1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
182 // that predication is preferred, and this lists all options. I.e., the
183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
184 // and predicate the instructions accordingly. If tail-folding fails, there are
185 // different fallback strategies depending on these values:
186 namespace PreferPredicateTy {
187   enum Option {
188     ScalarEpilogue = 0,
189     PredicateElseScalarEpilogue,
190     PredicateOrDontVectorize
191   };
192 } // namespace PreferPredicateTy
193 
194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
195     "prefer-predicate-over-epilogue",
196     cl::init(PreferPredicateTy::ScalarEpilogue),
197     cl::Hidden,
198     cl::desc("Tail-folding and predication preferences over creating a scalar "
199              "epilogue loop."),
200     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
201                          "scalar-epilogue",
202                          "Don't tail-predicate loops, create scalar epilogue"),
203               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
204                          "predicate-else-scalar-epilogue",
205                          "prefer tail-folding, create scalar epilogue if tail "
206                          "folding fails."),
207               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
208                          "predicate-dont-vectorize",
209                          "prefers tail-folding, don't attempt vectorization if "
210                          "tail-folding fails.")));
211 
212 static cl::opt<bool> MaximizeBandwidth(
213     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
214     cl::desc("Maximize bandwidth when selecting vectorization factor which "
215              "will be determined by the smallest type in loop."));
216 
217 static cl::opt<bool> EnableInterleavedMemAccesses(
218     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
219     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
220 
221 /// An interleave-group may need masking if it resides in a block that needs
222 /// predication, or in order to mask away gaps.
223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
224     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
225     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
226 
227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
228     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
229     cl::desc("We don't interleave loops with a estimated constant trip count "
230              "below this number"));
231 
232 static cl::opt<unsigned> ForceTargetNumScalarRegs(
233     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
234     cl::desc("A flag that overrides the target's number of scalar registers."));
235 
236 static cl::opt<unsigned> ForceTargetNumVectorRegs(
237     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
238     cl::desc("A flag that overrides the target's number of vector registers."));
239 
240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
241     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
242     cl::desc("A flag that overrides the target's max interleave factor for "
243              "scalar loops."));
244 
245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
246     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
247     cl::desc("A flag that overrides the target's max interleave factor for "
248              "vectorized loops."));
249 
250 static cl::opt<unsigned> ForceTargetInstructionCost(
251     "force-target-instruction-cost", cl::init(0), cl::Hidden,
252     cl::desc("A flag that overrides the target's expected cost for "
253              "an instruction to a single constant value. Mostly "
254              "useful for getting consistent testing."));
255 
256 static cl::opt<unsigned> SmallLoopCost(
257     "small-loop-cost", cl::init(20), cl::Hidden,
258     cl::desc(
259         "The cost of a loop that is considered 'small' by the interleaver."));
260 
261 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
262     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
263     cl::desc("Enable the use of the block frequency analysis to access PGO "
264              "heuristics minimizing code growth in cold regions and being more "
265              "aggressive in hot regions."));
266 
267 // Runtime interleave loops for load/store throughput.
268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
269     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
270     cl::desc(
271         "Enable runtime interleaving until load/store ports are saturated"));
272 
273 /// Interleave small loops with scalar reductions.
274 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
275     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
276     cl::desc("Enable interleaving for loops with small iteration counts that "
277              "contain scalar reductions to expose ILP."));
278 
279 /// The number of stores in a loop that are allowed to need predication.
280 static cl::opt<unsigned> NumberOfStoresToPredicate(
281     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
282     cl::desc("Max number of stores to be predicated behind an if."));
283 
284 static cl::opt<bool> EnableIndVarRegisterHeur(
285     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
286     cl::desc("Count the induction variable only once when interleaving"));
287 
288 static cl::opt<bool> EnableCondStoresVectorization(
289     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
290     cl::desc("Enable if predication of stores during vectorization."));
291 
292 static cl::opt<unsigned> MaxNestedScalarReductionIC(
293     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
294     cl::desc("The maximum interleave count to use when interleaving a scalar "
295              "reduction in a nested loop."));
296 
297 static cl::opt<bool>
298     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
299                            cl::Hidden,
300                            cl::desc("Prefer in-loop vector reductions, "
301                                     "overriding the targets preference."));
302 
303 static cl::opt<bool> PreferPredicatedReductionSelect(
304     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
305     cl::desc(
306         "Prefer predicating a reduction operation over an after loop select."));
307 
308 cl::opt<bool> EnableVPlanNativePath(
309     "enable-vplan-native-path", cl::init(false), cl::Hidden,
310     cl::desc("Enable VPlan-native vectorization path with "
311              "support for outer loop vectorization."));
312 
313 // FIXME: Remove this switch once we have divergence analysis. Currently we
314 // assume divergent non-backedge branches when this switch is true.
315 cl::opt<bool> EnableVPlanPredication(
316     "enable-vplan-predication", cl::init(false), cl::Hidden,
317     cl::desc("Enable VPlan-native vectorization path predicator with "
318              "support for outer loop vectorization."));
319 
320 // This flag enables the stress testing of the VPlan H-CFG construction in the
321 // VPlan-native vectorization path. It must be used in conjuction with
322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
323 // verification of the H-CFGs built.
324 static cl::opt<bool> VPlanBuildStressTest(
325     "vplan-build-stress-test", cl::init(false), cl::Hidden,
326     cl::desc(
327         "Build VPlan for every supported loop nest in the function and bail "
328         "out right after the build (stress test the VPlan H-CFG construction "
329         "in the VPlan-native vectorization path)."));
330 
331 cl::opt<bool> llvm::EnableLoopInterleaving(
332     "interleave-loops", cl::init(true), cl::Hidden,
333     cl::desc("Enable loop interleaving in Loop vectorization passes"));
334 cl::opt<bool> llvm::EnableLoopVectorization(
335     "vectorize-loops", cl::init(true), cl::Hidden,
336     cl::desc("Run the Loop vectorization passes"));
337 
338 /// A helper function that returns the type of loaded or stored value.
339 static Type *getMemInstValueType(Value *I) {
340   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
341          "Expected Load or Store instruction");
342   if (auto *LI = dyn_cast<LoadInst>(I))
343     return LI->getType();
344   return cast<StoreInst>(I)->getValueOperand()->getType();
345 }
346 
347 /// A helper function that returns true if the given type is irregular. The
348 /// type is irregular if its allocated size doesn't equal the store size of an
349 /// element of the corresponding vector type at the given vectorization factor.
350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) {
351   assert(!VF.isScalable() && "scalable vectors not yet supported.");
352   // Determine if an array of VF elements of type Ty is "bitcast compatible"
353   // with a <VF x Ty> vector.
354   if (VF.isVector()) {
355     auto *VectorTy = VectorType::get(Ty, VF);
356     return TypeSize::get(VF.getKnownMinValue() *
357                              DL.getTypeAllocSize(Ty).getFixedValue(),
358                          VF.isScalable()) != DL.getTypeStoreSize(VectorTy);
359   }
360 
361   // If the vectorization factor is one, we just check if an array of type Ty
362   // requires padding between elements.
363   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
364 }
365 
366 /// A helper function that returns the reciprocal of the block probability of
367 /// predicated blocks. If we return X, we are assuming the predicated block
368 /// will execute once for every X iterations of the loop header.
369 ///
370 /// TODO: We should use actual block probability here, if available. Currently,
371 ///       we always assume predicated blocks have a 50% chance of executing.
372 static unsigned getReciprocalPredBlockProb() { return 2; }
373 
374 /// A helper function that adds a 'fast' flag to floating-point operations.
375 static Value *addFastMathFlag(Value *V) {
376   if (isa<FPMathOperator>(V))
377     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
378   return V;
379 }
380 
381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
382   if (isa<FPMathOperator>(V))
383     cast<Instruction>(V)->setFastMathFlags(FMF);
384   return V;
385 }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 namespace llvm {
418 
419 /// InnerLoopVectorizer vectorizes loops which contain only one basic
420 /// block to a specified vectorization factor (VF).
421 /// This class performs the widening of scalars into vectors, or multiple
422 /// scalars. This class also implements the following features:
423 /// * It inserts an epilogue loop for handling loops that don't have iteration
424 ///   counts that are known to be a multiple of the vectorization factor.
425 /// * It handles the code generation for reduction variables.
426 /// * Scalarization (implementation using scalars) of un-vectorizable
427 ///   instructions.
428 /// InnerLoopVectorizer does not perform any vectorization-legality
429 /// checks, and relies on the caller to check for the different legality
430 /// aspects. The InnerLoopVectorizer relies on the
431 /// LoopVectorizationLegality class to provide information about the induction
432 /// and reduction variables that were found to a given vectorization factor.
433 class InnerLoopVectorizer {
434 public:
435   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
436                       LoopInfo *LI, DominatorTree *DT,
437                       const TargetLibraryInfo *TLI,
438                       const TargetTransformInfo *TTI, AssumptionCache *AC,
439                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
440                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
441                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
442                       ProfileSummaryInfo *PSI)
443       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
444         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
445         Builder(PSE.getSE()->getContext()),
446         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM),
447         BFI(BFI), PSI(PSI) {
448     // Query this against the original loop and save it here because the profile
449     // of the original loop header may change as the transformation happens.
450     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
451         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
452   }
453 
454   virtual ~InnerLoopVectorizer() = default;
455 
456   /// Create a new empty loop that will contain vectorized instructions later
457   /// on, while the old loop will be used as the scalar remainder. Control flow
458   /// is generated around the vectorized (and scalar epilogue) loops consisting
459   /// of various checks and bypasses. Return the pre-header block of the new
460   /// loop.
461   BasicBlock *createVectorizedLoopSkeleton();
462 
463   /// Widen a single instruction within the innermost loop.
464   void widenInstruction(Instruction &I, VPUser &Operands,
465                         VPTransformState &State);
466 
467   /// Widen a single call instruction within the innermost loop.
468   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
469                             VPTransformState &State);
470 
471   /// Widen a single select instruction within the innermost loop.
472   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
473                               bool InvariantCond, VPTransformState &State);
474 
475   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
476   void fixVectorizedLoop();
477 
478   // Return true if any runtime check is added.
479   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
480 
481   /// A type for vectorized values in the new loop. Each value from the
482   /// original loop, when vectorized, is represented by UF vector values in the
483   /// new unrolled loop, where UF is the unroll factor.
484   using VectorParts = SmallVector<Value *, 2>;
485 
486   /// Vectorize a single GetElementPtrInst based on information gathered and
487   /// decisions taken during planning.
488   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
489                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
490                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
491 
492   /// Vectorize a single PHINode in a block. This method handles the induction
493   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
494   /// arbitrary length vectors.
495   void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF);
496 
497   /// A helper function to scalarize a single Instruction in the innermost loop.
498   /// Generates a sequence of scalar instances for each lane between \p MinLane
499   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
500   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
501   /// Instr's operands.
502   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
503                             const VPIteration &Instance, bool IfPredicateInstr,
504                             VPTransformState &State);
505 
506   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
507   /// is provided, the integer induction variable will first be truncated to
508   /// the corresponding type.
509   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
510 
511   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
512   /// vector or scalar value on-demand if one is not yet available. When
513   /// vectorizing a loop, we visit the definition of an instruction before its
514   /// uses. When visiting the definition, we either vectorize or scalarize the
515   /// instruction, creating an entry for it in the corresponding map. (In some
516   /// cases, such as induction variables, we will create both vector and scalar
517   /// entries.) Then, as we encounter uses of the definition, we derive values
518   /// for each scalar or vector use unless such a value is already available.
519   /// For example, if we scalarize a definition and one of its uses is vector,
520   /// we build the required vector on-demand with an insertelement sequence
521   /// when visiting the use. Otherwise, if the use is scalar, we can use the
522   /// existing scalar definition.
523   ///
524   /// Return a value in the new loop corresponding to \p V from the original
525   /// loop at unroll index \p Part. If the value has already been vectorized,
526   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
527   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
528   /// a new vector value on-demand by inserting the scalar values into a vector
529   /// with an insertelement sequence. If the value has been neither vectorized
530   /// nor scalarized, it must be loop invariant, so we simply broadcast the
531   /// value into a vector.
532   Value *getOrCreateVectorValue(Value *V, unsigned Part);
533 
534   void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) {
535     VectorLoopValueMap.setVectorValue(Scalar, Part, Vector);
536   }
537 
538   /// Return a value in the new loop corresponding to \p V from the original
539   /// loop at unroll and vector indices \p Instance. If the value has been
540   /// vectorized but not scalarized, the necessary extractelement instruction
541   /// will be generated.
542   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
543 
544   /// Construct the vector value of a scalarized value \p V one lane at a time.
545   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
546 
547   /// Try to vectorize interleaved access group \p Group with the base address
548   /// given in \p Addr, optionally masking the vector operations if \p
549   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
550   /// values in the vectorized loop.
551   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
552                                 VPTransformState &State, VPValue *Addr,
553                                 VPValue *BlockInMask = nullptr);
554 
555   /// Vectorize Load and Store instructions with the base address given in \p
556   /// Addr, optionally masking the vector operations if \p BlockInMask is
557   /// non-null. Use \p State to translate given VPValues to IR values in the
558   /// vectorized loop.
559   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
560                                   VPValue *Def, VPValue *Addr,
561                                   VPValue *StoredValue, VPValue *BlockInMask);
562 
563   /// Set the debug location in the builder using the debug location in
564   /// the instruction.
565   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
566 
567   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
568   void fixNonInductionPHIs(void);
569 
570 protected:
571   friend class LoopVectorizationPlanner;
572 
573   /// A small list of PHINodes.
574   using PhiVector = SmallVector<PHINode *, 4>;
575 
576   /// A type for scalarized values in the new loop. Each value from the
577   /// original loop, when scalarized, is represented by UF x VF scalar values
578   /// in the new unrolled loop, where UF is the unroll factor and VF is the
579   /// vectorization factor.
580   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
581 
582   /// Set up the values of the IVs correctly when exiting the vector loop.
583   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
584                     Value *CountRoundDown, Value *EndValue,
585                     BasicBlock *MiddleBlock);
586 
587   /// Create a new induction variable inside L.
588   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
589                                    Value *Step, Instruction *DL);
590 
591   /// Handle all cross-iteration phis in the header.
592   void fixCrossIterationPHIs();
593 
594   /// Fix a first-order recurrence. This is the second phase of vectorizing
595   /// this phi node.
596   void fixFirstOrderRecurrence(PHINode *Phi);
597 
598   /// Fix a reduction cross-iteration phi. This is the second phase of
599   /// vectorizing this phi node.
600   void fixReduction(PHINode *Phi);
601 
602   /// Clear NSW/NUW flags from reduction instructions if necessary.
603   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
604 
605   /// The Loop exit block may have single value PHI nodes with some
606   /// incoming value. While vectorizing we only handled real values
607   /// that were defined inside the loop and we should have one value for
608   /// each predecessor of its parent basic block. See PR14725.
609   void fixLCSSAPHIs();
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths();
618 
619   /// Create a broadcast instruction. This method generates a broadcast
620   /// instruction (shuffle) for loop invariant values and for the induction
621   /// value. If this is the induction variable then we extend it to N, N+1, ...
622   /// this is needed because each iteration in the loop corresponds to a SIMD
623   /// element.
624   virtual Value *getBroadcastInstrs(Value *V);
625 
626   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
627   /// to each vector element of Val. The sequence starts at StartIndex.
628   /// \p Opcode is relevant for FP induction variable.
629   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
630                                Instruction::BinaryOps Opcode =
631                                Instruction::BinaryOpsEnd);
632 
633   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
634   /// variable on which to base the steps, \p Step is the size of the step, and
635   /// \p EntryVal is the value from the original loop that maps to the steps.
636   /// Note that \p EntryVal doesn't have to be an induction variable - it
637   /// can also be a truncate instruction.
638   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
639                         const InductionDescriptor &ID);
640 
641   /// Create a vector induction phi node based on an existing scalar one. \p
642   /// EntryVal is the value from the original loop that maps to the vector phi
643   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
644   /// truncate instruction, instead of widening the original IV, we widen a
645   /// version of the IV truncated to \p EntryVal's type.
646   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
647                                        Value *Step, Instruction *EntryVal);
648 
649   /// Returns true if an instruction \p I should be scalarized instead of
650   /// vectorized for the chosen vectorization factor.
651   bool shouldScalarizeInstruction(Instruction *I) const;
652 
653   /// Returns true if we should generate a scalar version of \p IV.
654   bool needsScalarInduction(Instruction *IV) const;
655 
656   /// If there is a cast involved in the induction variable \p ID, which should
657   /// be ignored in the vectorized loop body, this function records the
658   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
659   /// cast. We had already proved that the casted Phi is equal to the uncasted
660   /// Phi in the vectorized loop (under a runtime guard), and therefore
661   /// there is no need to vectorize the cast - the same value can be used in the
662   /// vector loop for both the Phi and the cast.
663   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
664   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
665   ///
666   /// \p EntryVal is the value from the original loop that maps to the vector
667   /// phi node and is used to distinguish what is the IV currently being
668   /// processed - original one (if \p EntryVal is a phi corresponding to the
669   /// original IV) or the "newly-created" one based on the proof mentioned above
670   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
671   /// latter case \p EntryVal is a TruncInst and we must not record anything for
672   /// that IV, but it's error-prone to expect callers of this routine to care
673   /// about that, hence this explicit parameter.
674   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
675                                              const Instruction *EntryVal,
676                                              Value *VectorLoopValue,
677                                              unsigned Part,
678                                              unsigned Lane = UINT_MAX);
679 
680   /// Generate a shuffle sequence that will reverse the vector Vec.
681   virtual Value *reverseVector(Value *Vec);
682 
683   /// Returns (and creates if needed) the original loop trip count.
684   Value *getOrCreateTripCount(Loop *NewLoop);
685 
686   /// Returns (and creates if needed) the trip count of the widened loop.
687   Value *getOrCreateVectorTripCount(Loop *NewLoop);
688 
689   /// Returns a bitcasted value to the requested vector type.
690   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
691   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
692                                 const DataLayout &DL);
693 
694   /// Emit a bypass check to see if the vector trip count is zero, including if
695   /// it overflows.
696   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
697 
698   /// Emit a bypass check to see if all of the SCEV assumptions we've
699   /// had to make are correct.
700   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
701 
702   /// Emit bypass checks to check any memory assumptions we may have made.
703   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   void createInductionResumeValues(Loop *L, Value *VectorTripCount);
724 
725   /// Complete the loop skeleton by adding debug MDs, creating appropriate
726   /// conditional branches in the middle block, preparing the builder and
727   /// running the verifier. Take in the vector loop \p L as argument, and return
728   /// the preheader of the completed vector loop.
729   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
730 
731   /// Add additional metadata to \p To that was not present on \p Orig.
732   ///
733   /// Currently this is used to add the noalias annotations based on the
734   /// inserted memchecks.  Use this for instructions that are *cloned* into the
735   /// vector loop.
736   void addNewMetadata(Instruction *To, const Instruction *Orig);
737 
738   /// Add metadata from one instruction to another.
739   ///
740   /// This includes both the original MDs from \p From and additional ones (\see
741   /// addNewMetadata).  Use this for *newly created* instructions in the vector
742   /// loop.
743   void addMetadata(Instruction *To, Instruction *From);
744 
745   /// Similar to the previous function but it adds the metadata to a
746   /// vector of instructions.
747   void addMetadata(ArrayRef<Value *> To, Instruction *From);
748 
749   /// The original loop.
750   Loop *OrigLoop;
751 
752   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
753   /// dynamic knowledge to simplify SCEV expressions and converts them to a
754   /// more usable form.
755   PredicatedScalarEvolution &PSE;
756 
757   /// Loop Info.
758   LoopInfo *LI;
759 
760   /// Dominator Tree.
761   DominatorTree *DT;
762 
763   /// Alias Analysis.
764   AAResults *AA;
765 
766   /// Target Library Info.
767   const TargetLibraryInfo *TLI;
768 
769   /// Target Transform Info.
770   const TargetTransformInfo *TTI;
771 
772   /// Assumption Cache.
773   AssumptionCache *AC;
774 
775   /// Interface to emit optimization remarks.
776   OptimizationRemarkEmitter *ORE;
777 
778   /// LoopVersioning.  It's only set up (non-null) if memchecks were
779   /// used.
780   ///
781   /// This is currently only used to add no-alias metadata based on the
782   /// memchecks.  The actually versioning is performed manually.
783   std::unique_ptr<LoopVersioning> LVer;
784 
785   /// The vectorization SIMD factor to use. Each vector will have this many
786   /// vector elements.
787   ElementCount VF;
788 
789   /// The vectorization unroll factor to use. Each scalar is vectorized to this
790   /// many different vector instructions.
791   unsigned UF;
792 
793   /// The builder that we use
794   IRBuilder<> Builder;
795 
796   // --- Vectorization state ---
797 
798   /// The vector-loop preheader.
799   BasicBlock *LoopVectorPreHeader;
800 
801   /// The scalar-loop preheader.
802   BasicBlock *LoopScalarPreHeader;
803 
804   /// Middle Block between the vector and the scalar.
805   BasicBlock *LoopMiddleBlock;
806 
807   /// The ExitBlock of the scalar loop.
808   BasicBlock *LoopExitBlock;
809 
810   /// The vector loop body.
811   BasicBlock *LoopVectorBody;
812 
813   /// The scalar loop body.
814   BasicBlock *LoopScalarBody;
815 
816   /// A list of all bypass blocks. The first block is the entry of the loop.
817   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
818 
819   /// The new Induction variable which was added to the new block.
820   PHINode *Induction = nullptr;
821 
822   /// The induction variable of the old basic block.
823   PHINode *OldInduction = nullptr;
824 
825   /// Maps values from the original loop to their corresponding values in the
826   /// vectorized loop. A key value can map to either vector values, scalar
827   /// values or both kinds of values, depending on whether the key was
828   /// vectorized and scalarized.
829   VectorizerValueMap VectorLoopValueMap;
830 
831   /// Store instructions that were predicated.
832   SmallVector<Instruction *, 4> PredicatedInstructions;
833 
834   /// Trip count of the original loop.
835   Value *TripCount = nullptr;
836 
837   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
838   Value *VectorTripCount = nullptr;
839 
840   /// The legality analysis.
841   LoopVectorizationLegality *Legal;
842 
843   /// The profitablity analysis.
844   LoopVectorizationCostModel *Cost;
845 
846   // Record whether runtime checks are added.
847   bool AddedSafetyChecks = false;
848 
849   // Holds the end values for each induction variable. We save the end values
850   // so we can later fix-up the external users of the induction variables.
851   DenseMap<PHINode *, Value *> IVEndValues;
852 
853   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
854   // fixed up at the end of vector code generation.
855   SmallVector<PHINode *, 8> OrigPHIsToFix;
856 
857   /// BFI and PSI are used to check for profile guided size optimizations.
858   BlockFrequencyInfo *BFI;
859   ProfileSummaryInfo *PSI;
860 
861   // Whether this loop should be optimized for size based on profile guided size
862   // optimizatios.
863   bool OptForSizeBasedOnProfile;
864 };
865 
866 class InnerLoopUnroller : public InnerLoopVectorizer {
867 public:
868   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
869                     LoopInfo *LI, DominatorTree *DT,
870                     const TargetLibraryInfo *TLI,
871                     const TargetTransformInfo *TTI, AssumptionCache *AC,
872                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
873                     LoopVectorizationLegality *LVL,
874                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
875                     ProfileSummaryInfo *PSI)
876       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
877                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
878                             BFI, PSI) {}
879 
880 private:
881   Value *getBroadcastInstrs(Value *V) override;
882   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
883                        Instruction::BinaryOps Opcode =
884                        Instruction::BinaryOpsEnd) override;
885   Value *reverseVector(Value *Vec) override;
886 };
887 
888 } // end namespace llvm
889 
890 /// Look for a meaningful debug location on the instruction or it's
891 /// operands.
892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
893   if (!I)
894     return I;
895 
896   DebugLoc Empty;
897   if (I->getDebugLoc() != Empty)
898     return I;
899 
900   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
901     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
902       if (OpInst->getDebugLoc() != Empty)
903         return OpInst;
904   }
905 
906   return I;
907 }
908 
909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
910   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
911     const DILocation *DIL = Inst->getDebugLoc();
912     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
913         !isa<DbgInfoIntrinsic>(Inst)) {
914       assert(!VF.isScalable() && "scalable vectors not yet supported.");
915       auto NewDIL =
916           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
917       if (NewDIL)
918         B.SetCurrentDebugLocation(NewDIL.getValue());
919       else
920         LLVM_DEBUG(dbgs()
921                    << "Failed to create new discriminator: "
922                    << DIL->getFilename() << " Line: " << DIL->getLine());
923     }
924     else
925       B.SetCurrentDebugLocation(DIL);
926   } else
927     B.SetCurrentDebugLocation(DebugLoc());
928 }
929 
930 /// Write a record \p DebugMsg about vectorization failure to the debug
931 /// output stream. If \p I is passed, it is an instruction that prevents
932 /// vectorization.
933 #ifndef NDEBUG
934 static void debugVectorizationFailure(const StringRef DebugMsg,
935     Instruction *I) {
936   dbgs() << "LV: Not vectorizing: " << DebugMsg;
937   if (I != nullptr)
938     dbgs() << " " << *I;
939   else
940     dbgs() << '.';
941   dbgs() << '\n';
942 }
943 #endif
944 
945 /// Create an analysis remark that explains why vectorization failed
946 ///
947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
948 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
949 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
950 /// the location of the remark.  \return the remark object that can be
951 /// streamed to.
952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
953     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
954   Value *CodeRegion = TheLoop->getHeader();
955   DebugLoc DL = TheLoop->getStartLoc();
956 
957   if (I) {
958     CodeRegion = I->getParent();
959     // If there is no debug location attached to the instruction, revert back to
960     // using the loop's.
961     if (I->getDebugLoc())
962       DL = I->getDebugLoc();
963   }
964 
965   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
966   R << "loop not vectorized: ";
967   return R;
968 }
969 
970 namespace llvm {
971 
972 void reportVectorizationFailure(const StringRef DebugMsg,
973     const StringRef OREMsg, const StringRef ORETag,
974     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
975   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
976   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
977   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
978                 ORETag, TheLoop, I) << OREMsg);
979 }
980 
981 } // end namespace llvm
982 
983 #ifndef NDEBUG
984 /// \return string containing a file name and a line # for the given loop.
985 static std::string getDebugLocString(const Loop *L) {
986   std::string Result;
987   if (L) {
988     raw_string_ostream OS(Result);
989     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
990       LoopDbgLoc.print(OS);
991     else
992       // Just print the module name.
993       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
994     OS.flush();
995   }
996   return Result;
997 }
998 #endif
999 
1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1001                                          const Instruction *Orig) {
1002   // If the loop was versioned with memchecks, add the corresponding no-alias
1003   // metadata.
1004   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1005     LVer->annotateInstWithNoAlias(To, Orig);
1006 }
1007 
1008 void InnerLoopVectorizer::addMetadata(Instruction *To,
1009                                       Instruction *From) {
1010   propagateMetadata(To, From);
1011   addNewMetadata(To, From);
1012 }
1013 
1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1015                                       Instruction *From) {
1016   for (Value *V : To) {
1017     if (Instruction *I = dyn_cast<Instruction>(V))
1018       addMetadata(I, From);
1019   }
1020 }
1021 
1022 namespace llvm {
1023 
1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1025 // lowered.
1026 enum ScalarEpilogueLowering {
1027 
1028   // The default: allowing scalar epilogues.
1029   CM_ScalarEpilogueAllowed,
1030 
1031   // Vectorization with OptForSize: don't allow epilogues.
1032   CM_ScalarEpilogueNotAllowedOptSize,
1033 
1034   // A special case of vectorisation with OptForSize: loops with a very small
1035   // trip count are considered for vectorization under OptForSize, thereby
1036   // making sure the cost of their loop body is dominant, free of runtime
1037   // guards and scalar iteration overheads.
1038   CM_ScalarEpilogueNotAllowedLowTripLoop,
1039 
1040   // Loop hint predicate indicating an epilogue is undesired.
1041   CM_ScalarEpilogueNotNeededUsePredicate
1042 };
1043 
1044 /// LoopVectorizationCostModel - estimates the expected speedups due to
1045 /// vectorization.
1046 /// In many cases vectorization is not profitable. This can happen because of
1047 /// a number of reasons. In this class we mainly attempt to predict the
1048 /// expected speedup/slowdowns due to the supported instruction set. We use the
1049 /// TargetTransformInfo to query the different backends for the cost of
1050 /// different operations.
1051 class LoopVectorizationCostModel {
1052 public:
1053   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1054                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1055                              LoopVectorizationLegality *Legal,
1056                              const TargetTransformInfo &TTI,
1057                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1058                              AssumptionCache *AC,
1059                              OptimizationRemarkEmitter *ORE, const Function *F,
1060                              const LoopVectorizeHints *Hints,
1061                              InterleavedAccessInfo &IAI)
1062       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1063         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1064         Hints(Hints), InterleaveInfo(IAI) {}
1065 
1066   /// \return An upper bound for the vectorization factor, or None if
1067   /// vectorization and interleaving should be avoided up front.
1068   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1069 
1070   /// \return True if runtime checks are required for vectorization, and false
1071   /// otherwise.
1072   bool runtimeChecksRequired();
1073 
1074   /// \return The most profitable vectorization factor and the cost of that VF.
1075   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1076   /// then this vectorization factor will be selected if vectorization is
1077   /// possible.
1078   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1079 
1080   /// Setup cost-based decisions for user vectorization factor.
1081   void selectUserVectorizationFactor(ElementCount UserVF) {
1082     collectUniformsAndScalars(UserVF);
1083     collectInstsToScalarize(UserVF);
1084   }
1085 
1086   /// \return The size (in bits) of the smallest and widest types in the code
1087   /// that needs to be vectorized. We ignore values that remain scalar such as
1088   /// 64 bit loop indices.
1089   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1090 
1091   /// \return The desired interleave count.
1092   /// If interleave count has been specified by metadata it will be returned.
1093   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1094   /// are the selected vectorization factor and the cost of the selected VF.
1095   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1096 
1097   /// Memory access instruction may be vectorized in more than one way.
1098   /// Form of instruction after vectorization depends on cost.
1099   /// This function takes cost-based decisions for Load/Store instructions
1100   /// and collects them in a map. This decisions map is used for building
1101   /// the lists of loop-uniform and loop-scalar instructions.
1102   /// The calculated cost is saved with widening decision in order to
1103   /// avoid redundant calculations.
1104   void setCostBasedWideningDecision(ElementCount VF);
1105 
1106   /// A struct that represents some properties of the register usage
1107   /// of a loop.
1108   struct RegisterUsage {
1109     /// Holds the number of loop invariant values that are used in the loop.
1110     /// The key is ClassID of target-provided register class.
1111     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1112     /// Holds the maximum number of concurrent live intervals in the loop.
1113     /// The key is ClassID of target-provided register class.
1114     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1115   };
1116 
1117   /// \return Returns information about the register usages of the loop for the
1118   /// given vectorization factors.
1119   SmallVector<RegisterUsage, 8>
1120   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1121 
1122   /// Collect values we want to ignore in the cost model.
1123   void collectValuesToIgnore();
1124 
1125   /// Split reductions into those that happen in the loop, and those that happen
1126   /// outside. In loop reductions are collected into InLoopReductionChains.
1127   void collectInLoopReductions();
1128 
1129   /// \returns The smallest bitwidth each instruction can be represented with.
1130   /// The vector equivalents of these instructions should be truncated to this
1131   /// type.
1132   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1133     return MinBWs;
1134   }
1135 
1136   /// \returns True if it is more profitable to scalarize instruction \p I for
1137   /// vectorization factor \p VF.
1138   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1139     assert(VF.isVector() &&
1140            "Profitable to scalarize relevant only for VF > 1.");
1141 
1142     // Cost model is not run in the VPlan-native path - return conservative
1143     // result until this changes.
1144     if (EnableVPlanNativePath)
1145       return false;
1146 
1147     auto Scalars = InstsToScalarize.find(VF);
1148     assert(Scalars != InstsToScalarize.end() &&
1149            "VF not yet analyzed for scalarization profitability");
1150     return Scalars->second.find(I) != Scalars->second.end();
1151   }
1152 
1153   /// Returns true if \p I is known to be uniform after vectorization.
1154   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1155     if (VF.isScalar())
1156       return true;
1157 
1158     // Cost model is not run in the VPlan-native path - return conservative
1159     // result until this changes.
1160     if (EnableVPlanNativePath)
1161       return false;
1162 
1163     auto UniformsPerVF = Uniforms.find(VF);
1164     assert(UniformsPerVF != Uniforms.end() &&
1165            "VF not yet analyzed for uniformity");
1166     return UniformsPerVF->second.count(I);
1167   }
1168 
1169   /// Returns true if \p I is known to be scalar after vectorization.
1170   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1171     if (VF.isScalar())
1172       return true;
1173 
1174     // Cost model is not run in the VPlan-native path - return conservative
1175     // result until this changes.
1176     if (EnableVPlanNativePath)
1177       return false;
1178 
1179     auto ScalarsPerVF = Scalars.find(VF);
1180     assert(ScalarsPerVF != Scalars.end() &&
1181            "Scalar values are not calculated for VF");
1182     return ScalarsPerVF->second.count(I);
1183   }
1184 
1185   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1186   /// for vectorization factor \p VF.
1187   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1188     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1189            !isProfitableToScalarize(I, VF) &&
1190            !isScalarAfterVectorization(I, VF);
1191   }
1192 
1193   /// Decision that was taken during cost calculation for memory instruction.
1194   enum InstWidening {
1195     CM_Unknown,
1196     CM_Widen,         // For consecutive accesses with stride +1.
1197     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1198     CM_Interleave,
1199     CM_GatherScatter,
1200     CM_Scalarize
1201   };
1202 
1203   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1204   /// instruction \p I and vector width \p VF.
1205   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1206                            unsigned Cost) {
1207     assert(VF.isVector() && "Expected VF >=2");
1208     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1209   }
1210 
1211   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1212   /// interleaving group \p Grp and vector width \p VF.
1213   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1214                            ElementCount VF, InstWidening W, unsigned Cost) {
1215     assert(VF.isVector() && "Expected VF >=2");
1216     /// Broadcast this decicion to all instructions inside the group.
1217     /// But the cost will be assigned to one instruction only.
1218     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1219       if (auto *I = Grp->getMember(i)) {
1220         if (Grp->getInsertPos() == I)
1221           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1222         else
1223           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1224       }
1225     }
1226   }
1227 
1228   /// Return the cost model decision for the given instruction \p I and vector
1229   /// width \p VF. Return CM_Unknown if this instruction did not pass
1230   /// through the cost modeling.
1231   InstWidening getWideningDecision(Instruction *I, ElementCount VF) {
1232     assert(!VF.isScalable() && "scalable vectors not yet supported.");
1233     assert(VF.isVector() && "Expected VF >=2");
1234 
1235     // Cost model is not run in the VPlan-native path - return conservative
1236     // result until this changes.
1237     if (EnableVPlanNativePath)
1238       return CM_GatherScatter;
1239 
1240     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1241     auto Itr = WideningDecisions.find(InstOnVF);
1242     if (Itr == WideningDecisions.end())
1243       return CM_Unknown;
1244     return Itr->second.first;
1245   }
1246 
1247   /// Return the vectorization cost for the given instruction \p I and vector
1248   /// width \p VF.
1249   unsigned getWideningCost(Instruction *I, ElementCount VF) {
1250     assert(VF.isVector() && "Expected VF >=2");
1251     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1252     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1253            "The cost is not calculated");
1254     return WideningDecisions[InstOnVF].second;
1255   }
1256 
1257   /// Return True if instruction \p I is an optimizable truncate whose operand
1258   /// is an induction variable. Such a truncate will be removed by adding a new
1259   /// induction variable with the destination type.
1260   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1261     // If the instruction is not a truncate, return false.
1262     auto *Trunc = dyn_cast<TruncInst>(I);
1263     if (!Trunc)
1264       return false;
1265 
1266     // Get the source and destination types of the truncate.
1267     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1268     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1269 
1270     // If the truncate is free for the given types, return false. Replacing a
1271     // free truncate with an induction variable would add an induction variable
1272     // update instruction to each iteration of the loop. We exclude from this
1273     // check the primary induction variable since it will need an update
1274     // instruction regardless.
1275     Value *Op = Trunc->getOperand(0);
1276     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1277       return false;
1278 
1279     // If the truncated value is not an induction variable, return false.
1280     return Legal->isInductionPhi(Op);
1281   }
1282 
1283   /// Collects the instructions to scalarize for each predicated instruction in
1284   /// the loop.
1285   void collectInstsToScalarize(ElementCount VF);
1286 
1287   /// Collect Uniform and Scalar values for the given \p VF.
1288   /// The sets depend on CM decision for Load/Store instructions
1289   /// that may be vectorized as interleave, gather-scatter or scalarized.
1290   void collectUniformsAndScalars(ElementCount VF) {
1291     // Do the analysis once.
1292     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1293       return;
1294     setCostBasedWideningDecision(VF);
1295     collectLoopUniforms(VF);
1296     collectLoopScalars(VF);
1297   }
1298 
1299   /// Returns true if the target machine supports masked store operation
1300   /// for the given \p DataType and kind of access to \p Ptr.
1301   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1302     return Legal->isConsecutivePtr(Ptr) &&
1303            TTI.isLegalMaskedStore(DataType, Alignment);
1304   }
1305 
1306   /// Returns true if the target machine supports masked load operation
1307   /// for the given \p DataType and kind of access to \p Ptr.
1308   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1309     return Legal->isConsecutivePtr(Ptr) &&
1310            TTI.isLegalMaskedLoad(DataType, Alignment);
1311   }
1312 
1313   /// Returns true if the target machine supports masked scatter operation
1314   /// for the given \p DataType.
1315   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1316     return TTI.isLegalMaskedScatter(DataType, Alignment);
1317   }
1318 
1319   /// Returns true if the target machine supports masked gather operation
1320   /// for the given \p DataType.
1321   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1322     return TTI.isLegalMaskedGather(DataType, Alignment);
1323   }
1324 
1325   /// Returns true if the target machine can represent \p V as a masked gather
1326   /// or scatter operation.
1327   bool isLegalGatherOrScatter(Value *V) {
1328     bool LI = isa<LoadInst>(V);
1329     bool SI = isa<StoreInst>(V);
1330     if (!LI && !SI)
1331       return false;
1332     auto *Ty = getMemInstValueType(V);
1333     Align Align = getLoadStoreAlignment(V);
1334     return (LI && isLegalMaskedGather(Ty, Align)) ||
1335            (SI && isLegalMaskedScatter(Ty, Align));
1336   }
1337 
1338   /// Returns true if \p I is an instruction that will be scalarized with
1339   /// predication. Such instructions include conditional stores and
1340   /// instructions that may divide by zero.
1341   /// If a non-zero VF has been calculated, we check if I will be scalarized
1342   /// predication for that VF.
1343   bool isScalarWithPredication(Instruction *I,
1344                                ElementCount VF = ElementCount::getFixed(1));
1345 
1346   // Returns true if \p I is an instruction that will be predicated either
1347   // through scalar predication or masked load/store or masked gather/scatter.
1348   // Superset of instructions that return true for isScalarWithPredication.
1349   bool isPredicatedInst(Instruction *I) {
1350     if (!blockNeedsPredication(I->getParent()))
1351       return false;
1352     // Loads and stores that need some form of masked operation are predicated
1353     // instructions.
1354     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1355       return Legal->isMaskRequired(I);
1356     return isScalarWithPredication(I);
1357   }
1358 
1359   /// Returns true if \p I is a memory instruction with consecutive memory
1360   /// access that can be widened.
1361   bool
1362   memoryInstructionCanBeWidened(Instruction *I,
1363                                 ElementCount VF = ElementCount::getFixed(1));
1364 
1365   /// Returns true if \p I is a memory instruction in an interleaved-group
1366   /// of memory accesses that can be vectorized with wide vector loads/stores
1367   /// and shuffles.
1368   bool
1369   interleavedAccessCanBeWidened(Instruction *I,
1370                                 ElementCount VF = ElementCount::getFixed(1));
1371 
1372   /// Check if \p Instr belongs to any interleaved access group.
1373   bool isAccessInterleaved(Instruction *Instr) {
1374     return InterleaveInfo.isInterleaved(Instr);
1375   }
1376 
1377   /// Get the interleaved access group that \p Instr belongs to.
1378   const InterleaveGroup<Instruction> *
1379   getInterleavedAccessGroup(Instruction *Instr) {
1380     return InterleaveInfo.getInterleaveGroup(Instr);
1381   }
1382 
1383   /// Returns true if an interleaved group requires a scalar iteration
1384   /// to handle accesses with gaps, and there is nothing preventing us from
1385   /// creating a scalar epilogue.
1386   bool requiresScalarEpilogue() const {
1387     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1388   }
1389 
1390   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1391   /// loop hint annotation.
1392   bool isScalarEpilogueAllowed() const {
1393     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1394   }
1395 
1396   /// Returns true if all loop blocks should be masked to fold tail loop.
1397   bool foldTailByMasking() const { return FoldTailByMasking; }
1398 
1399   bool blockNeedsPredication(BasicBlock *BB) {
1400     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1401   }
1402 
1403   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1404   /// nodes to the chain of instructions representing the reductions. Uses a
1405   /// MapVector to ensure deterministic iteration order.
1406   using ReductionChainMap =
1407       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1408 
1409   /// Return the chain of instructions representing an inloop reduction.
1410   const ReductionChainMap &getInLoopReductionChains() const {
1411     return InLoopReductionChains;
1412   }
1413 
1414   /// Returns true if the Phi is part of an inloop reduction.
1415   bool isInLoopReduction(PHINode *Phi) const {
1416     return InLoopReductionChains.count(Phi);
1417   }
1418 
1419   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1420   /// with factor VF.  Return the cost of the instruction, including
1421   /// scalarization overhead if it's needed.
1422   unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF);
1423 
1424   /// Estimate cost of a call instruction CI if it were vectorized with factor
1425   /// VF. Return the cost of the instruction, including scalarization overhead
1426   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1427   /// scalarized -
1428   /// i.e. either vector version isn't available, or is too expensive.
1429   unsigned getVectorCallCost(CallInst *CI, ElementCount VF,
1430                              bool &NeedToScalarize);
1431 
1432   /// Invalidates decisions already taken by the cost model.
1433   void invalidateCostModelingDecisions() {
1434     WideningDecisions.clear();
1435     Uniforms.clear();
1436     Scalars.clear();
1437   }
1438 
1439 private:
1440   unsigned NumPredStores = 0;
1441 
1442   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1443   /// than zero. One is returned if vectorization should best be avoided due
1444   /// to cost.
1445   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount);
1446 
1447   /// The vectorization cost is a combination of the cost itself and a boolean
1448   /// indicating whether any of the contributing operations will actually
1449   /// operate on
1450   /// vector values after type legalization in the backend. If this latter value
1451   /// is
1452   /// false, then all operations will be scalarized (i.e. no vectorization has
1453   /// actually taken place).
1454   using VectorizationCostTy = std::pair<unsigned, bool>;
1455 
1456   /// Returns the expected execution cost. The unit of the cost does
1457   /// not matter because we use the 'cost' units to compare different
1458   /// vector widths. The cost that is returned is *not* normalized by
1459   /// the factor width.
1460   VectorizationCostTy expectedCost(ElementCount VF);
1461 
1462   /// Returns the execution time cost of an instruction for a given vector
1463   /// width. Vector width of one means scalar.
1464   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1465 
1466   /// The cost-computation logic from getInstructionCost which provides
1467   /// the vector type as an output parameter.
1468   unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy);
1469 
1470   /// Calculate vectorization cost of memory instruction \p I.
1471   unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF);
1472 
1473   /// The cost computation for scalarized memory instruction.
1474   unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1475 
1476   /// The cost computation for interleaving group of memory instructions.
1477   unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF);
1478 
1479   /// The cost computation for Gather/Scatter instruction.
1480   unsigned getGatherScatterCost(Instruction *I, ElementCount VF);
1481 
1482   /// The cost computation for widening instruction \p I with consecutive
1483   /// memory access.
1484   unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1485 
1486   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1487   /// Load: scalar load + broadcast.
1488   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1489   /// element)
1490   unsigned getUniformMemOpCost(Instruction *I, ElementCount VF);
1491 
1492   /// Estimate the overhead of scalarizing an instruction. This is a
1493   /// convenience wrapper for the type-based getScalarizationOverhead API.
1494   unsigned getScalarizationOverhead(Instruction *I, ElementCount VF);
1495 
1496   /// Returns whether the instruction is a load or store and will be a emitted
1497   /// as a vector operation.
1498   bool isConsecutiveLoadOrStore(Instruction *I);
1499 
1500   /// Returns true if an artificially high cost for emulated masked memrefs
1501   /// should be used.
1502   bool useEmulatedMaskMemRefHack(Instruction *I);
1503 
1504   /// Map of scalar integer values to the smallest bitwidth they can be legally
1505   /// represented as. The vector equivalents of these values should be truncated
1506   /// to this type.
1507   MapVector<Instruction *, uint64_t> MinBWs;
1508 
1509   /// A type representing the costs for instructions if they were to be
1510   /// scalarized rather than vectorized. The entries are Instruction-Cost
1511   /// pairs.
1512   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1513 
1514   /// A set containing all BasicBlocks that are known to present after
1515   /// vectorization as a predicated block.
1516   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1517 
1518   /// Records whether it is allowed to have the original scalar loop execute at
1519   /// least once. This may be needed as a fallback loop in case runtime
1520   /// aliasing/dependence checks fail, or to handle the tail/remainder
1521   /// iterations when the trip count is unknown or doesn't divide by the VF,
1522   /// or as a peel-loop to handle gaps in interleave-groups.
1523   /// Under optsize and when the trip count is very small we don't allow any
1524   /// iterations to execute in the scalar loop.
1525   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1526 
1527   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1528   bool FoldTailByMasking = false;
1529 
1530   /// A map holding scalar costs for different vectorization factors. The
1531   /// presence of a cost for an instruction in the mapping indicates that the
1532   /// instruction will be scalarized when vectorizing with the associated
1533   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1534   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1535 
1536   /// Holds the instructions known to be uniform after vectorization.
1537   /// The data is collected per VF.
1538   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1539 
1540   /// Holds the instructions known to be scalar after vectorization.
1541   /// The data is collected per VF.
1542   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1543 
1544   /// Holds the instructions (address computations) that are forced to be
1545   /// scalarized.
1546   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1547 
1548   /// PHINodes of the reductions that should be expanded in-loop along with
1549   /// their associated chains of reduction operations, in program order from top
1550   /// (PHI) to bottom
1551   ReductionChainMap InLoopReductionChains;
1552 
1553   /// Returns the expected difference in cost from scalarizing the expression
1554   /// feeding a predicated instruction \p PredInst. The instructions to
1555   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1556   /// non-negative return value implies the expression will be scalarized.
1557   /// Currently, only single-use chains are considered for scalarization.
1558   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1559                               ElementCount VF);
1560 
1561   /// Collect the instructions that are uniform after vectorization. An
1562   /// instruction is uniform if we represent it with a single scalar value in
1563   /// the vectorized loop corresponding to each vector iteration. Examples of
1564   /// uniform instructions include pointer operands of consecutive or
1565   /// interleaved memory accesses. Note that although uniformity implies an
1566   /// instruction will be scalar, the reverse is not true. In general, a
1567   /// scalarized instruction will be represented by VF scalar values in the
1568   /// vectorized loop, each corresponding to an iteration of the original
1569   /// scalar loop.
1570   void collectLoopUniforms(ElementCount VF);
1571 
1572   /// Collect the instructions that are scalar after vectorization. An
1573   /// instruction is scalar if it is known to be uniform or will be scalarized
1574   /// during vectorization. Non-uniform scalarized instructions will be
1575   /// represented by VF values in the vectorized loop, each corresponding to an
1576   /// iteration of the original scalar loop.
1577   void collectLoopScalars(ElementCount VF);
1578 
1579   /// Keeps cost model vectorization decision and cost for instructions.
1580   /// Right now it is used for memory instructions only.
1581   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1582                                 std::pair<InstWidening, unsigned>>;
1583 
1584   DecisionList WideningDecisions;
1585 
1586   /// Returns true if \p V is expected to be vectorized and it needs to be
1587   /// extracted.
1588   bool needsExtract(Value *V, ElementCount VF) const {
1589     Instruction *I = dyn_cast<Instruction>(V);
1590     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1591         TheLoop->isLoopInvariant(I))
1592       return false;
1593 
1594     // Assume we can vectorize V (and hence we need extraction) if the
1595     // scalars are not computed yet. This can happen, because it is called
1596     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1597     // the scalars are collected. That should be a safe assumption in most
1598     // cases, because we check if the operands have vectorizable types
1599     // beforehand in LoopVectorizationLegality.
1600     return Scalars.find(VF) == Scalars.end() ||
1601            !isScalarAfterVectorization(I, VF);
1602   };
1603 
1604   /// Returns a range containing only operands needing to be extracted.
1605   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1606                                                    ElementCount VF) {
1607     return SmallVector<Value *, 4>(make_filter_range(
1608         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1609   }
1610 
1611 public:
1612   /// The loop that we evaluate.
1613   Loop *TheLoop;
1614 
1615   /// Predicated scalar evolution analysis.
1616   PredicatedScalarEvolution &PSE;
1617 
1618   /// Loop Info analysis.
1619   LoopInfo *LI;
1620 
1621   /// Vectorization legality.
1622   LoopVectorizationLegality *Legal;
1623 
1624   /// Vector target information.
1625   const TargetTransformInfo &TTI;
1626 
1627   /// Target Library Info.
1628   const TargetLibraryInfo *TLI;
1629 
1630   /// Demanded bits analysis.
1631   DemandedBits *DB;
1632 
1633   /// Assumption cache.
1634   AssumptionCache *AC;
1635 
1636   /// Interface to emit optimization remarks.
1637   OptimizationRemarkEmitter *ORE;
1638 
1639   const Function *TheFunction;
1640 
1641   /// Loop Vectorize Hint.
1642   const LoopVectorizeHints *Hints;
1643 
1644   /// The interleave access information contains groups of interleaved accesses
1645   /// with the same stride and close to each other.
1646   InterleavedAccessInfo &InterleaveInfo;
1647 
1648   /// Values to ignore in the cost model.
1649   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1650 
1651   /// Values to ignore in the cost model when VF > 1.
1652   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1653 };
1654 
1655 } // end namespace llvm
1656 
1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1658 // vectorization. The loop needs to be annotated with #pragma omp simd
1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1660 // vector length information is not provided, vectorization is not considered
1661 // explicit. Interleave hints are not allowed either. These limitations will be
1662 // relaxed in the future.
1663 // Please, note that we are currently forced to abuse the pragma 'clang
1664 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1666 // provides *explicit vectorization hints* (LV can bypass legal checks and
1667 // assume that vectorization is legal). However, both hints are implemented
1668 // using the same metadata (llvm.loop.vectorize, processed by
1669 // LoopVectorizeHints). This will be fixed in the future when the native IR
1670 // representation for pragma 'omp simd' is introduced.
1671 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1672                                    OptimizationRemarkEmitter *ORE) {
1673   assert(!OuterLp->isInnermost() && "This is not an outer loop");
1674   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1675 
1676   // Only outer loops with an explicit vectorization hint are supported.
1677   // Unannotated outer loops are ignored.
1678   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1679     return false;
1680 
1681   Function *Fn = OuterLp->getHeader()->getParent();
1682   if (!Hints.allowVectorization(Fn, OuterLp,
1683                                 true /*VectorizeOnlyWhenForced*/)) {
1684     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1685     return false;
1686   }
1687 
1688   if (Hints.getInterleave() > 1) {
1689     // TODO: Interleave support is future work.
1690     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1691                          "outer loops.\n");
1692     Hints.emitRemarkWithHints();
1693     return false;
1694   }
1695 
1696   return true;
1697 }
1698 
1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1700                                   OptimizationRemarkEmitter *ORE,
1701                                   SmallVectorImpl<Loop *> &V) {
1702   // Collect inner loops and outer loops without irreducible control flow. For
1703   // now, only collect outer loops that have explicit vectorization hints. If we
1704   // are stress testing the VPlan H-CFG construction, we collect the outermost
1705   // loop of every loop nest.
1706   if (L.isInnermost() || VPlanBuildStressTest ||
1707       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1708     LoopBlocksRPO RPOT(&L);
1709     RPOT.perform(LI);
1710     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1711       V.push_back(&L);
1712       // TODO: Collect inner loops inside marked outer loops in case
1713       // vectorization fails for the outer loop. Do not invoke
1714       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1715       // already known to be reducible. We can use an inherited attribute for
1716       // that.
1717       return;
1718     }
1719   }
1720   for (Loop *InnerL : L)
1721     collectSupportedLoops(*InnerL, LI, ORE, V);
1722 }
1723 
1724 namespace {
1725 
1726 /// The LoopVectorize Pass.
1727 struct LoopVectorize : public FunctionPass {
1728   /// Pass identification, replacement for typeid
1729   static char ID;
1730 
1731   LoopVectorizePass Impl;
1732 
1733   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1734                          bool VectorizeOnlyWhenForced = false)
1735       : FunctionPass(ID),
1736         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1737     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1738   }
1739 
1740   bool runOnFunction(Function &F) override {
1741     if (skipFunction(F))
1742       return false;
1743 
1744     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1745     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1746     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1747     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1748     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1749     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1750     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1751     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1752     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1753     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1754     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1755     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1756     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1757 
1758     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1759         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1760 
1761     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1762                         GetLAA, *ORE, PSI).MadeAnyChange;
1763   }
1764 
1765   void getAnalysisUsage(AnalysisUsage &AU) const override {
1766     AU.addRequired<AssumptionCacheTracker>();
1767     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1768     AU.addRequired<DominatorTreeWrapperPass>();
1769     AU.addRequired<LoopInfoWrapperPass>();
1770     AU.addRequired<ScalarEvolutionWrapperPass>();
1771     AU.addRequired<TargetTransformInfoWrapperPass>();
1772     AU.addRequired<AAResultsWrapperPass>();
1773     AU.addRequired<LoopAccessLegacyAnalysis>();
1774     AU.addRequired<DemandedBitsWrapperPass>();
1775     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1776     AU.addRequired<InjectTLIMappingsLegacy>();
1777 
1778     // We currently do not preserve loopinfo/dominator analyses with outer loop
1779     // vectorization. Until this is addressed, mark these analyses as preserved
1780     // only for non-VPlan-native path.
1781     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1782     if (!EnableVPlanNativePath) {
1783       AU.addPreserved<LoopInfoWrapperPass>();
1784       AU.addPreserved<DominatorTreeWrapperPass>();
1785     }
1786 
1787     AU.addPreserved<BasicAAWrapperPass>();
1788     AU.addPreserved<GlobalsAAWrapperPass>();
1789     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1790   }
1791 };
1792 
1793 } // end anonymous namespace
1794 
1795 //===----------------------------------------------------------------------===//
1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1797 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1798 //===----------------------------------------------------------------------===//
1799 
1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1801   // We need to place the broadcast of invariant variables outside the loop,
1802   // but only if it's proven safe to do so. Else, broadcast will be inside
1803   // vector loop body.
1804   Instruction *Instr = dyn_cast<Instruction>(V);
1805   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1806                      (!Instr ||
1807                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1808   // Place the code for broadcasting invariant variables in the new preheader.
1809   IRBuilder<>::InsertPointGuard Guard(Builder);
1810   if (SafeToHoist)
1811     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1812 
1813   // Broadcast the scalar into all locations in the vector.
1814   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1815 
1816   return Shuf;
1817 }
1818 
1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1820     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1821   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1822          "Expected either an induction phi-node or a truncate of it!");
1823   Value *Start = II.getStartValue();
1824 
1825   // Construct the initial value of the vector IV in the vector loop preheader
1826   auto CurrIP = Builder.saveIP();
1827   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1828   if (isa<TruncInst>(EntryVal)) {
1829     assert(Start->getType()->isIntegerTy() &&
1830            "Truncation requires an integer type");
1831     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1832     Step = Builder.CreateTrunc(Step, TruncType);
1833     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1834   }
1835   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1836   Value *SteppedStart =
1837       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1838 
1839   // We create vector phi nodes for both integer and floating-point induction
1840   // variables. Here, we determine the kind of arithmetic we will perform.
1841   Instruction::BinaryOps AddOp;
1842   Instruction::BinaryOps MulOp;
1843   if (Step->getType()->isIntegerTy()) {
1844     AddOp = Instruction::Add;
1845     MulOp = Instruction::Mul;
1846   } else {
1847     AddOp = II.getInductionOpcode();
1848     MulOp = Instruction::FMul;
1849   }
1850 
1851   // Multiply the vectorization factor by the step using integer or
1852   // floating-point arithmetic as appropriate.
1853   Value *ConstVF =
1854       getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue());
1855   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1856 
1857   // Create a vector splat to use in the induction update.
1858   //
1859   // FIXME: If the step is non-constant, we create the vector splat with
1860   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1861   //        handle a constant vector splat.
1862   assert(!VF.isScalable() && "scalable vectors not yet supported.");
1863   Value *SplatVF = isa<Constant>(Mul)
1864                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
1865                        : Builder.CreateVectorSplat(VF, Mul);
1866   Builder.restoreIP(CurrIP);
1867 
1868   // We may need to add the step a number of times, depending on the unroll
1869   // factor. The last of those goes into the PHI.
1870   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1871                                     &*LoopVectorBody->getFirstInsertionPt());
1872   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1873   Instruction *LastInduction = VecInd;
1874   for (unsigned Part = 0; Part < UF; ++Part) {
1875     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1876 
1877     if (isa<TruncInst>(EntryVal))
1878       addMetadata(LastInduction, EntryVal);
1879     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1880 
1881     LastInduction = cast<Instruction>(addFastMathFlag(
1882         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1883     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1884   }
1885 
1886   // Move the last step to the end of the latch block. This ensures consistent
1887   // placement of all induction updates.
1888   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1889   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1890   auto *ICmp = cast<Instruction>(Br->getCondition());
1891   LastInduction->moveBefore(ICmp);
1892   LastInduction->setName("vec.ind.next");
1893 
1894   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1895   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1896 }
1897 
1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1899   return Cost->isScalarAfterVectorization(I, VF) ||
1900          Cost->isProfitableToScalarize(I, VF);
1901 }
1902 
1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1904   if (shouldScalarizeInstruction(IV))
1905     return true;
1906   auto isScalarInst = [&](User *U) -> bool {
1907     auto *I = cast<Instruction>(U);
1908     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1909   };
1910   return llvm::any_of(IV->users(), isScalarInst);
1911 }
1912 
1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1914     const InductionDescriptor &ID, const Instruction *EntryVal,
1915     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1916   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1917          "Expected either an induction phi-node or a truncate of it!");
1918 
1919   // This induction variable is not the phi from the original loop but the
1920   // newly-created IV based on the proof that casted Phi is equal to the
1921   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1922   // re-uses the same InductionDescriptor that original IV uses but we don't
1923   // have to do any recording in this case - that is done when original IV is
1924   // processed.
1925   if (isa<TruncInst>(EntryVal))
1926     return;
1927 
1928   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1929   if (Casts.empty())
1930     return;
1931   // Only the first Cast instruction in the Casts vector is of interest.
1932   // The rest of the Casts (if exist) have no uses outside the
1933   // induction update chain itself.
1934   Instruction *CastInst = *Casts.begin();
1935   if (Lane < UINT_MAX)
1936     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1937   else
1938     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1939 }
1940 
1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1942   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1943          "Primary induction variable must have an integer type");
1944 
1945   auto II = Legal->getInductionVars().find(IV);
1946   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1947 
1948   auto ID = II->second;
1949   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1950 
1951   // The value from the original loop to which we are mapping the new induction
1952   // variable.
1953   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1954 
1955   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1956 
1957   // Generate code for the induction step. Note that induction steps are
1958   // required to be loop-invariant
1959   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1960     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1961            "Induction step should be loop invariant");
1962     if (PSE.getSE()->isSCEVable(IV->getType())) {
1963       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1964       return Exp.expandCodeFor(Step, Step->getType(),
1965                                LoopVectorPreHeader->getTerminator());
1966     }
1967     return cast<SCEVUnknown>(Step)->getValue();
1968   };
1969 
1970   // The scalar value to broadcast. This is derived from the canonical
1971   // induction variable. If a truncation type is given, truncate the canonical
1972   // induction variable and step. Otherwise, derive these values from the
1973   // induction descriptor.
1974   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1975     Value *ScalarIV = Induction;
1976     if (IV != OldInduction) {
1977       ScalarIV = IV->getType()->isIntegerTy()
1978                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1979                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1980                                           IV->getType());
1981       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1982       ScalarIV->setName("offset.idx");
1983     }
1984     if (Trunc) {
1985       auto *TruncType = cast<IntegerType>(Trunc->getType());
1986       assert(Step->getType()->isIntegerTy() &&
1987              "Truncation requires an integer step");
1988       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1989       Step = Builder.CreateTrunc(Step, TruncType);
1990     }
1991     return ScalarIV;
1992   };
1993 
1994   // Create the vector values from the scalar IV, in the absence of creating a
1995   // vector IV.
1996   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1997     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1998     for (unsigned Part = 0; Part < UF; ++Part) {
1999       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2000       Value *EntryPart =
2001           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2002                         ID.getInductionOpcode());
2003       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2004       if (Trunc)
2005         addMetadata(EntryPart, Trunc);
2006       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2007     }
2008   };
2009 
2010   // Now do the actual transformations, and start with creating the step value.
2011   Value *Step = CreateStepValue(ID.getStep());
2012   if (VF.isZero() || VF.isScalar()) {
2013     Value *ScalarIV = CreateScalarIV(Step);
2014     CreateSplatIV(ScalarIV, Step);
2015     return;
2016   }
2017 
2018   // Determine if we want a scalar version of the induction variable. This is
2019   // true if the induction variable itself is not widened, or if it has at
2020   // least one user in the loop that is not widened.
2021   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2022   if (!NeedsScalarIV) {
2023     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2024     return;
2025   }
2026 
2027   // Try to create a new independent vector induction variable. If we can't
2028   // create the phi node, we will splat the scalar induction variable in each
2029   // loop iteration.
2030   if (!shouldScalarizeInstruction(EntryVal)) {
2031     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2032     Value *ScalarIV = CreateScalarIV(Step);
2033     // Create scalar steps that can be used by instructions we will later
2034     // scalarize. Note that the addition of the scalar steps will not increase
2035     // the number of instructions in the loop in the common case prior to
2036     // InstCombine. We will be trading one vector extract for each scalar step.
2037     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2038     return;
2039   }
2040 
2041   // All IV users are scalar instructions, so only emit a scalar IV, not a
2042   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2043   // predicate used by the masked loads/stores.
2044   Value *ScalarIV = CreateScalarIV(Step);
2045   if (!Cost->isScalarEpilogueAllowed())
2046     CreateSplatIV(ScalarIV, Step);
2047   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2048 }
2049 
2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2051                                           Instruction::BinaryOps BinOp) {
2052   // Create and check the types.
2053   auto *ValVTy = cast<FixedVectorType>(Val->getType());
2054   int VLen = ValVTy->getNumElements();
2055 
2056   Type *STy = Val->getType()->getScalarType();
2057   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2058          "Induction Step must be an integer or FP");
2059   assert(Step->getType() == STy && "Step has wrong type");
2060 
2061   SmallVector<Constant *, 8> Indices;
2062 
2063   if (STy->isIntegerTy()) {
2064     // Create a vector of consecutive numbers from zero to VF.
2065     for (int i = 0; i < VLen; ++i)
2066       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2067 
2068     // Add the consecutive indices to the vector value.
2069     Constant *Cv = ConstantVector::get(Indices);
2070     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2071     Step = Builder.CreateVectorSplat(VLen, Step);
2072     assert(Step->getType() == Val->getType() && "Invalid step vec");
2073     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2074     // which can be found from the original scalar operations.
2075     Step = Builder.CreateMul(Cv, Step);
2076     return Builder.CreateAdd(Val, Step, "induction");
2077   }
2078 
2079   // Floating point induction.
2080   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2081          "Binary Opcode should be specified for FP induction");
2082   // Create a vector of consecutive numbers from zero to VF.
2083   for (int i = 0; i < VLen; ++i)
2084     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2085 
2086   // Add the consecutive indices to the vector value.
2087   Constant *Cv = ConstantVector::get(Indices);
2088 
2089   Step = Builder.CreateVectorSplat(VLen, Step);
2090 
2091   // Floating point operations had to be 'fast' to enable the induction.
2092   FastMathFlags Flags;
2093   Flags.setFast();
2094 
2095   Value *MulOp = Builder.CreateFMul(Cv, Step);
2096   if (isa<Instruction>(MulOp))
2097     // Have to check, MulOp may be a constant
2098     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2099 
2100   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2101   if (isa<Instruction>(BOp))
2102     cast<Instruction>(BOp)->setFastMathFlags(Flags);
2103   return BOp;
2104 }
2105 
2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2107                                            Instruction *EntryVal,
2108                                            const InductionDescriptor &ID) {
2109   // We shouldn't have to build scalar steps if we aren't vectorizing.
2110   assert(VF.isVector() && "VF should be greater than one");
2111   assert(!VF.isScalable() &&
2112          "the code below assumes a fixed number of elements at compile time");
2113   // Get the value type and ensure it and the step have the same integer type.
2114   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2115   assert(ScalarIVTy == Step->getType() &&
2116          "Val and Step should have the same type");
2117 
2118   // We build scalar steps for both integer and floating-point induction
2119   // variables. Here, we determine the kind of arithmetic we will perform.
2120   Instruction::BinaryOps AddOp;
2121   Instruction::BinaryOps MulOp;
2122   if (ScalarIVTy->isIntegerTy()) {
2123     AddOp = Instruction::Add;
2124     MulOp = Instruction::Mul;
2125   } else {
2126     AddOp = ID.getInductionOpcode();
2127     MulOp = Instruction::FMul;
2128   }
2129 
2130   // Determine the number of scalars we need to generate for each unroll
2131   // iteration. If EntryVal is uniform, we only need to generate the first
2132   // lane. Otherwise, we generate all VF values.
2133   unsigned Lanes =
2134       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF)
2135           ? 1
2136           : VF.getKnownMinValue();
2137   // Compute the scalar steps and save the results in VectorLoopValueMap.
2138   for (unsigned Part = 0; Part < UF; ++Part) {
2139     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2140       auto *StartIdx = getSignedIntOrFpConstant(
2141           ScalarIVTy, VF.getKnownMinValue() * Part + Lane);
2142       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2143       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2144       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2145       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2146     }
2147   }
2148 }
2149 
2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2151   assert(V != Induction && "The new induction variable should not be used.");
2152   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2153   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2154 
2155   // If we have a stride that is replaced by one, do it here. Defer this for
2156   // the VPlan-native path until we start running Legal checks in that path.
2157   if (!EnableVPlanNativePath && Legal->hasStride(V))
2158     V = ConstantInt::get(V->getType(), 1);
2159 
2160   // If we have a vector mapped to this value, return it.
2161   if (VectorLoopValueMap.hasVectorValue(V, Part))
2162     return VectorLoopValueMap.getVectorValue(V, Part);
2163 
2164   // If the value has not been vectorized, check if it has been scalarized
2165   // instead. If it has been scalarized, and we actually need the value in
2166   // vector form, we will construct the vector values on demand.
2167   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2168     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2169 
2170     // If we've scalarized a value, that value should be an instruction.
2171     auto *I = cast<Instruction>(V);
2172 
2173     // If we aren't vectorizing, we can just copy the scalar map values over to
2174     // the vector map.
2175     if (VF.isScalar()) {
2176       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2177       return ScalarValue;
2178     }
2179 
2180     // Get the last scalar instruction we generated for V and Part. If the value
2181     // is known to be uniform after vectorization, this corresponds to lane zero
2182     // of the Part unroll iteration. Otherwise, the last instruction is the one
2183     // we created for the last vector lane of the Part unroll iteration.
2184     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2185     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF)
2186                             ? 0
2187                             : VF.getKnownMinValue() - 1;
2188     auto *LastInst = cast<Instruction>(
2189         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2190 
2191     // Set the insert point after the last scalarized instruction. This ensures
2192     // the insertelement sequence will directly follow the scalar definitions.
2193     auto OldIP = Builder.saveIP();
2194     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2195     Builder.SetInsertPoint(&*NewIP);
2196 
2197     // However, if we are vectorizing, we need to construct the vector values.
2198     // If the value is known to be uniform after vectorization, we can just
2199     // broadcast the scalar value corresponding to lane zero for each unroll
2200     // iteration. Otherwise, we construct the vector values using insertelement
2201     // instructions. Since the resulting vectors are stored in
2202     // VectorLoopValueMap, we will only generate the insertelements once.
2203     Value *VectorValue = nullptr;
2204     if (Cost->isUniformAfterVectorization(I, VF)) {
2205       VectorValue = getBroadcastInstrs(ScalarValue);
2206       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2207     } else {
2208       // Initialize packing with insertelements to start from undef.
2209       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2210       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2211       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2212       for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
2213         packScalarIntoVectorValue(V, {Part, Lane});
2214       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2215     }
2216     Builder.restoreIP(OldIP);
2217     return VectorValue;
2218   }
2219 
2220   // If this scalar is unknown, assume that it is a constant or that it is
2221   // loop invariant. Broadcast V and save the value for future uses.
2222   Value *B = getBroadcastInstrs(V);
2223   VectorLoopValueMap.setVectorValue(V, Part, B);
2224   return B;
2225 }
2226 
2227 Value *
2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2229                                             const VPIteration &Instance) {
2230   // If the value is not an instruction contained in the loop, it should
2231   // already be scalar.
2232   if (OrigLoop->isLoopInvariant(V))
2233     return V;
2234 
2235   assert(Instance.Lane > 0
2236              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2237              : true && "Uniform values only have lane zero");
2238 
2239   // If the value from the original loop has not been vectorized, it is
2240   // represented by UF x VF scalar values in the new loop. Return the requested
2241   // scalar value.
2242   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2243     return VectorLoopValueMap.getScalarValue(V, Instance);
2244 
2245   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2246   // for the given unroll part. If this entry is not a vector type (i.e., the
2247   // vectorization factor is one), there is no need to generate an
2248   // extractelement instruction.
2249   auto *U = getOrCreateVectorValue(V, Instance.Part);
2250   if (!U->getType()->isVectorTy()) {
2251     assert(VF.isScalar() && "Value not scalarized has non-vector type");
2252     return U;
2253   }
2254 
2255   // Otherwise, the value from the original loop has been vectorized and is
2256   // represented by UF vector values. Extract and return the requested scalar
2257   // value from the appropriate vector lane.
2258   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2259 }
2260 
2261 void InnerLoopVectorizer::packScalarIntoVectorValue(
2262     Value *V, const VPIteration &Instance) {
2263   assert(V != Induction && "The new induction variable should not be used.");
2264   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2265   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2266 
2267   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2268   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2269   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2270                                             Builder.getInt32(Instance.Lane));
2271   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2272 }
2273 
2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2275   assert(Vec->getType()->isVectorTy() && "Invalid type");
2276   assert(!VF.isScalable() && "Cannot reverse scalable vectors");
2277   SmallVector<int, 8> ShuffleMask;
2278   for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
2279     ShuffleMask.push_back(VF.getKnownMinValue() - i - 1);
2280 
2281   return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse");
2282 }
2283 
2284 // Return whether we allow using masked interleave-groups (for dealing with
2285 // strided loads/stores that reside in predicated blocks, or for dealing
2286 // with gaps).
2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2288   // If an override option has been passed in for interleaved accesses, use it.
2289   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2290     return EnableMaskedInterleavedMemAccesses;
2291 
2292   return TTI.enableMaskedInterleavedAccessVectorization();
2293 }
2294 
2295 // Try to vectorize the interleave group that \p Instr belongs to.
2296 //
2297 // E.g. Translate following interleaved load group (factor = 3):
2298 //   for (i = 0; i < N; i+=3) {
2299 //     R = Pic[i];             // Member of index 0
2300 //     G = Pic[i+1];           // Member of index 1
2301 //     B = Pic[i+2];           // Member of index 2
2302 //     ... // do something to R, G, B
2303 //   }
2304 // To:
2305 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2306 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2307 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2308 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2309 //
2310 // Or translate following interleaved store group (factor = 3):
2311 //   for (i = 0; i < N; i+=3) {
2312 //     ... do something to R, G, B
2313 //     Pic[i]   = R;           // Member of index 0
2314 //     Pic[i+1] = G;           // Member of index 1
2315 //     Pic[i+2] = B;           // Member of index 2
2316 //   }
2317 // To:
2318 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2319 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2320 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2321 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2322 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2323 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2324     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2325     VPValue *Addr, VPValue *BlockInMask) {
2326   Instruction *Instr = Group->getInsertPos();
2327   const DataLayout &DL = Instr->getModule()->getDataLayout();
2328 
2329   // Prepare for the vector type of the interleaved load/store.
2330   Type *ScalarTy = getMemInstValueType(Instr);
2331   unsigned InterleaveFactor = Group->getFactor();
2332   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2333   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2334 
2335   // Prepare for the new pointers.
2336   SmallVector<Value *, 2> AddrParts;
2337   unsigned Index = Group->getIndex(Instr);
2338 
2339   // TODO: extend the masked interleaved-group support to reversed access.
2340   assert((!BlockInMask || !Group->isReverse()) &&
2341          "Reversed masked interleave-group not supported.");
2342 
2343   // If the group is reverse, adjust the index to refer to the last vector lane
2344   // instead of the first. We adjust the index from the first vector lane,
2345   // rather than directly getting the pointer for lane VF - 1, because the
2346   // pointer operand of the interleaved access is supposed to be uniform. For
2347   // uniform instructions, we're only required to generate a value for the
2348   // first vector lane in each unroll iteration.
2349   assert(!VF.isScalable() &&
2350          "scalable vector reverse operation is not implemented");
2351   if (Group->isReverse())
2352     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2353 
2354   for (unsigned Part = 0; Part < UF; Part++) {
2355     Value *AddrPart = State.get(Addr, {Part, 0});
2356     setDebugLocFromInst(Builder, AddrPart);
2357 
2358     // Notice current instruction could be any index. Need to adjust the address
2359     // to the member of index 0.
2360     //
2361     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2362     //       b = A[i];       // Member of index 0
2363     // Current pointer is pointed to A[i+1], adjust it to A[i].
2364     //
2365     // E.g.  A[i+1] = a;     // Member of index 1
2366     //       A[i]   = b;     // Member of index 0
2367     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2368     // Current pointer is pointed to A[i+2], adjust it to A[i].
2369 
2370     bool InBounds = false;
2371     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2372       InBounds = gep->isInBounds();
2373     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2374     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2375 
2376     // Cast to the vector pointer type.
2377     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2378     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2379     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2380   }
2381 
2382   setDebugLocFromInst(Builder, Instr);
2383   Value *UndefVec = UndefValue::get(VecTy);
2384 
2385   Value *MaskForGaps = nullptr;
2386   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2387     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2388     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2389     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2390   }
2391 
2392   // Vectorize the interleaved load group.
2393   if (isa<LoadInst>(Instr)) {
2394     // For each unroll part, create a wide load for the group.
2395     SmallVector<Value *, 2> NewLoads;
2396     for (unsigned Part = 0; Part < UF; Part++) {
2397       Instruction *NewLoad;
2398       if (BlockInMask || MaskForGaps) {
2399         assert(useMaskedInterleavedAccesses(*TTI) &&
2400                "masked interleaved groups are not allowed.");
2401         Value *GroupMask = MaskForGaps;
2402         if (BlockInMask) {
2403           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2404           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2405           Value *ShuffledMask = Builder.CreateShuffleVector(
2406               BlockInMaskPart,
2407               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2408               "interleaved.mask");
2409           GroupMask = MaskForGaps
2410                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2411                                                 MaskForGaps)
2412                           : ShuffledMask;
2413         }
2414         NewLoad =
2415             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2416                                      GroupMask, UndefVec, "wide.masked.vec");
2417       }
2418       else
2419         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2420                                             Group->getAlign(), "wide.vec");
2421       Group->addMetadata(NewLoad);
2422       NewLoads.push_back(NewLoad);
2423     }
2424 
2425     // For each member in the group, shuffle out the appropriate data from the
2426     // wide loads.
2427     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2428       Instruction *Member = Group->getMember(I);
2429 
2430       // Skip the gaps in the group.
2431       if (!Member)
2432         continue;
2433 
2434       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2435       auto StrideMask =
2436           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2437       for (unsigned Part = 0; Part < UF; Part++) {
2438         Value *StridedVec = Builder.CreateShuffleVector(
2439             NewLoads[Part], StrideMask, "strided.vec");
2440 
2441         // If this member has different type, cast the result type.
2442         if (Member->getType() != ScalarTy) {
2443           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2444           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2445           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2446         }
2447 
2448         if (Group->isReverse())
2449           StridedVec = reverseVector(StridedVec);
2450 
2451         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2452       }
2453     }
2454     return;
2455   }
2456 
2457   // The sub vector type for current instruction.
2458   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2459   auto *SubVT = VectorType::get(ScalarTy, VF);
2460 
2461   // Vectorize the interleaved store group.
2462   for (unsigned Part = 0; Part < UF; Part++) {
2463     // Collect the stored vector from each member.
2464     SmallVector<Value *, 4> StoredVecs;
2465     for (unsigned i = 0; i < InterleaveFactor; i++) {
2466       // Interleaved store group doesn't allow a gap, so each index has a member
2467       Instruction *Member = Group->getMember(i);
2468       assert(Member && "Fail to get a member from an interleaved store group");
2469 
2470       Value *StoredVec = getOrCreateVectorValue(
2471           cast<StoreInst>(Member)->getValueOperand(), Part);
2472       if (Group->isReverse())
2473         StoredVec = reverseVector(StoredVec);
2474 
2475       // If this member has different type, cast it to a unified type.
2476 
2477       if (StoredVec->getType() != SubVT)
2478         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2479 
2480       StoredVecs.push_back(StoredVec);
2481     }
2482 
2483     // Concatenate all vectors into a wide vector.
2484     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2485 
2486     // Interleave the elements in the wide vector.
2487     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2488     Value *IVec = Builder.CreateShuffleVector(
2489         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2490         "interleaved.vec");
2491 
2492     Instruction *NewStoreInstr;
2493     if (BlockInMask) {
2494       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2495       Value *ShuffledMask = Builder.CreateShuffleVector(
2496           BlockInMaskPart,
2497           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2498           "interleaved.mask");
2499       NewStoreInstr = Builder.CreateMaskedStore(
2500           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2501     }
2502     else
2503       NewStoreInstr =
2504           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2505 
2506     Group->addMetadata(NewStoreInstr);
2507   }
2508 }
2509 
2510 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2511     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2512     VPValue *StoredValue, VPValue *BlockInMask) {
2513   // Attempt to issue a wide load.
2514   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2515   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2516 
2517   assert((LI || SI) && "Invalid Load/Store instruction");
2518   assert((!SI || StoredValue) && "No stored value provided for widened store");
2519   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2520 
2521   LoopVectorizationCostModel::InstWidening Decision =
2522       Cost->getWideningDecision(Instr, VF);
2523   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2524           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2525           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2526          "CM decision is not to widen the memory instruction");
2527 
2528   Type *ScalarDataTy = getMemInstValueType(Instr);
2529 
2530   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2531   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2532   const Align Alignment = getLoadStoreAlignment(Instr);
2533 
2534   // Determine if the pointer operand of the access is either consecutive or
2535   // reverse consecutive.
2536   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2537   bool ConsecutiveStride =
2538       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2539   bool CreateGatherScatter =
2540       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2541 
2542   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2543   // gather/scatter. Otherwise Decision should have been to Scalarize.
2544   assert((ConsecutiveStride || CreateGatherScatter) &&
2545          "The instruction should be scalarized");
2546   (void)ConsecutiveStride;
2547 
2548   VectorParts BlockInMaskParts(UF);
2549   bool isMaskRequired = BlockInMask;
2550   if (isMaskRequired)
2551     for (unsigned Part = 0; Part < UF; ++Part)
2552       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2553 
2554   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2555     // Calculate the pointer for the specific unroll-part.
2556     GetElementPtrInst *PartPtr = nullptr;
2557 
2558     bool InBounds = false;
2559     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2560       InBounds = gep->isInBounds();
2561 
2562     if (Reverse) {
2563       // If the address is consecutive but reversed, then the
2564       // wide store needs to start at the last vector element.
2565       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2566           ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue())));
2567       PartPtr->setIsInBounds(InBounds);
2568       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2569           ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue())));
2570       PartPtr->setIsInBounds(InBounds);
2571       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2572         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2573     } else {
2574       PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP(
2575           ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue())));
2576       PartPtr->setIsInBounds(InBounds);
2577     }
2578 
2579     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2580     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2581   };
2582 
2583   // Handle Stores:
2584   if (SI) {
2585     setDebugLocFromInst(Builder, SI);
2586 
2587     for (unsigned Part = 0; Part < UF; ++Part) {
2588       Instruction *NewSI = nullptr;
2589       Value *StoredVal = State.get(StoredValue, Part);
2590       if (CreateGatherScatter) {
2591         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2592         Value *VectorGep = State.get(Addr, Part);
2593         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2594                                             MaskPart);
2595       } else {
2596         if (Reverse) {
2597           // If we store to reverse consecutive memory locations, then we need
2598           // to reverse the order of elements in the stored value.
2599           StoredVal = reverseVector(StoredVal);
2600           // We don't want to update the value in the map as it might be used in
2601           // another expression. So don't call resetVectorValue(StoredVal).
2602         }
2603         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2604         if (isMaskRequired)
2605           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2606                                             BlockInMaskParts[Part]);
2607         else
2608           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2609       }
2610       addMetadata(NewSI, SI);
2611     }
2612     return;
2613   }
2614 
2615   // Handle loads.
2616   assert(LI && "Must have a load instruction");
2617   setDebugLocFromInst(Builder, LI);
2618   for (unsigned Part = 0; Part < UF; ++Part) {
2619     Value *NewLI;
2620     if (CreateGatherScatter) {
2621       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2622       Value *VectorGep = State.get(Addr, Part);
2623       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2624                                          nullptr, "wide.masked.gather");
2625       addMetadata(NewLI, LI);
2626     } else {
2627       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2628       if (isMaskRequired)
2629         NewLI = Builder.CreateMaskedLoad(
2630             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2631             "wide.masked.load");
2632       else
2633         NewLI =
2634             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2635 
2636       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2637       addMetadata(NewLI, LI);
2638       if (Reverse)
2639         NewLI = reverseVector(NewLI);
2640     }
2641 
2642     State.set(Def, Instr, NewLI, Part);
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2647                                                const VPIteration &Instance,
2648                                                bool IfPredicateInstr,
2649                                                VPTransformState &State) {
2650   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2651 
2652   setDebugLocFromInst(Builder, Instr);
2653 
2654   // Does this instruction return a value ?
2655   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2656 
2657   Instruction *Cloned = Instr->clone();
2658   if (!IsVoidRetTy)
2659     Cloned->setName(Instr->getName() + ".cloned");
2660 
2661   // Replace the operands of the cloned instructions with their scalar
2662   // equivalents in the new loop.
2663   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2664     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
2665     auto InputInstance = Instance;
2666     if (!Operand || !OrigLoop->contains(Operand) ||
2667         (Cost->isUniformAfterVectorization(Operand, State.VF)))
2668       InputInstance.Lane = 0;
2669     auto *NewOp = State.get(User.getOperand(op), InputInstance);
2670     Cloned->setOperand(op, NewOp);
2671   }
2672   addNewMetadata(Cloned, Instr);
2673 
2674   // Place the cloned scalar in the new loop.
2675   Builder.Insert(Cloned);
2676 
2677   // Add the cloned scalar to the scalar map entry.
2678   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2679 
2680   // If we just cloned a new assumption, add it the assumption cache.
2681   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2682     if (II->getIntrinsicID() == Intrinsic::assume)
2683       AC->registerAssumption(II);
2684 
2685   // End if-block.
2686   if (IfPredicateInstr)
2687     PredicatedInstructions.push_back(Cloned);
2688 }
2689 
2690 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2691                                                       Value *End, Value *Step,
2692                                                       Instruction *DL) {
2693   BasicBlock *Header = L->getHeader();
2694   BasicBlock *Latch = L->getLoopLatch();
2695   // As we're just creating this loop, it's possible no latch exists
2696   // yet. If so, use the header as this will be a single block loop.
2697   if (!Latch)
2698     Latch = Header;
2699 
2700   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2701   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2702   setDebugLocFromInst(Builder, OldInst);
2703   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2704 
2705   Builder.SetInsertPoint(Latch->getTerminator());
2706   setDebugLocFromInst(Builder, OldInst);
2707 
2708   // Create i+1 and fill the PHINode.
2709   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2710   Induction->addIncoming(Start, L->getLoopPreheader());
2711   Induction->addIncoming(Next, Latch);
2712   // Create the compare.
2713   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2714   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2715 
2716   // Now we have two terminators. Remove the old one from the block.
2717   Latch->getTerminator()->eraseFromParent();
2718 
2719   return Induction;
2720 }
2721 
2722 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2723   if (TripCount)
2724     return TripCount;
2725 
2726   assert(L && "Create Trip Count for null loop.");
2727   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2728   // Find the loop boundaries.
2729   ScalarEvolution *SE = PSE.getSE();
2730   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2731   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2732          "Invalid loop count");
2733 
2734   Type *IdxTy = Legal->getWidestInductionType();
2735   assert(IdxTy && "No type for induction");
2736 
2737   // The exit count might have the type of i64 while the phi is i32. This can
2738   // happen if we have an induction variable that is sign extended before the
2739   // compare. The only way that we get a backedge taken count is that the
2740   // induction variable was signed and as such will not overflow. In such a case
2741   // truncation is legal.
2742   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2743       IdxTy->getPrimitiveSizeInBits())
2744     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2745   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2746 
2747   // Get the total trip count from the count by adding 1.
2748   const SCEV *ExitCount = SE->getAddExpr(
2749       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2750 
2751   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2752 
2753   // Expand the trip count and place the new instructions in the preheader.
2754   // Notice that the pre-header does not change, only the loop body.
2755   SCEVExpander Exp(*SE, DL, "induction");
2756 
2757   // Count holds the overall loop count (N).
2758   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2759                                 L->getLoopPreheader()->getTerminator());
2760 
2761   if (TripCount->getType()->isPointerTy())
2762     TripCount =
2763         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2764                                     L->getLoopPreheader()->getTerminator());
2765 
2766   return TripCount;
2767 }
2768 
2769 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2770   if (VectorTripCount)
2771     return VectorTripCount;
2772 
2773   Value *TC = getOrCreateTripCount(L);
2774   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2775 
2776   Type *Ty = TC->getType();
2777   // This is where we can make the step a runtime constant.
2778   assert(!VF.isScalable() && "scalable vectorization is not supported yet");
2779   Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF);
2780 
2781   // If the tail is to be folded by masking, round the number of iterations N
2782   // up to a multiple of Step instead of rounding down. This is done by first
2783   // adding Step-1 and then rounding down. Note that it's ok if this addition
2784   // overflows: the vector induction variable will eventually wrap to zero given
2785   // that it starts at zero and its Step is a power of two; the loop will then
2786   // exit, with the last early-exit vector comparison also producing all-true.
2787   if (Cost->foldTailByMasking()) {
2788     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2789            "VF*UF must be a power of 2 when folding tail by masking");
2790     TC = Builder.CreateAdd(
2791         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
2792   }
2793 
2794   // Now we need to generate the expression for the part of the loop that the
2795   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2796   // iterations are not required for correctness, or N - Step, otherwise. Step
2797   // is equal to the vectorization factor (number of SIMD elements) times the
2798   // unroll factor (number of SIMD instructions).
2799   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2800 
2801   // If there is a non-reversed interleaved group that may speculatively access
2802   // memory out-of-bounds, we need to ensure that there will be at least one
2803   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2804   // the trip count, we set the remainder to be equal to the step. If the step
2805   // does not evenly divide the trip count, no adjustment is necessary since
2806   // there will already be scalar iterations. Note that the minimum iterations
2807   // check ensures that N >= Step.
2808   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
2809     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2810     R = Builder.CreateSelect(IsZero, Step, R);
2811   }
2812 
2813   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2814 
2815   return VectorTripCount;
2816 }
2817 
2818 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2819                                                    const DataLayout &DL) {
2820   // Verify that V is a vector type with same number of elements as DstVTy.
2821   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2822   unsigned VF = DstFVTy->getNumElements();
2823   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2824   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2825   Type *SrcElemTy = SrcVecTy->getElementType();
2826   Type *DstElemTy = DstFVTy->getElementType();
2827   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2828          "Vector elements must have same size");
2829 
2830   // Do a direct cast if element types are castable.
2831   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2832     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2833   }
2834   // V cannot be directly casted to desired vector type.
2835   // May happen when V is a floating point vector but DstVTy is a vector of
2836   // pointers or vice-versa. Handle this using a two-step bitcast using an
2837   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2838   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2839          "Only one type should be a pointer type");
2840   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2841          "Only one type should be a floating point type");
2842   Type *IntTy =
2843       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2844   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2845   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2846   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2847 }
2848 
2849 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2850                                                          BasicBlock *Bypass) {
2851   Value *Count = getOrCreateTripCount(L);
2852   // Reuse existing vector loop preheader for TC checks.
2853   // Note that new preheader block is generated for vector loop.
2854   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2855   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2856 
2857   // Generate code to check if the loop's trip count is less than VF * UF, or
2858   // equal to it in case a scalar epilogue is required; this implies that the
2859   // vector trip count is zero. This check also covers the case where adding one
2860   // to the backedge-taken count overflowed leading to an incorrect trip count
2861   // of zero. In this case we will also jump to the scalar loop.
2862   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2863                                           : ICmpInst::ICMP_ULT;
2864 
2865   // If tail is to be folded, vector loop takes care of all iterations.
2866   Value *CheckMinIters = Builder.getFalse();
2867   if (!Cost->foldTailByMasking()) {
2868     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2869     CheckMinIters = Builder.CreateICmp(
2870         P, Count,
2871         ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF),
2872         "min.iters.check");
2873   }
2874   // Create new preheader for vector loop.
2875   LoopVectorPreHeader =
2876       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2877                  "vector.ph");
2878 
2879   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2880                                DT->getNode(Bypass)->getIDom()) &&
2881          "TC check is expected to dominate Bypass");
2882 
2883   // Update dominator for Bypass & LoopExit.
2884   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2885   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2886 
2887   ReplaceInstWithInst(
2888       TCCheckBlock->getTerminator(),
2889       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2890   LoopBypassBlocks.push_back(TCCheckBlock);
2891 }
2892 
2893 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2894   // Reuse existing vector loop preheader for SCEV checks.
2895   // Note that new preheader block is generated for vector loop.
2896   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2897 
2898   // Generate the code to check that the SCEV assumptions that we made.
2899   // We want the new basic block to start at the first instruction in a
2900   // sequence of instructions that form a check.
2901   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2902                    "scev.check");
2903   Value *SCEVCheck = Exp.expandCodeForPredicate(
2904       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2905 
2906   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2907     if (C->isZero())
2908       return;
2909 
2910   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
2911            (OptForSizeBasedOnProfile &&
2912             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
2913          "Cannot SCEV check stride or overflow when optimizing for size");
2914 
2915   SCEVCheckBlock->setName("vector.scevcheck");
2916   // Create new preheader for vector loop.
2917   LoopVectorPreHeader =
2918       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2919                  nullptr, "vector.ph");
2920 
2921   // Update dominator only if this is first RT check.
2922   if (LoopBypassBlocks.empty()) {
2923     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2924     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2925   }
2926 
2927   ReplaceInstWithInst(
2928       SCEVCheckBlock->getTerminator(),
2929       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2930   LoopBypassBlocks.push_back(SCEVCheckBlock);
2931   AddedSafetyChecks = true;
2932 }
2933 
2934 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2935   // VPlan-native path does not do any analysis for runtime checks currently.
2936   if (EnableVPlanNativePath)
2937     return;
2938 
2939   // Reuse existing vector loop preheader for runtime memory checks.
2940   // Note that new preheader block is generated for vector loop.
2941   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2942 
2943   // Generate the code that checks in runtime if arrays overlap. We put the
2944   // checks into a separate block to make the more common case of few elements
2945   // faster.
2946   auto *LAI = Legal->getLAI();
2947   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2948   if (!RtPtrChecking.Need)
2949     return;
2950 
2951   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
2952     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2953            "Cannot emit memory checks when optimizing for size, unless forced "
2954            "to vectorize.");
2955     ORE->emit([&]() {
2956       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2957                                         L->getStartLoc(), L->getHeader())
2958              << "Code-size may be reduced by not forcing "
2959                 "vectorization, or by source-code modifications "
2960                 "eliminating the need for runtime checks "
2961                 "(e.g., adding 'restrict').";
2962     });
2963   }
2964 
2965   MemCheckBlock->setName("vector.memcheck");
2966   // Create new preheader for vector loop.
2967   LoopVectorPreHeader =
2968       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2969                  "vector.ph");
2970 
2971   auto *CondBranch = cast<BranchInst>(
2972       Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader));
2973   ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch);
2974   LoopBypassBlocks.push_back(MemCheckBlock);
2975   AddedSafetyChecks = true;
2976 
2977   // Update dominator only if this is first RT check.
2978   if (LoopBypassBlocks.empty()) {
2979     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2980     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2981   }
2982 
2983   Instruction *FirstCheckInst;
2984   Instruction *MemRuntimeCheck;
2985   std::tie(FirstCheckInst, MemRuntimeCheck) =
2986       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2987                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2988   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2989                             "claimed checks are required");
2990   CondBranch->setCondition(MemRuntimeCheck);
2991 
2992   // We currently don't use LoopVersioning for the actual loop cloning but we
2993   // still use it to add the noalias metadata.
2994   LVer = std::make_unique<LoopVersioning>(
2995       *Legal->getLAI(),
2996       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
2997       DT, PSE.getSE());
2998   LVer->prepareNoAliasMetadata();
2999 }
3000 
3001 Value *InnerLoopVectorizer::emitTransformedIndex(
3002     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3003     const InductionDescriptor &ID) const {
3004 
3005   SCEVExpander Exp(*SE, DL, "induction");
3006   auto Step = ID.getStep();
3007   auto StartValue = ID.getStartValue();
3008   assert(Index->getType() == Step->getType() &&
3009          "Index type does not match StepValue type");
3010 
3011   // Note: the IR at this point is broken. We cannot use SE to create any new
3012   // SCEV and then expand it, hoping that SCEV's simplification will give us
3013   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3014   // lead to various SCEV crashes. So all we can do is to use builder and rely
3015   // on InstCombine for future simplifications. Here we handle some trivial
3016   // cases only.
3017   auto CreateAdd = [&B](Value *X, Value *Y) {
3018     assert(X->getType() == Y->getType() && "Types don't match!");
3019     if (auto *CX = dyn_cast<ConstantInt>(X))
3020       if (CX->isZero())
3021         return Y;
3022     if (auto *CY = dyn_cast<ConstantInt>(Y))
3023       if (CY->isZero())
3024         return X;
3025     return B.CreateAdd(X, Y);
3026   };
3027 
3028   auto CreateMul = [&B](Value *X, Value *Y) {
3029     assert(X->getType() == Y->getType() && "Types don't match!");
3030     if (auto *CX = dyn_cast<ConstantInt>(X))
3031       if (CX->isOne())
3032         return Y;
3033     if (auto *CY = dyn_cast<ConstantInt>(Y))
3034       if (CY->isOne())
3035         return X;
3036     return B.CreateMul(X, Y);
3037   };
3038 
3039   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3040   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3041   // the DomTree is not kept up-to-date for additional blocks generated in the
3042   // vector loop. By using the header as insertion point, we guarantee that the
3043   // expanded instructions dominate all their uses.
3044   auto GetInsertPoint = [this, &B]() {
3045     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3046     if (InsertBB != LoopVectorBody &&
3047         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3048       return LoopVectorBody->getTerminator();
3049     return &*B.GetInsertPoint();
3050   };
3051   switch (ID.getKind()) {
3052   case InductionDescriptor::IK_IntInduction: {
3053     assert(Index->getType() == StartValue->getType() &&
3054            "Index type does not match StartValue type");
3055     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3056       return B.CreateSub(StartValue, Index);
3057     auto *Offset = CreateMul(
3058         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3059     return CreateAdd(StartValue, Offset);
3060   }
3061   case InductionDescriptor::IK_PtrInduction: {
3062     assert(isa<SCEVConstant>(Step) &&
3063            "Expected constant step for pointer induction");
3064     return B.CreateGEP(
3065         StartValue->getType()->getPointerElementType(), StartValue,
3066         CreateMul(Index,
3067                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3068   }
3069   case InductionDescriptor::IK_FpInduction: {
3070     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3071     auto InductionBinOp = ID.getInductionBinOp();
3072     assert(InductionBinOp &&
3073            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3074             InductionBinOp->getOpcode() == Instruction::FSub) &&
3075            "Original bin op should be defined for FP induction");
3076 
3077     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3078 
3079     // Floating point operations had to be 'fast' to enable the induction.
3080     FastMathFlags Flags;
3081     Flags.setFast();
3082 
3083     Value *MulExp = B.CreateFMul(StepValue, Index);
3084     if (isa<Instruction>(MulExp))
3085       // We have to check, the MulExp may be a constant.
3086       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
3087 
3088     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3089                                "induction");
3090     if (isa<Instruction>(BOp))
3091       cast<Instruction>(BOp)->setFastMathFlags(Flags);
3092 
3093     return BOp;
3094   }
3095   case InductionDescriptor::IK_NoInduction:
3096     return nullptr;
3097   }
3098   llvm_unreachable("invalid enum");
3099 }
3100 
3101 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3102   LoopScalarBody = OrigLoop->getHeader();
3103   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3104   LoopExitBlock = OrigLoop->getExitBlock();
3105   assert(LoopExitBlock && "Must have an exit block");
3106   assert(LoopVectorPreHeader && "Invalid loop structure");
3107 
3108   LoopMiddleBlock =
3109       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3110                  LI, nullptr, Twine(Prefix) + "middle.block");
3111   LoopScalarPreHeader =
3112       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3113                  nullptr, Twine(Prefix) + "scalar.ph");
3114   // We intentionally don't let SplitBlock to update LoopInfo since
3115   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3116   // LoopVectorBody is explicitly added to the correct place few lines later.
3117   LoopVectorBody =
3118       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3119                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3120 
3121   // Update dominator for loop exit.
3122   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3123 
3124   // Create and register the new vector loop.
3125   Loop *Lp = LI->AllocateLoop();
3126   Loop *ParentLoop = OrigLoop->getParentLoop();
3127 
3128   // Insert the new loop into the loop nest and register the new basic blocks
3129   // before calling any utilities such as SCEV that require valid LoopInfo.
3130   if (ParentLoop) {
3131     ParentLoop->addChildLoop(Lp);
3132   } else {
3133     LI->addTopLevelLoop(Lp);
3134   }
3135   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3136   return Lp;
3137 }
3138 
3139 void InnerLoopVectorizer::createInductionResumeValues(Loop *L,
3140                                                       Value *VectorTripCount) {
3141   assert(VectorTripCount && L && "Expected valid arguments");
3142   // We are going to resume the execution of the scalar loop.
3143   // Go over all of the induction variables that we found and fix the
3144   // PHIs that are left in the scalar version of the loop.
3145   // The starting values of PHI nodes depend on the counter of the last
3146   // iteration in the vectorized loop.
3147   // If we come from a bypass edge then we need to start from the original
3148   // start value.
3149   for (auto &InductionEntry : Legal->getInductionVars()) {
3150     PHINode *OrigPhi = InductionEntry.first;
3151     InductionDescriptor II = InductionEntry.second;
3152 
3153     // Create phi nodes to merge from the  backedge-taken check block.
3154     PHINode *BCResumeVal =
3155         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3156                         LoopScalarPreHeader->getTerminator());
3157     // Copy original phi DL over to the new one.
3158     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3159     Value *&EndValue = IVEndValues[OrigPhi];
3160     if (OrigPhi == OldInduction) {
3161       // We know what the end value is.
3162       EndValue = VectorTripCount;
3163     } else {
3164       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3165       Type *StepType = II.getStep()->getType();
3166       Instruction::CastOps CastOp =
3167           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3168       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3169       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3170       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3171       EndValue->setName("ind.end");
3172     }
3173 
3174     // The new PHI merges the original incoming value, in case of a bypass,
3175     // or the value at the end of the vectorized loop.
3176     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3177 
3178     // Fix the scalar body counter (PHI node).
3179     // The old induction's phi node in the scalar body needs the truncated
3180     // value.
3181     for (BasicBlock *BB : LoopBypassBlocks)
3182       BCResumeVal->addIncoming(II.getStartValue(), BB);
3183     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3184   }
3185 }
3186 
3187 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3188                                                       MDNode *OrigLoopID) {
3189   assert(L && "Expected valid loop.");
3190 
3191   // The trip counts should be cached by now.
3192   Value *Count = getOrCreateTripCount(L);
3193   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3194 
3195   // We need the OrigLoop (scalar loop part) latch terminator to help
3196   // produce correct debug info for the middle block BB instructions.
3197   // The legality check stage guarantees that the loop will have a single
3198   // latch.
3199   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3200          "Scalar loop latch terminator isn't a branch");
3201   BranchInst *ScalarLatchBr =
3202       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3203 
3204   // Add a check in the middle block to see if we have completed
3205   // all of the iterations in the first vector loop.
3206   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   // If tail is to be folded, we know we don't need to run the remainder.
3208   Value *CmpN = Builder.getTrue();
3209   if (!Cost->foldTailByMasking()) {
3210     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3211                            VectorTripCount, "cmp.n",
3212                            LoopMiddleBlock->getTerminator());
3213 
3214     // Here we use the same DebugLoc as the scalar loop latch branch instead
3215     // of the corresponding compare because they may have ended up with
3216     // different line numbers and we want to avoid awkward line stepping while
3217     // debugging. Eg. if the compare has got a line number inside the loop.
3218     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3219   }
3220 
3221   BranchInst *BrInst =
3222       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3223   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3224   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3225 
3226   // Get ready to start creating new instructions into the vectorized body.
3227   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3228          "Inconsistent vector loop preheader");
3229   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3230 
3231   Optional<MDNode *> VectorizedLoopID =
3232       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3233                                       LLVMLoopVectorizeFollowupVectorized});
3234   if (VectorizedLoopID.hasValue()) {
3235     L->setLoopID(VectorizedLoopID.getValue());
3236 
3237     // Do not setAlreadyVectorized if loop attributes have been defined
3238     // explicitly.
3239     return LoopVectorPreHeader;
3240   }
3241 
3242   // Keep all loop hints from the original loop on the vector loop (we'll
3243   // replace the vectorizer-specific hints below).
3244   if (MDNode *LID = OrigLoop->getLoopID())
3245     L->setLoopID(LID);
3246 
3247   LoopVectorizeHints Hints(L, true, *ORE);
3248   Hints.setAlreadyVectorized();
3249 
3250 #ifdef EXPENSIVE_CHECKS
3251   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3252   LI->verify(*DT);
3253 #endif
3254 
3255   return LoopVectorPreHeader;
3256 }
3257 
3258 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3259   /*
3260    In this function we generate a new loop. The new loop will contain
3261    the vectorized instructions while the old loop will continue to run the
3262    scalar remainder.
3263 
3264        [ ] <-- loop iteration number check.
3265     /   |
3266    /    v
3267   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3268   |  /  |
3269   | /   v
3270   ||   [ ]     <-- vector pre header.
3271   |/    |
3272   |     v
3273   |    [  ] \
3274   |    [  ]_|   <-- vector loop.
3275   |     |
3276   |     v
3277   |   -[ ]   <--- middle-block.
3278   |  /  |
3279   | /   v
3280   -|- >[ ]     <--- new preheader.
3281    |    |
3282    |    v
3283    |   [ ] \
3284    |   [ ]_|   <-- old scalar loop to handle remainder.
3285     \   |
3286      \  v
3287       >[ ]     <-- exit block.
3288    ...
3289    */
3290 
3291   // Get the metadata of the original loop before it gets modified.
3292   MDNode *OrigLoopID = OrigLoop->getLoopID();
3293 
3294   // Create an empty vector loop, and prepare basic blocks for the runtime
3295   // checks.
3296   Loop *Lp = createVectorLoopSkeleton("");
3297 
3298   // Now, compare the new count to zero. If it is zero skip the vector loop and
3299   // jump to the scalar loop. This check also covers the case where the
3300   // backedge-taken count is uint##_max: adding one to it will overflow leading
3301   // to an incorrect trip count of zero. In this (rare) case we will also jump
3302   // to the scalar loop.
3303   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3304 
3305   // Generate the code to check any assumptions that we've made for SCEV
3306   // expressions.
3307   emitSCEVChecks(Lp, LoopScalarPreHeader);
3308 
3309   // Generate the code that checks in runtime if arrays overlap. We put the
3310   // checks into a separate block to make the more common case of few elements
3311   // faster.
3312   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3313 
3314   // Some loops have a single integer induction variable, while other loops
3315   // don't. One example is c++ iterators that often have multiple pointer
3316   // induction variables. In the code below we also support a case where we
3317   // don't have a single induction variable.
3318   //
3319   // We try to obtain an induction variable from the original loop as hard
3320   // as possible. However if we don't find one that:
3321   //   - is an integer
3322   //   - counts from zero, stepping by one
3323   //   - is the size of the widest induction variable type
3324   // then we create a new one.
3325   OldInduction = Legal->getPrimaryInduction();
3326   Type *IdxTy = Legal->getWidestInductionType();
3327   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3328   // The loop step is equal to the vectorization factor (num of SIMD elements)
3329   // times the unroll factor (num of SIMD instructions).
3330   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3331   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
3332   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3333   Induction =
3334       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3335                               getDebugLocFromInstOrOperands(OldInduction));
3336 
3337   // Emit phis for the new starting index of the scalar loop.
3338   createInductionResumeValues(Lp, CountRoundDown);
3339 
3340   return completeLoopSkeleton(Lp, OrigLoopID);
3341 }
3342 
3343 // Fix up external users of the induction variable. At this point, we are
3344 // in LCSSA form, with all external PHIs that use the IV having one input value,
3345 // coming from the remainder loop. We need those PHIs to also have a correct
3346 // value for the IV when arriving directly from the middle block.
3347 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3348                                        const InductionDescriptor &II,
3349                                        Value *CountRoundDown, Value *EndValue,
3350                                        BasicBlock *MiddleBlock) {
3351   // There are two kinds of external IV usages - those that use the value
3352   // computed in the last iteration (the PHI) and those that use the penultimate
3353   // value (the value that feeds into the phi from the loop latch).
3354   // We allow both, but they, obviously, have different values.
3355 
3356   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3357 
3358   DenseMap<Value *, Value *> MissingVals;
3359 
3360   // An external user of the last iteration's value should see the value that
3361   // the remainder loop uses to initialize its own IV.
3362   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3363   for (User *U : PostInc->users()) {
3364     Instruction *UI = cast<Instruction>(U);
3365     if (!OrigLoop->contains(UI)) {
3366       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3367       MissingVals[UI] = EndValue;
3368     }
3369   }
3370 
3371   // An external user of the penultimate value need to see EndValue - Step.
3372   // The simplest way to get this is to recompute it from the constituent SCEVs,
3373   // that is Start + (Step * (CRD - 1)).
3374   for (User *U : OrigPhi->users()) {
3375     auto *UI = cast<Instruction>(U);
3376     if (!OrigLoop->contains(UI)) {
3377       const DataLayout &DL =
3378           OrigLoop->getHeader()->getModule()->getDataLayout();
3379       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3380 
3381       IRBuilder<> B(MiddleBlock->getTerminator());
3382       Value *CountMinusOne = B.CreateSub(
3383           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3384       Value *CMO =
3385           !II.getStep()->getType()->isIntegerTy()
3386               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3387                              II.getStep()->getType())
3388               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3389       CMO->setName("cast.cmo");
3390       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3391       Escape->setName("ind.escape");
3392       MissingVals[UI] = Escape;
3393     }
3394   }
3395 
3396   for (auto &I : MissingVals) {
3397     PHINode *PHI = cast<PHINode>(I.first);
3398     // One corner case we have to handle is two IVs "chasing" each-other,
3399     // that is %IV2 = phi [...], [ %IV1, %latch ]
3400     // In this case, if IV1 has an external use, we need to avoid adding both
3401     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3402     // don't already have an incoming value for the middle block.
3403     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3404       PHI->addIncoming(I.second, MiddleBlock);
3405   }
3406 }
3407 
3408 namespace {
3409 
3410 struct CSEDenseMapInfo {
3411   static bool canHandle(const Instruction *I) {
3412     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3413            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3414   }
3415 
3416   static inline Instruction *getEmptyKey() {
3417     return DenseMapInfo<Instruction *>::getEmptyKey();
3418   }
3419 
3420   static inline Instruction *getTombstoneKey() {
3421     return DenseMapInfo<Instruction *>::getTombstoneKey();
3422   }
3423 
3424   static unsigned getHashValue(const Instruction *I) {
3425     assert(canHandle(I) && "Unknown instruction!");
3426     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3427                                                            I->value_op_end()));
3428   }
3429 
3430   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3431     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3432         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3433       return LHS == RHS;
3434     return LHS->isIdenticalTo(RHS);
3435   }
3436 };
3437 
3438 } // end anonymous namespace
3439 
3440 ///Perform cse of induction variable instructions.
3441 static void cse(BasicBlock *BB) {
3442   // Perform simple cse.
3443   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3444   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3445     Instruction *In = &*I++;
3446 
3447     if (!CSEDenseMapInfo::canHandle(In))
3448       continue;
3449 
3450     // Check if we can replace this instruction with any of the
3451     // visited instructions.
3452     if (Instruction *V = CSEMap.lookup(In)) {
3453       In->replaceAllUsesWith(V);
3454       In->eraseFromParent();
3455       continue;
3456     }
3457 
3458     CSEMap[In] = In;
3459   }
3460 }
3461 
3462 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3463                                                        ElementCount VF,
3464                                                        bool &NeedToScalarize) {
3465   assert(!VF.isScalable() && "scalable vectors not yet supported.");
3466   Function *F = CI->getCalledFunction();
3467   Type *ScalarRetTy = CI->getType();
3468   SmallVector<Type *, 4> Tys, ScalarTys;
3469   for (auto &ArgOp : CI->arg_operands())
3470     ScalarTys.push_back(ArgOp->getType());
3471 
3472   // Estimate cost of scalarized vector call. The source operands are assumed
3473   // to be vectors, so we need to extract individual elements from there,
3474   // execute VF scalar calls, and then gather the result into the vector return
3475   // value.
3476   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3477                                                  TTI::TCK_RecipThroughput);
3478   if (VF.isScalar())
3479     return ScalarCallCost;
3480 
3481   // Compute corresponding vector type for return value and arguments.
3482   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3483   for (Type *ScalarTy : ScalarTys)
3484     Tys.push_back(ToVectorTy(ScalarTy, VF));
3485 
3486   // Compute costs of unpacking argument values for the scalar calls and
3487   // packing the return values to a vector.
3488   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3489 
3490   unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3491 
3492   // If we can't emit a vector call for this function, then the currently found
3493   // cost is the cost we need to return.
3494   NeedToScalarize = true;
3495   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3496   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3497 
3498   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3499     return Cost;
3500 
3501   // If the corresponding vector cost is cheaper, return its cost.
3502   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3503                                                  TTI::TCK_RecipThroughput);
3504   if (VectorCallCost < Cost) {
3505     NeedToScalarize = false;
3506     return VectorCallCost;
3507   }
3508   return Cost;
3509 }
3510 
3511 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3512                                                             ElementCount VF) {
3513   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3514   assert(ID && "Expected intrinsic call!");
3515 
3516   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3517   return TTI.getIntrinsicInstrCost(CostAttrs,
3518                                    TargetTransformInfo::TCK_RecipThroughput);
3519 }
3520 
3521 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3522   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3523   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3524   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3525 }
3526 
3527 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3528   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3529   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3530   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3531 }
3532 
3533 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3534   // For every instruction `I` in MinBWs, truncate the operands, create a
3535   // truncated version of `I` and reextend its result. InstCombine runs
3536   // later and will remove any ext/trunc pairs.
3537   SmallPtrSet<Value *, 4> Erased;
3538   for (const auto &KV : Cost->getMinimalBitwidths()) {
3539     // If the value wasn't vectorized, we must maintain the original scalar
3540     // type. The absence of the value from VectorLoopValueMap indicates that it
3541     // wasn't vectorized.
3542     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3543       continue;
3544     for (unsigned Part = 0; Part < UF; ++Part) {
3545       Value *I = getOrCreateVectorValue(KV.first, Part);
3546       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3547         continue;
3548       Type *OriginalTy = I->getType();
3549       Type *ScalarTruncatedTy =
3550           IntegerType::get(OriginalTy->getContext(), KV.second);
3551       auto *TruncatedTy = FixedVectorType::get(
3552           ScalarTruncatedTy,
3553           cast<FixedVectorType>(OriginalTy)->getNumElements());
3554       if (TruncatedTy == OriginalTy)
3555         continue;
3556 
3557       IRBuilder<> B(cast<Instruction>(I));
3558       auto ShrinkOperand = [&](Value *V) -> Value * {
3559         if (auto *ZI = dyn_cast<ZExtInst>(V))
3560           if (ZI->getSrcTy() == TruncatedTy)
3561             return ZI->getOperand(0);
3562         return B.CreateZExtOrTrunc(V, TruncatedTy);
3563       };
3564 
3565       // The actual instruction modification depends on the instruction type,
3566       // unfortunately.
3567       Value *NewI = nullptr;
3568       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3569         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3570                              ShrinkOperand(BO->getOperand(1)));
3571 
3572         // Any wrapping introduced by shrinking this operation shouldn't be
3573         // considered undefined behavior. So, we can't unconditionally copy
3574         // arithmetic wrapping flags to NewI.
3575         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3576       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3577         NewI =
3578             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3579                          ShrinkOperand(CI->getOperand(1)));
3580       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3581         NewI = B.CreateSelect(SI->getCondition(),
3582                               ShrinkOperand(SI->getTrueValue()),
3583                               ShrinkOperand(SI->getFalseValue()));
3584       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3585         switch (CI->getOpcode()) {
3586         default:
3587           llvm_unreachable("Unhandled cast!");
3588         case Instruction::Trunc:
3589           NewI = ShrinkOperand(CI->getOperand(0));
3590           break;
3591         case Instruction::SExt:
3592           NewI = B.CreateSExtOrTrunc(
3593               CI->getOperand(0),
3594               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3595           break;
3596         case Instruction::ZExt:
3597           NewI = B.CreateZExtOrTrunc(
3598               CI->getOperand(0),
3599               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3600           break;
3601         }
3602       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3603         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3604                              ->getNumElements();
3605         auto *O0 = B.CreateZExtOrTrunc(
3606             SI->getOperand(0),
3607             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3608         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3609                              ->getNumElements();
3610         auto *O1 = B.CreateZExtOrTrunc(
3611             SI->getOperand(1),
3612             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3613 
3614         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3615       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3616         // Don't do anything with the operands, just extend the result.
3617         continue;
3618       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3619         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3620                             ->getNumElements();
3621         auto *O0 = B.CreateZExtOrTrunc(
3622             IE->getOperand(0),
3623             FixedVectorType::get(ScalarTruncatedTy, Elements));
3624         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3625         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3626       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3627         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3628                             ->getNumElements();
3629         auto *O0 = B.CreateZExtOrTrunc(
3630             EE->getOperand(0),
3631             FixedVectorType::get(ScalarTruncatedTy, Elements));
3632         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3633       } else {
3634         // If we don't know what to do, be conservative and don't do anything.
3635         continue;
3636       }
3637 
3638       // Lastly, extend the result.
3639       NewI->takeName(cast<Instruction>(I));
3640       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3641       I->replaceAllUsesWith(Res);
3642       cast<Instruction>(I)->eraseFromParent();
3643       Erased.insert(I);
3644       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3645     }
3646   }
3647 
3648   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3649   for (const auto &KV : Cost->getMinimalBitwidths()) {
3650     // If the value wasn't vectorized, we must maintain the original scalar
3651     // type. The absence of the value from VectorLoopValueMap indicates that it
3652     // wasn't vectorized.
3653     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3654       continue;
3655     for (unsigned Part = 0; Part < UF; ++Part) {
3656       Value *I = getOrCreateVectorValue(KV.first, Part);
3657       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3658       if (Inst && Inst->use_empty()) {
3659         Value *NewI = Inst->getOperand(0);
3660         Inst->eraseFromParent();
3661         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3662       }
3663     }
3664   }
3665 }
3666 
3667 void InnerLoopVectorizer::fixVectorizedLoop() {
3668   // Insert truncates and extends for any truncated instructions as hints to
3669   // InstCombine.
3670   if (VF.isVector())
3671     truncateToMinimalBitwidths();
3672 
3673   // Fix widened non-induction PHIs by setting up the PHI operands.
3674   if (OrigPHIsToFix.size()) {
3675     assert(EnableVPlanNativePath &&
3676            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3677     fixNonInductionPHIs();
3678   }
3679 
3680   // At this point every instruction in the original loop is widened to a
3681   // vector form. Now we need to fix the recurrences in the loop. These PHI
3682   // nodes are currently empty because we did not want to introduce cycles.
3683   // This is the second stage of vectorizing recurrences.
3684   fixCrossIterationPHIs();
3685 
3686   // Forget the original basic block.
3687   PSE.getSE()->forgetLoop(OrigLoop);
3688 
3689   // Fix-up external users of the induction variables.
3690   for (auto &Entry : Legal->getInductionVars())
3691     fixupIVUsers(Entry.first, Entry.second,
3692                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3693                  IVEndValues[Entry.first], LoopMiddleBlock);
3694 
3695   fixLCSSAPHIs();
3696   for (Instruction *PI : PredicatedInstructions)
3697     sinkScalarOperands(&*PI);
3698 
3699   // Remove redundant induction instructions.
3700   cse(LoopVectorBody);
3701 
3702   // Set/update profile weights for the vector and remainder loops as original
3703   // loop iterations are now distributed among them. Note that original loop
3704   // represented by LoopScalarBody becomes remainder loop after vectorization.
3705   //
3706   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3707   // end up getting slightly roughened result but that should be OK since
3708   // profile is not inherently precise anyway. Note also possible bypass of
3709   // vector code caused by legality checks is ignored, assigning all the weight
3710   // to the vector loop, optimistically.
3711   assert(!VF.isScalable() &&
3712          "cannot use scalable ElementCount to determine unroll factor");
3713   setProfileInfoAfterUnrolling(
3714       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3715       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3716 }
3717 
3718 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3719   // In order to support recurrences we need to be able to vectorize Phi nodes.
3720   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3721   // stage #2: We now need to fix the recurrences by adding incoming edges to
3722   // the currently empty PHI nodes. At this point every instruction in the
3723   // original loop is widened to a vector form so we can use them to construct
3724   // the incoming edges.
3725   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3726     // Handle first-order recurrences and reductions that need to be fixed.
3727     if (Legal->isFirstOrderRecurrence(&Phi))
3728       fixFirstOrderRecurrence(&Phi);
3729     else if (Legal->isReductionVariable(&Phi))
3730       fixReduction(&Phi);
3731   }
3732 }
3733 
3734 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3735   // This is the second phase of vectorizing first-order recurrences. An
3736   // overview of the transformation is described below. Suppose we have the
3737   // following loop.
3738   //
3739   //   for (int i = 0; i < n; ++i)
3740   //     b[i] = a[i] - a[i - 1];
3741   //
3742   // There is a first-order recurrence on "a". For this loop, the shorthand
3743   // scalar IR looks like:
3744   //
3745   //   scalar.ph:
3746   //     s_init = a[-1]
3747   //     br scalar.body
3748   //
3749   //   scalar.body:
3750   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3751   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3752   //     s2 = a[i]
3753   //     b[i] = s2 - s1
3754   //     br cond, scalar.body, ...
3755   //
3756   // In this example, s1 is a recurrence because it's value depends on the
3757   // previous iteration. In the first phase of vectorization, we created a
3758   // temporary value for s1. We now complete the vectorization and produce the
3759   // shorthand vector IR shown below (for VF = 4, UF = 1).
3760   //
3761   //   vector.ph:
3762   //     v_init = vector(..., ..., ..., a[-1])
3763   //     br vector.body
3764   //
3765   //   vector.body
3766   //     i = phi [0, vector.ph], [i+4, vector.body]
3767   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3768   //     v2 = a[i, i+1, i+2, i+3];
3769   //     v3 = vector(v1(3), v2(0, 1, 2))
3770   //     b[i, i+1, i+2, i+3] = v2 - v3
3771   //     br cond, vector.body, middle.block
3772   //
3773   //   middle.block:
3774   //     x = v2(3)
3775   //     br scalar.ph
3776   //
3777   //   scalar.ph:
3778   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3779   //     br scalar.body
3780   //
3781   // After execution completes the vector loop, we extract the next value of
3782   // the recurrence (x) to use as the initial value in the scalar loop.
3783 
3784   // Get the original loop preheader and single loop latch.
3785   auto *Preheader = OrigLoop->getLoopPreheader();
3786   auto *Latch = OrigLoop->getLoopLatch();
3787 
3788   // Get the initial and previous values of the scalar recurrence.
3789   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3790   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3791 
3792   // Create a vector from the initial value.
3793   auto *VectorInit = ScalarInit;
3794   if (VF.isVector()) {
3795     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3796     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
3797     VectorInit = Builder.CreateInsertElement(
3798         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3799         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
3800   }
3801 
3802   // We constructed a temporary phi node in the first phase of vectorization.
3803   // This phi node will eventually be deleted.
3804   Builder.SetInsertPoint(
3805       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3806 
3807   // Create a phi node for the new recurrence. The current value will either be
3808   // the initial value inserted into a vector or loop-varying vector value.
3809   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3810   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3811 
3812   // Get the vectorized previous value of the last part UF - 1. It appears last
3813   // among all unrolled iterations, due to the order of their construction.
3814   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3815 
3816   // Find and set the insertion point after the previous value if it is an
3817   // instruction.
3818   BasicBlock::iterator InsertPt;
3819   // Note that the previous value may have been constant-folded so it is not
3820   // guaranteed to be an instruction in the vector loop.
3821   // FIXME: Loop invariant values do not form recurrences. We should deal with
3822   //        them earlier.
3823   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3824     InsertPt = LoopVectorBody->getFirstInsertionPt();
3825   else {
3826     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3827     if (isa<PHINode>(PreviousLastPart))
3828       // If the previous value is a phi node, we should insert after all the phi
3829       // nodes in the block containing the PHI to avoid breaking basic block
3830       // verification. Note that the basic block may be different to
3831       // LoopVectorBody, in case we predicate the loop.
3832       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3833     else
3834       InsertPt = ++PreviousInst->getIterator();
3835   }
3836   Builder.SetInsertPoint(&*InsertPt);
3837 
3838   // We will construct a vector for the recurrence by combining the values for
3839   // the current and previous iterations. This is the required shuffle mask.
3840   assert(!VF.isScalable());
3841   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
3842   ShuffleMask[0] = VF.getKnownMinValue() - 1;
3843   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
3844     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
3845 
3846   // The vector from which to take the initial value for the current iteration
3847   // (actual or unrolled). Initially, this is the vector phi node.
3848   Value *Incoming = VecPhi;
3849 
3850   // Shuffle the current and previous vector and update the vector parts.
3851   for (unsigned Part = 0; Part < UF; ++Part) {
3852     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3853     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3854     auto *Shuffle =
3855         VF.isVector()
3856             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
3857             : Incoming;
3858     PhiPart->replaceAllUsesWith(Shuffle);
3859     cast<Instruction>(PhiPart)->eraseFromParent();
3860     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3861     Incoming = PreviousPart;
3862   }
3863 
3864   // Fix the latch value of the new recurrence in the vector loop.
3865   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3866 
3867   // Extract the last vector element in the middle block. This will be the
3868   // initial value for the recurrence when jumping to the scalar loop.
3869   auto *ExtractForScalar = Incoming;
3870   if (VF.isVector()) {
3871     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3872     ExtractForScalar = Builder.CreateExtractElement(
3873         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
3874         "vector.recur.extract");
3875   }
3876   // Extract the second last element in the middle block if the
3877   // Phi is used outside the loop. We need to extract the phi itself
3878   // and not the last element (the phi update in the current iteration). This
3879   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3880   // when the scalar loop is not run at all.
3881   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3882   if (VF.isVector())
3883     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3884         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
3885         "vector.recur.extract.for.phi");
3886   // When loop is unrolled without vectorizing, initialize
3887   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3888   // `Incoming`. This is analogous to the vectorized case above: extracting the
3889   // second last element when VF > 1.
3890   else if (UF > 1)
3891     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3892 
3893   // Fix the initial value of the original recurrence in the scalar loop.
3894   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3895   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3896   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3897     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3898     Start->addIncoming(Incoming, BB);
3899   }
3900 
3901   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3902   Phi->setName("scalar.recur");
3903 
3904   // Finally, fix users of the recurrence outside the loop. The users will need
3905   // either the last value of the scalar recurrence or the last value of the
3906   // vector recurrence we extracted in the middle block. Since the loop is in
3907   // LCSSA form, we just need to find all the phi nodes for the original scalar
3908   // recurrence in the exit block, and then add an edge for the middle block.
3909   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3910     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3911       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3912     }
3913   }
3914 }
3915 
3916 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3917   Constant *Zero = Builder.getInt32(0);
3918 
3919   // Get it's reduction variable descriptor.
3920   assert(Legal->isReductionVariable(Phi) &&
3921          "Unable to find the reduction variable");
3922   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3923 
3924   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3925   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3926   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3927   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3928     RdxDesc.getMinMaxRecurrenceKind();
3929   setDebugLocFromInst(Builder, ReductionStartValue);
3930   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
3931 
3932   // We need to generate a reduction vector from the incoming scalar.
3933   // To do so, we need to generate the 'identity' vector and override
3934   // one of the elements with the incoming scalar reduction. We need
3935   // to do it in the vector-loop preheader.
3936   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3937 
3938   // This is the vector-clone of the value that leaves the loop.
3939   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3940 
3941   // Find the reduction identity variable. Zero for addition, or, xor,
3942   // one for multiplication, -1 for And.
3943   Value *Identity;
3944   Value *VectorStart;
3945   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3946       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3947     // MinMax reduction have the start value as their identify.
3948     if (VF.isScalar() || IsInLoopReductionPhi) {
3949       VectorStart = Identity = ReductionStartValue;
3950     } else {
3951       VectorStart = Identity =
3952         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3953     }
3954   } else {
3955     // Handle other reduction kinds:
3956     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3957         RK, MinMaxKind, VecTy->getScalarType());
3958     if (VF.isScalar() || IsInLoopReductionPhi) {
3959       Identity = Iden;
3960       // This vector is the Identity vector where the first element is the
3961       // incoming scalar reduction.
3962       VectorStart = ReductionStartValue;
3963     } else {
3964       Identity = ConstantVector::getSplat(VF, Iden);
3965 
3966       // This vector is the Identity vector where the first element is the
3967       // incoming scalar reduction.
3968       VectorStart =
3969         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3970     }
3971   }
3972 
3973   // Wrap flags are in general invalid after vectorization, clear them.
3974   clearReductionWrapFlags(RdxDesc);
3975 
3976   // Fix the vector-loop phi.
3977 
3978   // Reductions do not have to start at zero. They can start with
3979   // any loop invariant values.
3980   BasicBlock *Latch = OrigLoop->getLoopLatch();
3981   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3982 
3983   for (unsigned Part = 0; Part < UF; ++Part) {
3984     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3985     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3986     // Make sure to add the reduction start value only to the
3987     // first unroll part.
3988     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3989     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3990     cast<PHINode>(VecRdxPhi)
3991       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3992   }
3993 
3994   // Before each round, move the insertion point right between
3995   // the PHIs and the values we are going to write.
3996   // This allows us to write both PHINodes and the extractelement
3997   // instructions.
3998   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3999 
4000   setDebugLocFromInst(Builder, LoopExitInst);
4001 
4002   // If tail is folded by masking, the vector value to leave the loop should be
4003   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4004   // instead of the former. For an inloop reduction the reduction will already
4005   // be predicated, and does not need to be handled here.
4006   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4007     for (unsigned Part = 0; Part < UF; ++Part) {
4008       Value *VecLoopExitInst =
4009           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4010       Value *Sel = nullptr;
4011       for (User *U : VecLoopExitInst->users()) {
4012         if (isa<SelectInst>(U)) {
4013           assert(!Sel && "Reduction exit feeding two selects");
4014           Sel = U;
4015         } else
4016           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4017       }
4018       assert(Sel && "Reduction exit feeds no select");
4019       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
4020 
4021       // If the target can create a predicated operator for the reduction at no
4022       // extra cost in the loop (for example a predicated vadd), it can be
4023       // cheaper for the select to remain in the loop than be sunk out of it,
4024       // and so use the select value for the phi instead of the old
4025       // LoopExitValue.
4026       RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4027       if (PreferPredicatedReductionSelect ||
4028           TTI->preferPredicatedReductionSelect(
4029               RdxDesc.getRecurrenceBinOp(), Phi->getType(),
4030               TargetTransformInfo::ReductionFlags())) {
4031         auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part));
4032         VecRdxPhi->setIncomingValueForBlock(
4033             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4034       }
4035     }
4036   }
4037 
4038   // If the vector reduction can be performed in a smaller type, we truncate
4039   // then extend the loop exit value to enable InstCombine to evaluate the
4040   // entire expression in the smaller type.
4041   if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) {
4042     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4043     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4044     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4045     Builder.SetInsertPoint(
4046         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4047     VectorParts RdxParts(UF);
4048     for (unsigned Part = 0; Part < UF; ++Part) {
4049       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4050       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4051       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4052                                         : Builder.CreateZExt(Trunc, VecTy);
4053       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4054            UI != RdxParts[Part]->user_end();)
4055         if (*UI != Trunc) {
4056           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4057           RdxParts[Part] = Extnd;
4058         } else {
4059           ++UI;
4060         }
4061     }
4062     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4063     for (unsigned Part = 0; Part < UF; ++Part) {
4064       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4065       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4066     }
4067   }
4068 
4069   // Reduce all of the unrolled parts into a single vector.
4070   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4071   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4072 
4073   // The middle block terminator has already been assigned a DebugLoc here (the
4074   // OrigLoop's single latch terminator). We want the whole middle block to
4075   // appear to execute on this line because: (a) it is all compiler generated,
4076   // (b) these instructions are always executed after evaluating the latch
4077   // conditional branch, and (c) other passes may add new predecessors which
4078   // terminate on this line. This is the easiest way to ensure we don't
4079   // accidentally cause an extra step back into the loop while debugging.
4080   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4081   for (unsigned Part = 1; Part < UF; ++Part) {
4082     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4083     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4084       // Floating point operations had to be 'fast' to enable the reduction.
4085       ReducedPartRdx = addFastMathFlag(
4086           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4087                               ReducedPartRdx, "bin.rdx"),
4088           RdxDesc.getFastMathFlags());
4089     else
4090       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
4091                                       RdxPart);
4092   }
4093 
4094   // Create the reduction after the loop. Note that inloop reductions create the
4095   // target reduction in the loop using a Reduction recipe.
4096   if (VF.isVector() && !IsInLoopReductionPhi) {
4097     bool NoNaN = Legal->hasFunNoNaNAttr();
4098     ReducedPartRdx =
4099         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4100     // If the reduction can be performed in a smaller type, we need to extend
4101     // the reduction to the wider type before we branch to the original loop.
4102     if (Phi->getType() != RdxDesc.getRecurrenceType())
4103       ReducedPartRdx =
4104         RdxDesc.isSigned()
4105         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4106         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4107   }
4108 
4109   // Create a phi node that merges control-flow from the backedge-taken check
4110   // block and the middle block.
4111   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4112                                         LoopScalarPreHeader->getTerminator());
4113   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4114     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4115   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4116 
4117   // Now, we need to fix the users of the reduction variable
4118   // inside and outside of the scalar remainder loop.
4119   // We know that the loop is in LCSSA form. We need to update the
4120   // PHI nodes in the exit blocks.
4121   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4122     // All PHINodes need to have a single entry edge, or two if
4123     // we already fixed them.
4124     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
4125 
4126     // We found a reduction value exit-PHI. Update it with the
4127     // incoming bypass edge.
4128     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4129       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4130   } // end of the LCSSA phi scan.
4131 
4132     // Fix the scalar loop reduction variable with the incoming reduction sum
4133     // from the vector body and from the backedge value.
4134   int IncomingEdgeBlockIdx =
4135     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4136   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4137   // Pick the other block.
4138   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4139   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4140   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4141 }
4142 
4143 void InnerLoopVectorizer::clearReductionWrapFlags(
4144     RecurrenceDescriptor &RdxDesc) {
4145   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4146   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
4147       RK != RecurrenceDescriptor::RK_IntegerMult)
4148     return;
4149 
4150   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4151   assert(LoopExitInstr && "null loop exit instruction");
4152   SmallVector<Instruction *, 8> Worklist;
4153   SmallPtrSet<Instruction *, 8> Visited;
4154   Worklist.push_back(LoopExitInstr);
4155   Visited.insert(LoopExitInstr);
4156 
4157   while (!Worklist.empty()) {
4158     Instruction *Cur = Worklist.pop_back_val();
4159     if (isa<OverflowingBinaryOperator>(Cur))
4160       for (unsigned Part = 0; Part < UF; ++Part) {
4161         Value *V = getOrCreateVectorValue(Cur, Part);
4162         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4163       }
4164 
4165     for (User *U : Cur->users()) {
4166       Instruction *UI = cast<Instruction>(U);
4167       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4168           Visited.insert(UI).second)
4169         Worklist.push_back(UI);
4170     }
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixLCSSAPHIs() {
4175   assert(!VF.isScalable() && "the code below assumes fixed width vectors");
4176   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4177     if (LCSSAPhi.getNumIncomingValues() == 1) {
4178       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4179       // Non-instruction incoming values will have only one value.
4180       unsigned LastLane = 0;
4181       if (isa<Instruction>(IncomingValue))
4182         LastLane = Cost->isUniformAfterVectorization(
4183                        cast<Instruction>(IncomingValue), VF)
4184                        ? 0
4185                        : VF.getKnownMinValue() - 1;
4186       // Can be a loop invariant incoming value or the last scalar value to be
4187       // extracted from the vectorized loop.
4188       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4189       Value *lastIncomingValue =
4190           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
4191       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4192     }
4193   }
4194 }
4195 
4196 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4197   // The basic block and loop containing the predicated instruction.
4198   auto *PredBB = PredInst->getParent();
4199   auto *VectorLoop = LI->getLoopFor(PredBB);
4200 
4201   // Initialize a worklist with the operands of the predicated instruction.
4202   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4203 
4204   // Holds instructions that we need to analyze again. An instruction may be
4205   // reanalyzed if we don't yet know if we can sink it or not.
4206   SmallVector<Instruction *, 8> InstsToReanalyze;
4207 
4208   // Returns true if a given use occurs in the predicated block. Phi nodes use
4209   // their operands in their corresponding predecessor blocks.
4210   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4211     auto *I = cast<Instruction>(U.getUser());
4212     BasicBlock *BB = I->getParent();
4213     if (auto *Phi = dyn_cast<PHINode>(I))
4214       BB = Phi->getIncomingBlock(
4215           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4216     return BB == PredBB;
4217   };
4218 
4219   // Iteratively sink the scalarized operands of the predicated instruction
4220   // into the block we created for it. When an instruction is sunk, it's
4221   // operands are then added to the worklist. The algorithm ends after one pass
4222   // through the worklist doesn't sink a single instruction.
4223   bool Changed;
4224   do {
4225     // Add the instructions that need to be reanalyzed to the worklist, and
4226     // reset the changed indicator.
4227     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4228     InstsToReanalyze.clear();
4229     Changed = false;
4230 
4231     while (!Worklist.empty()) {
4232       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4233 
4234       // We can't sink an instruction if it is a phi node, is already in the
4235       // predicated block, is not in the loop, or may have side effects.
4236       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4237           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4238         continue;
4239 
4240       // It's legal to sink the instruction if all its uses occur in the
4241       // predicated block. Otherwise, there's nothing to do yet, and we may
4242       // need to reanalyze the instruction.
4243       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4244         InstsToReanalyze.push_back(I);
4245         continue;
4246       }
4247 
4248       // Move the instruction to the beginning of the predicated block, and add
4249       // it's operands to the worklist.
4250       I->moveBefore(&*PredBB->getFirstInsertionPt());
4251       Worklist.insert(I->op_begin(), I->op_end());
4252 
4253       // The sinking may have enabled other instructions to be sunk, so we will
4254       // need to iterate.
4255       Changed = true;
4256     }
4257   } while (Changed);
4258 }
4259 
4260 void InnerLoopVectorizer::fixNonInductionPHIs() {
4261   for (PHINode *OrigPhi : OrigPHIsToFix) {
4262     PHINode *NewPhi =
4263         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4264     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4265 
4266     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4267         predecessors(OrigPhi->getParent()));
4268     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4269         predecessors(NewPhi->getParent()));
4270     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4271            "Scalar and Vector BB should have the same number of predecessors");
4272 
4273     // The insertion point in Builder may be invalidated by the time we get
4274     // here. Force the Builder insertion point to something valid so that we do
4275     // not run into issues during insertion point restore in
4276     // getOrCreateVectorValue calls below.
4277     Builder.SetInsertPoint(NewPhi);
4278 
4279     // The predecessor order is preserved and we can rely on mapping between
4280     // scalar and vector block predecessors.
4281     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4282       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4283 
4284       // When looking up the new scalar/vector values to fix up, use incoming
4285       // values from original phi.
4286       Value *ScIncV =
4287           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4288 
4289       // Scalar incoming value may need a broadcast
4290       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4291       NewPhi->addIncoming(NewIncV, NewPredBB);
4292     }
4293   }
4294 }
4295 
4296 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4297                                    VPUser &Operands, unsigned UF,
4298                                    ElementCount VF, bool IsPtrLoopInvariant,
4299                                    SmallBitVector &IsIndexLoopInvariant,
4300                                    VPTransformState &State) {
4301   // Construct a vector GEP by widening the operands of the scalar GEP as
4302   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4303   // results in a vector of pointers when at least one operand of the GEP
4304   // is vector-typed. Thus, to keep the representation compact, we only use
4305   // vector-typed operands for loop-varying values.
4306 
4307   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4308     // If we are vectorizing, but the GEP has only loop-invariant operands,
4309     // the GEP we build (by only using vector-typed operands for
4310     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4311     // produce a vector of pointers, we need to either arbitrarily pick an
4312     // operand to broadcast, or broadcast a clone of the original GEP.
4313     // Here, we broadcast a clone of the original.
4314     //
4315     // TODO: If at some point we decide to scalarize instructions having
4316     //       loop-invariant operands, this special case will no longer be
4317     //       required. We would add the scalarization decision to
4318     //       collectLoopScalars() and teach getVectorValue() to broadcast
4319     //       the lane-zero scalar value.
4320     auto *Clone = Builder.Insert(GEP->clone());
4321     for (unsigned Part = 0; Part < UF; ++Part) {
4322       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4323       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4324       addMetadata(EntryPart, GEP);
4325     }
4326   } else {
4327     // If the GEP has at least one loop-varying operand, we are sure to
4328     // produce a vector of pointers. But if we are only unrolling, we want
4329     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4330     // produce with the code below will be scalar (if VF == 1) or vector
4331     // (otherwise). Note that for the unroll-only case, we still maintain
4332     // values in the vector mapping with initVector, as we do for other
4333     // instructions.
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       // The pointer operand of the new GEP. If it's loop-invariant, we
4336       // won't broadcast it.
4337       auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0})
4338                                      : State.get(Operands.getOperand(0), Part);
4339 
4340       // Collect all the indices for the new GEP. If any index is
4341       // loop-invariant, we won't broadcast it.
4342       SmallVector<Value *, 4> Indices;
4343       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4344         VPValue *Operand = Operands.getOperand(I);
4345         if (IsIndexLoopInvariant[I - 1])
4346           Indices.push_back(State.get(Operand, {0, 0}));
4347         else
4348           Indices.push_back(State.get(Operand, Part));
4349       }
4350 
4351       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4352       // but it should be a vector, otherwise.
4353       auto *NewGEP =
4354           GEP->isInBounds()
4355               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4356                                           Indices)
4357               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4358       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4359              "NewGEP is not a pointer vector");
4360       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4361       addMetadata(NewGEP, GEP);
4362     }
4363   }
4364 }
4365 
4366 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4367                                               ElementCount VF) {
4368   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4369   PHINode *P = cast<PHINode>(PN);
4370   if (EnableVPlanNativePath) {
4371     // Currently we enter here in the VPlan-native path for non-induction
4372     // PHIs where all control flow is uniform. We simply widen these PHIs.
4373     // Create a vector phi with no operands - the vector phi operands will be
4374     // set at the end of vector code generation.
4375     Type *VecTy =
4376         (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF);
4377     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4378     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4379     OrigPHIsToFix.push_back(P);
4380 
4381     return;
4382   }
4383 
4384   assert(PN->getParent() == OrigLoop->getHeader() &&
4385          "Non-header phis should have been handled elsewhere");
4386 
4387   // In order to support recurrences we need to be able to vectorize Phi nodes.
4388   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4389   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4390   // this value when we vectorize all of the instructions that use the PHI.
4391   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4392     for (unsigned Part = 0; Part < UF; ++Part) {
4393       // This is phase one of vectorizing PHIs.
4394       bool ScalarPHI =
4395           (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4396       Type *VecTy =
4397           ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF);
4398       Value *EntryPart = PHINode::Create(
4399           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4400       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4401     }
4402     return;
4403   }
4404 
4405   setDebugLocFromInst(Builder, P);
4406 
4407   // This PHINode must be an induction variable.
4408   // Make sure that we know about it.
4409   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4410 
4411   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4412   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4413 
4414   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4415   // which can be found from the original scalar operations.
4416   switch (II.getKind()) {
4417   case InductionDescriptor::IK_NoInduction:
4418     llvm_unreachable("Unknown induction");
4419   case InductionDescriptor::IK_IntInduction:
4420   case InductionDescriptor::IK_FpInduction:
4421     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4422   case InductionDescriptor::IK_PtrInduction: {
4423     // Handle the pointer induction variable case.
4424     assert(P->getType()->isPointerTy() && "Unexpected type.");
4425 
4426     if (Cost->isScalarAfterVectorization(P, VF)) {
4427       // This is the normalized GEP that starts counting at zero.
4428       Value *PtrInd =
4429           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4430       // Determine the number of scalars we need to generate for each unroll
4431       // iteration. If the instruction is uniform, we only need to generate the
4432       // first lane. Otherwise, we generate all VF values.
4433       unsigned Lanes =
4434           Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue();
4435       for (unsigned Part = 0; Part < UF; ++Part) {
4436         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4437           Constant *Idx = ConstantInt::get(PtrInd->getType(),
4438                                            Lane + Part * VF.getKnownMinValue());
4439           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4440           Value *SclrGep =
4441               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4442           SclrGep->setName("next.gep");
4443           VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4444         }
4445       }
4446       return;
4447     }
4448     assert(isa<SCEVConstant>(II.getStep()) &&
4449            "Induction step not a SCEV constant!");
4450     Type *PhiType = II.getStep()->getType();
4451 
4452     // Build a pointer phi
4453     Value *ScalarStartValue = II.getStartValue();
4454     Type *ScStValueType = ScalarStartValue->getType();
4455     PHINode *NewPointerPhi =
4456         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4457     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4458 
4459     // A pointer induction, performed by using a gep
4460     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4461     Instruction *InductionLoc = LoopLatch->getTerminator();
4462     const SCEV *ScalarStep = II.getStep();
4463     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4464     Value *ScalarStepValue =
4465         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4466     Value *InductionGEP = GetElementPtrInst::Create(
4467         ScStValueType->getPointerElementType(), NewPointerPhi,
4468         Builder.CreateMul(
4469             ScalarStepValue,
4470             ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)),
4471         "ptr.ind", InductionLoc);
4472     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4473 
4474     // Create UF many actual address geps that use the pointer
4475     // phi as base and a vectorized version of the step value
4476     // (<step*0, ..., step*N>) as offset.
4477     for (unsigned Part = 0; Part < UF; ++Part) {
4478       SmallVector<Constant *, 8> Indices;
4479       // Create a vector of consecutive numbers from zero to VF.
4480       for (unsigned i = 0; i < VF.getKnownMinValue(); ++i)
4481         Indices.push_back(
4482             ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue()));
4483       Constant *StartOffset = ConstantVector::get(Indices);
4484 
4485       Value *GEP = Builder.CreateGEP(
4486           ScStValueType->getPointerElementType(), NewPointerPhi,
4487           Builder.CreateMul(
4488               StartOffset,
4489               Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue),
4490               "vector.gep"));
4491       VectorLoopValueMap.setVectorValue(P, Part, GEP);
4492     }
4493   }
4494   }
4495 }
4496 
4497 /// A helper function for checking whether an integer division-related
4498 /// instruction may divide by zero (in which case it must be predicated if
4499 /// executed conditionally in the scalar code).
4500 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4501 /// Non-zero divisors that are non compile-time constants will not be
4502 /// converted into multiplication, so we will still end up scalarizing
4503 /// the division, but can do so w/o predication.
4504 static bool mayDivideByZero(Instruction &I) {
4505   assert((I.getOpcode() == Instruction::UDiv ||
4506           I.getOpcode() == Instruction::SDiv ||
4507           I.getOpcode() == Instruction::URem ||
4508           I.getOpcode() == Instruction::SRem) &&
4509          "Unexpected instruction");
4510   Value *Divisor = I.getOperand(1);
4511   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4512   return !CInt || CInt->isZero();
4513 }
4514 
4515 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4516                                            VPTransformState &State) {
4517   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4518   switch (I.getOpcode()) {
4519   case Instruction::Call:
4520   case Instruction::Br:
4521   case Instruction::PHI:
4522   case Instruction::GetElementPtr:
4523   case Instruction::Select:
4524     llvm_unreachable("This instruction is handled by a different recipe.");
4525   case Instruction::UDiv:
4526   case Instruction::SDiv:
4527   case Instruction::SRem:
4528   case Instruction::URem:
4529   case Instruction::Add:
4530   case Instruction::FAdd:
4531   case Instruction::Sub:
4532   case Instruction::FSub:
4533   case Instruction::FNeg:
4534   case Instruction::Mul:
4535   case Instruction::FMul:
4536   case Instruction::FDiv:
4537   case Instruction::FRem:
4538   case Instruction::Shl:
4539   case Instruction::LShr:
4540   case Instruction::AShr:
4541   case Instruction::And:
4542   case Instruction::Or:
4543   case Instruction::Xor: {
4544     // Just widen unops and binops.
4545     setDebugLocFromInst(Builder, &I);
4546 
4547     for (unsigned Part = 0; Part < UF; ++Part) {
4548       SmallVector<Value *, 2> Ops;
4549       for (VPValue *VPOp : User.operands())
4550         Ops.push_back(State.get(VPOp, Part));
4551 
4552       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4553 
4554       if (auto *VecOp = dyn_cast<Instruction>(V))
4555         VecOp->copyIRFlags(&I);
4556 
4557       // Use this vector value for all users of the original instruction.
4558       VectorLoopValueMap.setVectorValue(&I, Part, V);
4559       addMetadata(V, &I);
4560     }
4561 
4562     break;
4563   }
4564   case Instruction::ICmp:
4565   case Instruction::FCmp: {
4566     // Widen compares. Generate vector compares.
4567     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4568     auto *Cmp = cast<CmpInst>(&I);
4569     setDebugLocFromInst(Builder, Cmp);
4570     for (unsigned Part = 0; Part < UF; ++Part) {
4571       Value *A = State.get(User.getOperand(0), Part);
4572       Value *B = State.get(User.getOperand(1), Part);
4573       Value *C = nullptr;
4574       if (FCmp) {
4575         // Propagate fast math flags.
4576         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4577         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4578         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4579       } else {
4580         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4581       }
4582       VectorLoopValueMap.setVectorValue(&I, Part, C);
4583       addMetadata(C, &I);
4584     }
4585 
4586     break;
4587   }
4588 
4589   case Instruction::ZExt:
4590   case Instruction::SExt:
4591   case Instruction::FPToUI:
4592   case Instruction::FPToSI:
4593   case Instruction::FPExt:
4594   case Instruction::PtrToInt:
4595   case Instruction::IntToPtr:
4596   case Instruction::SIToFP:
4597   case Instruction::UIToFP:
4598   case Instruction::Trunc:
4599   case Instruction::FPTrunc:
4600   case Instruction::BitCast: {
4601     auto *CI = cast<CastInst>(&I);
4602     setDebugLocFromInst(Builder, CI);
4603 
4604     /// Vectorize casts.
4605     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4606     Type *DestTy =
4607         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4608 
4609     for (unsigned Part = 0; Part < UF; ++Part) {
4610       Value *A = State.get(User.getOperand(0), Part);
4611       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4612       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4613       addMetadata(Cast, &I);
4614     }
4615     break;
4616   }
4617   default:
4618     // This instruction is not vectorized by simple widening.
4619     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4620     llvm_unreachable("Unhandled instruction!");
4621   } // end of switch.
4622 }
4623 
4624 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4625                                                VPUser &ArgOperands,
4626                                                VPTransformState &State) {
4627   assert(!isa<DbgInfoIntrinsic>(I) &&
4628          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4629   setDebugLocFromInst(Builder, &I);
4630 
4631   Module *M = I.getParent()->getParent()->getParent();
4632   auto *CI = cast<CallInst>(&I);
4633 
4634   SmallVector<Type *, 4> Tys;
4635   for (Value *ArgOperand : CI->arg_operands())
4636     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4637 
4638   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4639 
4640   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4641   // version of the instruction.
4642   // Is it beneficial to perform intrinsic call compared to lib call?
4643   bool NeedToScalarize = false;
4644   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4645   bool UseVectorIntrinsic =
4646       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4647   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4648          "Instruction should be scalarized elsewhere.");
4649 
4650   for (unsigned Part = 0; Part < UF; ++Part) {
4651     SmallVector<Value *, 4> Args;
4652     for (auto &I : enumerate(ArgOperands.operands())) {
4653       // Some intrinsics have a scalar argument - don't replace it with a
4654       // vector.
4655       Value *Arg;
4656       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4657         Arg = State.get(I.value(), Part);
4658       else
4659         Arg = State.get(I.value(), {0, 0});
4660       Args.push_back(Arg);
4661     }
4662 
4663     Function *VectorF;
4664     if (UseVectorIntrinsic) {
4665       // Use vector version of the intrinsic.
4666       Type *TysForDecl[] = {CI->getType()};
4667       if (VF.isVector()) {
4668         assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4669         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4670       }
4671       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4672       assert(VectorF && "Can't retrieve vector intrinsic.");
4673     } else {
4674       // Use vector version of the function call.
4675       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4676 #ifndef NDEBUG
4677       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4678              "Can't create vector function.");
4679 #endif
4680         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4681     }
4682       SmallVector<OperandBundleDef, 1> OpBundles;
4683       CI->getOperandBundlesAsDefs(OpBundles);
4684       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4685 
4686       if (isa<FPMathOperator>(V))
4687         V->copyFastMathFlags(CI);
4688 
4689       State.set(Def, &I, V, Part);
4690       addMetadata(V, &I);
4691   }
4692 }
4693 
4694 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
4695                                                  VPUser &Operands,
4696                                                  bool InvariantCond,
4697                                                  VPTransformState &State) {
4698   setDebugLocFromInst(Builder, &I);
4699 
4700   // The condition can be loop invariant  but still defined inside the
4701   // loop. This means that we can't just use the original 'cond' value.
4702   // We have to take the 'vectorized' value and pick the first lane.
4703   // Instcombine will make this a no-op.
4704   auto *InvarCond =
4705       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4706 
4707   for (unsigned Part = 0; Part < UF; ++Part) {
4708     Value *Cond =
4709         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4710     Value *Op0 = State.get(Operands.getOperand(1), Part);
4711     Value *Op1 = State.get(Operands.getOperand(2), Part);
4712     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4713     State.set(VPDef, &I, Sel, Part);
4714     addMetadata(Sel, &I);
4715   }
4716 }
4717 
4718 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4719   // We should not collect Scalars more than once per VF. Right now, this
4720   // function is called from collectUniformsAndScalars(), which already does
4721   // this check. Collecting Scalars for VF=1 does not make any sense.
4722   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4723          "This function should not be visited twice for the same VF");
4724 
4725   SmallSetVector<Instruction *, 8> Worklist;
4726 
4727   // These sets are used to seed the analysis with pointers used by memory
4728   // accesses that will remain scalar.
4729   SmallSetVector<Instruction *, 8> ScalarPtrs;
4730   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4731   auto *Latch = TheLoop->getLoopLatch();
4732 
4733   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4734   // The pointer operands of loads and stores will be scalar as long as the
4735   // memory access is not a gather or scatter operation. The value operand of a
4736   // store will remain scalar if the store is scalarized.
4737   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4738     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4739     assert(WideningDecision != CM_Unknown &&
4740            "Widening decision should be ready at this moment");
4741     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4742       if (Ptr == Store->getValueOperand())
4743         return WideningDecision == CM_Scalarize;
4744     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4745            "Ptr is neither a value or pointer operand");
4746     return WideningDecision != CM_GatherScatter;
4747   };
4748 
4749   // A helper that returns true if the given value is a bitcast or
4750   // getelementptr instruction contained in the loop.
4751   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4752     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4753             isa<GetElementPtrInst>(V)) &&
4754            !TheLoop->isLoopInvariant(V);
4755   };
4756 
4757   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
4758     if (!isa<PHINode>(Ptr) ||
4759         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
4760       return false;
4761     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
4762     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
4763       return false;
4764     return isScalarUse(MemAccess, Ptr);
4765   };
4766 
4767   // A helper that evaluates a memory access's use of a pointer. If the
4768   // pointer is actually the pointer induction of a loop, it is being
4769   // inserted into Worklist. If the use will be a scalar use, and the
4770   // pointer is only used by memory accesses, we place the pointer in
4771   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
4772   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4773     if (isScalarPtrInduction(MemAccess, Ptr)) {
4774       Worklist.insert(cast<Instruction>(Ptr));
4775       Instruction *Update = cast<Instruction>(
4776           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
4777       Worklist.insert(Update);
4778       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
4779                         << "\n");
4780       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
4781                         << "\n");
4782       return;
4783     }
4784     // We only care about bitcast and getelementptr instructions contained in
4785     // the loop.
4786     if (!isLoopVaryingBitCastOrGEP(Ptr))
4787       return;
4788 
4789     // If the pointer has already been identified as scalar (e.g., if it was
4790     // also identified as uniform), there's nothing to do.
4791     auto *I = cast<Instruction>(Ptr);
4792     if (Worklist.count(I))
4793       return;
4794 
4795     // If the use of the pointer will be a scalar use, and all users of the
4796     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4797     // place the pointer in PossibleNonScalarPtrs.
4798     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4799           return isa<LoadInst>(U) || isa<StoreInst>(U);
4800         }))
4801       ScalarPtrs.insert(I);
4802     else
4803       PossibleNonScalarPtrs.insert(I);
4804   };
4805 
4806   // We seed the scalars analysis with three classes of instructions: (1)
4807   // instructions marked uniform-after-vectorization and (2) bitcast,
4808   // getelementptr and (pointer) phi instructions used by memory accesses
4809   // requiring a scalar use.
4810   //
4811   // (1) Add to the worklist all instructions that have been identified as
4812   // uniform-after-vectorization.
4813   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4814 
4815   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4816   // memory accesses requiring a scalar use. The pointer operands of loads and
4817   // stores will be scalar as long as the memory accesses is not a gather or
4818   // scatter operation. The value operand of a store will remain scalar if the
4819   // store is scalarized.
4820   for (auto *BB : TheLoop->blocks())
4821     for (auto &I : *BB) {
4822       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4823         evaluatePtrUse(Load, Load->getPointerOperand());
4824       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4825         evaluatePtrUse(Store, Store->getPointerOperand());
4826         evaluatePtrUse(Store, Store->getValueOperand());
4827       }
4828     }
4829   for (auto *I : ScalarPtrs)
4830     if (!PossibleNonScalarPtrs.count(I)) {
4831       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4832       Worklist.insert(I);
4833     }
4834 
4835   // Insert the forced scalars.
4836   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4837   // induction variable when the PHI user is scalarized.
4838   auto ForcedScalar = ForcedScalars.find(VF);
4839   if (ForcedScalar != ForcedScalars.end())
4840     for (auto *I : ForcedScalar->second)
4841       Worklist.insert(I);
4842 
4843   // Expand the worklist by looking through any bitcasts and getelementptr
4844   // instructions we've already identified as scalar. This is similar to the
4845   // expansion step in collectLoopUniforms(); however, here we're only
4846   // expanding to include additional bitcasts and getelementptr instructions.
4847   unsigned Idx = 0;
4848   while (Idx != Worklist.size()) {
4849     Instruction *Dst = Worklist[Idx++];
4850     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4851       continue;
4852     auto *Src = cast<Instruction>(Dst->getOperand(0));
4853     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4854           auto *J = cast<Instruction>(U);
4855           return !TheLoop->contains(J) || Worklist.count(J) ||
4856                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4857                   isScalarUse(J, Src));
4858         })) {
4859       Worklist.insert(Src);
4860       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4861     }
4862   }
4863 
4864   // An induction variable will remain scalar if all users of the induction
4865   // variable and induction variable update remain scalar.
4866   for (auto &Induction : Legal->getInductionVars()) {
4867     auto *Ind = Induction.first;
4868     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4869 
4870     // If tail-folding is applied, the primary induction variable will be used
4871     // to feed a vector compare.
4872     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4873       continue;
4874 
4875     // Determine if all users of the induction variable are scalar after
4876     // vectorization.
4877     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4878       auto *I = cast<Instruction>(U);
4879       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4880     });
4881     if (!ScalarInd)
4882       continue;
4883 
4884     // Determine if all users of the induction variable update instruction are
4885     // scalar after vectorization.
4886     auto ScalarIndUpdate =
4887         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4888           auto *I = cast<Instruction>(U);
4889           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4890         });
4891     if (!ScalarIndUpdate)
4892       continue;
4893 
4894     // The induction variable and its update instruction will remain scalar.
4895     Worklist.insert(Ind);
4896     Worklist.insert(IndUpdate);
4897     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4898     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4899                       << "\n");
4900   }
4901 
4902   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4903 }
4904 
4905 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I,
4906                                                          ElementCount VF) {
4907   assert(!VF.isScalable() && "scalable vectors not yet supported.");
4908   if (!blockNeedsPredication(I->getParent()))
4909     return false;
4910   switch(I->getOpcode()) {
4911   default:
4912     break;
4913   case Instruction::Load:
4914   case Instruction::Store: {
4915     if (!Legal->isMaskRequired(I))
4916       return false;
4917     auto *Ptr = getLoadStorePointerOperand(I);
4918     auto *Ty = getMemInstValueType(I);
4919     // We have already decided how to vectorize this instruction, get that
4920     // result.
4921     if (VF.isVector()) {
4922       InstWidening WideningDecision = getWideningDecision(I, VF);
4923       assert(WideningDecision != CM_Unknown &&
4924              "Widening decision should be ready at this moment");
4925       return WideningDecision == CM_Scalarize;
4926     }
4927     const Align Alignment = getLoadStoreAlignment(I);
4928     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4929                                 isLegalMaskedGather(Ty, Alignment))
4930                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4931                                 isLegalMaskedScatter(Ty, Alignment));
4932   }
4933   case Instruction::UDiv:
4934   case Instruction::SDiv:
4935   case Instruction::SRem:
4936   case Instruction::URem:
4937     return mayDivideByZero(*I);
4938   }
4939   return false;
4940 }
4941 
4942 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4943     Instruction *I, ElementCount VF) {
4944   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4945   assert(getWideningDecision(I, VF) == CM_Unknown &&
4946          "Decision should not be set yet.");
4947   auto *Group = getInterleavedAccessGroup(I);
4948   assert(Group && "Must have a group.");
4949 
4950   // If the instruction's allocated size doesn't equal it's type size, it
4951   // requires padding and will be scalarized.
4952   auto &DL = I->getModule()->getDataLayout();
4953   auto *ScalarTy = getMemInstValueType(I);
4954   if (hasIrregularType(ScalarTy, DL, VF))
4955     return false;
4956 
4957   // Check if masking is required.
4958   // A Group may need masking for one of two reasons: it resides in a block that
4959   // needs predication, or it was decided to use masking to deal with gaps.
4960   bool PredicatedAccessRequiresMasking =
4961       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4962   bool AccessWithGapsRequiresMasking =
4963       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4964   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4965     return true;
4966 
4967   // If masked interleaving is required, we expect that the user/target had
4968   // enabled it, because otherwise it either wouldn't have been created or
4969   // it should have been invalidated by the CostModel.
4970   assert(useMaskedInterleavedAccesses(TTI) &&
4971          "Masked interleave-groups for predicated accesses are not enabled.");
4972 
4973   auto *Ty = getMemInstValueType(I);
4974   const Align Alignment = getLoadStoreAlignment(I);
4975   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4976                           : TTI.isLegalMaskedStore(Ty, Alignment);
4977 }
4978 
4979 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4980     Instruction *I, ElementCount VF) {
4981   // Get and ensure we have a valid memory instruction.
4982   LoadInst *LI = dyn_cast<LoadInst>(I);
4983   StoreInst *SI = dyn_cast<StoreInst>(I);
4984   assert((LI || SI) && "Invalid memory instruction");
4985 
4986   auto *Ptr = getLoadStorePointerOperand(I);
4987 
4988   // In order to be widened, the pointer should be consecutive, first of all.
4989   if (!Legal->isConsecutivePtr(Ptr))
4990     return false;
4991 
4992   // If the instruction is a store located in a predicated block, it will be
4993   // scalarized.
4994   if (isScalarWithPredication(I))
4995     return false;
4996 
4997   // If the instruction's allocated size doesn't equal it's type size, it
4998   // requires padding and will be scalarized.
4999   auto &DL = I->getModule()->getDataLayout();
5000   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5001   if (hasIrregularType(ScalarTy, DL, VF))
5002     return false;
5003 
5004   return true;
5005 }
5006 
5007 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5008   // We should not collect Uniforms more than once per VF. Right now,
5009   // this function is called from collectUniformsAndScalars(), which
5010   // already does this check. Collecting Uniforms for VF=1 does not make any
5011   // sense.
5012 
5013   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5014          "This function should not be visited twice for the same VF");
5015 
5016   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5017   // not analyze again.  Uniforms.count(VF) will return 1.
5018   Uniforms[VF].clear();
5019 
5020   // We now know that the loop is vectorizable!
5021   // Collect instructions inside the loop that will remain uniform after
5022   // vectorization.
5023 
5024   // Global values, params and instructions outside of current loop are out of
5025   // scope.
5026   auto isOutOfScope = [&](Value *V) -> bool {
5027     Instruction *I = dyn_cast<Instruction>(V);
5028     return (!I || !TheLoop->contains(I));
5029   };
5030 
5031   SetVector<Instruction *> Worklist;
5032   BasicBlock *Latch = TheLoop->getLoopLatch();
5033 
5034   // Instructions that are scalar with predication must not be considered
5035   // uniform after vectorization, because that would create an erroneous
5036   // replicating region where only a single instance out of VF should be formed.
5037   // TODO: optimize such seldom cases if found important, see PR40816.
5038   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5039     if (isOutOfScope(I)) {
5040       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5041                         << *I << "\n");
5042       return;
5043     }
5044     if (isScalarWithPredication(I, VF)) {
5045       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5046                         << *I << "\n");
5047       return;
5048     }
5049     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5050     Worklist.insert(I);
5051   };
5052 
5053   // Start with the conditional branch. If the branch condition is an
5054   // instruction contained in the loop that is only used by the branch, it is
5055   // uniform.
5056   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5057   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5058     addToWorklistIfAllowed(Cmp);
5059 
5060   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5061   // are pointers that are treated like consecutive pointers during
5062   // vectorization. The pointer operands of interleaved accesses are an
5063   // example.
5064   SmallSetVector<Value *, 8> ConsecutiveLikePtrs;
5065 
5066   // Holds pointer operands of instructions that are possibly non-uniform.
5067   SmallPtrSet<Value *, 8> PossibleNonUniformPtrs;
5068 
5069   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5070     InstWidening WideningDecision = getWideningDecision(I, VF);
5071     assert(WideningDecision != CM_Unknown &&
5072            "Widening decision should be ready at this moment");
5073 
5074     // The address of a uniform mem op is itself uniform.  We exclude stores
5075     // here as there's an assumption in the current code that all uses of
5076     // uniform instructions are uniform and, as noted below, uniform stores are
5077     // still handled via replication (i.e. aren't uniform after vectorization).
5078     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5079       assert(WideningDecision == CM_Scalarize);
5080       return true;
5081     }
5082 
5083     return (WideningDecision == CM_Widen ||
5084             WideningDecision == CM_Widen_Reverse ||
5085             WideningDecision == CM_Interleave);
5086   };
5087 
5088 
5089   // Returns true if Ptr is the pointer operand of a memory access instruction
5090   // I, and I is known to not require scalarization.
5091   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5092     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5093   };
5094 
5095   // Iterate over the instructions in the loop, and collect all
5096   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5097   // that a consecutive-like pointer operand will be scalarized, we collect it
5098   // in PossibleNonUniformPtrs instead. We use two sets here because a single
5099   // getelementptr instruction can be used by both vectorized and scalarized
5100   // memory instructions. For example, if a loop loads and stores from the same
5101   // location, but the store is conditional, the store will be scalarized, and
5102   // the getelementptr won't remain uniform.
5103   for (auto *BB : TheLoop->blocks())
5104     for (auto &I : *BB) {
5105       // If there's no pointer operand, there's nothing to do.
5106       auto *Ptr = getLoadStorePointerOperand(&I);
5107       if (!Ptr)
5108         continue;
5109 
5110       // For now, avoid walking use lists in other functions.
5111       // TODO: Rewrite this algorithm from uses up.
5112       if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr))
5113         continue;
5114 
5115       // A uniform memory op is itself uniform.  We exclude stores here as we
5116       // haven't yet added dedicated logic in the CLONE path and rely on
5117       // REPLICATE + DSE for correctness.
5118       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5119         addToWorklistIfAllowed(&I);
5120 
5121       // True if all users of Ptr are memory accesses that have Ptr as their
5122       // pointer operand.  Since loops are assumed to be in LCSSA form, this
5123       // disallows uses outside the loop as well.
5124       auto UsersAreMemAccesses =
5125           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5126             return getLoadStorePointerOperand(U) == Ptr;
5127           });
5128 
5129       // Ensure the memory instruction will not be scalarized or used by
5130       // gather/scatter, making its pointer operand non-uniform. If the pointer
5131       // operand is used by any instruction other than a memory access, we
5132       // conservatively assume the pointer operand may be non-uniform.
5133       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5134         PossibleNonUniformPtrs.insert(Ptr);
5135 
5136       // If the memory instruction will be vectorized and its pointer operand
5137       // is consecutive-like, or interleaving - the pointer operand should
5138       // remain uniform.
5139       else
5140         ConsecutiveLikePtrs.insert(Ptr);
5141     }
5142 
5143   // Add to the Worklist all consecutive and consecutive-like pointers that
5144   // aren't also identified as possibly non-uniform.
5145   for (auto *V : ConsecutiveLikePtrs)
5146     if (!PossibleNonUniformPtrs.count(V))
5147       if (auto *I = dyn_cast<Instruction>(V))
5148         addToWorklistIfAllowed(I);
5149 
5150   // Expand Worklist in topological order: whenever a new instruction
5151   // is added , its users should be already inside Worklist.  It ensures
5152   // a uniform instruction will only be used by uniform instructions.
5153   unsigned idx = 0;
5154   while (idx != Worklist.size()) {
5155     Instruction *I = Worklist[idx++];
5156 
5157     for (auto OV : I->operand_values()) {
5158       // isOutOfScope operands cannot be uniform instructions.
5159       if (isOutOfScope(OV))
5160         continue;
5161       // First order recurrence Phi's should typically be considered
5162       // non-uniform.
5163       auto *OP = dyn_cast<PHINode>(OV);
5164       if (OP && Legal->isFirstOrderRecurrence(OP))
5165         continue;
5166       // If all the users of the operand are uniform, then add the
5167       // operand into the uniform worklist.
5168       auto *OI = cast<Instruction>(OV);
5169       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5170             auto *J = cast<Instruction>(U);
5171             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5172           }))
5173         addToWorklistIfAllowed(OI);
5174     }
5175   }
5176 
5177   // For an instruction to be added into Worklist above, all its users inside
5178   // the loop should also be in Worklist. However, this condition cannot be
5179   // true for phi nodes that form a cyclic dependence. We must process phi
5180   // nodes separately. An induction variable will remain uniform if all users
5181   // of the induction variable and induction variable update remain uniform.
5182   // The code below handles both pointer and non-pointer induction variables.
5183   for (auto &Induction : Legal->getInductionVars()) {
5184     auto *Ind = Induction.first;
5185     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5186 
5187     // Determine if all users of the induction variable are uniform after
5188     // vectorization.
5189     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5190       auto *I = cast<Instruction>(U);
5191       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5192              isVectorizedMemAccessUse(I, Ind);
5193     });
5194     if (!UniformInd)
5195       continue;
5196 
5197     // Determine if all users of the induction variable update instruction are
5198     // uniform after vectorization.
5199     auto UniformIndUpdate =
5200         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5201           auto *I = cast<Instruction>(U);
5202           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5203                  isVectorizedMemAccessUse(I, IndUpdate);
5204         });
5205     if (!UniformIndUpdate)
5206       continue;
5207 
5208     // The induction variable and its update instruction will remain uniform.
5209     addToWorklistIfAllowed(Ind);
5210     addToWorklistIfAllowed(IndUpdate);
5211   }
5212 
5213   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5214 }
5215 
5216 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5217   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5218 
5219   if (Legal->getRuntimePointerChecking()->Need) {
5220     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5221         "runtime pointer checks needed. Enable vectorization of this "
5222         "loop with '#pragma clang loop vectorize(enable)' when "
5223         "compiling with -Os/-Oz",
5224         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5225     return true;
5226   }
5227 
5228   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5229     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5230         "runtime SCEV checks needed. Enable vectorization of this "
5231         "loop with '#pragma clang loop vectorize(enable)' when "
5232         "compiling with -Os/-Oz",
5233         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5234     return true;
5235   }
5236 
5237   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5238   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5239     reportVectorizationFailure("Runtime stride check for small trip count",
5240         "runtime stride == 1 checks needed. Enable vectorization of "
5241         "this loop without such check by compiling with -Os/-Oz",
5242         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5243     return true;
5244   }
5245 
5246   return false;
5247 }
5248 
5249 Optional<ElementCount>
5250 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5251   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5252     // TODO: It may by useful to do since it's still likely to be dynamically
5253     // uniform if the target can skip.
5254     reportVectorizationFailure(
5255         "Not inserting runtime ptr check for divergent target",
5256         "runtime pointer checks needed. Not enabled for divergent target",
5257         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5258     return None;
5259   }
5260 
5261   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5262   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5263   if (TC == 1) {
5264     reportVectorizationFailure("Single iteration (non) loop",
5265         "loop trip count is one, irrelevant for vectorization",
5266         "SingleIterationLoop", ORE, TheLoop);
5267     return None;
5268   }
5269 
5270   switch (ScalarEpilogueStatus) {
5271   case CM_ScalarEpilogueAllowed:
5272     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
5273   case CM_ScalarEpilogueNotNeededUsePredicate:
5274     LLVM_DEBUG(
5275         dbgs() << "LV: vector predicate hint/switch found.\n"
5276                << "LV: Not allowing scalar epilogue, creating predicated "
5277                << "vector loop.\n");
5278     break;
5279   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5280     // fallthrough as a special case of OptForSize
5281   case CM_ScalarEpilogueNotAllowedOptSize:
5282     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5283       LLVM_DEBUG(
5284           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5285     else
5286       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5287                         << "count.\n");
5288 
5289     // Bail if runtime checks are required, which are not good when optimising
5290     // for size.
5291     if (runtimeChecksRequired())
5292       return None;
5293     break;
5294   }
5295 
5296   // Now try the tail folding
5297 
5298   // Invalidate interleave groups that require an epilogue if we can't mask
5299   // the interleave-group.
5300   if (!useMaskedInterleavedAccesses(TTI)) {
5301     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5302            "No decisions should have been taken at this point");
5303     // Note: There is no need to invalidate any cost modeling decisions here, as
5304     // non where taken so far.
5305     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5306   }
5307 
5308   ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5309   assert(!MaxVF.isScalable() &&
5310          "Scalable vectors do not yet support tail folding");
5311   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5312          "MaxVF must be a power of 2");
5313   unsigned MaxVFtimesIC =
5314       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5315   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5316     // Accept MaxVF if we do not have a tail.
5317     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5318     return MaxVF;
5319   }
5320 
5321   // If we don't know the precise trip count, or if the trip count that we
5322   // found modulo the vectorization factor is not zero, try to fold the tail
5323   // by masking.
5324   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5325   if (Legal->prepareToFoldTailByMasking()) {
5326     FoldTailByMasking = true;
5327     return MaxVF;
5328   }
5329 
5330   // If there was a tail-folding hint/switch, but we can't fold the tail by
5331   // masking, fallback to a vectorization with a scalar epilogue.
5332   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5333     if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) {
5334       LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5335       return None;
5336     }
5337     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5338                          "scalar epilogue instead.\n");
5339     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5340     return MaxVF;
5341   }
5342 
5343   if (TC == 0) {
5344     reportVectorizationFailure(
5345         "Unable to calculate the loop count due to complex control flow",
5346         "unable to calculate the loop count due to complex control flow",
5347         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5348     return None;
5349   }
5350 
5351   reportVectorizationFailure(
5352       "Cannot optimize for size and vectorize at the same time.",
5353       "cannot optimize for size and vectorize at the same time. "
5354       "Enable vectorization of this loop with '#pragma clang loop "
5355       "vectorize(enable)' when compiling with -Os/-Oz",
5356       "NoTailLoopWithOptForSize", ORE, TheLoop);
5357   return None;
5358 }
5359 
5360 ElementCount
5361 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5362   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5363   unsigned SmallestType, WidestType;
5364   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5365   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5366 
5367   // Get the maximum safe dependence distance in bits computed by LAA.
5368   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5369   // the memory accesses that is most restrictive (involved in the smallest
5370   // dependence distance).
5371   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5372 
5373   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5374 
5375   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5376   // Note that both WidestRegister and WidestType may not be a powers of 2.
5377   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5378 
5379   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5380                     << " / " << WidestType << " bits.\n");
5381   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5382                     << WidestRegister << " bits.\n");
5383 
5384   assert(MaxVectorSize <= WidestRegister &&
5385          "Did not expect to pack so many elements"
5386          " into one vector!");
5387   if (MaxVectorSize == 0) {
5388     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5389     MaxVectorSize = 1;
5390     return ElementCount::getFixed(MaxVectorSize);
5391   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5392              isPowerOf2_32(ConstTripCount)) {
5393     // We need to clamp the VF to be the ConstTripCount. There is no point in
5394     // choosing a higher viable VF as done in the loop below.
5395     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5396                       << ConstTripCount << "\n");
5397     MaxVectorSize = ConstTripCount;
5398     return ElementCount::getFixed(MaxVectorSize);
5399   }
5400 
5401   unsigned MaxVF = MaxVectorSize;
5402   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5403       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5404     // Collect all viable vectorization factors larger than the default MaxVF
5405     // (i.e. MaxVectorSize).
5406     SmallVector<ElementCount, 8> VFs;
5407     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5408     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5409       VFs.push_back(ElementCount::getFixed(VS));
5410 
5411     // For each VF calculate its register usage.
5412     auto RUs = calculateRegisterUsage(VFs);
5413 
5414     // Select the largest VF which doesn't require more registers than existing
5415     // ones.
5416     for (int i = RUs.size() - 1; i >= 0; --i) {
5417       bool Selected = true;
5418       for (auto& pair : RUs[i].MaxLocalUsers) {
5419         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5420         if (pair.second > TargetNumRegisters)
5421           Selected = false;
5422       }
5423       if (Selected) {
5424         MaxVF = VFs[i].getKnownMinValue();
5425         break;
5426       }
5427     }
5428     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5429       if (MaxVF < MinVF) {
5430         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5431                           << ") with target's minimum: " << MinVF << '\n');
5432         MaxVF = MinVF;
5433       }
5434     }
5435   }
5436   return ElementCount::getFixed(MaxVF);
5437 }
5438 
5439 VectorizationFactor
5440 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5441   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5442 
5443   float Cost = expectedCost(ElementCount::getFixed(1)).first;
5444   const float ScalarCost = Cost;
5445   unsigned Width = 1;
5446   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5447 
5448   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5449   if (ForceVectorization && MaxVF.isVector()) {
5450     // Ignore scalar width, because the user explicitly wants vectorization.
5451     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5452     // evaluation.
5453     Cost = std::numeric_limits<float>::max();
5454   }
5455 
5456   for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) {
5457     // Notice that the vector loop needs to be executed less times, so
5458     // we need to divide the cost of the vector loops by the width of
5459     // the vector elements.
5460     VectorizationCostTy C = expectedCost(ElementCount::getFixed(i));
5461     float VectorCost = C.first / (float)i;
5462     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5463                       << " costs: " << (int)VectorCost << ".\n");
5464     if (!C.second && !ForceVectorization) {
5465       LLVM_DEBUG(
5466           dbgs() << "LV: Not considering vector loop of width " << i
5467                  << " because it will not generate any vector instructions.\n");
5468       continue;
5469     }
5470     if (VectorCost < Cost) {
5471       Cost = VectorCost;
5472       Width = i;
5473     }
5474   }
5475 
5476   if (!EnableCondStoresVectorization && NumPredStores) {
5477     reportVectorizationFailure("There are conditional stores.",
5478         "store that is conditionally executed prevents vectorization",
5479         "ConditionalStore", ORE, TheLoop);
5480     Width = 1;
5481     Cost = ScalarCost;
5482   }
5483 
5484   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5485              << "LV: Vectorization seems to be not beneficial, "
5486              << "but was forced by a user.\n");
5487   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5488   VectorizationFactor Factor = {ElementCount::getFixed(Width),
5489                                 (unsigned)(Width * Cost)};
5490   return Factor;
5491 }
5492 
5493 std::pair<unsigned, unsigned>
5494 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5495   unsigned MinWidth = -1U;
5496   unsigned MaxWidth = 8;
5497   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5498 
5499   // For each block.
5500   for (BasicBlock *BB : TheLoop->blocks()) {
5501     // For each instruction in the loop.
5502     for (Instruction &I : BB->instructionsWithoutDebug()) {
5503       Type *T = I.getType();
5504 
5505       // Skip ignored values.
5506       if (ValuesToIgnore.count(&I))
5507         continue;
5508 
5509       // Only examine Loads, Stores and PHINodes.
5510       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5511         continue;
5512 
5513       // Examine PHI nodes that are reduction variables. Update the type to
5514       // account for the recurrence type.
5515       if (auto *PN = dyn_cast<PHINode>(&I)) {
5516         if (!Legal->isReductionVariable(PN))
5517           continue;
5518         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5519         T = RdxDesc.getRecurrenceType();
5520       }
5521 
5522       // Examine the stored values.
5523       if (auto *ST = dyn_cast<StoreInst>(&I))
5524         T = ST->getValueOperand()->getType();
5525 
5526       // Ignore loaded pointer types and stored pointer types that are not
5527       // vectorizable.
5528       //
5529       // FIXME: The check here attempts to predict whether a load or store will
5530       //        be vectorized. We only know this for certain after a VF has
5531       //        been selected. Here, we assume that if an access can be
5532       //        vectorized, it will be. We should also look at extending this
5533       //        optimization to non-pointer types.
5534       //
5535       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5536           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5537         continue;
5538 
5539       MinWidth = std::min(MinWidth,
5540                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5541       MaxWidth = std::max(MaxWidth,
5542                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5543     }
5544   }
5545 
5546   return {MinWidth, MaxWidth};
5547 }
5548 
5549 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5550                                                            unsigned LoopCost) {
5551   // -- The interleave heuristics --
5552   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5553   // There are many micro-architectural considerations that we can't predict
5554   // at this level. For example, frontend pressure (on decode or fetch) due to
5555   // code size, or the number and capabilities of the execution ports.
5556   //
5557   // We use the following heuristics to select the interleave count:
5558   // 1. If the code has reductions, then we interleave to break the cross
5559   // iteration dependency.
5560   // 2. If the loop is really small, then we interleave to reduce the loop
5561   // overhead.
5562   // 3. We don't interleave if we think that we will spill registers to memory
5563   // due to the increased register pressure.
5564 
5565   if (!isScalarEpilogueAllowed())
5566     return 1;
5567 
5568   // We used the distance for the interleave count.
5569   if (Legal->getMaxSafeDepDistBytes() != -1U)
5570     return 1;
5571 
5572   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5573   const bool HasReductions = !Legal->getReductionVars().empty();
5574   // Do not interleave loops with a relatively small known or estimated trip
5575   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5576   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5577   // because with the above conditions interleaving can expose ILP and break
5578   // cross iteration dependences for reductions.
5579   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5580       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5581     return 1;
5582 
5583   RegisterUsage R = calculateRegisterUsage({VF})[0];
5584   // We divide by these constants so assume that we have at least one
5585   // instruction that uses at least one register.
5586   for (auto& pair : R.MaxLocalUsers) {
5587     pair.second = std::max(pair.second, 1U);
5588   }
5589 
5590   // We calculate the interleave count using the following formula.
5591   // Subtract the number of loop invariants from the number of available
5592   // registers. These registers are used by all of the interleaved instances.
5593   // Next, divide the remaining registers by the number of registers that is
5594   // required by the loop, in order to estimate how many parallel instances
5595   // fit without causing spills. All of this is rounded down if necessary to be
5596   // a power of two. We want power of two interleave count to simplify any
5597   // addressing operations or alignment considerations.
5598   // We also want power of two interleave counts to ensure that the induction
5599   // variable of the vector loop wraps to zero, when tail is folded by masking;
5600   // this currently happens when OptForSize, in which case IC is set to 1 above.
5601   unsigned IC = UINT_MAX;
5602 
5603   for (auto& pair : R.MaxLocalUsers) {
5604     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5605     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5606                       << " registers of "
5607                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5608     if (VF.isScalar()) {
5609       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5610         TargetNumRegisters = ForceTargetNumScalarRegs;
5611     } else {
5612       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5613         TargetNumRegisters = ForceTargetNumVectorRegs;
5614     }
5615     unsigned MaxLocalUsers = pair.second;
5616     unsigned LoopInvariantRegs = 0;
5617     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5618       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5619 
5620     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5621     // Don't count the induction variable as interleaved.
5622     if (EnableIndVarRegisterHeur) {
5623       TmpIC =
5624           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5625                         std::max(1U, (MaxLocalUsers - 1)));
5626     }
5627 
5628     IC = std::min(IC, TmpIC);
5629   }
5630 
5631   // Clamp the interleave ranges to reasonable counts.
5632   assert(!VF.isScalable() && "scalable vectors not yet supported.");
5633   unsigned MaxInterleaveCount =
5634       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5635 
5636   // Check if the user has overridden the max.
5637   if (VF.isScalar()) {
5638     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5639       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5640   } else {
5641     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5642       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5643   }
5644 
5645   // If trip count is known or estimated compile time constant, limit the
5646   // interleave count to be less than the trip count divided by VF, provided it
5647   // is at least 1.
5648   if (BestKnownTC) {
5649     MaxInterleaveCount =
5650         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5651     // Make sure MaxInterleaveCount is greater than 0.
5652     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5653   }
5654 
5655   assert(MaxInterleaveCount > 0 &&
5656          "Maximum interleave count must be greater than 0");
5657 
5658   // Clamp the calculated IC to be between the 1 and the max interleave count
5659   // that the target and trip count allows.
5660   if (IC > MaxInterleaveCount)
5661     IC = MaxInterleaveCount;
5662   else
5663     // Make sure IC is greater than 0.
5664     IC = std::max(1u, IC);
5665 
5666   assert(IC > 0 && "Interleave count must be greater than 0.");
5667 
5668   // If we did not calculate the cost for VF (because the user selected the VF)
5669   // then we calculate the cost of VF here.
5670   if (LoopCost == 0)
5671     LoopCost = expectedCost(VF).first;
5672 
5673   assert(LoopCost && "Non-zero loop cost expected");
5674 
5675   // Interleave if we vectorized this loop and there is a reduction that could
5676   // benefit from interleaving.
5677   if (VF.isVector() && HasReductions) {
5678     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5679     return IC;
5680   }
5681 
5682   // Note that if we've already vectorized the loop we will have done the
5683   // runtime check and so interleaving won't require further checks.
5684   bool InterleavingRequiresRuntimePointerCheck =
5685       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5686 
5687   // We want to interleave small loops in order to reduce the loop overhead and
5688   // potentially expose ILP opportunities.
5689   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5690                     << "LV: IC is " << IC << '\n'
5691                     << "LV: VF is " << VF.getKnownMinValue() << '\n');
5692   const bool AggressivelyInterleaveReductions =
5693       TTI.enableAggressiveInterleaving(HasReductions);
5694   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5695     // We assume that the cost overhead is 1 and we use the cost model
5696     // to estimate the cost of the loop and interleave until the cost of the
5697     // loop overhead is about 5% of the cost of the loop.
5698     unsigned SmallIC =
5699         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5700 
5701     // Interleave until store/load ports (estimated by max interleave count) are
5702     // saturated.
5703     unsigned NumStores = Legal->getNumStores();
5704     unsigned NumLoads = Legal->getNumLoads();
5705     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5706     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5707 
5708     // If we have a scalar reduction (vector reductions are already dealt with
5709     // by this point), we can increase the critical path length if the loop
5710     // we're interleaving is inside another loop. Limit, by default to 2, so the
5711     // critical path only gets increased by one reduction operation.
5712     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5713       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5714       SmallIC = std::min(SmallIC, F);
5715       StoresIC = std::min(StoresIC, F);
5716       LoadsIC = std::min(LoadsIC, F);
5717     }
5718 
5719     if (EnableLoadStoreRuntimeInterleave &&
5720         std::max(StoresIC, LoadsIC) > SmallIC) {
5721       LLVM_DEBUG(
5722           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5723       return std::max(StoresIC, LoadsIC);
5724     }
5725 
5726     // If there are scalar reductions and TTI has enabled aggressive
5727     // interleaving for reductions, we will interleave to expose ILP.
5728     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5729         AggressivelyInterleaveReductions) {
5730       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5731       // Interleave no less than SmallIC but not as aggressive as the normal IC
5732       // to satisfy the rare situation when resources are too limited.
5733       return std::max(IC / 2, SmallIC);
5734     } else {
5735       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5736       return SmallIC;
5737     }
5738   }
5739 
5740   // Interleave if this is a large loop (small loops are already dealt with by
5741   // this point) that could benefit from interleaving.
5742   if (AggressivelyInterleaveReductions) {
5743     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5744     return IC;
5745   }
5746 
5747   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5748   return 1;
5749 }
5750 
5751 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5752 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5753   // This function calculates the register usage by measuring the highest number
5754   // of values that are alive at a single location. Obviously, this is a very
5755   // rough estimation. We scan the loop in a topological order in order and
5756   // assign a number to each instruction. We use RPO to ensure that defs are
5757   // met before their users. We assume that each instruction that has in-loop
5758   // users starts an interval. We record every time that an in-loop value is
5759   // used, so we have a list of the first and last occurrences of each
5760   // instruction. Next, we transpose this data structure into a multi map that
5761   // holds the list of intervals that *end* at a specific location. This multi
5762   // map allows us to perform a linear search. We scan the instructions linearly
5763   // and record each time that a new interval starts, by placing it in a set.
5764   // If we find this value in the multi-map then we remove it from the set.
5765   // The max register usage is the maximum size of the set.
5766   // We also search for instructions that are defined outside the loop, but are
5767   // used inside the loop. We need this number separately from the max-interval
5768   // usage number because when we unroll, loop-invariant values do not take
5769   // more register.
5770   LoopBlocksDFS DFS(TheLoop);
5771   DFS.perform(LI);
5772 
5773   RegisterUsage RU;
5774 
5775   // Each 'key' in the map opens a new interval. The values
5776   // of the map are the index of the 'last seen' usage of the
5777   // instruction that is the key.
5778   using IntervalMap = DenseMap<Instruction *, unsigned>;
5779 
5780   // Maps instruction to its index.
5781   SmallVector<Instruction *, 64> IdxToInstr;
5782   // Marks the end of each interval.
5783   IntervalMap EndPoint;
5784   // Saves the list of instruction indices that are used in the loop.
5785   SmallPtrSet<Instruction *, 8> Ends;
5786   // Saves the list of values that are used in the loop but are
5787   // defined outside the loop, such as arguments and constants.
5788   SmallPtrSet<Value *, 8> LoopInvariants;
5789 
5790   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5791     for (Instruction &I : BB->instructionsWithoutDebug()) {
5792       IdxToInstr.push_back(&I);
5793 
5794       // Save the end location of each USE.
5795       for (Value *U : I.operands()) {
5796         auto *Instr = dyn_cast<Instruction>(U);
5797 
5798         // Ignore non-instruction values such as arguments, constants, etc.
5799         if (!Instr)
5800           continue;
5801 
5802         // If this instruction is outside the loop then record it and continue.
5803         if (!TheLoop->contains(Instr)) {
5804           LoopInvariants.insert(Instr);
5805           continue;
5806         }
5807 
5808         // Overwrite previous end points.
5809         EndPoint[Instr] = IdxToInstr.size();
5810         Ends.insert(Instr);
5811       }
5812     }
5813   }
5814 
5815   // Saves the list of intervals that end with the index in 'key'.
5816   using InstrList = SmallVector<Instruction *, 2>;
5817   DenseMap<unsigned, InstrList> TransposeEnds;
5818 
5819   // Transpose the EndPoints to a list of values that end at each index.
5820   for (auto &Interval : EndPoint)
5821     TransposeEnds[Interval.second].push_back(Interval.first);
5822 
5823   SmallPtrSet<Instruction *, 8> OpenIntervals;
5824   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5825   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5826 
5827   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5828 
5829   // A lambda that gets the register usage for the given type and VF.
5830   const auto &TTICapture = TTI;
5831   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
5832     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5833       return 0U;
5834     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
5835   };
5836 
5837   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5838     Instruction *I = IdxToInstr[i];
5839 
5840     // Remove all of the instructions that end at this location.
5841     InstrList &List = TransposeEnds[i];
5842     for (Instruction *ToRemove : List)
5843       OpenIntervals.erase(ToRemove);
5844 
5845     // Ignore instructions that are never used within the loop.
5846     if (!Ends.count(I))
5847       continue;
5848 
5849     // Skip ignored values.
5850     if (ValuesToIgnore.count(I))
5851       continue;
5852 
5853     // For each VF find the maximum usage of registers.
5854     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5855       // Count the number of live intervals.
5856       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5857 
5858       if (VFs[j].isScalar()) {
5859         for (auto Inst : OpenIntervals) {
5860           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5861           if (RegUsage.find(ClassID) == RegUsage.end())
5862             RegUsage[ClassID] = 1;
5863           else
5864             RegUsage[ClassID] += 1;
5865         }
5866       } else {
5867         collectUniformsAndScalars(VFs[j]);
5868         for (auto Inst : OpenIntervals) {
5869           // Skip ignored values for VF > 1.
5870           if (VecValuesToIgnore.count(Inst))
5871             continue;
5872           if (isScalarAfterVectorization(Inst, VFs[j])) {
5873             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5874             if (RegUsage.find(ClassID) == RegUsage.end())
5875               RegUsage[ClassID] = 1;
5876             else
5877               RegUsage[ClassID] += 1;
5878           } else {
5879             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5880             if (RegUsage.find(ClassID) == RegUsage.end())
5881               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5882             else
5883               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5884           }
5885         }
5886       }
5887 
5888       for (auto& pair : RegUsage) {
5889         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5890           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5891         else
5892           MaxUsages[j][pair.first] = pair.second;
5893       }
5894     }
5895 
5896     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5897                       << OpenIntervals.size() << '\n');
5898 
5899     // Add the current instruction to the list of open intervals.
5900     OpenIntervals.insert(I);
5901   }
5902 
5903   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5904     SmallMapVector<unsigned, unsigned, 4> Invariant;
5905 
5906     for (auto Inst : LoopInvariants) {
5907       unsigned Usage =
5908           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5909       unsigned ClassID =
5910           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
5911       if (Invariant.find(ClassID) == Invariant.end())
5912         Invariant[ClassID] = Usage;
5913       else
5914         Invariant[ClassID] += Usage;
5915     }
5916 
5917     LLVM_DEBUG({
5918       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5919       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5920              << " item\n";
5921       for (const auto &pair : MaxUsages[i]) {
5922         dbgs() << "LV(REG): RegisterClass: "
5923                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5924                << " registers\n";
5925       }
5926       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5927              << " item\n";
5928       for (const auto &pair : Invariant) {
5929         dbgs() << "LV(REG): RegisterClass: "
5930                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5931                << " registers\n";
5932       }
5933     });
5934 
5935     RU.LoopInvariantRegs = Invariant;
5936     RU.MaxLocalUsers = MaxUsages[i];
5937     RUs[i] = RU;
5938   }
5939 
5940   return RUs;
5941 }
5942 
5943 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5944   // TODO: Cost model for emulated masked load/store is completely
5945   // broken. This hack guides the cost model to use an artificially
5946   // high enough value to practically disable vectorization with such
5947   // operations, except where previously deployed legality hack allowed
5948   // using very low cost values. This is to avoid regressions coming simply
5949   // from moving "masked load/store" check from legality to cost model.
5950   // Masked Load/Gather emulation was previously never allowed.
5951   // Limited number of Masked Store/Scatter emulation was allowed.
5952   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5953   return isa<LoadInst>(I) ||
5954          (isa<StoreInst>(I) &&
5955           NumPredStores > NumberOfStoresToPredicate);
5956 }
5957 
5958 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
5959   // If we aren't vectorizing the loop, or if we've already collected the
5960   // instructions to scalarize, there's nothing to do. Collection may already
5961   // have occurred if we have a user-selected VF and are now computing the
5962   // expected cost for interleaving.
5963   if (VF.isScalar() || VF.isZero() ||
5964       InstsToScalarize.find(VF) != InstsToScalarize.end())
5965     return;
5966 
5967   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5968   // not profitable to scalarize any instructions, the presence of VF in the
5969   // map will indicate that we've analyzed it already.
5970   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5971 
5972   // Find all the instructions that are scalar with predication in the loop and
5973   // determine if it would be better to not if-convert the blocks they are in.
5974   // If so, we also record the instructions to scalarize.
5975   for (BasicBlock *BB : TheLoop->blocks()) {
5976     if (!blockNeedsPredication(BB))
5977       continue;
5978     for (Instruction &I : *BB)
5979       if (isScalarWithPredication(&I)) {
5980         ScalarCostsTy ScalarCosts;
5981         // Do not apply discount logic if hacked cost is needed
5982         // for emulated masked memrefs.
5983         if (!useEmulatedMaskMemRefHack(&I) &&
5984             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5985           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5986         // Remember that BB will remain after vectorization.
5987         PredicatedBBsAfterVectorization.insert(BB);
5988       }
5989   }
5990 }
5991 
5992 int LoopVectorizationCostModel::computePredInstDiscount(
5993     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5994     ElementCount VF) {
5995   assert(!isUniformAfterVectorization(PredInst, VF) &&
5996          "Instruction marked uniform-after-vectorization will be predicated");
5997 
5998   // Initialize the discount to zero, meaning that the scalar version and the
5999   // vector version cost the same.
6000   int Discount = 0;
6001 
6002   // Holds instructions to analyze. The instructions we visit are mapped in
6003   // ScalarCosts. Those instructions are the ones that would be scalarized if
6004   // we find that the scalar version costs less.
6005   SmallVector<Instruction *, 8> Worklist;
6006 
6007   // Returns true if the given instruction can be scalarized.
6008   auto canBeScalarized = [&](Instruction *I) -> bool {
6009     // We only attempt to scalarize instructions forming a single-use chain
6010     // from the original predicated block that would otherwise be vectorized.
6011     // Although not strictly necessary, we give up on instructions we know will
6012     // already be scalar to avoid traversing chains that are unlikely to be
6013     // beneficial.
6014     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6015         isScalarAfterVectorization(I, VF))
6016       return false;
6017 
6018     // If the instruction is scalar with predication, it will be analyzed
6019     // separately. We ignore it within the context of PredInst.
6020     if (isScalarWithPredication(I))
6021       return false;
6022 
6023     // If any of the instruction's operands are uniform after vectorization,
6024     // the instruction cannot be scalarized. This prevents, for example, a
6025     // masked load from being scalarized.
6026     //
6027     // We assume we will only emit a value for lane zero of an instruction
6028     // marked uniform after vectorization, rather than VF identical values.
6029     // Thus, if we scalarize an instruction that uses a uniform, we would
6030     // create uses of values corresponding to the lanes we aren't emitting code
6031     // for. This behavior can be changed by allowing getScalarValue to clone
6032     // the lane zero values for uniforms rather than asserting.
6033     for (Use &U : I->operands())
6034       if (auto *J = dyn_cast<Instruction>(U.get()))
6035         if (isUniformAfterVectorization(J, VF))
6036           return false;
6037 
6038     // Otherwise, we can scalarize the instruction.
6039     return true;
6040   };
6041 
6042   // Compute the expected cost discount from scalarizing the entire expression
6043   // feeding the predicated instruction. We currently only consider expressions
6044   // that are single-use instruction chains.
6045   Worklist.push_back(PredInst);
6046   while (!Worklist.empty()) {
6047     Instruction *I = Worklist.pop_back_val();
6048 
6049     // If we've already analyzed the instruction, there's nothing to do.
6050     if (ScalarCosts.find(I) != ScalarCosts.end())
6051       continue;
6052 
6053     // Compute the cost of the vector instruction. Note that this cost already
6054     // includes the scalarization overhead of the predicated instruction.
6055     unsigned VectorCost = getInstructionCost(I, VF).first;
6056 
6057     // Compute the cost of the scalarized instruction. This cost is the cost of
6058     // the instruction as if it wasn't if-converted and instead remained in the
6059     // predicated block. We will scale this cost by block probability after
6060     // computing the scalarization overhead.
6061     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6062     unsigned ScalarCost =
6063         VF.getKnownMinValue() *
6064         getInstructionCost(I, ElementCount::getFixed(1)).first;
6065 
6066     // Compute the scalarization overhead of needed insertelement instructions
6067     // and phi nodes.
6068     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6069       ScalarCost += TTI.getScalarizationOverhead(
6070           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6071           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6072       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6073       ScalarCost +=
6074           VF.getKnownMinValue() *
6075           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6076     }
6077 
6078     // Compute the scalarization overhead of needed extractelement
6079     // instructions. For each of the instruction's operands, if the operand can
6080     // be scalarized, add it to the worklist; otherwise, account for the
6081     // overhead.
6082     for (Use &U : I->operands())
6083       if (auto *J = dyn_cast<Instruction>(U.get())) {
6084         assert(VectorType::isValidElementType(J->getType()) &&
6085                "Instruction has non-scalar type");
6086         if (canBeScalarized(J))
6087           Worklist.push_back(J);
6088         else if (needsExtract(J, VF)) {
6089           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6090           ScalarCost += TTI.getScalarizationOverhead(
6091               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6092               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6093         }
6094       }
6095 
6096     // Scale the total scalar cost by block probability.
6097     ScalarCost /= getReciprocalPredBlockProb();
6098 
6099     // Compute the discount. A non-negative discount means the vector version
6100     // of the instruction costs more, and scalarizing would be beneficial.
6101     Discount += VectorCost - ScalarCost;
6102     ScalarCosts[I] = ScalarCost;
6103   }
6104 
6105   return Discount;
6106 }
6107 
6108 LoopVectorizationCostModel::VectorizationCostTy
6109 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6110   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6111   VectorizationCostTy Cost;
6112 
6113   // For each block.
6114   for (BasicBlock *BB : TheLoop->blocks()) {
6115     VectorizationCostTy BlockCost;
6116 
6117     // For each instruction in the old loop.
6118     for (Instruction &I : BB->instructionsWithoutDebug()) {
6119       // Skip ignored values.
6120       if (ValuesToIgnore.count(&I) ||
6121           (VF.isVector() && VecValuesToIgnore.count(&I)))
6122         continue;
6123 
6124       VectorizationCostTy C = getInstructionCost(&I, VF);
6125 
6126       // Check if we should override the cost.
6127       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6128         C.first = ForceTargetInstructionCost;
6129 
6130       BlockCost.first += C.first;
6131       BlockCost.second |= C.second;
6132       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6133                         << " for VF " << VF << " For instruction: " << I
6134                         << '\n');
6135     }
6136 
6137     // If we are vectorizing a predicated block, it will have been
6138     // if-converted. This means that the block's instructions (aside from
6139     // stores and instructions that may divide by zero) will now be
6140     // unconditionally executed. For the scalar case, we may not always execute
6141     // the predicated block. Thus, scale the block's cost by the probability of
6142     // executing it.
6143     if (VF.isScalar() && blockNeedsPredication(BB))
6144       BlockCost.first /= getReciprocalPredBlockProb();
6145 
6146     Cost.first += BlockCost.first;
6147     Cost.second |= BlockCost.second;
6148   }
6149 
6150   return Cost;
6151 }
6152 
6153 /// Gets Address Access SCEV after verifying that the access pattern
6154 /// is loop invariant except the induction variable dependence.
6155 ///
6156 /// This SCEV can be sent to the Target in order to estimate the address
6157 /// calculation cost.
6158 static const SCEV *getAddressAccessSCEV(
6159               Value *Ptr,
6160               LoopVectorizationLegality *Legal,
6161               PredicatedScalarEvolution &PSE,
6162               const Loop *TheLoop) {
6163 
6164   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6165   if (!Gep)
6166     return nullptr;
6167 
6168   // We are looking for a gep with all loop invariant indices except for one
6169   // which should be an induction variable.
6170   auto SE = PSE.getSE();
6171   unsigned NumOperands = Gep->getNumOperands();
6172   for (unsigned i = 1; i < NumOperands; ++i) {
6173     Value *Opd = Gep->getOperand(i);
6174     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6175         !Legal->isInductionVariable(Opd))
6176       return nullptr;
6177   }
6178 
6179   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6180   return PSE.getSCEV(Ptr);
6181 }
6182 
6183 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6184   return Legal->hasStride(I->getOperand(0)) ||
6185          Legal->hasStride(I->getOperand(1));
6186 }
6187 
6188 unsigned
6189 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6190                                                         ElementCount VF) {
6191   assert(VF.isVector() &&
6192          "Scalarization cost of instruction implies vectorization.");
6193   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6194   Type *ValTy = getMemInstValueType(I);
6195   auto SE = PSE.getSE();
6196 
6197   unsigned AS = getLoadStoreAddressSpace(I);
6198   Value *Ptr = getLoadStorePointerOperand(I);
6199   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6200 
6201   // Figure out whether the access is strided and get the stride value
6202   // if it's known in compile time
6203   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6204 
6205   // Get the cost of the scalar memory instruction and address computation.
6206   unsigned Cost =
6207       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6208 
6209   // Don't pass *I here, since it is scalar but will actually be part of a
6210   // vectorized loop where the user of it is a vectorized instruction.
6211   const Align Alignment = getLoadStoreAlignment(I);
6212   Cost += VF.getKnownMinValue() *
6213           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6214                               AS, TTI::TCK_RecipThroughput);
6215 
6216   // Get the overhead of the extractelement and insertelement instructions
6217   // we might create due to scalarization.
6218   Cost += getScalarizationOverhead(I, VF);
6219 
6220   // If we have a predicated store, it may not be executed for each vector
6221   // lane. Scale the cost by the probability of executing the predicated
6222   // block.
6223   if (isPredicatedInst(I)) {
6224     Cost /= getReciprocalPredBlockProb();
6225 
6226     if (useEmulatedMaskMemRefHack(I))
6227       // Artificially setting to a high enough value to practically disable
6228       // vectorization with such operations.
6229       Cost = 3000000;
6230   }
6231 
6232   return Cost;
6233 }
6234 
6235 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6236                                                              ElementCount VF) {
6237   Type *ValTy = getMemInstValueType(I);
6238   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6239   Value *Ptr = getLoadStorePointerOperand(I);
6240   unsigned AS = getLoadStoreAddressSpace(I);
6241   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6242   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6243 
6244   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6245          "Stride should be 1 or -1 for consecutive memory access");
6246   const Align Alignment = getLoadStoreAlignment(I);
6247   unsigned Cost = 0;
6248   if (Legal->isMaskRequired(I))
6249     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6250                                       CostKind);
6251   else
6252     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6253                                 CostKind, I);
6254 
6255   bool Reverse = ConsecutiveStride < 0;
6256   if (Reverse)
6257     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6258   return Cost;
6259 }
6260 
6261 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6262                                                          ElementCount VF) {
6263   assert(Legal->isUniformMemOp(*I));
6264 
6265   Type *ValTy = getMemInstValueType(I);
6266   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6267   const Align Alignment = getLoadStoreAlignment(I);
6268   unsigned AS = getLoadStoreAddressSpace(I);
6269   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6270   if (isa<LoadInst>(I)) {
6271     return TTI.getAddressComputationCost(ValTy) +
6272            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6273                                CostKind) +
6274            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6275   }
6276   StoreInst *SI = cast<StoreInst>(I);
6277 
6278   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6279   return TTI.getAddressComputationCost(ValTy) +
6280          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6281                              CostKind) +
6282          (isLoopInvariantStoreValue
6283               ? 0
6284               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6285                                        VF.getKnownMinValue() - 1));
6286 }
6287 
6288 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6289                                                           ElementCount VF) {
6290   Type *ValTy = getMemInstValueType(I);
6291   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6292   const Align Alignment = getLoadStoreAlignment(I);
6293   const Value *Ptr = getLoadStorePointerOperand(I);
6294 
6295   return TTI.getAddressComputationCost(VectorTy) +
6296          TTI.getGatherScatterOpCost(
6297              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6298              TargetTransformInfo::TCK_RecipThroughput, I);
6299 }
6300 
6301 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6302                                                             ElementCount VF) {
6303   Type *ValTy = getMemInstValueType(I);
6304   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6305   unsigned AS = getLoadStoreAddressSpace(I);
6306 
6307   auto Group = getInterleavedAccessGroup(I);
6308   assert(Group && "Fail to get an interleaved access group.");
6309 
6310   unsigned InterleaveFactor = Group->getFactor();
6311   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6312   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6313 
6314   // Holds the indices of existing members in an interleaved load group.
6315   // An interleaved store group doesn't need this as it doesn't allow gaps.
6316   SmallVector<unsigned, 4> Indices;
6317   if (isa<LoadInst>(I)) {
6318     for (unsigned i = 0; i < InterleaveFactor; i++)
6319       if (Group->getMember(i))
6320         Indices.push_back(i);
6321   }
6322 
6323   // Calculate the cost of the whole interleaved group.
6324   bool UseMaskForGaps =
6325       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6326   unsigned Cost = TTI.getInterleavedMemoryOpCost(
6327       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6328       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6329 
6330   if (Group->isReverse()) {
6331     // TODO: Add support for reversed masked interleaved access.
6332     assert(!Legal->isMaskRequired(I) &&
6333            "Reverse masked interleaved access not supported.");
6334     Cost += Group->getNumMembers() *
6335             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6336   }
6337   return Cost;
6338 }
6339 
6340 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6341                                                               ElementCount VF) {
6342   // Calculate scalar cost only. Vectorization cost should be ready at this
6343   // moment.
6344   if (VF.isScalar()) {
6345     Type *ValTy = getMemInstValueType(I);
6346     const Align Alignment = getLoadStoreAlignment(I);
6347     unsigned AS = getLoadStoreAddressSpace(I);
6348 
6349     return TTI.getAddressComputationCost(ValTy) +
6350            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6351                                TTI::TCK_RecipThroughput, I);
6352   }
6353   return getWideningCost(I, VF);
6354 }
6355 
6356 LoopVectorizationCostModel::VectorizationCostTy
6357 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6358                                                ElementCount VF) {
6359   assert(!VF.isScalable() &&
6360          "the cost model is not yet implemented for scalable vectorization");
6361   // If we know that this instruction will remain uniform, check the cost of
6362   // the scalar version.
6363   if (isUniformAfterVectorization(I, VF))
6364     VF = ElementCount::getFixed(1);
6365 
6366   if (VF.isVector() && isProfitableToScalarize(I, VF))
6367     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6368 
6369   // Forced scalars do not have any scalarization overhead.
6370   auto ForcedScalar = ForcedScalars.find(VF);
6371   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6372     auto InstSet = ForcedScalar->second;
6373     if (InstSet.count(I))
6374       return VectorizationCostTy(
6375           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6376            VF.getKnownMinValue()),
6377           false);
6378   }
6379 
6380   Type *VectorTy;
6381   unsigned C = getInstructionCost(I, VF, VectorTy);
6382 
6383   bool TypeNotScalarized =
6384       VF.isVector() && VectorTy->isVectorTy() &&
6385       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
6386   return VectorizationCostTy(C, TypeNotScalarized);
6387 }
6388 
6389 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6390                                                               ElementCount VF) {
6391 
6392   assert(!VF.isScalable() &&
6393          "cannot compute scalarization overhead for scalable vectorization");
6394   if (VF.isScalar())
6395     return 0;
6396 
6397   unsigned Cost = 0;
6398   Type *RetTy = ToVectorTy(I->getType(), VF);
6399   if (!RetTy->isVoidTy() &&
6400       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6401     Cost += TTI.getScalarizationOverhead(
6402         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
6403         true, false);
6404 
6405   // Some targets keep addresses scalar.
6406   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6407     return Cost;
6408 
6409   // Some targets support efficient element stores.
6410   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6411     return Cost;
6412 
6413   // Collect operands to consider.
6414   CallInst *CI = dyn_cast<CallInst>(I);
6415   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6416 
6417   // Skip operands that do not require extraction/scalarization and do not incur
6418   // any overhead.
6419   return Cost + TTI.getOperandsScalarizationOverhead(
6420                     filterExtractingOperands(Ops, VF), VF.getKnownMinValue());
6421 }
6422 
6423 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6424   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6425   if (VF.isScalar())
6426     return;
6427   NumPredStores = 0;
6428   for (BasicBlock *BB : TheLoop->blocks()) {
6429     // For each instruction in the old loop.
6430     for (Instruction &I : *BB) {
6431       Value *Ptr =  getLoadStorePointerOperand(&I);
6432       if (!Ptr)
6433         continue;
6434 
6435       // TODO: We should generate better code and update the cost model for
6436       // predicated uniform stores. Today they are treated as any other
6437       // predicated store (see added test cases in
6438       // invariant-store-vectorization.ll).
6439       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6440         NumPredStores++;
6441 
6442       if (Legal->isUniformMemOp(I)) {
6443         // TODO: Avoid replicating loads and stores instead of
6444         // relying on instcombine to remove them.
6445         // Load: Scalar load + broadcast
6446         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6447         unsigned Cost = getUniformMemOpCost(&I, VF);
6448         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6449         continue;
6450       }
6451 
6452       // We assume that widening is the best solution when possible.
6453       if (memoryInstructionCanBeWidened(&I, VF)) {
6454         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6455         int ConsecutiveStride =
6456                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6457         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6458                "Expected consecutive stride.");
6459         InstWidening Decision =
6460             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6461         setWideningDecision(&I, VF, Decision, Cost);
6462         continue;
6463       }
6464 
6465       // Choose between Interleaving, Gather/Scatter or Scalarization.
6466       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6467       unsigned NumAccesses = 1;
6468       if (isAccessInterleaved(&I)) {
6469         auto Group = getInterleavedAccessGroup(&I);
6470         assert(Group && "Fail to get an interleaved access group.");
6471 
6472         // Make one decision for the whole group.
6473         if (getWideningDecision(&I, VF) != CM_Unknown)
6474           continue;
6475 
6476         NumAccesses = Group->getNumMembers();
6477         if (interleavedAccessCanBeWidened(&I, VF))
6478           InterleaveCost = getInterleaveGroupCost(&I, VF);
6479       }
6480 
6481       unsigned GatherScatterCost =
6482           isLegalGatherOrScatter(&I)
6483               ? getGatherScatterCost(&I, VF) * NumAccesses
6484               : std::numeric_limits<unsigned>::max();
6485 
6486       unsigned ScalarizationCost =
6487           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6488 
6489       // Choose better solution for the current VF,
6490       // write down this decision and use it during vectorization.
6491       unsigned Cost;
6492       InstWidening Decision;
6493       if (InterleaveCost <= GatherScatterCost &&
6494           InterleaveCost < ScalarizationCost) {
6495         Decision = CM_Interleave;
6496         Cost = InterleaveCost;
6497       } else if (GatherScatterCost < ScalarizationCost) {
6498         Decision = CM_GatherScatter;
6499         Cost = GatherScatterCost;
6500       } else {
6501         Decision = CM_Scalarize;
6502         Cost = ScalarizationCost;
6503       }
6504       // If the instructions belongs to an interleave group, the whole group
6505       // receives the same decision. The whole group receives the cost, but
6506       // the cost will actually be assigned to one instruction.
6507       if (auto Group = getInterleavedAccessGroup(&I))
6508         setWideningDecision(Group, VF, Decision, Cost);
6509       else
6510         setWideningDecision(&I, VF, Decision, Cost);
6511     }
6512   }
6513 
6514   // Make sure that any load of address and any other address computation
6515   // remains scalar unless there is gather/scatter support. This avoids
6516   // inevitable extracts into address registers, and also has the benefit of
6517   // activating LSR more, since that pass can't optimize vectorized
6518   // addresses.
6519   if (TTI.prefersVectorizedAddressing())
6520     return;
6521 
6522   // Start with all scalar pointer uses.
6523   SmallPtrSet<Instruction *, 8> AddrDefs;
6524   for (BasicBlock *BB : TheLoop->blocks())
6525     for (Instruction &I : *BB) {
6526       Instruction *PtrDef =
6527         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6528       if (PtrDef && TheLoop->contains(PtrDef) &&
6529           getWideningDecision(&I, VF) != CM_GatherScatter)
6530         AddrDefs.insert(PtrDef);
6531     }
6532 
6533   // Add all instructions used to generate the addresses.
6534   SmallVector<Instruction *, 4> Worklist;
6535   for (auto *I : AddrDefs)
6536     Worklist.push_back(I);
6537   while (!Worklist.empty()) {
6538     Instruction *I = Worklist.pop_back_val();
6539     for (auto &Op : I->operands())
6540       if (auto *InstOp = dyn_cast<Instruction>(Op))
6541         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6542             AddrDefs.insert(InstOp).second)
6543           Worklist.push_back(InstOp);
6544   }
6545 
6546   for (auto *I : AddrDefs) {
6547     if (isa<LoadInst>(I)) {
6548       // Setting the desired widening decision should ideally be handled in
6549       // by cost functions, but since this involves the task of finding out
6550       // if the loaded register is involved in an address computation, it is
6551       // instead changed here when we know this is the case.
6552       InstWidening Decision = getWideningDecision(I, VF);
6553       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6554         // Scalarize a widened load of address.
6555         setWideningDecision(
6556             I, VF, CM_Scalarize,
6557             (VF.getKnownMinValue() *
6558              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6559       else if (auto Group = getInterleavedAccessGroup(I)) {
6560         // Scalarize an interleave group of address loads.
6561         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6562           if (Instruction *Member = Group->getMember(I))
6563             setWideningDecision(
6564                 Member, VF, CM_Scalarize,
6565                 (VF.getKnownMinValue() *
6566                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6567         }
6568       }
6569     } else
6570       // Make sure I gets scalarized and a cost estimate without
6571       // scalarization overhead.
6572       ForcedScalars[VF].insert(I);
6573   }
6574 }
6575 
6576 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6577                                                         ElementCount VF,
6578                                                         Type *&VectorTy) {
6579   Type *RetTy = I->getType();
6580   if (canTruncateToMinimalBitwidth(I, VF))
6581     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6582   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6583   auto SE = PSE.getSE();
6584   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6585 
6586   // TODO: We need to estimate the cost of intrinsic calls.
6587   switch (I->getOpcode()) {
6588   case Instruction::GetElementPtr:
6589     // We mark this instruction as zero-cost because the cost of GEPs in
6590     // vectorized code depends on whether the corresponding memory instruction
6591     // is scalarized or not. Therefore, we handle GEPs with the memory
6592     // instruction cost.
6593     return 0;
6594   case Instruction::Br: {
6595     // In cases of scalarized and predicated instructions, there will be VF
6596     // predicated blocks in the vectorized loop. Each branch around these
6597     // blocks requires also an extract of its vector compare i1 element.
6598     bool ScalarPredicatedBB = false;
6599     BranchInst *BI = cast<BranchInst>(I);
6600     if (VF.isVector() && BI->isConditional() &&
6601         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6602          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6603       ScalarPredicatedBB = true;
6604 
6605     if (ScalarPredicatedBB) {
6606       // Return cost for branches around scalarized and predicated blocks.
6607       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6608       auto *Vec_i1Ty =
6609           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6610       return (TTI.getScalarizationOverhead(
6611                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6612                   false, true) +
6613               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
6614                VF.getKnownMinValue()));
6615     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6616       // The back-edge branch will remain, as will all scalar branches.
6617       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6618     else
6619       // This branch will be eliminated by if-conversion.
6620       return 0;
6621     // Note: We currently assume zero cost for an unconditional branch inside
6622     // a predicated block since it will become a fall-through, although we
6623     // may decide in the future to call TTI for all branches.
6624   }
6625   case Instruction::PHI: {
6626     auto *Phi = cast<PHINode>(I);
6627 
6628     // First-order recurrences are replaced by vector shuffles inside the loop.
6629     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6630     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
6631       return TTI.getShuffleCost(
6632           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
6633           VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
6634 
6635     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6636     // converted into select instructions. We require N - 1 selects per phi
6637     // node, where N is the number of incoming values.
6638     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
6639       return (Phi->getNumIncomingValues() - 1) *
6640              TTI.getCmpSelInstrCost(
6641                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6642                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6643                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
6644 
6645     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6646   }
6647   case Instruction::UDiv:
6648   case Instruction::SDiv:
6649   case Instruction::URem:
6650   case Instruction::SRem:
6651     // If we have a predicated instruction, it may not be executed for each
6652     // vector lane. Get the scalarization cost and scale this amount by the
6653     // probability of executing the predicated block. If the instruction is not
6654     // predicated, we fall through to the next case.
6655     if (VF.isVector() && isScalarWithPredication(I)) {
6656       unsigned Cost = 0;
6657 
6658       // These instructions have a non-void type, so account for the phi nodes
6659       // that we will create. This cost is likely to be zero. The phi node
6660       // cost, if any, should be scaled by the block probability because it
6661       // models a copy at the end of each predicated block.
6662       Cost += VF.getKnownMinValue() *
6663               TTI.getCFInstrCost(Instruction::PHI, CostKind);
6664 
6665       // The cost of the non-predicated instruction.
6666       Cost += VF.getKnownMinValue() *
6667               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6668 
6669       // The cost of insertelement and extractelement instructions needed for
6670       // scalarization.
6671       Cost += getScalarizationOverhead(I, VF);
6672 
6673       // Scale the cost by the probability of executing the predicated blocks.
6674       // This assumes the predicated block for each vector lane is equally
6675       // likely.
6676       return Cost / getReciprocalPredBlockProb();
6677     }
6678     LLVM_FALLTHROUGH;
6679   case Instruction::Add:
6680   case Instruction::FAdd:
6681   case Instruction::Sub:
6682   case Instruction::FSub:
6683   case Instruction::Mul:
6684   case Instruction::FMul:
6685   case Instruction::FDiv:
6686   case Instruction::FRem:
6687   case Instruction::Shl:
6688   case Instruction::LShr:
6689   case Instruction::AShr:
6690   case Instruction::And:
6691   case Instruction::Or:
6692   case Instruction::Xor: {
6693     // Since we will replace the stride by 1 the multiplication should go away.
6694     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6695       return 0;
6696     // Certain instructions can be cheaper to vectorize if they have a constant
6697     // second vector operand. One example of this are shifts on x86.
6698     Value *Op2 = I->getOperand(1);
6699     TargetTransformInfo::OperandValueProperties Op2VP;
6700     TargetTransformInfo::OperandValueKind Op2VK =
6701         TTI.getOperandInfo(Op2, Op2VP);
6702     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6703       Op2VK = TargetTransformInfo::OK_UniformValue;
6704 
6705     SmallVector<const Value *, 4> Operands(I->operand_values());
6706     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6707     return N * TTI.getArithmeticInstrCost(
6708                    I->getOpcode(), VectorTy, CostKind,
6709                    TargetTransformInfo::OK_AnyValue,
6710                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6711   }
6712   case Instruction::FNeg: {
6713     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6714     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6715     return N * TTI.getArithmeticInstrCost(
6716                    I->getOpcode(), VectorTy, CostKind,
6717                    TargetTransformInfo::OK_AnyValue,
6718                    TargetTransformInfo::OK_AnyValue,
6719                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6720                    I->getOperand(0), I);
6721   }
6722   case Instruction::Select: {
6723     SelectInst *SI = cast<SelectInst>(I);
6724     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6725     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6726     Type *CondTy = SI->getCondition()->getType();
6727     if (!ScalarCond) {
6728       assert(!VF.isScalable() && "VF is assumed to be non scalable.");
6729       CondTy = VectorType::get(CondTy, VF);
6730     }
6731     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6732                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6733   }
6734   case Instruction::ICmp:
6735   case Instruction::FCmp: {
6736     Type *ValTy = I->getOperand(0)->getType();
6737     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6738     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6739       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6740     VectorTy = ToVectorTy(ValTy, VF);
6741     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
6742                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
6743   }
6744   case Instruction::Store:
6745   case Instruction::Load: {
6746     ElementCount Width = VF;
6747     if (Width.isVector()) {
6748       InstWidening Decision = getWideningDecision(I, Width);
6749       assert(Decision != CM_Unknown &&
6750              "CM decision should be taken at this point");
6751       if (Decision == CM_Scalarize)
6752         Width = ElementCount::getFixed(1);
6753     }
6754     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6755     return getMemoryInstructionCost(I, VF);
6756   }
6757   case Instruction::ZExt:
6758   case Instruction::SExt:
6759   case Instruction::FPToUI:
6760   case Instruction::FPToSI:
6761   case Instruction::FPExt:
6762   case Instruction::PtrToInt:
6763   case Instruction::IntToPtr:
6764   case Instruction::SIToFP:
6765   case Instruction::UIToFP:
6766   case Instruction::Trunc:
6767   case Instruction::FPTrunc:
6768   case Instruction::BitCast: {
6769     // Computes the CastContextHint from a Load/Store instruction.
6770     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6771       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6772              "Expected a load or a store!");
6773 
6774       if (VF.isScalar() || !TheLoop->contains(I))
6775         return TTI::CastContextHint::Normal;
6776 
6777       switch (getWideningDecision(I, VF)) {
6778       case LoopVectorizationCostModel::CM_GatherScatter:
6779         return TTI::CastContextHint::GatherScatter;
6780       case LoopVectorizationCostModel::CM_Interleave:
6781         return TTI::CastContextHint::Interleave;
6782       case LoopVectorizationCostModel::CM_Scalarize:
6783       case LoopVectorizationCostModel::CM_Widen:
6784         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
6785                                         : TTI::CastContextHint::Normal;
6786       case LoopVectorizationCostModel::CM_Widen_Reverse:
6787         return TTI::CastContextHint::Reversed;
6788       case LoopVectorizationCostModel::CM_Unknown:
6789         llvm_unreachable("Instr did not go through cost modelling?");
6790       }
6791 
6792       llvm_unreachable("Unhandled case!");
6793     };
6794 
6795     unsigned Opcode = I->getOpcode();
6796     TTI::CastContextHint CCH = TTI::CastContextHint::None;
6797     // For Trunc, the context is the only user, which must be a StoreInst.
6798     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6799       if (I->hasOneUse())
6800         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6801           CCH = ComputeCCH(Store);
6802     }
6803     // For Z/Sext, the context is the operand, which must be a LoadInst.
6804     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6805              Opcode == Instruction::FPExt) {
6806       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6807         CCH = ComputeCCH(Load);
6808     }
6809 
6810     // We optimize the truncation of induction variables having constant
6811     // integer steps. The cost of these truncations is the same as the scalar
6812     // operation.
6813     if (isOptimizableIVTruncate(I, VF)) {
6814       auto *Trunc = cast<TruncInst>(I);
6815       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6816                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
6817     }
6818 
6819     Type *SrcScalarTy = I->getOperand(0)->getType();
6820     Type *SrcVecTy =
6821         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6822     if (canTruncateToMinimalBitwidth(I, VF)) {
6823       // This cast is going to be shrunk. This may remove the cast or it might
6824       // turn it into slightly different cast. For example, if MinBW == 16,
6825       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6826       //
6827       // Calculate the modified src and dest types.
6828       Type *MinVecTy = VectorTy;
6829       if (Opcode == Instruction::Trunc) {
6830         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6831         VectorTy =
6832             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6833       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
6834         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6835         VectorTy =
6836             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6837       }
6838     }
6839 
6840     assert(!VF.isScalable() && "VF is assumed to be non scalable");
6841     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
6842     return N *
6843            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6844   }
6845   case Instruction::Call: {
6846     bool NeedToScalarize;
6847     CallInst *CI = cast<CallInst>(I);
6848     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6849     if (getVectorIntrinsicIDForCall(CI, TLI))
6850       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6851     return CallCost;
6852   }
6853   default:
6854     // The cost of executing VF copies of the scalar instruction. This opcode
6855     // is unknown. Assume that it is the same as 'mul'.
6856     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
6857                                        Instruction::Mul, VectorTy, CostKind) +
6858            getScalarizationOverhead(I, VF);
6859   } // end of switch.
6860 }
6861 
6862 char LoopVectorize::ID = 0;
6863 
6864 static const char lv_name[] = "Loop Vectorization";
6865 
6866 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6867 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6868 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6869 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6870 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6871 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6872 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6873 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6874 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6875 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6876 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6877 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6878 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6879 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6880 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6881 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6882 
6883 namespace llvm {
6884 
6885 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6886 
6887 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6888                               bool VectorizeOnlyWhenForced) {
6889   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6890 }
6891 
6892 } // end namespace llvm
6893 
6894 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6895   // Check if the pointer operand of a load or store instruction is
6896   // consecutive.
6897   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6898     return Legal->isConsecutivePtr(Ptr);
6899   return false;
6900 }
6901 
6902 void LoopVectorizationCostModel::collectValuesToIgnore() {
6903   // Ignore ephemeral values.
6904   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6905 
6906   // Ignore type-promoting instructions we identified during reduction
6907   // detection.
6908   for (auto &Reduction : Legal->getReductionVars()) {
6909     RecurrenceDescriptor &RedDes = Reduction.second;
6910     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6911     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6912   }
6913   // Ignore type-casting instructions we identified during induction
6914   // detection.
6915   for (auto &Induction : Legal->getInductionVars()) {
6916     InductionDescriptor &IndDes = Induction.second;
6917     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6918     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6919   }
6920 }
6921 
6922 void LoopVectorizationCostModel::collectInLoopReductions() {
6923   for (auto &Reduction : Legal->getReductionVars()) {
6924     PHINode *Phi = Reduction.first;
6925     RecurrenceDescriptor &RdxDesc = Reduction.second;
6926 
6927     // We don't collect reductions that are type promoted (yet).
6928     if (RdxDesc.getRecurrenceType() != Phi->getType())
6929       continue;
6930 
6931     // If the target would prefer this reduction to happen "in-loop", then we
6932     // want to record it as such.
6933     unsigned Opcode = RdxDesc.getRecurrenceBinOp();
6934     if (!PreferInLoopReductions &&
6935         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
6936                                    TargetTransformInfo::ReductionFlags()))
6937       continue;
6938 
6939     // Check that we can correctly put the reductions into the loop, by
6940     // finding the chain of operations that leads from the phi to the loop
6941     // exit value.
6942     SmallVector<Instruction *, 4> ReductionOperations =
6943         RdxDesc.getReductionOpChain(Phi, TheLoop);
6944     bool InLoop = !ReductionOperations.empty();
6945     if (InLoop)
6946       InLoopReductionChains[Phi] = ReductionOperations;
6947     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6948                       << " reduction for phi: " << *Phi << "\n");
6949   }
6950 }
6951 
6952 // TODO: we could return a pair of values that specify the max VF and
6953 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6954 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6955 // doesn't have a cost model that can choose which plan to execute if
6956 // more than one is generated.
6957 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6958                                  LoopVectorizationCostModel &CM) {
6959   unsigned WidestType;
6960   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6961   return WidestVectorRegBits / WidestType;
6962 }
6963 
6964 VectorizationFactor
6965 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
6966   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
6967   ElementCount VF = UserVF;
6968   // Outer loop handling: They may require CFG and instruction level
6969   // transformations before even evaluating whether vectorization is profitable.
6970   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6971   // the vectorization pipeline.
6972   if (!OrigLoop->isInnermost()) {
6973     // If the user doesn't provide a vectorization factor, determine a
6974     // reasonable one.
6975     if (UserVF.isZero()) {
6976       VF = ElementCount::getFixed(
6977           determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM));
6978       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6979 
6980       // Make sure we have a VF > 1 for stress testing.
6981       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6982         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6983                           << "overriding computed VF.\n");
6984         VF = ElementCount::getFixed(4);
6985       }
6986     }
6987     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6988     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
6989            "VF needs to be a power of two");
6990     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6991                       << "VF " << VF << " to build VPlans.\n");
6992     buildVPlans(VF, VF);
6993 
6994     // For VPlan build stress testing, we bail out after VPlan construction.
6995     if (VPlanBuildStressTest)
6996       return VectorizationFactor::Disabled();
6997 
6998     return {VF, 0 /*Cost*/};
6999   }
7000 
7001   LLVM_DEBUG(
7002       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7003                 "VPlan-native path.\n");
7004   return VectorizationFactor::Disabled();
7005 }
7006 
7007 Optional<VectorizationFactor>
7008 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7009   assert(!UserVF.isScalable() && "scalable vectorization not yet handled");
7010   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7011   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7012   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7013     return None;
7014 
7015   // Invalidate interleave groups if all blocks of loop will be predicated.
7016   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7017       !useMaskedInterleavedAccesses(*TTI)) {
7018     LLVM_DEBUG(
7019         dbgs()
7020         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7021            "which requires masked-interleaved support.\n");
7022     if (CM.InterleaveInfo.invalidateGroups())
7023       // Invalidating interleave groups also requires invalidating all decisions
7024       // based on them, which includes widening decisions and uniform and scalar
7025       // values.
7026       CM.invalidateCostModelingDecisions();
7027   }
7028 
7029   if (!UserVF.isZero()) {
7030     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7031     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7032            "VF needs to be a power of two");
7033     // Collect the instructions (and their associated costs) that will be more
7034     // profitable to scalarize.
7035     CM.selectUserVectorizationFactor(UserVF);
7036     CM.collectInLoopReductions();
7037     buildVPlansWithVPRecipes(UserVF, UserVF);
7038     LLVM_DEBUG(printPlans(dbgs()));
7039     return {{UserVF, 0}};
7040   }
7041 
7042   ElementCount MaxVF = MaybeMaxVF.getValue();
7043   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7044 
7045   for (ElementCount VF = ElementCount::getFixed(1);
7046        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7047     // Collect Uniform and Scalar instructions after vectorization with VF.
7048     CM.collectUniformsAndScalars(VF);
7049 
7050     // Collect the instructions (and their associated costs) that will be more
7051     // profitable to scalarize.
7052     if (VF.isVector())
7053       CM.collectInstsToScalarize(VF);
7054   }
7055 
7056   CM.collectInLoopReductions();
7057 
7058   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7059   LLVM_DEBUG(printPlans(dbgs()));
7060   if (MaxVF.isScalar())
7061     return VectorizationFactor::Disabled();
7062 
7063   // Select the optimal vectorization factor.
7064   return CM.selectVectorizationFactor(MaxVF);
7065 }
7066 
7067 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7068   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7069                     << '\n');
7070   BestVF = VF;
7071   BestUF = UF;
7072 
7073   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7074     return !Plan->hasVF(VF);
7075   });
7076   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7077 }
7078 
7079 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7080                                            DominatorTree *DT) {
7081   // Perform the actual loop transformation.
7082 
7083   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7084   VPCallbackILV CallbackILV(ILV);
7085 
7086   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7087 
7088   VPTransformState State{*BestVF, BestUF,      LI,
7089                          DT,      ILV.Builder, ILV.VectorLoopValueMap,
7090                          &ILV,    CallbackILV};
7091   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7092   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7093   State.CanonicalIV = ILV.Induction;
7094 
7095   //===------------------------------------------------===//
7096   //
7097   // Notice: any optimization or new instruction that go
7098   // into the code below should also be implemented in
7099   // the cost-model.
7100   //
7101   //===------------------------------------------------===//
7102 
7103   // 2. Copy and widen instructions from the old loop into the new loop.
7104   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7105   VPlans.front()->execute(&State);
7106 
7107   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7108   //    predication, updating analyses.
7109   ILV.fixVectorizedLoop();
7110 }
7111 
7112 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7113     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7114   BasicBlock *Latch = OrigLoop->getLoopLatch();
7115 
7116   // We create new control-flow for the vectorized loop, so the original
7117   // condition will be dead after vectorization if it's only used by the
7118   // branch.
7119   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7120   if (Cmp && Cmp->hasOneUse()) {
7121     DeadInstructions.insert(Cmp);
7122 
7123     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7124     for (Value *Op : Cmp->operands()) {
7125       if (isa<TruncInst>(Op) && Op->hasOneUse())
7126           DeadInstructions.insert(cast<Instruction>(Op));
7127     }
7128   }
7129 
7130   // We create new "steps" for induction variable updates to which the original
7131   // induction variables map. An original update instruction will be dead if
7132   // all its users except the induction variable are dead.
7133   for (auto &Induction : Legal->getInductionVars()) {
7134     PHINode *Ind = Induction.first;
7135     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7136 
7137     // If the tail is to be folded by masking, the primary induction variable,
7138     // if exists, isn't dead: it will be used for masking. Don't kill it.
7139     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7140       continue;
7141 
7142     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7143           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7144         }))
7145       DeadInstructions.insert(IndUpdate);
7146 
7147     // We record as "Dead" also the type-casting instructions we had identified
7148     // during induction analysis. We don't need any handling for them in the
7149     // vectorized loop because we have proven that, under a proper runtime
7150     // test guarding the vectorized loop, the value of the phi, and the casted
7151     // value of the phi, are the same. The last instruction in this casting chain
7152     // will get its scalar/vector/widened def from the scalar/vector/widened def
7153     // of the respective phi node. Any other casts in the induction def-use chain
7154     // have no other uses outside the phi update chain, and will be ignored.
7155     InductionDescriptor &IndDes = Induction.second;
7156     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7157     DeadInstructions.insert(Casts.begin(), Casts.end());
7158   }
7159 }
7160 
7161 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7162 
7163 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7164 
7165 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7166                                         Instruction::BinaryOps BinOp) {
7167   // When unrolling and the VF is 1, we only need to add a simple scalar.
7168   Type *Ty = Val->getType();
7169   assert(!Ty->isVectorTy() && "Val must be a scalar");
7170 
7171   if (Ty->isFloatingPointTy()) {
7172     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7173 
7174     // Floating point operations had to be 'fast' to enable the unrolling.
7175     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7176     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7177   }
7178   Constant *C = ConstantInt::get(Ty, StartIdx);
7179   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7180 }
7181 
7182 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7183   SmallVector<Metadata *, 4> MDs;
7184   // Reserve first location for self reference to the LoopID metadata node.
7185   MDs.push_back(nullptr);
7186   bool IsUnrollMetadata = false;
7187   MDNode *LoopID = L->getLoopID();
7188   if (LoopID) {
7189     // First find existing loop unrolling disable metadata.
7190     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7191       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7192       if (MD) {
7193         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7194         IsUnrollMetadata =
7195             S && S->getString().startswith("llvm.loop.unroll.disable");
7196       }
7197       MDs.push_back(LoopID->getOperand(i));
7198     }
7199   }
7200 
7201   if (!IsUnrollMetadata) {
7202     // Add runtime unroll disable metadata.
7203     LLVMContext &Context = L->getHeader()->getContext();
7204     SmallVector<Metadata *, 1> DisableOperands;
7205     DisableOperands.push_back(
7206         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7207     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7208     MDs.push_back(DisableNode);
7209     MDNode *NewLoopID = MDNode::get(Context, MDs);
7210     // Set operand 0 to refer to the loop id itself.
7211     NewLoopID->replaceOperandWith(0, NewLoopID);
7212     L->setLoopID(NewLoopID);
7213   }
7214 }
7215 
7216 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7217     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7218   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7219   bool PredicateAtRangeStart = Predicate(Range.Start);
7220 
7221   for (ElementCount TmpVF = Range.Start * 2;
7222        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7223     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7224       Range.End = TmpVF;
7225       break;
7226     }
7227 
7228   return PredicateAtRangeStart;
7229 }
7230 
7231 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7232 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7233 /// of VF's starting at a given VF and extending it as much as possible. Each
7234 /// vectorization decision can potentially shorten this sub-range during
7235 /// buildVPlan().
7236 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7237                                            ElementCount MaxVF) {
7238   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7239   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7240     VFRange SubRange = {VF, MaxVFPlusOne};
7241     VPlans.push_back(buildVPlan(SubRange));
7242     VF = SubRange.End;
7243   }
7244 }
7245 
7246 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7247                                          VPlanPtr &Plan) {
7248   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7249 
7250   // Look for cached value.
7251   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7252   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7253   if (ECEntryIt != EdgeMaskCache.end())
7254     return ECEntryIt->second;
7255 
7256   VPValue *SrcMask = createBlockInMask(Src, Plan);
7257 
7258   // The terminator has to be a branch inst!
7259   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7260   assert(BI && "Unexpected terminator found");
7261 
7262   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
7263     return EdgeMaskCache[Edge] = SrcMask;
7264 
7265   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
7266   assert(EdgeMask && "No Edge Mask found for condition");
7267 
7268   if (BI->getSuccessor(0) != Dst)
7269     EdgeMask = Builder.createNot(EdgeMask);
7270 
7271   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7272     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7273 
7274   return EdgeMaskCache[Edge] = EdgeMask;
7275 }
7276 
7277 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
7278   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
7279 
7280   // Look for cached value.
7281   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7282   if (BCEntryIt != BlockMaskCache.end())
7283     return BCEntryIt->second;
7284 
7285   // All-one mask is modelled as no-mask following the convention for masked
7286   // load/store/gather/scatter. Initialize BlockMask to no-mask.
7287   VPValue *BlockMask = nullptr;
7288 
7289   if (OrigLoop->getHeader() == BB) {
7290     if (!CM.blockNeedsPredication(BB))
7291       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
7292 
7293     // Create the block in mask as the first non-phi instruction in the block.
7294     VPBuilder::InsertPointGuard Guard(Builder);
7295     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
7296     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
7297 
7298     // Introduce the early-exit compare IV <= BTC to form header block mask.
7299     // This is used instead of IV < TC because TC may wrap, unlike BTC.
7300     // Start by constructing the desired canonical IV.
7301     VPValue *IV = nullptr;
7302     if (Legal->getPrimaryInduction())
7303       IV = Plan->getVPValue(Legal->getPrimaryInduction());
7304     else {
7305       auto IVRecipe = new VPWidenCanonicalIVRecipe();
7306       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
7307       IV = IVRecipe->getVPValue();
7308     }
7309     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
7310     bool TailFolded = !CM.isScalarEpilogueAllowed();
7311 
7312     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
7313       // While ActiveLaneMask is a binary op that consumes the loop tripcount
7314       // as a second argument, we only pass the IV here and extract the
7315       // tripcount from the transform state where codegen of the VP instructions
7316       // happen.
7317       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
7318     } else {
7319       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
7320     }
7321     return BlockMaskCache[BB] = BlockMask;
7322   }
7323 
7324   // This is the block mask. We OR all incoming edges.
7325   for (auto *Predecessor : predecessors(BB)) {
7326     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7327     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7328       return BlockMaskCache[BB] = EdgeMask;
7329 
7330     if (!BlockMask) { // BlockMask has its initialized nullptr value.
7331       BlockMask = EdgeMask;
7332       continue;
7333     }
7334 
7335     BlockMask = Builder.createOr(BlockMask, EdgeMask);
7336   }
7337 
7338   return BlockMaskCache[BB] = BlockMask;
7339 }
7340 
7341 VPWidenMemoryInstructionRecipe *
7342 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
7343                                   VPlanPtr &Plan) {
7344   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7345          "Must be called with either a load or store");
7346 
7347   auto willWiden = [&](ElementCount VF) -> bool {
7348     assert(!VF.isScalable() && "unexpected scalable ElementCount");
7349     if (VF.isScalar())
7350       return false;
7351     LoopVectorizationCostModel::InstWidening Decision =
7352         CM.getWideningDecision(I, VF);
7353     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
7354            "CM decision should be taken at this point.");
7355     if (Decision == LoopVectorizationCostModel::CM_Interleave)
7356       return true;
7357     if (CM.isScalarAfterVectorization(I, VF) ||
7358         CM.isProfitableToScalarize(I, VF))
7359       return false;
7360     return Decision != LoopVectorizationCostModel::CM_Scalarize;
7361   };
7362 
7363   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7364     return nullptr;
7365 
7366   VPValue *Mask = nullptr;
7367   if (Legal->isMaskRequired(I))
7368     Mask = createBlockInMask(I->getParent(), Plan);
7369 
7370   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
7371   if (LoadInst *Load = dyn_cast<LoadInst>(I))
7372     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
7373 
7374   StoreInst *Store = cast<StoreInst>(I);
7375   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
7376   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
7377 }
7378 
7379 VPWidenIntOrFpInductionRecipe *
7380 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
7381   // Check if this is an integer or fp induction. If so, build the recipe that
7382   // produces its scalar and vector values.
7383   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
7384   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7385       II.getKind() == InductionDescriptor::IK_FpInduction)
7386     return new VPWidenIntOrFpInductionRecipe(Phi);
7387 
7388   return nullptr;
7389 }
7390 
7391 VPWidenIntOrFpInductionRecipe *
7392 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
7393                                                 VFRange &Range) const {
7394   // Optimize the special case where the source is a constant integer
7395   // induction variable. Notice that we can only optimize the 'trunc' case
7396   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7397   // (c) other casts depend on pointer size.
7398 
7399   // Determine whether \p K is a truncation based on an induction variable that
7400   // can be optimized.
7401   auto isOptimizableIVTruncate =
7402       [&](Instruction *K) -> std::function<bool(ElementCount)> {
7403     return [=](ElementCount VF) -> bool {
7404       return CM.isOptimizableIVTruncate(K, VF);
7405     };
7406   };
7407 
7408   if (LoopVectorizationPlanner::getDecisionAndClampRange(
7409           isOptimizableIVTruncate(I), Range))
7410     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7411                                              I);
7412   return nullptr;
7413 }
7414 
7415 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
7416   // We know that all PHIs in non-header blocks are converted into selects, so
7417   // we don't have to worry about the insertion order and we can just use the
7418   // builder. At this point we generate the predication tree. There may be
7419   // duplications since this is a simple recursive scan, but future
7420   // optimizations will clean it up.
7421 
7422   SmallVector<VPValue *, 2> Operands;
7423   unsigned NumIncoming = Phi->getNumIncomingValues();
7424   for (unsigned In = 0; In < NumIncoming; In++) {
7425     VPValue *EdgeMask =
7426       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7427     assert((EdgeMask || NumIncoming == 1) &&
7428            "Multiple predecessors with one having a full mask");
7429     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
7430     if (EdgeMask)
7431       Operands.push_back(EdgeMask);
7432   }
7433   return new VPBlendRecipe(Phi, Operands);
7434 }
7435 
7436 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
7437                                                    VPlan &Plan) const {
7438 
7439   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7440       [this, CI](ElementCount VF) {
7441         return CM.isScalarWithPredication(CI, VF);
7442       },
7443       Range);
7444 
7445   if (IsPredicated)
7446     return nullptr;
7447 
7448   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7449   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7450              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7451              ID == Intrinsic::pseudoprobe))
7452     return nullptr;
7453 
7454   auto willWiden = [&](ElementCount VF) -> bool {
7455     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7456     // The following case may be scalarized depending on the VF.
7457     // The flag shows whether we use Intrinsic or a usual Call for vectorized
7458     // version of the instruction.
7459     // Is it beneficial to perform intrinsic call compared to lib call?
7460     bool NeedToScalarize = false;
7461     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
7462     bool UseVectorIntrinsic =
7463         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
7464     return UseVectorIntrinsic || !NeedToScalarize;
7465   };
7466 
7467   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
7468     return nullptr;
7469 
7470   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
7471 }
7472 
7473 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7474   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
7475          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7476   // Instruction should be widened, unless it is scalar after vectorization,
7477   // scalarization is profitable or it is predicated.
7478   auto WillScalarize = [this, I](ElementCount VF) -> bool {
7479     return CM.isScalarAfterVectorization(I, VF) ||
7480            CM.isProfitableToScalarize(I, VF) ||
7481            CM.isScalarWithPredication(I, VF);
7482   };
7483   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
7484                                                              Range);
7485 }
7486 
7487 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
7488   auto IsVectorizableOpcode = [](unsigned Opcode) {
7489     switch (Opcode) {
7490     case Instruction::Add:
7491     case Instruction::And:
7492     case Instruction::AShr:
7493     case Instruction::BitCast:
7494     case Instruction::FAdd:
7495     case Instruction::FCmp:
7496     case Instruction::FDiv:
7497     case Instruction::FMul:
7498     case Instruction::FNeg:
7499     case Instruction::FPExt:
7500     case Instruction::FPToSI:
7501     case Instruction::FPToUI:
7502     case Instruction::FPTrunc:
7503     case Instruction::FRem:
7504     case Instruction::FSub:
7505     case Instruction::ICmp:
7506     case Instruction::IntToPtr:
7507     case Instruction::LShr:
7508     case Instruction::Mul:
7509     case Instruction::Or:
7510     case Instruction::PtrToInt:
7511     case Instruction::SDiv:
7512     case Instruction::Select:
7513     case Instruction::SExt:
7514     case Instruction::Shl:
7515     case Instruction::SIToFP:
7516     case Instruction::SRem:
7517     case Instruction::Sub:
7518     case Instruction::Trunc:
7519     case Instruction::UDiv:
7520     case Instruction::UIToFP:
7521     case Instruction::URem:
7522     case Instruction::Xor:
7523     case Instruction::ZExt:
7524       return true;
7525     }
7526     return false;
7527   };
7528 
7529   if (!IsVectorizableOpcode(I->getOpcode()))
7530     return nullptr;
7531 
7532   // Success: widen this instruction.
7533   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7534 }
7535 
7536 VPBasicBlock *VPRecipeBuilder::handleReplication(
7537     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7538     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7539     VPlanPtr &Plan) {
7540   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7541       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7542       Range);
7543 
7544   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7545       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
7546       Range);
7547 
7548   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7549                                        IsUniform, IsPredicated);
7550   setRecipe(I, Recipe);
7551 
7552   // Find if I uses a predicated instruction. If so, it will use its scalar
7553   // value. Avoid hoisting the insert-element which packs the scalar value into
7554   // a vector value, as that happens iff all users use the vector value.
7555   for (auto &Op : I->operands())
7556     if (auto *PredInst = dyn_cast<Instruction>(Op))
7557       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7558         PredInst2Recipe[PredInst]->setAlsoPack(false);
7559 
7560   // Finalize the recipe for Instr, first if it is not predicated.
7561   if (!IsPredicated) {
7562     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7563     VPBB->appendRecipe(Recipe);
7564     return VPBB;
7565   }
7566   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7567   assert(VPBB->getSuccessors().empty() &&
7568          "VPBB has successors when handling predicated replication.");
7569   // Record predicated instructions for above packing optimizations.
7570   PredInst2Recipe[I] = Recipe;
7571   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7572   VPBlockUtils::insertBlockAfter(Region, VPBB);
7573   auto *RegSucc = new VPBasicBlock();
7574   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7575   return RegSucc;
7576 }
7577 
7578 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7579                                                       VPRecipeBase *PredRecipe,
7580                                                       VPlanPtr &Plan) {
7581   // Instructions marked for predication are replicated and placed under an
7582   // if-then construct to prevent side-effects.
7583 
7584   // Generate recipes to compute the block mask for this region.
7585   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7586 
7587   // Build the triangular if-then region.
7588   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7589   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7590   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7591   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7592   auto *PHIRecipe =
7593       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7594   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7595   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7596   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7597 
7598   // Note: first set Entry as region entry and then connect successors starting
7599   // from it in order, to propagate the "parent" of each VPBasicBlock.
7600   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7601   VPBlockUtils::connectBlocks(Pred, Exit);
7602 
7603   return Region;
7604 }
7605 
7606 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7607                                                       VFRange &Range,
7608                                                       VPlanPtr &Plan) {
7609   // First, check for specific widening recipes that deal with calls, memory
7610   // operations, inductions and Phi nodes.
7611   if (auto *CI = dyn_cast<CallInst>(Instr))
7612     return tryToWidenCall(CI, Range, *Plan);
7613 
7614   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7615     return tryToWidenMemory(Instr, Range, Plan);
7616 
7617   VPRecipeBase *Recipe;
7618   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7619     if (Phi->getParent() != OrigLoop->getHeader())
7620       return tryToBlend(Phi, Plan);
7621     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7622       return Recipe;
7623     return new VPWidenPHIRecipe(Phi);
7624   }
7625 
7626   if (isa<TruncInst>(Instr) &&
7627       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7628     return Recipe;
7629 
7630   if (!shouldWiden(Instr, Range))
7631     return nullptr;
7632 
7633   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7634     return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()),
7635                                 OrigLoop);
7636 
7637   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7638     bool InvariantCond =
7639         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7640     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7641                                    InvariantCond);
7642   }
7643 
7644   return tryToWiden(Instr, *Plan);
7645 }
7646 
7647 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
7648                                                         ElementCount MaxVF) {
7649   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7650 
7651   // Collect conditions feeding internal conditional branches; they need to be
7652   // represented in VPlan for it to model masking.
7653   SmallPtrSet<Value *, 1> NeedDef;
7654 
7655   auto *Latch = OrigLoop->getLoopLatch();
7656   for (BasicBlock *BB : OrigLoop->blocks()) {
7657     if (BB == Latch)
7658       continue;
7659     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7660     if (Branch && Branch->isConditional())
7661       NeedDef.insert(Branch->getCondition());
7662   }
7663 
7664   // If the tail is to be folded by masking, the primary induction variable, if
7665   // exists needs to be represented in VPlan for it to model early-exit masking.
7666   if (CM.foldTailByMasking() && Legal->getPrimaryInduction())
7667     NeedDef.insert(Legal->getPrimaryInduction());
7668 
7669   // Collect instructions from the original loop that will become trivially dead
7670   // in the vectorized loop. We don't need to vectorize these instructions. For
7671   // example, original induction update instructions can become dead because we
7672   // separately emit induction "steps" when generating code for the new loop.
7673   // Similarly, we create a new latch condition when setting up the structure
7674   // of the new loop, so the old one can become dead.
7675   SmallPtrSet<Instruction *, 4> DeadInstructions;
7676   collectTriviallyDeadInstructions(DeadInstructions);
7677 
7678   // Add assume instructions we need to drop to DeadInstructions, to prevent
7679   // them from being added to the VPlan.
7680   // TODO: We only need to drop assumes in blocks that get flattend. If the
7681   // control flow is preserved, we should keep them.
7682   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7683   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7684 
7685   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7686   // Dead instructions do not need sinking. Remove them from SinkAfter.
7687   for (Instruction *I : DeadInstructions)
7688     SinkAfter.erase(I);
7689 
7690   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7691   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7692     VFRange SubRange = {VF, MaxVFPlusOne};
7693     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7694                                              DeadInstructions, SinkAfter));
7695     VF = SubRange.End;
7696   }
7697 }
7698 
7699 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7700     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7701     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7702     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7703 
7704   // Hold a mapping from predicated instructions to their recipes, in order to
7705   // fix their AlsoPack behavior if a user is determined to replicate and use a
7706   // scalar instead of vector value.
7707   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7708 
7709   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7710 
7711   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7712 
7713   // ---------------------------------------------------------------------------
7714   // Pre-construction: record ingredients whose recipes we'll need to further
7715   // process after constructing the initial VPlan.
7716   // ---------------------------------------------------------------------------
7717 
7718   // Mark instructions we'll need to sink later and their targets as
7719   // ingredients whose recipe we'll need to record.
7720   for (auto &Entry : SinkAfter) {
7721     RecipeBuilder.recordRecipeOf(Entry.first);
7722     RecipeBuilder.recordRecipeOf(Entry.second);
7723   }
7724   for (auto &Reduction : CM.getInLoopReductionChains()) {
7725     PHINode *Phi = Reduction.first;
7726     RecurrenceDescriptor::RecurrenceKind Kind =
7727         Legal->getReductionVars()[Phi].getRecurrenceKind();
7728     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7729 
7730     RecipeBuilder.recordRecipeOf(Phi);
7731     for (auto &R : ReductionOperations) {
7732       RecipeBuilder.recordRecipeOf(R);
7733       // For min/max reducitons, where we have a pair of icmp/select, we also
7734       // need to record the ICmp recipe, so it can be removed later.
7735       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7736           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7737         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
7738       }
7739     }
7740   }
7741 
7742   // For each interleave group which is relevant for this (possibly trimmed)
7743   // Range, add it to the set of groups to be later applied to the VPlan and add
7744   // placeholders for its members' Recipes which we'll be replacing with a
7745   // single VPInterleaveRecipe.
7746   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7747     auto applyIG = [IG, this](ElementCount VF) -> bool {
7748       return (VF.isVector() && // Query is illegal for VF == 1
7749               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7750                   LoopVectorizationCostModel::CM_Interleave);
7751     };
7752     if (!getDecisionAndClampRange(applyIG, Range))
7753       continue;
7754     InterleaveGroups.insert(IG);
7755     for (unsigned i = 0; i < IG->getFactor(); i++)
7756       if (Instruction *Member = IG->getMember(i))
7757         RecipeBuilder.recordRecipeOf(Member);
7758   };
7759 
7760   // ---------------------------------------------------------------------------
7761   // Build initial VPlan: Scan the body of the loop in a topological order to
7762   // visit each basic block after having visited its predecessor basic blocks.
7763   // ---------------------------------------------------------------------------
7764 
7765   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7766   auto Plan = std::make_unique<VPlan>();
7767   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7768   Plan->setEntry(VPBB);
7769 
7770   // Represent values that will have defs inside VPlan.
7771   for (Value *V : NeedDef)
7772     Plan->addVPValue(V);
7773 
7774   // Scan the body of the loop in a topological order to visit each basic block
7775   // after having visited its predecessor basic blocks.
7776   LoopBlocksDFS DFS(OrigLoop);
7777   DFS.perform(LI);
7778 
7779   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7780     // Relevant instructions from basic block BB will be grouped into VPRecipe
7781     // ingredients and fill a new VPBasicBlock.
7782     unsigned VPBBsForBB = 0;
7783     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7784     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7785     VPBB = FirstVPBBForBB;
7786     Builder.setInsertPoint(VPBB);
7787 
7788     // Introduce each ingredient into VPlan.
7789     // TODO: Model and preserve debug instrinsics in VPlan.
7790     for (Instruction &I : BB->instructionsWithoutDebug()) {
7791       Instruction *Instr = &I;
7792 
7793       // First filter out irrelevant instructions, to ensure no recipes are
7794       // built for them.
7795       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
7796         continue;
7797 
7798       if (auto Recipe =
7799               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7800         // Check if the recipe can be converted to a VPValue. We need the extra
7801         // down-casting step until VPRecipeBase inherits from VPValue.
7802         VPValue *MaybeVPValue = Recipe->toVPValue();
7803         if (!Instr->getType()->isVoidTy() && MaybeVPValue) {
7804           if (NeedDef.contains(Instr))
7805             Plan->addOrReplaceVPValue(Instr, MaybeVPValue);
7806           else
7807             Plan->addVPValue(Instr, MaybeVPValue);
7808         }
7809 
7810         RecipeBuilder.setRecipe(Instr, Recipe);
7811         VPBB->appendRecipe(Recipe);
7812         continue;
7813       }
7814 
7815       // Otherwise, if all widening options failed, Instruction is to be
7816       // replicated. This may create a successor for VPBB.
7817       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7818           Instr, Range, VPBB, PredInst2Recipe, Plan);
7819       if (NextVPBB != VPBB) {
7820         VPBB = NextVPBB;
7821         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7822                                     : "");
7823       }
7824     }
7825   }
7826 
7827   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7828   // may also be empty, such as the last one VPBB, reflecting original
7829   // basic-blocks with no recipes.
7830   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7831   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7832   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7833   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7834   delete PreEntry;
7835 
7836   // ---------------------------------------------------------------------------
7837   // Transform initial VPlan: Apply previously taken decisions, in order, to
7838   // bring the VPlan to its final state.
7839   // ---------------------------------------------------------------------------
7840 
7841   // Apply Sink-After legal constraints.
7842   for (auto &Entry : SinkAfter) {
7843     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7844     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7845     Sink->moveAfter(Target);
7846   }
7847 
7848   // Interleave memory: for each Interleave Group we marked earlier as relevant
7849   // for this VPlan, replace the Recipes widening its memory instructions with a
7850   // single VPInterleaveRecipe at its insertion point.
7851   for (auto IG : InterleaveGroups) {
7852     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7853         RecipeBuilder.getRecipe(IG->getInsertPos()));
7854     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7855         ->insertBefore(Recipe);
7856 
7857     for (unsigned i = 0; i < IG->getFactor(); ++i)
7858       if (Instruction *Member = IG->getMember(i)) {
7859         if (!Member->getType()->isVoidTy()) {
7860           VPValue *OriginalV = Plan->getVPValue(Member);
7861           Plan->removeVPValueFor(Member);
7862           OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member));
7863         }
7864         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7865       }
7866   }
7867 
7868   // Adjust the recipes for any inloop reductions.
7869   if (Range.Start.isVector())
7870     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
7871 
7872   // Finally, if tail is folded by masking, introduce selects between the phi
7873   // and the live-out instruction of each reduction, at the end of the latch.
7874   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
7875     Builder.setInsertPoint(VPBB);
7876     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7877     for (auto &Reduction : Legal->getReductionVars()) {
7878       if (CM.isInLoopReduction(Reduction.first))
7879         continue;
7880       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
7881       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
7882       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7883     }
7884   }
7885 
7886   std::string PlanName;
7887   raw_string_ostream RSO(PlanName);
7888   ElementCount VF = Range.Start;
7889   Plan->addVF(VF);
7890   RSO << "Initial VPlan for VF={" << VF;
7891   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
7892     Plan->addVF(VF);
7893     RSO << "," << VF;
7894   }
7895   RSO << "},UF>=1";
7896   RSO.flush();
7897   Plan->setName(PlanName);
7898 
7899   return Plan;
7900 }
7901 
7902 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7903   // Outer loop handling: They may require CFG and instruction level
7904   // transformations before even evaluating whether vectorization is profitable.
7905   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7906   // the vectorization pipeline.
7907   assert(!OrigLoop->isInnermost());
7908   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7909 
7910   // Create new empty VPlan
7911   auto Plan = std::make_unique<VPlan>();
7912 
7913   // Build hierarchical CFG
7914   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7915   HCFGBuilder.buildHierarchicalCFG();
7916 
7917   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
7918        VF *= 2)
7919     Plan->addVF(VF);
7920 
7921   if (EnableVPlanPredication) {
7922     VPlanPredicator VPP(*Plan);
7923     VPP.predicate();
7924 
7925     // Avoid running transformation to recipes until masked code generation in
7926     // VPlan-native path is in place.
7927     return Plan;
7928   }
7929 
7930   SmallPtrSet<Instruction *, 1> DeadInstructions;
7931   VPlanTransforms::VPInstructionsToVPRecipes(
7932       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7933   return Plan;
7934 }
7935 
7936 // Adjust the recipes for any inloop reductions. The chain of instructions
7937 // leading from the loop exit instr to the phi need to be converted to
7938 // reductions, with one operand being vector and the other being the scalar
7939 // reduction chain.
7940 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
7941     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
7942   for (auto &Reduction : CM.getInLoopReductionChains()) {
7943     PHINode *Phi = Reduction.first;
7944     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
7945     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
7946 
7947     // ReductionOperations are orders top-down from the phi's use to the
7948     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
7949     // which of the two operands will remain scalar and which will be reduced.
7950     // For minmax the chain will be the select instructions.
7951     Instruction *Chain = Phi;
7952     for (Instruction *R : ReductionOperations) {
7953       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
7954       RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind();
7955 
7956       VPValue *ChainOp = Plan->getVPValue(Chain);
7957       unsigned FirstOpId;
7958       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7959           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7960         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
7961                "Expected to replace a VPWidenSelectSC");
7962         FirstOpId = 1;
7963       } else {
7964         assert(isa<VPWidenRecipe>(WidenRecipe) &&
7965                "Expected to replace a VPWidenSC");
7966         FirstOpId = 0;
7967       }
7968       unsigned VecOpId =
7969           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
7970       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
7971 
7972       auto *CondOp = CM.foldTailByMasking()
7973                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
7974                          : nullptr;
7975       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
7976           &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI);
7977       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
7978       WidenRecipe->eraseFromParent();
7979 
7980       if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
7981           Kind == RecurrenceDescriptor::RK_FloatMinMax) {
7982         VPRecipeBase *CompareRecipe =
7983             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
7984         assert(isa<VPWidenRecipe>(CompareRecipe) &&
7985                "Expected to replace a VPWidenSC");
7986         CompareRecipe->eraseFromParent();
7987       }
7988       Chain = R;
7989     }
7990   }
7991 }
7992 
7993 Value* LoopVectorizationPlanner::VPCallbackILV::
7994 getOrCreateVectorValues(Value *V, unsigned Part) {
7995       return ILV.getOrCreateVectorValue(V, Part);
7996 }
7997 
7998 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7999     Value *V, const VPIteration &Instance) {
8000   return ILV.getOrCreateScalarValue(V, Instance);
8001 }
8002 
8003 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
8004                                VPSlotTracker &SlotTracker) const {
8005   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
8006   IG->getInsertPos()->printAsOperand(O, false);
8007   O << ", ";
8008   getAddr()->printAsOperand(O, SlotTracker);
8009   VPValue *Mask = getMask();
8010   if (Mask) {
8011     O << ", ";
8012     Mask->printAsOperand(O, SlotTracker);
8013   }
8014   for (unsigned i = 0; i < IG->getFactor(); ++i)
8015     if (Instruction *I = IG->getMember(i))
8016       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
8017 }
8018 
8019 void VPWidenCallRecipe::execute(VPTransformState &State) {
8020   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
8021                                   *this, State);
8022 }
8023 
8024 void VPWidenSelectRecipe::execute(VPTransformState &State) {
8025   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
8026                                     this, *this, InvariantCond, State);
8027 }
8028 
8029 void VPWidenRecipe::execute(VPTransformState &State) {
8030   State.ILV->widenInstruction(Ingredient, *this, State);
8031 }
8032 
8033 void VPWidenGEPRecipe::execute(VPTransformState &State) {
8034   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
8035                       *this, State.UF, State.VF, IsPtrLoopInvariant,
8036                       IsIndexLoopInvariant, State);
8037 }
8038 
8039 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8040   assert(!State.Instance && "Int or FP induction being replicated.");
8041   State.ILV->widenIntOrFpInduction(IV, Trunc);
8042 }
8043 
8044 void VPWidenPHIRecipe::execute(VPTransformState &State) {
8045   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8046 }
8047 
8048 void VPBlendRecipe::execute(VPTransformState &State) {
8049   State.ILV->setDebugLocFromInst(State.Builder, Phi);
8050   // We know that all PHIs in non-header blocks are converted into
8051   // selects, so we don't have to worry about the insertion order and we
8052   // can just use the builder.
8053   // At this point we generate the predication tree. There may be
8054   // duplications since this is a simple recursive scan, but future
8055   // optimizations will clean it up.
8056 
8057   unsigned NumIncoming = getNumIncomingValues();
8058 
8059   // Generate a sequence of selects of the form:
8060   // SELECT(Mask3, In3,
8061   //        SELECT(Mask2, In2,
8062   //               SELECT(Mask1, In1,
8063   //                      In0)))
8064   // Note that Mask0 is never used: lanes for which no path reaches this phi and
8065   // are essentially undef are taken from In0.
8066   InnerLoopVectorizer::VectorParts Entry(State.UF);
8067   for (unsigned In = 0; In < NumIncoming; ++In) {
8068     for (unsigned Part = 0; Part < State.UF; ++Part) {
8069       // We might have single edge PHIs (blocks) - use an identity
8070       // 'select' for the first PHI operand.
8071       Value *In0 = State.get(getIncomingValue(In), Part);
8072       if (In == 0)
8073         Entry[Part] = In0; // Initialize with the first incoming value.
8074       else {
8075         // Select between the current value and the previous incoming edge
8076         // based on the incoming mask.
8077         Value *Cond = State.get(getMask(In), Part);
8078         Entry[Part] =
8079             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8080       }
8081     }
8082   }
8083   for (unsigned Part = 0; Part < State.UF; ++Part)
8084     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8085 }
8086 
8087 void VPInterleaveRecipe::execute(VPTransformState &State) {
8088   assert(!State.Instance && "Interleave group being replicated.");
8089   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
8090 }
8091 
8092 void VPReductionRecipe::execute(VPTransformState &State) {
8093   assert(!State.Instance && "Reduction being replicated.");
8094   for (unsigned Part = 0; Part < State.UF; ++Part) {
8095     RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind();
8096     Value *NewVecOp = State.get(VecOp, Part);
8097     if (CondOp) {
8098       Value *NewCond = State.get(CondOp, Part);
8099       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
8100       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
8101           Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType());
8102       Constant *IdenVec =
8103           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
8104       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
8105       NewVecOp = Select;
8106     }
8107     Value *NewRed =
8108         createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN);
8109     Value *PrevInChain = State.get(ChainOp, Part);
8110     Value *NextInChain;
8111     if (Kind == RecurrenceDescriptor::RK_IntegerMinMax ||
8112         Kind == RecurrenceDescriptor::RK_FloatMinMax) {
8113       NextInChain =
8114           createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(),
8115                          NewRed, PrevInChain);
8116     } else {
8117       NextInChain = State.Builder.CreateBinOp(
8118           (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain);
8119     }
8120     State.ValueMap.setVectorValue(I, Part, NextInChain);
8121   }
8122 }
8123 
8124 void VPReplicateRecipe::execute(VPTransformState &State) {
8125   if (State.Instance) { // Generate a single instance.
8126     State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance,
8127                                     IsPredicated, State);
8128     // Insert scalar instance packing it into a vector.
8129     if (AlsoPack && State.VF.isVector()) {
8130       // If we're constructing lane 0, initialize to start from undef.
8131       if (State.Instance->Lane == 0) {
8132         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
8133         Value *Undef =
8134             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8135         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8136       }
8137       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8138     }
8139     return;
8140   }
8141 
8142   // Generate scalar instances for all VF lanes of all UF parts, unless the
8143   // instruction is uniform inwhich case generate only the first lane for each
8144   // of the UF parts.
8145   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
8146   for (unsigned Part = 0; Part < State.UF; ++Part)
8147     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8148       State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane},
8149                                       IsPredicated, State);
8150 }
8151 
8152 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8153   assert(State.Instance && "Branch on Mask works only on single instance.");
8154 
8155   unsigned Part = State.Instance->Part;
8156   unsigned Lane = State.Instance->Lane;
8157 
8158   Value *ConditionBit = nullptr;
8159   VPValue *BlockInMask = getMask();
8160   if (BlockInMask) {
8161     ConditionBit = State.get(BlockInMask, Part);
8162     if (ConditionBit->getType()->isVectorTy())
8163       ConditionBit = State.Builder.CreateExtractElement(
8164           ConditionBit, State.Builder.getInt32(Lane));
8165   } else // Block in mask is all-one.
8166     ConditionBit = State.Builder.getTrue();
8167 
8168   // Replace the temporary unreachable terminator with a new conditional branch,
8169   // whose two destinations will be set later when they are created.
8170   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8171   assert(isa<UnreachableInst>(CurrentTerminator) &&
8172          "Expected to replace unreachable terminator with conditional branch.");
8173   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8174   CondBr->setSuccessor(0, nullptr);
8175   ReplaceInstWithInst(CurrentTerminator, CondBr);
8176 }
8177 
8178 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8179   assert(State.Instance && "Predicated instruction PHI works per instance.");
8180   Instruction *ScalarPredInst = cast<Instruction>(
8181       State.ValueMap.getScalarValue(PredInst, *State.Instance));
8182   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8183   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8184   assert(PredicatingBB && "Predicated block has no single predecessor.");
8185 
8186   // By current pack/unpack logic we need to generate only a single phi node: if
8187   // a vector value for the predicated instruction exists at this point it means
8188   // the instruction has vector users only, and a phi for the vector value is
8189   // needed. In this case the recipe of the predicated instruction is marked to
8190   // also do that packing, thereby "hoisting" the insert-element sequence.
8191   // Otherwise, a phi node for the scalar value is needed.
8192   unsigned Part = State.Instance->Part;
8193   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8194     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8195     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8196     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8197     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8198     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8199     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8200   } else {
8201     Type *PredInstType = PredInst->getType();
8202     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8203     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8204     Phi->addIncoming(ScalarPredInst, PredicatedBB);
8205     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8206   }
8207 }
8208 
8209 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8210   Instruction *Instr = getUnderlyingInstr();
8211   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
8212   State.ILV->vectorizeMemoryInstruction(Instr, State,
8213                                         StoredValue ? nullptr : this, getAddr(),
8214                                         StoredValue, getMask());
8215 }
8216 
8217 // Determine how to lower the scalar epilogue, which depends on 1) optimising
8218 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8219 // predication, and 4) a TTI hook that analyses whether the loop is suitable
8220 // for predication.
8221 static ScalarEpilogueLowering getScalarEpilogueLowering(
8222     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
8223     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
8224     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
8225     LoopVectorizationLegality &LVL) {
8226   // 1) OptSize takes precedence over all other options, i.e. if this is set,
8227   // don't look at hints or options, and don't request a scalar epilogue.
8228   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
8229   // LoopAccessInfo (due to code dependency and not being able to reliably get
8230   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
8231   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
8232   // versioning when the vectorization is forced, unlike hasOptSize. So revert
8233   // back to the old way and vectorize with versioning when forced. See D81345.)
8234   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
8235                                                       PGSOQueryType::IRPass) &&
8236                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
8237     return CM_ScalarEpilogueNotAllowedOptSize;
8238 
8239   bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() &&
8240                               !PreferPredicateOverEpilogue;
8241 
8242   // 2) Next, if disabling predication is requested on the command line, honour
8243   // this and request a scalar epilogue.
8244   if (PredicateOptDisabled)
8245     return CM_ScalarEpilogueAllowed;
8246 
8247   // 3) and 4) look if enabling predication is requested on the command line,
8248   // with a loop hint, or if the TTI hook indicates this is profitable, request
8249   // predication.
8250   if (PreferPredicateOverEpilogue ||
8251       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
8252       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
8253                                         LVL.getLAI()) &&
8254        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
8255     return CM_ScalarEpilogueNotNeededUsePredicate;
8256 
8257   return CM_ScalarEpilogueAllowed;
8258 }
8259 
8260 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V,
8261                            unsigned Part) {
8262   set(Def, V, Part);
8263   ILV->setVectorValue(IRDef, Part, V);
8264 }
8265 
8266 // Process the loop in the VPlan-native vectorization path. This path builds
8267 // VPlan upfront in the vectorization pipeline, which allows to apply
8268 // VPlan-to-VPlan transformations from the very beginning without modifying the
8269 // input LLVM IR.
8270 static bool processLoopInVPlanNativePath(
8271     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
8272     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
8273     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
8274     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
8275     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
8276 
8277   if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) {
8278     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
8279     return false;
8280   }
8281   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
8282   Function *F = L->getHeader()->getParent();
8283   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
8284 
8285   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8286       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
8287 
8288   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
8289                                 &Hints, IAI);
8290   // Use the planner for outer loop vectorization.
8291   // TODO: CM is not used at this point inside the planner. Turn CM into an
8292   // optional argument if we don't need it in the future.
8293   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
8294 
8295   // Get user vectorization factor.
8296   const unsigned UserVF = Hints.getWidth();
8297 
8298   // Plan how to best vectorize, return the best VF and its cost.
8299   const VectorizationFactor VF =
8300       LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF));
8301 
8302   // If we are stress testing VPlan builds, do not attempt to generate vector
8303   // code. Masked vector code generation support will follow soon.
8304   // Also, do not attempt to vectorize if no vector code will be produced.
8305   if (VPlanBuildStressTest || EnableVPlanPredication ||
8306       VectorizationFactor::Disabled() == VF)
8307     return false;
8308 
8309   LVP.setBestPlan(VF.Width, 1);
8310 
8311   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
8312                          &CM, BFI, PSI);
8313   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
8314                     << L->getHeader()->getParent()->getName() << "\"\n");
8315   LVP.executePlan(LB, DT);
8316 
8317   // Mark the loop as already vectorized to avoid vectorizing again.
8318   Hints.setAlreadyVectorized();
8319 
8320   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8321   return true;
8322 }
8323 
8324 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
8325     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
8326                                !EnableLoopInterleaving),
8327       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
8328                               !EnableLoopVectorization) {}
8329 
8330 bool LoopVectorizePass::processLoop(Loop *L) {
8331   assert((EnableVPlanNativePath || L->isInnermost()) &&
8332          "VPlan-native path is not enabled. Only process inner loops.");
8333 
8334 #ifndef NDEBUG
8335   const std::string DebugLocStr = getDebugLocString(L);
8336 #endif /* NDEBUG */
8337 
8338   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
8339                     << L->getHeader()->getParent()->getName() << "\" from "
8340                     << DebugLocStr << "\n");
8341 
8342   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
8343 
8344   LLVM_DEBUG(
8345       dbgs() << "LV: Loop hints:"
8346              << " force="
8347              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
8348                      ? "disabled"
8349                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
8350                             ? "enabled"
8351                             : "?"))
8352              << " width=" << Hints.getWidth()
8353              << " unroll=" << Hints.getInterleave() << "\n");
8354 
8355   // Function containing loop
8356   Function *F = L->getHeader()->getParent();
8357 
8358   // Looking at the diagnostic output is the only way to determine if a loop
8359   // was vectorized (other than looking at the IR or machine code), so it
8360   // is important to generate an optimization remark for each loop. Most of
8361   // these messages are generated as OptimizationRemarkAnalysis. Remarks
8362   // generated as OptimizationRemark and OptimizationRemarkMissed are
8363   // less verbose reporting vectorized loops and unvectorized loops that may
8364   // benefit from vectorization, respectively.
8365 
8366   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
8367     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
8368     return false;
8369   }
8370 
8371   PredicatedScalarEvolution PSE(*SE, *L);
8372 
8373   // Check if it is legal to vectorize the loop.
8374   LoopVectorizationRequirements Requirements(*ORE);
8375   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
8376                                 &Requirements, &Hints, DB, AC, BFI, PSI);
8377   if (!LVL.canVectorize(EnableVPlanNativePath)) {
8378     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
8379     Hints.emitRemarkWithHints();
8380     return false;
8381   }
8382 
8383   // Check the function attributes and profiles to find out if this function
8384   // should be optimized for size.
8385   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
8386       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
8387 
8388   // Entrance to the VPlan-native vectorization path. Outer loops are processed
8389   // here. They may require CFG and instruction level transformations before
8390   // even evaluating whether vectorization is profitable. Since we cannot modify
8391   // the incoming IR, we need to build VPlan upfront in the vectorization
8392   // pipeline.
8393   if (!L->isInnermost())
8394     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
8395                                         ORE, BFI, PSI, Hints);
8396 
8397   assert(L->isInnermost() && "Inner loop expected.");
8398 
8399   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8400   // count by optimizing for size, to minimize overheads.
8401   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
8402   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
8403     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
8404                       << "This loop is worth vectorizing only if no scalar "
8405                       << "iteration overheads are incurred.");
8406     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8407       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
8408     else {
8409       LLVM_DEBUG(dbgs() << "\n");
8410       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
8411     }
8412   }
8413 
8414   // Check the function attributes to see if implicit floats are allowed.
8415   // FIXME: This check doesn't seem possibly correct -- what if the loop is
8416   // an integer loop and the vector instructions selected are purely integer
8417   // vector instructions?
8418   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8419     reportVectorizationFailure(
8420         "Can't vectorize when the NoImplicitFloat attribute is used",
8421         "loop not vectorized due to NoImplicitFloat attribute",
8422         "NoImplicitFloat", ORE, L);
8423     Hints.emitRemarkWithHints();
8424     return false;
8425   }
8426 
8427   // Check if the target supports potentially unsafe FP vectorization.
8428   // FIXME: Add a check for the type of safety issue (denormal, signaling)
8429   // for the target we're vectorizing for, to make sure none of the
8430   // additional fp-math flags can help.
8431   if (Hints.isPotentiallyUnsafe() &&
8432       TTI->isFPVectorizationPotentiallyUnsafe()) {
8433     reportVectorizationFailure(
8434         "Potentially unsafe FP op prevents vectorization",
8435         "loop not vectorized due to unsafe FP support.",
8436         "UnsafeFP", ORE, L);
8437     Hints.emitRemarkWithHints();
8438     return false;
8439   }
8440 
8441   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
8442   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
8443 
8444   // If an override option has been passed in for interleaved accesses, use it.
8445   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
8446     UseInterleaved = EnableInterleavedMemAccesses;
8447 
8448   // Analyze interleaved memory accesses.
8449   if (UseInterleaved) {
8450     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
8451   }
8452 
8453   // Use the cost model.
8454   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
8455                                 F, &Hints, IAI);
8456   CM.collectValuesToIgnore();
8457 
8458   // Use the planner for vectorization.
8459   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
8460 
8461   // Get user vectorization factor and interleave count.
8462   unsigned UserVF = Hints.getWidth();
8463   unsigned UserIC = Hints.getInterleave();
8464 
8465   // Plan how to best vectorize, return the best VF and its cost.
8466   Optional<VectorizationFactor> MaybeVF =
8467       LVP.plan(ElementCount::getFixed(UserVF), UserIC);
8468 
8469   VectorizationFactor VF = VectorizationFactor::Disabled();
8470   unsigned IC = 1;
8471 
8472   if (MaybeVF) {
8473     VF = *MaybeVF;
8474     // Select the interleave count.
8475     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
8476   }
8477 
8478   // Identify the diagnostic messages that should be produced.
8479   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8480   bool VectorizeLoop = true, InterleaveLoop = true;
8481   if (Requirements.doesNotMeet(F, L, Hints)) {
8482     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
8483                          "requirements.\n");
8484     Hints.emitRemarkWithHints();
8485     return false;
8486   }
8487 
8488   if (VF.Width.isScalar()) {
8489     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
8490     VecDiagMsg = std::make_pair(
8491         "VectorizationNotBeneficial",
8492         "the cost-model indicates that vectorization is not beneficial");
8493     VectorizeLoop = false;
8494   }
8495 
8496   if (!MaybeVF && UserIC > 1) {
8497     // Tell the user interleaving was avoided up-front, despite being explicitly
8498     // requested.
8499     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
8500                          "interleaving should be avoided up front\n");
8501     IntDiagMsg = std::make_pair(
8502         "InterleavingAvoided",
8503         "Ignoring UserIC, because interleaving was avoided up front");
8504     InterleaveLoop = false;
8505   } else if (IC == 1 && UserIC <= 1) {
8506     // Tell the user interleaving is not beneficial.
8507     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
8508     IntDiagMsg = std::make_pair(
8509         "InterleavingNotBeneficial",
8510         "the cost-model indicates that interleaving is not beneficial");
8511     InterleaveLoop = false;
8512     if (UserIC == 1) {
8513       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8514       IntDiagMsg.second +=
8515           " and is explicitly disabled or interleave count is set to 1";
8516     }
8517   } else if (IC > 1 && UserIC == 1) {
8518     // Tell the user interleaving is beneficial, but it explicitly disabled.
8519     LLVM_DEBUG(
8520         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
8521     IntDiagMsg = std::make_pair(
8522         "InterleavingBeneficialButDisabled",
8523         "the cost-model indicates that interleaving is beneficial "
8524         "but is explicitly disabled or interleave count is set to 1");
8525     InterleaveLoop = false;
8526   }
8527 
8528   // Override IC if user provided an interleave count.
8529   IC = UserIC > 0 ? UserIC : IC;
8530 
8531   // Emit diagnostic messages, if any.
8532   const char *VAPassName = Hints.vectorizeAnalysisPassName();
8533   if (!VectorizeLoop && !InterleaveLoop) {
8534     // Do not vectorize or interleaving the loop.
8535     ORE->emit([&]() {
8536       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8537                                       L->getStartLoc(), L->getHeader())
8538              << VecDiagMsg.second;
8539     });
8540     ORE->emit([&]() {
8541       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
8542                                       L->getStartLoc(), L->getHeader())
8543              << IntDiagMsg.second;
8544     });
8545     return false;
8546   } else if (!VectorizeLoop && InterleaveLoop) {
8547     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8548     ORE->emit([&]() {
8549       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8550                                         L->getStartLoc(), L->getHeader())
8551              << VecDiagMsg.second;
8552     });
8553   } else if (VectorizeLoop && !InterleaveLoop) {
8554     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8555                       << ") in " << DebugLocStr << '\n');
8556     ORE->emit([&]() {
8557       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
8558                                         L->getStartLoc(), L->getHeader())
8559              << IntDiagMsg.second;
8560     });
8561   } else if (VectorizeLoop && InterleaveLoop) {
8562     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
8563                       << ") in " << DebugLocStr << '\n');
8564     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
8565   }
8566 
8567   LVP.setBestPlan(VF.Width, IC);
8568 
8569   using namespace ore;
8570   bool DisableRuntimeUnroll = false;
8571   MDNode *OrigLoopID = L->getLoopID();
8572 
8573   if (!VectorizeLoop) {
8574     assert(IC > 1 && "interleave count should not be 1 or 0");
8575     // If we decided that it is not legal to vectorize the loop, then
8576     // interleave it.
8577     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM,
8578                                BFI, PSI);
8579     LVP.executePlan(Unroller, DT);
8580 
8581     ORE->emit([&]() {
8582       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
8583                                 L->getHeader())
8584              << "interleaved loop (interleaved count: "
8585              << NV("InterleaveCount", IC) << ")";
8586     });
8587   } else {
8588     // If we decided that it is *legal* to vectorize the loop, then do it.
8589     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8590                            &LVL, &CM, BFI, PSI);
8591     LVP.executePlan(LB, DT);
8592     ++LoopsVectorized;
8593 
8594     // Add metadata to disable runtime unrolling a scalar loop when there are
8595     // no runtime checks about strides and memory. A scalar loop that is
8596     // rarely used is not worth unrolling.
8597     if (!LB.areSafetyChecksAdded())
8598       DisableRuntimeUnroll = true;
8599 
8600     // Report the vectorization decision.
8601     ORE->emit([&]() {
8602       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
8603                                 L->getHeader())
8604              << "vectorized loop (vectorization width: "
8605              << NV("VectorizationFactor", VF.Width)
8606              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8607     });
8608   }
8609 
8610   Optional<MDNode *> RemainderLoopID =
8611       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
8612                                       LLVMLoopVectorizeFollowupEpilogue});
8613   if (RemainderLoopID.hasValue()) {
8614     L->setLoopID(RemainderLoopID.getValue());
8615   } else {
8616     if (DisableRuntimeUnroll)
8617       AddRuntimeUnrollDisableMetaData(L);
8618 
8619     // Mark the loop as already vectorized to avoid vectorizing again.
8620     Hints.setAlreadyVectorized();
8621   }
8622 
8623   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
8624   return true;
8625 }
8626 
8627 LoopVectorizeResult LoopVectorizePass::runImpl(
8628     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8629     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8630     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
8631     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8632     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
8633   SE = &SE_;
8634   LI = &LI_;
8635   TTI = &TTI_;
8636   DT = &DT_;
8637   BFI = &BFI_;
8638   TLI = TLI_;
8639   AA = &AA_;
8640   AC = &AC_;
8641   GetLAA = &GetLAA_;
8642   DB = &DB_;
8643   ORE = &ORE_;
8644   PSI = PSI_;
8645 
8646   // Don't attempt if
8647   // 1. the target claims to have no vector registers, and
8648   // 2. interleaving won't help ILP.
8649   //
8650   // The second condition is necessary because, even if the target has no
8651   // vector registers, loop vectorization may still enable scalar
8652   // interleaving.
8653   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8654       TTI->getMaxInterleaveFactor(1) < 2)
8655     return LoopVectorizeResult(false, false);
8656 
8657   bool Changed = false, CFGChanged = false;
8658 
8659   // The vectorizer requires loops to be in simplified form.
8660   // Since simplification may add new inner loops, it has to run before the
8661   // legality and profitability checks. This means running the loop vectorizer
8662   // will simplify all loops, regardless of whether anything end up being
8663   // vectorized.
8664   for (auto &L : *LI)
8665     Changed |= CFGChanged |=
8666         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8667 
8668   // Build up a worklist of inner-loops to vectorize. This is necessary as
8669   // the act of vectorizing or partially unrolling a loop creates new loops
8670   // and can invalidate iterators across the loops.
8671   SmallVector<Loop *, 8> Worklist;
8672 
8673   for (Loop *L : *LI)
8674     collectSupportedLoops(*L, LI, ORE, Worklist);
8675 
8676   LoopsAnalyzed += Worklist.size();
8677 
8678   // Now walk the identified inner loops.
8679   while (!Worklist.empty()) {
8680     Loop *L = Worklist.pop_back_val();
8681 
8682     // For the inner loops we actually process, form LCSSA to simplify the
8683     // transform.
8684     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8685 
8686     Changed |= CFGChanged |= processLoop(L);
8687   }
8688 
8689   // Process each loop nest in the function.
8690   return LoopVectorizeResult(Changed, CFGChanged);
8691 }
8692 
8693 PreservedAnalyses LoopVectorizePass::run(Function &F,
8694                                          FunctionAnalysisManager &AM) {
8695     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8696     auto &LI = AM.getResult<LoopAnalysis>(F);
8697     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8698     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8699     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8700     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8701     auto &AA = AM.getResult<AAManager>(F);
8702     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8703     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8704     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8705     MemorySSA *MSSA = EnableMSSALoopDependency
8706                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8707                           : nullptr;
8708 
8709     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8710     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8711         [&](Loop &L) -> const LoopAccessInfo & {
8712       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
8713                                         TLI, TTI, nullptr, MSSA};
8714       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8715     };
8716     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8717     ProfileSummaryInfo *PSI =
8718         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8719     LoopVectorizeResult Result =
8720         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8721     if (!Result.MadeAnyChange)
8722       return PreservedAnalyses::all();
8723     PreservedAnalyses PA;
8724 
8725     // We currently do not preserve loopinfo/dominator analyses with outer loop
8726     // vectorization. Until this is addressed, mark these analyses as preserved
8727     // only for non-VPlan-native path.
8728     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8729     if (!EnableVPlanNativePath) {
8730       PA.preserve<LoopAnalysis>();
8731       PA.preserve<DominatorTreeAnalysis>();
8732     }
8733     PA.preserve<BasicAA>();
8734     PA.preserve<GlobalsAA>();
8735     if (!Result.MadeCFGChange)
8736       PA.preserveSet<CFGAnalyses>();
8737     return PA;
8738 }
8739