI, LI); 9986 } else { 9987 auto *VecPtr = 9988 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9989 if (isMaskRequired) 9990 NewLI = Builder.CreateMaskedLoad( 9991 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9992 PoisonValue::get(DataTy), "wide.masked.load"); 9993 else 9994 NewLI = 9995 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9996 9997 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9998 State.ILV->addMetadata(NewLI, LI); 9999 if (Reverse) 10000 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10001 } 10002 10003 State.set(this, NewLI, Part); 10004 } 10005 } 10006 10007 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10008 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10009 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10010 // for predication. 10011 static ScalarEpilogueLowering getScalarEpilogueLowering( 10012 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10013 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10014 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10015 LoopVectorizationLegality &LVL) { 10016 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10017 // don't look at hints or options, and don't request a scalar epilogue. 10018 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10019 // LoopAccessInfo (due to code dependency and not being able to reliably get 10020 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10021 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10022 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10023 // back to the old way and vectorize with versioning when forced. See D81345.) 10024 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10025 PGSOQueryType::IRPass) && 10026 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10027 return CM_ScalarEpilogueNotAllowedOptSize; 10028 10029 // 2) If set, obey the directives 10030 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10031 switch (PreferPredicateOverEpilogue) { 10032 case PreferPredicateTy::ScalarEpilogue: 10033 return CM_ScalarEpilogueAllowed; 10034 case PreferPredicateTy::PredicateElseScalarEpilogue: 10035 return CM_ScalarEpilogueNotNeededUsePredicate; 10036 case PreferPredicateTy::PredicateOrDontVectorize: 10037 return CM_ScalarEpilogueNotAllowedUsePredicate; 10038 }; 10039 } 10040 10041 // 3) If set, obey the hints 10042 switch (Hints.getPredicate()) { 10043 case LoopVectorizeHints::FK_Enabled: 10044 return CM_ScalarEpilogueNotNeededUsePredicate; 10045 case LoopVectorizeHints::FK_Disabled: 10046 return CM_ScalarEpilogueAllowed; 10047 }; 10048 10049 // 4) if the TTI hook indicates this is profitable, request predication. 10050 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10051 LVL.getLAI())) 10052 return CM_ScalarEpilogueNotNeededUsePredicate; 10053 10054 return CM_ScalarEpilogueAllowed; 10055 } 10056 10057 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10058 // If Values have been set for this Def return the one relevant for \p Part. 10059 if (hasVectorValue(Def, Part)) 10060 return Data.PerPartOutput[Def][Part]; 10061 10062 if (!hasScalarValue(Def, {Part, 0})) { 10063 Value *IRV = Def->getLiveInIRValue(); 10064 Value *B = ILV->getBroadcastInstrs(IRV); 10065 set(Def, B, Part); 10066 return B; 10067 } 10068 10069 Value *ScalarValue = get(Def, {Part, 0}); 10070 // If we aren't vectorizing, we can just copy the scalar map values over 10071 // to the vector map. 10072 if (VF.isScalar()) { 10073 set(Def, ScalarValue, Part); 10074 return ScalarValue; 10075 } 10076 10077 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10078 bool IsUniform = RepR && RepR->isUniform(); 10079 10080 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10081 // Check if there is a scalar value for the selected lane. 10082 if (!hasScalarValue(Def, {Part, LastLane})) { 10083 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10084 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10085 "unexpected recipe found to be invariant"); 10086 IsUniform = true; 10087 LastLane = 0; 10088 } 10089 10090 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10091 // Set the insert point after the last scalarized instruction or after the 10092 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10093 // will directly follow the scalar definitions. 10094 auto OldIP = Builder.saveIP(); 10095 auto NewIP = 10096 isa<PHINode>(LastInst) 10097 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10098 : std::next(BasicBlock::iterator(LastInst)); 10099 Builder.SetInsertPoint(&*NewIP); 10100 10101 // However, if we are vectorizing, we need to construct the vector values. 10102 // If the value is known to be uniform after vectorization, we can just 10103 // broadcast the scalar value corresponding to lane zero for each unroll 10104 // iteration. Otherwise, we construct the vector values using 10105 // insertelement instructions. Since the resulting vectors are stored in 10106 // State, we will only generate the insertelements once. 10107 Value *VectorValue = nullptr; 10108 if (IsUniform) { 10109 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10110 set(Def, VectorValue, Part); 10111 } else { 10112 // Initialize packing with insertelements to start from undef. 10113 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10114 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10115 set(Def, Undef, Part); 10116 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10117 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10118 VectorValue = get(Def, Part); 10119 } 10120 Builder.restoreIP(OldIP); 10121 return VectorValue; 10122 } 10123 10124 // Process the loop in the VPlan-native vectorization path. This path builds 10125 // VPlan upfront in the vectorization pipeline, which allows to apply 10126 // VPlan-to-VPlan transformations from the very beginning without modifying the 10127 // input LLVM IR. 10128 static bool processLoopInVPlanNativePath( 10129 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10130 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10131 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10132 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10133 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10134 LoopVectorizationRequirements &Requirements) { 10135 10136 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10137 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10138 return false; 10139 } 10140 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10141 Function *F = L->getHeader()->getParent(); 10142 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10143 10144 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10145 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10146 10147 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10148 &Hints, IAI); 10149 // Use the planner for outer loop vectorization. 10150 // TODO: CM is not used at this point inside the planner. Turn CM into an 10151 // optional argument if we don't need it in the future. 10152 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10153 Requirements, ORE); 10154 10155 // Get user vectorization factor. 10156 ElementCount UserVF = Hints.getWidth(); 10157 10158 CM.collectElementTypesForWidening(); 10159 10160 // Plan how to best vectorize, return the best VF and its cost. 10161 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10162 10163 // If we are stress testing VPlan builds, do not attempt to generate vector 10164 // code. Masked vector code generation support will follow soon. 10165 // Also, do not attempt to vectorize if no vector code will be produced. 10166 if (VPlanBuildStressTest || EnableVPlanPredication || 10167 VectorizationFactor::Disabled() == VF) 10168 return false; 10169 10170 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10171 10172 { 10173 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10174 F->getParent()->getDataLayout()); 10175 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10176 &CM, BFI, PSI, Checks); 10177 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10178 << L->getHeader()->getParent()->getName() << "\"\n"); 10179 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10180 } 10181 10182 // Mark the loop as already vectorized to avoid vectorizing again. 10183 Hints.setAlreadyVectorized(); 10184 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10185 return true; 10186 } 10187 10188 // Emit a remark if there are stores to floats that required a floating point 10189 // extension. If the vectorized loop was generated with floating point there 10190 // will be a performance penalty from the conversion overhead and the change in 10191 // the vector width. 10192 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10193 SmallVector<Instruction *, 4> Worklist; 10194 for (BasicBlock *BB : L->getBlocks()) { 10195 for (Instruction &Inst : *BB) { 10196 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10197 if (S->getValueOperand()->getType()->isFloatTy()) 10198 Worklist.push_back(S); 10199 } 10200 } 10201 } 10202 10203 // Traverse the floating point stores upwards searching, for floating point 10204 // conversions. 10205 SmallPtrSet<const Instruction *, 4> Visited; 10206 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10207 while (!Worklist.empty()) { 10208 auto *I = Worklist.pop_back_val(); 10209 if (!L->contains(I)) 10210 continue; 10211 if (!Visited.insert(I).second) 10212 continue; 10213 10214 // Emit a remark if the floating point store required a floating 10215 // point conversion. 10216 // TODO: More work could be done to identify the root cause such as a 10217 // constant or a function return type and point the user to it. 10218 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10219 ORE->emit([&]() { 10220 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10221 I->getDebugLoc(), L->getHeader()) 10222 << "floating point conversion changes vector width. " 10223 << "Mixed floating point precision requires an up/down " 10224 << "cast that will negatively impact performance."; 10225 }); 10226 10227 for (Use &Op : I->operands()) 10228 if (auto *OpI = dyn_cast<Instruction>(Op)) 10229 Worklist.push_back(OpI); 10230 } 10231 } 10232 10233 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10234 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10235 !EnableLoopInterleaving), 10236 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10237 !EnableLoopVectorization) {} 10238 10239 bool LoopVectorizePass::processLoop(Loop *L) { 10240 assert((EnableVPlanNativePath || L->isInnermost()) && 10241 "VPlan-native path is not enabled. Only process inner loops."); 10242 10243 #ifndef NDEBUG 10244 const std::string DebugLocStr = getDebugLocString(L); 10245 #endif /* NDEBUG */ 10246 10247 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10248 << L->getHeader()->getParent()->getName() << "\" from " 10249 << DebugLocStr << "\n"); 10250 10251 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10252 10253 LLVM_DEBUG( 10254 dbgs() << "LV: Loop hints:" 10255 << " force=" 10256 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10257 ? "disabled" 10258 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10259 ? "enabled" 10260 : "?")) 10261 << " width=" << Hints.getWidth() 10262 << " interleave=" << Hints.getInterleave() << "\n"); 10263 10264 // Function containing loop 10265 Function *F = L->getHeader()->getParent(); 10266 10267 // Looking at the diagnostic output is the only way to determine if a loop 10268 // was vectorized (other than looking at the IR or machine code), so it 10269 // is important to generate an optimization remark for each loop. Most of 10270 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10271 // generated as OptimizationRemark and OptimizationRemarkMissed are 10272 // less verbose reporting vectorized loops and unvectorized loops that may 10273 // benefit from vectorization, respectively. 10274 10275 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10276 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10277 return false; 10278 } 10279 10280 PredicatedScalarEvolution PSE(*SE, *L); 10281 10282 // Check if it is legal to vectorize the loop. 10283 LoopVectorizationRequirements Requirements; 10284 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10285 &Requirements, &Hints, DB, AC, BFI, PSI); 10286 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10287 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10288 Hints.emitRemarkWithHints(); 10289 return false; 10290 } 10291 10292 // Check the function attributes and profiles to find out if this function 10293 // should be optimized for size. 10294 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10295 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10296 10297 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10298 // here. They may require CFG and instruction level transformations before 10299 // even evaluating whether vectorization is profitable. Since we cannot modify 10300 // the incoming IR, we need to build VPlan upfront in the vectorization 10301 // pipeline. 10302 if (!L->isInnermost()) 10303 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10304 ORE, BFI, PSI, Hints, Requirements); 10305 10306 assert(L->isInnermost() && "Inner loop expected."); 10307 10308 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10309 // count by optimizing for size, to minimize overheads. 10310 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10311 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10312 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10313 << "This loop is worth vectorizing only if no scalar " 10314 << "iteration overheads are incurred."); 10315 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10316 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10317 else { 10318 LLVM_DEBUG(dbgs() << "\n"); 10319 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10320 } 10321 } 10322 10323 // Check the function attributes to see if implicit floats are allowed. 10324 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10325 // an integer loop and the vector instructions selected are purely integer 10326 // vector instructions? 10327 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10328 reportVectorizationFailure( 10329 "Can't vectorize when the NoImplicitFloat attribute is used", 10330 "loop not vectorized due to NoImplicitFloat attribute", 10331 "NoImplicitFloat", ORE, L); 10332 Hints.emitRemarkWithHints(); 10333 return false; 10334 } 10335 10336 // Check if the target supports potentially unsafe FP vectorization. 10337 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10338 // for the target we're vectorizing for, to make sure none of the 10339 // additional fp-math flags can help. 10340 if (Hints.isPotentiallyUnsafe() && 10341 TTI->isFPVectorizationPotentiallyUnsafe()) { 10342 reportVectorizationFailure( 10343 "Potentially unsafe FP op prevents vectorization", 10344 "loop not vectorized due to unsafe FP support.", 10345 "UnsafeFP", ORE, L); 10346 Hints.emitRemarkWithHints(); 10347 return false; 10348 } 10349 10350 bool AllowOrderedReductions; 10351 // If the flag is set, use that instead and override the TTI behaviour. 10352 if (ForceOrderedReductions.getNumOccurrences() > 0) 10353 AllowOrderedReductions = ForceOrderedReductions; 10354 else 10355 AllowOrderedReductions = TTI->enableOrderedReductions(); 10356 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10357 ORE->emit([&]() { 10358 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10359 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10360 ExactFPMathInst->getDebugLoc(), 10361 ExactFPMathInst->getParent()) 10362 << "loop not vectorized: cannot prove it is safe to reorder " 10363 "floating-point operations"; 10364 }); 10365 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10366 "reorder floating-point operations\n"); 10367 Hints.emitRemarkWithHints(); 10368 return false; 10369 } 10370 10371 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10372 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10373 10374 // If an override option has been passed in for interleaved accesses, use it. 10375 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10376 UseInterleaved = EnableInterleavedMemAccesses; 10377 10378 // Analyze interleaved memory accesses. 10379 if (UseInterleaved) { 10380 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10381 } 10382 10383 // Use the cost model. 10384 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10385 F, &Hints, IAI); 10386 CM.collectValuesToIgnore(); 10387 CM.collectElementTypesForWidening(); 10388 10389 // Use the planner for vectorization. 10390 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10391 Requirements, ORE); 10392 10393 // Get user vectorization factor and interleave count. 10394 ElementCount UserVF = Hints.getWidth(); 10395 unsigned UserIC = Hints.getInterleave(); 10396 10397 // Plan how to best vectorize, return the best VF and its cost. 10398 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10399 10400 VectorizationFactor VF = VectorizationFactor::Disabled(); 10401 unsigned IC = 1; 10402 10403 if (MaybeVF) { 10404 VF = *MaybeVF; 10405 // Select the interleave count. 10406 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10407 } 10408 10409 // Identify the diagnostic messages that should be produced. 10410 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10411 bool VectorizeLoop = true, InterleaveLoop = true; 10412 if (VF.Width.isScalar()) { 10413 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10414 VecDiagMsg = std::make_pair( 10415 "VectorizationNotBeneficial", 10416 "the cost-model indicates that vectorization is not beneficial"); 10417 VectorizeLoop = false; 10418 } 10419 10420 if (!MaybeVF && UserIC > 1) { 10421 // Tell the user interleaving was avoided up-front, despite being explicitly 10422 // requested. 10423 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10424 "interleaving should be avoided up front\n"); 10425 IntDiagMsg = std::make_pair( 10426 "InterleavingAvoided", 10427 "Ignoring UserIC, because interleaving was avoided up front"); 10428 InterleaveLoop = false; 10429 } else if (IC == 1 && UserIC <= 1) { 10430 // Tell the user interleaving is not beneficial. 10431 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10432 IntDiagMsg = std::make_pair( 10433 "InterleavingNotBeneficial", 10434 "the cost-model indicates that interleaving is not beneficial"); 10435 InterleaveLoop = false; 10436 if (UserIC == 1) { 10437 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10438 IntDiagMsg.second += 10439 " and is explicitly disabled or interleave count is set to 1"; 10440 } 10441 } else if (IC > 1 && UserIC == 1) { 10442 // Tell the user interleaving is beneficial, but it explicitly disabled. 10443 LLVM_DEBUG( 10444 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10445 IntDiagMsg = std::make_pair( 10446 "InterleavingBeneficialButDisabled", 10447 "the cost-model indicates that interleaving is beneficial " 10448 "but is explicitly disabled or interleave count is set to 1"); 10449 InterleaveLoop = false; 10450 } 10451 10452 // Override IC if user provided an interleave count. 10453 IC = UserIC > 0 ? UserIC : IC; 10454 10455 // Emit diagnostic messages, if any. 10456 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10457 if (!VectorizeLoop && !InterleaveLoop) { 10458 // Do not vectorize or interleaving the loop. 10459 ORE->emit([&]() { 10460 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10461 L->getStartLoc(), L->getHeader()) 10462 << VecDiagMsg.second; 10463 }); 10464 ORE->emit([&]() { 10465 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10466 L->getStartLoc(), L->getHeader()) 10467 << IntDiagMsg.second; 10468 }); 10469 return false; 10470 } else if (!VectorizeLoop && InterleaveLoop) { 10471 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10472 ORE->emit([&]() { 10473 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10474 L->getStartLoc(), L->getHeader()) 10475 << VecDiagMsg.second; 10476 }); 10477 } else if (VectorizeLoop && !InterleaveLoop) { 10478 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10479 << ") in " << DebugLocStr << '\n'); 10480 ORE->emit([&]() { 10481 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10482 L->getStartLoc(), L->getHeader()) 10483 << IntDiagMsg.second; 10484 }); 10485 } else if (VectorizeLoop && InterleaveLoop) { 10486 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10487 << ") in " << DebugLocStr << '\n'); 10488 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10489 } 10490 10491 bool DisableRuntimeUnroll = false; 10492 MDNode *OrigLoopID = L->getLoopID(); 10493 { 10494 // Optimistically generate runtime checks. Drop them if they turn out to not 10495 // be profitable. Limit the scope of Checks, so the cleanup happens 10496 // immediately after vector codegeneration is done. 10497 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10498 F->getParent()->getDataLayout()); 10499 if (!VF.Width.isScalar() || IC > 1) 10500 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10501 10502 using namespace ore; 10503 if (!VectorizeLoop) { 10504 assert(IC > 1 && "interleave count should not be 1 or 0"); 10505 // If we decided that it is not legal to vectorize the loop, then 10506 // interleave it. 10507 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10508 &CM, BFI, PSI, Checks); 10509 10510 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10511 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10512 10513 ORE->emit([&]() { 10514 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10515 L->getHeader()) 10516 << "interleaved loop (interleaved count: " 10517 << NV("InterleaveCount", IC) << ")"; 10518 }); 10519 } else { 10520 // If we decided that it is *legal* to vectorize the loop, then do it. 10521 10522 // Consider vectorizing the epilogue too if it's profitable. 10523 VectorizationFactor EpilogueVF = 10524 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10525 if (EpilogueVF.Width.isVector()) { 10526 10527 // The first pass vectorizes the main loop and creates a scalar epilogue 10528 // to be vectorized by executing the plan (potentially with a different 10529 // factor) again shortly afterwards. 10530 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10531 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10532 EPI, &LVL, &CM, BFI, PSI, Checks); 10533 10534 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10535 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10536 DT); 10537 ++LoopsVectorized; 10538 10539 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10540 formLCSSARecursively(*L, *DT, LI, SE); 10541 10542 // Second pass vectorizes the epilogue and adjusts the control flow 10543 // edges from the first pass. 10544 EPI.MainLoopVF = EPI.EpilogueVF; 10545 EPI.MainLoopUF = EPI.EpilogueUF; 10546 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10547 ORE, EPI, &LVL, &CM, BFI, PSI, 10548 Checks); 10549 10550 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10551 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10552 DT); 10553 ++LoopsEpilogueVectorized; 10554 10555 if (!MainILV.areSafetyChecksAdded()) 10556 DisableRuntimeUnroll = true; 10557 } else { 10558 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10559 &LVL, &CM, BFI, PSI, Checks); 10560 10561 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10562 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10563 ++LoopsVectorized; 10564 10565 // Add metadata to disable runtime unrolling a scalar loop when there 10566 // are no runtime checks about strides and memory. A scalar loop that is 10567 // rarely used is not worth unrolling. 10568 if (!LB.areSafetyChecksAdded()) 10569 DisableRuntimeUnroll = true; 10570 } 10571 // Report the vectorization decision. 10572 ORE->emit([&]() { 10573 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10574 L->getHeader()) 10575 << "vectorized loop (vectorization width: " 10576 << NV("VectorizationFactor", VF.Width) 10577 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10578 }); 10579 } 10580 10581 if (ORE->allowExtraAnalysis(LV_NAME)) 10582 checkMixedPrecision(L, ORE); 10583 } 10584 10585 Optional<MDNode *> RemainderLoopID = 10586 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10587 LLVMLoopVectorizeFollowupEpilogue}); 10588 if (RemainderLoopID.hasValue()) { 10589 L->setLoopID(RemainderLoopID.getValue()); 10590 } else { 10591 if (DisableRuntimeUnroll) 10592 AddRuntimeUnrollDisableMetaData(L); 10593 10594 // Mark the loop as already vectorized to avoid vectorizing again. 10595 Hints.setAlreadyVectorized(); 10596 } 10597 10598 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10599 return true; 10600 } 10601 10602 LoopVectorizeResult LoopVectorizePass::runImpl( 10603 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10604 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10605 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10606 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10607 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10608 SE = &SE_; 10609 LI = &LI_; 10610 TTI = &TTI_; 10611 DT = &DT_; 10612 BFI = &BFI_; 10613 TLI = TLI_; 10614 AA = &AA_; 10615 AC = &AC_; 10616 GetLAA = &GetLAA_; 10617 DB = &DB_; 10618 ORE = &ORE_; 10619 PSI = PSI_; 10620 10621 // Don't attempt if 10622 // 1. the target claims to have no vector registers, and 10623 // 2. interleaving won't help ILP. 10624 // 10625 // The second condition is necessary because, even if the target has no 10626 // vector registers, loop vectorization may still enable scalar 10627 // interleaving. 10628 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10629 TTI->getMaxInterleaveFactor(1) < 2) 10630 return LoopVectorizeResult(false, false); 10631 10632 bool Changed = false, CFGChanged = false; 10633 10634 // The vectorizer requires loops to be in simplified form. 10635 // Since simplification may add new inner loops, it has to run before the 10636 // legality and profitability checks. This means running the loop vectorizer 10637 // will simplify all loops, regardless of whether anything end up being 10638 // vectorized. 10639 for (auto &L : *LI) 10640 Changed |= CFGChanged |= 10641 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10642 10643 // Build up a worklist of inner-loops to vectorize. This is necessary as 10644 // the act of vectorizing or partially unrolling a loop creates new loops 10645 // and can invalidate iterators across the loops. 10646 SmallVector<Loop *, 8> Worklist; 10647 10648 for (Loop *L : *LI) 10649 collectSupportedLoops(*L, LI, ORE, Worklist); 10650 10651 LoopsAnalyzed += Worklist.size(); 10652 10653 // Now walk the identified inner loops. 10654 while (!Worklist.empty()) { 10655 Loop *L = Worklist.pop_back_val(); 10656 10657 // For the inner loops we actually process, form LCSSA to simplify the 10658 // transform. 10659 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10660 10661 Changed |= CFGChanged |= processLoop(L); 10662 } 10663 10664 // Process each loop nest in the function. 10665 return LoopVectorizeResult(Changed, CFGChanged); 10666 } 10667 10668 PreservedAnalyses LoopVectorizePass::run(Function &F, 10669 FunctionAnalysisManager &AM) { 10670 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10671 auto &LI = AM.getResult<LoopAnalysis>(F); 10672 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10673 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10674 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10675 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10676 auto &AA = AM.getResult<AAManager>(F); 10677 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10678 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10679 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10680 10681 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10682 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10683 [&](Loop &L) -> const LoopAccessInfo & { 10684 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10685 TLI, TTI, nullptr, nullptr, nullptr}; 10686 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10687 }; 10688 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10689 ProfileSummaryInfo *PSI = 10690 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10691 LoopVectorizeResult Result = 10692 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10693 if (!Result.MadeAnyChange) 10694 return PreservedAnalyses::all(); 10695 PreservedAnalyses PA; 10696 10697 // We currently do not preserve loopinfo/dominator analyses with outer loop 10698 // vectorization. Until this is addressed, mark these analyses as preserved 10699 // only for non-VPlan-native path. 10700 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10701 if (!EnableVPlanNativePath) { 10702 PA.preserve<LoopAnalysis>(); 10703 PA.preserve<DominatorTreeAnalysis>(); 10704 } 10705 10706 if (Result.MadeCFGChange) { 10707 // Making CFG changes likely means a loop got vectorized. Indicate that 10708 // extra simplification passes should be run. 10709 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10710 // be run if runtime checks have been added. 10711 AM.getResult<ShouldRunExtraVectorPasses>(F); 10712 PA.preserve<ShouldRunExtraVectorPasses>(); 10713 } else { 10714 PA.preserveSet<CFGAnalyses>(); 10715 } 10716 return PA; 10717 } 10718 10719 void LoopVectorizePass::printPipeline( 10720 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10721 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10722 OS, MapClassName2PassName); 10723 10724 OS << "<"; 10725 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10726 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10727 OS << ">"; 10728 } 10729