1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = VectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, bool InvariantCond); 419 420 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 421 void fixVectorizedLoop(); 422 423 // Return true if any runtime check is added. 424 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 425 426 /// A type for vectorized values in the new loop. Each value from the 427 /// original loop, when vectorized, is represented by UF vector values in the 428 /// new unrolled loop, where UF is the unroll factor. 429 using VectorParts = SmallVector<Value *, 2>; 430 431 /// Vectorize a single GetElementPtrInst based on information gathered and 432 /// decisions taken during planning. 433 void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF, 434 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant); 435 436 /// Vectorize a single PHINode in a block. This method handles the induction 437 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 438 /// arbitrary length vectors. 439 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 440 441 /// A helper function to scalarize a single Instruction in the innermost loop. 442 /// Generates a sequence of scalar instances for each lane between \p MinLane 443 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 444 /// inclusive.. 445 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 446 bool IfPredicateInstr); 447 448 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 449 /// is provided, the integer induction variable will first be truncated to 450 /// the corresponding type. 451 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 452 453 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 454 /// vector or scalar value on-demand if one is not yet available. When 455 /// vectorizing a loop, we visit the definition of an instruction before its 456 /// uses. When visiting the definition, we either vectorize or scalarize the 457 /// instruction, creating an entry for it in the corresponding map. (In some 458 /// cases, such as induction variables, we will create both vector and scalar 459 /// entries.) Then, as we encounter uses of the definition, we derive values 460 /// for each scalar or vector use unless such a value is already available. 461 /// For example, if we scalarize a definition and one of its uses is vector, 462 /// we build the required vector on-demand with an insertelement sequence 463 /// when visiting the use. Otherwise, if the use is scalar, we can use the 464 /// existing scalar definition. 465 /// 466 /// Return a value in the new loop corresponding to \p V from the original 467 /// loop at unroll index \p Part. If the value has already been vectorized, 468 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 469 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 470 /// a new vector value on-demand by inserting the scalar values into a vector 471 /// with an insertelement sequence. If the value has been neither vectorized 472 /// nor scalarized, it must be loop invariant, so we simply broadcast the 473 /// value into a vector. 474 Value *getOrCreateVectorValue(Value *V, unsigned Part); 475 476 /// Return a value in the new loop corresponding to \p V from the original 477 /// loop at unroll and vector indices \p Instance. If the value has been 478 /// vectorized but not scalarized, the necessary extractelement instruction 479 /// will be generated. 480 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 481 482 /// Construct the vector value of a scalarized value \p V one lane at a time. 483 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 484 485 /// Try to vectorize interleaved access group \p Group with the base address 486 /// given in \p Addr, optionally masking the vector operations if \p 487 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 488 /// values in the vectorized loop. 489 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 490 VPTransformState &State, VPValue *Addr, 491 VPValue *BlockInMask = nullptr); 492 493 /// Vectorize Load and Store instructions with the base address given in \p 494 /// Addr, optionally masking the vector operations if \p BlockInMask is 495 /// non-null. Use \p State to translate given VPValues to IR values in the 496 /// vectorized loop. 497 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 498 VPValue *Addr, VPValue *StoredValue, 499 VPValue *BlockInMask); 500 501 /// Set the debug location in the builder using the debug location in 502 /// the instruction. 503 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 504 505 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 506 void fixNonInductionPHIs(void); 507 508 protected: 509 friend class LoopVectorizationPlanner; 510 511 /// A small list of PHINodes. 512 using PhiVector = SmallVector<PHINode *, 4>; 513 514 /// A type for scalarized values in the new loop. Each value from the 515 /// original loop, when scalarized, is represented by UF x VF scalar values 516 /// in the new unrolled loop, where UF is the unroll factor and VF is the 517 /// vectorization factor. 518 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 519 520 /// Set up the values of the IVs correctly when exiting the vector loop. 521 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 522 Value *CountRoundDown, Value *EndValue, 523 BasicBlock *MiddleBlock); 524 525 /// Create a new induction variable inside L. 526 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 527 Value *Step, Instruction *DL); 528 529 /// Handle all cross-iteration phis in the header. 530 void fixCrossIterationPHIs(); 531 532 /// Fix a first-order recurrence. This is the second phase of vectorizing 533 /// this phi node. 534 void fixFirstOrderRecurrence(PHINode *Phi); 535 536 /// Fix a reduction cross-iteration phi. This is the second phase of 537 /// vectorizing this phi node. 538 void fixReduction(PHINode *Phi); 539 540 /// Clear NSW/NUW flags from reduction instructions if necessary. 541 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 542 543 /// The Loop exit block may have single value PHI nodes with some 544 /// incoming value. While vectorizing we only handled real values 545 /// that were defined inside the loop and we should have one value for 546 /// each predecessor of its parent basic block. See PR14725. 547 void fixLCSSAPHIs(); 548 549 /// Iteratively sink the scalarized operands of a predicated instruction into 550 /// the block that was created for it. 551 void sinkScalarOperands(Instruction *PredInst); 552 553 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 554 /// represented as. 555 void truncateToMinimalBitwidths(); 556 557 /// Create a broadcast instruction. This method generates a broadcast 558 /// instruction (shuffle) for loop invariant values and for the induction 559 /// value. If this is the induction variable then we extend it to N, N+1, ... 560 /// this is needed because each iteration in the loop corresponds to a SIMD 561 /// element. 562 virtual Value *getBroadcastInstrs(Value *V); 563 564 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 565 /// to each vector element of Val. The sequence starts at StartIndex. 566 /// \p Opcode is relevant for FP induction variable. 567 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 568 Instruction::BinaryOps Opcode = 569 Instruction::BinaryOpsEnd); 570 571 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 572 /// variable on which to base the steps, \p Step is the size of the step, and 573 /// \p EntryVal is the value from the original loop that maps to the steps. 574 /// Note that \p EntryVal doesn't have to be an induction variable - it 575 /// can also be a truncate instruction. 576 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 577 const InductionDescriptor &ID); 578 579 /// Create a vector induction phi node based on an existing scalar one. \p 580 /// EntryVal is the value from the original loop that maps to the vector phi 581 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 582 /// truncate instruction, instead of widening the original IV, we widen a 583 /// version of the IV truncated to \p EntryVal's type. 584 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 585 Value *Step, Instruction *EntryVal); 586 587 /// Returns true if an instruction \p I should be scalarized instead of 588 /// vectorized for the chosen vectorization factor. 589 bool shouldScalarizeInstruction(Instruction *I) const; 590 591 /// Returns true if we should generate a scalar version of \p IV. 592 bool needsScalarInduction(Instruction *IV) const; 593 594 /// If there is a cast involved in the induction variable \p ID, which should 595 /// be ignored in the vectorized loop body, this function records the 596 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 597 /// cast. We had already proved that the casted Phi is equal to the uncasted 598 /// Phi in the vectorized loop (under a runtime guard), and therefore 599 /// there is no need to vectorize the cast - the same value can be used in the 600 /// vector loop for both the Phi and the cast. 601 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 602 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 603 /// 604 /// \p EntryVal is the value from the original loop that maps to the vector 605 /// phi node and is used to distinguish what is the IV currently being 606 /// processed - original one (if \p EntryVal is a phi corresponding to the 607 /// original IV) or the "newly-created" one based on the proof mentioned above 608 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 609 /// latter case \p EntryVal is a TruncInst and we must not record anything for 610 /// that IV, but it's error-prone to expect callers of this routine to care 611 /// about that, hence this explicit parameter. 612 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 613 const Instruction *EntryVal, 614 Value *VectorLoopValue, 615 unsigned Part, 616 unsigned Lane = UINT_MAX); 617 618 /// Generate a shuffle sequence that will reverse the vector Vec. 619 virtual Value *reverseVector(Value *Vec); 620 621 /// Returns (and creates if needed) the original loop trip count. 622 Value *getOrCreateTripCount(Loop *NewLoop); 623 624 /// Returns (and creates if needed) the trip count of the widened loop. 625 Value *getOrCreateVectorTripCount(Loop *NewLoop); 626 627 /// Returns a bitcasted value to the requested vector type. 628 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 629 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 630 const DataLayout &DL); 631 632 /// Emit a bypass check to see if the vector trip count is zero, including if 633 /// it overflows. 634 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 635 636 /// Emit a bypass check to see if all of the SCEV assumptions we've 637 /// had to make are correct. 638 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 639 640 /// Emit bypass checks to check any memory assumptions we may have made. 641 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 642 643 /// Compute the transformed value of Index at offset StartValue using step 644 /// StepValue. 645 /// For integer induction, returns StartValue + Index * StepValue. 646 /// For pointer induction, returns StartValue[Index * StepValue]. 647 /// FIXME: The newly created binary instructions should contain nsw/nuw 648 /// flags, which can be found from the original scalar operations. 649 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 650 const DataLayout &DL, 651 const InductionDescriptor &ID) const; 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Add metadata from one instruction to another. 661 /// 662 /// This includes both the original MDs from \p From and additional ones (\see 663 /// addNewMetadata). Use this for *newly created* instructions in the vector 664 /// loop. 665 void addMetadata(Instruction *To, Instruction *From); 666 667 /// Similar to the previous function but it adds the metadata to a 668 /// vector of instructions. 669 void addMetadata(ArrayRef<Value *> To, Instruction *From); 670 671 /// The original loop. 672 Loop *OrigLoop; 673 674 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 675 /// dynamic knowledge to simplify SCEV expressions and converts them to a 676 /// more usable form. 677 PredicatedScalarEvolution &PSE; 678 679 /// Loop Info. 680 LoopInfo *LI; 681 682 /// Dominator Tree. 683 DominatorTree *DT; 684 685 /// Alias Analysis. 686 AliasAnalysis *AA; 687 688 /// Target Library Info. 689 const TargetLibraryInfo *TLI; 690 691 /// Target Transform Info. 692 const TargetTransformInfo *TTI; 693 694 /// Assumption Cache. 695 AssumptionCache *AC; 696 697 /// Interface to emit optimization remarks. 698 OptimizationRemarkEmitter *ORE; 699 700 /// LoopVersioning. It's only set up (non-null) if memchecks were 701 /// used. 702 /// 703 /// This is currently only used to add no-alias metadata based on the 704 /// memchecks. The actually versioning is performed manually. 705 std::unique_ptr<LoopVersioning> LVer; 706 707 /// The vectorization SIMD factor to use. Each vector will have this many 708 /// vector elements. 709 unsigned VF; 710 711 /// The vectorization unroll factor to use. Each scalar is vectorized to this 712 /// many different vector instructions. 713 unsigned UF; 714 715 /// The builder that we use 716 IRBuilder<> Builder; 717 718 // --- Vectorization state --- 719 720 /// The vector-loop preheader. 721 BasicBlock *LoopVectorPreHeader; 722 723 /// The scalar-loop preheader. 724 BasicBlock *LoopScalarPreHeader; 725 726 /// Middle Block between the vector and the scalar. 727 BasicBlock *LoopMiddleBlock; 728 729 /// The ExitBlock of the scalar loop. 730 BasicBlock *LoopExitBlock; 731 732 /// The vector loop body. 733 BasicBlock *LoopVectorBody; 734 735 /// The scalar loop body. 736 BasicBlock *LoopScalarBody; 737 738 /// A list of all bypass blocks. The first block is the entry of the loop. 739 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 740 741 /// The new Induction variable which was added to the new block. 742 PHINode *Induction = nullptr; 743 744 /// The induction variable of the old basic block. 745 PHINode *OldInduction = nullptr; 746 747 /// Maps values from the original loop to their corresponding values in the 748 /// vectorized loop. A key value can map to either vector values, scalar 749 /// values or both kinds of values, depending on whether the key was 750 /// vectorized and scalarized. 751 VectorizerValueMap VectorLoopValueMap; 752 753 /// Store instructions that were predicated. 754 SmallVector<Instruction *, 4> PredicatedInstructions; 755 756 /// Trip count of the original loop. 757 Value *TripCount = nullptr; 758 759 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 760 Value *VectorTripCount = nullptr; 761 762 /// The legality analysis. 763 LoopVectorizationLegality *Legal; 764 765 /// The profitablity analysis. 766 LoopVectorizationCostModel *Cost; 767 768 // Record whether runtime checks are added. 769 bool AddedSafetyChecks = false; 770 771 // Holds the end values for each induction variable. We save the end values 772 // so we can later fix-up the external users of the induction variables. 773 DenseMap<PHINode *, Value *> IVEndValues; 774 775 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 776 // fixed up at the end of vector code generation. 777 SmallVector<PHINode *, 8> OrigPHIsToFix; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM) 789 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 790 UnrollFactor, LVL, CM) {} 791 792 private: 793 Value *getBroadcastInstrs(Value *V) override; 794 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 795 Instruction::BinaryOps Opcode = 796 Instruction::BinaryOpsEnd) override; 797 Value *reverseVector(Value *Vec) override; 798 }; 799 800 } // end namespace llvm 801 802 /// Look for a meaningful debug location on the instruction or it's 803 /// operands. 804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 805 if (!I) 806 return I; 807 808 DebugLoc Empty; 809 if (I->getDebugLoc() != Empty) 810 return I; 811 812 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 813 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 814 if (OpInst->getDebugLoc() != Empty) 815 return OpInst; 816 } 817 818 return I; 819 } 820 821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 822 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 823 const DILocation *DIL = Inst->getDebugLoc(); 824 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 825 !isa<DbgInfoIntrinsic>(Inst)) { 826 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 827 if (NewDIL) 828 B.SetCurrentDebugLocation(NewDIL.getValue()); 829 else 830 LLVM_DEBUG(dbgs() 831 << "Failed to create new discriminator: " 832 << DIL->getFilename() << " Line: " << DIL->getLine()); 833 } 834 else 835 B.SetCurrentDebugLocation(DIL); 836 } else 837 B.SetCurrentDebugLocation(DebugLoc()); 838 } 839 840 /// Write a record \p DebugMsg about vectorization failure to the debug 841 /// output stream. If \p I is passed, it is an instruction that prevents 842 /// vectorization. 843 #ifndef NDEBUG 844 static void debugVectorizationFailure(const StringRef DebugMsg, 845 Instruction *I) { 846 dbgs() << "LV: Not vectorizing: " << DebugMsg; 847 if (I != nullptr) 848 dbgs() << " " << *I; 849 else 850 dbgs() << '.'; 851 dbgs() << '\n'; 852 } 853 #endif 854 855 /// Create an analysis remark that explains why vectorization failed 856 /// 857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 858 /// RemarkName is the identifier for the remark. If \p I is passed it is an 859 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 860 /// the location of the remark. \return the remark object that can be 861 /// streamed to. 862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 863 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 864 Value *CodeRegion = TheLoop->getHeader(); 865 DebugLoc DL = TheLoop->getStartLoc(); 866 867 if (I) { 868 CodeRegion = I->getParent(); 869 // If there is no debug location attached to the instruction, revert back to 870 // using the loop's. 871 if (I->getDebugLoc()) 872 DL = I->getDebugLoc(); 873 } 874 875 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 876 R << "loop not vectorized: "; 877 return R; 878 } 879 880 namespace llvm { 881 882 void reportVectorizationFailure(const StringRef DebugMsg, 883 const StringRef OREMsg, const StringRef ORETag, 884 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 885 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 886 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 887 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 888 ORETag, TheLoop, I) << OREMsg); 889 } 890 891 } // end namespace llvm 892 893 #ifndef NDEBUG 894 /// \return string containing a file name and a line # for the given loop. 895 static std::string getDebugLocString(const Loop *L) { 896 std::string Result; 897 if (L) { 898 raw_string_ostream OS(Result); 899 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 900 LoopDbgLoc.print(OS); 901 else 902 // Just print the module name. 903 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 904 OS.flush(); 905 } 906 return Result; 907 } 908 #endif 909 910 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 911 const Instruction *Orig) { 912 // If the loop was versioned with memchecks, add the corresponding no-alias 913 // metadata. 914 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 915 LVer->annotateInstWithNoAlias(To, Orig); 916 } 917 918 void InnerLoopVectorizer::addMetadata(Instruction *To, 919 Instruction *From) { 920 propagateMetadata(To, From); 921 addNewMetadata(To, From); 922 } 923 924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 925 Instruction *From) { 926 for (Value *V : To) { 927 if (Instruction *I = dyn_cast<Instruction>(V)) 928 addMetadata(I, From); 929 } 930 } 931 932 namespace llvm { 933 934 // Loop vectorization cost-model hints how the scalar epilogue loop should be 935 // lowered. 936 enum ScalarEpilogueLowering { 937 938 // The default: allowing scalar epilogues. 939 CM_ScalarEpilogueAllowed, 940 941 // Vectorization with OptForSize: don't allow epilogues. 942 CM_ScalarEpilogueNotAllowedOptSize, 943 944 // A special case of vectorisation with OptForSize: loops with a very small 945 // trip count are considered for vectorization under OptForSize, thereby 946 // making sure the cost of their loop body is dominant, free of runtime 947 // guards and scalar iteration overheads. 948 CM_ScalarEpilogueNotAllowedLowTripLoop, 949 950 // Loop hint predicate indicating an epilogue is undesired. 951 CM_ScalarEpilogueNotNeededUsePredicate 952 }; 953 954 /// LoopVectorizationCostModel - estimates the expected speedups due to 955 /// vectorization. 956 /// In many cases vectorization is not profitable. This can happen because of 957 /// a number of reasons. In this class we mainly attempt to predict the 958 /// expected speedup/slowdowns due to the supported instruction set. We use the 959 /// TargetTransformInfo to query the different backends for the cost of 960 /// different operations. 961 class LoopVectorizationCostModel { 962 public: 963 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 964 PredicatedScalarEvolution &PSE, LoopInfo *LI, 965 LoopVectorizationLegality *Legal, 966 const TargetTransformInfo &TTI, 967 const TargetLibraryInfo *TLI, DemandedBits *DB, 968 AssumptionCache *AC, 969 OptimizationRemarkEmitter *ORE, const Function *F, 970 const LoopVectorizeHints *Hints, 971 InterleavedAccessInfo &IAI) 972 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 973 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 974 Hints(Hints), InterleaveInfo(IAI) {} 975 976 /// \return An upper bound for the vectorization factor, or None if 977 /// vectorization and interleaving should be avoided up front. 978 Optional<unsigned> computeMaxVF(); 979 980 /// \return True if runtime checks are required for vectorization, and false 981 /// otherwise. 982 bool runtimeChecksRequired(); 983 984 /// \return The most profitable vectorization factor and the cost of that VF. 985 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 986 /// then this vectorization factor will be selected if vectorization is 987 /// possible. 988 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 989 990 /// Setup cost-based decisions for user vectorization factor. 991 void selectUserVectorizationFactor(unsigned UserVF) { 992 collectUniformsAndScalars(UserVF); 993 collectInstsToScalarize(UserVF); 994 } 995 996 /// \return The size (in bits) of the smallest and widest types in the code 997 /// that needs to be vectorized. We ignore values that remain scalar such as 998 /// 64 bit loop indices. 999 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1000 1001 /// \return The desired interleave count. 1002 /// If interleave count has been specified by metadata it will be returned. 1003 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1004 /// are the selected vectorization factor and the cost of the selected VF. 1005 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1006 1007 /// Memory access instruction may be vectorized in more than one way. 1008 /// Form of instruction after vectorization depends on cost. 1009 /// This function takes cost-based decisions for Load/Store instructions 1010 /// and collects them in a map. This decisions map is used for building 1011 /// the lists of loop-uniform and loop-scalar instructions. 1012 /// The calculated cost is saved with widening decision in order to 1013 /// avoid redundant calculations. 1014 void setCostBasedWideningDecision(unsigned VF); 1015 1016 /// A struct that represents some properties of the register usage 1017 /// of a loop. 1018 struct RegisterUsage { 1019 /// Holds the number of loop invariant values that are used in the loop. 1020 /// The key is ClassID of target-provided register class. 1021 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1022 /// Holds the maximum number of concurrent live intervals in the loop. 1023 /// The key is ClassID of target-provided register class. 1024 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1025 }; 1026 1027 /// \return Returns information about the register usages of the loop for the 1028 /// given vectorization factors. 1029 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1030 1031 /// Collect values we want to ignore in the cost model. 1032 void collectValuesToIgnore(); 1033 1034 /// \returns The smallest bitwidth each instruction can be represented with. 1035 /// The vector equivalents of these instructions should be truncated to this 1036 /// type. 1037 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1038 return MinBWs; 1039 } 1040 1041 /// \returns True if it is more profitable to scalarize instruction \p I for 1042 /// vectorization factor \p VF. 1043 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1044 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1045 1046 // Cost model is not run in the VPlan-native path - return conservative 1047 // result until this changes. 1048 if (EnableVPlanNativePath) 1049 return false; 1050 1051 auto Scalars = InstsToScalarize.find(VF); 1052 assert(Scalars != InstsToScalarize.end() && 1053 "VF not yet analyzed for scalarization profitability"); 1054 return Scalars->second.find(I) != Scalars->second.end(); 1055 } 1056 1057 /// Returns true if \p I is known to be uniform after vectorization. 1058 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1059 if (VF == 1) 1060 return true; 1061 1062 // Cost model is not run in the VPlan-native path - return conservative 1063 // result until this changes. 1064 if (EnableVPlanNativePath) 1065 return false; 1066 1067 auto UniformsPerVF = Uniforms.find(VF); 1068 assert(UniformsPerVF != Uniforms.end() && 1069 "VF not yet analyzed for uniformity"); 1070 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1071 } 1072 1073 /// Returns true if \p I is known to be scalar after vectorization. 1074 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1075 if (VF == 1) 1076 return true; 1077 1078 // Cost model is not run in the VPlan-native path - return conservative 1079 // result until this changes. 1080 if (EnableVPlanNativePath) 1081 return false; 1082 1083 auto ScalarsPerVF = Scalars.find(VF); 1084 assert(ScalarsPerVF != Scalars.end() && 1085 "Scalar values are not calculated for VF"); 1086 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1087 } 1088 1089 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1090 /// for vectorization factor \p VF. 1091 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1092 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1093 !isProfitableToScalarize(I, VF) && 1094 !isScalarAfterVectorization(I, VF); 1095 } 1096 1097 /// Decision that was taken during cost calculation for memory instruction. 1098 enum InstWidening { 1099 CM_Unknown, 1100 CM_Widen, // For consecutive accesses with stride +1. 1101 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1102 CM_Interleave, 1103 CM_GatherScatter, 1104 CM_Scalarize 1105 }; 1106 1107 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1108 /// instruction \p I and vector width \p VF. 1109 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1110 unsigned Cost) { 1111 assert(VF >= 2 && "Expected VF >=2"); 1112 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1113 } 1114 1115 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1116 /// interleaving group \p Grp and vector width \p VF. 1117 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1118 InstWidening W, unsigned Cost) { 1119 assert(VF >= 2 && "Expected VF >=2"); 1120 /// Broadcast this decicion to all instructions inside the group. 1121 /// But the cost will be assigned to one instruction only. 1122 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1123 if (auto *I = Grp->getMember(i)) { 1124 if (Grp->getInsertPos() == I) 1125 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1126 else 1127 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1128 } 1129 } 1130 } 1131 1132 /// Return the cost model decision for the given instruction \p I and vector 1133 /// width \p VF. Return CM_Unknown if this instruction did not pass 1134 /// through the cost modeling. 1135 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1136 assert(VF >= 2 && "Expected VF >=2"); 1137 1138 // Cost model is not run in the VPlan-native path - return conservative 1139 // result until this changes. 1140 if (EnableVPlanNativePath) 1141 return CM_GatherScatter; 1142 1143 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1144 auto Itr = WideningDecisions.find(InstOnVF); 1145 if (Itr == WideningDecisions.end()) 1146 return CM_Unknown; 1147 return Itr->second.first; 1148 } 1149 1150 /// Return the vectorization cost for the given instruction \p I and vector 1151 /// width \p VF. 1152 unsigned getWideningCost(Instruction *I, unsigned VF) { 1153 assert(VF >= 2 && "Expected VF >=2"); 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1156 "The cost is not calculated"); 1157 return WideningDecisions[InstOnVF].second; 1158 } 1159 1160 /// Return True if instruction \p I is an optimizable truncate whose operand 1161 /// is an induction variable. Such a truncate will be removed by adding a new 1162 /// induction variable with the destination type. 1163 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1164 // If the instruction is not a truncate, return false. 1165 auto *Trunc = dyn_cast<TruncInst>(I); 1166 if (!Trunc) 1167 return false; 1168 1169 // Get the source and destination types of the truncate. 1170 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1171 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1172 1173 // If the truncate is free for the given types, return false. Replacing a 1174 // free truncate with an induction variable would add an induction variable 1175 // update instruction to each iteration of the loop. We exclude from this 1176 // check the primary induction variable since it will need an update 1177 // instruction regardless. 1178 Value *Op = Trunc->getOperand(0); 1179 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1180 return false; 1181 1182 // If the truncated value is not an induction variable, return false. 1183 return Legal->isInductionPhi(Op); 1184 } 1185 1186 /// Collects the instructions to scalarize for each predicated instruction in 1187 /// the loop. 1188 void collectInstsToScalarize(unsigned VF); 1189 1190 /// Collect Uniform and Scalar values for the given \p VF. 1191 /// The sets depend on CM decision for Load/Store instructions 1192 /// that may be vectorized as interleave, gather-scatter or scalarized. 1193 void collectUniformsAndScalars(unsigned VF) { 1194 // Do the analysis once. 1195 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1196 return; 1197 setCostBasedWideningDecision(VF); 1198 collectLoopUniforms(VF); 1199 collectLoopScalars(VF); 1200 } 1201 1202 /// Returns true if the target machine supports masked store operation 1203 /// for the given \p DataType and kind of access to \p Ptr. 1204 bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1205 return Legal->isConsecutivePtr(Ptr) && 1206 TTI.isLegalMaskedStore(DataType, Alignment); 1207 } 1208 1209 /// Returns true if the target machine supports masked load operation 1210 /// for the given \p DataType and kind of access to \p Ptr. 1211 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) { 1212 return Legal->isConsecutivePtr(Ptr) && 1213 TTI.isLegalMaskedLoad(DataType, Alignment); 1214 } 1215 1216 /// Returns true if the target machine supports masked scatter operation 1217 /// for the given \p DataType. 1218 bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) { 1219 return TTI.isLegalMaskedScatter(DataType, Alignment); 1220 } 1221 1222 /// Returns true if the target machine supports masked gather operation 1223 /// for the given \p DataType. 1224 bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) { 1225 return TTI.isLegalMaskedGather(DataType, Alignment); 1226 } 1227 1228 /// Returns true if the target machine can represent \p V as a masked gather 1229 /// or scatter operation. 1230 bool isLegalGatherOrScatter(Value *V) { 1231 bool LI = isa<LoadInst>(V); 1232 bool SI = isa<StoreInst>(V); 1233 if (!LI && !SI) 1234 return false; 1235 auto *Ty = getMemInstValueType(V); 1236 MaybeAlign Align = getLoadStoreAlignment(V); 1237 return (LI && isLegalMaskedGather(Ty, Align)) || 1238 (SI && isLegalMaskedScatter(Ty, Align)); 1239 } 1240 1241 /// Returns true if \p I is an instruction that will be scalarized with 1242 /// predication. Such instructions include conditional stores and 1243 /// instructions that may divide by zero. 1244 /// If a non-zero VF has been calculated, we check if I will be scalarized 1245 /// predication for that VF. 1246 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1247 1248 // Returns true if \p I is an instruction that will be predicated either 1249 // through scalar predication or masked load/store or masked gather/scatter. 1250 // Superset of instructions that return true for isScalarWithPredication. 1251 bool isPredicatedInst(Instruction *I) { 1252 if (!blockNeedsPredication(I->getParent())) 1253 return false; 1254 // Loads and stores that need some form of masked operation are predicated 1255 // instructions. 1256 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1257 return Legal->isMaskRequired(I); 1258 return isScalarWithPredication(I); 1259 } 1260 1261 /// Returns true if \p I is a memory instruction with consecutive memory 1262 /// access that can be widened. 1263 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1264 1265 /// Returns true if \p I is a memory instruction in an interleaved-group 1266 /// of memory accesses that can be vectorized with wide vector loads/stores 1267 /// and shuffles. 1268 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1269 1270 /// Check if \p Instr belongs to any interleaved access group. 1271 bool isAccessInterleaved(Instruction *Instr) { 1272 return InterleaveInfo.isInterleaved(Instr); 1273 } 1274 1275 /// Get the interleaved access group that \p Instr belongs to. 1276 const InterleaveGroup<Instruction> * 1277 getInterleavedAccessGroup(Instruction *Instr) { 1278 return InterleaveInfo.getInterleaveGroup(Instr); 1279 } 1280 1281 /// Returns true if an interleaved group requires a scalar iteration 1282 /// to handle accesses with gaps, and there is nothing preventing us from 1283 /// creating a scalar epilogue. 1284 bool requiresScalarEpilogue() const { 1285 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1286 } 1287 1288 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1289 /// loop hint annotation. 1290 bool isScalarEpilogueAllowed() const { 1291 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1292 } 1293 1294 /// Returns true if all loop blocks should be masked to fold tail loop. 1295 bool foldTailByMasking() const { return FoldTailByMasking; } 1296 1297 bool blockNeedsPredication(BasicBlock *BB) { 1298 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1299 } 1300 1301 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1302 /// with factor VF. Return the cost of the instruction, including 1303 /// scalarization overhead if it's needed. 1304 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1305 1306 /// Estimate cost of a call instruction CI if it were vectorized with factor 1307 /// VF. Return the cost of the instruction, including scalarization overhead 1308 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1309 /// scalarized - 1310 /// i.e. either vector version isn't available, or is too expensive. 1311 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1312 1313 /// Invalidates decisions already taken by the cost model. 1314 void invalidateCostModelingDecisions() { 1315 WideningDecisions.clear(); 1316 Uniforms.clear(); 1317 Scalars.clear(); 1318 } 1319 1320 private: 1321 unsigned NumPredStores = 0; 1322 1323 /// \return An upper bound for the vectorization factor, larger than zero. 1324 /// One is returned if vectorization should best be avoided due to cost. 1325 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1326 1327 /// The vectorization cost is a combination of the cost itself and a boolean 1328 /// indicating whether any of the contributing operations will actually 1329 /// operate on 1330 /// vector values after type legalization in the backend. If this latter value 1331 /// is 1332 /// false, then all operations will be scalarized (i.e. no vectorization has 1333 /// actually taken place). 1334 using VectorizationCostTy = std::pair<unsigned, bool>; 1335 1336 /// Returns the expected execution cost. The unit of the cost does 1337 /// not matter because we use the 'cost' units to compare different 1338 /// vector widths. The cost that is returned is *not* normalized by 1339 /// the factor width. 1340 VectorizationCostTy expectedCost(unsigned VF); 1341 1342 /// Returns the execution time cost of an instruction for a given vector 1343 /// width. Vector width of one means scalar. 1344 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1345 1346 /// The cost-computation logic from getInstructionCost which provides 1347 /// the vector type as an output parameter. 1348 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1349 1350 /// Calculate vectorization cost of memory instruction \p I. 1351 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1352 1353 /// The cost computation for scalarized memory instruction. 1354 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1355 1356 /// The cost computation for interleaving group of memory instructions. 1357 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1358 1359 /// The cost computation for Gather/Scatter instruction. 1360 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1361 1362 /// The cost computation for widening instruction \p I with consecutive 1363 /// memory access. 1364 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1365 1366 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1367 /// Load: scalar load + broadcast. 1368 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1369 /// element) 1370 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1371 1372 /// Estimate the overhead of scalarizing an instruction. This is a 1373 /// convenience wrapper for the type-based getScalarizationOverhead API. 1374 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1375 1376 /// Returns whether the instruction is a load or store and will be a emitted 1377 /// as a vector operation. 1378 bool isConsecutiveLoadOrStore(Instruction *I); 1379 1380 /// Returns true if an artificially high cost for emulated masked memrefs 1381 /// should be used. 1382 bool useEmulatedMaskMemRefHack(Instruction *I); 1383 1384 /// Map of scalar integer values to the smallest bitwidth they can be legally 1385 /// represented as. The vector equivalents of these values should be truncated 1386 /// to this type. 1387 MapVector<Instruction *, uint64_t> MinBWs; 1388 1389 /// A type representing the costs for instructions if they were to be 1390 /// scalarized rather than vectorized. The entries are Instruction-Cost 1391 /// pairs. 1392 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1393 1394 /// A set containing all BasicBlocks that are known to present after 1395 /// vectorization as a predicated block. 1396 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1397 1398 /// Records whether it is allowed to have the original scalar loop execute at 1399 /// least once. This may be needed as a fallback loop in case runtime 1400 /// aliasing/dependence checks fail, or to handle the tail/remainder 1401 /// iterations when the trip count is unknown or doesn't divide by the VF, 1402 /// or as a peel-loop to handle gaps in interleave-groups. 1403 /// Under optsize and when the trip count is very small we don't allow any 1404 /// iterations to execute in the scalar loop. 1405 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1406 1407 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1408 bool FoldTailByMasking = false; 1409 1410 /// A map holding scalar costs for different vectorization factors. The 1411 /// presence of a cost for an instruction in the mapping indicates that the 1412 /// instruction will be scalarized when vectorizing with the associated 1413 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1414 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1415 1416 /// Holds the instructions known to be uniform after vectorization. 1417 /// The data is collected per VF. 1418 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1419 1420 /// Holds the instructions known to be scalar after vectorization. 1421 /// The data is collected per VF. 1422 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1423 1424 /// Holds the instructions (address computations) that are forced to be 1425 /// scalarized. 1426 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1427 1428 /// Returns the expected difference in cost from scalarizing the expression 1429 /// feeding a predicated instruction \p PredInst. The instructions to 1430 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1431 /// non-negative return value implies the expression will be scalarized. 1432 /// Currently, only single-use chains are considered for scalarization. 1433 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1434 unsigned VF); 1435 1436 /// Collect the instructions that are uniform after vectorization. An 1437 /// instruction is uniform if we represent it with a single scalar value in 1438 /// the vectorized loop corresponding to each vector iteration. Examples of 1439 /// uniform instructions include pointer operands of consecutive or 1440 /// interleaved memory accesses. Note that although uniformity implies an 1441 /// instruction will be scalar, the reverse is not true. In general, a 1442 /// scalarized instruction will be represented by VF scalar values in the 1443 /// vectorized loop, each corresponding to an iteration of the original 1444 /// scalar loop. 1445 void collectLoopUniforms(unsigned VF); 1446 1447 /// Collect the instructions that are scalar after vectorization. An 1448 /// instruction is scalar if it is known to be uniform or will be scalarized 1449 /// during vectorization. Non-uniform scalarized instructions will be 1450 /// represented by VF values in the vectorized loop, each corresponding to an 1451 /// iteration of the original scalar loop. 1452 void collectLoopScalars(unsigned VF); 1453 1454 /// Keeps cost model vectorization decision and cost for instructions. 1455 /// Right now it is used for memory instructions only. 1456 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1457 std::pair<InstWidening, unsigned>>; 1458 1459 DecisionList WideningDecisions; 1460 1461 /// Returns true if \p V is expected to be vectorized and it needs to be 1462 /// extracted. 1463 bool needsExtract(Value *V, unsigned VF) const { 1464 Instruction *I = dyn_cast<Instruction>(V); 1465 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1466 return false; 1467 1468 // Assume we can vectorize V (and hence we need extraction) if the 1469 // scalars are not computed yet. This can happen, because it is called 1470 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1471 // the scalars are collected. That should be a safe assumption in most 1472 // cases, because we check if the operands have vectorizable types 1473 // beforehand in LoopVectorizationLegality. 1474 return Scalars.find(VF) == Scalars.end() || 1475 !isScalarAfterVectorization(I, VF); 1476 }; 1477 1478 /// Returns a range containing only operands needing to be extracted. 1479 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1480 unsigned VF) { 1481 return SmallVector<Value *, 4>(make_filter_range( 1482 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1483 } 1484 1485 public: 1486 /// The loop that we evaluate. 1487 Loop *TheLoop; 1488 1489 /// Predicated scalar evolution analysis. 1490 PredicatedScalarEvolution &PSE; 1491 1492 /// Loop Info analysis. 1493 LoopInfo *LI; 1494 1495 /// Vectorization legality. 1496 LoopVectorizationLegality *Legal; 1497 1498 /// Vector target information. 1499 const TargetTransformInfo &TTI; 1500 1501 /// Target Library Info. 1502 const TargetLibraryInfo *TLI; 1503 1504 /// Demanded bits analysis. 1505 DemandedBits *DB; 1506 1507 /// Assumption cache. 1508 AssumptionCache *AC; 1509 1510 /// Interface to emit optimization remarks. 1511 OptimizationRemarkEmitter *ORE; 1512 1513 const Function *TheFunction; 1514 1515 /// Loop Vectorize Hint. 1516 const LoopVectorizeHints *Hints; 1517 1518 /// The interleave access information contains groups of interleaved accesses 1519 /// with the same stride and close to each other. 1520 InterleavedAccessInfo &InterleaveInfo; 1521 1522 /// Values to ignore in the cost model. 1523 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1524 1525 /// Values to ignore in the cost model when VF > 1. 1526 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1527 }; 1528 1529 } // end namespace llvm 1530 1531 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1532 // vectorization. The loop needs to be annotated with #pragma omp simd 1533 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1534 // vector length information is not provided, vectorization is not considered 1535 // explicit. Interleave hints are not allowed either. These limitations will be 1536 // relaxed in the future. 1537 // Please, note that we are currently forced to abuse the pragma 'clang 1538 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1539 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1540 // provides *explicit vectorization hints* (LV can bypass legal checks and 1541 // assume that vectorization is legal). However, both hints are implemented 1542 // using the same metadata (llvm.loop.vectorize, processed by 1543 // LoopVectorizeHints). This will be fixed in the future when the native IR 1544 // representation for pragma 'omp simd' is introduced. 1545 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1546 OptimizationRemarkEmitter *ORE) { 1547 assert(!OuterLp->empty() && "This is not an outer loop"); 1548 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1549 1550 // Only outer loops with an explicit vectorization hint are supported. 1551 // Unannotated outer loops are ignored. 1552 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1553 return false; 1554 1555 Function *Fn = OuterLp->getHeader()->getParent(); 1556 if (!Hints.allowVectorization(Fn, OuterLp, 1557 true /*VectorizeOnlyWhenForced*/)) { 1558 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1559 return false; 1560 } 1561 1562 if (Hints.getInterleave() > 1) { 1563 // TODO: Interleave support is future work. 1564 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1565 "outer loops.\n"); 1566 Hints.emitRemarkWithHints(); 1567 return false; 1568 } 1569 1570 return true; 1571 } 1572 1573 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1574 OptimizationRemarkEmitter *ORE, 1575 SmallVectorImpl<Loop *> &V) { 1576 // Collect inner loops and outer loops without irreducible control flow. For 1577 // now, only collect outer loops that have explicit vectorization hints. If we 1578 // are stress testing the VPlan H-CFG construction, we collect the outermost 1579 // loop of every loop nest. 1580 if (L.empty() || VPlanBuildStressTest || 1581 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1582 LoopBlocksRPO RPOT(&L); 1583 RPOT.perform(LI); 1584 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1585 V.push_back(&L); 1586 // TODO: Collect inner loops inside marked outer loops in case 1587 // vectorization fails for the outer loop. Do not invoke 1588 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1589 // already known to be reducible. We can use an inherited attribute for 1590 // that. 1591 return; 1592 } 1593 } 1594 for (Loop *InnerL : L) 1595 collectSupportedLoops(*InnerL, LI, ORE, V); 1596 } 1597 1598 namespace { 1599 1600 /// The LoopVectorize Pass. 1601 struct LoopVectorize : public FunctionPass { 1602 /// Pass identification, replacement for typeid 1603 static char ID; 1604 1605 LoopVectorizePass Impl; 1606 1607 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1608 bool VectorizeOnlyWhenForced = false) 1609 : FunctionPass(ID), 1610 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1611 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1612 } 1613 1614 bool runOnFunction(Function &F) override { 1615 if (skipFunction(F)) 1616 return false; 1617 1618 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1619 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1620 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1621 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1622 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1623 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1624 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1625 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1626 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1627 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1628 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1629 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1630 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1631 1632 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1633 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1634 1635 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1636 GetLAA, *ORE, PSI).MadeAnyChange; 1637 } 1638 1639 void getAnalysisUsage(AnalysisUsage &AU) const override { 1640 AU.addRequired<AssumptionCacheTracker>(); 1641 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1642 AU.addRequired<DominatorTreeWrapperPass>(); 1643 AU.addRequired<LoopInfoWrapperPass>(); 1644 AU.addRequired<ScalarEvolutionWrapperPass>(); 1645 AU.addRequired<TargetTransformInfoWrapperPass>(); 1646 AU.addRequired<AAResultsWrapperPass>(); 1647 AU.addRequired<LoopAccessLegacyAnalysis>(); 1648 AU.addRequired<DemandedBitsWrapperPass>(); 1649 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1650 AU.addRequired<InjectTLIMappingsLegacy>(); 1651 1652 // We currently do not preserve loopinfo/dominator analyses with outer loop 1653 // vectorization. Until this is addressed, mark these analyses as preserved 1654 // only for non-VPlan-native path. 1655 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1656 if (!EnableVPlanNativePath) { 1657 AU.addPreserved<LoopInfoWrapperPass>(); 1658 AU.addPreserved<DominatorTreeWrapperPass>(); 1659 } 1660 1661 AU.addPreserved<BasicAAWrapperPass>(); 1662 AU.addPreserved<GlobalsAAWrapperPass>(); 1663 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1664 } 1665 }; 1666 1667 } // end anonymous namespace 1668 1669 //===----------------------------------------------------------------------===// 1670 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1671 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1672 //===----------------------------------------------------------------------===// 1673 1674 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1675 // We need to place the broadcast of invariant variables outside the loop, 1676 // but only if it's proven safe to do so. Else, broadcast will be inside 1677 // vector loop body. 1678 Instruction *Instr = dyn_cast<Instruction>(V); 1679 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1680 (!Instr || 1681 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1682 // Place the code for broadcasting invariant variables in the new preheader. 1683 IRBuilder<>::InsertPointGuard Guard(Builder); 1684 if (SafeToHoist) 1685 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1686 1687 // Broadcast the scalar into all locations in the vector. 1688 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1689 1690 return Shuf; 1691 } 1692 1693 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1694 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1695 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1696 "Expected either an induction phi-node or a truncate of it!"); 1697 Value *Start = II.getStartValue(); 1698 1699 // Construct the initial value of the vector IV in the vector loop preheader 1700 auto CurrIP = Builder.saveIP(); 1701 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1702 if (isa<TruncInst>(EntryVal)) { 1703 assert(Start->getType()->isIntegerTy() && 1704 "Truncation requires an integer type"); 1705 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1706 Step = Builder.CreateTrunc(Step, TruncType); 1707 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1708 } 1709 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1710 Value *SteppedStart = 1711 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1712 1713 // We create vector phi nodes for both integer and floating-point induction 1714 // variables. Here, we determine the kind of arithmetic we will perform. 1715 Instruction::BinaryOps AddOp; 1716 Instruction::BinaryOps MulOp; 1717 if (Step->getType()->isIntegerTy()) { 1718 AddOp = Instruction::Add; 1719 MulOp = Instruction::Mul; 1720 } else { 1721 AddOp = II.getInductionOpcode(); 1722 MulOp = Instruction::FMul; 1723 } 1724 1725 // Multiply the vectorization factor by the step using integer or 1726 // floating-point arithmetic as appropriate. 1727 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1728 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1729 1730 // Create a vector splat to use in the induction update. 1731 // 1732 // FIXME: If the step is non-constant, we create the vector splat with 1733 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1734 // handle a constant vector splat. 1735 Value *SplatVF = 1736 isa<Constant>(Mul) 1737 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1738 : Builder.CreateVectorSplat(VF, Mul); 1739 Builder.restoreIP(CurrIP); 1740 1741 // We may need to add the step a number of times, depending on the unroll 1742 // factor. The last of those goes into the PHI. 1743 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1744 &*LoopVectorBody->getFirstInsertionPt()); 1745 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1746 Instruction *LastInduction = VecInd; 1747 for (unsigned Part = 0; Part < UF; ++Part) { 1748 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1749 1750 if (isa<TruncInst>(EntryVal)) 1751 addMetadata(LastInduction, EntryVal); 1752 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1753 1754 LastInduction = cast<Instruction>(addFastMathFlag( 1755 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1756 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1757 } 1758 1759 // Move the last step to the end of the latch block. This ensures consistent 1760 // placement of all induction updates. 1761 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1762 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1763 auto *ICmp = cast<Instruction>(Br->getCondition()); 1764 LastInduction->moveBefore(ICmp); 1765 LastInduction->setName("vec.ind.next"); 1766 1767 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1768 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1769 } 1770 1771 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1772 return Cost->isScalarAfterVectorization(I, VF) || 1773 Cost->isProfitableToScalarize(I, VF); 1774 } 1775 1776 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1777 if (shouldScalarizeInstruction(IV)) 1778 return true; 1779 auto isScalarInst = [&](User *U) -> bool { 1780 auto *I = cast<Instruction>(U); 1781 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1782 }; 1783 return llvm::any_of(IV->users(), isScalarInst); 1784 } 1785 1786 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1787 const InductionDescriptor &ID, const Instruction *EntryVal, 1788 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1789 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1790 "Expected either an induction phi-node or a truncate of it!"); 1791 1792 // This induction variable is not the phi from the original loop but the 1793 // newly-created IV based on the proof that casted Phi is equal to the 1794 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1795 // re-uses the same InductionDescriptor that original IV uses but we don't 1796 // have to do any recording in this case - that is done when original IV is 1797 // processed. 1798 if (isa<TruncInst>(EntryVal)) 1799 return; 1800 1801 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1802 if (Casts.empty()) 1803 return; 1804 // Only the first Cast instruction in the Casts vector is of interest. 1805 // The rest of the Casts (if exist) have no uses outside the 1806 // induction update chain itself. 1807 Instruction *CastInst = *Casts.begin(); 1808 if (Lane < UINT_MAX) 1809 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1810 else 1811 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1812 } 1813 1814 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1815 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1816 "Primary induction variable must have an integer type"); 1817 1818 auto II = Legal->getInductionVars().find(IV); 1819 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1820 1821 auto ID = II->second; 1822 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1823 1824 // The value from the original loop to which we are mapping the new induction 1825 // variable. 1826 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1827 1828 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1829 1830 // Generate code for the induction step. Note that induction steps are 1831 // required to be loop-invariant 1832 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1833 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1834 "Induction step should be loop invariant"); 1835 if (PSE.getSE()->isSCEVable(IV->getType())) { 1836 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1837 return Exp.expandCodeFor(Step, Step->getType(), 1838 LoopVectorPreHeader->getTerminator()); 1839 } 1840 return cast<SCEVUnknown>(Step)->getValue(); 1841 }; 1842 1843 // The scalar value to broadcast. This is derived from the canonical 1844 // induction variable. If a truncation type is given, truncate the canonical 1845 // induction variable and step. Otherwise, derive these values from the 1846 // induction descriptor. 1847 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1848 Value *ScalarIV = Induction; 1849 if (IV != OldInduction) { 1850 ScalarIV = IV->getType()->isIntegerTy() 1851 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1852 : Builder.CreateCast(Instruction::SIToFP, Induction, 1853 IV->getType()); 1854 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1855 ScalarIV->setName("offset.idx"); 1856 } 1857 if (Trunc) { 1858 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1859 assert(Step->getType()->isIntegerTy() && 1860 "Truncation requires an integer step"); 1861 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1862 Step = Builder.CreateTrunc(Step, TruncType); 1863 } 1864 return ScalarIV; 1865 }; 1866 1867 // Create the vector values from the scalar IV, in the absence of creating a 1868 // vector IV. 1869 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1870 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1871 for (unsigned Part = 0; Part < UF; ++Part) { 1872 Value *EntryPart = 1873 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1874 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1875 if (Trunc) 1876 addMetadata(EntryPart, Trunc); 1877 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1878 } 1879 }; 1880 1881 // Now do the actual transformations, and start with creating the step value. 1882 Value *Step = CreateStepValue(ID.getStep()); 1883 if (VF <= 1) { 1884 Value *ScalarIV = CreateScalarIV(Step); 1885 CreateSplatIV(ScalarIV, Step); 1886 return; 1887 } 1888 1889 // Determine if we want a scalar version of the induction variable. This is 1890 // true if the induction variable itself is not widened, or if it has at 1891 // least one user in the loop that is not widened. 1892 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1893 if (!NeedsScalarIV) { 1894 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1895 return; 1896 } 1897 1898 // Try to create a new independent vector induction variable. If we can't 1899 // create the phi node, we will splat the scalar induction variable in each 1900 // loop iteration. 1901 if (!shouldScalarizeInstruction(EntryVal)) { 1902 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1903 Value *ScalarIV = CreateScalarIV(Step); 1904 // Create scalar steps that can be used by instructions we will later 1905 // scalarize. Note that the addition of the scalar steps will not increase 1906 // the number of instructions in the loop in the common case prior to 1907 // InstCombine. We will be trading one vector extract for each scalar step. 1908 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1909 return; 1910 } 1911 1912 // All IV users are scalar instructions, so only emit a scalar IV, not a 1913 // vectorised IV. 1914 Value *ScalarIV = CreateScalarIV(Step); 1915 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1916 } 1917 1918 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1919 Instruction::BinaryOps BinOp) { 1920 // Create and check the types. 1921 auto *ValVTy = cast<VectorType>(Val->getType()); 1922 int VLen = ValVTy->getNumElements(); 1923 1924 Type *STy = Val->getType()->getScalarType(); 1925 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1926 "Induction Step must be an integer or FP"); 1927 assert(Step->getType() == STy && "Step has wrong type"); 1928 1929 SmallVector<Constant *, 8> Indices; 1930 1931 if (STy->isIntegerTy()) { 1932 // Create a vector of consecutive numbers from zero to VF. 1933 for (int i = 0; i < VLen; ++i) 1934 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1935 1936 // Add the consecutive indices to the vector value. 1937 Constant *Cv = ConstantVector::get(Indices); 1938 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1939 Step = Builder.CreateVectorSplat(VLen, Step); 1940 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1941 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1942 // which can be found from the original scalar operations. 1943 Step = Builder.CreateMul(Cv, Step); 1944 return Builder.CreateAdd(Val, Step, "induction"); 1945 } 1946 1947 // Floating point induction. 1948 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1949 "Binary Opcode should be specified for FP induction"); 1950 // Create a vector of consecutive numbers from zero to VF. 1951 for (int i = 0; i < VLen; ++i) 1952 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1953 1954 // Add the consecutive indices to the vector value. 1955 Constant *Cv = ConstantVector::get(Indices); 1956 1957 Step = Builder.CreateVectorSplat(VLen, Step); 1958 1959 // Floating point operations had to be 'fast' to enable the induction. 1960 FastMathFlags Flags; 1961 Flags.setFast(); 1962 1963 Value *MulOp = Builder.CreateFMul(Cv, Step); 1964 if (isa<Instruction>(MulOp)) 1965 // Have to check, MulOp may be a constant 1966 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1967 1968 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1969 if (isa<Instruction>(BOp)) 1970 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1971 return BOp; 1972 } 1973 1974 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1975 Instruction *EntryVal, 1976 const InductionDescriptor &ID) { 1977 // We shouldn't have to build scalar steps if we aren't vectorizing. 1978 assert(VF > 1 && "VF should be greater than one"); 1979 1980 // Get the value type and ensure it and the step have the same integer type. 1981 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1982 assert(ScalarIVTy == Step->getType() && 1983 "Val and Step should have the same type"); 1984 1985 // We build scalar steps for both integer and floating-point induction 1986 // variables. Here, we determine the kind of arithmetic we will perform. 1987 Instruction::BinaryOps AddOp; 1988 Instruction::BinaryOps MulOp; 1989 if (ScalarIVTy->isIntegerTy()) { 1990 AddOp = Instruction::Add; 1991 MulOp = Instruction::Mul; 1992 } else { 1993 AddOp = ID.getInductionOpcode(); 1994 MulOp = Instruction::FMul; 1995 } 1996 1997 // Determine the number of scalars we need to generate for each unroll 1998 // iteration. If EntryVal is uniform, we only need to generate the first 1999 // lane. Otherwise, we generate all VF values. 2000 unsigned Lanes = 2001 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2002 : VF; 2003 // Compute the scalar steps and save the results in VectorLoopValueMap. 2004 for (unsigned Part = 0; Part < UF; ++Part) { 2005 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2006 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2007 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2008 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2009 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2010 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2011 } 2012 } 2013 } 2014 2015 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2016 assert(V != Induction && "The new induction variable should not be used."); 2017 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2018 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2019 2020 // If we have a stride that is replaced by one, do it here. Defer this for 2021 // the VPlan-native path until we start running Legal checks in that path. 2022 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2023 V = ConstantInt::get(V->getType(), 1); 2024 2025 // If we have a vector mapped to this value, return it. 2026 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2027 return VectorLoopValueMap.getVectorValue(V, Part); 2028 2029 // If the value has not been vectorized, check if it has been scalarized 2030 // instead. If it has been scalarized, and we actually need the value in 2031 // vector form, we will construct the vector values on demand. 2032 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2033 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2034 2035 // If we've scalarized a value, that value should be an instruction. 2036 auto *I = cast<Instruction>(V); 2037 2038 // If we aren't vectorizing, we can just copy the scalar map values over to 2039 // the vector map. 2040 if (VF == 1) { 2041 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2042 return ScalarValue; 2043 } 2044 2045 // Get the last scalar instruction we generated for V and Part. If the value 2046 // is known to be uniform after vectorization, this corresponds to lane zero 2047 // of the Part unroll iteration. Otherwise, the last instruction is the one 2048 // we created for the last vector lane of the Part unroll iteration. 2049 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2050 auto *LastInst = cast<Instruction>( 2051 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2052 2053 // Set the insert point after the last scalarized instruction. This ensures 2054 // the insertelement sequence will directly follow the scalar definitions. 2055 auto OldIP = Builder.saveIP(); 2056 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2057 Builder.SetInsertPoint(&*NewIP); 2058 2059 // However, if we are vectorizing, we need to construct the vector values. 2060 // If the value is known to be uniform after vectorization, we can just 2061 // broadcast the scalar value corresponding to lane zero for each unroll 2062 // iteration. Otherwise, we construct the vector values using insertelement 2063 // instructions. Since the resulting vectors are stored in 2064 // VectorLoopValueMap, we will only generate the insertelements once. 2065 Value *VectorValue = nullptr; 2066 if (Cost->isUniformAfterVectorization(I, VF)) { 2067 VectorValue = getBroadcastInstrs(ScalarValue); 2068 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2069 } else { 2070 // Initialize packing with insertelements to start from undef. 2071 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2072 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2073 for (unsigned Lane = 0; Lane < VF; ++Lane) 2074 packScalarIntoVectorValue(V, {Part, Lane}); 2075 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2076 } 2077 Builder.restoreIP(OldIP); 2078 return VectorValue; 2079 } 2080 2081 // If this scalar is unknown, assume that it is a constant or that it is 2082 // loop invariant. Broadcast V and save the value for future uses. 2083 Value *B = getBroadcastInstrs(V); 2084 VectorLoopValueMap.setVectorValue(V, Part, B); 2085 return B; 2086 } 2087 2088 Value * 2089 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2090 const VPIteration &Instance) { 2091 // If the value is not an instruction contained in the loop, it should 2092 // already be scalar. 2093 if (OrigLoop->isLoopInvariant(V)) 2094 return V; 2095 2096 assert(Instance.Lane > 0 2097 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2098 : true && "Uniform values only have lane zero"); 2099 2100 // If the value from the original loop has not been vectorized, it is 2101 // represented by UF x VF scalar values in the new loop. Return the requested 2102 // scalar value. 2103 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2104 return VectorLoopValueMap.getScalarValue(V, Instance); 2105 2106 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2107 // for the given unroll part. If this entry is not a vector type (i.e., the 2108 // vectorization factor is one), there is no need to generate an 2109 // extractelement instruction. 2110 auto *U = getOrCreateVectorValue(V, Instance.Part); 2111 if (!U->getType()->isVectorTy()) { 2112 assert(VF == 1 && "Value not scalarized has non-vector type"); 2113 return U; 2114 } 2115 2116 // Otherwise, the value from the original loop has been vectorized and is 2117 // represented by UF vector values. Extract and return the requested scalar 2118 // value from the appropriate vector lane. 2119 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2120 } 2121 2122 void InnerLoopVectorizer::packScalarIntoVectorValue( 2123 Value *V, const VPIteration &Instance) { 2124 assert(V != Induction && "The new induction variable should not be used."); 2125 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2126 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2127 2128 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2129 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2130 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2131 Builder.getInt32(Instance.Lane)); 2132 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2133 } 2134 2135 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2136 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2137 SmallVector<int, 8> ShuffleMask; 2138 for (unsigned i = 0; i < VF; ++i) 2139 ShuffleMask.push_back(VF - i - 1); 2140 2141 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2142 ShuffleMask, "reverse"); 2143 } 2144 2145 // Return whether we allow using masked interleave-groups (for dealing with 2146 // strided loads/stores that reside in predicated blocks, or for dealing 2147 // with gaps). 2148 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2149 // If an override option has been passed in for interleaved accesses, use it. 2150 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2151 return EnableMaskedInterleavedMemAccesses; 2152 2153 return TTI.enableMaskedInterleavedAccessVectorization(); 2154 } 2155 2156 // Try to vectorize the interleave group that \p Instr belongs to. 2157 // 2158 // E.g. Translate following interleaved load group (factor = 3): 2159 // for (i = 0; i < N; i+=3) { 2160 // R = Pic[i]; // Member of index 0 2161 // G = Pic[i+1]; // Member of index 1 2162 // B = Pic[i+2]; // Member of index 2 2163 // ... // do something to R, G, B 2164 // } 2165 // To: 2166 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2167 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2168 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2169 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2170 // 2171 // Or translate following interleaved store group (factor = 3): 2172 // for (i = 0; i < N; i+=3) { 2173 // ... do something to R, G, B 2174 // Pic[i] = R; // Member of index 0 2175 // Pic[i+1] = G; // Member of index 1 2176 // Pic[i+2] = B; // Member of index 2 2177 // } 2178 // To: 2179 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2180 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2181 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2182 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2183 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2184 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2185 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2186 VPValue *Addr, VPValue *BlockInMask) { 2187 Instruction *Instr = Group->getInsertPos(); 2188 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2189 2190 // Prepare for the vector type of the interleaved load/store. 2191 Type *ScalarTy = getMemInstValueType(Instr); 2192 unsigned InterleaveFactor = Group->getFactor(); 2193 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2194 2195 // Prepare for the new pointers. 2196 SmallVector<Value *, 2> AddrParts; 2197 unsigned Index = Group->getIndex(Instr); 2198 2199 // TODO: extend the masked interleaved-group support to reversed access. 2200 assert((!BlockInMask || !Group->isReverse()) && 2201 "Reversed masked interleave-group not supported."); 2202 2203 // If the group is reverse, adjust the index to refer to the last vector lane 2204 // instead of the first. We adjust the index from the first vector lane, 2205 // rather than directly getting the pointer for lane VF - 1, because the 2206 // pointer operand of the interleaved access is supposed to be uniform. For 2207 // uniform instructions, we're only required to generate a value for the 2208 // first vector lane in each unroll iteration. 2209 if (Group->isReverse()) 2210 Index += (VF - 1) * Group->getFactor(); 2211 2212 for (unsigned Part = 0; Part < UF; Part++) { 2213 Value *AddrPart = State.get(Addr, {Part, 0}); 2214 setDebugLocFromInst(Builder, AddrPart); 2215 2216 // Notice current instruction could be any index. Need to adjust the address 2217 // to the member of index 0. 2218 // 2219 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2220 // b = A[i]; // Member of index 0 2221 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2222 // 2223 // E.g. A[i+1] = a; // Member of index 1 2224 // A[i] = b; // Member of index 0 2225 // A[i+2] = c; // Member of index 2 (Current instruction) 2226 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2227 2228 bool InBounds = false; 2229 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2230 InBounds = gep->isInBounds(); 2231 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2232 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2233 2234 // Cast to the vector pointer type. 2235 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2236 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2237 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2238 } 2239 2240 setDebugLocFromInst(Builder, Instr); 2241 Value *UndefVec = UndefValue::get(VecTy); 2242 2243 Value *MaskForGaps = nullptr; 2244 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2245 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2246 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2247 } 2248 2249 // Vectorize the interleaved load group. 2250 if (isa<LoadInst>(Instr)) { 2251 // For each unroll part, create a wide load for the group. 2252 SmallVector<Value *, 2> NewLoads; 2253 for (unsigned Part = 0; Part < UF; Part++) { 2254 Instruction *NewLoad; 2255 if (BlockInMask || MaskForGaps) { 2256 assert(useMaskedInterleavedAccesses(*TTI) && 2257 "masked interleaved groups are not allowed."); 2258 Value *GroupMask = MaskForGaps; 2259 if (BlockInMask) { 2260 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2261 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2262 Value *ShuffledMask = Builder.CreateShuffleVector( 2263 BlockInMaskPart, Undefs, 2264 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2265 GroupMask = MaskForGaps 2266 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2267 MaskForGaps) 2268 : ShuffledMask; 2269 } 2270 NewLoad = 2271 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2272 GroupMask, UndefVec, "wide.masked.vec"); 2273 } 2274 else 2275 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2276 Group->getAlign(), "wide.vec"); 2277 Group->addMetadata(NewLoad); 2278 NewLoads.push_back(NewLoad); 2279 } 2280 2281 // For each member in the group, shuffle out the appropriate data from the 2282 // wide loads. 2283 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2284 Instruction *Member = Group->getMember(I); 2285 2286 // Skip the gaps in the group. 2287 if (!Member) 2288 continue; 2289 2290 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2291 for (unsigned Part = 0; Part < UF; Part++) { 2292 Value *StridedVec = Builder.CreateShuffleVector( 2293 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2294 2295 // If this member has different type, cast the result type. 2296 if (Member->getType() != ScalarTy) { 2297 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2298 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2299 } 2300 2301 if (Group->isReverse()) 2302 StridedVec = reverseVector(StridedVec); 2303 2304 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2305 } 2306 } 2307 return; 2308 } 2309 2310 // The sub vector type for current instruction. 2311 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2312 2313 // Vectorize the interleaved store group. 2314 for (unsigned Part = 0; Part < UF; Part++) { 2315 // Collect the stored vector from each member. 2316 SmallVector<Value *, 4> StoredVecs; 2317 for (unsigned i = 0; i < InterleaveFactor; i++) { 2318 // Interleaved store group doesn't allow a gap, so each index has a member 2319 Instruction *Member = Group->getMember(i); 2320 assert(Member && "Fail to get a member from an interleaved store group"); 2321 2322 Value *StoredVec = getOrCreateVectorValue( 2323 cast<StoreInst>(Member)->getValueOperand(), Part); 2324 if (Group->isReverse()) 2325 StoredVec = reverseVector(StoredVec); 2326 2327 // If this member has different type, cast it to a unified type. 2328 2329 if (StoredVec->getType() != SubVT) 2330 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2331 2332 StoredVecs.push_back(StoredVec); 2333 } 2334 2335 // Concatenate all vectors into a wide vector. 2336 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2337 2338 // Interleave the elements in the wide vector. 2339 Value *IVec = Builder.CreateShuffleVector( 2340 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2341 "interleaved.vec"); 2342 2343 Instruction *NewStoreInstr; 2344 if (BlockInMask) { 2345 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2346 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2347 Value *ShuffledMask = Builder.CreateShuffleVector( 2348 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2349 "interleaved.mask"); 2350 NewStoreInstr = Builder.CreateMaskedStore( 2351 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2352 } 2353 else 2354 NewStoreInstr = 2355 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2356 2357 Group->addMetadata(NewStoreInstr); 2358 } 2359 } 2360 2361 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2362 VPTransformState &State, 2363 VPValue *Addr, 2364 VPValue *StoredValue, 2365 VPValue *BlockInMask) { 2366 // Attempt to issue a wide load. 2367 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2368 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2369 2370 assert((LI || SI) && "Invalid Load/Store instruction"); 2371 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2372 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2373 2374 LoopVectorizationCostModel::InstWidening Decision = 2375 Cost->getWideningDecision(Instr, VF); 2376 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2377 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2378 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2379 "CM decision is not to widen the memory instruction"); 2380 2381 Type *ScalarDataTy = getMemInstValueType(Instr); 2382 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2383 // An alignment of 0 means target abi alignment. We need to use the scalar's 2384 // target abi alignment in such a case. 2385 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2386 const Align Alignment = 2387 DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy); 2388 2389 // Determine if the pointer operand of the access is either consecutive or 2390 // reverse consecutive. 2391 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2392 bool ConsecutiveStride = 2393 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2394 bool CreateGatherScatter = 2395 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2396 2397 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2398 // gather/scatter. Otherwise Decision should have been to Scalarize. 2399 assert((ConsecutiveStride || CreateGatherScatter) && 2400 "The instruction should be scalarized"); 2401 (void)ConsecutiveStride; 2402 2403 VectorParts BlockInMaskParts(UF); 2404 bool isMaskRequired = BlockInMask; 2405 if (isMaskRequired) 2406 for (unsigned Part = 0; Part < UF; ++Part) 2407 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2408 2409 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2410 // Calculate the pointer for the specific unroll-part. 2411 GetElementPtrInst *PartPtr = nullptr; 2412 2413 bool InBounds = false; 2414 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2415 InBounds = gep->isInBounds(); 2416 2417 if (Reverse) { 2418 // If the address is consecutive but reversed, then the 2419 // wide store needs to start at the last vector element. 2420 PartPtr = cast<GetElementPtrInst>( 2421 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2422 PartPtr->setIsInBounds(InBounds); 2423 PartPtr = cast<GetElementPtrInst>( 2424 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2425 PartPtr->setIsInBounds(InBounds); 2426 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2427 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2428 } else { 2429 PartPtr = cast<GetElementPtrInst>( 2430 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2431 PartPtr->setIsInBounds(InBounds); 2432 } 2433 2434 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2435 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2436 }; 2437 2438 // Handle Stores: 2439 if (SI) { 2440 setDebugLocFromInst(Builder, SI); 2441 2442 for (unsigned Part = 0; Part < UF; ++Part) { 2443 Instruction *NewSI = nullptr; 2444 Value *StoredVal = State.get(StoredValue, Part); 2445 if (CreateGatherScatter) { 2446 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2447 Value *VectorGep = State.get(Addr, Part); 2448 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2449 MaskPart); 2450 } else { 2451 if (Reverse) { 2452 // If we store to reverse consecutive memory locations, then we need 2453 // to reverse the order of elements in the stored value. 2454 StoredVal = reverseVector(StoredVal); 2455 // We don't want to update the value in the map as it might be used in 2456 // another expression. So don't call resetVectorValue(StoredVal). 2457 } 2458 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2459 if (isMaskRequired) 2460 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2461 BlockInMaskParts[Part]); 2462 else 2463 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2464 } 2465 addMetadata(NewSI, SI); 2466 } 2467 return; 2468 } 2469 2470 // Handle loads. 2471 assert(LI && "Must have a load instruction"); 2472 setDebugLocFromInst(Builder, LI); 2473 for (unsigned Part = 0; Part < UF; ++Part) { 2474 Value *NewLI; 2475 if (CreateGatherScatter) { 2476 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2477 Value *VectorGep = State.get(Addr, Part); 2478 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2479 nullptr, "wide.masked.gather"); 2480 addMetadata(NewLI, LI); 2481 } else { 2482 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2483 if (isMaskRequired) 2484 NewLI = Builder.CreateMaskedLoad( 2485 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2486 "wide.masked.load"); 2487 else 2488 NewLI = 2489 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2490 2491 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2492 addMetadata(NewLI, LI); 2493 if (Reverse) 2494 NewLI = reverseVector(NewLI); 2495 } 2496 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2497 } 2498 } 2499 2500 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2501 const VPIteration &Instance, 2502 bool IfPredicateInstr) { 2503 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2504 2505 setDebugLocFromInst(Builder, Instr); 2506 2507 // Does this instruction return a value ? 2508 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2509 2510 Instruction *Cloned = Instr->clone(); 2511 if (!IsVoidRetTy) 2512 Cloned->setName(Instr->getName() + ".cloned"); 2513 2514 // Replace the operands of the cloned instructions with their scalar 2515 // equivalents in the new loop. 2516 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2517 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2518 Cloned->setOperand(op, NewOp); 2519 } 2520 addNewMetadata(Cloned, Instr); 2521 2522 // Place the cloned scalar in the new loop. 2523 Builder.Insert(Cloned); 2524 2525 // Add the cloned scalar to the scalar map entry. 2526 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2527 2528 // If we just cloned a new assumption, add it the assumption cache. 2529 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2530 if (II->getIntrinsicID() == Intrinsic::assume) 2531 AC->registerAssumption(II); 2532 2533 // End if-block. 2534 if (IfPredicateInstr) 2535 PredicatedInstructions.push_back(Cloned); 2536 } 2537 2538 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2539 Value *End, Value *Step, 2540 Instruction *DL) { 2541 BasicBlock *Header = L->getHeader(); 2542 BasicBlock *Latch = L->getLoopLatch(); 2543 // As we're just creating this loop, it's possible no latch exists 2544 // yet. If so, use the header as this will be a single block loop. 2545 if (!Latch) 2546 Latch = Header; 2547 2548 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2549 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2550 setDebugLocFromInst(Builder, OldInst); 2551 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2552 2553 Builder.SetInsertPoint(Latch->getTerminator()); 2554 setDebugLocFromInst(Builder, OldInst); 2555 2556 // Create i+1 and fill the PHINode. 2557 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2558 Induction->addIncoming(Start, L->getLoopPreheader()); 2559 Induction->addIncoming(Next, Latch); 2560 // Create the compare. 2561 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2562 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2563 2564 // Now we have two terminators. Remove the old one from the block. 2565 Latch->getTerminator()->eraseFromParent(); 2566 2567 return Induction; 2568 } 2569 2570 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2571 if (TripCount) 2572 return TripCount; 2573 2574 assert(L && "Create Trip Count for null loop."); 2575 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2576 // Find the loop boundaries. 2577 ScalarEvolution *SE = PSE.getSE(); 2578 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2579 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2580 "Invalid loop count"); 2581 2582 Type *IdxTy = Legal->getWidestInductionType(); 2583 assert(IdxTy && "No type for induction"); 2584 2585 // The exit count might have the type of i64 while the phi is i32. This can 2586 // happen if we have an induction variable that is sign extended before the 2587 // compare. The only way that we get a backedge taken count is that the 2588 // induction variable was signed and as such will not overflow. In such a case 2589 // truncation is legal. 2590 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2591 IdxTy->getPrimitiveSizeInBits()) 2592 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2593 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2594 2595 // Get the total trip count from the count by adding 1. 2596 const SCEV *ExitCount = SE->getAddExpr( 2597 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2598 2599 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2600 2601 // Expand the trip count and place the new instructions in the preheader. 2602 // Notice that the pre-header does not change, only the loop body. 2603 SCEVExpander Exp(*SE, DL, "induction"); 2604 2605 // Count holds the overall loop count (N). 2606 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2607 L->getLoopPreheader()->getTerminator()); 2608 2609 if (TripCount->getType()->isPointerTy()) 2610 TripCount = 2611 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2612 L->getLoopPreheader()->getTerminator()); 2613 2614 return TripCount; 2615 } 2616 2617 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2618 if (VectorTripCount) 2619 return VectorTripCount; 2620 2621 Value *TC = getOrCreateTripCount(L); 2622 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2623 2624 Type *Ty = TC->getType(); 2625 Constant *Step = ConstantInt::get(Ty, VF * UF); 2626 2627 // If the tail is to be folded by masking, round the number of iterations N 2628 // up to a multiple of Step instead of rounding down. This is done by first 2629 // adding Step-1 and then rounding down. Note that it's ok if this addition 2630 // overflows: the vector induction variable will eventually wrap to zero given 2631 // that it starts at zero and its Step is a power of two; the loop will then 2632 // exit, with the last early-exit vector comparison also producing all-true. 2633 if (Cost->foldTailByMasking()) { 2634 assert(isPowerOf2_32(VF * UF) && 2635 "VF*UF must be a power of 2 when folding tail by masking"); 2636 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2637 } 2638 2639 // Now we need to generate the expression for the part of the loop that the 2640 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2641 // iterations are not required for correctness, or N - Step, otherwise. Step 2642 // is equal to the vectorization factor (number of SIMD elements) times the 2643 // unroll factor (number of SIMD instructions). 2644 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2645 2646 // If there is a non-reversed interleaved group that may speculatively access 2647 // memory out-of-bounds, we need to ensure that there will be at least one 2648 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2649 // the trip count, we set the remainder to be equal to the step. If the step 2650 // does not evenly divide the trip count, no adjustment is necessary since 2651 // there will already be scalar iterations. Note that the minimum iterations 2652 // check ensures that N >= Step. 2653 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2654 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2655 R = Builder.CreateSelect(IsZero, Step, R); 2656 } 2657 2658 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2659 2660 return VectorTripCount; 2661 } 2662 2663 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2664 const DataLayout &DL) { 2665 // Verify that V is a vector type with same number of elements as DstVTy. 2666 unsigned VF = DstVTy->getNumElements(); 2667 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2668 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2669 Type *SrcElemTy = SrcVecTy->getElementType(); 2670 Type *DstElemTy = DstVTy->getElementType(); 2671 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2672 "Vector elements must have same size"); 2673 2674 // Do a direct cast if element types are castable. 2675 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2676 return Builder.CreateBitOrPointerCast(V, DstVTy); 2677 } 2678 // V cannot be directly casted to desired vector type. 2679 // May happen when V is a floating point vector but DstVTy is a vector of 2680 // pointers or vice-versa. Handle this using a two-step bitcast using an 2681 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2682 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2683 "Only one type should be a pointer type"); 2684 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2685 "Only one type should be a floating point type"); 2686 Type *IntTy = 2687 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2688 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2689 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2690 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2691 } 2692 2693 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2694 BasicBlock *Bypass) { 2695 Value *Count = getOrCreateTripCount(L); 2696 // Reuse existing vector loop preheader for TC checks. 2697 // Note that new preheader block is generated for vector loop. 2698 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2699 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2700 2701 // Generate code to check if the loop's trip count is less than VF * UF, or 2702 // equal to it in case a scalar epilogue is required; this implies that the 2703 // vector trip count is zero. This check also covers the case where adding one 2704 // to the backedge-taken count overflowed leading to an incorrect trip count 2705 // of zero. In this case we will also jump to the scalar loop. 2706 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2707 : ICmpInst::ICMP_ULT; 2708 2709 // If tail is to be folded, vector loop takes care of all iterations. 2710 Value *CheckMinIters = Builder.getFalse(); 2711 if (!Cost->foldTailByMasking()) 2712 CheckMinIters = Builder.CreateICmp( 2713 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2714 "min.iters.check"); 2715 2716 // Create new preheader for vector loop. 2717 LoopVectorPreHeader = 2718 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2719 "vector.ph"); 2720 2721 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2722 DT->getNode(Bypass)->getIDom()) && 2723 "TC check is expected to dominate Bypass"); 2724 2725 // Update dominator for Bypass & LoopExit. 2726 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2727 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2728 2729 ReplaceInstWithInst( 2730 TCCheckBlock->getTerminator(), 2731 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2732 LoopBypassBlocks.push_back(TCCheckBlock); 2733 } 2734 2735 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2736 // Reuse existing vector loop preheader for SCEV checks. 2737 // Note that new preheader block is generated for vector loop. 2738 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2739 2740 // Generate the code to check that the SCEV assumptions that we made. 2741 // We want the new basic block to start at the first instruction in a 2742 // sequence of instructions that form a check. 2743 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2744 "scev.check"); 2745 Value *SCEVCheck = Exp.expandCodeForPredicate( 2746 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2747 2748 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2749 if (C->isZero()) 2750 return; 2751 2752 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2753 "Cannot SCEV check stride or overflow when optimizing for size"); 2754 2755 SCEVCheckBlock->setName("vector.scevcheck"); 2756 // Create new preheader for vector loop. 2757 LoopVectorPreHeader = 2758 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2759 nullptr, "vector.ph"); 2760 2761 // Update dominator only if this is first RT check. 2762 if (LoopBypassBlocks.empty()) { 2763 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2764 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2765 } 2766 2767 ReplaceInstWithInst( 2768 SCEVCheckBlock->getTerminator(), 2769 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2770 LoopBypassBlocks.push_back(SCEVCheckBlock); 2771 AddedSafetyChecks = true; 2772 } 2773 2774 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2775 // VPlan-native path does not do any analysis for runtime checks currently. 2776 if (EnableVPlanNativePath) 2777 return; 2778 2779 // Reuse existing vector loop preheader for runtime memory checks. 2780 // Note that new preheader block is generated for vector loop. 2781 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2782 2783 // Generate the code that checks in runtime if arrays overlap. We put the 2784 // checks into a separate block to make the more common case of few elements 2785 // faster. 2786 Instruction *FirstCheckInst; 2787 Instruction *MemRuntimeCheck; 2788 std::tie(FirstCheckInst, MemRuntimeCheck) = 2789 Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator()); 2790 if (!MemRuntimeCheck) 2791 return; 2792 2793 if (MemCheckBlock->getParent()->hasOptSize()) { 2794 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2795 "Cannot emit memory checks when optimizing for size, unless forced " 2796 "to vectorize."); 2797 ORE->emit([&]() { 2798 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2799 L->getStartLoc(), L->getHeader()) 2800 << "Code-size may be reduced by not forcing " 2801 "vectorization, or by source-code modifications " 2802 "eliminating the need for runtime checks " 2803 "(e.g., adding 'restrict')."; 2804 }); 2805 } 2806 2807 MemCheckBlock->setName("vector.memcheck"); 2808 // Create new preheader for vector loop. 2809 LoopVectorPreHeader = 2810 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2811 "vector.ph"); 2812 2813 // Update dominator only if this is first RT check. 2814 if (LoopBypassBlocks.empty()) { 2815 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2816 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2817 } 2818 2819 ReplaceInstWithInst( 2820 MemCheckBlock->getTerminator(), 2821 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2822 LoopBypassBlocks.push_back(MemCheckBlock); 2823 AddedSafetyChecks = true; 2824 2825 // We currently don't use LoopVersioning for the actual loop cloning but we 2826 // still use it to add the noalias metadata. 2827 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2828 PSE.getSE()); 2829 LVer->prepareNoAliasMetadata(); 2830 } 2831 2832 Value *InnerLoopVectorizer::emitTransformedIndex( 2833 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2834 const InductionDescriptor &ID) const { 2835 2836 SCEVExpander Exp(*SE, DL, "induction"); 2837 auto Step = ID.getStep(); 2838 auto StartValue = ID.getStartValue(); 2839 assert(Index->getType() == Step->getType() && 2840 "Index type does not match StepValue type"); 2841 2842 // Note: the IR at this point is broken. We cannot use SE to create any new 2843 // SCEV and then expand it, hoping that SCEV's simplification will give us 2844 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2845 // lead to various SCEV crashes. So all we can do is to use builder and rely 2846 // on InstCombine for future simplifications. Here we handle some trivial 2847 // cases only. 2848 auto CreateAdd = [&B](Value *X, Value *Y) { 2849 assert(X->getType() == Y->getType() && "Types don't match!"); 2850 if (auto *CX = dyn_cast<ConstantInt>(X)) 2851 if (CX->isZero()) 2852 return Y; 2853 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2854 if (CY->isZero()) 2855 return X; 2856 return B.CreateAdd(X, Y); 2857 }; 2858 2859 auto CreateMul = [&B](Value *X, Value *Y) { 2860 assert(X->getType() == Y->getType() && "Types don't match!"); 2861 if (auto *CX = dyn_cast<ConstantInt>(X)) 2862 if (CX->isOne()) 2863 return Y; 2864 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2865 if (CY->isOne()) 2866 return X; 2867 return B.CreateMul(X, Y); 2868 }; 2869 2870 switch (ID.getKind()) { 2871 case InductionDescriptor::IK_IntInduction: { 2872 assert(Index->getType() == StartValue->getType() && 2873 "Index type does not match StartValue type"); 2874 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2875 return B.CreateSub(StartValue, Index); 2876 auto *Offset = CreateMul( 2877 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2878 return CreateAdd(StartValue, Offset); 2879 } 2880 case InductionDescriptor::IK_PtrInduction: { 2881 assert(isa<SCEVConstant>(Step) && 2882 "Expected constant step for pointer induction"); 2883 return B.CreateGEP( 2884 StartValue->getType()->getPointerElementType(), StartValue, 2885 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2886 &*B.GetInsertPoint()))); 2887 } 2888 case InductionDescriptor::IK_FpInduction: { 2889 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2890 auto InductionBinOp = ID.getInductionBinOp(); 2891 assert(InductionBinOp && 2892 (InductionBinOp->getOpcode() == Instruction::FAdd || 2893 InductionBinOp->getOpcode() == Instruction::FSub) && 2894 "Original bin op should be defined for FP induction"); 2895 2896 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2897 2898 // Floating point operations had to be 'fast' to enable the induction. 2899 FastMathFlags Flags; 2900 Flags.setFast(); 2901 2902 Value *MulExp = B.CreateFMul(StepValue, Index); 2903 if (isa<Instruction>(MulExp)) 2904 // We have to check, the MulExp may be a constant. 2905 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2906 2907 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2908 "induction"); 2909 if (isa<Instruction>(BOp)) 2910 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2911 2912 return BOp; 2913 } 2914 case InductionDescriptor::IK_NoInduction: 2915 return nullptr; 2916 } 2917 llvm_unreachable("invalid enum"); 2918 } 2919 2920 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2921 /* 2922 In this function we generate a new loop. The new loop will contain 2923 the vectorized instructions while the old loop will continue to run the 2924 scalar remainder. 2925 2926 [ ] <-- loop iteration number check. 2927 / | 2928 / v 2929 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2930 | / | 2931 | / v 2932 || [ ] <-- vector pre header. 2933 |/ | 2934 | v 2935 | [ ] \ 2936 | [ ]_| <-- vector loop. 2937 | | 2938 | v 2939 | -[ ] <--- middle-block. 2940 | / | 2941 | / v 2942 -|- >[ ] <--- new preheader. 2943 | | 2944 | v 2945 | [ ] \ 2946 | [ ]_| <-- old scalar loop to handle remainder. 2947 \ | 2948 \ v 2949 >[ ] <-- exit block. 2950 ... 2951 */ 2952 2953 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2954 2955 // Some loops have a single integer induction variable, while other loops 2956 // don't. One example is c++ iterators that often have multiple pointer 2957 // induction variables. In the code below we also support a case where we 2958 // don't have a single induction variable. 2959 // 2960 // We try to obtain an induction variable from the original loop as hard 2961 // as possible. However if we don't find one that: 2962 // - is an integer 2963 // - counts from zero, stepping by one 2964 // - is the size of the widest induction variable type 2965 // then we create a new one. 2966 OldInduction = Legal->getPrimaryInduction(); 2967 Type *IdxTy = Legal->getWidestInductionType(); 2968 2969 // Split the single block loop into the two loop structure described above. 2970 LoopScalarBody = OrigLoop->getHeader(); 2971 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2972 LoopExitBlock = OrigLoop->getExitBlock(); 2973 assert(LoopExitBlock && "Must have an exit block"); 2974 assert(LoopVectorPreHeader && "Invalid loop structure"); 2975 2976 LoopMiddleBlock = 2977 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2978 LI, nullptr, "middle.block"); 2979 LoopScalarPreHeader = 2980 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2981 nullptr, "scalar.ph"); 2982 // We intentionally don't let SplitBlock to update LoopInfo since 2983 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2984 // LoopVectorBody is explicitly added to the correct place few lines later. 2985 LoopVectorBody = 2986 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2987 nullptr, nullptr, "vector.body"); 2988 2989 // Update dominator for loop exit. 2990 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2991 2992 // Create and register the new vector loop. 2993 Loop *Lp = LI->AllocateLoop(); 2994 Loop *ParentLoop = OrigLoop->getParentLoop(); 2995 2996 // Insert the new loop into the loop nest and register the new basic blocks 2997 // before calling any utilities such as SCEV that require valid LoopInfo. 2998 if (ParentLoop) { 2999 ParentLoop->addChildLoop(Lp); 3000 } else { 3001 LI->addTopLevelLoop(Lp); 3002 } 3003 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3004 3005 // Find the loop boundaries. 3006 Value *Count = getOrCreateTripCount(Lp); 3007 3008 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3009 3010 // Now, compare the new count to zero. If it is zero skip the vector loop and 3011 // jump to the scalar loop. This check also covers the case where the 3012 // backedge-taken count is uint##_max: adding one to it will overflow leading 3013 // to an incorrect trip count of zero. In this (rare) case we will also jump 3014 // to the scalar loop. 3015 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3016 3017 // Generate the code to check any assumptions that we've made for SCEV 3018 // expressions. 3019 emitSCEVChecks(Lp, LoopScalarPreHeader); 3020 3021 // Generate the code that checks in runtime if arrays overlap. We put the 3022 // checks into a separate block to make the more common case of few elements 3023 // faster. 3024 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3025 3026 // Generate the induction variable. 3027 // The loop step is equal to the vectorization factor (num of SIMD elements) 3028 // times the unroll factor (num of SIMD instructions). 3029 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3030 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3031 Induction = 3032 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3033 getDebugLocFromInstOrOperands(OldInduction)); 3034 3035 // We are going to resume the execution of the scalar loop. 3036 // Go over all of the induction variables that we found and fix the 3037 // PHIs that are left in the scalar version of the loop. 3038 // The starting values of PHI nodes depend on the counter of the last 3039 // iteration in the vectorized loop. 3040 // If we come from a bypass edge then we need to start from the original 3041 // start value. 3042 3043 // This variable saves the new starting index for the scalar loop. It is used 3044 // to test if there are any tail iterations left once the vector loop has 3045 // completed. 3046 for (auto &InductionEntry : Legal->getInductionVars()) { 3047 PHINode *OrigPhi = InductionEntry.first; 3048 InductionDescriptor II = InductionEntry.second; 3049 3050 // Create phi nodes to merge from the backedge-taken check block. 3051 PHINode *BCResumeVal = 3052 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3053 LoopScalarPreHeader->getTerminator()); 3054 // Copy original phi DL over to the new one. 3055 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3056 Value *&EndValue = IVEndValues[OrigPhi]; 3057 if (OrigPhi == OldInduction) { 3058 // We know what the end value is. 3059 EndValue = CountRoundDown; 3060 } else { 3061 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3062 Type *StepType = II.getStep()->getType(); 3063 Instruction::CastOps CastOp = 3064 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3065 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3066 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3067 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3068 EndValue->setName("ind.end"); 3069 } 3070 3071 // The new PHI merges the original incoming value, in case of a bypass, 3072 // or the value at the end of the vectorized loop. 3073 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3074 3075 // Fix the scalar body counter (PHI node). 3076 // The old induction's phi node in the scalar body needs the truncated 3077 // value. 3078 for (BasicBlock *BB : LoopBypassBlocks) 3079 BCResumeVal->addIncoming(II.getStartValue(), BB); 3080 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3081 } 3082 3083 // We need the OrigLoop (scalar loop part) latch terminator to help 3084 // produce correct debug info for the middle block BB instructions. 3085 // The legality check stage guarantees that the loop will have a single 3086 // latch. 3087 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3088 "Scalar loop latch terminator isn't a branch"); 3089 BranchInst *ScalarLatchBr = 3090 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3091 3092 // Add a check in the middle block to see if we have completed 3093 // all of the iterations in the first vector loop. 3094 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3095 // If tail is to be folded, we know we don't need to run the remainder. 3096 Value *CmpN = Builder.getTrue(); 3097 if (!Cost->foldTailByMasking()) { 3098 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3099 CountRoundDown, "cmp.n", 3100 LoopMiddleBlock->getTerminator()); 3101 3102 // Here we use the same DebugLoc as the scalar loop latch branch instead 3103 // of the corresponding compare because they may have ended up with 3104 // different line numbers and we want to avoid awkward line stepping while 3105 // debugging. Eg. if the compare has got a line number inside the loop. 3106 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3107 } 3108 3109 BranchInst *BrInst = 3110 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3111 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3112 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3113 3114 // Get ready to start creating new instructions into the vectorized body. 3115 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3116 "Inconsistent vector loop preheader"); 3117 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3118 3119 Optional<MDNode *> VectorizedLoopID = 3120 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3121 LLVMLoopVectorizeFollowupVectorized}); 3122 if (VectorizedLoopID.hasValue()) { 3123 Lp->setLoopID(VectorizedLoopID.getValue()); 3124 3125 // Do not setAlreadyVectorized if loop attributes have been defined 3126 // explicitly. 3127 return LoopVectorPreHeader; 3128 } 3129 3130 // Keep all loop hints from the original loop on the vector loop (we'll 3131 // replace the vectorizer-specific hints below). 3132 if (MDNode *LID = OrigLoop->getLoopID()) 3133 Lp->setLoopID(LID); 3134 3135 LoopVectorizeHints Hints(Lp, true, *ORE); 3136 Hints.setAlreadyVectorized(); 3137 3138 #ifdef EXPENSIVE_CHECKS 3139 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3140 LI->verify(*DT); 3141 #endif 3142 3143 return LoopVectorPreHeader; 3144 } 3145 3146 // Fix up external users of the induction variable. At this point, we are 3147 // in LCSSA form, with all external PHIs that use the IV having one input value, 3148 // coming from the remainder loop. We need those PHIs to also have a correct 3149 // value for the IV when arriving directly from the middle block. 3150 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3151 const InductionDescriptor &II, 3152 Value *CountRoundDown, Value *EndValue, 3153 BasicBlock *MiddleBlock) { 3154 // There are two kinds of external IV usages - those that use the value 3155 // computed in the last iteration (the PHI) and those that use the penultimate 3156 // value (the value that feeds into the phi from the loop latch). 3157 // We allow both, but they, obviously, have different values. 3158 3159 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3160 3161 DenseMap<Value *, Value *> MissingVals; 3162 3163 // An external user of the last iteration's value should see the value that 3164 // the remainder loop uses to initialize its own IV. 3165 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3166 for (User *U : PostInc->users()) { 3167 Instruction *UI = cast<Instruction>(U); 3168 if (!OrigLoop->contains(UI)) { 3169 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3170 MissingVals[UI] = EndValue; 3171 } 3172 } 3173 3174 // An external user of the penultimate value need to see EndValue - Step. 3175 // The simplest way to get this is to recompute it from the constituent SCEVs, 3176 // that is Start + (Step * (CRD - 1)). 3177 for (User *U : OrigPhi->users()) { 3178 auto *UI = cast<Instruction>(U); 3179 if (!OrigLoop->contains(UI)) { 3180 const DataLayout &DL = 3181 OrigLoop->getHeader()->getModule()->getDataLayout(); 3182 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3183 3184 IRBuilder<> B(MiddleBlock->getTerminator()); 3185 Value *CountMinusOne = B.CreateSub( 3186 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3187 Value *CMO = 3188 !II.getStep()->getType()->isIntegerTy() 3189 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3190 II.getStep()->getType()) 3191 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3192 CMO->setName("cast.cmo"); 3193 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3194 Escape->setName("ind.escape"); 3195 MissingVals[UI] = Escape; 3196 } 3197 } 3198 3199 for (auto &I : MissingVals) { 3200 PHINode *PHI = cast<PHINode>(I.first); 3201 // One corner case we have to handle is two IVs "chasing" each-other, 3202 // that is %IV2 = phi [...], [ %IV1, %latch ] 3203 // In this case, if IV1 has an external use, we need to avoid adding both 3204 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3205 // don't already have an incoming value for the middle block. 3206 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3207 PHI->addIncoming(I.second, MiddleBlock); 3208 } 3209 } 3210 3211 namespace { 3212 3213 struct CSEDenseMapInfo { 3214 static bool canHandle(const Instruction *I) { 3215 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3216 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3217 } 3218 3219 static inline Instruction *getEmptyKey() { 3220 return DenseMapInfo<Instruction *>::getEmptyKey(); 3221 } 3222 3223 static inline Instruction *getTombstoneKey() { 3224 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3225 } 3226 3227 static unsigned getHashValue(const Instruction *I) { 3228 assert(canHandle(I) && "Unknown instruction!"); 3229 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3230 I->value_op_end())); 3231 } 3232 3233 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3234 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3235 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3236 return LHS == RHS; 3237 return LHS->isIdenticalTo(RHS); 3238 } 3239 }; 3240 3241 } // end anonymous namespace 3242 3243 ///Perform cse of induction variable instructions. 3244 static void cse(BasicBlock *BB) { 3245 // Perform simple cse. 3246 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3247 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3248 Instruction *In = &*I++; 3249 3250 if (!CSEDenseMapInfo::canHandle(In)) 3251 continue; 3252 3253 // Check if we can replace this instruction with any of the 3254 // visited instructions. 3255 if (Instruction *V = CSEMap.lookup(In)) { 3256 In->replaceAllUsesWith(V); 3257 In->eraseFromParent(); 3258 continue; 3259 } 3260 3261 CSEMap[In] = In; 3262 } 3263 } 3264 3265 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3266 unsigned VF, 3267 bool &NeedToScalarize) { 3268 Function *F = CI->getCalledFunction(); 3269 Type *ScalarRetTy = CI->getType(); 3270 SmallVector<Type *, 4> Tys, ScalarTys; 3271 for (auto &ArgOp : CI->arg_operands()) 3272 ScalarTys.push_back(ArgOp->getType()); 3273 3274 // Estimate cost of scalarized vector call. The source operands are assumed 3275 // to be vectors, so we need to extract individual elements from there, 3276 // execute VF scalar calls, and then gather the result into the vector return 3277 // value. 3278 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3279 TTI::TCK_RecipThroughput); 3280 if (VF == 1) 3281 return ScalarCallCost; 3282 3283 // Compute corresponding vector type for return value and arguments. 3284 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3285 for (Type *ScalarTy : ScalarTys) 3286 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3287 3288 // Compute costs of unpacking argument values for the scalar calls and 3289 // packing the return values to a vector. 3290 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3291 3292 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3293 3294 // If we can't emit a vector call for this function, then the currently found 3295 // cost is the cost we need to return. 3296 NeedToScalarize = true; 3297 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3298 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3299 3300 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3301 return Cost; 3302 3303 // If the corresponding vector cost is cheaper, return its cost. 3304 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3305 TTI::TCK_RecipThroughput); 3306 if (VectorCallCost < Cost) { 3307 NeedToScalarize = false; 3308 return VectorCallCost; 3309 } 3310 return Cost; 3311 } 3312 3313 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3314 unsigned VF) { 3315 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3316 assert(ID && "Expected intrinsic call!"); 3317 3318 FastMathFlags FMF; 3319 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3320 FMF = FPMO->getFastMathFlags(); 3321 3322 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3323 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF, 3324 TargetTransformInfo::TCK_RecipThroughput, 3325 CI); 3326 } 3327 3328 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3329 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3330 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3331 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3332 } 3333 3334 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3335 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3336 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3337 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3338 } 3339 3340 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3341 // For every instruction `I` in MinBWs, truncate the operands, create a 3342 // truncated version of `I` and reextend its result. InstCombine runs 3343 // later and will remove any ext/trunc pairs. 3344 SmallPtrSet<Value *, 4> Erased; 3345 for (const auto &KV : Cost->getMinimalBitwidths()) { 3346 // If the value wasn't vectorized, we must maintain the original scalar 3347 // type. The absence of the value from VectorLoopValueMap indicates that it 3348 // wasn't vectorized. 3349 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3350 continue; 3351 for (unsigned Part = 0; Part < UF; ++Part) { 3352 Value *I = getOrCreateVectorValue(KV.first, Part); 3353 if (Erased.find(I) != Erased.end() || I->use_empty() || 3354 !isa<Instruction>(I)) 3355 continue; 3356 Type *OriginalTy = I->getType(); 3357 Type *ScalarTruncatedTy = 3358 IntegerType::get(OriginalTy->getContext(), KV.second); 3359 Type *TruncatedTy = VectorType::get( 3360 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3361 if (TruncatedTy == OriginalTy) 3362 continue; 3363 3364 IRBuilder<> B(cast<Instruction>(I)); 3365 auto ShrinkOperand = [&](Value *V) -> Value * { 3366 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3367 if (ZI->getSrcTy() == TruncatedTy) 3368 return ZI->getOperand(0); 3369 return B.CreateZExtOrTrunc(V, TruncatedTy); 3370 }; 3371 3372 // The actual instruction modification depends on the instruction type, 3373 // unfortunately. 3374 Value *NewI = nullptr; 3375 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3376 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3377 ShrinkOperand(BO->getOperand(1))); 3378 3379 // Any wrapping introduced by shrinking this operation shouldn't be 3380 // considered undefined behavior. So, we can't unconditionally copy 3381 // arithmetic wrapping flags to NewI. 3382 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3383 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3384 NewI = 3385 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3386 ShrinkOperand(CI->getOperand(1))); 3387 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3388 NewI = B.CreateSelect(SI->getCondition(), 3389 ShrinkOperand(SI->getTrueValue()), 3390 ShrinkOperand(SI->getFalseValue())); 3391 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3392 switch (CI->getOpcode()) { 3393 default: 3394 llvm_unreachable("Unhandled cast!"); 3395 case Instruction::Trunc: 3396 NewI = ShrinkOperand(CI->getOperand(0)); 3397 break; 3398 case Instruction::SExt: 3399 NewI = B.CreateSExtOrTrunc( 3400 CI->getOperand(0), 3401 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3402 break; 3403 case Instruction::ZExt: 3404 NewI = B.CreateZExtOrTrunc( 3405 CI->getOperand(0), 3406 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3407 break; 3408 } 3409 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3410 auto Elements0 = 3411 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3412 auto *O0 = B.CreateZExtOrTrunc( 3413 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3414 auto Elements1 = 3415 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3416 auto *O1 = B.CreateZExtOrTrunc( 3417 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3418 3419 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3420 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3421 // Don't do anything with the operands, just extend the result. 3422 continue; 3423 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3424 auto Elements = 3425 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3426 auto *O0 = B.CreateZExtOrTrunc( 3427 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3428 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3429 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3430 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3431 auto Elements = 3432 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3433 auto *O0 = B.CreateZExtOrTrunc( 3434 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3435 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3436 } else { 3437 // If we don't know what to do, be conservative and don't do anything. 3438 continue; 3439 } 3440 3441 // Lastly, extend the result. 3442 NewI->takeName(cast<Instruction>(I)); 3443 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3444 I->replaceAllUsesWith(Res); 3445 cast<Instruction>(I)->eraseFromParent(); 3446 Erased.insert(I); 3447 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3448 } 3449 } 3450 3451 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3452 for (const auto &KV : Cost->getMinimalBitwidths()) { 3453 // If the value wasn't vectorized, we must maintain the original scalar 3454 // type. The absence of the value from VectorLoopValueMap indicates that it 3455 // wasn't vectorized. 3456 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3457 continue; 3458 for (unsigned Part = 0; Part < UF; ++Part) { 3459 Value *I = getOrCreateVectorValue(KV.first, Part); 3460 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3461 if (Inst && Inst->use_empty()) { 3462 Value *NewI = Inst->getOperand(0); 3463 Inst->eraseFromParent(); 3464 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3465 } 3466 } 3467 } 3468 } 3469 3470 void InnerLoopVectorizer::fixVectorizedLoop() { 3471 // Insert truncates and extends for any truncated instructions as hints to 3472 // InstCombine. 3473 if (VF > 1) 3474 truncateToMinimalBitwidths(); 3475 3476 // Fix widened non-induction PHIs by setting up the PHI operands. 3477 if (OrigPHIsToFix.size()) { 3478 assert(EnableVPlanNativePath && 3479 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3480 fixNonInductionPHIs(); 3481 } 3482 3483 // At this point every instruction in the original loop is widened to a 3484 // vector form. Now we need to fix the recurrences in the loop. These PHI 3485 // nodes are currently empty because we did not want to introduce cycles. 3486 // This is the second stage of vectorizing recurrences. 3487 fixCrossIterationPHIs(); 3488 3489 // Forget the original basic block. 3490 PSE.getSE()->forgetLoop(OrigLoop); 3491 3492 // Fix-up external users of the induction variables. 3493 for (auto &Entry : Legal->getInductionVars()) 3494 fixupIVUsers(Entry.first, Entry.second, 3495 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3496 IVEndValues[Entry.first], LoopMiddleBlock); 3497 3498 fixLCSSAPHIs(); 3499 for (Instruction *PI : PredicatedInstructions) 3500 sinkScalarOperands(&*PI); 3501 3502 // Remove redundant induction instructions. 3503 cse(LoopVectorBody); 3504 3505 // Set/update profile weights for the vector and remainder loops as original 3506 // loop iterations are now distributed among them. Note that original loop 3507 // represented by LoopScalarBody becomes remainder loop after vectorization. 3508 // 3509 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3510 // end up getting slightly roughened result but that should be OK since 3511 // profile is not inherently precise anyway. Note also possible bypass of 3512 // vector code caused by legality checks is ignored, assigning all the weight 3513 // to the vector loop, optimistically. 3514 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3515 LI->getLoopFor(LoopVectorBody), 3516 LI->getLoopFor(LoopScalarBody), VF * UF); 3517 } 3518 3519 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3520 // In order to support recurrences we need to be able to vectorize Phi nodes. 3521 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3522 // stage #2: We now need to fix the recurrences by adding incoming edges to 3523 // the currently empty PHI nodes. At this point every instruction in the 3524 // original loop is widened to a vector form so we can use them to construct 3525 // the incoming edges. 3526 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3527 // Handle first-order recurrences and reductions that need to be fixed. 3528 if (Legal->isFirstOrderRecurrence(&Phi)) 3529 fixFirstOrderRecurrence(&Phi); 3530 else if (Legal->isReductionVariable(&Phi)) 3531 fixReduction(&Phi); 3532 } 3533 } 3534 3535 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3536 // This is the second phase of vectorizing first-order recurrences. An 3537 // overview of the transformation is described below. Suppose we have the 3538 // following loop. 3539 // 3540 // for (int i = 0; i < n; ++i) 3541 // b[i] = a[i] - a[i - 1]; 3542 // 3543 // There is a first-order recurrence on "a". For this loop, the shorthand 3544 // scalar IR looks like: 3545 // 3546 // scalar.ph: 3547 // s_init = a[-1] 3548 // br scalar.body 3549 // 3550 // scalar.body: 3551 // i = phi [0, scalar.ph], [i+1, scalar.body] 3552 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3553 // s2 = a[i] 3554 // b[i] = s2 - s1 3555 // br cond, scalar.body, ... 3556 // 3557 // In this example, s1 is a recurrence because it's value depends on the 3558 // previous iteration. In the first phase of vectorization, we created a 3559 // temporary value for s1. We now complete the vectorization and produce the 3560 // shorthand vector IR shown below (for VF = 4, UF = 1). 3561 // 3562 // vector.ph: 3563 // v_init = vector(..., ..., ..., a[-1]) 3564 // br vector.body 3565 // 3566 // vector.body 3567 // i = phi [0, vector.ph], [i+4, vector.body] 3568 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3569 // v2 = a[i, i+1, i+2, i+3]; 3570 // v3 = vector(v1(3), v2(0, 1, 2)) 3571 // b[i, i+1, i+2, i+3] = v2 - v3 3572 // br cond, vector.body, middle.block 3573 // 3574 // middle.block: 3575 // x = v2(3) 3576 // br scalar.ph 3577 // 3578 // scalar.ph: 3579 // s_init = phi [x, middle.block], [a[-1], otherwise] 3580 // br scalar.body 3581 // 3582 // After execution completes the vector loop, we extract the next value of 3583 // the recurrence (x) to use as the initial value in the scalar loop. 3584 3585 // Get the original loop preheader and single loop latch. 3586 auto *Preheader = OrigLoop->getLoopPreheader(); 3587 auto *Latch = OrigLoop->getLoopLatch(); 3588 3589 // Get the initial and previous values of the scalar recurrence. 3590 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3591 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3592 3593 // Create a vector from the initial value. 3594 auto *VectorInit = ScalarInit; 3595 if (VF > 1) { 3596 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3597 VectorInit = Builder.CreateInsertElement( 3598 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3599 Builder.getInt32(VF - 1), "vector.recur.init"); 3600 } 3601 3602 // We constructed a temporary phi node in the first phase of vectorization. 3603 // This phi node will eventually be deleted. 3604 Builder.SetInsertPoint( 3605 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3606 3607 // Create a phi node for the new recurrence. The current value will either be 3608 // the initial value inserted into a vector or loop-varying vector value. 3609 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3610 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3611 3612 // Get the vectorized previous value of the last part UF - 1. It appears last 3613 // among all unrolled iterations, due to the order of their construction. 3614 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3615 3616 // Find and set the insertion point after the previous value if it is an 3617 // instruction. 3618 BasicBlock::iterator InsertPt; 3619 // Note that the previous value may have been constant-folded so it is not 3620 // guaranteed to be an instruction in the vector loop. 3621 // FIXME: Loop invariant values do not form recurrences. We should deal with 3622 // them earlier. 3623 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3624 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3625 else { 3626 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3627 if (isa<PHINode>(PreviousLastPart)) 3628 // If the previous value is a phi node, we should insert after all the phi 3629 // nodes in the block containing the PHI to avoid breaking basic block 3630 // verification. Note that the basic block may be different to 3631 // LoopVectorBody, in case we predicate the loop. 3632 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3633 else 3634 InsertPt = ++PreviousInst->getIterator(); 3635 } 3636 Builder.SetInsertPoint(&*InsertPt); 3637 3638 // We will construct a vector for the recurrence by combining the values for 3639 // the current and previous iterations. This is the required shuffle mask. 3640 SmallVector<int, 8> ShuffleMask(VF); 3641 ShuffleMask[0] = VF - 1; 3642 for (unsigned I = 1; I < VF; ++I) 3643 ShuffleMask[I] = I + VF - 1; 3644 3645 // The vector from which to take the initial value for the current iteration 3646 // (actual or unrolled). Initially, this is the vector phi node. 3647 Value *Incoming = VecPhi; 3648 3649 // Shuffle the current and previous vector and update the vector parts. 3650 for (unsigned Part = 0; Part < UF; ++Part) { 3651 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3652 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3653 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3654 ShuffleMask) 3655 : Incoming; 3656 PhiPart->replaceAllUsesWith(Shuffle); 3657 cast<Instruction>(PhiPart)->eraseFromParent(); 3658 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3659 Incoming = PreviousPart; 3660 } 3661 3662 // Fix the latch value of the new recurrence in the vector loop. 3663 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3664 3665 // Extract the last vector element in the middle block. This will be the 3666 // initial value for the recurrence when jumping to the scalar loop. 3667 auto *ExtractForScalar = Incoming; 3668 if (VF > 1) { 3669 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3670 ExtractForScalar = Builder.CreateExtractElement( 3671 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3672 } 3673 // Extract the second last element in the middle block if the 3674 // Phi is used outside the loop. We need to extract the phi itself 3675 // and not the last element (the phi update in the current iteration). This 3676 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3677 // when the scalar loop is not run at all. 3678 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3679 if (VF > 1) 3680 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3681 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3682 // When loop is unrolled without vectorizing, initialize 3683 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3684 // `Incoming`. This is analogous to the vectorized case above: extracting the 3685 // second last element when VF > 1. 3686 else if (UF > 1) 3687 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3688 3689 // Fix the initial value of the original recurrence in the scalar loop. 3690 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3691 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3692 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3693 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3694 Start->addIncoming(Incoming, BB); 3695 } 3696 3697 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3698 Phi->setName("scalar.recur"); 3699 3700 // Finally, fix users of the recurrence outside the loop. The users will need 3701 // either the last value of the scalar recurrence or the last value of the 3702 // vector recurrence we extracted in the middle block. Since the loop is in 3703 // LCSSA form, we just need to find all the phi nodes for the original scalar 3704 // recurrence in the exit block, and then add an edge for the middle block. 3705 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3706 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3707 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3708 } 3709 } 3710 } 3711 3712 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3713 Constant *Zero = Builder.getInt32(0); 3714 3715 // Get it's reduction variable descriptor. 3716 assert(Legal->isReductionVariable(Phi) && 3717 "Unable to find the reduction variable"); 3718 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3719 3720 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3721 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3722 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3723 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3724 RdxDesc.getMinMaxRecurrenceKind(); 3725 setDebugLocFromInst(Builder, ReductionStartValue); 3726 3727 // We need to generate a reduction vector from the incoming scalar. 3728 // To do so, we need to generate the 'identity' vector and override 3729 // one of the elements with the incoming scalar reduction. We need 3730 // to do it in the vector-loop preheader. 3731 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3732 3733 // This is the vector-clone of the value that leaves the loop. 3734 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3735 3736 // Find the reduction identity variable. Zero for addition, or, xor, 3737 // one for multiplication, -1 for And. 3738 Value *Identity; 3739 Value *VectorStart; 3740 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3741 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3742 // MinMax reduction have the start value as their identify. 3743 if (VF == 1) { 3744 VectorStart = Identity = ReductionStartValue; 3745 } else { 3746 VectorStart = Identity = 3747 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3748 } 3749 } else { 3750 // Handle other reduction kinds: 3751 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3752 RK, VecTy->getScalarType()); 3753 if (VF == 1) { 3754 Identity = Iden; 3755 // This vector is the Identity vector where the first element is the 3756 // incoming scalar reduction. 3757 VectorStart = ReductionStartValue; 3758 } else { 3759 Identity = ConstantVector::getSplat({VF, false}, Iden); 3760 3761 // This vector is the Identity vector where the first element is the 3762 // incoming scalar reduction. 3763 VectorStart = 3764 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3765 } 3766 } 3767 3768 // Wrap flags are in general invalid after vectorization, clear them. 3769 clearReductionWrapFlags(RdxDesc); 3770 3771 // Fix the vector-loop phi. 3772 3773 // Reductions do not have to start at zero. They can start with 3774 // any loop invariant values. 3775 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3776 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3777 3778 for (unsigned Part = 0; Part < UF; ++Part) { 3779 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3780 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3781 // Make sure to add the reduction start value only to the 3782 // first unroll part. 3783 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3784 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3785 cast<PHINode>(VecRdxPhi) 3786 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3787 } 3788 3789 // Before each round, move the insertion point right between 3790 // the PHIs and the values we are going to write. 3791 // This allows us to write both PHINodes and the extractelement 3792 // instructions. 3793 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3794 3795 setDebugLocFromInst(Builder, LoopExitInst); 3796 3797 // If tail is folded by masking, the vector value to leave the loop should be 3798 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3799 // instead of the former. 3800 if (Cost->foldTailByMasking()) { 3801 for (unsigned Part = 0; Part < UF; ++Part) { 3802 Value *VecLoopExitInst = 3803 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3804 Value *Sel = nullptr; 3805 for (User *U : VecLoopExitInst->users()) { 3806 if (isa<SelectInst>(U)) { 3807 assert(!Sel && "Reduction exit feeding two selects"); 3808 Sel = U; 3809 } else 3810 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3811 } 3812 assert(Sel && "Reduction exit feeds no select"); 3813 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3814 } 3815 } 3816 3817 // If the vector reduction can be performed in a smaller type, we truncate 3818 // then extend the loop exit value to enable InstCombine to evaluate the 3819 // entire expression in the smaller type. 3820 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3821 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3822 Builder.SetInsertPoint( 3823 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3824 VectorParts RdxParts(UF); 3825 for (unsigned Part = 0; Part < UF; ++Part) { 3826 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3827 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3828 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3829 : Builder.CreateZExt(Trunc, VecTy); 3830 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3831 UI != RdxParts[Part]->user_end();) 3832 if (*UI != Trunc) { 3833 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3834 RdxParts[Part] = Extnd; 3835 } else { 3836 ++UI; 3837 } 3838 } 3839 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3840 for (unsigned Part = 0; Part < UF; ++Part) { 3841 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3842 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3843 } 3844 } 3845 3846 // Reduce all of the unrolled parts into a single vector. 3847 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3848 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3849 3850 // The middle block terminator has already been assigned a DebugLoc here (the 3851 // OrigLoop's single latch terminator). We want the whole middle block to 3852 // appear to execute on this line because: (a) it is all compiler generated, 3853 // (b) these instructions are always executed after evaluating the latch 3854 // conditional branch, and (c) other passes may add new predecessors which 3855 // terminate on this line. This is the easiest way to ensure we don't 3856 // accidentally cause an extra step back into the loop while debugging. 3857 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3858 for (unsigned Part = 1; Part < UF; ++Part) { 3859 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3860 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3861 // Floating point operations had to be 'fast' to enable the reduction. 3862 ReducedPartRdx = addFastMathFlag( 3863 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3864 ReducedPartRdx, "bin.rdx"), 3865 RdxDesc.getFastMathFlags()); 3866 else 3867 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3868 RdxPart); 3869 } 3870 3871 if (VF > 1) { 3872 bool NoNaN = Legal->hasFunNoNaNAttr(); 3873 ReducedPartRdx = 3874 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3875 // If the reduction can be performed in a smaller type, we need to extend 3876 // the reduction to the wider type before we branch to the original loop. 3877 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3878 ReducedPartRdx = 3879 RdxDesc.isSigned() 3880 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3881 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3882 } 3883 3884 // Create a phi node that merges control-flow from the backedge-taken check 3885 // block and the middle block. 3886 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3887 LoopScalarPreHeader->getTerminator()); 3888 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3889 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3890 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3891 3892 // Now, we need to fix the users of the reduction variable 3893 // inside and outside of the scalar remainder loop. 3894 // We know that the loop is in LCSSA form. We need to update the 3895 // PHI nodes in the exit blocks. 3896 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3897 // All PHINodes need to have a single entry edge, or two if 3898 // we already fixed them. 3899 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3900 3901 // We found a reduction value exit-PHI. Update it with the 3902 // incoming bypass edge. 3903 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3904 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3905 } // end of the LCSSA phi scan. 3906 3907 // Fix the scalar loop reduction variable with the incoming reduction sum 3908 // from the vector body and from the backedge value. 3909 int IncomingEdgeBlockIdx = 3910 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3911 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3912 // Pick the other block. 3913 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3914 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3915 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3916 } 3917 3918 void InnerLoopVectorizer::clearReductionWrapFlags( 3919 RecurrenceDescriptor &RdxDesc) { 3920 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3921 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3922 RK != RecurrenceDescriptor::RK_IntegerMult) 3923 return; 3924 3925 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3926 assert(LoopExitInstr && "null loop exit instruction"); 3927 SmallVector<Instruction *, 8> Worklist; 3928 SmallPtrSet<Instruction *, 8> Visited; 3929 Worklist.push_back(LoopExitInstr); 3930 Visited.insert(LoopExitInstr); 3931 3932 while (!Worklist.empty()) { 3933 Instruction *Cur = Worklist.pop_back_val(); 3934 if (isa<OverflowingBinaryOperator>(Cur)) 3935 for (unsigned Part = 0; Part < UF; ++Part) { 3936 Value *V = getOrCreateVectorValue(Cur, Part); 3937 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3938 } 3939 3940 for (User *U : Cur->users()) { 3941 Instruction *UI = cast<Instruction>(U); 3942 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3943 Visited.insert(UI).second) 3944 Worklist.push_back(UI); 3945 } 3946 } 3947 } 3948 3949 void InnerLoopVectorizer::fixLCSSAPHIs() { 3950 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3951 if (LCSSAPhi.getNumIncomingValues() == 1) { 3952 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3953 // Non-instruction incoming values will have only one value. 3954 unsigned LastLane = 0; 3955 if (isa<Instruction>(IncomingValue)) 3956 LastLane = Cost->isUniformAfterVectorization( 3957 cast<Instruction>(IncomingValue), VF) 3958 ? 0 3959 : VF - 1; 3960 // Can be a loop invariant incoming value or the last scalar value to be 3961 // extracted from the vectorized loop. 3962 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3963 Value *lastIncomingValue = 3964 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3965 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3966 } 3967 } 3968 } 3969 3970 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3971 // The basic block and loop containing the predicated instruction. 3972 auto *PredBB = PredInst->getParent(); 3973 auto *VectorLoop = LI->getLoopFor(PredBB); 3974 3975 // Initialize a worklist with the operands of the predicated instruction. 3976 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3977 3978 // Holds instructions that we need to analyze again. An instruction may be 3979 // reanalyzed if we don't yet know if we can sink it or not. 3980 SmallVector<Instruction *, 8> InstsToReanalyze; 3981 3982 // Returns true if a given use occurs in the predicated block. Phi nodes use 3983 // their operands in their corresponding predecessor blocks. 3984 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3985 auto *I = cast<Instruction>(U.getUser()); 3986 BasicBlock *BB = I->getParent(); 3987 if (auto *Phi = dyn_cast<PHINode>(I)) 3988 BB = Phi->getIncomingBlock( 3989 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3990 return BB == PredBB; 3991 }; 3992 3993 // Iteratively sink the scalarized operands of the predicated instruction 3994 // into the block we created for it. When an instruction is sunk, it's 3995 // operands are then added to the worklist. The algorithm ends after one pass 3996 // through the worklist doesn't sink a single instruction. 3997 bool Changed; 3998 do { 3999 // Add the instructions that need to be reanalyzed to the worklist, and 4000 // reset the changed indicator. 4001 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4002 InstsToReanalyze.clear(); 4003 Changed = false; 4004 4005 while (!Worklist.empty()) { 4006 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4007 4008 // We can't sink an instruction if it is a phi node, is already in the 4009 // predicated block, is not in the loop, or may have side effects. 4010 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4011 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4012 continue; 4013 4014 // It's legal to sink the instruction if all its uses occur in the 4015 // predicated block. Otherwise, there's nothing to do yet, and we may 4016 // need to reanalyze the instruction. 4017 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4018 InstsToReanalyze.push_back(I); 4019 continue; 4020 } 4021 4022 // Move the instruction to the beginning of the predicated block, and add 4023 // it's operands to the worklist. 4024 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4025 Worklist.insert(I->op_begin(), I->op_end()); 4026 4027 // The sinking may have enabled other instructions to be sunk, so we will 4028 // need to iterate. 4029 Changed = true; 4030 } 4031 } while (Changed); 4032 } 4033 4034 void InnerLoopVectorizer::fixNonInductionPHIs() { 4035 for (PHINode *OrigPhi : OrigPHIsToFix) { 4036 PHINode *NewPhi = 4037 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4038 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4039 4040 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4041 predecessors(OrigPhi->getParent())); 4042 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4043 predecessors(NewPhi->getParent())); 4044 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4045 "Scalar and Vector BB should have the same number of predecessors"); 4046 4047 // The insertion point in Builder may be invalidated by the time we get 4048 // here. Force the Builder insertion point to something valid so that we do 4049 // not run into issues during insertion point restore in 4050 // getOrCreateVectorValue calls below. 4051 Builder.SetInsertPoint(NewPhi); 4052 4053 // The predecessor order is preserved and we can rely on mapping between 4054 // scalar and vector block predecessors. 4055 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4056 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4057 4058 // When looking up the new scalar/vector values to fix up, use incoming 4059 // values from original phi. 4060 Value *ScIncV = 4061 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4062 4063 // Scalar incoming value may need a broadcast 4064 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4065 NewPhi->addIncoming(NewIncV, NewPredBB); 4066 } 4067 } 4068 } 4069 4070 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF, 4071 unsigned VF, bool IsPtrLoopInvariant, 4072 SmallBitVector &IsIndexLoopInvariant) { 4073 // Construct a vector GEP by widening the operands of the scalar GEP as 4074 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4075 // results in a vector of pointers when at least one operand of the GEP 4076 // is vector-typed. Thus, to keep the representation compact, we only use 4077 // vector-typed operands for loop-varying values. 4078 4079 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4080 // If we are vectorizing, but the GEP has only loop-invariant operands, 4081 // the GEP we build (by only using vector-typed operands for 4082 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4083 // produce a vector of pointers, we need to either arbitrarily pick an 4084 // operand to broadcast, or broadcast a clone of the original GEP. 4085 // Here, we broadcast a clone of the original. 4086 // 4087 // TODO: If at some point we decide to scalarize instructions having 4088 // loop-invariant operands, this special case will no longer be 4089 // required. We would add the scalarization decision to 4090 // collectLoopScalars() and teach getVectorValue() to broadcast 4091 // the lane-zero scalar value. 4092 auto *Clone = Builder.Insert(GEP->clone()); 4093 for (unsigned Part = 0; Part < UF; ++Part) { 4094 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4095 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4096 addMetadata(EntryPart, GEP); 4097 } 4098 } else { 4099 // If the GEP has at least one loop-varying operand, we are sure to 4100 // produce a vector of pointers. But if we are only unrolling, we want 4101 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4102 // produce with the code below will be scalar (if VF == 1) or vector 4103 // (otherwise). Note that for the unroll-only case, we still maintain 4104 // values in the vector mapping with initVector, as we do for other 4105 // instructions. 4106 for (unsigned Part = 0; Part < UF; ++Part) { 4107 // The pointer operand of the new GEP. If it's loop-invariant, we 4108 // won't broadcast it. 4109 auto *Ptr = IsPtrLoopInvariant 4110 ? GEP->getPointerOperand() 4111 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4112 4113 // Collect all the indices for the new GEP. If any index is 4114 // loop-invariant, we won't broadcast it. 4115 SmallVector<Value *, 4> Indices; 4116 for (auto Index : enumerate(GEP->indices())) { 4117 Value *User = Index.value().get(); 4118 if (IsIndexLoopInvariant[Index.index()]) 4119 Indices.push_back(User); 4120 else 4121 Indices.push_back(getOrCreateVectorValue(User, Part)); 4122 } 4123 4124 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4125 // but it should be a vector, otherwise. 4126 auto *NewGEP = 4127 GEP->isInBounds() 4128 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4129 Indices) 4130 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4131 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4132 "NewGEP is not a pointer vector"); 4133 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4134 addMetadata(NewGEP, GEP); 4135 } 4136 } 4137 } 4138 4139 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4140 unsigned VF) { 4141 PHINode *P = cast<PHINode>(PN); 4142 if (EnableVPlanNativePath) { 4143 // Currently we enter here in the VPlan-native path for non-induction 4144 // PHIs where all control flow is uniform. We simply widen these PHIs. 4145 // Create a vector phi with no operands - the vector phi operands will be 4146 // set at the end of vector code generation. 4147 Type *VecTy = 4148 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4149 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4150 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4151 OrigPHIsToFix.push_back(P); 4152 4153 return; 4154 } 4155 4156 assert(PN->getParent() == OrigLoop->getHeader() && 4157 "Non-header phis should have been handled elsewhere"); 4158 4159 // In order to support recurrences we need to be able to vectorize Phi nodes. 4160 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4161 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4162 // this value when we vectorize all of the instructions that use the PHI. 4163 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4164 for (unsigned Part = 0; Part < UF; ++Part) { 4165 // This is phase one of vectorizing PHIs. 4166 Type *VecTy = 4167 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4168 Value *EntryPart = PHINode::Create( 4169 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4170 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4171 } 4172 return; 4173 } 4174 4175 setDebugLocFromInst(Builder, P); 4176 4177 // This PHINode must be an induction variable. 4178 // Make sure that we know about it. 4179 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4180 4181 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4182 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4183 4184 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4185 // which can be found from the original scalar operations. 4186 switch (II.getKind()) { 4187 case InductionDescriptor::IK_NoInduction: 4188 llvm_unreachable("Unknown induction"); 4189 case InductionDescriptor::IK_IntInduction: 4190 case InductionDescriptor::IK_FpInduction: 4191 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4192 case InductionDescriptor::IK_PtrInduction: { 4193 // Handle the pointer induction variable case. 4194 assert(P->getType()->isPointerTy() && "Unexpected type."); 4195 // This is the normalized GEP that starts counting at zero. 4196 Value *PtrInd = Induction; 4197 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4198 // Determine the number of scalars we need to generate for each unroll 4199 // iteration. If the instruction is uniform, we only need to generate the 4200 // first lane. Otherwise, we generate all VF values. 4201 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4202 // These are the scalar results. Notice that we don't generate vector GEPs 4203 // because scalar GEPs result in better code. 4204 for (unsigned Part = 0; Part < UF; ++Part) { 4205 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4206 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4207 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4208 Value *SclrGep = 4209 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4210 SclrGep->setName("next.gep"); 4211 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4212 } 4213 } 4214 return; 4215 } 4216 } 4217 } 4218 4219 /// A helper function for checking whether an integer division-related 4220 /// instruction may divide by zero (in which case it must be predicated if 4221 /// executed conditionally in the scalar code). 4222 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4223 /// Non-zero divisors that are non compile-time constants will not be 4224 /// converted into multiplication, so we will still end up scalarizing 4225 /// the division, but can do so w/o predication. 4226 static bool mayDivideByZero(Instruction &I) { 4227 assert((I.getOpcode() == Instruction::UDiv || 4228 I.getOpcode() == Instruction::SDiv || 4229 I.getOpcode() == Instruction::URem || 4230 I.getOpcode() == Instruction::SRem) && 4231 "Unexpected instruction"); 4232 Value *Divisor = I.getOperand(1); 4233 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4234 return !CInt || CInt->isZero(); 4235 } 4236 4237 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4238 VPTransformState &State) { 4239 switch (I.getOpcode()) { 4240 case Instruction::Call: 4241 case Instruction::Br: 4242 case Instruction::PHI: 4243 case Instruction::GetElementPtr: 4244 case Instruction::Select: 4245 llvm_unreachable("This instruction is handled by a different recipe."); 4246 case Instruction::UDiv: 4247 case Instruction::SDiv: 4248 case Instruction::SRem: 4249 case Instruction::URem: 4250 case Instruction::Add: 4251 case Instruction::FAdd: 4252 case Instruction::Sub: 4253 case Instruction::FSub: 4254 case Instruction::FNeg: 4255 case Instruction::Mul: 4256 case Instruction::FMul: 4257 case Instruction::FDiv: 4258 case Instruction::FRem: 4259 case Instruction::Shl: 4260 case Instruction::LShr: 4261 case Instruction::AShr: 4262 case Instruction::And: 4263 case Instruction::Or: 4264 case Instruction::Xor: { 4265 // Just widen unops and binops. 4266 setDebugLocFromInst(Builder, &I); 4267 4268 for (unsigned Part = 0; Part < UF; ++Part) { 4269 SmallVector<Value *, 2> Ops; 4270 for (VPValue *VPOp : User.operands()) 4271 Ops.push_back(State.get(VPOp, Part)); 4272 4273 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4274 4275 if (auto *VecOp = dyn_cast<Instruction>(V)) 4276 VecOp->copyIRFlags(&I); 4277 4278 // Use this vector value for all users of the original instruction. 4279 VectorLoopValueMap.setVectorValue(&I, Part, V); 4280 addMetadata(V, &I); 4281 } 4282 4283 break; 4284 } 4285 case Instruction::ICmp: 4286 case Instruction::FCmp: { 4287 // Widen compares. Generate vector compares. 4288 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4289 auto *Cmp = cast<CmpInst>(&I); 4290 setDebugLocFromInst(Builder, Cmp); 4291 for (unsigned Part = 0; Part < UF; ++Part) { 4292 Value *A = State.get(User.getOperand(0), Part); 4293 Value *B = State.get(User.getOperand(1), Part); 4294 Value *C = nullptr; 4295 if (FCmp) { 4296 // Propagate fast math flags. 4297 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4298 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4299 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4300 } else { 4301 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4302 } 4303 VectorLoopValueMap.setVectorValue(&I, Part, C); 4304 addMetadata(C, &I); 4305 } 4306 4307 break; 4308 } 4309 4310 case Instruction::ZExt: 4311 case Instruction::SExt: 4312 case Instruction::FPToUI: 4313 case Instruction::FPToSI: 4314 case Instruction::FPExt: 4315 case Instruction::PtrToInt: 4316 case Instruction::IntToPtr: 4317 case Instruction::SIToFP: 4318 case Instruction::UIToFP: 4319 case Instruction::Trunc: 4320 case Instruction::FPTrunc: 4321 case Instruction::BitCast: { 4322 auto *CI = cast<CastInst>(&I); 4323 setDebugLocFromInst(Builder, CI); 4324 4325 /// Vectorize casts. 4326 Type *DestTy = 4327 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4328 4329 for (unsigned Part = 0; Part < UF; ++Part) { 4330 Value *A = State.get(User.getOperand(0), Part); 4331 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4332 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4333 addMetadata(Cast, &I); 4334 } 4335 break; 4336 } 4337 default: 4338 // This instruction is not vectorized by simple widening. 4339 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4340 llvm_unreachable("Unhandled instruction!"); 4341 } // end of switch. 4342 } 4343 4344 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4345 VPTransformState &State) { 4346 assert(!isa<DbgInfoIntrinsic>(I) && 4347 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4348 setDebugLocFromInst(Builder, &I); 4349 4350 Module *M = I.getParent()->getParent()->getParent(); 4351 auto *CI = cast<CallInst>(&I); 4352 4353 SmallVector<Type *, 4> Tys; 4354 for (Value *ArgOperand : CI->arg_operands()) 4355 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4356 4357 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4358 4359 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4360 // version of the instruction. 4361 // Is it beneficial to perform intrinsic call compared to lib call? 4362 bool NeedToScalarize = false; 4363 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4364 bool UseVectorIntrinsic = 4365 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4366 assert((UseVectorIntrinsic || !NeedToScalarize) && 4367 "Instruction should be scalarized elsewhere."); 4368 4369 for (unsigned Part = 0; Part < UF; ++Part) { 4370 SmallVector<Value *, 4> Args; 4371 for (auto &I : enumerate(ArgOperands.operands())) { 4372 // Some intrinsics have a scalar argument - don't replace it with a 4373 // vector. 4374 Value *Arg; 4375 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4376 Arg = State.get(I.value(), Part); 4377 else 4378 Arg = State.get(I.value(), {0, 0}); 4379 Args.push_back(Arg); 4380 } 4381 4382 Function *VectorF; 4383 if (UseVectorIntrinsic) { 4384 // Use vector version of the intrinsic. 4385 Type *TysForDecl[] = {CI->getType()}; 4386 if (VF > 1) 4387 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4388 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4389 assert(VectorF && "Can't retrieve vector intrinsic."); 4390 } else { 4391 // Use vector version of the function call. 4392 const VFShape Shape = 4393 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4394 #ifndef NDEBUG 4395 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4396 "Can't create vector function."); 4397 #endif 4398 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4399 } 4400 SmallVector<OperandBundleDef, 1> OpBundles; 4401 CI->getOperandBundlesAsDefs(OpBundles); 4402 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4403 4404 if (isa<FPMathOperator>(V)) 4405 V->copyFastMathFlags(CI); 4406 4407 VectorLoopValueMap.setVectorValue(&I, Part, V); 4408 addMetadata(V, &I); 4409 } 4410 } 4411 4412 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4413 bool InvariantCond) { 4414 setDebugLocFromInst(Builder, &I); 4415 4416 // The condition can be loop invariant but still defined inside the 4417 // loop. This means that we can't just use the original 'cond' value. 4418 // We have to take the 'vectorized' value and pick the first lane. 4419 // Instcombine will make this a no-op. 4420 4421 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4422 4423 for (unsigned Part = 0; Part < UF; ++Part) { 4424 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4425 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4426 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4427 Value *Sel = 4428 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4429 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4430 addMetadata(Sel, &I); 4431 } 4432 } 4433 4434 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4435 // We should not collect Scalars more than once per VF. Right now, this 4436 // function is called from collectUniformsAndScalars(), which already does 4437 // this check. Collecting Scalars for VF=1 does not make any sense. 4438 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4439 "This function should not be visited twice for the same VF"); 4440 4441 SmallSetVector<Instruction *, 8> Worklist; 4442 4443 // These sets are used to seed the analysis with pointers used by memory 4444 // accesses that will remain scalar. 4445 SmallSetVector<Instruction *, 8> ScalarPtrs; 4446 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4447 4448 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4449 // The pointer operands of loads and stores will be scalar as long as the 4450 // memory access is not a gather or scatter operation. The value operand of a 4451 // store will remain scalar if the store is scalarized. 4452 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4453 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4454 assert(WideningDecision != CM_Unknown && 4455 "Widening decision should be ready at this moment"); 4456 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4457 if (Ptr == Store->getValueOperand()) 4458 return WideningDecision == CM_Scalarize; 4459 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4460 "Ptr is neither a value or pointer operand"); 4461 return WideningDecision != CM_GatherScatter; 4462 }; 4463 4464 // A helper that returns true if the given value is a bitcast or 4465 // getelementptr instruction contained in the loop. 4466 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4467 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4468 isa<GetElementPtrInst>(V)) && 4469 !TheLoop->isLoopInvariant(V); 4470 }; 4471 4472 // A helper that evaluates a memory access's use of a pointer. If the use 4473 // will be a scalar use, and the pointer is only used by memory accesses, we 4474 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4475 // PossibleNonScalarPtrs. 4476 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4477 // We only care about bitcast and getelementptr instructions contained in 4478 // the loop. 4479 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4480 return; 4481 4482 // If the pointer has already been identified as scalar (e.g., if it was 4483 // also identified as uniform), there's nothing to do. 4484 auto *I = cast<Instruction>(Ptr); 4485 if (Worklist.count(I)) 4486 return; 4487 4488 // If the use of the pointer will be a scalar use, and all users of the 4489 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4490 // place the pointer in PossibleNonScalarPtrs. 4491 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4492 return isa<LoadInst>(U) || isa<StoreInst>(U); 4493 })) 4494 ScalarPtrs.insert(I); 4495 else 4496 PossibleNonScalarPtrs.insert(I); 4497 }; 4498 4499 // We seed the scalars analysis with three classes of instructions: (1) 4500 // instructions marked uniform-after-vectorization, (2) bitcast and 4501 // getelementptr instructions used by memory accesses requiring a scalar use, 4502 // and (3) pointer induction variables and their update instructions (we 4503 // currently only scalarize these). 4504 // 4505 // (1) Add to the worklist all instructions that have been identified as 4506 // uniform-after-vectorization. 4507 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4508 4509 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4510 // memory accesses requiring a scalar use. The pointer operands of loads and 4511 // stores will be scalar as long as the memory accesses is not a gather or 4512 // scatter operation. The value operand of a store will remain scalar if the 4513 // store is scalarized. 4514 for (auto *BB : TheLoop->blocks()) 4515 for (auto &I : *BB) { 4516 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4517 evaluatePtrUse(Load, Load->getPointerOperand()); 4518 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4519 evaluatePtrUse(Store, Store->getPointerOperand()); 4520 evaluatePtrUse(Store, Store->getValueOperand()); 4521 } 4522 } 4523 for (auto *I : ScalarPtrs) 4524 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4525 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4526 Worklist.insert(I); 4527 } 4528 4529 // (3) Add to the worklist all pointer induction variables and their update 4530 // instructions. 4531 // 4532 // TODO: Once we are able to vectorize pointer induction variables we should 4533 // no longer insert them into the worklist here. 4534 auto *Latch = TheLoop->getLoopLatch(); 4535 for (auto &Induction : Legal->getInductionVars()) { 4536 auto *Ind = Induction.first; 4537 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4538 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4539 continue; 4540 Worklist.insert(Ind); 4541 Worklist.insert(IndUpdate); 4542 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4543 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4544 << "\n"); 4545 } 4546 4547 // Insert the forced scalars. 4548 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4549 // induction variable when the PHI user is scalarized. 4550 auto ForcedScalar = ForcedScalars.find(VF); 4551 if (ForcedScalar != ForcedScalars.end()) 4552 for (auto *I : ForcedScalar->second) 4553 Worklist.insert(I); 4554 4555 // Expand the worklist by looking through any bitcasts and getelementptr 4556 // instructions we've already identified as scalar. This is similar to the 4557 // expansion step in collectLoopUniforms(); however, here we're only 4558 // expanding to include additional bitcasts and getelementptr instructions. 4559 unsigned Idx = 0; 4560 while (Idx != Worklist.size()) { 4561 Instruction *Dst = Worklist[Idx++]; 4562 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4563 continue; 4564 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4565 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4566 auto *J = cast<Instruction>(U); 4567 return !TheLoop->contains(J) || Worklist.count(J) || 4568 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4569 isScalarUse(J, Src)); 4570 })) { 4571 Worklist.insert(Src); 4572 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4573 } 4574 } 4575 4576 // An induction variable will remain scalar if all users of the induction 4577 // variable and induction variable update remain scalar. 4578 for (auto &Induction : Legal->getInductionVars()) { 4579 auto *Ind = Induction.first; 4580 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4581 4582 // We already considered pointer induction variables, so there's no reason 4583 // to look at their users again. 4584 // 4585 // TODO: Once we are able to vectorize pointer induction variables we 4586 // should no longer skip over them here. 4587 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4588 continue; 4589 4590 // If tail-folding is applied, the primary induction variable will be used 4591 // to feed a vector compare. 4592 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4593 continue; 4594 4595 // Determine if all users of the induction variable are scalar after 4596 // vectorization. 4597 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4598 auto *I = cast<Instruction>(U); 4599 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4600 }); 4601 if (!ScalarInd) 4602 continue; 4603 4604 // Determine if all users of the induction variable update instruction are 4605 // scalar after vectorization. 4606 auto ScalarIndUpdate = 4607 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4608 auto *I = cast<Instruction>(U); 4609 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4610 }); 4611 if (!ScalarIndUpdate) 4612 continue; 4613 4614 // The induction variable and its update instruction will remain scalar. 4615 Worklist.insert(Ind); 4616 Worklist.insert(IndUpdate); 4617 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4618 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4619 << "\n"); 4620 } 4621 4622 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4623 } 4624 4625 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4626 if (!blockNeedsPredication(I->getParent())) 4627 return false; 4628 switch(I->getOpcode()) { 4629 default: 4630 break; 4631 case Instruction::Load: 4632 case Instruction::Store: { 4633 if (!Legal->isMaskRequired(I)) 4634 return false; 4635 auto *Ptr = getLoadStorePointerOperand(I); 4636 auto *Ty = getMemInstValueType(I); 4637 // We have already decided how to vectorize this instruction, get that 4638 // result. 4639 if (VF > 1) { 4640 InstWidening WideningDecision = getWideningDecision(I, VF); 4641 assert(WideningDecision != CM_Unknown && 4642 "Widening decision should be ready at this moment"); 4643 return WideningDecision == CM_Scalarize; 4644 } 4645 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4646 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4647 isLegalMaskedGather(Ty, Alignment)) 4648 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4649 isLegalMaskedScatter(Ty, Alignment)); 4650 } 4651 case Instruction::UDiv: 4652 case Instruction::SDiv: 4653 case Instruction::SRem: 4654 case Instruction::URem: 4655 return mayDivideByZero(*I); 4656 } 4657 return false; 4658 } 4659 4660 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4661 unsigned VF) { 4662 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4663 assert(getWideningDecision(I, VF) == CM_Unknown && 4664 "Decision should not be set yet."); 4665 auto *Group = getInterleavedAccessGroup(I); 4666 assert(Group && "Must have a group."); 4667 4668 // If the instruction's allocated size doesn't equal it's type size, it 4669 // requires padding and will be scalarized. 4670 auto &DL = I->getModule()->getDataLayout(); 4671 auto *ScalarTy = getMemInstValueType(I); 4672 if (hasIrregularType(ScalarTy, DL, VF)) 4673 return false; 4674 4675 // Check if masking is required. 4676 // A Group may need masking for one of two reasons: it resides in a block that 4677 // needs predication, or it was decided to use masking to deal with gaps. 4678 bool PredicatedAccessRequiresMasking = 4679 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4680 bool AccessWithGapsRequiresMasking = 4681 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4682 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4683 return true; 4684 4685 // If masked interleaving is required, we expect that the user/target had 4686 // enabled it, because otherwise it either wouldn't have been created or 4687 // it should have been invalidated by the CostModel. 4688 assert(useMaskedInterleavedAccesses(TTI) && 4689 "Masked interleave-groups for predicated accesses are not enabled."); 4690 4691 auto *Ty = getMemInstValueType(I); 4692 const MaybeAlign Alignment = getLoadStoreAlignment(I); 4693 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4694 : TTI.isLegalMaskedStore(Ty, Alignment); 4695 } 4696 4697 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4698 unsigned VF) { 4699 // Get and ensure we have a valid memory instruction. 4700 LoadInst *LI = dyn_cast<LoadInst>(I); 4701 StoreInst *SI = dyn_cast<StoreInst>(I); 4702 assert((LI || SI) && "Invalid memory instruction"); 4703 4704 auto *Ptr = getLoadStorePointerOperand(I); 4705 4706 // In order to be widened, the pointer should be consecutive, first of all. 4707 if (!Legal->isConsecutivePtr(Ptr)) 4708 return false; 4709 4710 // If the instruction is a store located in a predicated block, it will be 4711 // scalarized. 4712 if (isScalarWithPredication(I)) 4713 return false; 4714 4715 // If the instruction's allocated size doesn't equal it's type size, it 4716 // requires padding and will be scalarized. 4717 auto &DL = I->getModule()->getDataLayout(); 4718 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4719 if (hasIrregularType(ScalarTy, DL, VF)) 4720 return false; 4721 4722 return true; 4723 } 4724 4725 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4726 // We should not collect Uniforms more than once per VF. Right now, 4727 // this function is called from collectUniformsAndScalars(), which 4728 // already does this check. Collecting Uniforms for VF=1 does not make any 4729 // sense. 4730 4731 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4732 "This function should not be visited twice for the same VF"); 4733 4734 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4735 // not analyze again. Uniforms.count(VF) will return 1. 4736 Uniforms[VF].clear(); 4737 4738 // We now know that the loop is vectorizable! 4739 // Collect instructions inside the loop that will remain uniform after 4740 // vectorization. 4741 4742 // Global values, params and instructions outside of current loop are out of 4743 // scope. 4744 auto isOutOfScope = [&](Value *V) -> bool { 4745 Instruction *I = dyn_cast<Instruction>(V); 4746 return (!I || !TheLoop->contains(I)); 4747 }; 4748 4749 SetVector<Instruction *> Worklist; 4750 BasicBlock *Latch = TheLoop->getLoopLatch(); 4751 4752 // Instructions that are scalar with predication must not be considered 4753 // uniform after vectorization, because that would create an erroneous 4754 // replicating region where only a single instance out of VF should be formed. 4755 // TODO: optimize such seldom cases if found important, see PR40816. 4756 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4757 if (isScalarWithPredication(I, VF)) { 4758 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4759 << *I << "\n"); 4760 return; 4761 } 4762 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4763 Worklist.insert(I); 4764 }; 4765 4766 // Start with the conditional branch. If the branch condition is an 4767 // instruction contained in the loop that is only used by the branch, it is 4768 // uniform. 4769 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4770 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4771 addToWorklistIfAllowed(Cmp); 4772 4773 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4774 // are pointers that are treated like consecutive pointers during 4775 // vectorization. The pointer operands of interleaved accesses are an 4776 // example. 4777 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4778 4779 // Holds pointer operands of instructions that are possibly non-uniform. 4780 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4781 4782 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4783 InstWidening WideningDecision = getWideningDecision(I, VF); 4784 assert(WideningDecision != CM_Unknown && 4785 "Widening decision should be ready at this moment"); 4786 4787 return (WideningDecision == CM_Widen || 4788 WideningDecision == CM_Widen_Reverse || 4789 WideningDecision == CM_Interleave); 4790 }; 4791 // Iterate over the instructions in the loop, and collect all 4792 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4793 // that a consecutive-like pointer operand will be scalarized, we collect it 4794 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4795 // getelementptr instruction can be used by both vectorized and scalarized 4796 // memory instructions. For example, if a loop loads and stores from the same 4797 // location, but the store is conditional, the store will be scalarized, and 4798 // the getelementptr won't remain uniform. 4799 for (auto *BB : TheLoop->blocks()) 4800 for (auto &I : *BB) { 4801 // If there's no pointer operand, there's nothing to do. 4802 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4803 if (!Ptr) 4804 continue; 4805 4806 // True if all users of Ptr are memory accesses that have Ptr as their 4807 // pointer operand. 4808 auto UsersAreMemAccesses = 4809 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4810 return getLoadStorePointerOperand(U) == Ptr; 4811 }); 4812 4813 // Ensure the memory instruction will not be scalarized or used by 4814 // gather/scatter, making its pointer operand non-uniform. If the pointer 4815 // operand is used by any instruction other than a memory access, we 4816 // conservatively assume the pointer operand may be non-uniform. 4817 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4818 PossibleNonUniformPtrs.insert(Ptr); 4819 4820 // If the memory instruction will be vectorized and its pointer operand 4821 // is consecutive-like, or interleaving - the pointer operand should 4822 // remain uniform. 4823 else 4824 ConsecutiveLikePtrs.insert(Ptr); 4825 } 4826 4827 // Add to the Worklist all consecutive and consecutive-like pointers that 4828 // aren't also identified as possibly non-uniform. 4829 for (auto *V : ConsecutiveLikePtrs) 4830 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) 4831 addToWorklistIfAllowed(V); 4832 4833 // Expand Worklist in topological order: whenever a new instruction 4834 // is added , its users should be already inside Worklist. It ensures 4835 // a uniform instruction will only be used by uniform instructions. 4836 unsigned idx = 0; 4837 while (idx != Worklist.size()) { 4838 Instruction *I = Worklist[idx++]; 4839 4840 for (auto OV : I->operand_values()) { 4841 // isOutOfScope operands cannot be uniform instructions. 4842 if (isOutOfScope(OV)) 4843 continue; 4844 // First order recurrence Phi's should typically be considered 4845 // non-uniform. 4846 auto *OP = dyn_cast<PHINode>(OV); 4847 if (OP && Legal->isFirstOrderRecurrence(OP)) 4848 continue; 4849 // If all the users of the operand are uniform, then add the 4850 // operand into the uniform worklist. 4851 auto *OI = cast<Instruction>(OV); 4852 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4853 auto *J = cast<Instruction>(U); 4854 return Worklist.count(J) || 4855 (OI == getLoadStorePointerOperand(J) && 4856 isUniformDecision(J, VF)); 4857 })) 4858 addToWorklistIfAllowed(OI); 4859 } 4860 } 4861 4862 // Returns true if Ptr is the pointer operand of a memory access instruction 4863 // I, and I is known to not require scalarization. 4864 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4865 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4866 }; 4867 4868 // For an instruction to be added into Worklist above, all its users inside 4869 // the loop should also be in Worklist. However, this condition cannot be 4870 // true for phi nodes that form a cyclic dependence. We must process phi 4871 // nodes separately. An induction variable will remain uniform if all users 4872 // of the induction variable and induction variable update remain uniform. 4873 // The code below handles both pointer and non-pointer induction variables. 4874 for (auto &Induction : Legal->getInductionVars()) { 4875 auto *Ind = Induction.first; 4876 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4877 4878 // Determine if all users of the induction variable are uniform after 4879 // vectorization. 4880 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4881 auto *I = cast<Instruction>(U); 4882 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4883 isVectorizedMemAccessUse(I, Ind); 4884 }); 4885 if (!UniformInd) 4886 continue; 4887 4888 // Determine if all users of the induction variable update instruction are 4889 // uniform after vectorization. 4890 auto UniformIndUpdate = 4891 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4892 auto *I = cast<Instruction>(U); 4893 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4894 isVectorizedMemAccessUse(I, IndUpdate); 4895 }); 4896 if (!UniformIndUpdate) 4897 continue; 4898 4899 // The induction variable and its update instruction will remain uniform. 4900 addToWorklistIfAllowed(Ind); 4901 addToWorklistIfAllowed(IndUpdate); 4902 } 4903 4904 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4905 } 4906 4907 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4908 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4909 4910 if (Legal->getRuntimePointerChecking()->Need) { 4911 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4912 "runtime pointer checks needed. Enable vectorization of this " 4913 "loop with '#pragma clang loop vectorize(enable)' when " 4914 "compiling with -Os/-Oz", 4915 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4916 return true; 4917 } 4918 4919 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4920 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4921 "runtime SCEV checks needed. Enable vectorization of this " 4922 "loop with '#pragma clang loop vectorize(enable)' when " 4923 "compiling with -Os/-Oz", 4924 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4925 return true; 4926 } 4927 4928 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4929 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4930 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4931 "runtime stride == 1 checks needed. Enable vectorization of " 4932 "this loop with '#pragma clang loop vectorize(enable)' when " 4933 "compiling with -Os/-Oz", 4934 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4935 return true; 4936 } 4937 4938 return false; 4939 } 4940 4941 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() { 4942 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4943 // TODO: It may by useful to do since it's still likely to be dynamically 4944 // uniform if the target can skip. 4945 reportVectorizationFailure( 4946 "Not inserting runtime ptr check for divergent target", 4947 "runtime pointer checks needed. Not enabled for divergent target", 4948 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4949 return None; 4950 } 4951 4952 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4953 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4954 if (TC == 1) { 4955 reportVectorizationFailure("Single iteration (non) loop", 4956 "loop trip count is one, irrelevant for vectorization", 4957 "SingleIterationLoop", ORE, TheLoop); 4958 return None; 4959 } 4960 4961 switch (ScalarEpilogueStatus) { 4962 case CM_ScalarEpilogueAllowed: 4963 return computeFeasibleMaxVF(TC); 4964 case CM_ScalarEpilogueNotNeededUsePredicate: 4965 LLVM_DEBUG( 4966 dbgs() << "LV: vector predicate hint/switch found.\n" 4967 << "LV: Not allowing scalar epilogue, creating predicated " 4968 << "vector loop.\n"); 4969 break; 4970 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4971 // fallthrough as a special case of OptForSize 4972 case CM_ScalarEpilogueNotAllowedOptSize: 4973 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4974 LLVM_DEBUG( 4975 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4976 else 4977 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4978 << "count.\n"); 4979 4980 // Bail if runtime checks are required, which are not good when optimising 4981 // for size. 4982 if (runtimeChecksRequired()) 4983 return None; 4984 break; 4985 } 4986 4987 // Now try the tail folding 4988 4989 // Invalidate interleave groups that require an epilogue if we can't mask 4990 // the interleave-group. 4991 if (!useMaskedInterleavedAccesses(TTI)) { 4992 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 4993 "No decisions should have been taken at this point"); 4994 // Note: There is no need to invalidate any cost modeling decisions here, as 4995 // non where taken so far. 4996 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4997 } 4998 4999 unsigned MaxVF = computeFeasibleMaxVF(TC); 5000 if (TC > 0 && TC % MaxVF == 0) { 5001 // Accept MaxVF if we do not have a tail. 5002 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5003 return MaxVF; 5004 } 5005 5006 // If we don't know the precise trip count, or if the trip count that we 5007 // found modulo the vectorization factor is not zero, try to fold the tail 5008 // by masking. 5009 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5010 if (Legal->prepareToFoldTailByMasking()) { 5011 FoldTailByMasking = true; 5012 return MaxVF; 5013 } 5014 5015 if (TC == 0) { 5016 reportVectorizationFailure( 5017 "Unable to calculate the loop count due to complex control flow", 5018 "unable to calculate the loop count due to complex control flow", 5019 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5020 return None; 5021 } 5022 5023 reportVectorizationFailure( 5024 "Cannot optimize for size and vectorize at the same time.", 5025 "cannot optimize for size and vectorize at the same time. " 5026 "Enable vectorization of this loop with '#pragma clang loop " 5027 "vectorize(enable)' when compiling with -Os/-Oz", 5028 "NoTailLoopWithOptForSize", ORE, TheLoop); 5029 return None; 5030 } 5031 5032 unsigned 5033 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5034 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5035 unsigned SmallestType, WidestType; 5036 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5037 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5038 5039 // Get the maximum safe dependence distance in bits computed by LAA. 5040 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5041 // the memory accesses that is most restrictive (involved in the smallest 5042 // dependence distance). 5043 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5044 5045 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5046 5047 unsigned MaxVectorSize = WidestRegister / WidestType; 5048 5049 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5050 << " / " << WidestType << " bits.\n"); 5051 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5052 << WidestRegister << " bits.\n"); 5053 5054 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5055 " into one vector!"); 5056 if (MaxVectorSize == 0) { 5057 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5058 MaxVectorSize = 1; 5059 return MaxVectorSize; 5060 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5061 isPowerOf2_32(ConstTripCount)) { 5062 // We need to clamp the VF to be the ConstTripCount. There is no point in 5063 // choosing a higher viable VF as done in the loop below. 5064 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5065 << ConstTripCount << "\n"); 5066 MaxVectorSize = ConstTripCount; 5067 return MaxVectorSize; 5068 } 5069 5070 unsigned MaxVF = MaxVectorSize; 5071 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5072 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5073 // Collect all viable vectorization factors larger than the default MaxVF 5074 // (i.e. MaxVectorSize). 5075 SmallVector<unsigned, 8> VFs; 5076 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5077 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5078 VFs.push_back(VS); 5079 5080 // For each VF calculate its register usage. 5081 auto RUs = calculateRegisterUsage(VFs); 5082 5083 // Select the largest VF which doesn't require more registers than existing 5084 // ones. 5085 for (int i = RUs.size() - 1; i >= 0; --i) { 5086 bool Selected = true; 5087 for (auto& pair : RUs[i].MaxLocalUsers) { 5088 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5089 if (pair.second > TargetNumRegisters) 5090 Selected = false; 5091 } 5092 if (Selected) { 5093 MaxVF = VFs[i]; 5094 break; 5095 } 5096 } 5097 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5098 if (MaxVF < MinVF) { 5099 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5100 << ") with target's minimum: " << MinVF << '\n'); 5101 MaxVF = MinVF; 5102 } 5103 } 5104 } 5105 return MaxVF; 5106 } 5107 5108 VectorizationFactor 5109 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5110 float Cost = expectedCost(1).first; 5111 const float ScalarCost = Cost; 5112 unsigned Width = 1; 5113 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5114 5115 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5116 if (ForceVectorization && MaxVF > 1) { 5117 // Ignore scalar width, because the user explicitly wants vectorization. 5118 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5119 // evaluation. 5120 Cost = std::numeric_limits<float>::max(); 5121 } 5122 5123 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5124 // Notice that the vector loop needs to be executed less times, so 5125 // we need to divide the cost of the vector loops by the width of 5126 // the vector elements. 5127 VectorizationCostTy C = expectedCost(i); 5128 float VectorCost = C.first / (float)i; 5129 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5130 << " costs: " << (int)VectorCost << ".\n"); 5131 if (!C.second && !ForceVectorization) { 5132 LLVM_DEBUG( 5133 dbgs() << "LV: Not considering vector loop of width " << i 5134 << " because it will not generate any vector instructions.\n"); 5135 continue; 5136 } 5137 if (VectorCost < Cost) { 5138 Cost = VectorCost; 5139 Width = i; 5140 } 5141 } 5142 5143 if (!EnableCondStoresVectorization && NumPredStores) { 5144 reportVectorizationFailure("There are conditional stores.", 5145 "store that is conditionally executed prevents vectorization", 5146 "ConditionalStore", ORE, TheLoop); 5147 Width = 1; 5148 Cost = ScalarCost; 5149 } 5150 5151 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5152 << "LV: Vectorization seems to be not beneficial, " 5153 << "but was forced by a user.\n"); 5154 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5155 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5156 return Factor; 5157 } 5158 5159 std::pair<unsigned, unsigned> 5160 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5161 unsigned MinWidth = -1U; 5162 unsigned MaxWidth = 8; 5163 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5164 5165 // For each block. 5166 for (BasicBlock *BB : TheLoop->blocks()) { 5167 // For each instruction in the loop. 5168 for (Instruction &I : BB->instructionsWithoutDebug()) { 5169 Type *T = I.getType(); 5170 5171 // Skip ignored values. 5172 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5173 continue; 5174 5175 // Only examine Loads, Stores and PHINodes. 5176 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5177 continue; 5178 5179 // Examine PHI nodes that are reduction variables. Update the type to 5180 // account for the recurrence type. 5181 if (auto *PN = dyn_cast<PHINode>(&I)) { 5182 if (!Legal->isReductionVariable(PN)) 5183 continue; 5184 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5185 T = RdxDesc.getRecurrenceType(); 5186 } 5187 5188 // Examine the stored values. 5189 if (auto *ST = dyn_cast<StoreInst>(&I)) 5190 T = ST->getValueOperand()->getType(); 5191 5192 // Ignore loaded pointer types and stored pointer types that are not 5193 // vectorizable. 5194 // 5195 // FIXME: The check here attempts to predict whether a load or store will 5196 // be vectorized. We only know this for certain after a VF has 5197 // been selected. Here, we assume that if an access can be 5198 // vectorized, it will be. We should also look at extending this 5199 // optimization to non-pointer types. 5200 // 5201 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5202 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5203 continue; 5204 5205 MinWidth = std::min(MinWidth, 5206 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5207 MaxWidth = std::max(MaxWidth, 5208 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5209 } 5210 } 5211 5212 return {MinWidth, MaxWidth}; 5213 } 5214 5215 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5216 unsigned LoopCost) { 5217 // -- The interleave heuristics -- 5218 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5219 // There are many micro-architectural considerations that we can't predict 5220 // at this level. For example, frontend pressure (on decode or fetch) due to 5221 // code size, or the number and capabilities of the execution ports. 5222 // 5223 // We use the following heuristics to select the interleave count: 5224 // 1. If the code has reductions, then we interleave to break the cross 5225 // iteration dependency. 5226 // 2. If the loop is really small, then we interleave to reduce the loop 5227 // overhead. 5228 // 3. We don't interleave if we think that we will spill registers to memory 5229 // due to the increased register pressure. 5230 5231 if (!isScalarEpilogueAllowed()) 5232 return 1; 5233 5234 // We used the distance for the interleave count. 5235 if (Legal->getMaxSafeDepDistBytes() != -1U) 5236 return 1; 5237 5238 // Do not interleave loops with a relatively small known or estimated trip 5239 // count. 5240 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5241 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5242 return 1; 5243 5244 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5245 // We divide by these constants so assume that we have at least one 5246 // instruction that uses at least one register. 5247 for (auto& pair : R.MaxLocalUsers) { 5248 pair.second = std::max(pair.second, 1U); 5249 } 5250 5251 // We calculate the interleave count using the following formula. 5252 // Subtract the number of loop invariants from the number of available 5253 // registers. These registers are used by all of the interleaved instances. 5254 // Next, divide the remaining registers by the number of registers that is 5255 // required by the loop, in order to estimate how many parallel instances 5256 // fit without causing spills. All of this is rounded down if necessary to be 5257 // a power of two. We want power of two interleave count to simplify any 5258 // addressing operations or alignment considerations. 5259 // We also want power of two interleave counts to ensure that the induction 5260 // variable of the vector loop wraps to zero, when tail is folded by masking; 5261 // this currently happens when OptForSize, in which case IC is set to 1 above. 5262 unsigned IC = UINT_MAX; 5263 5264 for (auto& pair : R.MaxLocalUsers) { 5265 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5266 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5267 << " registers of " 5268 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5269 if (VF == 1) { 5270 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5271 TargetNumRegisters = ForceTargetNumScalarRegs; 5272 } else { 5273 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5274 TargetNumRegisters = ForceTargetNumVectorRegs; 5275 } 5276 unsigned MaxLocalUsers = pair.second; 5277 unsigned LoopInvariantRegs = 0; 5278 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5279 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5280 5281 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5282 // Don't count the induction variable as interleaved. 5283 if (EnableIndVarRegisterHeur) { 5284 TmpIC = 5285 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5286 std::max(1U, (MaxLocalUsers - 1))); 5287 } 5288 5289 IC = std::min(IC, TmpIC); 5290 } 5291 5292 // Clamp the interleave ranges to reasonable counts. 5293 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5294 5295 // Check if the user has overridden the max. 5296 if (VF == 1) { 5297 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5298 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5299 } else { 5300 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5301 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5302 } 5303 5304 // If trip count is known or estimated compile time constant, limit the 5305 // interleave count to be less than the trip count divided by VF. 5306 if (BestKnownTC) { 5307 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5308 } 5309 5310 // If we did not calculate the cost for VF (because the user selected the VF) 5311 // then we calculate the cost of VF here. 5312 if (LoopCost == 0) 5313 LoopCost = expectedCost(VF).first; 5314 5315 assert(LoopCost && "Non-zero loop cost expected"); 5316 5317 // Clamp the calculated IC to be between the 1 and the max interleave count 5318 // that the target and trip count allows. 5319 if (IC > MaxInterleaveCount) 5320 IC = MaxInterleaveCount; 5321 else if (IC < 1) 5322 IC = 1; 5323 5324 // Interleave if we vectorized this loop and there is a reduction that could 5325 // benefit from interleaving. 5326 if (VF > 1 && !Legal->getReductionVars().empty()) { 5327 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5328 return IC; 5329 } 5330 5331 // Note that if we've already vectorized the loop we will have done the 5332 // runtime check and so interleaving won't require further checks. 5333 bool InterleavingRequiresRuntimePointerCheck = 5334 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5335 5336 // We want to interleave small loops in order to reduce the loop overhead and 5337 // potentially expose ILP opportunities. 5338 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5339 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5340 // We assume that the cost overhead is 1 and we use the cost model 5341 // to estimate the cost of the loop and interleave until the cost of the 5342 // loop overhead is about 5% of the cost of the loop. 5343 unsigned SmallIC = 5344 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5345 5346 // Interleave until store/load ports (estimated by max interleave count) are 5347 // saturated. 5348 unsigned NumStores = Legal->getNumStores(); 5349 unsigned NumLoads = Legal->getNumLoads(); 5350 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5351 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5352 5353 // If we have a scalar reduction (vector reductions are already dealt with 5354 // by this point), we can increase the critical path length if the loop 5355 // we're interleaving is inside another loop. Limit, by default to 2, so the 5356 // critical path only gets increased by one reduction operation. 5357 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5358 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5359 SmallIC = std::min(SmallIC, F); 5360 StoresIC = std::min(StoresIC, F); 5361 LoadsIC = std::min(LoadsIC, F); 5362 } 5363 5364 if (EnableLoadStoreRuntimeInterleave && 5365 std::max(StoresIC, LoadsIC) > SmallIC) { 5366 LLVM_DEBUG( 5367 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5368 return std::max(StoresIC, LoadsIC); 5369 } 5370 5371 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5372 return SmallIC; 5373 } 5374 5375 // Interleave if this is a large loop (small loops are already dealt with by 5376 // this point) that could benefit from interleaving. 5377 bool HasReductions = !Legal->getReductionVars().empty(); 5378 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5379 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5380 return IC; 5381 } 5382 5383 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5384 return 1; 5385 } 5386 5387 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5388 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5389 // This function calculates the register usage by measuring the highest number 5390 // of values that are alive at a single location. Obviously, this is a very 5391 // rough estimation. We scan the loop in a topological order in order and 5392 // assign a number to each instruction. We use RPO to ensure that defs are 5393 // met before their users. We assume that each instruction that has in-loop 5394 // users starts an interval. We record every time that an in-loop value is 5395 // used, so we have a list of the first and last occurrences of each 5396 // instruction. Next, we transpose this data structure into a multi map that 5397 // holds the list of intervals that *end* at a specific location. This multi 5398 // map allows us to perform a linear search. We scan the instructions linearly 5399 // and record each time that a new interval starts, by placing it in a set. 5400 // If we find this value in the multi-map then we remove it from the set. 5401 // The max register usage is the maximum size of the set. 5402 // We also search for instructions that are defined outside the loop, but are 5403 // used inside the loop. We need this number separately from the max-interval 5404 // usage number because when we unroll, loop-invariant values do not take 5405 // more register. 5406 LoopBlocksDFS DFS(TheLoop); 5407 DFS.perform(LI); 5408 5409 RegisterUsage RU; 5410 5411 // Each 'key' in the map opens a new interval. The values 5412 // of the map are the index of the 'last seen' usage of the 5413 // instruction that is the key. 5414 using IntervalMap = DenseMap<Instruction *, unsigned>; 5415 5416 // Maps instruction to its index. 5417 SmallVector<Instruction *, 64> IdxToInstr; 5418 // Marks the end of each interval. 5419 IntervalMap EndPoint; 5420 // Saves the list of instruction indices that are used in the loop. 5421 SmallPtrSet<Instruction *, 8> Ends; 5422 // Saves the list of values that are used in the loop but are 5423 // defined outside the loop, such as arguments and constants. 5424 SmallPtrSet<Value *, 8> LoopInvariants; 5425 5426 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5427 for (Instruction &I : BB->instructionsWithoutDebug()) { 5428 IdxToInstr.push_back(&I); 5429 5430 // Save the end location of each USE. 5431 for (Value *U : I.operands()) { 5432 auto *Instr = dyn_cast<Instruction>(U); 5433 5434 // Ignore non-instruction values such as arguments, constants, etc. 5435 if (!Instr) 5436 continue; 5437 5438 // If this instruction is outside the loop then record it and continue. 5439 if (!TheLoop->contains(Instr)) { 5440 LoopInvariants.insert(Instr); 5441 continue; 5442 } 5443 5444 // Overwrite previous end points. 5445 EndPoint[Instr] = IdxToInstr.size(); 5446 Ends.insert(Instr); 5447 } 5448 } 5449 } 5450 5451 // Saves the list of intervals that end with the index in 'key'. 5452 using InstrList = SmallVector<Instruction *, 2>; 5453 DenseMap<unsigned, InstrList> TransposeEnds; 5454 5455 // Transpose the EndPoints to a list of values that end at each index. 5456 for (auto &Interval : EndPoint) 5457 TransposeEnds[Interval.second].push_back(Interval.first); 5458 5459 SmallPtrSet<Instruction *, 8> OpenIntervals; 5460 5461 // Get the size of the widest register. 5462 unsigned MaxSafeDepDist = -1U; 5463 if (Legal->getMaxSafeDepDistBytes() != -1U) 5464 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5465 unsigned WidestRegister = 5466 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5467 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5468 5469 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5470 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5471 5472 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5473 5474 // A lambda that gets the register usage for the given type and VF. 5475 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5476 if (Ty->isTokenTy()) 5477 return 0U; 5478 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5479 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5480 }; 5481 5482 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5483 Instruction *I = IdxToInstr[i]; 5484 5485 // Remove all of the instructions that end at this location. 5486 InstrList &List = TransposeEnds[i]; 5487 for (Instruction *ToRemove : List) 5488 OpenIntervals.erase(ToRemove); 5489 5490 // Ignore instructions that are never used within the loop. 5491 if (Ends.find(I) == Ends.end()) 5492 continue; 5493 5494 // Skip ignored values. 5495 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5496 continue; 5497 5498 // For each VF find the maximum usage of registers. 5499 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5500 // Count the number of live intervals. 5501 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5502 5503 if (VFs[j] == 1) { 5504 for (auto Inst : OpenIntervals) { 5505 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5506 if (RegUsage.find(ClassID) == RegUsage.end()) 5507 RegUsage[ClassID] = 1; 5508 else 5509 RegUsage[ClassID] += 1; 5510 } 5511 } else { 5512 collectUniformsAndScalars(VFs[j]); 5513 for (auto Inst : OpenIntervals) { 5514 // Skip ignored values for VF > 1. 5515 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end()) 5516 continue; 5517 if (isScalarAfterVectorization(Inst, VFs[j])) { 5518 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5519 if (RegUsage.find(ClassID) == RegUsage.end()) 5520 RegUsage[ClassID] = 1; 5521 else 5522 RegUsage[ClassID] += 1; 5523 } else { 5524 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5525 if (RegUsage.find(ClassID) == RegUsage.end()) 5526 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5527 else 5528 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5529 } 5530 } 5531 } 5532 5533 for (auto& pair : RegUsage) { 5534 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5535 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5536 else 5537 MaxUsages[j][pair.first] = pair.second; 5538 } 5539 } 5540 5541 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5542 << OpenIntervals.size() << '\n'); 5543 5544 // Add the current instruction to the list of open intervals. 5545 OpenIntervals.insert(I); 5546 } 5547 5548 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5549 SmallMapVector<unsigned, unsigned, 4> Invariant; 5550 5551 for (auto Inst : LoopInvariants) { 5552 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5553 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5554 if (Invariant.find(ClassID) == Invariant.end()) 5555 Invariant[ClassID] = Usage; 5556 else 5557 Invariant[ClassID] += Usage; 5558 } 5559 5560 LLVM_DEBUG({ 5561 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5562 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5563 << " item\n"; 5564 for (const auto &pair : MaxUsages[i]) { 5565 dbgs() << "LV(REG): RegisterClass: " 5566 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5567 << " registers\n"; 5568 } 5569 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5570 << " item\n"; 5571 for (const auto &pair : Invariant) { 5572 dbgs() << "LV(REG): RegisterClass: " 5573 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5574 << " registers\n"; 5575 } 5576 }); 5577 5578 RU.LoopInvariantRegs = Invariant; 5579 RU.MaxLocalUsers = MaxUsages[i]; 5580 RUs[i] = RU; 5581 } 5582 5583 return RUs; 5584 } 5585 5586 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5587 // TODO: Cost model for emulated masked load/store is completely 5588 // broken. This hack guides the cost model to use an artificially 5589 // high enough value to practically disable vectorization with such 5590 // operations, except where previously deployed legality hack allowed 5591 // using very low cost values. This is to avoid regressions coming simply 5592 // from moving "masked load/store" check from legality to cost model. 5593 // Masked Load/Gather emulation was previously never allowed. 5594 // Limited number of Masked Store/Scatter emulation was allowed. 5595 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5596 return isa<LoadInst>(I) || 5597 (isa<StoreInst>(I) && 5598 NumPredStores > NumberOfStoresToPredicate); 5599 } 5600 5601 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5602 // If we aren't vectorizing the loop, or if we've already collected the 5603 // instructions to scalarize, there's nothing to do. Collection may already 5604 // have occurred if we have a user-selected VF and are now computing the 5605 // expected cost for interleaving. 5606 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5607 return; 5608 5609 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5610 // not profitable to scalarize any instructions, the presence of VF in the 5611 // map will indicate that we've analyzed it already. 5612 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5613 5614 // Find all the instructions that are scalar with predication in the loop and 5615 // determine if it would be better to not if-convert the blocks they are in. 5616 // If so, we also record the instructions to scalarize. 5617 for (BasicBlock *BB : TheLoop->blocks()) { 5618 if (!blockNeedsPredication(BB)) 5619 continue; 5620 for (Instruction &I : *BB) 5621 if (isScalarWithPredication(&I)) { 5622 ScalarCostsTy ScalarCosts; 5623 // Do not apply discount logic if hacked cost is needed 5624 // for emulated masked memrefs. 5625 if (!useEmulatedMaskMemRefHack(&I) && 5626 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5627 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5628 // Remember that BB will remain after vectorization. 5629 PredicatedBBsAfterVectorization.insert(BB); 5630 } 5631 } 5632 } 5633 5634 int LoopVectorizationCostModel::computePredInstDiscount( 5635 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5636 unsigned VF) { 5637 assert(!isUniformAfterVectorization(PredInst, VF) && 5638 "Instruction marked uniform-after-vectorization will be predicated"); 5639 5640 // Initialize the discount to zero, meaning that the scalar version and the 5641 // vector version cost the same. 5642 int Discount = 0; 5643 5644 // Holds instructions to analyze. The instructions we visit are mapped in 5645 // ScalarCosts. Those instructions are the ones that would be scalarized if 5646 // we find that the scalar version costs less. 5647 SmallVector<Instruction *, 8> Worklist; 5648 5649 // Returns true if the given instruction can be scalarized. 5650 auto canBeScalarized = [&](Instruction *I) -> bool { 5651 // We only attempt to scalarize instructions forming a single-use chain 5652 // from the original predicated block that would otherwise be vectorized. 5653 // Although not strictly necessary, we give up on instructions we know will 5654 // already be scalar to avoid traversing chains that are unlikely to be 5655 // beneficial. 5656 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5657 isScalarAfterVectorization(I, VF)) 5658 return false; 5659 5660 // If the instruction is scalar with predication, it will be analyzed 5661 // separately. We ignore it within the context of PredInst. 5662 if (isScalarWithPredication(I)) 5663 return false; 5664 5665 // If any of the instruction's operands are uniform after vectorization, 5666 // the instruction cannot be scalarized. This prevents, for example, a 5667 // masked load from being scalarized. 5668 // 5669 // We assume we will only emit a value for lane zero of an instruction 5670 // marked uniform after vectorization, rather than VF identical values. 5671 // Thus, if we scalarize an instruction that uses a uniform, we would 5672 // create uses of values corresponding to the lanes we aren't emitting code 5673 // for. This behavior can be changed by allowing getScalarValue to clone 5674 // the lane zero values for uniforms rather than asserting. 5675 for (Use &U : I->operands()) 5676 if (auto *J = dyn_cast<Instruction>(U.get())) 5677 if (isUniformAfterVectorization(J, VF)) 5678 return false; 5679 5680 // Otherwise, we can scalarize the instruction. 5681 return true; 5682 }; 5683 5684 // Compute the expected cost discount from scalarizing the entire expression 5685 // feeding the predicated instruction. We currently only consider expressions 5686 // that are single-use instruction chains. 5687 Worklist.push_back(PredInst); 5688 while (!Worklist.empty()) { 5689 Instruction *I = Worklist.pop_back_val(); 5690 5691 // If we've already analyzed the instruction, there's nothing to do. 5692 if (ScalarCosts.find(I) != ScalarCosts.end()) 5693 continue; 5694 5695 // Compute the cost of the vector instruction. Note that this cost already 5696 // includes the scalarization overhead of the predicated instruction. 5697 unsigned VectorCost = getInstructionCost(I, VF).first; 5698 5699 // Compute the cost of the scalarized instruction. This cost is the cost of 5700 // the instruction as if it wasn't if-converted and instead remained in the 5701 // predicated block. We will scale this cost by block probability after 5702 // computing the scalarization overhead. 5703 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5704 5705 // Compute the scalarization overhead of needed insertelement instructions 5706 // and phi nodes. 5707 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5708 ScalarCost += TTI.getScalarizationOverhead( 5709 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5710 APInt::getAllOnesValue(VF), true, false); 5711 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5712 } 5713 5714 // Compute the scalarization overhead of needed extractelement 5715 // instructions. For each of the instruction's operands, if the operand can 5716 // be scalarized, add it to the worklist; otherwise, account for the 5717 // overhead. 5718 for (Use &U : I->operands()) 5719 if (auto *J = dyn_cast<Instruction>(U.get())) { 5720 assert(VectorType::isValidElementType(J->getType()) && 5721 "Instruction has non-scalar type"); 5722 if (canBeScalarized(J)) 5723 Worklist.push_back(J); 5724 else if (needsExtract(J, VF)) 5725 ScalarCost += TTI.getScalarizationOverhead( 5726 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5727 APInt::getAllOnesValue(VF), false, true); 5728 } 5729 5730 // Scale the total scalar cost by block probability. 5731 ScalarCost /= getReciprocalPredBlockProb(); 5732 5733 // Compute the discount. A non-negative discount means the vector version 5734 // of the instruction costs more, and scalarizing would be beneficial. 5735 Discount += VectorCost - ScalarCost; 5736 ScalarCosts[I] = ScalarCost; 5737 } 5738 5739 return Discount; 5740 } 5741 5742 LoopVectorizationCostModel::VectorizationCostTy 5743 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5744 VectorizationCostTy Cost; 5745 5746 // For each block. 5747 for (BasicBlock *BB : TheLoop->blocks()) { 5748 VectorizationCostTy BlockCost; 5749 5750 // For each instruction in the old loop. 5751 for (Instruction &I : BB->instructionsWithoutDebug()) { 5752 // Skip ignored values. 5753 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5754 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5755 continue; 5756 5757 VectorizationCostTy C = getInstructionCost(&I, VF); 5758 5759 // Check if we should override the cost. 5760 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5761 C.first = ForceTargetInstructionCost; 5762 5763 BlockCost.first += C.first; 5764 BlockCost.second |= C.second; 5765 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5766 << " for VF " << VF << " For instruction: " << I 5767 << '\n'); 5768 } 5769 5770 // If we are vectorizing a predicated block, it will have been 5771 // if-converted. This means that the block's instructions (aside from 5772 // stores and instructions that may divide by zero) will now be 5773 // unconditionally executed. For the scalar case, we may not always execute 5774 // the predicated block. Thus, scale the block's cost by the probability of 5775 // executing it. 5776 if (VF == 1 && blockNeedsPredication(BB)) 5777 BlockCost.first /= getReciprocalPredBlockProb(); 5778 5779 Cost.first += BlockCost.first; 5780 Cost.second |= BlockCost.second; 5781 } 5782 5783 return Cost; 5784 } 5785 5786 /// Gets Address Access SCEV after verifying that the access pattern 5787 /// is loop invariant except the induction variable dependence. 5788 /// 5789 /// This SCEV can be sent to the Target in order to estimate the address 5790 /// calculation cost. 5791 static const SCEV *getAddressAccessSCEV( 5792 Value *Ptr, 5793 LoopVectorizationLegality *Legal, 5794 PredicatedScalarEvolution &PSE, 5795 const Loop *TheLoop) { 5796 5797 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5798 if (!Gep) 5799 return nullptr; 5800 5801 // We are looking for a gep with all loop invariant indices except for one 5802 // which should be an induction variable. 5803 auto SE = PSE.getSE(); 5804 unsigned NumOperands = Gep->getNumOperands(); 5805 for (unsigned i = 1; i < NumOperands; ++i) { 5806 Value *Opd = Gep->getOperand(i); 5807 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5808 !Legal->isInductionVariable(Opd)) 5809 return nullptr; 5810 } 5811 5812 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5813 return PSE.getSCEV(Ptr); 5814 } 5815 5816 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5817 return Legal->hasStride(I->getOperand(0)) || 5818 Legal->hasStride(I->getOperand(1)); 5819 } 5820 5821 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5822 unsigned VF) { 5823 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5824 Type *ValTy = getMemInstValueType(I); 5825 auto SE = PSE.getSE(); 5826 5827 unsigned AS = getLoadStoreAddressSpace(I); 5828 Value *Ptr = getLoadStorePointerOperand(I); 5829 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5830 5831 // Figure out whether the access is strided and get the stride value 5832 // if it's known in compile time 5833 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5834 5835 // Get the cost of the scalar memory instruction and address computation. 5836 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5837 5838 // Don't pass *I here, since it is scalar but will actually be part of a 5839 // vectorized loop where the user of it is a vectorized instruction. 5840 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5841 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5842 Alignment, AS, 5843 TTI::TCK_RecipThroughput); 5844 5845 // Get the overhead of the extractelement and insertelement instructions 5846 // we might create due to scalarization. 5847 Cost += getScalarizationOverhead(I, VF); 5848 5849 // If we have a predicated store, it may not be executed for each vector 5850 // lane. Scale the cost by the probability of executing the predicated 5851 // block. 5852 if (isPredicatedInst(I)) { 5853 Cost /= getReciprocalPredBlockProb(); 5854 5855 if (useEmulatedMaskMemRefHack(I)) 5856 // Artificially setting to a high enough value to practically disable 5857 // vectorization with such operations. 5858 Cost = 3000000; 5859 } 5860 5861 return Cost; 5862 } 5863 5864 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5865 unsigned VF) { 5866 Type *ValTy = getMemInstValueType(I); 5867 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5868 Value *Ptr = getLoadStorePointerOperand(I); 5869 unsigned AS = getLoadStoreAddressSpace(I); 5870 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5871 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5872 5873 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5874 "Stride should be 1 or -1 for consecutive memory access"); 5875 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5876 unsigned Cost = 0; 5877 if (Legal->isMaskRequired(I)) 5878 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, 5879 Alignment ? Alignment->value() : 0, AS, 5880 CostKind); 5881 else 5882 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5883 CostKind, I); 5884 5885 bool Reverse = ConsecutiveStride < 0; 5886 if (Reverse) 5887 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5888 return Cost; 5889 } 5890 5891 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5892 unsigned VF) { 5893 Type *ValTy = getMemInstValueType(I); 5894 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5895 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5896 unsigned AS = getLoadStoreAddressSpace(I); 5897 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5898 if (isa<LoadInst>(I)) { 5899 return TTI.getAddressComputationCost(ValTy) + 5900 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5901 CostKind) + 5902 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5903 } 5904 StoreInst *SI = cast<StoreInst>(I); 5905 5906 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5907 return TTI.getAddressComputationCost(ValTy) + 5908 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5909 CostKind) + 5910 (isLoopInvariantStoreValue 5911 ? 0 5912 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5913 VF - 1)); 5914 } 5915 5916 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5917 unsigned VF) { 5918 Type *ValTy = getMemInstValueType(I); 5919 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5920 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5921 Value *Ptr = getLoadStorePointerOperand(I); 5922 5923 return TTI.getAddressComputationCost(VectorTy) + 5924 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5925 Legal->isMaskRequired(I), 5926 Alignment ? Alignment->value() : 0, 5927 TargetTransformInfo::TCK_RecipThroughput, 5928 I); 5929 } 5930 5931 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5932 unsigned VF) { 5933 Type *ValTy = getMemInstValueType(I); 5934 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5935 unsigned AS = getLoadStoreAddressSpace(I); 5936 5937 auto Group = getInterleavedAccessGroup(I); 5938 assert(Group && "Fail to get an interleaved access group."); 5939 5940 unsigned InterleaveFactor = Group->getFactor(); 5941 VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5942 5943 // Holds the indices of existing members in an interleaved load group. 5944 // An interleaved store group doesn't need this as it doesn't allow gaps. 5945 SmallVector<unsigned, 4> Indices; 5946 if (isa<LoadInst>(I)) { 5947 for (unsigned i = 0; i < InterleaveFactor; i++) 5948 if (Group->getMember(i)) 5949 Indices.push_back(i); 5950 } 5951 5952 // Calculate the cost of the whole interleaved group. 5953 bool UseMaskForGaps = 5954 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5955 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5956 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5957 Group->getAlign().value(), AS, TTI::TCK_RecipThroughput, 5958 Legal->isMaskRequired(I), UseMaskForGaps); 5959 5960 if (Group->isReverse()) { 5961 // TODO: Add support for reversed masked interleaved access. 5962 assert(!Legal->isMaskRequired(I) && 5963 "Reverse masked interleaved access not supported."); 5964 Cost += Group->getNumMembers() * 5965 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5966 } 5967 return Cost; 5968 } 5969 5970 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5971 unsigned VF) { 5972 // Calculate scalar cost only. Vectorization cost should be ready at this 5973 // moment. 5974 if (VF == 1) { 5975 Type *ValTy = getMemInstValueType(I); 5976 const MaybeAlign Alignment = getLoadStoreAlignment(I); 5977 unsigned AS = getLoadStoreAddressSpace(I); 5978 5979 return TTI.getAddressComputationCost(ValTy) + 5980 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 5981 TTI::TCK_RecipThroughput, I); 5982 } 5983 return getWideningCost(I, VF); 5984 } 5985 5986 LoopVectorizationCostModel::VectorizationCostTy 5987 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5988 // If we know that this instruction will remain uniform, check the cost of 5989 // the scalar version. 5990 if (isUniformAfterVectorization(I, VF)) 5991 VF = 1; 5992 5993 if (VF > 1 && isProfitableToScalarize(I, VF)) 5994 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5995 5996 // Forced scalars do not have any scalarization overhead. 5997 auto ForcedScalar = ForcedScalars.find(VF); 5998 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5999 auto InstSet = ForcedScalar->second; 6000 if (InstSet.find(I) != InstSet.end()) 6001 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6002 } 6003 6004 Type *VectorTy; 6005 unsigned C = getInstructionCost(I, VF, VectorTy); 6006 6007 bool TypeNotScalarized = 6008 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6009 return VectorizationCostTy(C, TypeNotScalarized); 6010 } 6011 6012 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6013 unsigned VF) { 6014 6015 if (VF == 1) 6016 return 0; 6017 6018 unsigned Cost = 0; 6019 Type *RetTy = ToVectorTy(I->getType(), VF); 6020 if (!RetTy->isVoidTy() && 6021 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6022 Cost += TTI.getScalarizationOverhead( 6023 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6024 6025 // Some targets keep addresses scalar. 6026 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6027 return Cost; 6028 6029 // Some targets support efficient element stores. 6030 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6031 return Cost; 6032 6033 // Collect operands to consider. 6034 CallInst *CI = dyn_cast<CallInst>(I); 6035 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6036 6037 // Skip operands that do not require extraction/scalarization and do not incur 6038 // any overhead. 6039 return Cost + TTI.getOperandsScalarizationOverhead( 6040 filterExtractingOperands(Ops, VF), VF); 6041 } 6042 6043 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6044 if (VF == 1) 6045 return; 6046 NumPredStores = 0; 6047 for (BasicBlock *BB : TheLoop->blocks()) { 6048 // For each instruction in the old loop. 6049 for (Instruction &I : *BB) { 6050 Value *Ptr = getLoadStorePointerOperand(&I); 6051 if (!Ptr) 6052 continue; 6053 6054 // TODO: We should generate better code and update the cost model for 6055 // predicated uniform stores. Today they are treated as any other 6056 // predicated store (see added test cases in 6057 // invariant-store-vectorization.ll). 6058 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6059 NumPredStores++; 6060 6061 if (Legal->isUniform(Ptr) && 6062 // Conditional loads and stores should be scalarized and predicated. 6063 // isScalarWithPredication cannot be used here since masked 6064 // gather/scatters are not considered scalar with predication. 6065 !Legal->blockNeedsPredication(I.getParent())) { 6066 // TODO: Avoid replicating loads and stores instead of 6067 // relying on instcombine to remove them. 6068 // Load: Scalar load + broadcast 6069 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6070 unsigned Cost = getUniformMemOpCost(&I, VF); 6071 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6072 continue; 6073 } 6074 6075 // We assume that widening is the best solution when possible. 6076 if (memoryInstructionCanBeWidened(&I, VF)) { 6077 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6078 int ConsecutiveStride = 6079 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6080 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6081 "Expected consecutive stride."); 6082 InstWidening Decision = 6083 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6084 setWideningDecision(&I, VF, Decision, Cost); 6085 continue; 6086 } 6087 6088 // Choose between Interleaving, Gather/Scatter or Scalarization. 6089 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6090 unsigned NumAccesses = 1; 6091 if (isAccessInterleaved(&I)) { 6092 auto Group = getInterleavedAccessGroup(&I); 6093 assert(Group && "Fail to get an interleaved access group."); 6094 6095 // Make one decision for the whole group. 6096 if (getWideningDecision(&I, VF) != CM_Unknown) 6097 continue; 6098 6099 NumAccesses = Group->getNumMembers(); 6100 if (interleavedAccessCanBeWidened(&I, VF)) 6101 InterleaveCost = getInterleaveGroupCost(&I, VF); 6102 } 6103 6104 unsigned GatherScatterCost = 6105 isLegalGatherOrScatter(&I) 6106 ? getGatherScatterCost(&I, VF) * NumAccesses 6107 : std::numeric_limits<unsigned>::max(); 6108 6109 unsigned ScalarizationCost = 6110 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6111 6112 // Choose better solution for the current VF, 6113 // write down this decision and use it during vectorization. 6114 unsigned Cost; 6115 InstWidening Decision; 6116 if (InterleaveCost <= GatherScatterCost && 6117 InterleaveCost < ScalarizationCost) { 6118 Decision = CM_Interleave; 6119 Cost = InterleaveCost; 6120 } else if (GatherScatterCost < ScalarizationCost) { 6121 Decision = CM_GatherScatter; 6122 Cost = GatherScatterCost; 6123 } else { 6124 Decision = CM_Scalarize; 6125 Cost = ScalarizationCost; 6126 } 6127 // If the instructions belongs to an interleave group, the whole group 6128 // receives the same decision. The whole group receives the cost, but 6129 // the cost will actually be assigned to one instruction. 6130 if (auto Group = getInterleavedAccessGroup(&I)) 6131 setWideningDecision(Group, VF, Decision, Cost); 6132 else 6133 setWideningDecision(&I, VF, Decision, Cost); 6134 } 6135 } 6136 6137 // Make sure that any load of address and any other address computation 6138 // remains scalar unless there is gather/scatter support. This avoids 6139 // inevitable extracts into address registers, and also has the benefit of 6140 // activating LSR more, since that pass can't optimize vectorized 6141 // addresses. 6142 if (TTI.prefersVectorizedAddressing()) 6143 return; 6144 6145 // Start with all scalar pointer uses. 6146 SmallPtrSet<Instruction *, 8> AddrDefs; 6147 for (BasicBlock *BB : TheLoop->blocks()) 6148 for (Instruction &I : *BB) { 6149 Instruction *PtrDef = 6150 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6151 if (PtrDef && TheLoop->contains(PtrDef) && 6152 getWideningDecision(&I, VF) != CM_GatherScatter) 6153 AddrDefs.insert(PtrDef); 6154 } 6155 6156 // Add all instructions used to generate the addresses. 6157 SmallVector<Instruction *, 4> Worklist; 6158 for (auto *I : AddrDefs) 6159 Worklist.push_back(I); 6160 while (!Worklist.empty()) { 6161 Instruction *I = Worklist.pop_back_val(); 6162 for (auto &Op : I->operands()) 6163 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6164 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6165 AddrDefs.insert(InstOp).second) 6166 Worklist.push_back(InstOp); 6167 } 6168 6169 for (auto *I : AddrDefs) { 6170 if (isa<LoadInst>(I)) { 6171 // Setting the desired widening decision should ideally be handled in 6172 // by cost functions, but since this involves the task of finding out 6173 // if the loaded register is involved in an address computation, it is 6174 // instead changed here when we know this is the case. 6175 InstWidening Decision = getWideningDecision(I, VF); 6176 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6177 // Scalarize a widened load of address. 6178 setWideningDecision(I, VF, CM_Scalarize, 6179 (VF * getMemoryInstructionCost(I, 1))); 6180 else if (auto Group = getInterleavedAccessGroup(I)) { 6181 // Scalarize an interleave group of address loads. 6182 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6183 if (Instruction *Member = Group->getMember(I)) 6184 setWideningDecision(Member, VF, CM_Scalarize, 6185 (VF * getMemoryInstructionCost(Member, 1))); 6186 } 6187 } 6188 } else 6189 // Make sure I gets scalarized and a cost estimate without 6190 // scalarization overhead. 6191 ForcedScalars[VF].insert(I); 6192 } 6193 } 6194 6195 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6196 unsigned VF, 6197 Type *&VectorTy) { 6198 Type *RetTy = I->getType(); 6199 if (canTruncateToMinimalBitwidth(I, VF)) 6200 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6201 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6202 auto SE = PSE.getSE(); 6203 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6204 6205 // TODO: We need to estimate the cost of intrinsic calls. 6206 switch (I->getOpcode()) { 6207 case Instruction::GetElementPtr: 6208 // We mark this instruction as zero-cost because the cost of GEPs in 6209 // vectorized code depends on whether the corresponding memory instruction 6210 // is scalarized or not. Therefore, we handle GEPs with the memory 6211 // instruction cost. 6212 return 0; 6213 case Instruction::Br: { 6214 // In cases of scalarized and predicated instructions, there will be VF 6215 // predicated blocks in the vectorized loop. Each branch around these 6216 // blocks requires also an extract of its vector compare i1 element. 6217 bool ScalarPredicatedBB = false; 6218 BranchInst *BI = cast<BranchInst>(I); 6219 if (VF > 1 && BI->isConditional() && 6220 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6221 PredicatedBBsAfterVectorization.end() || 6222 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6223 PredicatedBBsAfterVectorization.end())) 6224 ScalarPredicatedBB = true; 6225 6226 if (ScalarPredicatedBB) { 6227 // Return cost for branches around scalarized and predicated blocks. 6228 VectorType *Vec_i1Ty = 6229 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6230 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6231 false, true) + 6232 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6233 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6234 // The back-edge branch will remain, as will all scalar branches. 6235 return TTI.getCFInstrCost(Instruction::Br); 6236 else 6237 // This branch will be eliminated by if-conversion. 6238 return 0; 6239 // Note: We currently assume zero cost for an unconditional branch inside 6240 // a predicated block since it will become a fall-through, although we 6241 // may decide in the future to call TTI for all branches. 6242 } 6243 case Instruction::PHI: { 6244 auto *Phi = cast<PHINode>(I); 6245 6246 // First-order recurrences are replaced by vector shuffles inside the loop. 6247 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6248 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6249 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6250 cast<VectorType>(VectorTy), VF - 1, 6251 VectorType::get(RetTy, 1)); 6252 6253 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6254 // converted into select instructions. We require N - 1 selects per phi 6255 // node, where N is the number of incoming values. 6256 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6257 return (Phi->getNumIncomingValues() - 1) * 6258 TTI.getCmpSelInstrCost( 6259 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6260 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6261 CostKind); 6262 6263 return TTI.getCFInstrCost(Instruction::PHI); 6264 } 6265 case Instruction::UDiv: 6266 case Instruction::SDiv: 6267 case Instruction::URem: 6268 case Instruction::SRem: 6269 // If we have a predicated instruction, it may not be executed for each 6270 // vector lane. Get the scalarization cost and scale this amount by the 6271 // probability of executing the predicated block. If the instruction is not 6272 // predicated, we fall through to the next case. 6273 if (VF > 1 && isScalarWithPredication(I)) { 6274 unsigned Cost = 0; 6275 6276 // These instructions have a non-void type, so account for the phi nodes 6277 // that we will create. This cost is likely to be zero. The phi node 6278 // cost, if any, should be scaled by the block probability because it 6279 // models a copy at the end of each predicated block. 6280 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6281 6282 // The cost of the non-predicated instruction. 6283 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6284 6285 // The cost of insertelement and extractelement instructions needed for 6286 // scalarization. 6287 Cost += getScalarizationOverhead(I, VF); 6288 6289 // Scale the cost by the probability of executing the predicated blocks. 6290 // This assumes the predicated block for each vector lane is equally 6291 // likely. 6292 return Cost / getReciprocalPredBlockProb(); 6293 } 6294 LLVM_FALLTHROUGH; 6295 case Instruction::Add: 6296 case Instruction::FAdd: 6297 case Instruction::Sub: 6298 case Instruction::FSub: 6299 case Instruction::Mul: 6300 case Instruction::FMul: 6301 case Instruction::FDiv: 6302 case Instruction::FRem: 6303 case Instruction::Shl: 6304 case Instruction::LShr: 6305 case Instruction::AShr: 6306 case Instruction::And: 6307 case Instruction::Or: 6308 case Instruction::Xor: { 6309 // Since we will replace the stride by 1 the multiplication should go away. 6310 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6311 return 0; 6312 // Certain instructions can be cheaper to vectorize if they have a constant 6313 // second vector operand. One example of this are shifts on x86. 6314 Value *Op2 = I->getOperand(1); 6315 TargetTransformInfo::OperandValueProperties Op2VP; 6316 TargetTransformInfo::OperandValueKind Op2VK = 6317 TTI.getOperandInfo(Op2, Op2VP); 6318 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6319 Op2VK = TargetTransformInfo::OK_UniformValue; 6320 6321 SmallVector<const Value *, 4> Operands(I->operand_values()); 6322 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6323 return N * TTI.getArithmeticInstrCost( 6324 I->getOpcode(), VectorTy, CostKind, 6325 TargetTransformInfo::OK_AnyValue, 6326 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6327 } 6328 case Instruction::FNeg: { 6329 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6330 return N * TTI.getArithmeticInstrCost( 6331 I->getOpcode(), VectorTy, CostKind, 6332 TargetTransformInfo::OK_AnyValue, 6333 TargetTransformInfo::OK_AnyValue, 6334 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6335 I->getOperand(0), I); 6336 } 6337 case Instruction::Select: { 6338 SelectInst *SI = cast<SelectInst>(I); 6339 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6340 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6341 Type *CondTy = SI->getCondition()->getType(); 6342 if (!ScalarCond) 6343 CondTy = VectorType::get(CondTy, VF); 6344 6345 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6346 CostKind, I); 6347 } 6348 case Instruction::ICmp: 6349 case Instruction::FCmp: { 6350 Type *ValTy = I->getOperand(0)->getType(); 6351 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6352 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6353 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6354 VectorTy = ToVectorTy(ValTy, VF); 6355 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6356 I); 6357 } 6358 case Instruction::Store: 6359 case Instruction::Load: { 6360 unsigned Width = VF; 6361 if (Width > 1) { 6362 InstWidening Decision = getWideningDecision(I, Width); 6363 assert(Decision != CM_Unknown && 6364 "CM decision should be taken at this point"); 6365 if (Decision == CM_Scalarize) 6366 Width = 1; 6367 } 6368 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6369 return getMemoryInstructionCost(I, VF); 6370 } 6371 case Instruction::ZExt: 6372 case Instruction::SExt: 6373 case Instruction::FPToUI: 6374 case Instruction::FPToSI: 6375 case Instruction::FPExt: 6376 case Instruction::PtrToInt: 6377 case Instruction::IntToPtr: 6378 case Instruction::SIToFP: 6379 case Instruction::UIToFP: 6380 case Instruction::Trunc: 6381 case Instruction::FPTrunc: 6382 case Instruction::BitCast: { 6383 // We optimize the truncation of induction variables having constant 6384 // integer steps. The cost of these truncations is the same as the scalar 6385 // operation. 6386 if (isOptimizableIVTruncate(I, VF)) { 6387 auto *Trunc = cast<TruncInst>(I); 6388 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6389 Trunc->getSrcTy(), CostKind, Trunc); 6390 } 6391 6392 Type *SrcScalarTy = I->getOperand(0)->getType(); 6393 Type *SrcVecTy = 6394 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6395 if (canTruncateToMinimalBitwidth(I, VF)) { 6396 // This cast is going to be shrunk. This may remove the cast or it might 6397 // turn it into slightly different cast. For example, if MinBW == 16, 6398 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6399 // 6400 // Calculate the modified src and dest types. 6401 Type *MinVecTy = VectorTy; 6402 if (I->getOpcode() == Instruction::Trunc) { 6403 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6404 VectorTy = 6405 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6406 } else if (I->getOpcode() == Instruction::ZExt || 6407 I->getOpcode() == Instruction::SExt) { 6408 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6409 VectorTy = 6410 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6411 } 6412 } 6413 6414 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6415 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6416 CostKind, I); 6417 } 6418 case Instruction::Call: { 6419 bool NeedToScalarize; 6420 CallInst *CI = cast<CallInst>(I); 6421 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6422 if (getVectorIntrinsicIDForCall(CI, TLI)) 6423 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6424 return CallCost; 6425 } 6426 default: 6427 // The cost of executing VF copies of the scalar instruction. This opcode 6428 // is unknown. Assume that it is the same as 'mul'. 6429 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6430 CostKind) + 6431 getScalarizationOverhead(I, VF); 6432 } // end of switch. 6433 } 6434 6435 char LoopVectorize::ID = 0; 6436 6437 static const char lv_name[] = "Loop Vectorization"; 6438 6439 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6440 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6441 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6442 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6443 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6444 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6445 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6446 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6447 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6448 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6449 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6450 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6451 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6452 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6453 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6454 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6455 6456 namespace llvm { 6457 6458 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6459 6460 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6461 bool VectorizeOnlyWhenForced) { 6462 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6463 } 6464 6465 } // end namespace llvm 6466 6467 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6468 // Check if the pointer operand of a load or store instruction is 6469 // consecutive. 6470 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6471 return Legal->isConsecutivePtr(Ptr); 6472 return false; 6473 } 6474 6475 void LoopVectorizationCostModel::collectValuesToIgnore() { 6476 // Ignore ephemeral values. 6477 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6478 6479 // Ignore type-promoting instructions we identified during reduction 6480 // detection. 6481 for (auto &Reduction : Legal->getReductionVars()) { 6482 RecurrenceDescriptor &RedDes = Reduction.second; 6483 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6484 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6485 } 6486 // Ignore type-casting instructions we identified during induction 6487 // detection. 6488 for (auto &Induction : Legal->getInductionVars()) { 6489 InductionDescriptor &IndDes = Induction.second; 6490 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6491 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6492 } 6493 } 6494 6495 // TODO: we could return a pair of values that specify the max VF and 6496 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6497 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6498 // doesn't have a cost model that can choose which plan to execute if 6499 // more than one is generated. 6500 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6501 LoopVectorizationCostModel &CM) { 6502 unsigned WidestType; 6503 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6504 return WidestVectorRegBits / WidestType; 6505 } 6506 6507 VectorizationFactor 6508 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6509 unsigned VF = UserVF; 6510 // Outer loop handling: They may require CFG and instruction level 6511 // transformations before even evaluating whether vectorization is profitable. 6512 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6513 // the vectorization pipeline. 6514 if (!OrigLoop->empty()) { 6515 // If the user doesn't provide a vectorization factor, determine a 6516 // reasonable one. 6517 if (!UserVF) { 6518 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6519 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6520 6521 // Make sure we have a VF > 1 for stress testing. 6522 if (VPlanBuildStressTest && VF < 2) { 6523 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6524 << "overriding computed VF.\n"); 6525 VF = 4; 6526 } 6527 } 6528 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6529 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6530 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6531 << " to build VPlans.\n"); 6532 buildVPlans(VF, VF); 6533 6534 // For VPlan build stress testing, we bail out after VPlan construction. 6535 if (VPlanBuildStressTest) 6536 return VectorizationFactor::Disabled(); 6537 6538 return {VF, 0}; 6539 } 6540 6541 LLVM_DEBUG( 6542 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6543 "VPlan-native path.\n"); 6544 return VectorizationFactor::Disabled(); 6545 } 6546 6547 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) { 6548 assert(OrigLoop->empty() && "Inner loop expected."); 6549 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(); 6550 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6551 return None; 6552 6553 // Invalidate interleave groups if all blocks of loop will be predicated. 6554 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6555 !useMaskedInterleavedAccesses(*TTI)) { 6556 LLVM_DEBUG( 6557 dbgs() 6558 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6559 "which requires masked-interleaved support.\n"); 6560 if (CM.InterleaveInfo.invalidateGroups()) 6561 // Invalidating interleave groups also requires invalidating all decisions 6562 // based on them, which includes widening decisions and uniform and scalar 6563 // values. 6564 CM.invalidateCostModelingDecisions(); 6565 } 6566 6567 if (UserVF) { 6568 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6569 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6570 // Collect the instructions (and their associated costs) that will be more 6571 // profitable to scalarize. 6572 CM.selectUserVectorizationFactor(UserVF); 6573 buildVPlansWithVPRecipes(UserVF, UserVF); 6574 LLVM_DEBUG(printPlans(dbgs())); 6575 return {{UserVF, 0}}; 6576 } 6577 6578 unsigned MaxVF = MaybeMaxVF.getValue(); 6579 assert(MaxVF != 0 && "MaxVF is zero."); 6580 6581 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6582 // Collect Uniform and Scalar instructions after vectorization with VF. 6583 CM.collectUniformsAndScalars(VF); 6584 6585 // Collect the instructions (and their associated costs) that will be more 6586 // profitable to scalarize. 6587 if (VF > 1) 6588 CM.collectInstsToScalarize(VF); 6589 } 6590 6591 buildVPlansWithVPRecipes(1, MaxVF); 6592 LLVM_DEBUG(printPlans(dbgs())); 6593 if (MaxVF == 1) 6594 return VectorizationFactor::Disabled(); 6595 6596 // Select the optimal vectorization factor. 6597 return CM.selectVectorizationFactor(MaxVF); 6598 } 6599 6600 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6601 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6602 << '\n'); 6603 BestVF = VF; 6604 BestUF = UF; 6605 6606 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6607 return !Plan->hasVF(VF); 6608 }); 6609 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6610 } 6611 6612 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6613 DominatorTree *DT) { 6614 // Perform the actual loop transformation. 6615 6616 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6617 VPCallbackILV CallbackILV(ILV); 6618 6619 VPTransformState State{BestVF, BestUF, LI, 6620 DT, ILV.Builder, ILV.VectorLoopValueMap, 6621 &ILV, CallbackILV}; 6622 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6623 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6624 State.CanonicalIV = ILV.Induction; 6625 6626 //===------------------------------------------------===// 6627 // 6628 // Notice: any optimization or new instruction that go 6629 // into the code below should also be implemented in 6630 // the cost-model. 6631 // 6632 //===------------------------------------------------===// 6633 6634 // 2. Copy and widen instructions from the old loop into the new loop. 6635 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6636 VPlans.front()->execute(&State); 6637 6638 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6639 // predication, updating analyses. 6640 ILV.fixVectorizedLoop(); 6641 } 6642 6643 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6644 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6645 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6646 6647 // We create new control-flow for the vectorized loop, so the original 6648 // condition will be dead after vectorization if it's only used by the 6649 // branch. 6650 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6651 if (Cmp && Cmp->hasOneUse()) 6652 DeadInstructions.insert(Cmp); 6653 6654 // We create new "steps" for induction variable updates to which the original 6655 // induction variables map. An original update instruction will be dead if 6656 // all its users except the induction variable are dead. 6657 for (auto &Induction : Legal->getInductionVars()) { 6658 PHINode *Ind = Induction.first; 6659 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6660 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6661 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6662 DeadInstructions.end(); 6663 })) 6664 DeadInstructions.insert(IndUpdate); 6665 6666 // We record as "Dead" also the type-casting instructions we had identified 6667 // during induction analysis. We don't need any handling for them in the 6668 // vectorized loop because we have proven that, under a proper runtime 6669 // test guarding the vectorized loop, the value of the phi, and the casted 6670 // value of the phi, are the same. The last instruction in this casting chain 6671 // will get its scalar/vector/widened def from the scalar/vector/widened def 6672 // of the respective phi node. Any other casts in the induction def-use chain 6673 // have no other uses outside the phi update chain, and will be ignored. 6674 InductionDescriptor &IndDes = Induction.second; 6675 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6676 DeadInstructions.insert(Casts.begin(), Casts.end()); 6677 } 6678 } 6679 6680 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6681 6682 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6683 6684 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6685 Instruction::BinaryOps BinOp) { 6686 // When unrolling and the VF is 1, we only need to add a simple scalar. 6687 Type *Ty = Val->getType(); 6688 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6689 6690 if (Ty->isFloatingPointTy()) { 6691 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6692 6693 // Floating point operations had to be 'fast' to enable the unrolling. 6694 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6695 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6696 } 6697 Constant *C = ConstantInt::get(Ty, StartIdx); 6698 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6699 } 6700 6701 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6702 SmallVector<Metadata *, 4> MDs; 6703 // Reserve first location for self reference to the LoopID metadata node. 6704 MDs.push_back(nullptr); 6705 bool IsUnrollMetadata = false; 6706 MDNode *LoopID = L->getLoopID(); 6707 if (LoopID) { 6708 // First find existing loop unrolling disable metadata. 6709 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6710 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6711 if (MD) { 6712 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6713 IsUnrollMetadata = 6714 S && S->getString().startswith("llvm.loop.unroll.disable"); 6715 } 6716 MDs.push_back(LoopID->getOperand(i)); 6717 } 6718 } 6719 6720 if (!IsUnrollMetadata) { 6721 // Add runtime unroll disable metadata. 6722 LLVMContext &Context = L->getHeader()->getContext(); 6723 SmallVector<Metadata *, 1> DisableOperands; 6724 DisableOperands.push_back( 6725 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6726 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6727 MDs.push_back(DisableNode); 6728 MDNode *NewLoopID = MDNode::get(Context, MDs); 6729 // Set operand 0 to refer to the loop id itself. 6730 NewLoopID->replaceOperandWith(0, NewLoopID); 6731 L->setLoopID(NewLoopID); 6732 } 6733 } 6734 6735 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6736 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6737 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6738 bool PredicateAtRangeStart = Predicate(Range.Start); 6739 6740 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6741 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6742 Range.End = TmpVF; 6743 break; 6744 } 6745 6746 return PredicateAtRangeStart; 6747 } 6748 6749 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6750 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6751 /// of VF's starting at a given VF and extending it as much as possible. Each 6752 /// vectorization decision can potentially shorten this sub-range during 6753 /// buildVPlan(). 6754 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6755 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6756 VFRange SubRange = {VF, MaxVF + 1}; 6757 VPlans.push_back(buildVPlan(SubRange)); 6758 VF = SubRange.End; 6759 } 6760 } 6761 6762 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6763 VPlanPtr &Plan) { 6764 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6765 6766 // Look for cached value. 6767 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6768 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6769 if (ECEntryIt != EdgeMaskCache.end()) 6770 return ECEntryIt->second; 6771 6772 VPValue *SrcMask = createBlockInMask(Src, Plan); 6773 6774 // The terminator has to be a branch inst! 6775 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6776 assert(BI && "Unexpected terminator found"); 6777 6778 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6779 return EdgeMaskCache[Edge] = SrcMask; 6780 6781 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6782 assert(EdgeMask && "No Edge Mask found for condition"); 6783 6784 if (BI->getSuccessor(0) != Dst) 6785 EdgeMask = Builder.createNot(EdgeMask); 6786 6787 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6788 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6789 6790 return EdgeMaskCache[Edge] = EdgeMask; 6791 } 6792 6793 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6794 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6795 6796 // Look for cached value. 6797 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6798 if (BCEntryIt != BlockMaskCache.end()) 6799 return BCEntryIt->second; 6800 6801 // All-one mask is modelled as no-mask following the convention for masked 6802 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6803 VPValue *BlockMask = nullptr; 6804 6805 if (OrigLoop->getHeader() == BB) { 6806 if (!CM.blockNeedsPredication(BB)) 6807 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6808 6809 // Introduce the early-exit compare IV <= BTC to form header block mask. 6810 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6811 // Start by constructing the desired canonical IV. 6812 VPValue *IV = nullptr; 6813 if (Legal->getPrimaryInduction()) 6814 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6815 else { 6816 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6817 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6818 IV = IVRecipe->getVPValue(); 6819 } 6820 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6821 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6822 return BlockMaskCache[BB] = BlockMask; 6823 } 6824 6825 // This is the block mask. We OR all incoming edges. 6826 for (auto *Predecessor : predecessors(BB)) { 6827 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6828 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6829 return BlockMaskCache[BB] = EdgeMask; 6830 6831 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6832 BlockMask = EdgeMask; 6833 continue; 6834 } 6835 6836 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6837 } 6838 6839 return BlockMaskCache[BB] = BlockMask; 6840 } 6841 6842 VPWidenMemoryInstructionRecipe * 6843 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6844 VPlanPtr &Plan) { 6845 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6846 "Must be called with either a load or store"); 6847 6848 auto willWiden = [&](unsigned VF) -> bool { 6849 if (VF == 1) 6850 return false; 6851 LoopVectorizationCostModel::InstWidening Decision = 6852 CM.getWideningDecision(I, VF); 6853 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6854 "CM decision should be taken at this point."); 6855 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6856 return true; 6857 if (CM.isScalarAfterVectorization(I, VF) || 6858 CM.isProfitableToScalarize(I, VF)) 6859 return false; 6860 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6861 }; 6862 6863 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6864 return nullptr; 6865 6866 VPValue *Mask = nullptr; 6867 if (Legal->isMaskRequired(I)) 6868 Mask = createBlockInMask(I->getParent(), Plan); 6869 6870 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6871 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6872 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6873 6874 StoreInst *Store = cast<StoreInst>(I); 6875 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6876 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6877 } 6878 6879 VPWidenIntOrFpInductionRecipe * 6880 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6881 // Check if this is an integer or fp induction. If so, build the recipe that 6882 // produces its scalar and vector values. 6883 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6884 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6885 II.getKind() == InductionDescriptor::IK_FpInduction) 6886 return new VPWidenIntOrFpInductionRecipe(Phi); 6887 6888 return nullptr; 6889 } 6890 6891 VPWidenIntOrFpInductionRecipe * 6892 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6893 VFRange &Range) const { 6894 // Optimize the special case where the source is a constant integer 6895 // induction variable. Notice that we can only optimize the 'trunc' case 6896 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6897 // (c) other casts depend on pointer size. 6898 6899 // Determine whether \p K is a truncation based on an induction variable that 6900 // can be optimized. 6901 auto isOptimizableIVTruncate = 6902 [&](Instruction *K) -> std::function<bool(unsigned)> { 6903 return 6904 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6905 }; 6906 6907 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6908 isOptimizableIVTruncate(I), Range)) 6909 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6910 I); 6911 return nullptr; 6912 } 6913 6914 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6915 // We know that all PHIs in non-header blocks are converted into selects, so 6916 // we don't have to worry about the insertion order and we can just use the 6917 // builder. At this point we generate the predication tree. There may be 6918 // duplications since this is a simple recursive scan, but future 6919 // optimizations will clean it up. 6920 6921 SmallVector<VPValue *, 2> Operands; 6922 unsigned NumIncoming = Phi->getNumIncomingValues(); 6923 for (unsigned In = 0; In < NumIncoming; In++) { 6924 VPValue *EdgeMask = 6925 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6926 assert((EdgeMask || NumIncoming == 1) && 6927 "Multiple predecessors with one having a full mask"); 6928 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6929 if (EdgeMask) 6930 Operands.push_back(EdgeMask); 6931 } 6932 return new VPBlendRecipe(Phi, Operands); 6933 } 6934 6935 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6936 VPlan &Plan) const { 6937 6938 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6939 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6940 Range); 6941 6942 if (IsPredicated) 6943 return nullptr; 6944 6945 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6946 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6947 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6948 return nullptr; 6949 6950 auto willWiden = [&](unsigned VF) -> bool { 6951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6952 // The following case may be scalarized depending on the VF. 6953 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6954 // version of the instruction. 6955 // Is it beneficial to perform intrinsic call compared to lib call? 6956 bool NeedToScalarize = false; 6957 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6958 bool UseVectorIntrinsic = 6959 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6960 return UseVectorIntrinsic || !NeedToScalarize; 6961 }; 6962 6963 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6964 return nullptr; 6965 6966 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 6967 } 6968 6969 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 6970 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 6971 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 6972 // Instruction should be widened, unless it is scalar after vectorization, 6973 // scalarization is profitable or it is predicated. 6974 auto WillScalarize = [this, I](unsigned VF) -> bool { 6975 return CM.isScalarAfterVectorization(I, VF) || 6976 CM.isProfitableToScalarize(I, VF) || 6977 CM.isScalarWithPredication(I, VF); 6978 }; 6979 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 6980 Range); 6981 } 6982 6983 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 6984 auto IsVectorizableOpcode = [](unsigned Opcode) { 6985 switch (Opcode) { 6986 case Instruction::Add: 6987 case Instruction::And: 6988 case Instruction::AShr: 6989 case Instruction::BitCast: 6990 case Instruction::FAdd: 6991 case Instruction::FCmp: 6992 case Instruction::FDiv: 6993 case Instruction::FMul: 6994 case Instruction::FNeg: 6995 case Instruction::FPExt: 6996 case Instruction::FPToSI: 6997 case Instruction::FPToUI: 6998 case Instruction::FPTrunc: 6999 case Instruction::FRem: 7000 case Instruction::FSub: 7001 case Instruction::ICmp: 7002 case Instruction::IntToPtr: 7003 case Instruction::LShr: 7004 case Instruction::Mul: 7005 case Instruction::Or: 7006 case Instruction::PtrToInt: 7007 case Instruction::SDiv: 7008 case Instruction::Select: 7009 case Instruction::SExt: 7010 case Instruction::Shl: 7011 case Instruction::SIToFP: 7012 case Instruction::SRem: 7013 case Instruction::Sub: 7014 case Instruction::Trunc: 7015 case Instruction::UDiv: 7016 case Instruction::UIToFP: 7017 case Instruction::URem: 7018 case Instruction::Xor: 7019 case Instruction::ZExt: 7020 return true; 7021 } 7022 return false; 7023 }; 7024 7025 if (!IsVectorizableOpcode(I->getOpcode())) 7026 return nullptr; 7027 7028 // Success: widen this instruction. 7029 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7030 } 7031 7032 VPBasicBlock *VPRecipeBuilder::handleReplication( 7033 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7034 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7035 VPlanPtr &Plan) { 7036 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7037 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7038 Range); 7039 7040 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7041 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7042 7043 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7044 setRecipe(I, Recipe); 7045 7046 // Find if I uses a predicated instruction. If so, it will use its scalar 7047 // value. Avoid hoisting the insert-element which packs the scalar value into 7048 // a vector value, as that happens iff all users use the vector value. 7049 for (auto &Op : I->operands()) 7050 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7051 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7052 PredInst2Recipe[PredInst]->setAlsoPack(false); 7053 7054 // Finalize the recipe for Instr, first if it is not predicated. 7055 if (!IsPredicated) { 7056 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7057 VPBB->appendRecipe(Recipe); 7058 return VPBB; 7059 } 7060 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7061 assert(VPBB->getSuccessors().empty() && 7062 "VPBB has successors when handling predicated replication."); 7063 // Record predicated instructions for above packing optimizations. 7064 PredInst2Recipe[I] = Recipe; 7065 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7066 VPBlockUtils::insertBlockAfter(Region, VPBB); 7067 auto *RegSucc = new VPBasicBlock(); 7068 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7069 return RegSucc; 7070 } 7071 7072 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7073 VPRecipeBase *PredRecipe, 7074 VPlanPtr &Plan) { 7075 // Instructions marked for predication are replicated and placed under an 7076 // if-then construct to prevent side-effects. 7077 7078 // Generate recipes to compute the block mask for this region. 7079 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7080 7081 // Build the triangular if-then region. 7082 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7083 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7084 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7085 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7086 auto *PHIRecipe = 7087 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7088 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7089 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7090 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7091 7092 // Note: first set Entry as region entry and then connect successors starting 7093 // from it in order, to propagate the "parent" of each VPBasicBlock. 7094 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7095 VPBlockUtils::connectBlocks(Pred, Exit); 7096 7097 return Region; 7098 } 7099 7100 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7101 VFRange &Range, 7102 VPlanPtr &Plan) { 7103 // First, check for specific widening recipes that deal with calls, memory 7104 // operations, inductions and Phi nodes. 7105 if (auto *CI = dyn_cast<CallInst>(Instr)) 7106 return tryToWidenCall(CI, Range, *Plan); 7107 7108 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7109 return tryToWidenMemory(Instr, Range, Plan); 7110 7111 VPRecipeBase *Recipe; 7112 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7113 if (Phi->getParent() != OrigLoop->getHeader()) 7114 return tryToBlend(Phi, Plan); 7115 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7116 return Recipe; 7117 return new VPWidenPHIRecipe(Phi); 7118 return new VPWidenPHIRecipe(Phi); 7119 } 7120 7121 if (isa<TruncInst>(Instr) && 7122 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7123 return Recipe; 7124 7125 if (!shouldWiden(Instr, Range)) 7126 return nullptr; 7127 7128 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7129 return new VPWidenGEPRecipe(GEP, OrigLoop); 7130 7131 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7132 bool InvariantCond = 7133 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7134 return new VPWidenSelectRecipe(*SI, InvariantCond); 7135 } 7136 7137 return tryToWiden(Instr, *Plan); 7138 } 7139 7140 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7141 unsigned MaxVF) { 7142 assert(OrigLoop->empty() && "Inner loop expected."); 7143 7144 // Collect conditions feeding internal conditional branches; they need to be 7145 // represented in VPlan for it to model masking. 7146 SmallPtrSet<Value *, 1> NeedDef; 7147 7148 auto *Latch = OrigLoop->getLoopLatch(); 7149 for (BasicBlock *BB : OrigLoop->blocks()) { 7150 if (BB == Latch) 7151 continue; 7152 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7153 if (Branch && Branch->isConditional()) 7154 NeedDef.insert(Branch->getCondition()); 7155 } 7156 7157 // If the tail is to be folded by masking, the primary induction variable, if 7158 // exists needs to be represented in VPlan for it to model early-exit masking. 7159 // Also, both the Phi and the live-out instruction of each reduction are 7160 // required in order to introduce a select between them in VPlan. 7161 if (CM.foldTailByMasking()) { 7162 if (Legal->getPrimaryInduction()) 7163 NeedDef.insert(Legal->getPrimaryInduction()); 7164 for (auto &Reduction : Legal->getReductionVars()) { 7165 NeedDef.insert(Reduction.first); 7166 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7167 } 7168 } 7169 7170 // Collect instructions from the original loop that will become trivially dead 7171 // in the vectorized loop. We don't need to vectorize these instructions. For 7172 // example, original induction update instructions can become dead because we 7173 // separately emit induction "steps" when generating code for the new loop. 7174 // Similarly, we create a new latch condition when setting up the structure 7175 // of the new loop, so the old one can become dead. 7176 SmallPtrSet<Instruction *, 4> DeadInstructions; 7177 collectTriviallyDeadInstructions(DeadInstructions); 7178 7179 // Add assume instructions we need to drop to DeadInstructions, to prevent 7180 // them from being added to the VPlan. 7181 // TODO: We only need to drop assumes in blocks that get flattend. If the 7182 // control flow is preserved, we should keep them. 7183 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7184 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7185 7186 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7187 // Dead instructions do not need sinking. Remove them from SinkAfter. 7188 for (Instruction *I : DeadInstructions) 7189 SinkAfter.erase(I); 7190 7191 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7192 VFRange SubRange = {VF, MaxVF + 1}; 7193 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7194 DeadInstructions, SinkAfter)); 7195 VF = SubRange.End; 7196 } 7197 } 7198 7199 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7200 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7201 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7202 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7203 7204 // Hold a mapping from predicated instructions to their recipes, in order to 7205 // fix their AlsoPack behavior if a user is determined to replicate and use a 7206 // scalar instead of vector value. 7207 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7208 7209 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7210 7211 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7212 7213 // --------------------------------------------------------------------------- 7214 // Pre-construction: record ingredients whose recipes we'll need to further 7215 // process after constructing the initial VPlan. 7216 // --------------------------------------------------------------------------- 7217 7218 // Mark instructions we'll need to sink later and their targets as 7219 // ingredients whose recipe we'll need to record. 7220 for (auto &Entry : SinkAfter) { 7221 RecipeBuilder.recordRecipeOf(Entry.first); 7222 RecipeBuilder.recordRecipeOf(Entry.second); 7223 } 7224 7225 // For each interleave group which is relevant for this (possibly trimmed) 7226 // Range, add it to the set of groups to be later applied to the VPlan and add 7227 // placeholders for its members' Recipes which we'll be replacing with a 7228 // single VPInterleaveRecipe. 7229 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7230 auto applyIG = [IG, this](unsigned VF) -> bool { 7231 return (VF >= 2 && // Query is illegal for VF == 1 7232 CM.getWideningDecision(IG->getInsertPos(), VF) == 7233 LoopVectorizationCostModel::CM_Interleave); 7234 }; 7235 if (!getDecisionAndClampRange(applyIG, Range)) 7236 continue; 7237 InterleaveGroups.insert(IG); 7238 for (unsigned i = 0; i < IG->getFactor(); i++) 7239 if (Instruction *Member = IG->getMember(i)) 7240 RecipeBuilder.recordRecipeOf(Member); 7241 }; 7242 7243 // --------------------------------------------------------------------------- 7244 // Build initial VPlan: Scan the body of the loop in a topological order to 7245 // visit each basic block after having visited its predecessor basic blocks. 7246 // --------------------------------------------------------------------------- 7247 7248 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7249 auto Plan = std::make_unique<VPlan>(); 7250 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7251 Plan->setEntry(VPBB); 7252 7253 // Represent values that will have defs inside VPlan. 7254 for (Value *V : NeedDef) 7255 Plan->addVPValue(V); 7256 7257 // Scan the body of the loop in a topological order to visit each basic block 7258 // after having visited its predecessor basic blocks. 7259 LoopBlocksDFS DFS(OrigLoop); 7260 DFS.perform(LI); 7261 7262 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7263 // Relevant instructions from basic block BB will be grouped into VPRecipe 7264 // ingredients and fill a new VPBasicBlock. 7265 unsigned VPBBsForBB = 0; 7266 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7267 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7268 VPBB = FirstVPBBForBB; 7269 Builder.setInsertPoint(VPBB); 7270 7271 // Introduce each ingredient into VPlan. 7272 // TODO: Model and preserve debug instrinsics in VPlan. 7273 for (Instruction &I : BB->instructionsWithoutDebug()) { 7274 Instruction *Instr = &I; 7275 7276 // First filter out irrelevant instructions, to ensure no recipes are 7277 // built for them. 7278 if (isa<BranchInst>(Instr) || 7279 DeadInstructions.find(Instr) != DeadInstructions.end()) 7280 continue; 7281 7282 if (auto Recipe = 7283 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7284 RecipeBuilder.setRecipe(Instr, Recipe); 7285 VPBB->appendRecipe(Recipe); 7286 continue; 7287 } 7288 7289 // Otherwise, if all widening options failed, Instruction is to be 7290 // replicated. This may create a successor for VPBB. 7291 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7292 Instr, Range, VPBB, PredInst2Recipe, Plan); 7293 if (NextVPBB != VPBB) { 7294 VPBB = NextVPBB; 7295 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7296 : ""); 7297 } 7298 } 7299 } 7300 7301 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7302 // may also be empty, such as the last one VPBB, reflecting original 7303 // basic-blocks with no recipes. 7304 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7305 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7306 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7307 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7308 delete PreEntry; 7309 7310 // --------------------------------------------------------------------------- 7311 // Transform initial VPlan: Apply previously taken decisions, in order, to 7312 // bring the VPlan to its final state. 7313 // --------------------------------------------------------------------------- 7314 7315 // Apply Sink-After legal constraints. 7316 for (auto &Entry : SinkAfter) { 7317 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7318 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7319 Sink->moveAfter(Target); 7320 } 7321 7322 // Interleave memory: for each Interleave Group we marked earlier as relevant 7323 // for this VPlan, replace the Recipes widening its memory instructions with a 7324 // single VPInterleaveRecipe at its insertion point. 7325 for (auto IG : InterleaveGroups) { 7326 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7327 RecipeBuilder.getRecipe(IG->getInsertPos())); 7328 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7329 ->insertBefore(Recipe); 7330 7331 for (unsigned i = 0; i < IG->getFactor(); ++i) 7332 if (Instruction *Member = IG->getMember(i)) { 7333 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7334 } 7335 } 7336 7337 // Finally, if tail is folded by masking, introduce selects between the phi 7338 // and the live-out instruction of each reduction, at the end of the latch. 7339 if (CM.foldTailByMasking()) { 7340 Builder.setInsertPoint(VPBB); 7341 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7342 for (auto &Reduction : Legal->getReductionVars()) { 7343 VPValue *Phi = Plan->getVPValue(Reduction.first); 7344 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7345 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7346 } 7347 } 7348 7349 std::string PlanName; 7350 raw_string_ostream RSO(PlanName); 7351 unsigned VF = Range.Start; 7352 Plan->addVF(VF); 7353 RSO << "Initial VPlan for VF={" << VF; 7354 for (VF *= 2; VF < Range.End; VF *= 2) { 7355 Plan->addVF(VF); 7356 RSO << "," << VF; 7357 } 7358 RSO << "},UF>=1"; 7359 RSO.flush(); 7360 Plan->setName(PlanName); 7361 7362 return Plan; 7363 } 7364 7365 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7366 // Outer loop handling: They may require CFG and instruction level 7367 // transformations before even evaluating whether vectorization is profitable. 7368 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7369 // the vectorization pipeline. 7370 assert(!OrigLoop->empty()); 7371 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7372 7373 // Create new empty VPlan 7374 auto Plan = std::make_unique<VPlan>(); 7375 7376 // Build hierarchical CFG 7377 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7378 HCFGBuilder.buildHierarchicalCFG(); 7379 7380 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7381 Plan->addVF(VF); 7382 7383 if (EnableVPlanPredication) { 7384 VPlanPredicator VPP(*Plan); 7385 VPP.predicate(); 7386 7387 // Avoid running transformation to recipes until masked code generation in 7388 // VPlan-native path is in place. 7389 return Plan; 7390 } 7391 7392 SmallPtrSet<Instruction *, 1> DeadInstructions; 7393 VPlanTransforms::VPInstructionsToVPRecipes( 7394 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7395 return Plan; 7396 } 7397 7398 Value* LoopVectorizationPlanner::VPCallbackILV:: 7399 getOrCreateVectorValues(Value *V, unsigned Part) { 7400 return ILV.getOrCreateVectorValue(V, Part); 7401 } 7402 7403 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7404 Value *V, const VPIteration &Instance) { 7405 return ILV.getOrCreateScalarValue(V, Instance); 7406 } 7407 7408 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7409 VPSlotTracker &SlotTracker) const { 7410 O << " +\n" 7411 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7412 IG->getInsertPos()->printAsOperand(O, false); 7413 O << ", "; 7414 getAddr()->printAsOperand(O, SlotTracker); 7415 VPValue *Mask = getMask(); 7416 if (Mask) { 7417 O << ", "; 7418 Mask->printAsOperand(O, SlotTracker); 7419 } 7420 O << "\\l\""; 7421 for (unsigned i = 0; i < IG->getFactor(); ++i) 7422 if (Instruction *I = IG->getMember(i)) 7423 O << " +\n" 7424 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7425 } 7426 7427 void VPWidenCallRecipe::execute(VPTransformState &State) { 7428 State.ILV->widenCallInstruction(Ingredient, User, State); 7429 } 7430 7431 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7432 State.ILV->widenSelectInstruction(Ingredient, InvariantCond); 7433 } 7434 7435 void VPWidenRecipe::execute(VPTransformState &State) { 7436 State.ILV->widenInstruction(Ingredient, User, State); 7437 } 7438 7439 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7440 State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant, 7441 IsIndexLoopInvariant); 7442 } 7443 7444 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7445 assert(!State.Instance && "Int or FP induction being replicated."); 7446 State.ILV->widenIntOrFpInduction(IV, Trunc); 7447 } 7448 7449 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7450 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7451 } 7452 7453 void VPBlendRecipe::execute(VPTransformState &State) { 7454 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7455 // We know that all PHIs in non-header blocks are converted into 7456 // selects, so we don't have to worry about the insertion order and we 7457 // can just use the builder. 7458 // At this point we generate the predication tree. There may be 7459 // duplications since this is a simple recursive scan, but future 7460 // optimizations will clean it up. 7461 7462 unsigned NumIncoming = getNumIncomingValues(); 7463 7464 // Generate a sequence of selects of the form: 7465 // SELECT(Mask3, In3, 7466 // SELECT(Mask2, In2, 7467 // SELECT(Mask1, In1, 7468 // In0))) 7469 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7470 // are essentially undef are taken from In0. 7471 InnerLoopVectorizer::VectorParts Entry(State.UF); 7472 for (unsigned In = 0; In < NumIncoming; ++In) { 7473 for (unsigned Part = 0; Part < State.UF; ++Part) { 7474 // We might have single edge PHIs (blocks) - use an identity 7475 // 'select' for the first PHI operand. 7476 Value *In0 = State.get(getIncomingValue(In), Part); 7477 if (In == 0) 7478 Entry[Part] = In0; // Initialize with the first incoming value. 7479 else { 7480 // Select between the current value and the previous incoming edge 7481 // based on the incoming mask. 7482 Value *Cond = State.get(getMask(In), Part); 7483 Entry[Part] = 7484 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7485 } 7486 } 7487 } 7488 for (unsigned Part = 0; Part < State.UF; ++Part) 7489 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7490 } 7491 7492 void VPInterleaveRecipe::execute(VPTransformState &State) { 7493 assert(!State.Instance && "Interleave group being replicated."); 7494 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7495 } 7496 7497 void VPReplicateRecipe::execute(VPTransformState &State) { 7498 if (State.Instance) { // Generate a single instance. 7499 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7500 // Insert scalar instance packing it into a vector. 7501 if (AlsoPack && State.VF > 1) { 7502 // If we're constructing lane 0, initialize to start from undef. 7503 if (State.Instance->Lane == 0) { 7504 Value *Undef = 7505 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7506 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7507 } 7508 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7509 } 7510 return; 7511 } 7512 7513 // Generate scalar instances for all VF lanes of all UF parts, unless the 7514 // instruction is uniform inwhich case generate only the first lane for each 7515 // of the UF parts. 7516 unsigned EndLane = IsUniform ? 1 : State.VF; 7517 for (unsigned Part = 0; Part < State.UF; ++Part) 7518 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7519 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7520 } 7521 7522 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7523 assert(State.Instance && "Branch on Mask works only on single instance."); 7524 7525 unsigned Part = State.Instance->Part; 7526 unsigned Lane = State.Instance->Lane; 7527 7528 Value *ConditionBit = nullptr; 7529 if (!User) // Block in mask is all-one. 7530 ConditionBit = State.Builder.getTrue(); 7531 else { 7532 VPValue *BlockInMask = User->getOperand(0); 7533 ConditionBit = State.get(BlockInMask, Part); 7534 if (ConditionBit->getType()->isVectorTy()) 7535 ConditionBit = State.Builder.CreateExtractElement( 7536 ConditionBit, State.Builder.getInt32(Lane)); 7537 } 7538 7539 // Replace the temporary unreachable terminator with a new conditional branch, 7540 // whose two destinations will be set later when they are created. 7541 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7542 assert(isa<UnreachableInst>(CurrentTerminator) && 7543 "Expected to replace unreachable terminator with conditional branch."); 7544 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7545 CondBr->setSuccessor(0, nullptr); 7546 ReplaceInstWithInst(CurrentTerminator, CondBr); 7547 } 7548 7549 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7550 assert(State.Instance && "Predicated instruction PHI works per instance."); 7551 Instruction *ScalarPredInst = cast<Instruction>( 7552 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7553 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7554 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7555 assert(PredicatingBB && "Predicated block has no single predecessor."); 7556 7557 // By current pack/unpack logic we need to generate only a single phi node: if 7558 // a vector value for the predicated instruction exists at this point it means 7559 // the instruction has vector users only, and a phi for the vector value is 7560 // needed. In this case the recipe of the predicated instruction is marked to 7561 // also do that packing, thereby "hoisting" the insert-element sequence. 7562 // Otherwise, a phi node for the scalar value is needed. 7563 unsigned Part = State.Instance->Part; 7564 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7565 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7566 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7567 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7568 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7569 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7570 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7571 } else { 7572 Type *PredInstType = PredInst->getType(); 7573 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7574 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7575 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7576 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7577 } 7578 } 7579 7580 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7581 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7582 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7583 getMask()); 7584 } 7585 7586 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7587 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7588 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7589 // for predication. 7590 static ScalarEpilogueLowering getScalarEpilogueLowering( 7591 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7592 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7593 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7594 LoopVectorizationLegality &LVL) { 7595 bool OptSize = 7596 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7597 PGSOQueryType::IRPass); 7598 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7599 // don't look at hints or options, and don't request a scalar epilogue. 7600 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7601 return CM_ScalarEpilogueNotAllowedOptSize; 7602 7603 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7604 !PreferPredicateOverEpilog; 7605 7606 // 2) Next, if disabling predication is requested on the command line, honour 7607 // this and request a scalar epilogue. 7608 if (PredicateOptDisabled) 7609 return CM_ScalarEpilogueAllowed; 7610 7611 // 3) and 4) look if enabling predication is requested on the command line, 7612 // with a loop hint, or if the TTI hook indicates this is profitable, request 7613 // predication . 7614 if (PreferPredicateOverEpilog || 7615 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7616 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7617 LVL.getLAI()) && 7618 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7619 return CM_ScalarEpilogueNotNeededUsePredicate; 7620 7621 return CM_ScalarEpilogueAllowed; 7622 } 7623 7624 // Process the loop in the VPlan-native vectorization path. This path builds 7625 // VPlan upfront in the vectorization pipeline, which allows to apply 7626 // VPlan-to-VPlan transformations from the very beginning without modifying the 7627 // input LLVM IR. 7628 static bool processLoopInVPlanNativePath( 7629 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7630 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7631 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7632 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7633 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7634 7635 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7636 Function *F = L->getHeader()->getParent(); 7637 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7638 7639 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7640 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7641 7642 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7643 &Hints, IAI); 7644 // Use the planner for outer loop vectorization. 7645 // TODO: CM is not used at this point inside the planner. Turn CM into an 7646 // optional argument if we don't need it in the future. 7647 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7648 7649 // Get user vectorization factor. 7650 const unsigned UserVF = Hints.getWidth(); 7651 7652 // Plan how to best vectorize, return the best VF and its cost. 7653 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7654 7655 // If we are stress testing VPlan builds, do not attempt to generate vector 7656 // code. Masked vector code generation support will follow soon. 7657 // Also, do not attempt to vectorize if no vector code will be produced. 7658 if (VPlanBuildStressTest || EnableVPlanPredication || 7659 VectorizationFactor::Disabled() == VF) 7660 return false; 7661 7662 LVP.setBestPlan(VF.Width, 1); 7663 7664 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7665 &CM); 7666 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7667 << L->getHeader()->getParent()->getName() << "\"\n"); 7668 LVP.executePlan(LB, DT); 7669 7670 // Mark the loop as already vectorized to avoid vectorizing again. 7671 Hints.setAlreadyVectorized(); 7672 7673 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7674 return true; 7675 } 7676 7677 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7678 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7679 !EnableLoopInterleaving), 7680 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7681 !EnableLoopVectorization) {} 7682 7683 bool LoopVectorizePass::processLoop(Loop *L) { 7684 assert((EnableVPlanNativePath || L->empty()) && 7685 "VPlan-native path is not enabled. Only process inner loops."); 7686 7687 #ifndef NDEBUG 7688 const std::string DebugLocStr = getDebugLocString(L); 7689 #endif /* NDEBUG */ 7690 7691 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7692 << L->getHeader()->getParent()->getName() << "\" from " 7693 << DebugLocStr << "\n"); 7694 7695 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7696 7697 LLVM_DEBUG( 7698 dbgs() << "LV: Loop hints:" 7699 << " force=" 7700 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7701 ? "disabled" 7702 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7703 ? "enabled" 7704 : "?")) 7705 << " width=" << Hints.getWidth() 7706 << " unroll=" << Hints.getInterleave() << "\n"); 7707 7708 // Function containing loop 7709 Function *F = L->getHeader()->getParent(); 7710 7711 // Looking at the diagnostic output is the only way to determine if a loop 7712 // was vectorized (other than looking at the IR or machine code), so it 7713 // is important to generate an optimization remark for each loop. Most of 7714 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7715 // generated as OptimizationRemark and OptimizationRemarkMissed are 7716 // less verbose reporting vectorized loops and unvectorized loops that may 7717 // benefit from vectorization, respectively. 7718 7719 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7720 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7721 return false; 7722 } 7723 7724 PredicatedScalarEvolution PSE(*SE, *L); 7725 7726 // Check if it is legal to vectorize the loop. 7727 LoopVectorizationRequirements Requirements(*ORE); 7728 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7729 &Requirements, &Hints, DB, AC); 7730 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7731 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7732 Hints.emitRemarkWithHints(); 7733 return false; 7734 } 7735 7736 // Check the function attributes and profiles to find out if this function 7737 // should be optimized for size. 7738 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7739 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7740 7741 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7742 // here. They may require CFG and instruction level transformations before 7743 // even evaluating whether vectorization is profitable. Since we cannot modify 7744 // the incoming IR, we need to build VPlan upfront in the vectorization 7745 // pipeline. 7746 if (!L->empty()) 7747 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7748 ORE, BFI, PSI, Hints); 7749 7750 assert(L->empty() && "Inner loop expected."); 7751 7752 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7753 // count by optimizing for size, to minimize overheads. 7754 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7755 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7756 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7757 << "This loop is worth vectorizing only if no scalar " 7758 << "iteration overheads are incurred."); 7759 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7760 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7761 else { 7762 LLVM_DEBUG(dbgs() << "\n"); 7763 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7764 } 7765 } 7766 7767 // Check the function attributes to see if implicit floats are allowed. 7768 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7769 // an integer loop and the vector instructions selected are purely integer 7770 // vector instructions? 7771 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7772 reportVectorizationFailure( 7773 "Can't vectorize when the NoImplicitFloat attribute is used", 7774 "loop not vectorized due to NoImplicitFloat attribute", 7775 "NoImplicitFloat", ORE, L); 7776 Hints.emitRemarkWithHints(); 7777 return false; 7778 } 7779 7780 // Check if the target supports potentially unsafe FP vectorization. 7781 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7782 // for the target we're vectorizing for, to make sure none of the 7783 // additional fp-math flags can help. 7784 if (Hints.isPotentiallyUnsafe() && 7785 TTI->isFPVectorizationPotentiallyUnsafe()) { 7786 reportVectorizationFailure( 7787 "Potentially unsafe FP op prevents vectorization", 7788 "loop not vectorized due to unsafe FP support.", 7789 "UnsafeFP", ORE, L); 7790 Hints.emitRemarkWithHints(); 7791 return false; 7792 } 7793 7794 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7795 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7796 7797 // If an override option has been passed in for interleaved accesses, use it. 7798 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7799 UseInterleaved = EnableInterleavedMemAccesses; 7800 7801 // Analyze interleaved memory accesses. 7802 if (UseInterleaved) { 7803 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7804 } 7805 7806 // Use the cost model. 7807 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7808 F, &Hints, IAI); 7809 CM.collectValuesToIgnore(); 7810 7811 // Use the planner for vectorization. 7812 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7813 7814 // Get user vectorization factor. 7815 unsigned UserVF = Hints.getWidth(); 7816 7817 // Plan how to best vectorize, return the best VF and its cost. 7818 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF); 7819 7820 VectorizationFactor VF = VectorizationFactor::Disabled(); 7821 unsigned IC = 1; 7822 unsigned UserIC = Hints.getInterleave(); 7823 7824 if (MaybeVF) { 7825 VF = *MaybeVF; 7826 // Select the interleave count. 7827 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7828 } 7829 7830 // Identify the diagnostic messages that should be produced. 7831 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7832 bool VectorizeLoop = true, InterleaveLoop = true; 7833 if (Requirements.doesNotMeet(F, L, Hints)) { 7834 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7835 "requirements.\n"); 7836 Hints.emitRemarkWithHints(); 7837 return false; 7838 } 7839 7840 if (VF.Width == 1) { 7841 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7842 VecDiagMsg = std::make_pair( 7843 "VectorizationNotBeneficial", 7844 "the cost-model indicates that vectorization is not beneficial"); 7845 VectorizeLoop = false; 7846 } 7847 7848 if (!MaybeVF && UserIC > 1) { 7849 // Tell the user interleaving was avoided up-front, despite being explicitly 7850 // requested. 7851 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7852 "interleaving should be avoided up front\n"); 7853 IntDiagMsg = std::make_pair( 7854 "InterleavingAvoided", 7855 "Ignoring UserIC, because interleaving was avoided up front"); 7856 InterleaveLoop = false; 7857 } else if (IC == 1 && UserIC <= 1) { 7858 // Tell the user interleaving is not beneficial. 7859 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7860 IntDiagMsg = std::make_pair( 7861 "InterleavingNotBeneficial", 7862 "the cost-model indicates that interleaving is not beneficial"); 7863 InterleaveLoop = false; 7864 if (UserIC == 1) { 7865 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7866 IntDiagMsg.second += 7867 " and is explicitly disabled or interleave count is set to 1"; 7868 } 7869 } else if (IC > 1 && UserIC == 1) { 7870 // Tell the user interleaving is beneficial, but it explicitly disabled. 7871 LLVM_DEBUG( 7872 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7873 IntDiagMsg = std::make_pair( 7874 "InterleavingBeneficialButDisabled", 7875 "the cost-model indicates that interleaving is beneficial " 7876 "but is explicitly disabled or interleave count is set to 1"); 7877 InterleaveLoop = false; 7878 } 7879 7880 // Override IC if user provided an interleave count. 7881 IC = UserIC > 0 ? UserIC : IC; 7882 7883 // Emit diagnostic messages, if any. 7884 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7885 if (!VectorizeLoop && !InterleaveLoop) { 7886 // Do not vectorize or interleaving the loop. 7887 ORE->emit([&]() { 7888 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7889 L->getStartLoc(), L->getHeader()) 7890 << VecDiagMsg.second; 7891 }); 7892 ORE->emit([&]() { 7893 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7894 L->getStartLoc(), L->getHeader()) 7895 << IntDiagMsg.second; 7896 }); 7897 return false; 7898 } else if (!VectorizeLoop && InterleaveLoop) { 7899 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7900 ORE->emit([&]() { 7901 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7902 L->getStartLoc(), L->getHeader()) 7903 << VecDiagMsg.second; 7904 }); 7905 } else if (VectorizeLoop && !InterleaveLoop) { 7906 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7907 << ") in " << DebugLocStr << '\n'); 7908 ORE->emit([&]() { 7909 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7910 L->getStartLoc(), L->getHeader()) 7911 << IntDiagMsg.second; 7912 }); 7913 } else if (VectorizeLoop && InterleaveLoop) { 7914 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7915 << ") in " << DebugLocStr << '\n'); 7916 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7917 } 7918 7919 LVP.setBestPlan(VF.Width, IC); 7920 7921 using namespace ore; 7922 bool DisableRuntimeUnroll = false; 7923 MDNode *OrigLoopID = L->getLoopID(); 7924 7925 if (!VectorizeLoop) { 7926 assert(IC > 1 && "interleave count should not be 1 or 0"); 7927 // If we decided that it is not legal to vectorize the loop, then 7928 // interleave it. 7929 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7930 &CM); 7931 LVP.executePlan(Unroller, DT); 7932 7933 ORE->emit([&]() { 7934 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7935 L->getHeader()) 7936 << "interleaved loop (interleaved count: " 7937 << NV("InterleaveCount", IC) << ")"; 7938 }); 7939 } else { 7940 // If we decided that it is *legal* to vectorize the loop, then do it. 7941 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7942 &LVL, &CM); 7943 LVP.executePlan(LB, DT); 7944 ++LoopsVectorized; 7945 7946 // Add metadata to disable runtime unrolling a scalar loop when there are 7947 // no runtime checks about strides and memory. A scalar loop that is 7948 // rarely used is not worth unrolling. 7949 if (!LB.areSafetyChecksAdded()) 7950 DisableRuntimeUnroll = true; 7951 7952 // Report the vectorization decision. 7953 ORE->emit([&]() { 7954 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7955 L->getHeader()) 7956 << "vectorized loop (vectorization width: " 7957 << NV("VectorizationFactor", VF.Width) 7958 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7959 }); 7960 } 7961 7962 Optional<MDNode *> RemainderLoopID = 7963 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7964 LLVMLoopVectorizeFollowupEpilogue}); 7965 if (RemainderLoopID.hasValue()) { 7966 L->setLoopID(RemainderLoopID.getValue()); 7967 } else { 7968 if (DisableRuntimeUnroll) 7969 AddRuntimeUnrollDisableMetaData(L); 7970 7971 // Mark the loop as already vectorized to avoid vectorizing again. 7972 Hints.setAlreadyVectorized(); 7973 } 7974 7975 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7976 return true; 7977 } 7978 7979 LoopVectorizeResult LoopVectorizePass::runImpl( 7980 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7981 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7982 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7983 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7984 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7985 SE = &SE_; 7986 LI = &LI_; 7987 TTI = &TTI_; 7988 DT = &DT_; 7989 BFI = &BFI_; 7990 TLI = TLI_; 7991 AA = &AA_; 7992 AC = &AC_; 7993 GetLAA = &GetLAA_; 7994 DB = &DB_; 7995 ORE = &ORE_; 7996 PSI = PSI_; 7997 7998 // Don't attempt if 7999 // 1. the target claims to have no vector registers, and 8000 // 2. interleaving won't help ILP. 8001 // 8002 // The second condition is necessary because, even if the target has no 8003 // vector registers, loop vectorization may still enable scalar 8004 // interleaving. 8005 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8006 TTI->getMaxInterleaveFactor(1) < 2) 8007 return LoopVectorizeResult(false, false); 8008 8009 bool Changed = false, CFGChanged = false; 8010 8011 // The vectorizer requires loops to be in simplified form. 8012 // Since simplification may add new inner loops, it has to run before the 8013 // legality and profitability checks. This means running the loop vectorizer 8014 // will simplify all loops, regardless of whether anything end up being 8015 // vectorized. 8016 for (auto &L : *LI) 8017 Changed |= CFGChanged |= 8018 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8019 8020 // Build up a worklist of inner-loops to vectorize. This is necessary as 8021 // the act of vectorizing or partially unrolling a loop creates new loops 8022 // and can invalidate iterators across the loops. 8023 SmallVector<Loop *, 8> Worklist; 8024 8025 for (Loop *L : *LI) 8026 collectSupportedLoops(*L, LI, ORE, Worklist); 8027 8028 LoopsAnalyzed += Worklist.size(); 8029 8030 // Now walk the identified inner loops. 8031 while (!Worklist.empty()) { 8032 Loop *L = Worklist.pop_back_val(); 8033 8034 // For the inner loops we actually process, form LCSSA to simplify the 8035 // transform. 8036 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8037 8038 Changed |= CFGChanged |= processLoop(L); 8039 } 8040 8041 // Process each loop nest in the function. 8042 return LoopVectorizeResult(Changed, CFGChanged); 8043 } 8044 8045 PreservedAnalyses LoopVectorizePass::run(Function &F, 8046 FunctionAnalysisManager &AM) { 8047 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8048 auto &LI = AM.getResult<LoopAnalysis>(F); 8049 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8050 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8051 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8052 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8053 auto &AA = AM.getResult<AAManager>(F); 8054 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8055 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8056 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8057 MemorySSA *MSSA = EnableMSSALoopDependency 8058 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8059 : nullptr; 8060 8061 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8062 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8063 [&](Loop &L) -> const LoopAccessInfo & { 8064 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8065 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8066 }; 8067 const ModuleAnalysisManager &MAM = 8068 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 8069 ProfileSummaryInfo *PSI = 8070 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8071 LoopVectorizeResult Result = 8072 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8073 if (!Result.MadeAnyChange) 8074 return PreservedAnalyses::all(); 8075 PreservedAnalyses PA; 8076 8077 // We currently do not preserve loopinfo/dominator analyses with outer loop 8078 // vectorization. Until this is addressed, mark these analyses as preserved 8079 // only for non-VPlan-native path. 8080 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8081 if (!EnableVPlanNativePath) { 8082 PA.preserve<LoopAnalysis>(); 8083 PA.preserve<DominatorTreeAnalysis>(); 8084 } 8085 PA.preserve<BasicAA>(); 8086 PA.preserve<GlobalsAA>(); 8087 if (!Result.MadeCFGChange) 8088 PA.preserveSet<CFGAnalyses>(); 8089 return PA; 8090 } 8091