1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 489 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount); 1446 1447 /// The vectorization cost is a combination of the cost itself and a boolean 1448 /// indicating whether any of the contributing operations will actually 1449 /// operate on 1450 /// vector values after type legalization in the backend. If this latter value 1451 /// is 1452 /// false, then all operations will be scalarized (i.e. no vectorization has 1453 /// actually taken place). 1454 using VectorizationCostTy = std::pair<unsigned, bool>; 1455 1456 /// Returns the expected execution cost. The unit of the cost does 1457 /// not matter because we use the 'cost' units to compare different 1458 /// vector widths. The cost that is returned is *not* normalized by 1459 /// the factor width. 1460 VectorizationCostTy expectedCost(ElementCount VF); 1461 1462 /// Returns the execution time cost of an instruction for a given vector 1463 /// width. Vector width of one means scalar. 1464 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1465 1466 /// The cost-computation logic from getInstructionCost which provides 1467 /// the vector type as an output parameter. 1468 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1469 1470 /// Calculate vectorization cost of memory instruction \p I. 1471 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1472 1473 /// The cost computation for scalarized memory instruction. 1474 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1475 1476 /// The cost computation for interleaving group of memory instructions. 1477 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1478 1479 /// The cost computation for Gather/Scatter instruction. 1480 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1481 1482 /// The cost computation for widening instruction \p I with consecutive 1483 /// memory access. 1484 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1485 1486 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1487 /// Load: scalar load + broadcast. 1488 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1489 /// element) 1490 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1491 1492 /// Estimate the overhead of scalarizing an instruction. This is a 1493 /// convenience wrapper for the type-based getScalarizationOverhead API. 1494 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1495 1496 /// Returns whether the instruction is a load or store and will be a emitted 1497 /// as a vector operation. 1498 bool isConsecutiveLoadOrStore(Instruction *I); 1499 1500 /// Returns true if an artificially high cost for emulated masked memrefs 1501 /// should be used. 1502 bool useEmulatedMaskMemRefHack(Instruction *I); 1503 1504 /// Map of scalar integer values to the smallest bitwidth they can be legally 1505 /// represented as. The vector equivalents of these values should be truncated 1506 /// to this type. 1507 MapVector<Instruction *, uint64_t> MinBWs; 1508 1509 /// A type representing the costs for instructions if they were to be 1510 /// scalarized rather than vectorized. The entries are Instruction-Cost 1511 /// pairs. 1512 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1513 1514 /// A set containing all BasicBlocks that are known to present after 1515 /// vectorization as a predicated block. 1516 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1517 1518 /// Records whether it is allowed to have the original scalar loop execute at 1519 /// least once. This may be needed as a fallback loop in case runtime 1520 /// aliasing/dependence checks fail, or to handle the tail/remainder 1521 /// iterations when the trip count is unknown or doesn't divide by the VF, 1522 /// or as a peel-loop to handle gaps in interleave-groups. 1523 /// Under optsize and when the trip count is very small we don't allow any 1524 /// iterations to execute in the scalar loop. 1525 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1526 1527 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1528 bool FoldTailByMasking = false; 1529 1530 /// A map holding scalar costs for different vectorization factors. The 1531 /// presence of a cost for an instruction in the mapping indicates that the 1532 /// instruction will be scalarized when vectorizing with the associated 1533 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1534 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1535 1536 /// Holds the instructions known to be uniform after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1539 1540 /// Holds the instructions known to be scalar after vectorization. 1541 /// The data is collected per VF. 1542 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1543 1544 /// Holds the instructions (address computations) that are forced to be 1545 /// scalarized. 1546 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1547 1548 /// PHINodes of the reductions that should be expanded in-loop along with 1549 /// their associated chains of reduction operations, in program order from top 1550 /// (PHI) to bottom 1551 ReductionChainMap InLoopReductionChains; 1552 1553 /// Returns the expected difference in cost from scalarizing the expression 1554 /// feeding a predicated instruction \p PredInst. The instructions to 1555 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1556 /// non-negative return value implies the expression will be scalarized. 1557 /// Currently, only single-use chains are considered for scalarization. 1558 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1559 ElementCount VF); 1560 1561 /// Collect the instructions that are uniform after vectorization. An 1562 /// instruction is uniform if we represent it with a single scalar value in 1563 /// the vectorized loop corresponding to each vector iteration. Examples of 1564 /// uniform instructions include pointer operands of consecutive or 1565 /// interleaved memory accesses. Note that although uniformity implies an 1566 /// instruction will be scalar, the reverse is not true. In general, a 1567 /// scalarized instruction will be represented by VF scalar values in the 1568 /// vectorized loop, each corresponding to an iteration of the original 1569 /// scalar loop. 1570 void collectLoopUniforms(ElementCount VF); 1571 1572 /// Collect the instructions that are scalar after vectorization. An 1573 /// instruction is scalar if it is known to be uniform or will be scalarized 1574 /// during vectorization. Non-uniform scalarized instructions will be 1575 /// represented by VF values in the vectorized loop, each corresponding to an 1576 /// iteration of the original scalar loop. 1577 void collectLoopScalars(ElementCount VF); 1578 1579 /// Keeps cost model vectorization decision and cost for instructions. 1580 /// Right now it is used for memory instructions only. 1581 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1582 std::pair<InstWidening, unsigned>>; 1583 1584 DecisionList WideningDecisions; 1585 1586 /// Returns true if \p V is expected to be vectorized and it needs to be 1587 /// extracted. 1588 bool needsExtract(Value *V, ElementCount VF) const { 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1591 TheLoop->isLoopInvariant(I)) 1592 return false; 1593 1594 // Assume we can vectorize V (and hence we need extraction) if the 1595 // scalars are not computed yet. This can happen, because it is called 1596 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1597 // the scalars are collected. That should be a safe assumption in most 1598 // cases, because we check if the operands have vectorizable types 1599 // beforehand in LoopVectorizationLegality. 1600 return Scalars.find(VF) == Scalars.end() || 1601 !isScalarAfterVectorization(I, VF); 1602 }; 1603 1604 /// Returns a range containing only operands needing to be extracted. 1605 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1606 ElementCount VF) { 1607 return SmallVector<Value *, 4>(make_filter_range( 1608 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1609 } 1610 1611 public: 1612 /// The loop that we evaluate. 1613 Loop *TheLoop; 1614 1615 /// Predicated scalar evolution analysis. 1616 PredicatedScalarEvolution &PSE; 1617 1618 /// Loop Info analysis. 1619 LoopInfo *LI; 1620 1621 /// Vectorization legality. 1622 LoopVectorizationLegality *Legal; 1623 1624 /// Vector target information. 1625 const TargetTransformInfo &TTI; 1626 1627 /// Target Library Info. 1628 const TargetLibraryInfo *TLI; 1629 1630 /// Demanded bits analysis. 1631 DemandedBits *DB; 1632 1633 /// Assumption cache. 1634 AssumptionCache *AC; 1635 1636 /// Interface to emit optimization remarks. 1637 OptimizationRemarkEmitter *ORE; 1638 1639 const Function *TheFunction; 1640 1641 /// Loop Vectorize Hint. 1642 const LoopVectorizeHints *Hints; 1643 1644 /// The interleave access information contains groups of interleaved accesses 1645 /// with the same stride and close to each other. 1646 InterleavedAccessInfo &InterleaveInfo; 1647 1648 /// Values to ignore in the cost model. 1649 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1650 1651 /// Values to ignore in the cost model when VF > 1. 1652 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1653 }; 1654 1655 } // end namespace llvm 1656 1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1658 // vectorization. The loop needs to be annotated with #pragma omp simd 1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1660 // vector length information is not provided, vectorization is not considered 1661 // explicit. Interleave hints are not allowed either. These limitations will be 1662 // relaxed in the future. 1663 // Please, note that we are currently forced to abuse the pragma 'clang 1664 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1666 // provides *explicit vectorization hints* (LV can bypass legal checks and 1667 // assume that vectorization is legal). However, both hints are implemented 1668 // using the same metadata (llvm.loop.vectorize, processed by 1669 // LoopVectorizeHints). This will be fixed in the future when the native IR 1670 // representation for pragma 'omp simd' is introduced. 1671 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1672 OptimizationRemarkEmitter *ORE) { 1673 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1674 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1675 1676 // Only outer loops with an explicit vectorization hint are supported. 1677 // Unannotated outer loops are ignored. 1678 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1679 return false; 1680 1681 Function *Fn = OuterLp->getHeader()->getParent(); 1682 if (!Hints.allowVectorization(Fn, OuterLp, 1683 true /*VectorizeOnlyWhenForced*/)) { 1684 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1685 return false; 1686 } 1687 1688 if (Hints.getInterleave() > 1) { 1689 // TODO: Interleave support is future work. 1690 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1691 "outer loops.\n"); 1692 Hints.emitRemarkWithHints(); 1693 return false; 1694 } 1695 1696 return true; 1697 } 1698 1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1700 OptimizationRemarkEmitter *ORE, 1701 SmallVectorImpl<Loop *> &V) { 1702 // Collect inner loops and outer loops without irreducible control flow. For 1703 // now, only collect outer loops that have explicit vectorization hints. If we 1704 // are stress testing the VPlan H-CFG construction, we collect the outermost 1705 // loop of every loop nest. 1706 if (L.isInnermost() || VPlanBuildStressTest || 1707 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1708 LoopBlocksRPO RPOT(&L); 1709 RPOT.perform(LI); 1710 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1711 V.push_back(&L); 1712 // TODO: Collect inner loops inside marked outer loops in case 1713 // vectorization fails for the outer loop. Do not invoke 1714 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1715 // already known to be reducible. We can use an inherited attribute for 1716 // that. 1717 return; 1718 } 1719 } 1720 for (Loop *InnerL : L) 1721 collectSupportedLoops(*InnerL, LI, ORE, V); 1722 } 1723 1724 namespace { 1725 1726 /// The LoopVectorize Pass. 1727 struct LoopVectorize : public FunctionPass { 1728 /// Pass identification, replacement for typeid 1729 static char ID; 1730 1731 LoopVectorizePass Impl; 1732 1733 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1734 bool VectorizeOnlyWhenForced = false) 1735 : FunctionPass(ID), 1736 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1737 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1749 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1750 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1751 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1753 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1754 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1755 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1756 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1757 1758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1759 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1760 1761 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1762 GetLAA, *ORE, PSI).MadeAnyChange; 1763 } 1764 1765 void getAnalysisUsage(AnalysisUsage &AU) const override { 1766 AU.addRequired<AssumptionCacheTracker>(); 1767 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<LoopInfoWrapperPass>(); 1770 AU.addRequired<ScalarEvolutionWrapperPass>(); 1771 AU.addRequired<TargetTransformInfoWrapperPass>(); 1772 AU.addRequired<AAResultsWrapperPass>(); 1773 AU.addRequired<LoopAccessLegacyAnalysis>(); 1774 AU.addRequired<DemandedBitsWrapperPass>(); 1775 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1776 AU.addRequired<InjectTLIMappingsLegacy>(); 1777 1778 // We currently do not preserve loopinfo/dominator analyses with outer loop 1779 // vectorization. Until this is addressed, mark these analyses as preserved 1780 // only for non-VPlan-native path. 1781 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1782 if (!EnableVPlanNativePath) { 1783 AU.addPreserved<LoopInfoWrapperPass>(); 1784 AU.addPreserved<DominatorTreeWrapperPass>(); 1785 } 1786 1787 AU.addPreserved<BasicAAWrapperPass>(); 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1790 } 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 //===----------------------------------------------------------------------===// 1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1797 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1798 //===----------------------------------------------------------------------===// 1799 1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1801 // We need to place the broadcast of invariant variables outside the loop, 1802 // but only if it's proven safe to do so. Else, broadcast will be inside 1803 // vector loop body. 1804 Instruction *Instr = dyn_cast<Instruction>(V); 1805 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1806 (!Instr || 1807 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1808 // Place the code for broadcasting invariant variables in the new preheader. 1809 IRBuilder<>::InsertPointGuard Guard(Builder); 1810 if (SafeToHoist) 1811 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1812 1813 // Broadcast the scalar into all locations in the vector. 1814 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1815 1816 return Shuf; 1817 } 1818 1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1820 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1821 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1822 "Expected either an induction phi-node or a truncate of it!"); 1823 Value *Start = II.getStartValue(); 1824 1825 // Construct the initial value of the vector IV in the vector loop preheader 1826 auto CurrIP = Builder.saveIP(); 1827 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1828 if (isa<TruncInst>(EntryVal)) { 1829 assert(Start->getType()->isIntegerTy() && 1830 "Truncation requires an integer type"); 1831 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1832 Step = Builder.CreateTrunc(Step, TruncType); 1833 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1834 } 1835 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1836 Value *SteppedStart = 1837 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1838 1839 // We create vector phi nodes for both integer and floating-point induction 1840 // variables. Here, we determine the kind of arithmetic we will perform. 1841 Instruction::BinaryOps AddOp; 1842 Instruction::BinaryOps MulOp; 1843 if (Step->getType()->isIntegerTy()) { 1844 AddOp = Instruction::Add; 1845 MulOp = Instruction::Mul; 1846 } else { 1847 AddOp = II.getInductionOpcode(); 1848 MulOp = Instruction::FMul; 1849 } 1850 1851 // Multiply the vectorization factor by the step using integer or 1852 // floating-point arithmetic as appropriate. 1853 Value *ConstVF = 1854 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1855 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1856 1857 // Create a vector splat to use in the induction update. 1858 // 1859 // FIXME: If the step is non-constant, we create the vector splat with 1860 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1861 // handle a constant vector splat. 1862 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1863 Value *SplatVF = isa<Constant>(Mul) 1864 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1865 : Builder.CreateVectorSplat(VF, Mul); 1866 Builder.restoreIP(CurrIP); 1867 1868 // We may need to add the step a number of times, depending on the unroll 1869 // factor. The last of those goes into the PHI. 1870 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1871 &*LoopVectorBody->getFirstInsertionPt()); 1872 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1873 Instruction *LastInduction = VecInd; 1874 for (unsigned Part = 0; Part < UF; ++Part) { 1875 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1876 1877 if (isa<TruncInst>(EntryVal)) 1878 addMetadata(LastInduction, EntryVal); 1879 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1880 1881 LastInduction = cast<Instruction>(addFastMathFlag( 1882 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1883 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1884 } 1885 1886 // Move the last step to the end of the latch block. This ensures consistent 1887 // placement of all induction updates. 1888 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1889 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1890 auto *ICmp = cast<Instruction>(Br->getCondition()); 1891 LastInduction->moveBefore(ICmp); 1892 LastInduction->setName("vec.ind.next"); 1893 1894 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1895 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1896 } 1897 1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1899 return Cost->isScalarAfterVectorization(I, VF) || 1900 Cost->isProfitableToScalarize(I, VF); 1901 } 1902 1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1904 if (shouldScalarizeInstruction(IV)) 1905 return true; 1906 auto isScalarInst = [&](User *U) -> bool { 1907 auto *I = cast<Instruction>(U); 1908 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1909 }; 1910 return llvm::any_of(IV->users(), isScalarInst); 1911 } 1912 1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1914 const InductionDescriptor &ID, const Instruction *EntryVal, 1915 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1916 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1917 "Expected either an induction phi-node or a truncate of it!"); 1918 1919 // This induction variable is not the phi from the original loop but the 1920 // newly-created IV based on the proof that casted Phi is equal to the 1921 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1922 // re-uses the same InductionDescriptor that original IV uses but we don't 1923 // have to do any recording in this case - that is done when original IV is 1924 // processed. 1925 if (isa<TruncInst>(EntryVal)) 1926 return; 1927 1928 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1929 if (Casts.empty()) 1930 return; 1931 // Only the first Cast instruction in the Casts vector is of interest. 1932 // The rest of the Casts (if exist) have no uses outside the 1933 // induction update chain itself. 1934 Instruction *CastInst = *Casts.begin(); 1935 if (Lane < UINT_MAX) 1936 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1937 else 1938 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1939 } 1940 1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1942 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1943 "Primary induction variable must have an integer type"); 1944 1945 auto II = Legal->getInductionVars().find(IV); 1946 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1947 1948 auto ID = II->second; 1949 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1950 1951 // The value from the original loop to which we are mapping the new induction 1952 // variable. 1953 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1954 1955 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1956 1957 // Generate code for the induction step. Note that induction steps are 1958 // required to be loop-invariant 1959 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1960 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1961 "Induction step should be loop invariant"); 1962 if (PSE.getSE()->isSCEVable(IV->getType())) { 1963 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1964 return Exp.expandCodeFor(Step, Step->getType(), 1965 LoopVectorPreHeader->getTerminator()); 1966 } 1967 return cast<SCEVUnknown>(Step)->getValue(); 1968 }; 1969 1970 // The scalar value to broadcast. This is derived from the canonical 1971 // induction variable. If a truncation type is given, truncate the canonical 1972 // induction variable and step. Otherwise, derive these values from the 1973 // induction descriptor. 1974 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1975 Value *ScalarIV = Induction; 1976 if (IV != OldInduction) { 1977 ScalarIV = IV->getType()->isIntegerTy() 1978 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1979 : Builder.CreateCast(Instruction::SIToFP, Induction, 1980 IV->getType()); 1981 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1982 ScalarIV->setName("offset.idx"); 1983 } 1984 if (Trunc) { 1985 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1986 assert(Step->getType()->isIntegerTy() && 1987 "Truncation requires an integer step"); 1988 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1989 Step = Builder.CreateTrunc(Step, TruncType); 1990 } 1991 return ScalarIV; 1992 }; 1993 1994 // Create the vector values from the scalar IV, in the absence of creating a 1995 // vector IV. 1996 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1997 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2000 Value *EntryPart = 2001 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2002 ID.getInductionOpcode()); 2003 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2004 if (Trunc) 2005 addMetadata(EntryPart, Trunc); 2006 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2007 } 2008 }; 2009 2010 // Now do the actual transformations, and start with creating the step value. 2011 Value *Step = CreateStepValue(ID.getStep()); 2012 if (VF.isZero() || VF.isScalar()) { 2013 Value *ScalarIV = CreateScalarIV(Step); 2014 CreateSplatIV(ScalarIV, Step); 2015 return; 2016 } 2017 2018 // Determine if we want a scalar version of the induction variable. This is 2019 // true if the induction variable itself is not widened, or if it has at 2020 // least one user in the loop that is not widened. 2021 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2022 if (!NeedsScalarIV) { 2023 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2024 return; 2025 } 2026 2027 // Try to create a new independent vector induction variable. If we can't 2028 // create the phi node, we will splat the scalar induction variable in each 2029 // loop iteration. 2030 if (!shouldScalarizeInstruction(EntryVal)) { 2031 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2032 Value *ScalarIV = CreateScalarIV(Step); 2033 // Create scalar steps that can be used by instructions we will later 2034 // scalarize. Note that the addition of the scalar steps will not increase 2035 // the number of instructions in the loop in the common case prior to 2036 // InstCombine. We will be trading one vector extract for each scalar step. 2037 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2038 return; 2039 } 2040 2041 // All IV users are scalar instructions, so only emit a scalar IV, not a 2042 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2043 // predicate used by the masked loads/stores. 2044 Value *ScalarIV = CreateScalarIV(Step); 2045 if (!Cost->isScalarEpilogueAllowed()) 2046 CreateSplatIV(ScalarIV, Step); 2047 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2048 } 2049 2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2051 Instruction::BinaryOps BinOp) { 2052 // Create and check the types. 2053 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2054 int VLen = ValVTy->getNumElements(); 2055 2056 Type *STy = Val->getType()->getScalarType(); 2057 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2058 "Induction Step must be an integer or FP"); 2059 assert(Step->getType() == STy && "Step has wrong type"); 2060 2061 SmallVector<Constant *, 8> Indices; 2062 2063 if (STy->isIntegerTy()) { 2064 // Create a vector of consecutive numbers from zero to VF. 2065 for (int i = 0; i < VLen; ++i) 2066 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2067 2068 // Add the consecutive indices to the vector value. 2069 Constant *Cv = ConstantVector::get(Indices); 2070 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2071 Step = Builder.CreateVectorSplat(VLen, Step); 2072 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2073 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2074 // which can be found from the original scalar operations. 2075 Step = Builder.CreateMul(Cv, Step); 2076 return Builder.CreateAdd(Val, Step, "induction"); 2077 } 2078 2079 // Floating point induction. 2080 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2081 "Binary Opcode should be specified for FP induction"); 2082 // Create a vector of consecutive numbers from zero to VF. 2083 for (int i = 0; i < VLen; ++i) 2084 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2085 2086 // Add the consecutive indices to the vector value. 2087 Constant *Cv = ConstantVector::get(Indices); 2088 2089 Step = Builder.CreateVectorSplat(VLen, Step); 2090 2091 // Floating point operations had to be 'fast' to enable the induction. 2092 FastMathFlags Flags; 2093 Flags.setFast(); 2094 2095 Value *MulOp = Builder.CreateFMul(Cv, Step); 2096 if (isa<Instruction>(MulOp)) 2097 // Have to check, MulOp may be a constant 2098 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2099 2100 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2101 if (isa<Instruction>(BOp)) 2102 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2103 return BOp; 2104 } 2105 2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2107 Instruction *EntryVal, 2108 const InductionDescriptor &ID) { 2109 // We shouldn't have to build scalar steps if we aren't vectorizing. 2110 assert(VF.isVector() && "VF should be greater than one"); 2111 assert(!VF.isScalable() && 2112 "the code below assumes a fixed number of elements at compile time"); 2113 // Get the value type and ensure it and the step have the same integer type. 2114 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2115 assert(ScalarIVTy == Step->getType() && 2116 "Val and Step should have the same type"); 2117 2118 // We build scalar steps for both integer and floating-point induction 2119 // variables. Here, we determine the kind of arithmetic we will perform. 2120 Instruction::BinaryOps AddOp; 2121 Instruction::BinaryOps MulOp; 2122 if (ScalarIVTy->isIntegerTy()) { 2123 AddOp = Instruction::Add; 2124 MulOp = Instruction::Mul; 2125 } else { 2126 AddOp = ID.getInductionOpcode(); 2127 MulOp = Instruction::FMul; 2128 } 2129 2130 // Determine the number of scalars we need to generate for each unroll 2131 // iteration. If EntryVal is uniform, we only need to generate the first 2132 // lane. Otherwise, we generate all VF values. 2133 unsigned Lanes = 2134 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2135 ? 1 2136 : VF.getKnownMinValue(); 2137 // Compute the scalar steps and save the results in VectorLoopValueMap. 2138 for (unsigned Part = 0; Part < UF; ++Part) { 2139 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2140 auto *StartIdx = getSignedIntOrFpConstant( 2141 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2142 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2143 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2144 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2145 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2146 } 2147 } 2148 } 2149 2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2151 assert(V != Induction && "The new induction variable should not be used."); 2152 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2153 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2154 2155 // If we have a stride that is replaced by one, do it here. Defer this for 2156 // the VPlan-native path until we start running Legal checks in that path. 2157 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2158 V = ConstantInt::get(V->getType(), 1); 2159 2160 // If we have a vector mapped to this value, return it. 2161 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2162 return VectorLoopValueMap.getVectorValue(V, Part); 2163 2164 // If the value has not been vectorized, check if it has been scalarized 2165 // instead. If it has been scalarized, and we actually need the value in 2166 // vector form, we will construct the vector values on demand. 2167 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2168 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2169 2170 // If we've scalarized a value, that value should be an instruction. 2171 auto *I = cast<Instruction>(V); 2172 2173 // If we aren't vectorizing, we can just copy the scalar map values over to 2174 // the vector map. 2175 if (VF.isScalar()) { 2176 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2177 return ScalarValue; 2178 } 2179 2180 // Get the last scalar instruction we generated for V and Part. If the value 2181 // is known to be uniform after vectorization, this corresponds to lane zero 2182 // of the Part unroll iteration. Otherwise, the last instruction is the one 2183 // we created for the last vector lane of the Part unroll iteration. 2184 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2185 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2186 ? 0 2187 : VF.getKnownMinValue() - 1; 2188 auto *LastInst = cast<Instruction>( 2189 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2190 2191 // Set the insert point after the last scalarized instruction. This ensures 2192 // the insertelement sequence will directly follow the scalar definitions. 2193 auto OldIP = Builder.saveIP(); 2194 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2195 Builder.SetInsertPoint(&*NewIP); 2196 2197 // However, if we are vectorizing, we need to construct the vector values. 2198 // If the value is known to be uniform after vectorization, we can just 2199 // broadcast the scalar value corresponding to lane zero for each unroll 2200 // iteration. Otherwise, we construct the vector values using insertelement 2201 // instructions. Since the resulting vectors are stored in 2202 // VectorLoopValueMap, we will only generate the insertelements once. 2203 Value *VectorValue = nullptr; 2204 if (Cost->isUniformAfterVectorization(I, VF)) { 2205 VectorValue = getBroadcastInstrs(ScalarValue); 2206 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2207 } else { 2208 // Initialize packing with insertelements to start from undef. 2209 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2210 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2211 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2212 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2213 packScalarIntoVectorValue(V, {Part, Lane}); 2214 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2215 } 2216 Builder.restoreIP(OldIP); 2217 return VectorValue; 2218 } 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 VectorLoopValueMap.setVectorValue(V, Part, B); 2224 return B; 2225 } 2226 2227 Value * 2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2229 const VPIteration &Instance) { 2230 // If the value is not an instruction contained in the loop, it should 2231 // already be scalar. 2232 if (OrigLoop->isLoopInvariant(V)) 2233 return V; 2234 2235 assert(Instance.Lane > 0 2236 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2237 : true && "Uniform values only have lane zero"); 2238 2239 // If the value from the original loop has not been vectorized, it is 2240 // represented by UF x VF scalar values in the new loop. Return the requested 2241 // scalar value. 2242 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2243 return VectorLoopValueMap.getScalarValue(V, Instance); 2244 2245 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2246 // for the given unroll part. If this entry is not a vector type (i.e., the 2247 // vectorization factor is one), there is no need to generate an 2248 // extractelement instruction. 2249 auto *U = getOrCreateVectorValue(V, Instance.Part); 2250 if (!U->getType()->isVectorTy()) { 2251 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2252 return U; 2253 } 2254 2255 // Otherwise, the value from the original loop has been vectorized and is 2256 // represented by UF vector values. Extract and return the requested scalar 2257 // value from the appropriate vector lane. 2258 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2259 } 2260 2261 void InnerLoopVectorizer::packScalarIntoVectorValue( 2262 Value *V, const VPIteration &Instance) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2265 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2266 2267 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2268 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2269 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2270 Builder.getInt32(Instance.Lane)); 2271 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2272 } 2273 2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2275 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2276 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2277 SmallVector<int, 8> ShuffleMask; 2278 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2279 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2280 2281 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2282 } 2283 2284 // Return whether we allow using masked interleave-groups (for dealing with 2285 // strided loads/stores that reside in predicated blocks, or for dealing 2286 // with gaps). 2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2288 // If an override option has been passed in for interleaved accesses, use it. 2289 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2290 return EnableMaskedInterleavedMemAccesses; 2291 2292 return TTI.enableMaskedInterleavedAccessVectorization(); 2293 } 2294 2295 // Try to vectorize the interleave group that \p Instr belongs to. 2296 // 2297 // E.g. Translate following interleaved load group (factor = 3): 2298 // for (i = 0; i < N; i+=3) { 2299 // R = Pic[i]; // Member of index 0 2300 // G = Pic[i+1]; // Member of index 1 2301 // B = Pic[i+2]; // Member of index 2 2302 // ... // do something to R, G, B 2303 // } 2304 // To: 2305 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2306 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2307 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2308 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2309 // 2310 // Or translate following interleaved store group (factor = 3): 2311 // for (i = 0; i < N; i+=3) { 2312 // ... do something to R, G, B 2313 // Pic[i] = R; // Member of index 0 2314 // Pic[i+1] = G; // Member of index 1 2315 // Pic[i+2] = B; // Member of index 2 2316 // } 2317 // To: 2318 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2319 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2320 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2321 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2322 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2323 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2324 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2325 VPValue *Addr, VPValue *BlockInMask) { 2326 Instruction *Instr = Group->getInsertPos(); 2327 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2328 2329 // Prepare for the vector type of the interleaved load/store. 2330 Type *ScalarTy = getMemInstValueType(Instr); 2331 unsigned InterleaveFactor = Group->getFactor(); 2332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2333 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2334 2335 // Prepare for the new pointers. 2336 SmallVector<Value *, 2> AddrParts; 2337 unsigned Index = Group->getIndex(Instr); 2338 2339 // TODO: extend the masked interleaved-group support to reversed access. 2340 assert((!BlockInMask || !Group->isReverse()) && 2341 "Reversed masked interleave-group not supported."); 2342 2343 // If the group is reverse, adjust the index to refer to the last vector lane 2344 // instead of the first. We adjust the index from the first vector lane, 2345 // rather than directly getting the pointer for lane VF - 1, because the 2346 // pointer operand of the interleaved access is supposed to be uniform. For 2347 // uniform instructions, we're only required to generate a value for the 2348 // first vector lane in each unroll iteration. 2349 assert(!VF.isScalable() && 2350 "scalable vector reverse operation is not implemented"); 2351 if (Group->isReverse()) 2352 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2353 2354 for (unsigned Part = 0; Part < UF; Part++) { 2355 Value *AddrPart = State.get(Addr, {Part, 0}); 2356 setDebugLocFromInst(Builder, AddrPart); 2357 2358 // Notice current instruction could be any index. Need to adjust the address 2359 // to the member of index 0. 2360 // 2361 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2362 // b = A[i]; // Member of index 0 2363 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2364 // 2365 // E.g. A[i+1] = a; // Member of index 1 2366 // A[i] = b; // Member of index 0 2367 // A[i+2] = c; // Member of index 2 (Current instruction) 2368 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2369 2370 bool InBounds = false; 2371 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2372 InBounds = gep->isInBounds(); 2373 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2374 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2375 2376 // Cast to the vector pointer type. 2377 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2378 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2379 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2380 } 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 Value *UndefVec = UndefValue::get(VecTy); 2384 2385 Value *MaskForGaps = nullptr; 2386 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2387 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2388 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2389 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2390 } 2391 2392 // Vectorize the interleaved load group. 2393 if (isa<LoadInst>(Instr)) { 2394 // For each unroll part, create a wide load for the group. 2395 SmallVector<Value *, 2> NewLoads; 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 Instruction *NewLoad; 2398 if (BlockInMask || MaskForGaps) { 2399 assert(useMaskedInterleavedAccesses(*TTI) && 2400 "masked interleaved groups are not allowed."); 2401 Value *GroupMask = MaskForGaps; 2402 if (BlockInMask) { 2403 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2404 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2405 Value *ShuffledMask = Builder.CreateShuffleVector( 2406 BlockInMaskPart, 2407 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2408 "interleaved.mask"); 2409 GroupMask = MaskForGaps 2410 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2411 MaskForGaps) 2412 : ShuffledMask; 2413 } 2414 NewLoad = 2415 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2416 GroupMask, UndefVec, "wide.masked.vec"); 2417 } 2418 else 2419 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2420 Group->getAlign(), "wide.vec"); 2421 Group->addMetadata(NewLoad); 2422 NewLoads.push_back(NewLoad); 2423 } 2424 2425 // For each member in the group, shuffle out the appropriate data from the 2426 // wide loads. 2427 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2428 Instruction *Member = Group->getMember(I); 2429 2430 // Skip the gaps in the group. 2431 if (!Member) 2432 continue; 2433 2434 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2435 auto StrideMask = 2436 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2437 for (unsigned Part = 0; Part < UF; Part++) { 2438 Value *StridedVec = Builder.CreateShuffleVector( 2439 NewLoads[Part], StrideMask, "strided.vec"); 2440 2441 // If this member has different type, cast the result type. 2442 if (Member->getType() != ScalarTy) { 2443 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2444 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2445 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2446 } 2447 2448 if (Group->isReverse()) 2449 StridedVec = reverseVector(StridedVec); 2450 2451 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2452 } 2453 } 2454 return; 2455 } 2456 2457 // The sub vector type for current instruction. 2458 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2459 auto *SubVT = VectorType::get(ScalarTy, VF); 2460 2461 // Vectorize the interleaved store group. 2462 for (unsigned Part = 0; Part < UF; Part++) { 2463 // Collect the stored vector from each member. 2464 SmallVector<Value *, 4> StoredVecs; 2465 for (unsigned i = 0; i < InterleaveFactor; i++) { 2466 // Interleaved store group doesn't allow a gap, so each index has a member 2467 Instruction *Member = Group->getMember(i); 2468 assert(Member && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = getOrCreateVectorValue( 2471 cast<StoreInst>(Member)->getValueOperand(), Part); 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2665 auto InputInstance = Instance; 2666 if (!Operand || !OrigLoop->contains(Operand) || 2667 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2668 InputInstance.Lane = 0; 2669 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2670 Cloned->setOperand(op, NewOp); 2671 } 2672 addNewMetadata(Cloned, Instr); 2673 2674 // Place the cloned scalar in the new loop. 2675 Builder.Insert(Cloned); 2676 2677 // Add the cloned scalar to the scalar map entry. 2678 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2679 2680 // If we just cloned a new assumption, add it the assumption cache. 2681 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2682 if (II->getIntrinsicID() == Intrinsic::assume) 2683 AC->registerAssumption(II); 2684 2685 // End if-block. 2686 if (IfPredicateInstr) 2687 PredicatedInstructions.push_back(Cloned); 2688 } 2689 2690 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2691 Value *End, Value *Step, 2692 Instruction *DL) { 2693 BasicBlock *Header = L->getHeader(); 2694 BasicBlock *Latch = L->getLoopLatch(); 2695 // As we're just creating this loop, it's possible no latch exists 2696 // yet. If so, use the header as this will be a single block loop. 2697 if (!Latch) 2698 Latch = Header; 2699 2700 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2701 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2702 setDebugLocFromInst(Builder, OldInst); 2703 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2704 2705 Builder.SetInsertPoint(Latch->getTerminator()); 2706 setDebugLocFromInst(Builder, OldInst); 2707 2708 // Create i+1 and fill the PHINode. 2709 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2710 Induction->addIncoming(Start, L->getLoopPreheader()); 2711 Induction->addIncoming(Next, Latch); 2712 // Create the compare. 2713 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2714 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2715 2716 // Now we have two terminators. Remove the old one from the block. 2717 Latch->getTerminator()->eraseFromParent(); 2718 2719 return Induction; 2720 } 2721 2722 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2723 if (TripCount) 2724 return TripCount; 2725 2726 assert(L && "Create Trip Count for null loop."); 2727 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2728 // Find the loop boundaries. 2729 ScalarEvolution *SE = PSE.getSE(); 2730 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2731 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2732 "Invalid loop count"); 2733 2734 Type *IdxTy = Legal->getWidestInductionType(); 2735 assert(IdxTy && "No type for induction"); 2736 2737 // The exit count might have the type of i64 while the phi is i32. This can 2738 // happen if we have an induction variable that is sign extended before the 2739 // compare. The only way that we get a backedge taken count is that the 2740 // induction variable was signed and as such will not overflow. In such a case 2741 // truncation is legal. 2742 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2743 IdxTy->getPrimitiveSizeInBits()) 2744 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2745 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2746 2747 // Get the total trip count from the count by adding 1. 2748 const SCEV *ExitCount = SE->getAddExpr( 2749 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2750 2751 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2752 2753 // Expand the trip count and place the new instructions in the preheader. 2754 // Notice that the pre-header does not change, only the loop body. 2755 SCEVExpander Exp(*SE, DL, "induction"); 2756 2757 // Count holds the overall loop count (N). 2758 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2759 L->getLoopPreheader()->getTerminator()); 2760 2761 if (TripCount->getType()->isPointerTy()) 2762 TripCount = 2763 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2764 L->getLoopPreheader()->getTerminator()); 2765 2766 return TripCount; 2767 } 2768 2769 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2770 if (VectorTripCount) 2771 return VectorTripCount; 2772 2773 Value *TC = getOrCreateTripCount(L); 2774 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2775 2776 Type *Ty = TC->getType(); 2777 // This is where we can make the step a runtime constant. 2778 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2779 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2780 2781 // If the tail is to be folded by masking, round the number of iterations N 2782 // up to a multiple of Step instead of rounding down. This is done by first 2783 // adding Step-1 and then rounding down. Note that it's ok if this addition 2784 // overflows: the vector induction variable will eventually wrap to zero given 2785 // that it starts at zero and its Step is a power of two; the loop will then 2786 // exit, with the last early-exit vector comparison also producing all-true. 2787 if (Cost->foldTailByMasking()) { 2788 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2789 "VF*UF must be a power of 2 when folding tail by masking"); 2790 TC = Builder.CreateAdd( 2791 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2792 } 2793 2794 // Now we need to generate the expression for the part of the loop that the 2795 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2796 // iterations are not required for correctness, or N - Step, otherwise. Step 2797 // is equal to the vectorization factor (number of SIMD elements) times the 2798 // unroll factor (number of SIMD instructions). 2799 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2800 2801 // If there is a non-reversed interleaved group that may speculatively access 2802 // memory out-of-bounds, we need to ensure that there will be at least one 2803 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2804 // the trip count, we set the remainder to be equal to the step. If the step 2805 // does not evenly divide the trip count, no adjustment is necessary since 2806 // there will already be scalar iterations. Note that the minimum iterations 2807 // check ensures that N >= Step. 2808 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2809 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2810 R = Builder.CreateSelect(IsZero, Step, R); 2811 } 2812 2813 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2814 2815 return VectorTripCount; 2816 } 2817 2818 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2819 const DataLayout &DL) { 2820 // Verify that V is a vector type with same number of elements as DstVTy. 2821 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2822 unsigned VF = DstFVTy->getNumElements(); 2823 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2824 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2825 Type *SrcElemTy = SrcVecTy->getElementType(); 2826 Type *DstElemTy = DstFVTy->getElementType(); 2827 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2828 "Vector elements must have same size"); 2829 2830 // Do a direct cast if element types are castable. 2831 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2832 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2833 } 2834 // V cannot be directly casted to desired vector type. 2835 // May happen when V is a floating point vector but DstVTy is a vector of 2836 // pointers or vice-versa. Handle this using a two-step bitcast using an 2837 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2838 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2839 "Only one type should be a pointer type"); 2840 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2841 "Only one type should be a floating point type"); 2842 Type *IntTy = 2843 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2844 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2845 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2846 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2847 } 2848 2849 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2850 BasicBlock *Bypass) { 2851 Value *Count = getOrCreateTripCount(L); 2852 // Reuse existing vector loop preheader for TC checks. 2853 // Note that new preheader block is generated for vector loop. 2854 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2855 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2856 2857 // Generate code to check if the loop's trip count is less than VF * UF, or 2858 // equal to it in case a scalar epilogue is required; this implies that the 2859 // vector trip count is zero. This check also covers the case where adding one 2860 // to the backedge-taken count overflowed leading to an incorrect trip count 2861 // of zero. In this case we will also jump to the scalar loop. 2862 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2863 : ICmpInst::ICMP_ULT; 2864 2865 // If tail is to be folded, vector loop takes care of all iterations. 2866 Value *CheckMinIters = Builder.getFalse(); 2867 if (!Cost->foldTailByMasking()) { 2868 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2869 CheckMinIters = Builder.CreateICmp( 2870 P, Count, 2871 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2872 "min.iters.check"); 2873 } 2874 // Create new preheader for vector loop. 2875 LoopVectorPreHeader = 2876 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2877 "vector.ph"); 2878 2879 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2880 DT->getNode(Bypass)->getIDom()) && 2881 "TC check is expected to dominate Bypass"); 2882 2883 // Update dominator for Bypass & LoopExit. 2884 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2885 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2886 2887 ReplaceInstWithInst( 2888 TCCheckBlock->getTerminator(), 2889 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2890 LoopBypassBlocks.push_back(TCCheckBlock); 2891 } 2892 2893 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2894 // Reuse existing vector loop preheader for SCEV checks. 2895 // Note that new preheader block is generated for vector loop. 2896 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2897 2898 // Generate the code to check that the SCEV assumptions that we made. 2899 // We want the new basic block to start at the first instruction in a 2900 // sequence of instructions that form a check. 2901 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2902 "scev.check"); 2903 Value *SCEVCheck = Exp.expandCodeForPredicate( 2904 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2905 2906 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2907 if (C->isZero()) 2908 return; 2909 2910 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2911 (OptForSizeBasedOnProfile && 2912 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2913 "Cannot SCEV check stride or overflow when optimizing for size"); 2914 2915 SCEVCheckBlock->setName("vector.scevcheck"); 2916 // Create new preheader for vector loop. 2917 LoopVectorPreHeader = 2918 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2919 nullptr, "vector.ph"); 2920 2921 // Update dominator only if this is first RT check. 2922 if (LoopBypassBlocks.empty()) { 2923 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2924 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2925 } 2926 2927 ReplaceInstWithInst( 2928 SCEVCheckBlock->getTerminator(), 2929 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2930 LoopBypassBlocks.push_back(SCEVCheckBlock); 2931 AddedSafetyChecks = true; 2932 } 2933 2934 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2935 // VPlan-native path does not do any analysis for runtime checks currently. 2936 if (EnableVPlanNativePath) 2937 return; 2938 2939 // Reuse existing vector loop preheader for runtime memory checks. 2940 // Note that new preheader block is generated for vector loop. 2941 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2942 2943 // Generate the code that checks in runtime if arrays overlap. We put the 2944 // checks into a separate block to make the more common case of few elements 2945 // faster. 2946 auto *LAI = Legal->getLAI(); 2947 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2948 if (!RtPtrChecking.Need) 2949 return; 2950 2951 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2952 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2953 "Cannot emit memory checks when optimizing for size, unless forced " 2954 "to vectorize."); 2955 ORE->emit([&]() { 2956 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2957 L->getStartLoc(), L->getHeader()) 2958 << "Code-size may be reduced by not forcing " 2959 "vectorization, or by source-code modifications " 2960 "eliminating the need for runtime checks " 2961 "(e.g., adding 'restrict')."; 2962 }); 2963 } 2964 2965 MemCheckBlock->setName("vector.memcheck"); 2966 // Create new preheader for vector loop. 2967 LoopVectorPreHeader = 2968 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2969 "vector.ph"); 2970 2971 auto *CondBranch = cast<BranchInst>( 2972 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2973 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2974 LoopBypassBlocks.push_back(MemCheckBlock); 2975 AddedSafetyChecks = true; 2976 2977 // Update dominator only if this is first RT check. 2978 if (LoopBypassBlocks.empty()) { 2979 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2980 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2981 } 2982 2983 Instruction *FirstCheckInst; 2984 Instruction *MemRuntimeCheck; 2985 std::tie(FirstCheckInst, MemRuntimeCheck) = 2986 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2987 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2988 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2989 "claimed checks are required"); 2990 CondBranch->setCondition(MemRuntimeCheck); 2991 2992 // We currently don't use LoopVersioning for the actual loop cloning but we 2993 // still use it to add the noalias metadata. 2994 LVer = std::make_unique<LoopVersioning>( 2995 *Legal->getLAI(), 2996 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 2997 DT, PSE.getSE()); 2998 LVer->prepareNoAliasMetadata(); 2999 } 3000 3001 Value *InnerLoopVectorizer::emitTransformedIndex( 3002 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3003 const InductionDescriptor &ID) const { 3004 3005 SCEVExpander Exp(*SE, DL, "induction"); 3006 auto Step = ID.getStep(); 3007 auto StartValue = ID.getStartValue(); 3008 assert(Index->getType() == Step->getType() && 3009 "Index type does not match StepValue type"); 3010 3011 // Note: the IR at this point is broken. We cannot use SE to create any new 3012 // SCEV and then expand it, hoping that SCEV's simplification will give us 3013 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3014 // lead to various SCEV crashes. So all we can do is to use builder and rely 3015 // on InstCombine for future simplifications. Here we handle some trivial 3016 // cases only. 3017 auto CreateAdd = [&B](Value *X, Value *Y) { 3018 assert(X->getType() == Y->getType() && "Types don't match!"); 3019 if (auto *CX = dyn_cast<ConstantInt>(X)) 3020 if (CX->isZero()) 3021 return Y; 3022 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3023 if (CY->isZero()) 3024 return X; 3025 return B.CreateAdd(X, Y); 3026 }; 3027 3028 auto CreateMul = [&B](Value *X, Value *Y) { 3029 assert(X->getType() == Y->getType() && "Types don't match!"); 3030 if (auto *CX = dyn_cast<ConstantInt>(X)) 3031 if (CX->isOne()) 3032 return Y; 3033 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3034 if (CY->isOne()) 3035 return X; 3036 return B.CreateMul(X, Y); 3037 }; 3038 3039 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3040 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3041 // the DomTree is not kept up-to-date for additional blocks generated in the 3042 // vector loop. By using the header as insertion point, we guarantee that the 3043 // expanded instructions dominate all their uses. 3044 auto GetInsertPoint = [this, &B]() { 3045 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3046 if (InsertBB != LoopVectorBody && 3047 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3048 return LoopVectorBody->getTerminator(); 3049 return &*B.GetInsertPoint(); 3050 }; 3051 switch (ID.getKind()) { 3052 case InductionDescriptor::IK_IntInduction: { 3053 assert(Index->getType() == StartValue->getType() && 3054 "Index type does not match StartValue type"); 3055 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3056 return B.CreateSub(StartValue, Index); 3057 auto *Offset = CreateMul( 3058 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3059 return CreateAdd(StartValue, Offset); 3060 } 3061 case InductionDescriptor::IK_PtrInduction: { 3062 assert(isa<SCEVConstant>(Step) && 3063 "Expected constant step for pointer induction"); 3064 return B.CreateGEP( 3065 StartValue->getType()->getPointerElementType(), StartValue, 3066 CreateMul(Index, 3067 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3068 } 3069 case InductionDescriptor::IK_FpInduction: { 3070 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3071 auto InductionBinOp = ID.getInductionBinOp(); 3072 assert(InductionBinOp && 3073 (InductionBinOp->getOpcode() == Instruction::FAdd || 3074 InductionBinOp->getOpcode() == Instruction::FSub) && 3075 "Original bin op should be defined for FP induction"); 3076 3077 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3078 3079 // Floating point operations had to be 'fast' to enable the induction. 3080 FastMathFlags Flags; 3081 Flags.setFast(); 3082 3083 Value *MulExp = B.CreateFMul(StepValue, Index); 3084 if (isa<Instruction>(MulExp)) 3085 // We have to check, the MulExp may be a constant. 3086 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3087 3088 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3089 "induction"); 3090 if (isa<Instruction>(BOp)) 3091 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3092 3093 return BOp; 3094 } 3095 case InductionDescriptor::IK_NoInduction: 3096 return nullptr; 3097 } 3098 llvm_unreachable("invalid enum"); 3099 } 3100 3101 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3102 LoopScalarBody = OrigLoop->getHeader(); 3103 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3104 LoopExitBlock = OrigLoop->getExitBlock(); 3105 assert(LoopExitBlock && "Must have an exit block"); 3106 assert(LoopVectorPreHeader && "Invalid loop structure"); 3107 3108 LoopMiddleBlock = 3109 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3110 LI, nullptr, Twine(Prefix) + "middle.block"); 3111 LoopScalarPreHeader = 3112 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3113 nullptr, Twine(Prefix) + "scalar.ph"); 3114 // We intentionally don't let SplitBlock to update LoopInfo since 3115 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3116 // LoopVectorBody is explicitly added to the correct place few lines later. 3117 LoopVectorBody = 3118 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3119 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3120 3121 // Update dominator for loop exit. 3122 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3123 3124 // Create and register the new vector loop. 3125 Loop *Lp = LI->AllocateLoop(); 3126 Loop *ParentLoop = OrigLoop->getParentLoop(); 3127 3128 // Insert the new loop into the loop nest and register the new basic blocks 3129 // before calling any utilities such as SCEV that require valid LoopInfo. 3130 if (ParentLoop) { 3131 ParentLoop->addChildLoop(Lp); 3132 } else { 3133 LI->addTopLevelLoop(Lp); 3134 } 3135 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3136 return Lp; 3137 } 3138 3139 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3140 Value *VectorTripCount) { 3141 assert(VectorTripCount && L && "Expected valid arguments"); 3142 // We are going to resume the execution of the scalar loop. 3143 // Go over all of the induction variables that we found and fix the 3144 // PHIs that are left in the scalar version of the loop. 3145 // The starting values of PHI nodes depend on the counter of the last 3146 // iteration in the vectorized loop. 3147 // If we come from a bypass edge then we need to start from the original 3148 // start value. 3149 for (auto &InductionEntry : Legal->getInductionVars()) { 3150 PHINode *OrigPhi = InductionEntry.first; 3151 InductionDescriptor II = InductionEntry.second; 3152 3153 // Create phi nodes to merge from the backedge-taken check block. 3154 PHINode *BCResumeVal = 3155 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3156 LoopScalarPreHeader->getTerminator()); 3157 // Copy original phi DL over to the new one. 3158 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3159 Value *&EndValue = IVEndValues[OrigPhi]; 3160 if (OrigPhi == OldInduction) { 3161 // We know what the end value is. 3162 EndValue = VectorTripCount; 3163 } else { 3164 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3165 Type *StepType = II.getStep()->getType(); 3166 Instruction::CastOps CastOp = 3167 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3168 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3169 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3170 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3171 EndValue->setName("ind.end"); 3172 } 3173 3174 // The new PHI merges the original incoming value, in case of a bypass, 3175 // or the value at the end of the vectorized loop. 3176 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3177 3178 // Fix the scalar body counter (PHI node). 3179 // The old induction's phi node in the scalar body needs the truncated 3180 // value. 3181 for (BasicBlock *BB : LoopBypassBlocks) 3182 BCResumeVal->addIncoming(II.getStartValue(), BB); 3183 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3184 } 3185 } 3186 3187 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3188 MDNode *OrigLoopID) { 3189 assert(L && "Expected valid loop."); 3190 3191 // The trip counts should be cached by now. 3192 Value *Count = getOrCreateTripCount(L); 3193 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3194 3195 // We need the OrigLoop (scalar loop part) latch terminator to help 3196 // produce correct debug info for the middle block BB instructions. 3197 // The legality check stage guarantees that the loop will have a single 3198 // latch. 3199 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3200 "Scalar loop latch terminator isn't a branch"); 3201 BranchInst *ScalarLatchBr = 3202 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3203 3204 // Add a check in the middle block to see if we have completed 3205 // all of the iterations in the first vector loop. 3206 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3207 // If tail is to be folded, we know we don't need to run the remainder. 3208 Value *CmpN = Builder.getTrue(); 3209 if (!Cost->foldTailByMasking()) { 3210 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3211 VectorTripCount, "cmp.n", 3212 LoopMiddleBlock->getTerminator()); 3213 3214 // Here we use the same DebugLoc as the scalar loop latch branch instead 3215 // of the corresponding compare because they may have ended up with 3216 // different line numbers and we want to avoid awkward line stepping while 3217 // debugging. Eg. if the compare has got a line number inside the loop. 3218 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3219 } 3220 3221 BranchInst *BrInst = 3222 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3223 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3224 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3225 3226 // Get ready to start creating new instructions into the vectorized body. 3227 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3228 "Inconsistent vector loop preheader"); 3229 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3230 3231 Optional<MDNode *> VectorizedLoopID = 3232 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3233 LLVMLoopVectorizeFollowupVectorized}); 3234 if (VectorizedLoopID.hasValue()) { 3235 L->setLoopID(VectorizedLoopID.getValue()); 3236 3237 // Do not setAlreadyVectorized if loop attributes have been defined 3238 // explicitly. 3239 return LoopVectorPreHeader; 3240 } 3241 3242 // Keep all loop hints from the original loop on the vector loop (we'll 3243 // replace the vectorizer-specific hints below). 3244 if (MDNode *LID = OrigLoop->getLoopID()) 3245 L->setLoopID(LID); 3246 3247 LoopVectorizeHints Hints(L, true, *ORE); 3248 Hints.setAlreadyVectorized(); 3249 3250 #ifdef EXPENSIVE_CHECKS 3251 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3252 LI->verify(*DT); 3253 #endif 3254 3255 return LoopVectorPreHeader; 3256 } 3257 3258 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3259 /* 3260 In this function we generate a new loop. The new loop will contain 3261 the vectorized instructions while the old loop will continue to run the 3262 scalar remainder. 3263 3264 [ ] <-- loop iteration number check. 3265 / | 3266 / v 3267 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3268 | / | 3269 | / v 3270 || [ ] <-- vector pre header. 3271 |/ | 3272 | v 3273 | [ ] \ 3274 | [ ]_| <-- vector loop. 3275 | | 3276 | v 3277 | -[ ] <--- middle-block. 3278 | / | 3279 | / v 3280 -|- >[ ] <--- new preheader. 3281 | | 3282 | v 3283 | [ ] \ 3284 | [ ]_| <-- old scalar loop to handle remainder. 3285 \ | 3286 \ v 3287 >[ ] <-- exit block. 3288 ... 3289 */ 3290 3291 // Get the metadata of the original loop before it gets modified. 3292 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3293 3294 // Create an empty vector loop, and prepare basic blocks for the runtime 3295 // checks. 3296 Loop *Lp = createVectorLoopSkeleton(""); 3297 3298 // Now, compare the new count to zero. If it is zero skip the vector loop and 3299 // jump to the scalar loop. This check also covers the case where the 3300 // backedge-taken count is uint##_max: adding one to it will overflow leading 3301 // to an incorrect trip count of zero. In this (rare) case we will also jump 3302 // to the scalar loop. 3303 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3304 3305 // Generate the code to check any assumptions that we've made for SCEV 3306 // expressions. 3307 emitSCEVChecks(Lp, LoopScalarPreHeader); 3308 3309 // Generate the code that checks in runtime if arrays overlap. We put the 3310 // checks into a separate block to make the more common case of few elements 3311 // faster. 3312 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3313 3314 // Some loops have a single integer induction variable, while other loops 3315 // don't. One example is c++ iterators that often have multiple pointer 3316 // induction variables. In the code below we also support a case where we 3317 // don't have a single induction variable. 3318 // 3319 // We try to obtain an induction variable from the original loop as hard 3320 // as possible. However if we don't find one that: 3321 // - is an integer 3322 // - counts from zero, stepping by one 3323 // - is the size of the widest induction variable type 3324 // then we create a new one. 3325 OldInduction = Legal->getPrimaryInduction(); 3326 Type *IdxTy = Legal->getWidestInductionType(); 3327 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3328 // The loop step is equal to the vectorization factor (num of SIMD elements) 3329 // times the unroll factor (num of SIMD instructions). 3330 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3331 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3332 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3333 Induction = 3334 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3335 getDebugLocFromInstOrOperands(OldInduction)); 3336 3337 // Emit phis for the new starting index of the scalar loop. 3338 createInductionResumeValues(Lp, CountRoundDown); 3339 3340 return completeLoopSkeleton(Lp, OrigLoopID); 3341 } 3342 3343 // Fix up external users of the induction variable. At this point, we are 3344 // in LCSSA form, with all external PHIs that use the IV having one input value, 3345 // coming from the remainder loop. We need those PHIs to also have a correct 3346 // value for the IV when arriving directly from the middle block. 3347 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3348 const InductionDescriptor &II, 3349 Value *CountRoundDown, Value *EndValue, 3350 BasicBlock *MiddleBlock) { 3351 // There are two kinds of external IV usages - those that use the value 3352 // computed in the last iteration (the PHI) and those that use the penultimate 3353 // value (the value that feeds into the phi from the loop latch). 3354 // We allow both, but they, obviously, have different values. 3355 3356 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3357 3358 DenseMap<Value *, Value *> MissingVals; 3359 3360 // An external user of the last iteration's value should see the value that 3361 // the remainder loop uses to initialize its own IV. 3362 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3363 for (User *U : PostInc->users()) { 3364 Instruction *UI = cast<Instruction>(U); 3365 if (!OrigLoop->contains(UI)) { 3366 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3367 MissingVals[UI] = EndValue; 3368 } 3369 } 3370 3371 // An external user of the penultimate value need to see EndValue - Step. 3372 // The simplest way to get this is to recompute it from the constituent SCEVs, 3373 // that is Start + (Step * (CRD - 1)). 3374 for (User *U : OrigPhi->users()) { 3375 auto *UI = cast<Instruction>(U); 3376 if (!OrigLoop->contains(UI)) { 3377 const DataLayout &DL = 3378 OrigLoop->getHeader()->getModule()->getDataLayout(); 3379 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3380 3381 IRBuilder<> B(MiddleBlock->getTerminator()); 3382 Value *CountMinusOne = B.CreateSub( 3383 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3384 Value *CMO = 3385 !II.getStep()->getType()->isIntegerTy() 3386 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3387 II.getStep()->getType()) 3388 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3389 CMO->setName("cast.cmo"); 3390 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3391 Escape->setName("ind.escape"); 3392 MissingVals[UI] = Escape; 3393 } 3394 } 3395 3396 for (auto &I : MissingVals) { 3397 PHINode *PHI = cast<PHINode>(I.first); 3398 // One corner case we have to handle is two IVs "chasing" each-other, 3399 // that is %IV2 = phi [...], [ %IV1, %latch ] 3400 // In this case, if IV1 has an external use, we need to avoid adding both 3401 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3402 // don't already have an incoming value for the middle block. 3403 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3404 PHI->addIncoming(I.second, MiddleBlock); 3405 } 3406 } 3407 3408 namespace { 3409 3410 struct CSEDenseMapInfo { 3411 static bool canHandle(const Instruction *I) { 3412 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3413 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3414 } 3415 3416 static inline Instruction *getEmptyKey() { 3417 return DenseMapInfo<Instruction *>::getEmptyKey(); 3418 } 3419 3420 static inline Instruction *getTombstoneKey() { 3421 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3422 } 3423 3424 static unsigned getHashValue(const Instruction *I) { 3425 assert(canHandle(I) && "Unknown instruction!"); 3426 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3427 I->value_op_end())); 3428 } 3429 3430 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3431 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3432 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3433 return LHS == RHS; 3434 return LHS->isIdenticalTo(RHS); 3435 } 3436 }; 3437 3438 } // end anonymous namespace 3439 3440 ///Perform cse of induction variable instructions. 3441 static void cse(BasicBlock *BB) { 3442 // Perform simple cse. 3443 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3444 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3445 Instruction *In = &*I++; 3446 3447 if (!CSEDenseMapInfo::canHandle(In)) 3448 continue; 3449 3450 // Check if we can replace this instruction with any of the 3451 // visited instructions. 3452 if (Instruction *V = CSEMap.lookup(In)) { 3453 In->replaceAllUsesWith(V); 3454 In->eraseFromParent(); 3455 continue; 3456 } 3457 3458 CSEMap[In] = In; 3459 } 3460 } 3461 3462 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3463 ElementCount VF, 3464 bool &NeedToScalarize) { 3465 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3466 Function *F = CI->getCalledFunction(); 3467 Type *ScalarRetTy = CI->getType(); 3468 SmallVector<Type *, 4> Tys, ScalarTys; 3469 for (auto &ArgOp : CI->arg_operands()) 3470 ScalarTys.push_back(ArgOp->getType()); 3471 3472 // Estimate cost of scalarized vector call. The source operands are assumed 3473 // to be vectors, so we need to extract individual elements from there, 3474 // execute VF scalar calls, and then gather the result into the vector return 3475 // value. 3476 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3477 TTI::TCK_RecipThroughput); 3478 if (VF.isScalar()) 3479 return ScalarCallCost; 3480 3481 // Compute corresponding vector type for return value and arguments. 3482 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3483 for (Type *ScalarTy : ScalarTys) 3484 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3485 3486 // Compute costs of unpacking argument values for the scalar calls and 3487 // packing the return values to a vector. 3488 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3489 3490 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3491 3492 // If we can't emit a vector call for this function, then the currently found 3493 // cost is the cost we need to return. 3494 NeedToScalarize = true; 3495 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3496 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3497 3498 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3499 return Cost; 3500 3501 // If the corresponding vector cost is cheaper, return its cost. 3502 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3503 TTI::TCK_RecipThroughput); 3504 if (VectorCallCost < Cost) { 3505 NeedToScalarize = false; 3506 return VectorCallCost; 3507 } 3508 return Cost; 3509 } 3510 3511 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3512 ElementCount VF) { 3513 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3514 assert(ID && "Expected intrinsic call!"); 3515 3516 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3517 return TTI.getIntrinsicInstrCost(CostAttrs, 3518 TargetTransformInfo::TCK_RecipThroughput); 3519 } 3520 3521 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3522 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3523 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3524 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3525 } 3526 3527 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3528 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3529 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3530 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3531 } 3532 3533 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3534 // For every instruction `I` in MinBWs, truncate the operands, create a 3535 // truncated version of `I` and reextend its result. InstCombine runs 3536 // later and will remove any ext/trunc pairs. 3537 SmallPtrSet<Value *, 4> Erased; 3538 for (const auto &KV : Cost->getMinimalBitwidths()) { 3539 // If the value wasn't vectorized, we must maintain the original scalar 3540 // type. The absence of the value from VectorLoopValueMap indicates that it 3541 // wasn't vectorized. 3542 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3543 continue; 3544 for (unsigned Part = 0; Part < UF; ++Part) { 3545 Value *I = getOrCreateVectorValue(KV.first, Part); 3546 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3547 continue; 3548 Type *OriginalTy = I->getType(); 3549 Type *ScalarTruncatedTy = 3550 IntegerType::get(OriginalTy->getContext(), KV.second); 3551 auto *TruncatedTy = FixedVectorType::get( 3552 ScalarTruncatedTy, 3553 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3554 if (TruncatedTy == OriginalTy) 3555 continue; 3556 3557 IRBuilder<> B(cast<Instruction>(I)); 3558 auto ShrinkOperand = [&](Value *V) -> Value * { 3559 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3560 if (ZI->getSrcTy() == TruncatedTy) 3561 return ZI->getOperand(0); 3562 return B.CreateZExtOrTrunc(V, TruncatedTy); 3563 }; 3564 3565 // The actual instruction modification depends on the instruction type, 3566 // unfortunately. 3567 Value *NewI = nullptr; 3568 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3569 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3570 ShrinkOperand(BO->getOperand(1))); 3571 3572 // Any wrapping introduced by shrinking this operation shouldn't be 3573 // considered undefined behavior. So, we can't unconditionally copy 3574 // arithmetic wrapping flags to NewI. 3575 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3576 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3577 NewI = 3578 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3579 ShrinkOperand(CI->getOperand(1))); 3580 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3581 NewI = B.CreateSelect(SI->getCondition(), 3582 ShrinkOperand(SI->getTrueValue()), 3583 ShrinkOperand(SI->getFalseValue())); 3584 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3585 switch (CI->getOpcode()) { 3586 default: 3587 llvm_unreachable("Unhandled cast!"); 3588 case Instruction::Trunc: 3589 NewI = ShrinkOperand(CI->getOperand(0)); 3590 break; 3591 case Instruction::SExt: 3592 NewI = B.CreateSExtOrTrunc( 3593 CI->getOperand(0), 3594 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3595 break; 3596 case Instruction::ZExt: 3597 NewI = B.CreateZExtOrTrunc( 3598 CI->getOperand(0), 3599 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3600 break; 3601 } 3602 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3603 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3604 ->getNumElements(); 3605 auto *O0 = B.CreateZExtOrTrunc( 3606 SI->getOperand(0), 3607 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3608 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3609 ->getNumElements(); 3610 auto *O1 = B.CreateZExtOrTrunc( 3611 SI->getOperand(1), 3612 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3613 3614 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3615 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3616 // Don't do anything with the operands, just extend the result. 3617 continue; 3618 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3619 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3620 ->getNumElements(); 3621 auto *O0 = B.CreateZExtOrTrunc( 3622 IE->getOperand(0), 3623 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3624 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3625 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3626 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3627 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3628 ->getNumElements(); 3629 auto *O0 = B.CreateZExtOrTrunc( 3630 EE->getOperand(0), 3631 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3632 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3633 } else { 3634 // If we don't know what to do, be conservative and don't do anything. 3635 continue; 3636 } 3637 3638 // Lastly, extend the result. 3639 NewI->takeName(cast<Instruction>(I)); 3640 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3641 I->replaceAllUsesWith(Res); 3642 cast<Instruction>(I)->eraseFromParent(); 3643 Erased.insert(I); 3644 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3645 } 3646 } 3647 3648 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3649 for (const auto &KV : Cost->getMinimalBitwidths()) { 3650 // If the value wasn't vectorized, we must maintain the original scalar 3651 // type. The absence of the value from VectorLoopValueMap indicates that it 3652 // wasn't vectorized. 3653 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3654 continue; 3655 for (unsigned Part = 0; Part < UF; ++Part) { 3656 Value *I = getOrCreateVectorValue(KV.first, Part); 3657 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3658 if (Inst && Inst->use_empty()) { 3659 Value *NewI = Inst->getOperand(0); 3660 Inst->eraseFromParent(); 3661 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3662 } 3663 } 3664 } 3665 } 3666 3667 void InnerLoopVectorizer::fixVectorizedLoop() { 3668 // Insert truncates and extends for any truncated instructions as hints to 3669 // InstCombine. 3670 if (VF.isVector()) 3671 truncateToMinimalBitwidths(); 3672 3673 // Fix widened non-induction PHIs by setting up the PHI operands. 3674 if (OrigPHIsToFix.size()) { 3675 assert(EnableVPlanNativePath && 3676 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3677 fixNonInductionPHIs(); 3678 } 3679 3680 // At this point every instruction in the original loop is widened to a 3681 // vector form. Now we need to fix the recurrences in the loop. These PHI 3682 // nodes are currently empty because we did not want to introduce cycles. 3683 // This is the second stage of vectorizing recurrences. 3684 fixCrossIterationPHIs(); 3685 3686 // Forget the original basic block. 3687 PSE.getSE()->forgetLoop(OrigLoop); 3688 3689 // Fix-up external users of the induction variables. 3690 for (auto &Entry : Legal->getInductionVars()) 3691 fixupIVUsers(Entry.first, Entry.second, 3692 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3693 IVEndValues[Entry.first], LoopMiddleBlock); 3694 3695 fixLCSSAPHIs(); 3696 for (Instruction *PI : PredicatedInstructions) 3697 sinkScalarOperands(&*PI); 3698 3699 // Remove redundant induction instructions. 3700 cse(LoopVectorBody); 3701 3702 // Set/update profile weights for the vector and remainder loops as original 3703 // loop iterations are now distributed among them. Note that original loop 3704 // represented by LoopScalarBody becomes remainder loop after vectorization. 3705 // 3706 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3707 // end up getting slightly roughened result but that should be OK since 3708 // profile is not inherently precise anyway. Note also possible bypass of 3709 // vector code caused by legality checks is ignored, assigning all the weight 3710 // to the vector loop, optimistically. 3711 assert(!VF.isScalable() && 3712 "cannot use scalable ElementCount to determine unroll factor"); 3713 setProfileInfoAfterUnrolling( 3714 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3715 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3716 } 3717 3718 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3719 // In order to support recurrences we need to be able to vectorize Phi nodes. 3720 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3721 // stage #2: We now need to fix the recurrences by adding incoming edges to 3722 // the currently empty PHI nodes. At this point every instruction in the 3723 // original loop is widened to a vector form so we can use them to construct 3724 // the incoming edges. 3725 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3726 // Handle first-order recurrences and reductions that need to be fixed. 3727 if (Legal->isFirstOrderRecurrence(&Phi)) 3728 fixFirstOrderRecurrence(&Phi); 3729 else if (Legal->isReductionVariable(&Phi)) 3730 fixReduction(&Phi); 3731 } 3732 } 3733 3734 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3735 // This is the second phase of vectorizing first-order recurrences. An 3736 // overview of the transformation is described below. Suppose we have the 3737 // following loop. 3738 // 3739 // for (int i = 0; i < n; ++i) 3740 // b[i] = a[i] - a[i - 1]; 3741 // 3742 // There is a first-order recurrence on "a". For this loop, the shorthand 3743 // scalar IR looks like: 3744 // 3745 // scalar.ph: 3746 // s_init = a[-1] 3747 // br scalar.body 3748 // 3749 // scalar.body: 3750 // i = phi [0, scalar.ph], [i+1, scalar.body] 3751 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3752 // s2 = a[i] 3753 // b[i] = s2 - s1 3754 // br cond, scalar.body, ... 3755 // 3756 // In this example, s1 is a recurrence because it's value depends on the 3757 // previous iteration. In the first phase of vectorization, we created a 3758 // temporary value for s1. We now complete the vectorization and produce the 3759 // shorthand vector IR shown below (for VF = 4, UF = 1). 3760 // 3761 // vector.ph: 3762 // v_init = vector(..., ..., ..., a[-1]) 3763 // br vector.body 3764 // 3765 // vector.body 3766 // i = phi [0, vector.ph], [i+4, vector.body] 3767 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3768 // v2 = a[i, i+1, i+2, i+3]; 3769 // v3 = vector(v1(3), v2(0, 1, 2)) 3770 // b[i, i+1, i+2, i+3] = v2 - v3 3771 // br cond, vector.body, middle.block 3772 // 3773 // middle.block: 3774 // x = v2(3) 3775 // br scalar.ph 3776 // 3777 // scalar.ph: 3778 // s_init = phi [x, middle.block], [a[-1], otherwise] 3779 // br scalar.body 3780 // 3781 // After execution completes the vector loop, we extract the next value of 3782 // the recurrence (x) to use as the initial value in the scalar loop. 3783 3784 // Get the original loop preheader and single loop latch. 3785 auto *Preheader = OrigLoop->getLoopPreheader(); 3786 auto *Latch = OrigLoop->getLoopLatch(); 3787 3788 // Get the initial and previous values of the scalar recurrence. 3789 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3790 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3791 3792 // Create a vector from the initial value. 3793 auto *VectorInit = ScalarInit; 3794 if (VF.isVector()) { 3795 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3796 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3797 VectorInit = Builder.CreateInsertElement( 3798 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3799 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3800 } 3801 3802 // We constructed a temporary phi node in the first phase of vectorization. 3803 // This phi node will eventually be deleted. 3804 Builder.SetInsertPoint( 3805 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3806 3807 // Create a phi node for the new recurrence. The current value will either be 3808 // the initial value inserted into a vector or loop-varying vector value. 3809 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3810 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3811 3812 // Get the vectorized previous value of the last part UF - 1. It appears last 3813 // among all unrolled iterations, due to the order of their construction. 3814 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3815 3816 // Find and set the insertion point after the previous value if it is an 3817 // instruction. 3818 BasicBlock::iterator InsertPt; 3819 // Note that the previous value may have been constant-folded so it is not 3820 // guaranteed to be an instruction in the vector loop. 3821 // FIXME: Loop invariant values do not form recurrences. We should deal with 3822 // them earlier. 3823 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3824 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3825 else { 3826 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3827 if (isa<PHINode>(PreviousLastPart)) 3828 // If the previous value is a phi node, we should insert after all the phi 3829 // nodes in the block containing the PHI to avoid breaking basic block 3830 // verification. Note that the basic block may be different to 3831 // LoopVectorBody, in case we predicate the loop. 3832 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3833 else 3834 InsertPt = ++PreviousInst->getIterator(); 3835 } 3836 Builder.SetInsertPoint(&*InsertPt); 3837 3838 // We will construct a vector for the recurrence by combining the values for 3839 // the current and previous iterations. This is the required shuffle mask. 3840 assert(!VF.isScalable()); 3841 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3842 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3843 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3844 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3845 3846 // The vector from which to take the initial value for the current iteration 3847 // (actual or unrolled). Initially, this is the vector phi node. 3848 Value *Incoming = VecPhi; 3849 3850 // Shuffle the current and previous vector and update the vector parts. 3851 for (unsigned Part = 0; Part < UF; ++Part) { 3852 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3853 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3854 auto *Shuffle = 3855 VF.isVector() 3856 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3857 : Incoming; 3858 PhiPart->replaceAllUsesWith(Shuffle); 3859 cast<Instruction>(PhiPart)->eraseFromParent(); 3860 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3861 Incoming = PreviousPart; 3862 } 3863 3864 // Fix the latch value of the new recurrence in the vector loop. 3865 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3866 3867 // Extract the last vector element in the middle block. This will be the 3868 // initial value for the recurrence when jumping to the scalar loop. 3869 auto *ExtractForScalar = Incoming; 3870 if (VF.isVector()) { 3871 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3872 ExtractForScalar = Builder.CreateExtractElement( 3873 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3874 "vector.recur.extract"); 3875 } 3876 // Extract the second last element in the middle block if the 3877 // Phi is used outside the loop. We need to extract the phi itself 3878 // and not the last element (the phi update in the current iteration). This 3879 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3880 // when the scalar loop is not run at all. 3881 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3882 if (VF.isVector()) 3883 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3884 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3885 "vector.recur.extract.for.phi"); 3886 // When loop is unrolled without vectorizing, initialize 3887 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3888 // `Incoming`. This is analogous to the vectorized case above: extracting the 3889 // second last element when VF > 1. 3890 else if (UF > 1) 3891 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3892 3893 // Fix the initial value of the original recurrence in the scalar loop. 3894 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3895 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3896 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3897 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3898 Start->addIncoming(Incoming, BB); 3899 } 3900 3901 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3902 Phi->setName("scalar.recur"); 3903 3904 // Finally, fix users of the recurrence outside the loop. The users will need 3905 // either the last value of the scalar recurrence or the last value of the 3906 // vector recurrence we extracted in the middle block. Since the loop is in 3907 // LCSSA form, we just need to find all the phi nodes for the original scalar 3908 // recurrence in the exit block, and then add an edge for the middle block. 3909 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3910 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3911 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3912 } 3913 } 3914 } 3915 3916 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3917 Constant *Zero = Builder.getInt32(0); 3918 3919 // Get it's reduction variable descriptor. 3920 assert(Legal->isReductionVariable(Phi) && 3921 "Unable to find the reduction variable"); 3922 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3923 3924 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3925 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3926 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3927 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3928 RdxDesc.getMinMaxRecurrenceKind(); 3929 setDebugLocFromInst(Builder, ReductionStartValue); 3930 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3931 3932 // We need to generate a reduction vector from the incoming scalar. 3933 // To do so, we need to generate the 'identity' vector and override 3934 // one of the elements with the incoming scalar reduction. We need 3935 // to do it in the vector-loop preheader. 3936 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3937 3938 // This is the vector-clone of the value that leaves the loop. 3939 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3940 3941 // Find the reduction identity variable. Zero for addition, or, xor, 3942 // one for multiplication, -1 for And. 3943 Value *Identity; 3944 Value *VectorStart; 3945 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3946 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3947 // MinMax reduction have the start value as their identify. 3948 if (VF.isScalar() || IsInLoopReductionPhi) { 3949 VectorStart = Identity = ReductionStartValue; 3950 } else { 3951 VectorStart = Identity = 3952 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3953 } 3954 } else { 3955 // Handle other reduction kinds: 3956 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3957 RK, MinMaxKind, VecTy->getScalarType()); 3958 if (VF.isScalar() || IsInLoopReductionPhi) { 3959 Identity = Iden; 3960 // This vector is the Identity vector where the first element is the 3961 // incoming scalar reduction. 3962 VectorStart = ReductionStartValue; 3963 } else { 3964 Identity = ConstantVector::getSplat(VF, Iden); 3965 3966 // This vector is the Identity vector where the first element is the 3967 // incoming scalar reduction. 3968 VectorStart = 3969 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3970 } 3971 } 3972 3973 // Wrap flags are in general invalid after vectorization, clear them. 3974 clearReductionWrapFlags(RdxDesc); 3975 3976 // Fix the vector-loop phi. 3977 3978 // Reductions do not have to start at zero. They can start with 3979 // any loop invariant values. 3980 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3981 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3982 3983 for (unsigned Part = 0; Part < UF; ++Part) { 3984 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3985 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3986 // Make sure to add the reduction start value only to the 3987 // first unroll part. 3988 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3989 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3990 cast<PHINode>(VecRdxPhi) 3991 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3992 } 3993 3994 // Before each round, move the insertion point right between 3995 // the PHIs and the values we are going to write. 3996 // This allows us to write both PHINodes and the extractelement 3997 // instructions. 3998 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3999 4000 setDebugLocFromInst(Builder, LoopExitInst); 4001 4002 // If tail is folded by masking, the vector value to leave the loop should be 4003 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4004 // instead of the former. For an inloop reduction the reduction will already 4005 // be predicated, and does not need to be handled here. 4006 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4007 for (unsigned Part = 0; Part < UF; ++Part) { 4008 Value *VecLoopExitInst = 4009 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4010 Value *Sel = nullptr; 4011 for (User *U : VecLoopExitInst->users()) { 4012 if (isa<SelectInst>(U)) { 4013 assert(!Sel && "Reduction exit feeding two selects"); 4014 Sel = U; 4015 } else 4016 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4017 } 4018 assert(Sel && "Reduction exit feeds no select"); 4019 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4020 4021 // If the target can create a predicated operator for the reduction at no 4022 // extra cost in the loop (for example a predicated vadd), it can be 4023 // cheaper for the select to remain in the loop than be sunk out of it, 4024 // and so use the select value for the phi instead of the old 4025 // LoopExitValue. 4026 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4027 if (PreferPredicatedReductionSelect || 4028 TTI->preferPredicatedReductionSelect( 4029 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4030 TargetTransformInfo::ReductionFlags())) { 4031 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4032 VecRdxPhi->setIncomingValueForBlock( 4033 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4034 } 4035 } 4036 } 4037 4038 // If the vector reduction can be performed in a smaller type, we truncate 4039 // then extend the loop exit value to enable InstCombine to evaluate the 4040 // entire expression in the smaller type. 4041 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4042 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4043 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4044 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4045 Builder.SetInsertPoint( 4046 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4047 VectorParts RdxParts(UF); 4048 for (unsigned Part = 0; Part < UF; ++Part) { 4049 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4050 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4051 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4052 : Builder.CreateZExt(Trunc, VecTy); 4053 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4054 UI != RdxParts[Part]->user_end();) 4055 if (*UI != Trunc) { 4056 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4057 RdxParts[Part] = Extnd; 4058 } else { 4059 ++UI; 4060 } 4061 } 4062 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4063 for (unsigned Part = 0; Part < UF; ++Part) { 4064 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4065 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4066 } 4067 } 4068 4069 // Reduce all of the unrolled parts into a single vector. 4070 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4071 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4072 4073 // The middle block terminator has already been assigned a DebugLoc here (the 4074 // OrigLoop's single latch terminator). We want the whole middle block to 4075 // appear to execute on this line because: (a) it is all compiler generated, 4076 // (b) these instructions are always executed after evaluating the latch 4077 // conditional branch, and (c) other passes may add new predecessors which 4078 // terminate on this line. This is the easiest way to ensure we don't 4079 // accidentally cause an extra step back into the loop while debugging. 4080 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4081 for (unsigned Part = 1; Part < UF; ++Part) { 4082 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4083 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4084 // Floating point operations had to be 'fast' to enable the reduction. 4085 ReducedPartRdx = addFastMathFlag( 4086 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4087 ReducedPartRdx, "bin.rdx"), 4088 RdxDesc.getFastMathFlags()); 4089 else 4090 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4091 RdxPart); 4092 } 4093 4094 // Create the reduction after the loop. Note that inloop reductions create the 4095 // target reduction in the loop using a Reduction recipe. 4096 if (VF.isVector() && !IsInLoopReductionPhi) { 4097 bool NoNaN = Legal->hasFunNoNaNAttr(); 4098 ReducedPartRdx = 4099 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4100 // If the reduction can be performed in a smaller type, we need to extend 4101 // the reduction to the wider type before we branch to the original loop. 4102 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4103 ReducedPartRdx = 4104 RdxDesc.isSigned() 4105 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4106 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4107 } 4108 4109 // Create a phi node that merges control-flow from the backedge-taken check 4110 // block and the middle block. 4111 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4112 LoopScalarPreHeader->getTerminator()); 4113 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4114 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4115 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4116 4117 // Now, we need to fix the users of the reduction variable 4118 // inside and outside of the scalar remainder loop. 4119 // We know that the loop is in LCSSA form. We need to update the 4120 // PHI nodes in the exit blocks. 4121 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4122 // All PHINodes need to have a single entry edge, or two if 4123 // we already fixed them. 4124 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4125 4126 // We found a reduction value exit-PHI. Update it with the 4127 // incoming bypass edge. 4128 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4129 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4130 } // end of the LCSSA phi scan. 4131 4132 // Fix the scalar loop reduction variable with the incoming reduction sum 4133 // from the vector body and from the backedge value. 4134 int IncomingEdgeBlockIdx = 4135 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4136 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4137 // Pick the other block. 4138 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4139 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4140 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4141 } 4142 4143 void InnerLoopVectorizer::clearReductionWrapFlags( 4144 RecurrenceDescriptor &RdxDesc) { 4145 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4146 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4147 RK != RecurrenceDescriptor::RK_IntegerMult) 4148 return; 4149 4150 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4151 assert(LoopExitInstr && "null loop exit instruction"); 4152 SmallVector<Instruction *, 8> Worklist; 4153 SmallPtrSet<Instruction *, 8> Visited; 4154 Worklist.push_back(LoopExitInstr); 4155 Visited.insert(LoopExitInstr); 4156 4157 while (!Worklist.empty()) { 4158 Instruction *Cur = Worklist.pop_back_val(); 4159 if (isa<OverflowingBinaryOperator>(Cur)) 4160 for (unsigned Part = 0; Part < UF; ++Part) { 4161 Value *V = getOrCreateVectorValue(Cur, Part); 4162 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4163 } 4164 4165 for (User *U : Cur->users()) { 4166 Instruction *UI = cast<Instruction>(U); 4167 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4168 Visited.insert(UI).second) 4169 Worklist.push_back(UI); 4170 } 4171 } 4172 } 4173 4174 void InnerLoopVectorizer::fixLCSSAPHIs() { 4175 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4176 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4177 if (LCSSAPhi.getNumIncomingValues() == 1) { 4178 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4179 // Non-instruction incoming values will have only one value. 4180 unsigned LastLane = 0; 4181 if (isa<Instruction>(IncomingValue)) 4182 LastLane = Cost->isUniformAfterVectorization( 4183 cast<Instruction>(IncomingValue), VF) 4184 ? 0 4185 : VF.getKnownMinValue() - 1; 4186 // Can be a loop invariant incoming value or the last scalar value to be 4187 // extracted from the vectorized loop. 4188 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4189 Value *lastIncomingValue = 4190 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4191 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4192 } 4193 } 4194 } 4195 4196 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4197 // The basic block and loop containing the predicated instruction. 4198 auto *PredBB = PredInst->getParent(); 4199 auto *VectorLoop = LI->getLoopFor(PredBB); 4200 4201 // Initialize a worklist with the operands of the predicated instruction. 4202 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4203 4204 // Holds instructions that we need to analyze again. An instruction may be 4205 // reanalyzed if we don't yet know if we can sink it or not. 4206 SmallVector<Instruction *, 8> InstsToReanalyze; 4207 4208 // Returns true if a given use occurs in the predicated block. Phi nodes use 4209 // their operands in their corresponding predecessor blocks. 4210 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4211 auto *I = cast<Instruction>(U.getUser()); 4212 BasicBlock *BB = I->getParent(); 4213 if (auto *Phi = dyn_cast<PHINode>(I)) 4214 BB = Phi->getIncomingBlock( 4215 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4216 return BB == PredBB; 4217 }; 4218 4219 // Iteratively sink the scalarized operands of the predicated instruction 4220 // into the block we created for it. When an instruction is sunk, it's 4221 // operands are then added to the worklist. The algorithm ends after one pass 4222 // through the worklist doesn't sink a single instruction. 4223 bool Changed; 4224 do { 4225 // Add the instructions that need to be reanalyzed to the worklist, and 4226 // reset the changed indicator. 4227 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4228 InstsToReanalyze.clear(); 4229 Changed = false; 4230 4231 while (!Worklist.empty()) { 4232 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4233 4234 // We can't sink an instruction if it is a phi node, is already in the 4235 // predicated block, is not in the loop, or may have side effects. 4236 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4237 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4238 continue; 4239 4240 // It's legal to sink the instruction if all its uses occur in the 4241 // predicated block. Otherwise, there's nothing to do yet, and we may 4242 // need to reanalyze the instruction. 4243 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4244 InstsToReanalyze.push_back(I); 4245 continue; 4246 } 4247 4248 // Move the instruction to the beginning of the predicated block, and add 4249 // it's operands to the worklist. 4250 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4251 Worklist.insert(I->op_begin(), I->op_end()); 4252 4253 // The sinking may have enabled other instructions to be sunk, so we will 4254 // need to iterate. 4255 Changed = true; 4256 } 4257 } while (Changed); 4258 } 4259 4260 void InnerLoopVectorizer::fixNonInductionPHIs() { 4261 for (PHINode *OrigPhi : OrigPHIsToFix) { 4262 PHINode *NewPhi = 4263 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4264 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4265 4266 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4267 predecessors(OrigPhi->getParent())); 4268 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4269 predecessors(NewPhi->getParent())); 4270 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4271 "Scalar and Vector BB should have the same number of predecessors"); 4272 4273 // The insertion point in Builder may be invalidated by the time we get 4274 // here. Force the Builder insertion point to something valid so that we do 4275 // not run into issues during insertion point restore in 4276 // getOrCreateVectorValue calls below. 4277 Builder.SetInsertPoint(NewPhi); 4278 4279 // The predecessor order is preserved and we can rely on mapping between 4280 // scalar and vector block predecessors. 4281 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4282 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4283 4284 // When looking up the new scalar/vector values to fix up, use incoming 4285 // values from original phi. 4286 Value *ScIncV = 4287 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4288 4289 // Scalar incoming value may need a broadcast 4290 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4291 NewPhi->addIncoming(NewIncV, NewPredBB); 4292 } 4293 } 4294 } 4295 4296 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4297 VPUser &Operands, unsigned UF, 4298 ElementCount VF, bool IsPtrLoopInvariant, 4299 SmallBitVector &IsIndexLoopInvariant, 4300 VPTransformState &State) { 4301 // Construct a vector GEP by widening the operands of the scalar GEP as 4302 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4303 // results in a vector of pointers when at least one operand of the GEP 4304 // is vector-typed. Thus, to keep the representation compact, we only use 4305 // vector-typed operands for loop-varying values. 4306 4307 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4308 // If we are vectorizing, but the GEP has only loop-invariant operands, 4309 // the GEP we build (by only using vector-typed operands for 4310 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4311 // produce a vector of pointers, we need to either arbitrarily pick an 4312 // operand to broadcast, or broadcast a clone of the original GEP. 4313 // Here, we broadcast a clone of the original. 4314 // 4315 // TODO: If at some point we decide to scalarize instructions having 4316 // loop-invariant operands, this special case will no longer be 4317 // required. We would add the scalarization decision to 4318 // collectLoopScalars() and teach getVectorValue() to broadcast 4319 // the lane-zero scalar value. 4320 auto *Clone = Builder.Insert(GEP->clone()); 4321 for (unsigned Part = 0; Part < UF; ++Part) { 4322 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4323 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4324 addMetadata(EntryPart, GEP); 4325 } 4326 } else { 4327 // If the GEP has at least one loop-varying operand, we are sure to 4328 // produce a vector of pointers. But if we are only unrolling, we want 4329 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4330 // produce with the code below will be scalar (if VF == 1) or vector 4331 // (otherwise). Note that for the unroll-only case, we still maintain 4332 // values in the vector mapping with initVector, as we do for other 4333 // instructions. 4334 for (unsigned Part = 0; Part < UF; ++Part) { 4335 // The pointer operand of the new GEP. If it's loop-invariant, we 4336 // won't broadcast it. 4337 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4338 : State.get(Operands.getOperand(0), Part); 4339 4340 // Collect all the indices for the new GEP. If any index is 4341 // loop-invariant, we won't broadcast it. 4342 SmallVector<Value *, 4> Indices; 4343 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4344 VPValue *Operand = Operands.getOperand(I); 4345 if (IsIndexLoopInvariant[I - 1]) 4346 Indices.push_back(State.get(Operand, {0, 0})); 4347 else 4348 Indices.push_back(State.get(Operand, Part)); 4349 } 4350 4351 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4352 // but it should be a vector, otherwise. 4353 auto *NewGEP = 4354 GEP->isInBounds() 4355 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4356 Indices) 4357 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4358 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4359 "NewGEP is not a pointer vector"); 4360 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4361 addMetadata(NewGEP, GEP); 4362 } 4363 } 4364 } 4365 4366 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4367 ElementCount VF) { 4368 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4369 PHINode *P = cast<PHINode>(PN); 4370 if (EnableVPlanNativePath) { 4371 // Currently we enter here in the VPlan-native path for non-induction 4372 // PHIs where all control flow is uniform. We simply widen these PHIs. 4373 // Create a vector phi with no operands - the vector phi operands will be 4374 // set at the end of vector code generation. 4375 Type *VecTy = 4376 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4377 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4378 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4379 OrigPHIsToFix.push_back(P); 4380 4381 return; 4382 } 4383 4384 assert(PN->getParent() == OrigLoop->getHeader() && 4385 "Non-header phis should have been handled elsewhere"); 4386 4387 // In order to support recurrences we need to be able to vectorize Phi nodes. 4388 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4389 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4390 // this value when we vectorize all of the instructions that use the PHI. 4391 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4392 for (unsigned Part = 0; Part < UF; ++Part) { 4393 // This is phase one of vectorizing PHIs. 4394 bool ScalarPHI = 4395 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4396 Type *VecTy = 4397 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4398 Value *EntryPart = PHINode::Create( 4399 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4400 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4401 } 4402 return; 4403 } 4404 4405 setDebugLocFromInst(Builder, P); 4406 4407 // This PHINode must be an induction variable. 4408 // Make sure that we know about it. 4409 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4410 4411 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4412 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4413 4414 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4415 // which can be found from the original scalar operations. 4416 switch (II.getKind()) { 4417 case InductionDescriptor::IK_NoInduction: 4418 llvm_unreachable("Unknown induction"); 4419 case InductionDescriptor::IK_IntInduction: 4420 case InductionDescriptor::IK_FpInduction: 4421 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4422 case InductionDescriptor::IK_PtrInduction: { 4423 // Handle the pointer induction variable case. 4424 assert(P->getType()->isPointerTy() && "Unexpected type."); 4425 4426 if (Cost->isScalarAfterVectorization(P, VF)) { 4427 // This is the normalized GEP that starts counting at zero. 4428 Value *PtrInd = 4429 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4430 // Determine the number of scalars we need to generate for each unroll 4431 // iteration. If the instruction is uniform, we only need to generate the 4432 // first lane. Otherwise, we generate all VF values. 4433 unsigned Lanes = 4434 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4435 for (unsigned Part = 0; Part < UF; ++Part) { 4436 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4437 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4438 Lane + Part * VF.getKnownMinValue()); 4439 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4440 Value *SclrGep = 4441 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4442 SclrGep->setName("next.gep"); 4443 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4444 } 4445 } 4446 return; 4447 } 4448 assert(isa<SCEVConstant>(II.getStep()) && 4449 "Induction step not a SCEV constant!"); 4450 Type *PhiType = II.getStep()->getType(); 4451 4452 // Build a pointer phi 4453 Value *ScalarStartValue = II.getStartValue(); 4454 Type *ScStValueType = ScalarStartValue->getType(); 4455 PHINode *NewPointerPhi = 4456 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4457 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4458 4459 // A pointer induction, performed by using a gep 4460 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4461 Instruction *InductionLoc = LoopLatch->getTerminator(); 4462 const SCEV *ScalarStep = II.getStep(); 4463 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4464 Value *ScalarStepValue = 4465 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4466 Value *InductionGEP = GetElementPtrInst::Create( 4467 ScStValueType->getPointerElementType(), NewPointerPhi, 4468 Builder.CreateMul( 4469 ScalarStepValue, 4470 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4471 "ptr.ind", InductionLoc); 4472 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4473 4474 // Create UF many actual address geps that use the pointer 4475 // phi as base and a vectorized version of the step value 4476 // (<step*0, ..., step*N>) as offset. 4477 for (unsigned Part = 0; Part < UF; ++Part) { 4478 SmallVector<Constant *, 8> Indices; 4479 // Create a vector of consecutive numbers from zero to VF. 4480 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4481 Indices.push_back( 4482 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4483 Constant *StartOffset = ConstantVector::get(Indices); 4484 4485 Value *GEP = Builder.CreateGEP( 4486 ScStValueType->getPointerElementType(), NewPointerPhi, 4487 Builder.CreateMul( 4488 StartOffset, 4489 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4490 "vector.gep")); 4491 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4492 } 4493 } 4494 } 4495 } 4496 4497 /// A helper function for checking whether an integer division-related 4498 /// instruction may divide by zero (in which case it must be predicated if 4499 /// executed conditionally in the scalar code). 4500 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4501 /// Non-zero divisors that are non compile-time constants will not be 4502 /// converted into multiplication, so we will still end up scalarizing 4503 /// the division, but can do so w/o predication. 4504 static bool mayDivideByZero(Instruction &I) { 4505 assert((I.getOpcode() == Instruction::UDiv || 4506 I.getOpcode() == Instruction::SDiv || 4507 I.getOpcode() == Instruction::URem || 4508 I.getOpcode() == Instruction::SRem) && 4509 "Unexpected instruction"); 4510 Value *Divisor = I.getOperand(1); 4511 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4512 return !CInt || CInt->isZero(); 4513 } 4514 4515 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4516 VPTransformState &State) { 4517 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4518 switch (I.getOpcode()) { 4519 case Instruction::Call: 4520 case Instruction::Br: 4521 case Instruction::PHI: 4522 case Instruction::GetElementPtr: 4523 case Instruction::Select: 4524 llvm_unreachable("This instruction is handled by a different recipe."); 4525 case Instruction::UDiv: 4526 case Instruction::SDiv: 4527 case Instruction::SRem: 4528 case Instruction::URem: 4529 case Instruction::Add: 4530 case Instruction::FAdd: 4531 case Instruction::Sub: 4532 case Instruction::FSub: 4533 case Instruction::FNeg: 4534 case Instruction::Mul: 4535 case Instruction::FMul: 4536 case Instruction::FDiv: 4537 case Instruction::FRem: 4538 case Instruction::Shl: 4539 case Instruction::LShr: 4540 case Instruction::AShr: 4541 case Instruction::And: 4542 case Instruction::Or: 4543 case Instruction::Xor: { 4544 // Just widen unops and binops. 4545 setDebugLocFromInst(Builder, &I); 4546 4547 for (unsigned Part = 0; Part < UF; ++Part) { 4548 SmallVector<Value *, 2> Ops; 4549 for (VPValue *VPOp : User.operands()) 4550 Ops.push_back(State.get(VPOp, Part)); 4551 4552 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4553 4554 if (auto *VecOp = dyn_cast<Instruction>(V)) 4555 VecOp->copyIRFlags(&I); 4556 4557 // Use this vector value for all users of the original instruction. 4558 VectorLoopValueMap.setVectorValue(&I, Part, V); 4559 addMetadata(V, &I); 4560 } 4561 4562 break; 4563 } 4564 case Instruction::ICmp: 4565 case Instruction::FCmp: { 4566 // Widen compares. Generate vector compares. 4567 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4568 auto *Cmp = cast<CmpInst>(&I); 4569 setDebugLocFromInst(Builder, Cmp); 4570 for (unsigned Part = 0; Part < UF; ++Part) { 4571 Value *A = State.get(User.getOperand(0), Part); 4572 Value *B = State.get(User.getOperand(1), Part); 4573 Value *C = nullptr; 4574 if (FCmp) { 4575 // Propagate fast math flags. 4576 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4577 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4578 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4579 } else { 4580 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4581 } 4582 VectorLoopValueMap.setVectorValue(&I, Part, C); 4583 addMetadata(C, &I); 4584 } 4585 4586 break; 4587 } 4588 4589 case Instruction::ZExt: 4590 case Instruction::SExt: 4591 case Instruction::FPToUI: 4592 case Instruction::FPToSI: 4593 case Instruction::FPExt: 4594 case Instruction::PtrToInt: 4595 case Instruction::IntToPtr: 4596 case Instruction::SIToFP: 4597 case Instruction::UIToFP: 4598 case Instruction::Trunc: 4599 case Instruction::FPTrunc: 4600 case Instruction::BitCast: { 4601 auto *CI = cast<CastInst>(&I); 4602 setDebugLocFromInst(Builder, CI); 4603 4604 /// Vectorize casts. 4605 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4606 Type *DestTy = 4607 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4608 4609 for (unsigned Part = 0; Part < UF; ++Part) { 4610 Value *A = State.get(User.getOperand(0), Part); 4611 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4612 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4613 addMetadata(Cast, &I); 4614 } 4615 break; 4616 } 4617 default: 4618 // This instruction is not vectorized by simple widening. 4619 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4620 llvm_unreachable("Unhandled instruction!"); 4621 } // end of switch. 4622 } 4623 4624 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4625 VPUser &ArgOperands, 4626 VPTransformState &State) { 4627 assert(!isa<DbgInfoIntrinsic>(I) && 4628 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4629 setDebugLocFromInst(Builder, &I); 4630 4631 Module *M = I.getParent()->getParent()->getParent(); 4632 auto *CI = cast<CallInst>(&I); 4633 4634 SmallVector<Type *, 4> Tys; 4635 for (Value *ArgOperand : CI->arg_operands()) 4636 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4637 4638 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4639 4640 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4641 // version of the instruction. 4642 // Is it beneficial to perform intrinsic call compared to lib call? 4643 bool NeedToScalarize = false; 4644 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4645 bool UseVectorIntrinsic = 4646 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4647 assert((UseVectorIntrinsic || !NeedToScalarize) && 4648 "Instruction should be scalarized elsewhere."); 4649 4650 for (unsigned Part = 0; Part < UF; ++Part) { 4651 SmallVector<Value *, 4> Args; 4652 for (auto &I : enumerate(ArgOperands.operands())) { 4653 // Some intrinsics have a scalar argument - don't replace it with a 4654 // vector. 4655 Value *Arg; 4656 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4657 Arg = State.get(I.value(), Part); 4658 else 4659 Arg = State.get(I.value(), {0, 0}); 4660 Args.push_back(Arg); 4661 } 4662 4663 Function *VectorF; 4664 if (UseVectorIntrinsic) { 4665 // Use vector version of the intrinsic. 4666 Type *TysForDecl[] = {CI->getType()}; 4667 if (VF.isVector()) { 4668 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4669 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4670 } 4671 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4672 assert(VectorF && "Can't retrieve vector intrinsic."); 4673 } else { 4674 // Use vector version of the function call. 4675 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4676 #ifndef NDEBUG 4677 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4678 "Can't create vector function."); 4679 #endif 4680 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4681 } 4682 SmallVector<OperandBundleDef, 1> OpBundles; 4683 CI->getOperandBundlesAsDefs(OpBundles); 4684 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4685 4686 if (isa<FPMathOperator>(V)) 4687 V->copyFastMathFlags(CI); 4688 4689 State.set(Def, &I, V, Part); 4690 addMetadata(V, &I); 4691 } 4692 } 4693 4694 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4695 VPUser &Operands, 4696 bool InvariantCond, 4697 VPTransformState &State) { 4698 setDebugLocFromInst(Builder, &I); 4699 4700 // The condition can be loop invariant but still defined inside the 4701 // loop. This means that we can't just use the original 'cond' value. 4702 // We have to take the 'vectorized' value and pick the first lane. 4703 // Instcombine will make this a no-op. 4704 auto *InvarCond = 4705 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4706 4707 for (unsigned Part = 0; Part < UF; ++Part) { 4708 Value *Cond = 4709 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4710 Value *Op0 = State.get(Operands.getOperand(1), Part); 4711 Value *Op1 = State.get(Operands.getOperand(2), Part); 4712 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4713 State.set(VPDef, &I, Sel, Part); 4714 addMetadata(Sel, &I); 4715 } 4716 } 4717 4718 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4719 // We should not collect Scalars more than once per VF. Right now, this 4720 // function is called from collectUniformsAndScalars(), which already does 4721 // this check. Collecting Scalars for VF=1 does not make any sense. 4722 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4723 "This function should not be visited twice for the same VF"); 4724 4725 SmallSetVector<Instruction *, 8> Worklist; 4726 4727 // These sets are used to seed the analysis with pointers used by memory 4728 // accesses that will remain scalar. 4729 SmallSetVector<Instruction *, 8> ScalarPtrs; 4730 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4731 auto *Latch = TheLoop->getLoopLatch(); 4732 4733 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4734 // The pointer operands of loads and stores will be scalar as long as the 4735 // memory access is not a gather or scatter operation. The value operand of a 4736 // store will remain scalar if the store is scalarized. 4737 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4738 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4739 assert(WideningDecision != CM_Unknown && 4740 "Widening decision should be ready at this moment"); 4741 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4742 if (Ptr == Store->getValueOperand()) 4743 return WideningDecision == CM_Scalarize; 4744 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4745 "Ptr is neither a value or pointer operand"); 4746 return WideningDecision != CM_GatherScatter; 4747 }; 4748 4749 // A helper that returns true if the given value is a bitcast or 4750 // getelementptr instruction contained in the loop. 4751 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4752 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4753 isa<GetElementPtrInst>(V)) && 4754 !TheLoop->isLoopInvariant(V); 4755 }; 4756 4757 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4758 if (!isa<PHINode>(Ptr) || 4759 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4760 return false; 4761 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4762 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4763 return false; 4764 return isScalarUse(MemAccess, Ptr); 4765 }; 4766 4767 // A helper that evaluates a memory access's use of a pointer. If the 4768 // pointer is actually the pointer induction of a loop, it is being 4769 // inserted into Worklist. If the use will be a scalar use, and the 4770 // pointer is only used by memory accesses, we place the pointer in 4771 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4772 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4773 if (isScalarPtrInduction(MemAccess, Ptr)) { 4774 Worklist.insert(cast<Instruction>(Ptr)); 4775 Instruction *Update = cast<Instruction>( 4776 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4777 Worklist.insert(Update); 4778 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4779 << "\n"); 4780 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4781 << "\n"); 4782 return; 4783 } 4784 // We only care about bitcast and getelementptr instructions contained in 4785 // the loop. 4786 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4787 return; 4788 4789 // If the pointer has already been identified as scalar (e.g., if it was 4790 // also identified as uniform), there's nothing to do. 4791 auto *I = cast<Instruction>(Ptr); 4792 if (Worklist.count(I)) 4793 return; 4794 4795 // If the use of the pointer will be a scalar use, and all users of the 4796 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4797 // place the pointer in PossibleNonScalarPtrs. 4798 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4799 return isa<LoadInst>(U) || isa<StoreInst>(U); 4800 })) 4801 ScalarPtrs.insert(I); 4802 else 4803 PossibleNonScalarPtrs.insert(I); 4804 }; 4805 4806 // We seed the scalars analysis with three classes of instructions: (1) 4807 // instructions marked uniform-after-vectorization and (2) bitcast, 4808 // getelementptr and (pointer) phi instructions used by memory accesses 4809 // requiring a scalar use. 4810 // 4811 // (1) Add to the worklist all instructions that have been identified as 4812 // uniform-after-vectorization. 4813 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4814 4815 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4816 // memory accesses requiring a scalar use. The pointer operands of loads and 4817 // stores will be scalar as long as the memory accesses is not a gather or 4818 // scatter operation. The value operand of a store will remain scalar if the 4819 // store is scalarized. 4820 for (auto *BB : TheLoop->blocks()) 4821 for (auto &I : *BB) { 4822 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4823 evaluatePtrUse(Load, Load->getPointerOperand()); 4824 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4825 evaluatePtrUse(Store, Store->getPointerOperand()); 4826 evaluatePtrUse(Store, Store->getValueOperand()); 4827 } 4828 } 4829 for (auto *I : ScalarPtrs) 4830 if (!PossibleNonScalarPtrs.count(I)) { 4831 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4832 Worklist.insert(I); 4833 } 4834 4835 // Insert the forced scalars. 4836 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4837 // induction variable when the PHI user is scalarized. 4838 auto ForcedScalar = ForcedScalars.find(VF); 4839 if (ForcedScalar != ForcedScalars.end()) 4840 for (auto *I : ForcedScalar->second) 4841 Worklist.insert(I); 4842 4843 // Expand the worklist by looking through any bitcasts and getelementptr 4844 // instructions we've already identified as scalar. This is similar to the 4845 // expansion step in collectLoopUniforms(); however, here we're only 4846 // expanding to include additional bitcasts and getelementptr instructions. 4847 unsigned Idx = 0; 4848 while (Idx != Worklist.size()) { 4849 Instruction *Dst = Worklist[Idx++]; 4850 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4851 continue; 4852 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4853 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4854 auto *J = cast<Instruction>(U); 4855 return !TheLoop->contains(J) || Worklist.count(J) || 4856 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4857 isScalarUse(J, Src)); 4858 })) { 4859 Worklist.insert(Src); 4860 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4861 } 4862 } 4863 4864 // An induction variable will remain scalar if all users of the induction 4865 // variable and induction variable update remain scalar. 4866 for (auto &Induction : Legal->getInductionVars()) { 4867 auto *Ind = Induction.first; 4868 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4869 4870 // If tail-folding is applied, the primary induction variable will be used 4871 // to feed a vector compare. 4872 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4873 continue; 4874 4875 // Determine if all users of the induction variable are scalar after 4876 // vectorization. 4877 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4878 auto *I = cast<Instruction>(U); 4879 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4880 }); 4881 if (!ScalarInd) 4882 continue; 4883 4884 // Determine if all users of the induction variable update instruction are 4885 // scalar after vectorization. 4886 auto ScalarIndUpdate = 4887 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4888 auto *I = cast<Instruction>(U); 4889 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4890 }); 4891 if (!ScalarIndUpdate) 4892 continue; 4893 4894 // The induction variable and its update instruction will remain scalar. 4895 Worklist.insert(Ind); 4896 Worklist.insert(IndUpdate); 4897 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4898 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4899 << "\n"); 4900 } 4901 4902 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4903 } 4904 4905 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4906 ElementCount VF) { 4907 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4908 if (!blockNeedsPredication(I->getParent())) 4909 return false; 4910 switch(I->getOpcode()) { 4911 default: 4912 break; 4913 case Instruction::Load: 4914 case Instruction::Store: { 4915 if (!Legal->isMaskRequired(I)) 4916 return false; 4917 auto *Ptr = getLoadStorePointerOperand(I); 4918 auto *Ty = getMemInstValueType(I); 4919 // We have already decided how to vectorize this instruction, get that 4920 // result. 4921 if (VF.isVector()) { 4922 InstWidening WideningDecision = getWideningDecision(I, VF); 4923 assert(WideningDecision != CM_Unknown && 4924 "Widening decision should be ready at this moment"); 4925 return WideningDecision == CM_Scalarize; 4926 } 4927 const Align Alignment = getLoadStoreAlignment(I); 4928 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4929 isLegalMaskedGather(Ty, Alignment)) 4930 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4931 isLegalMaskedScatter(Ty, Alignment)); 4932 } 4933 case Instruction::UDiv: 4934 case Instruction::SDiv: 4935 case Instruction::SRem: 4936 case Instruction::URem: 4937 return mayDivideByZero(*I); 4938 } 4939 return false; 4940 } 4941 4942 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4943 Instruction *I, ElementCount VF) { 4944 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4945 assert(getWideningDecision(I, VF) == CM_Unknown && 4946 "Decision should not be set yet."); 4947 auto *Group = getInterleavedAccessGroup(I); 4948 assert(Group && "Must have a group."); 4949 4950 // If the instruction's allocated size doesn't equal it's type size, it 4951 // requires padding and will be scalarized. 4952 auto &DL = I->getModule()->getDataLayout(); 4953 auto *ScalarTy = getMemInstValueType(I); 4954 if (hasIrregularType(ScalarTy, DL, VF)) 4955 return false; 4956 4957 // Check if masking is required. 4958 // A Group may need masking for one of two reasons: it resides in a block that 4959 // needs predication, or it was decided to use masking to deal with gaps. 4960 bool PredicatedAccessRequiresMasking = 4961 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4962 bool AccessWithGapsRequiresMasking = 4963 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4964 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4965 return true; 4966 4967 // If masked interleaving is required, we expect that the user/target had 4968 // enabled it, because otherwise it either wouldn't have been created or 4969 // it should have been invalidated by the CostModel. 4970 assert(useMaskedInterleavedAccesses(TTI) && 4971 "Masked interleave-groups for predicated accesses are not enabled."); 4972 4973 auto *Ty = getMemInstValueType(I); 4974 const Align Alignment = getLoadStoreAlignment(I); 4975 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4976 : TTI.isLegalMaskedStore(Ty, Alignment); 4977 } 4978 4979 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4980 Instruction *I, ElementCount VF) { 4981 // Get and ensure we have a valid memory instruction. 4982 LoadInst *LI = dyn_cast<LoadInst>(I); 4983 StoreInst *SI = dyn_cast<StoreInst>(I); 4984 assert((LI || SI) && "Invalid memory instruction"); 4985 4986 auto *Ptr = getLoadStorePointerOperand(I); 4987 4988 // In order to be widened, the pointer should be consecutive, first of all. 4989 if (!Legal->isConsecutivePtr(Ptr)) 4990 return false; 4991 4992 // If the instruction is a store located in a predicated block, it will be 4993 // scalarized. 4994 if (isScalarWithPredication(I)) 4995 return false; 4996 4997 // If the instruction's allocated size doesn't equal it's type size, it 4998 // requires padding and will be scalarized. 4999 auto &DL = I->getModule()->getDataLayout(); 5000 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5001 if (hasIrregularType(ScalarTy, DL, VF)) 5002 return false; 5003 5004 return true; 5005 } 5006 5007 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5008 // We should not collect Uniforms more than once per VF. Right now, 5009 // this function is called from collectUniformsAndScalars(), which 5010 // already does this check. Collecting Uniforms for VF=1 does not make any 5011 // sense. 5012 5013 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5014 "This function should not be visited twice for the same VF"); 5015 5016 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5017 // not analyze again. Uniforms.count(VF) will return 1. 5018 Uniforms[VF].clear(); 5019 5020 // We now know that the loop is vectorizable! 5021 // Collect instructions inside the loop that will remain uniform after 5022 // vectorization. 5023 5024 // Global values, params and instructions outside of current loop are out of 5025 // scope. 5026 auto isOutOfScope = [&](Value *V) -> bool { 5027 Instruction *I = dyn_cast<Instruction>(V); 5028 return (!I || !TheLoop->contains(I)); 5029 }; 5030 5031 SetVector<Instruction *> Worklist; 5032 BasicBlock *Latch = TheLoop->getLoopLatch(); 5033 5034 // Instructions that are scalar with predication must not be considered 5035 // uniform after vectorization, because that would create an erroneous 5036 // replicating region where only a single instance out of VF should be formed. 5037 // TODO: optimize such seldom cases if found important, see PR40816. 5038 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5039 if (isOutOfScope(I)) { 5040 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5041 << *I << "\n"); 5042 return; 5043 } 5044 if (isScalarWithPredication(I, VF)) { 5045 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5046 << *I << "\n"); 5047 return; 5048 } 5049 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5050 Worklist.insert(I); 5051 }; 5052 5053 // Start with the conditional branch. If the branch condition is an 5054 // instruction contained in the loop that is only used by the branch, it is 5055 // uniform. 5056 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5057 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5058 addToWorklistIfAllowed(Cmp); 5059 5060 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5061 // are pointers that are treated like consecutive pointers during 5062 // vectorization. The pointer operands of interleaved accesses are an 5063 // example. 5064 SmallSetVector<Value *, 8> ConsecutiveLikePtrs; 5065 5066 // Holds pointer operands of instructions that are possibly non-uniform. 5067 SmallPtrSet<Value *, 8> PossibleNonUniformPtrs; 5068 5069 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5070 InstWidening WideningDecision = getWideningDecision(I, VF); 5071 assert(WideningDecision != CM_Unknown && 5072 "Widening decision should be ready at this moment"); 5073 5074 // The address of a uniform mem op is itself uniform. We exclude stores 5075 // here as there's an assumption in the current code that all uses of 5076 // uniform instructions are uniform and, as noted below, uniform stores are 5077 // still handled via replication (i.e. aren't uniform after vectorization). 5078 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5079 assert(WideningDecision == CM_Scalarize); 5080 return true; 5081 } 5082 5083 return (WideningDecision == CM_Widen || 5084 WideningDecision == CM_Widen_Reverse || 5085 WideningDecision == CM_Interleave); 5086 }; 5087 5088 5089 // Returns true if Ptr is the pointer operand of a memory access instruction 5090 // I, and I is known to not require scalarization. 5091 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5092 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5093 }; 5094 5095 // Iterate over the instructions in the loop, and collect all 5096 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5097 // that a consecutive-like pointer operand will be scalarized, we collect it 5098 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5099 // getelementptr instruction can be used by both vectorized and scalarized 5100 // memory instructions. For example, if a loop loads and stores from the same 5101 // location, but the store is conditional, the store will be scalarized, and 5102 // the getelementptr won't remain uniform. 5103 for (auto *BB : TheLoop->blocks()) 5104 for (auto &I : *BB) { 5105 // If there's no pointer operand, there's nothing to do. 5106 auto *Ptr = getLoadStorePointerOperand(&I); 5107 if (!Ptr) 5108 continue; 5109 5110 // For now, avoid walking use lists in other functions. 5111 // TODO: Rewrite this algorithm from uses up. 5112 if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr)) 5113 continue; 5114 5115 // A uniform memory op is itself uniform. We exclude stores here as we 5116 // haven't yet added dedicated logic in the CLONE path and rely on 5117 // REPLICATE + DSE for correctness. 5118 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5119 addToWorklistIfAllowed(&I); 5120 5121 // True if all users of Ptr are memory accesses that have Ptr as their 5122 // pointer operand. Since loops are assumed to be in LCSSA form, this 5123 // disallows uses outside the loop as well. 5124 auto UsersAreMemAccesses = 5125 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5126 return getLoadStorePointerOperand(U) == Ptr; 5127 }); 5128 5129 // Ensure the memory instruction will not be scalarized or used by 5130 // gather/scatter, making its pointer operand non-uniform. If the pointer 5131 // operand is used by any instruction other than a memory access, we 5132 // conservatively assume the pointer operand may be non-uniform. 5133 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5134 PossibleNonUniformPtrs.insert(Ptr); 5135 5136 // If the memory instruction will be vectorized and its pointer operand 5137 // is consecutive-like, or interleaving - the pointer operand should 5138 // remain uniform. 5139 else 5140 ConsecutiveLikePtrs.insert(Ptr); 5141 } 5142 5143 // Add to the Worklist all consecutive and consecutive-like pointers that 5144 // aren't also identified as possibly non-uniform. 5145 for (auto *V : ConsecutiveLikePtrs) 5146 if (!PossibleNonUniformPtrs.count(V)) 5147 if (auto *I = dyn_cast<Instruction>(V)) 5148 addToWorklistIfAllowed(I); 5149 5150 // Expand Worklist in topological order: whenever a new instruction 5151 // is added , its users should be already inside Worklist. It ensures 5152 // a uniform instruction will only be used by uniform instructions. 5153 unsigned idx = 0; 5154 while (idx != Worklist.size()) { 5155 Instruction *I = Worklist[idx++]; 5156 5157 for (auto OV : I->operand_values()) { 5158 // isOutOfScope operands cannot be uniform instructions. 5159 if (isOutOfScope(OV)) 5160 continue; 5161 // First order recurrence Phi's should typically be considered 5162 // non-uniform. 5163 auto *OP = dyn_cast<PHINode>(OV); 5164 if (OP && Legal->isFirstOrderRecurrence(OP)) 5165 continue; 5166 // If all the users of the operand are uniform, then add the 5167 // operand into the uniform worklist. 5168 auto *OI = cast<Instruction>(OV); 5169 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5170 auto *J = cast<Instruction>(U); 5171 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5172 })) 5173 addToWorklistIfAllowed(OI); 5174 } 5175 } 5176 5177 // For an instruction to be added into Worklist above, all its users inside 5178 // the loop should also be in Worklist. However, this condition cannot be 5179 // true for phi nodes that form a cyclic dependence. We must process phi 5180 // nodes separately. An induction variable will remain uniform if all users 5181 // of the induction variable and induction variable update remain uniform. 5182 // The code below handles both pointer and non-pointer induction variables. 5183 for (auto &Induction : Legal->getInductionVars()) { 5184 auto *Ind = Induction.first; 5185 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5186 5187 // Determine if all users of the induction variable are uniform after 5188 // vectorization. 5189 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5190 auto *I = cast<Instruction>(U); 5191 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5192 isVectorizedMemAccessUse(I, Ind); 5193 }); 5194 if (!UniformInd) 5195 continue; 5196 5197 // Determine if all users of the induction variable update instruction are 5198 // uniform after vectorization. 5199 auto UniformIndUpdate = 5200 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5201 auto *I = cast<Instruction>(U); 5202 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5203 isVectorizedMemAccessUse(I, IndUpdate); 5204 }); 5205 if (!UniformIndUpdate) 5206 continue; 5207 5208 // The induction variable and its update instruction will remain uniform. 5209 addToWorklistIfAllowed(Ind); 5210 addToWorklistIfAllowed(IndUpdate); 5211 } 5212 5213 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5214 } 5215 5216 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5217 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5218 5219 if (Legal->getRuntimePointerChecking()->Need) { 5220 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5221 "runtime pointer checks needed. Enable vectorization of this " 5222 "loop with '#pragma clang loop vectorize(enable)' when " 5223 "compiling with -Os/-Oz", 5224 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5225 return true; 5226 } 5227 5228 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5229 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5230 "runtime SCEV checks needed. Enable vectorization of this " 5231 "loop with '#pragma clang loop vectorize(enable)' when " 5232 "compiling with -Os/-Oz", 5233 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5234 return true; 5235 } 5236 5237 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5238 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5239 reportVectorizationFailure("Runtime stride check for small trip count", 5240 "runtime stride == 1 checks needed. Enable vectorization of " 5241 "this loop without such check by compiling with -Os/-Oz", 5242 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5243 return true; 5244 } 5245 5246 return false; 5247 } 5248 5249 Optional<ElementCount> 5250 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5251 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5252 // TODO: It may by useful to do since it's still likely to be dynamically 5253 // uniform if the target can skip. 5254 reportVectorizationFailure( 5255 "Not inserting runtime ptr check for divergent target", 5256 "runtime pointer checks needed. Not enabled for divergent target", 5257 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5258 return None; 5259 } 5260 5261 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5262 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5263 if (TC == 1) { 5264 reportVectorizationFailure("Single iteration (non) loop", 5265 "loop trip count is one, irrelevant for vectorization", 5266 "SingleIterationLoop", ORE, TheLoop); 5267 return None; 5268 } 5269 5270 switch (ScalarEpilogueStatus) { 5271 case CM_ScalarEpilogueAllowed: 5272 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5273 case CM_ScalarEpilogueNotNeededUsePredicate: 5274 LLVM_DEBUG( 5275 dbgs() << "LV: vector predicate hint/switch found.\n" 5276 << "LV: Not allowing scalar epilogue, creating predicated " 5277 << "vector loop.\n"); 5278 break; 5279 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5280 // fallthrough as a special case of OptForSize 5281 case CM_ScalarEpilogueNotAllowedOptSize: 5282 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5283 LLVM_DEBUG( 5284 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5285 else 5286 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5287 << "count.\n"); 5288 5289 // Bail if runtime checks are required, which are not good when optimising 5290 // for size. 5291 if (runtimeChecksRequired()) 5292 return None; 5293 break; 5294 } 5295 5296 // Now try the tail folding 5297 5298 // Invalidate interleave groups that require an epilogue if we can't mask 5299 // the interleave-group. 5300 if (!useMaskedInterleavedAccesses(TTI)) { 5301 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5302 "No decisions should have been taken at this point"); 5303 // Note: There is no need to invalidate any cost modeling decisions here, as 5304 // non where taken so far. 5305 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5306 } 5307 5308 ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5309 assert(!MaxVF.isScalable() && 5310 "Scalable vectors do not yet support tail folding"); 5311 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5312 "MaxVF must be a power of 2"); 5313 unsigned MaxVFtimesIC = 5314 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5315 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5316 // Accept MaxVF if we do not have a tail. 5317 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5318 return MaxVF; 5319 } 5320 5321 // If we don't know the precise trip count, or if the trip count that we 5322 // found modulo the vectorization factor is not zero, try to fold the tail 5323 // by masking. 5324 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5325 if (Legal->prepareToFoldTailByMasking()) { 5326 FoldTailByMasking = true; 5327 return MaxVF; 5328 } 5329 5330 // If there was a tail-folding hint/switch, but we can't fold the tail by 5331 // masking, fallback to a vectorization with a scalar epilogue. 5332 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5333 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5334 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5335 return None; 5336 } 5337 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5338 "scalar epilogue instead.\n"); 5339 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5340 return MaxVF; 5341 } 5342 5343 if (TC == 0) { 5344 reportVectorizationFailure( 5345 "Unable to calculate the loop count due to complex control flow", 5346 "unable to calculate the loop count due to complex control flow", 5347 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5348 return None; 5349 } 5350 5351 reportVectorizationFailure( 5352 "Cannot optimize for size and vectorize at the same time.", 5353 "cannot optimize for size and vectorize at the same time. " 5354 "Enable vectorization of this loop with '#pragma clang loop " 5355 "vectorize(enable)' when compiling with -Os/-Oz", 5356 "NoTailLoopWithOptForSize", ORE, TheLoop); 5357 return None; 5358 } 5359 5360 ElementCount 5361 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5362 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5363 unsigned SmallestType, WidestType; 5364 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5365 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5366 5367 // Get the maximum safe dependence distance in bits computed by LAA. 5368 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5369 // the memory accesses that is most restrictive (involved in the smallest 5370 // dependence distance). 5371 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5372 5373 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5374 5375 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5376 // Note that both WidestRegister and WidestType may not be a powers of 2. 5377 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5378 5379 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5380 << " / " << WidestType << " bits.\n"); 5381 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5382 << WidestRegister << " bits.\n"); 5383 5384 assert(MaxVectorSize <= WidestRegister && 5385 "Did not expect to pack so many elements" 5386 " into one vector!"); 5387 if (MaxVectorSize == 0) { 5388 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5389 MaxVectorSize = 1; 5390 return ElementCount::getFixed(MaxVectorSize); 5391 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5392 isPowerOf2_32(ConstTripCount)) { 5393 // We need to clamp the VF to be the ConstTripCount. There is no point in 5394 // choosing a higher viable VF as done in the loop below. 5395 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5396 << ConstTripCount << "\n"); 5397 MaxVectorSize = ConstTripCount; 5398 return ElementCount::getFixed(MaxVectorSize); 5399 } 5400 5401 unsigned MaxVF = MaxVectorSize; 5402 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5403 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5404 // Collect all viable vectorization factors larger than the default MaxVF 5405 // (i.e. MaxVectorSize). 5406 SmallVector<ElementCount, 8> VFs; 5407 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5408 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5409 VFs.push_back(ElementCount::getFixed(VS)); 5410 5411 // For each VF calculate its register usage. 5412 auto RUs = calculateRegisterUsage(VFs); 5413 5414 // Select the largest VF which doesn't require more registers than existing 5415 // ones. 5416 for (int i = RUs.size() - 1; i >= 0; --i) { 5417 bool Selected = true; 5418 for (auto& pair : RUs[i].MaxLocalUsers) { 5419 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5420 if (pair.second > TargetNumRegisters) 5421 Selected = false; 5422 } 5423 if (Selected) { 5424 MaxVF = VFs[i].getKnownMinValue(); 5425 break; 5426 } 5427 } 5428 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5429 if (MaxVF < MinVF) { 5430 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5431 << ") with target's minimum: " << MinVF << '\n'); 5432 MaxVF = MinVF; 5433 } 5434 } 5435 } 5436 return ElementCount::getFixed(MaxVF); 5437 } 5438 5439 VectorizationFactor 5440 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5441 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5442 5443 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5444 const float ScalarCost = Cost; 5445 unsigned Width = 1; 5446 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5447 5448 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5449 if (ForceVectorization && MaxVF.isVector()) { 5450 // Ignore scalar width, because the user explicitly wants vectorization. 5451 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5452 // evaluation. 5453 Cost = std::numeric_limits<float>::max(); 5454 } 5455 5456 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5457 // Notice that the vector loop needs to be executed less times, so 5458 // we need to divide the cost of the vector loops by the width of 5459 // the vector elements. 5460 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5461 float VectorCost = C.first / (float)i; 5462 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5463 << " costs: " << (int)VectorCost << ".\n"); 5464 if (!C.second && !ForceVectorization) { 5465 LLVM_DEBUG( 5466 dbgs() << "LV: Not considering vector loop of width " << i 5467 << " because it will not generate any vector instructions.\n"); 5468 continue; 5469 } 5470 if (VectorCost < Cost) { 5471 Cost = VectorCost; 5472 Width = i; 5473 } 5474 } 5475 5476 if (!EnableCondStoresVectorization && NumPredStores) { 5477 reportVectorizationFailure("There are conditional stores.", 5478 "store that is conditionally executed prevents vectorization", 5479 "ConditionalStore", ORE, TheLoop); 5480 Width = 1; 5481 Cost = ScalarCost; 5482 } 5483 5484 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5485 << "LV: Vectorization seems to be not beneficial, " 5486 << "but was forced by a user.\n"); 5487 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5488 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5489 (unsigned)(Width * Cost)}; 5490 return Factor; 5491 } 5492 5493 std::pair<unsigned, unsigned> 5494 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5495 unsigned MinWidth = -1U; 5496 unsigned MaxWidth = 8; 5497 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5498 5499 // For each block. 5500 for (BasicBlock *BB : TheLoop->blocks()) { 5501 // For each instruction in the loop. 5502 for (Instruction &I : BB->instructionsWithoutDebug()) { 5503 Type *T = I.getType(); 5504 5505 // Skip ignored values. 5506 if (ValuesToIgnore.count(&I)) 5507 continue; 5508 5509 // Only examine Loads, Stores and PHINodes. 5510 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5511 continue; 5512 5513 // Examine PHI nodes that are reduction variables. Update the type to 5514 // account for the recurrence type. 5515 if (auto *PN = dyn_cast<PHINode>(&I)) { 5516 if (!Legal->isReductionVariable(PN)) 5517 continue; 5518 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5519 T = RdxDesc.getRecurrenceType(); 5520 } 5521 5522 // Examine the stored values. 5523 if (auto *ST = dyn_cast<StoreInst>(&I)) 5524 T = ST->getValueOperand()->getType(); 5525 5526 // Ignore loaded pointer types and stored pointer types that are not 5527 // vectorizable. 5528 // 5529 // FIXME: The check here attempts to predict whether a load or store will 5530 // be vectorized. We only know this for certain after a VF has 5531 // been selected. Here, we assume that if an access can be 5532 // vectorized, it will be. We should also look at extending this 5533 // optimization to non-pointer types. 5534 // 5535 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5536 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5537 continue; 5538 5539 MinWidth = std::min(MinWidth, 5540 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5541 MaxWidth = std::max(MaxWidth, 5542 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5543 } 5544 } 5545 5546 return {MinWidth, MaxWidth}; 5547 } 5548 5549 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5550 unsigned LoopCost) { 5551 // -- The interleave heuristics -- 5552 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5553 // There are many micro-architectural considerations that we can't predict 5554 // at this level. For example, frontend pressure (on decode or fetch) due to 5555 // code size, or the number and capabilities of the execution ports. 5556 // 5557 // We use the following heuristics to select the interleave count: 5558 // 1. If the code has reductions, then we interleave to break the cross 5559 // iteration dependency. 5560 // 2. If the loop is really small, then we interleave to reduce the loop 5561 // overhead. 5562 // 3. We don't interleave if we think that we will spill registers to memory 5563 // due to the increased register pressure. 5564 5565 if (!isScalarEpilogueAllowed()) 5566 return 1; 5567 5568 // We used the distance for the interleave count. 5569 if (Legal->getMaxSafeDepDistBytes() != -1U) 5570 return 1; 5571 5572 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5573 const bool HasReductions = !Legal->getReductionVars().empty(); 5574 // Do not interleave loops with a relatively small known or estimated trip 5575 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5576 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5577 // because with the above conditions interleaving can expose ILP and break 5578 // cross iteration dependences for reductions. 5579 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5580 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5581 return 1; 5582 5583 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5584 // We divide by these constants so assume that we have at least one 5585 // instruction that uses at least one register. 5586 for (auto& pair : R.MaxLocalUsers) { 5587 pair.second = std::max(pair.second, 1U); 5588 } 5589 5590 // We calculate the interleave count using the following formula. 5591 // Subtract the number of loop invariants from the number of available 5592 // registers. These registers are used by all of the interleaved instances. 5593 // Next, divide the remaining registers by the number of registers that is 5594 // required by the loop, in order to estimate how many parallel instances 5595 // fit without causing spills. All of this is rounded down if necessary to be 5596 // a power of two. We want power of two interleave count to simplify any 5597 // addressing operations or alignment considerations. 5598 // We also want power of two interleave counts to ensure that the induction 5599 // variable of the vector loop wraps to zero, when tail is folded by masking; 5600 // this currently happens when OptForSize, in which case IC is set to 1 above. 5601 unsigned IC = UINT_MAX; 5602 5603 for (auto& pair : R.MaxLocalUsers) { 5604 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5605 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5606 << " registers of " 5607 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5608 if (VF.isScalar()) { 5609 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5610 TargetNumRegisters = ForceTargetNumScalarRegs; 5611 } else { 5612 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5613 TargetNumRegisters = ForceTargetNumVectorRegs; 5614 } 5615 unsigned MaxLocalUsers = pair.second; 5616 unsigned LoopInvariantRegs = 0; 5617 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5618 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5619 5620 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5621 // Don't count the induction variable as interleaved. 5622 if (EnableIndVarRegisterHeur) { 5623 TmpIC = 5624 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5625 std::max(1U, (MaxLocalUsers - 1))); 5626 } 5627 5628 IC = std::min(IC, TmpIC); 5629 } 5630 5631 // Clamp the interleave ranges to reasonable counts. 5632 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5633 unsigned MaxInterleaveCount = 5634 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5635 5636 // Check if the user has overridden the max. 5637 if (VF.isScalar()) { 5638 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5639 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5640 } else { 5641 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5642 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5643 } 5644 5645 // If trip count is known or estimated compile time constant, limit the 5646 // interleave count to be less than the trip count divided by VF, provided it 5647 // is at least 1. 5648 if (BestKnownTC) { 5649 MaxInterleaveCount = 5650 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5651 // Make sure MaxInterleaveCount is greater than 0. 5652 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5653 } 5654 5655 assert(MaxInterleaveCount > 0 && 5656 "Maximum interleave count must be greater than 0"); 5657 5658 // Clamp the calculated IC to be between the 1 and the max interleave count 5659 // that the target and trip count allows. 5660 if (IC > MaxInterleaveCount) 5661 IC = MaxInterleaveCount; 5662 else 5663 // Make sure IC is greater than 0. 5664 IC = std::max(1u, IC); 5665 5666 assert(IC > 0 && "Interleave count must be greater than 0."); 5667 5668 // If we did not calculate the cost for VF (because the user selected the VF) 5669 // then we calculate the cost of VF here. 5670 if (LoopCost == 0) 5671 LoopCost = expectedCost(VF).first; 5672 5673 assert(LoopCost && "Non-zero loop cost expected"); 5674 5675 // Interleave if we vectorized this loop and there is a reduction that could 5676 // benefit from interleaving. 5677 if (VF.isVector() && HasReductions) { 5678 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5679 return IC; 5680 } 5681 5682 // Note that if we've already vectorized the loop we will have done the 5683 // runtime check and so interleaving won't require further checks. 5684 bool InterleavingRequiresRuntimePointerCheck = 5685 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5686 5687 // We want to interleave small loops in order to reduce the loop overhead and 5688 // potentially expose ILP opportunities. 5689 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5690 << "LV: IC is " << IC << '\n' 5691 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5692 const bool AggressivelyInterleaveReductions = 5693 TTI.enableAggressiveInterleaving(HasReductions); 5694 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5695 // We assume that the cost overhead is 1 and we use the cost model 5696 // to estimate the cost of the loop and interleave until the cost of the 5697 // loop overhead is about 5% of the cost of the loop. 5698 unsigned SmallIC = 5699 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5700 5701 // Interleave until store/load ports (estimated by max interleave count) are 5702 // saturated. 5703 unsigned NumStores = Legal->getNumStores(); 5704 unsigned NumLoads = Legal->getNumLoads(); 5705 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5706 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5707 5708 // If we have a scalar reduction (vector reductions are already dealt with 5709 // by this point), we can increase the critical path length if the loop 5710 // we're interleaving is inside another loop. Limit, by default to 2, so the 5711 // critical path only gets increased by one reduction operation. 5712 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5713 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5714 SmallIC = std::min(SmallIC, F); 5715 StoresIC = std::min(StoresIC, F); 5716 LoadsIC = std::min(LoadsIC, F); 5717 } 5718 5719 if (EnableLoadStoreRuntimeInterleave && 5720 std::max(StoresIC, LoadsIC) > SmallIC) { 5721 LLVM_DEBUG( 5722 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5723 return std::max(StoresIC, LoadsIC); 5724 } 5725 5726 // If there are scalar reductions and TTI has enabled aggressive 5727 // interleaving for reductions, we will interleave to expose ILP. 5728 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5729 AggressivelyInterleaveReductions) { 5730 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5731 // Interleave no less than SmallIC but not as aggressive as the normal IC 5732 // to satisfy the rare situation when resources are too limited. 5733 return std::max(IC / 2, SmallIC); 5734 } else { 5735 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5736 return SmallIC; 5737 } 5738 } 5739 5740 // Interleave if this is a large loop (small loops are already dealt with by 5741 // this point) that could benefit from interleaving. 5742 if (AggressivelyInterleaveReductions) { 5743 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5744 return IC; 5745 } 5746 5747 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5748 return 1; 5749 } 5750 5751 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5752 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5753 // This function calculates the register usage by measuring the highest number 5754 // of values that are alive at a single location. Obviously, this is a very 5755 // rough estimation. We scan the loop in a topological order in order and 5756 // assign a number to each instruction. We use RPO to ensure that defs are 5757 // met before their users. We assume that each instruction that has in-loop 5758 // users starts an interval. We record every time that an in-loop value is 5759 // used, so we have a list of the first and last occurrences of each 5760 // instruction. Next, we transpose this data structure into a multi map that 5761 // holds the list of intervals that *end* at a specific location. This multi 5762 // map allows us to perform a linear search. We scan the instructions linearly 5763 // and record each time that a new interval starts, by placing it in a set. 5764 // If we find this value in the multi-map then we remove it from the set. 5765 // The max register usage is the maximum size of the set. 5766 // We also search for instructions that are defined outside the loop, but are 5767 // used inside the loop. We need this number separately from the max-interval 5768 // usage number because when we unroll, loop-invariant values do not take 5769 // more register. 5770 LoopBlocksDFS DFS(TheLoop); 5771 DFS.perform(LI); 5772 5773 RegisterUsage RU; 5774 5775 // Each 'key' in the map opens a new interval. The values 5776 // of the map are the index of the 'last seen' usage of the 5777 // instruction that is the key. 5778 using IntervalMap = DenseMap<Instruction *, unsigned>; 5779 5780 // Maps instruction to its index. 5781 SmallVector<Instruction *, 64> IdxToInstr; 5782 // Marks the end of each interval. 5783 IntervalMap EndPoint; 5784 // Saves the list of instruction indices that are used in the loop. 5785 SmallPtrSet<Instruction *, 8> Ends; 5786 // Saves the list of values that are used in the loop but are 5787 // defined outside the loop, such as arguments and constants. 5788 SmallPtrSet<Value *, 8> LoopInvariants; 5789 5790 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5791 for (Instruction &I : BB->instructionsWithoutDebug()) { 5792 IdxToInstr.push_back(&I); 5793 5794 // Save the end location of each USE. 5795 for (Value *U : I.operands()) { 5796 auto *Instr = dyn_cast<Instruction>(U); 5797 5798 // Ignore non-instruction values such as arguments, constants, etc. 5799 if (!Instr) 5800 continue; 5801 5802 // If this instruction is outside the loop then record it and continue. 5803 if (!TheLoop->contains(Instr)) { 5804 LoopInvariants.insert(Instr); 5805 continue; 5806 } 5807 5808 // Overwrite previous end points. 5809 EndPoint[Instr] = IdxToInstr.size(); 5810 Ends.insert(Instr); 5811 } 5812 } 5813 } 5814 5815 // Saves the list of intervals that end with the index in 'key'. 5816 using InstrList = SmallVector<Instruction *, 2>; 5817 DenseMap<unsigned, InstrList> TransposeEnds; 5818 5819 // Transpose the EndPoints to a list of values that end at each index. 5820 for (auto &Interval : EndPoint) 5821 TransposeEnds[Interval.second].push_back(Interval.first); 5822 5823 SmallPtrSet<Instruction *, 8> OpenIntervals; 5824 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5825 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5826 5827 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5828 5829 // A lambda that gets the register usage for the given type and VF. 5830 const auto &TTICapture = TTI; 5831 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 5832 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5833 return 0U; 5834 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5835 }; 5836 5837 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5838 Instruction *I = IdxToInstr[i]; 5839 5840 // Remove all of the instructions that end at this location. 5841 InstrList &List = TransposeEnds[i]; 5842 for (Instruction *ToRemove : List) 5843 OpenIntervals.erase(ToRemove); 5844 5845 // Ignore instructions that are never used within the loop. 5846 if (!Ends.count(I)) 5847 continue; 5848 5849 // Skip ignored values. 5850 if (ValuesToIgnore.count(I)) 5851 continue; 5852 5853 // For each VF find the maximum usage of registers. 5854 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5855 // Count the number of live intervals. 5856 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5857 5858 if (VFs[j].isScalar()) { 5859 for (auto Inst : OpenIntervals) { 5860 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5861 if (RegUsage.find(ClassID) == RegUsage.end()) 5862 RegUsage[ClassID] = 1; 5863 else 5864 RegUsage[ClassID] += 1; 5865 } 5866 } else { 5867 collectUniformsAndScalars(VFs[j]); 5868 for (auto Inst : OpenIntervals) { 5869 // Skip ignored values for VF > 1. 5870 if (VecValuesToIgnore.count(Inst)) 5871 continue; 5872 if (isScalarAfterVectorization(Inst, VFs[j])) { 5873 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5874 if (RegUsage.find(ClassID) == RegUsage.end()) 5875 RegUsage[ClassID] = 1; 5876 else 5877 RegUsage[ClassID] += 1; 5878 } else { 5879 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5880 if (RegUsage.find(ClassID) == RegUsage.end()) 5881 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5882 else 5883 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5884 } 5885 } 5886 } 5887 5888 for (auto& pair : RegUsage) { 5889 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5890 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5891 else 5892 MaxUsages[j][pair.first] = pair.second; 5893 } 5894 } 5895 5896 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5897 << OpenIntervals.size() << '\n'); 5898 5899 // Add the current instruction to the list of open intervals. 5900 OpenIntervals.insert(I); 5901 } 5902 5903 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5904 SmallMapVector<unsigned, unsigned, 4> Invariant; 5905 5906 for (auto Inst : LoopInvariants) { 5907 unsigned Usage = 5908 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5909 unsigned ClassID = 5910 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5911 if (Invariant.find(ClassID) == Invariant.end()) 5912 Invariant[ClassID] = Usage; 5913 else 5914 Invariant[ClassID] += Usage; 5915 } 5916 5917 LLVM_DEBUG({ 5918 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5919 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5920 << " item\n"; 5921 for (const auto &pair : MaxUsages[i]) { 5922 dbgs() << "LV(REG): RegisterClass: " 5923 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5924 << " registers\n"; 5925 } 5926 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5927 << " item\n"; 5928 for (const auto &pair : Invariant) { 5929 dbgs() << "LV(REG): RegisterClass: " 5930 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5931 << " registers\n"; 5932 } 5933 }); 5934 5935 RU.LoopInvariantRegs = Invariant; 5936 RU.MaxLocalUsers = MaxUsages[i]; 5937 RUs[i] = RU; 5938 } 5939 5940 return RUs; 5941 } 5942 5943 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5944 // TODO: Cost model for emulated masked load/store is completely 5945 // broken. This hack guides the cost model to use an artificially 5946 // high enough value to practically disable vectorization with such 5947 // operations, except where previously deployed legality hack allowed 5948 // using very low cost values. This is to avoid regressions coming simply 5949 // from moving "masked load/store" check from legality to cost model. 5950 // Masked Load/Gather emulation was previously never allowed. 5951 // Limited number of Masked Store/Scatter emulation was allowed. 5952 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5953 return isa<LoadInst>(I) || 5954 (isa<StoreInst>(I) && 5955 NumPredStores > NumberOfStoresToPredicate); 5956 } 5957 5958 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5959 // If we aren't vectorizing the loop, or if we've already collected the 5960 // instructions to scalarize, there's nothing to do. Collection may already 5961 // have occurred if we have a user-selected VF and are now computing the 5962 // expected cost for interleaving. 5963 if (VF.isScalar() || VF.isZero() || 5964 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5965 return; 5966 5967 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5968 // not profitable to scalarize any instructions, the presence of VF in the 5969 // map will indicate that we've analyzed it already. 5970 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5971 5972 // Find all the instructions that are scalar with predication in the loop and 5973 // determine if it would be better to not if-convert the blocks they are in. 5974 // If so, we also record the instructions to scalarize. 5975 for (BasicBlock *BB : TheLoop->blocks()) { 5976 if (!blockNeedsPredication(BB)) 5977 continue; 5978 for (Instruction &I : *BB) 5979 if (isScalarWithPredication(&I)) { 5980 ScalarCostsTy ScalarCosts; 5981 // Do not apply discount logic if hacked cost is needed 5982 // for emulated masked memrefs. 5983 if (!useEmulatedMaskMemRefHack(&I) && 5984 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5985 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5986 // Remember that BB will remain after vectorization. 5987 PredicatedBBsAfterVectorization.insert(BB); 5988 } 5989 } 5990 } 5991 5992 int LoopVectorizationCostModel::computePredInstDiscount( 5993 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5994 ElementCount VF) { 5995 assert(!isUniformAfterVectorization(PredInst, VF) && 5996 "Instruction marked uniform-after-vectorization will be predicated"); 5997 5998 // Initialize the discount to zero, meaning that the scalar version and the 5999 // vector version cost the same. 6000 int Discount = 0; 6001 6002 // Holds instructions to analyze. The instructions we visit are mapped in 6003 // ScalarCosts. Those instructions are the ones that would be scalarized if 6004 // we find that the scalar version costs less. 6005 SmallVector<Instruction *, 8> Worklist; 6006 6007 // Returns true if the given instruction can be scalarized. 6008 auto canBeScalarized = [&](Instruction *I) -> bool { 6009 // We only attempt to scalarize instructions forming a single-use chain 6010 // from the original predicated block that would otherwise be vectorized. 6011 // Although not strictly necessary, we give up on instructions we know will 6012 // already be scalar to avoid traversing chains that are unlikely to be 6013 // beneficial. 6014 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6015 isScalarAfterVectorization(I, VF)) 6016 return false; 6017 6018 // If the instruction is scalar with predication, it will be analyzed 6019 // separately. We ignore it within the context of PredInst. 6020 if (isScalarWithPredication(I)) 6021 return false; 6022 6023 // If any of the instruction's operands are uniform after vectorization, 6024 // the instruction cannot be scalarized. This prevents, for example, a 6025 // masked load from being scalarized. 6026 // 6027 // We assume we will only emit a value for lane zero of an instruction 6028 // marked uniform after vectorization, rather than VF identical values. 6029 // Thus, if we scalarize an instruction that uses a uniform, we would 6030 // create uses of values corresponding to the lanes we aren't emitting code 6031 // for. This behavior can be changed by allowing getScalarValue to clone 6032 // the lane zero values for uniforms rather than asserting. 6033 for (Use &U : I->operands()) 6034 if (auto *J = dyn_cast<Instruction>(U.get())) 6035 if (isUniformAfterVectorization(J, VF)) 6036 return false; 6037 6038 // Otherwise, we can scalarize the instruction. 6039 return true; 6040 }; 6041 6042 // Compute the expected cost discount from scalarizing the entire expression 6043 // feeding the predicated instruction. We currently only consider expressions 6044 // that are single-use instruction chains. 6045 Worklist.push_back(PredInst); 6046 while (!Worklist.empty()) { 6047 Instruction *I = Worklist.pop_back_val(); 6048 6049 // If we've already analyzed the instruction, there's nothing to do. 6050 if (ScalarCosts.find(I) != ScalarCosts.end()) 6051 continue; 6052 6053 // Compute the cost of the vector instruction. Note that this cost already 6054 // includes the scalarization overhead of the predicated instruction. 6055 unsigned VectorCost = getInstructionCost(I, VF).first; 6056 6057 // Compute the cost of the scalarized instruction. This cost is the cost of 6058 // the instruction as if it wasn't if-converted and instead remained in the 6059 // predicated block. We will scale this cost by block probability after 6060 // computing the scalarization overhead. 6061 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6062 unsigned ScalarCost = 6063 VF.getKnownMinValue() * 6064 getInstructionCost(I, ElementCount::getFixed(1)).first; 6065 6066 // Compute the scalarization overhead of needed insertelement instructions 6067 // and phi nodes. 6068 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6069 ScalarCost += TTI.getScalarizationOverhead( 6070 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6071 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6072 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6073 ScalarCost += 6074 VF.getKnownMinValue() * 6075 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6076 } 6077 6078 // Compute the scalarization overhead of needed extractelement 6079 // instructions. For each of the instruction's operands, if the operand can 6080 // be scalarized, add it to the worklist; otherwise, account for the 6081 // overhead. 6082 for (Use &U : I->operands()) 6083 if (auto *J = dyn_cast<Instruction>(U.get())) { 6084 assert(VectorType::isValidElementType(J->getType()) && 6085 "Instruction has non-scalar type"); 6086 if (canBeScalarized(J)) 6087 Worklist.push_back(J); 6088 else if (needsExtract(J, VF)) { 6089 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6090 ScalarCost += TTI.getScalarizationOverhead( 6091 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6092 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6093 } 6094 } 6095 6096 // Scale the total scalar cost by block probability. 6097 ScalarCost /= getReciprocalPredBlockProb(); 6098 6099 // Compute the discount. A non-negative discount means the vector version 6100 // of the instruction costs more, and scalarizing would be beneficial. 6101 Discount += VectorCost - ScalarCost; 6102 ScalarCosts[I] = ScalarCost; 6103 } 6104 6105 return Discount; 6106 } 6107 6108 LoopVectorizationCostModel::VectorizationCostTy 6109 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6110 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6111 VectorizationCostTy Cost; 6112 6113 // For each block. 6114 for (BasicBlock *BB : TheLoop->blocks()) { 6115 VectorizationCostTy BlockCost; 6116 6117 // For each instruction in the old loop. 6118 for (Instruction &I : BB->instructionsWithoutDebug()) { 6119 // Skip ignored values. 6120 if (ValuesToIgnore.count(&I) || 6121 (VF.isVector() && VecValuesToIgnore.count(&I))) 6122 continue; 6123 6124 VectorizationCostTy C = getInstructionCost(&I, VF); 6125 6126 // Check if we should override the cost. 6127 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6128 C.first = ForceTargetInstructionCost; 6129 6130 BlockCost.first += C.first; 6131 BlockCost.second |= C.second; 6132 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6133 << " for VF " << VF << " For instruction: " << I 6134 << '\n'); 6135 } 6136 6137 // If we are vectorizing a predicated block, it will have been 6138 // if-converted. This means that the block's instructions (aside from 6139 // stores and instructions that may divide by zero) will now be 6140 // unconditionally executed. For the scalar case, we may not always execute 6141 // the predicated block. Thus, scale the block's cost by the probability of 6142 // executing it. 6143 if (VF.isScalar() && blockNeedsPredication(BB)) 6144 BlockCost.first /= getReciprocalPredBlockProb(); 6145 6146 Cost.first += BlockCost.first; 6147 Cost.second |= BlockCost.second; 6148 } 6149 6150 return Cost; 6151 } 6152 6153 /// Gets Address Access SCEV after verifying that the access pattern 6154 /// is loop invariant except the induction variable dependence. 6155 /// 6156 /// This SCEV can be sent to the Target in order to estimate the address 6157 /// calculation cost. 6158 static const SCEV *getAddressAccessSCEV( 6159 Value *Ptr, 6160 LoopVectorizationLegality *Legal, 6161 PredicatedScalarEvolution &PSE, 6162 const Loop *TheLoop) { 6163 6164 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6165 if (!Gep) 6166 return nullptr; 6167 6168 // We are looking for a gep with all loop invariant indices except for one 6169 // which should be an induction variable. 6170 auto SE = PSE.getSE(); 6171 unsigned NumOperands = Gep->getNumOperands(); 6172 for (unsigned i = 1; i < NumOperands; ++i) { 6173 Value *Opd = Gep->getOperand(i); 6174 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6175 !Legal->isInductionVariable(Opd)) 6176 return nullptr; 6177 } 6178 6179 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6180 return PSE.getSCEV(Ptr); 6181 } 6182 6183 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6184 return Legal->hasStride(I->getOperand(0)) || 6185 Legal->hasStride(I->getOperand(1)); 6186 } 6187 6188 unsigned 6189 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6190 ElementCount VF) { 6191 assert(VF.isVector() && 6192 "Scalarization cost of instruction implies vectorization."); 6193 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6194 Type *ValTy = getMemInstValueType(I); 6195 auto SE = PSE.getSE(); 6196 6197 unsigned AS = getLoadStoreAddressSpace(I); 6198 Value *Ptr = getLoadStorePointerOperand(I); 6199 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6200 6201 // Figure out whether the access is strided and get the stride value 6202 // if it's known in compile time 6203 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6204 6205 // Get the cost of the scalar memory instruction and address computation. 6206 unsigned Cost = 6207 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6208 6209 // Don't pass *I here, since it is scalar but will actually be part of a 6210 // vectorized loop where the user of it is a vectorized instruction. 6211 const Align Alignment = getLoadStoreAlignment(I); 6212 Cost += VF.getKnownMinValue() * 6213 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6214 AS, TTI::TCK_RecipThroughput); 6215 6216 // Get the overhead of the extractelement and insertelement instructions 6217 // we might create due to scalarization. 6218 Cost += getScalarizationOverhead(I, VF); 6219 6220 // If we have a predicated store, it may not be executed for each vector 6221 // lane. Scale the cost by the probability of executing the predicated 6222 // block. 6223 if (isPredicatedInst(I)) { 6224 Cost /= getReciprocalPredBlockProb(); 6225 6226 if (useEmulatedMaskMemRefHack(I)) 6227 // Artificially setting to a high enough value to practically disable 6228 // vectorization with such operations. 6229 Cost = 3000000; 6230 } 6231 6232 return Cost; 6233 } 6234 6235 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6236 ElementCount VF) { 6237 Type *ValTy = getMemInstValueType(I); 6238 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6239 Value *Ptr = getLoadStorePointerOperand(I); 6240 unsigned AS = getLoadStoreAddressSpace(I); 6241 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6242 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6243 6244 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6245 "Stride should be 1 or -1 for consecutive memory access"); 6246 const Align Alignment = getLoadStoreAlignment(I); 6247 unsigned Cost = 0; 6248 if (Legal->isMaskRequired(I)) 6249 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6250 CostKind); 6251 else 6252 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6253 CostKind, I); 6254 6255 bool Reverse = ConsecutiveStride < 0; 6256 if (Reverse) 6257 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6258 return Cost; 6259 } 6260 6261 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6262 ElementCount VF) { 6263 assert(Legal->isUniformMemOp(*I)); 6264 6265 Type *ValTy = getMemInstValueType(I); 6266 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6267 const Align Alignment = getLoadStoreAlignment(I); 6268 unsigned AS = getLoadStoreAddressSpace(I); 6269 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6270 if (isa<LoadInst>(I)) { 6271 return TTI.getAddressComputationCost(ValTy) + 6272 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6273 CostKind) + 6274 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6275 } 6276 StoreInst *SI = cast<StoreInst>(I); 6277 6278 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6279 return TTI.getAddressComputationCost(ValTy) + 6280 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6281 CostKind) + 6282 (isLoopInvariantStoreValue 6283 ? 0 6284 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6285 VF.getKnownMinValue() - 1)); 6286 } 6287 6288 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6289 ElementCount VF) { 6290 Type *ValTy = getMemInstValueType(I); 6291 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6292 const Align Alignment = getLoadStoreAlignment(I); 6293 const Value *Ptr = getLoadStorePointerOperand(I); 6294 6295 return TTI.getAddressComputationCost(VectorTy) + 6296 TTI.getGatherScatterOpCost( 6297 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6298 TargetTransformInfo::TCK_RecipThroughput, I); 6299 } 6300 6301 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6302 ElementCount VF) { 6303 Type *ValTy = getMemInstValueType(I); 6304 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6305 unsigned AS = getLoadStoreAddressSpace(I); 6306 6307 auto Group = getInterleavedAccessGroup(I); 6308 assert(Group && "Fail to get an interleaved access group."); 6309 6310 unsigned InterleaveFactor = Group->getFactor(); 6311 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6312 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6313 6314 // Holds the indices of existing members in an interleaved load group. 6315 // An interleaved store group doesn't need this as it doesn't allow gaps. 6316 SmallVector<unsigned, 4> Indices; 6317 if (isa<LoadInst>(I)) { 6318 for (unsigned i = 0; i < InterleaveFactor; i++) 6319 if (Group->getMember(i)) 6320 Indices.push_back(i); 6321 } 6322 6323 // Calculate the cost of the whole interleaved group. 6324 bool UseMaskForGaps = 6325 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6326 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6327 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6328 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6329 6330 if (Group->isReverse()) { 6331 // TODO: Add support for reversed masked interleaved access. 6332 assert(!Legal->isMaskRequired(I) && 6333 "Reverse masked interleaved access not supported."); 6334 Cost += Group->getNumMembers() * 6335 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6336 } 6337 return Cost; 6338 } 6339 6340 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6341 ElementCount VF) { 6342 // Calculate scalar cost only. Vectorization cost should be ready at this 6343 // moment. 6344 if (VF.isScalar()) { 6345 Type *ValTy = getMemInstValueType(I); 6346 const Align Alignment = getLoadStoreAlignment(I); 6347 unsigned AS = getLoadStoreAddressSpace(I); 6348 6349 return TTI.getAddressComputationCost(ValTy) + 6350 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6351 TTI::TCK_RecipThroughput, I); 6352 } 6353 return getWideningCost(I, VF); 6354 } 6355 6356 LoopVectorizationCostModel::VectorizationCostTy 6357 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6358 ElementCount VF) { 6359 assert(!VF.isScalable() && 6360 "the cost model is not yet implemented for scalable vectorization"); 6361 // If we know that this instruction will remain uniform, check the cost of 6362 // the scalar version. 6363 if (isUniformAfterVectorization(I, VF)) 6364 VF = ElementCount::getFixed(1); 6365 6366 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6367 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6368 6369 // Forced scalars do not have any scalarization overhead. 6370 auto ForcedScalar = ForcedScalars.find(VF); 6371 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6372 auto InstSet = ForcedScalar->second; 6373 if (InstSet.count(I)) 6374 return VectorizationCostTy( 6375 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6376 VF.getKnownMinValue()), 6377 false); 6378 } 6379 6380 Type *VectorTy; 6381 unsigned C = getInstructionCost(I, VF, VectorTy); 6382 6383 bool TypeNotScalarized = 6384 VF.isVector() && VectorTy->isVectorTy() && 6385 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6386 return VectorizationCostTy(C, TypeNotScalarized); 6387 } 6388 6389 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6390 ElementCount VF) { 6391 6392 assert(!VF.isScalable() && 6393 "cannot compute scalarization overhead for scalable vectorization"); 6394 if (VF.isScalar()) 6395 return 0; 6396 6397 unsigned Cost = 0; 6398 Type *RetTy = ToVectorTy(I->getType(), VF); 6399 if (!RetTy->isVoidTy() && 6400 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6401 Cost += TTI.getScalarizationOverhead( 6402 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6403 true, false); 6404 6405 // Some targets keep addresses scalar. 6406 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6407 return Cost; 6408 6409 // Some targets support efficient element stores. 6410 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6411 return Cost; 6412 6413 // Collect operands to consider. 6414 CallInst *CI = dyn_cast<CallInst>(I); 6415 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6416 6417 // Skip operands that do not require extraction/scalarization and do not incur 6418 // any overhead. 6419 return Cost + TTI.getOperandsScalarizationOverhead( 6420 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6421 } 6422 6423 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6424 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6425 if (VF.isScalar()) 6426 return; 6427 NumPredStores = 0; 6428 for (BasicBlock *BB : TheLoop->blocks()) { 6429 // For each instruction in the old loop. 6430 for (Instruction &I : *BB) { 6431 Value *Ptr = getLoadStorePointerOperand(&I); 6432 if (!Ptr) 6433 continue; 6434 6435 // TODO: We should generate better code and update the cost model for 6436 // predicated uniform stores. Today they are treated as any other 6437 // predicated store (see added test cases in 6438 // invariant-store-vectorization.ll). 6439 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6440 NumPredStores++; 6441 6442 if (Legal->isUniformMemOp(I)) { 6443 // TODO: Avoid replicating loads and stores instead of 6444 // relying on instcombine to remove them. 6445 // Load: Scalar load + broadcast 6446 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6447 unsigned Cost = getUniformMemOpCost(&I, VF); 6448 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6449 continue; 6450 } 6451 6452 // We assume that widening is the best solution when possible. 6453 if (memoryInstructionCanBeWidened(&I, VF)) { 6454 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6455 int ConsecutiveStride = 6456 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6457 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6458 "Expected consecutive stride."); 6459 InstWidening Decision = 6460 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6461 setWideningDecision(&I, VF, Decision, Cost); 6462 continue; 6463 } 6464 6465 // Choose between Interleaving, Gather/Scatter or Scalarization. 6466 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6467 unsigned NumAccesses = 1; 6468 if (isAccessInterleaved(&I)) { 6469 auto Group = getInterleavedAccessGroup(&I); 6470 assert(Group && "Fail to get an interleaved access group."); 6471 6472 // Make one decision for the whole group. 6473 if (getWideningDecision(&I, VF) != CM_Unknown) 6474 continue; 6475 6476 NumAccesses = Group->getNumMembers(); 6477 if (interleavedAccessCanBeWidened(&I, VF)) 6478 InterleaveCost = getInterleaveGroupCost(&I, VF); 6479 } 6480 6481 unsigned GatherScatterCost = 6482 isLegalGatherOrScatter(&I) 6483 ? getGatherScatterCost(&I, VF) * NumAccesses 6484 : std::numeric_limits<unsigned>::max(); 6485 6486 unsigned ScalarizationCost = 6487 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6488 6489 // Choose better solution for the current VF, 6490 // write down this decision and use it during vectorization. 6491 unsigned Cost; 6492 InstWidening Decision; 6493 if (InterleaveCost <= GatherScatterCost && 6494 InterleaveCost < ScalarizationCost) { 6495 Decision = CM_Interleave; 6496 Cost = InterleaveCost; 6497 } else if (GatherScatterCost < ScalarizationCost) { 6498 Decision = CM_GatherScatter; 6499 Cost = GatherScatterCost; 6500 } else { 6501 Decision = CM_Scalarize; 6502 Cost = ScalarizationCost; 6503 } 6504 // If the instructions belongs to an interleave group, the whole group 6505 // receives the same decision. The whole group receives the cost, but 6506 // the cost will actually be assigned to one instruction. 6507 if (auto Group = getInterleavedAccessGroup(&I)) 6508 setWideningDecision(Group, VF, Decision, Cost); 6509 else 6510 setWideningDecision(&I, VF, Decision, Cost); 6511 } 6512 } 6513 6514 // Make sure that any load of address and any other address computation 6515 // remains scalar unless there is gather/scatter support. This avoids 6516 // inevitable extracts into address registers, and also has the benefit of 6517 // activating LSR more, since that pass can't optimize vectorized 6518 // addresses. 6519 if (TTI.prefersVectorizedAddressing()) 6520 return; 6521 6522 // Start with all scalar pointer uses. 6523 SmallPtrSet<Instruction *, 8> AddrDefs; 6524 for (BasicBlock *BB : TheLoop->blocks()) 6525 for (Instruction &I : *BB) { 6526 Instruction *PtrDef = 6527 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6528 if (PtrDef && TheLoop->contains(PtrDef) && 6529 getWideningDecision(&I, VF) != CM_GatherScatter) 6530 AddrDefs.insert(PtrDef); 6531 } 6532 6533 // Add all instructions used to generate the addresses. 6534 SmallVector<Instruction *, 4> Worklist; 6535 for (auto *I : AddrDefs) 6536 Worklist.push_back(I); 6537 while (!Worklist.empty()) { 6538 Instruction *I = Worklist.pop_back_val(); 6539 for (auto &Op : I->operands()) 6540 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6541 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6542 AddrDefs.insert(InstOp).second) 6543 Worklist.push_back(InstOp); 6544 } 6545 6546 for (auto *I : AddrDefs) { 6547 if (isa<LoadInst>(I)) { 6548 // Setting the desired widening decision should ideally be handled in 6549 // by cost functions, but since this involves the task of finding out 6550 // if the loaded register is involved in an address computation, it is 6551 // instead changed here when we know this is the case. 6552 InstWidening Decision = getWideningDecision(I, VF); 6553 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6554 // Scalarize a widened load of address. 6555 setWideningDecision( 6556 I, VF, CM_Scalarize, 6557 (VF.getKnownMinValue() * 6558 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6559 else if (auto Group = getInterleavedAccessGroup(I)) { 6560 // Scalarize an interleave group of address loads. 6561 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6562 if (Instruction *Member = Group->getMember(I)) 6563 setWideningDecision( 6564 Member, VF, CM_Scalarize, 6565 (VF.getKnownMinValue() * 6566 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6567 } 6568 } 6569 } else 6570 // Make sure I gets scalarized and a cost estimate without 6571 // scalarization overhead. 6572 ForcedScalars[VF].insert(I); 6573 } 6574 } 6575 6576 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6577 ElementCount VF, 6578 Type *&VectorTy) { 6579 Type *RetTy = I->getType(); 6580 if (canTruncateToMinimalBitwidth(I, VF)) 6581 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6582 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6583 auto SE = PSE.getSE(); 6584 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6585 6586 // TODO: We need to estimate the cost of intrinsic calls. 6587 switch (I->getOpcode()) { 6588 case Instruction::GetElementPtr: 6589 // We mark this instruction as zero-cost because the cost of GEPs in 6590 // vectorized code depends on whether the corresponding memory instruction 6591 // is scalarized or not. Therefore, we handle GEPs with the memory 6592 // instruction cost. 6593 return 0; 6594 case Instruction::Br: { 6595 // In cases of scalarized and predicated instructions, there will be VF 6596 // predicated blocks in the vectorized loop. Each branch around these 6597 // blocks requires also an extract of its vector compare i1 element. 6598 bool ScalarPredicatedBB = false; 6599 BranchInst *BI = cast<BranchInst>(I); 6600 if (VF.isVector() && BI->isConditional() && 6601 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6602 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6603 ScalarPredicatedBB = true; 6604 6605 if (ScalarPredicatedBB) { 6606 // Return cost for branches around scalarized and predicated blocks. 6607 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6608 auto *Vec_i1Ty = 6609 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6610 return (TTI.getScalarizationOverhead( 6611 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6612 false, true) + 6613 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6614 VF.getKnownMinValue())); 6615 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6616 // The back-edge branch will remain, as will all scalar branches. 6617 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6618 else 6619 // This branch will be eliminated by if-conversion. 6620 return 0; 6621 // Note: We currently assume zero cost for an unconditional branch inside 6622 // a predicated block since it will become a fall-through, although we 6623 // may decide in the future to call TTI for all branches. 6624 } 6625 case Instruction::PHI: { 6626 auto *Phi = cast<PHINode>(I); 6627 6628 // First-order recurrences are replaced by vector shuffles inside the loop. 6629 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6630 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6631 return TTI.getShuffleCost( 6632 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6633 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6634 6635 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6636 // converted into select instructions. We require N - 1 selects per phi 6637 // node, where N is the number of incoming values. 6638 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6639 return (Phi->getNumIncomingValues() - 1) * 6640 TTI.getCmpSelInstrCost( 6641 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6642 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6643 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6644 6645 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6646 } 6647 case Instruction::UDiv: 6648 case Instruction::SDiv: 6649 case Instruction::URem: 6650 case Instruction::SRem: 6651 // If we have a predicated instruction, it may not be executed for each 6652 // vector lane. Get the scalarization cost and scale this amount by the 6653 // probability of executing the predicated block. If the instruction is not 6654 // predicated, we fall through to the next case. 6655 if (VF.isVector() && isScalarWithPredication(I)) { 6656 unsigned Cost = 0; 6657 6658 // These instructions have a non-void type, so account for the phi nodes 6659 // that we will create. This cost is likely to be zero. The phi node 6660 // cost, if any, should be scaled by the block probability because it 6661 // models a copy at the end of each predicated block. 6662 Cost += VF.getKnownMinValue() * 6663 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6664 6665 // The cost of the non-predicated instruction. 6666 Cost += VF.getKnownMinValue() * 6667 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6668 6669 // The cost of insertelement and extractelement instructions needed for 6670 // scalarization. 6671 Cost += getScalarizationOverhead(I, VF); 6672 6673 // Scale the cost by the probability of executing the predicated blocks. 6674 // This assumes the predicated block for each vector lane is equally 6675 // likely. 6676 return Cost / getReciprocalPredBlockProb(); 6677 } 6678 LLVM_FALLTHROUGH; 6679 case Instruction::Add: 6680 case Instruction::FAdd: 6681 case Instruction::Sub: 6682 case Instruction::FSub: 6683 case Instruction::Mul: 6684 case Instruction::FMul: 6685 case Instruction::FDiv: 6686 case Instruction::FRem: 6687 case Instruction::Shl: 6688 case Instruction::LShr: 6689 case Instruction::AShr: 6690 case Instruction::And: 6691 case Instruction::Or: 6692 case Instruction::Xor: { 6693 // Since we will replace the stride by 1 the multiplication should go away. 6694 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6695 return 0; 6696 // Certain instructions can be cheaper to vectorize if they have a constant 6697 // second vector operand. One example of this are shifts on x86. 6698 Value *Op2 = I->getOperand(1); 6699 TargetTransformInfo::OperandValueProperties Op2VP; 6700 TargetTransformInfo::OperandValueKind Op2VK = 6701 TTI.getOperandInfo(Op2, Op2VP); 6702 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6703 Op2VK = TargetTransformInfo::OK_UniformValue; 6704 6705 SmallVector<const Value *, 4> Operands(I->operand_values()); 6706 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6707 return N * TTI.getArithmeticInstrCost( 6708 I->getOpcode(), VectorTy, CostKind, 6709 TargetTransformInfo::OK_AnyValue, 6710 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6711 } 6712 case Instruction::FNeg: { 6713 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6714 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6715 return N * TTI.getArithmeticInstrCost( 6716 I->getOpcode(), VectorTy, CostKind, 6717 TargetTransformInfo::OK_AnyValue, 6718 TargetTransformInfo::OK_AnyValue, 6719 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6720 I->getOperand(0), I); 6721 } 6722 case Instruction::Select: { 6723 SelectInst *SI = cast<SelectInst>(I); 6724 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6725 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6726 Type *CondTy = SI->getCondition()->getType(); 6727 if (!ScalarCond) { 6728 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6729 CondTy = VectorType::get(CondTy, VF); 6730 } 6731 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6732 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6733 } 6734 case Instruction::ICmp: 6735 case Instruction::FCmp: { 6736 Type *ValTy = I->getOperand(0)->getType(); 6737 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6738 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6739 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6740 VectorTy = ToVectorTy(ValTy, VF); 6741 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6742 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6743 } 6744 case Instruction::Store: 6745 case Instruction::Load: { 6746 ElementCount Width = VF; 6747 if (Width.isVector()) { 6748 InstWidening Decision = getWideningDecision(I, Width); 6749 assert(Decision != CM_Unknown && 6750 "CM decision should be taken at this point"); 6751 if (Decision == CM_Scalarize) 6752 Width = ElementCount::getFixed(1); 6753 } 6754 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6755 return getMemoryInstructionCost(I, VF); 6756 } 6757 case Instruction::ZExt: 6758 case Instruction::SExt: 6759 case Instruction::FPToUI: 6760 case Instruction::FPToSI: 6761 case Instruction::FPExt: 6762 case Instruction::PtrToInt: 6763 case Instruction::IntToPtr: 6764 case Instruction::SIToFP: 6765 case Instruction::UIToFP: 6766 case Instruction::Trunc: 6767 case Instruction::FPTrunc: 6768 case Instruction::BitCast: { 6769 // Computes the CastContextHint from a Load/Store instruction. 6770 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6771 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6772 "Expected a load or a store!"); 6773 6774 if (VF.isScalar() || !TheLoop->contains(I)) 6775 return TTI::CastContextHint::Normal; 6776 6777 switch (getWideningDecision(I, VF)) { 6778 case LoopVectorizationCostModel::CM_GatherScatter: 6779 return TTI::CastContextHint::GatherScatter; 6780 case LoopVectorizationCostModel::CM_Interleave: 6781 return TTI::CastContextHint::Interleave; 6782 case LoopVectorizationCostModel::CM_Scalarize: 6783 case LoopVectorizationCostModel::CM_Widen: 6784 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6785 : TTI::CastContextHint::Normal; 6786 case LoopVectorizationCostModel::CM_Widen_Reverse: 6787 return TTI::CastContextHint::Reversed; 6788 case LoopVectorizationCostModel::CM_Unknown: 6789 llvm_unreachable("Instr did not go through cost modelling?"); 6790 } 6791 6792 llvm_unreachable("Unhandled case!"); 6793 }; 6794 6795 unsigned Opcode = I->getOpcode(); 6796 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6797 // For Trunc, the context is the only user, which must be a StoreInst. 6798 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6799 if (I->hasOneUse()) 6800 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6801 CCH = ComputeCCH(Store); 6802 } 6803 // For Z/Sext, the context is the operand, which must be a LoadInst. 6804 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6805 Opcode == Instruction::FPExt) { 6806 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6807 CCH = ComputeCCH(Load); 6808 } 6809 6810 // We optimize the truncation of induction variables having constant 6811 // integer steps. The cost of these truncations is the same as the scalar 6812 // operation. 6813 if (isOptimizableIVTruncate(I, VF)) { 6814 auto *Trunc = cast<TruncInst>(I); 6815 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6816 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6817 } 6818 6819 Type *SrcScalarTy = I->getOperand(0)->getType(); 6820 Type *SrcVecTy = 6821 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6822 if (canTruncateToMinimalBitwidth(I, VF)) { 6823 // This cast is going to be shrunk. This may remove the cast or it might 6824 // turn it into slightly different cast. For example, if MinBW == 16, 6825 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6826 // 6827 // Calculate the modified src and dest types. 6828 Type *MinVecTy = VectorTy; 6829 if (Opcode == Instruction::Trunc) { 6830 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6831 VectorTy = 6832 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6833 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6834 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6835 VectorTy = 6836 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6837 } 6838 } 6839 6840 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6841 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6842 return N * 6843 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6844 } 6845 case Instruction::Call: { 6846 bool NeedToScalarize; 6847 CallInst *CI = cast<CallInst>(I); 6848 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6849 if (getVectorIntrinsicIDForCall(CI, TLI)) 6850 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6851 return CallCost; 6852 } 6853 default: 6854 // The cost of executing VF copies of the scalar instruction. This opcode 6855 // is unknown. Assume that it is the same as 'mul'. 6856 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6857 Instruction::Mul, VectorTy, CostKind) + 6858 getScalarizationOverhead(I, VF); 6859 } // end of switch. 6860 } 6861 6862 char LoopVectorize::ID = 0; 6863 6864 static const char lv_name[] = "Loop Vectorization"; 6865 6866 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6867 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6868 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6869 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6870 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6871 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6872 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6873 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6874 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6875 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6876 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6877 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6878 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6879 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6880 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6881 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6882 6883 namespace llvm { 6884 6885 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6886 6887 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6888 bool VectorizeOnlyWhenForced) { 6889 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6890 } 6891 6892 } // end namespace llvm 6893 6894 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6895 // Check if the pointer operand of a load or store instruction is 6896 // consecutive. 6897 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6898 return Legal->isConsecutivePtr(Ptr); 6899 return false; 6900 } 6901 6902 void LoopVectorizationCostModel::collectValuesToIgnore() { 6903 // Ignore ephemeral values. 6904 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6905 6906 // Ignore type-promoting instructions we identified during reduction 6907 // detection. 6908 for (auto &Reduction : Legal->getReductionVars()) { 6909 RecurrenceDescriptor &RedDes = Reduction.second; 6910 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6911 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6912 } 6913 // Ignore type-casting instructions we identified during induction 6914 // detection. 6915 for (auto &Induction : Legal->getInductionVars()) { 6916 InductionDescriptor &IndDes = Induction.second; 6917 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6918 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6919 } 6920 } 6921 6922 void LoopVectorizationCostModel::collectInLoopReductions() { 6923 for (auto &Reduction : Legal->getReductionVars()) { 6924 PHINode *Phi = Reduction.first; 6925 RecurrenceDescriptor &RdxDesc = Reduction.second; 6926 6927 // We don't collect reductions that are type promoted (yet). 6928 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6929 continue; 6930 6931 // If the target would prefer this reduction to happen "in-loop", then we 6932 // want to record it as such. 6933 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6934 if (!PreferInLoopReductions && 6935 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6936 TargetTransformInfo::ReductionFlags())) 6937 continue; 6938 6939 // Check that we can correctly put the reductions into the loop, by 6940 // finding the chain of operations that leads from the phi to the loop 6941 // exit value. 6942 SmallVector<Instruction *, 4> ReductionOperations = 6943 RdxDesc.getReductionOpChain(Phi, TheLoop); 6944 bool InLoop = !ReductionOperations.empty(); 6945 if (InLoop) 6946 InLoopReductionChains[Phi] = ReductionOperations; 6947 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6948 << " reduction for phi: " << *Phi << "\n"); 6949 } 6950 } 6951 6952 // TODO: we could return a pair of values that specify the max VF and 6953 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6954 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6955 // doesn't have a cost model that can choose which plan to execute if 6956 // more than one is generated. 6957 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6958 LoopVectorizationCostModel &CM) { 6959 unsigned WidestType; 6960 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6961 return WidestVectorRegBits / WidestType; 6962 } 6963 6964 VectorizationFactor 6965 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6966 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6967 ElementCount VF = UserVF; 6968 // Outer loop handling: They may require CFG and instruction level 6969 // transformations before even evaluating whether vectorization is profitable. 6970 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6971 // the vectorization pipeline. 6972 if (!OrigLoop->isInnermost()) { 6973 // If the user doesn't provide a vectorization factor, determine a 6974 // reasonable one. 6975 if (UserVF.isZero()) { 6976 VF = ElementCount::getFixed( 6977 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6978 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6979 6980 // Make sure we have a VF > 1 for stress testing. 6981 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6982 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6983 << "overriding computed VF.\n"); 6984 VF = ElementCount::getFixed(4); 6985 } 6986 } 6987 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6988 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6989 "VF needs to be a power of two"); 6990 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6991 << "VF " << VF << " to build VPlans.\n"); 6992 buildVPlans(VF, VF); 6993 6994 // For VPlan build stress testing, we bail out after VPlan construction. 6995 if (VPlanBuildStressTest) 6996 return VectorizationFactor::Disabled(); 6997 6998 return {VF, 0 /*Cost*/}; 6999 } 7000 7001 LLVM_DEBUG( 7002 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7003 "VPlan-native path.\n"); 7004 return VectorizationFactor::Disabled(); 7005 } 7006 7007 Optional<VectorizationFactor> 7008 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7009 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 7010 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7011 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7012 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7013 return None; 7014 7015 // Invalidate interleave groups if all blocks of loop will be predicated. 7016 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7017 !useMaskedInterleavedAccesses(*TTI)) { 7018 LLVM_DEBUG( 7019 dbgs() 7020 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7021 "which requires masked-interleaved support.\n"); 7022 if (CM.InterleaveInfo.invalidateGroups()) 7023 // Invalidating interleave groups also requires invalidating all decisions 7024 // based on them, which includes widening decisions and uniform and scalar 7025 // values. 7026 CM.invalidateCostModelingDecisions(); 7027 } 7028 7029 if (!UserVF.isZero()) { 7030 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7031 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7032 "VF needs to be a power of two"); 7033 // Collect the instructions (and their associated costs) that will be more 7034 // profitable to scalarize. 7035 CM.selectUserVectorizationFactor(UserVF); 7036 CM.collectInLoopReductions(); 7037 buildVPlansWithVPRecipes(UserVF, UserVF); 7038 LLVM_DEBUG(printPlans(dbgs())); 7039 return {{UserVF, 0}}; 7040 } 7041 7042 ElementCount MaxVF = MaybeMaxVF.getValue(); 7043 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7044 7045 for (ElementCount VF = ElementCount::getFixed(1); 7046 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7047 // Collect Uniform and Scalar instructions after vectorization with VF. 7048 CM.collectUniformsAndScalars(VF); 7049 7050 // Collect the instructions (and their associated costs) that will be more 7051 // profitable to scalarize. 7052 if (VF.isVector()) 7053 CM.collectInstsToScalarize(VF); 7054 } 7055 7056 CM.collectInLoopReductions(); 7057 7058 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7059 LLVM_DEBUG(printPlans(dbgs())); 7060 if (MaxVF.isScalar()) 7061 return VectorizationFactor::Disabled(); 7062 7063 // Select the optimal vectorization factor. 7064 return CM.selectVectorizationFactor(MaxVF); 7065 } 7066 7067 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7068 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7069 << '\n'); 7070 BestVF = VF; 7071 BestUF = UF; 7072 7073 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7074 return !Plan->hasVF(VF); 7075 }); 7076 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7077 } 7078 7079 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7080 DominatorTree *DT) { 7081 // Perform the actual loop transformation. 7082 7083 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7084 VPCallbackILV CallbackILV(ILV); 7085 7086 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7087 7088 VPTransformState State{*BestVF, BestUF, LI, 7089 DT, ILV.Builder, ILV.VectorLoopValueMap, 7090 &ILV, CallbackILV}; 7091 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7092 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7093 State.CanonicalIV = ILV.Induction; 7094 7095 //===------------------------------------------------===// 7096 // 7097 // Notice: any optimization or new instruction that go 7098 // into the code below should also be implemented in 7099 // the cost-model. 7100 // 7101 //===------------------------------------------------===// 7102 7103 // 2. Copy and widen instructions from the old loop into the new loop. 7104 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7105 VPlans.front()->execute(&State); 7106 7107 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7108 // predication, updating analyses. 7109 ILV.fixVectorizedLoop(); 7110 } 7111 7112 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7113 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7114 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7115 7116 // We create new control-flow for the vectorized loop, so the original 7117 // condition will be dead after vectorization if it's only used by the 7118 // branch. 7119 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7120 if (Cmp && Cmp->hasOneUse()) { 7121 DeadInstructions.insert(Cmp); 7122 7123 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7124 for (Value *Op : Cmp->operands()) { 7125 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7126 DeadInstructions.insert(cast<Instruction>(Op)); 7127 } 7128 } 7129 7130 // We create new "steps" for induction variable updates to which the original 7131 // induction variables map. An original update instruction will be dead if 7132 // all its users except the induction variable are dead. 7133 for (auto &Induction : Legal->getInductionVars()) { 7134 PHINode *Ind = Induction.first; 7135 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7136 7137 // If the tail is to be folded by masking, the primary induction variable, 7138 // if exists, isn't dead: it will be used for masking. Don't kill it. 7139 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7140 continue; 7141 7142 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7143 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7144 })) 7145 DeadInstructions.insert(IndUpdate); 7146 7147 // We record as "Dead" also the type-casting instructions we had identified 7148 // during induction analysis. We don't need any handling for them in the 7149 // vectorized loop because we have proven that, under a proper runtime 7150 // test guarding the vectorized loop, the value of the phi, and the casted 7151 // value of the phi, are the same. The last instruction in this casting chain 7152 // will get its scalar/vector/widened def from the scalar/vector/widened def 7153 // of the respective phi node. Any other casts in the induction def-use chain 7154 // have no other uses outside the phi update chain, and will be ignored. 7155 InductionDescriptor &IndDes = Induction.second; 7156 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7157 DeadInstructions.insert(Casts.begin(), Casts.end()); 7158 } 7159 } 7160 7161 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7162 7163 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7164 7165 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7166 Instruction::BinaryOps BinOp) { 7167 // When unrolling and the VF is 1, we only need to add a simple scalar. 7168 Type *Ty = Val->getType(); 7169 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7170 7171 if (Ty->isFloatingPointTy()) { 7172 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7173 7174 // Floating point operations had to be 'fast' to enable the unrolling. 7175 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7176 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7177 } 7178 Constant *C = ConstantInt::get(Ty, StartIdx); 7179 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7180 } 7181 7182 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7183 SmallVector<Metadata *, 4> MDs; 7184 // Reserve first location for self reference to the LoopID metadata node. 7185 MDs.push_back(nullptr); 7186 bool IsUnrollMetadata = false; 7187 MDNode *LoopID = L->getLoopID(); 7188 if (LoopID) { 7189 // First find existing loop unrolling disable metadata. 7190 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7191 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7192 if (MD) { 7193 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7194 IsUnrollMetadata = 7195 S && S->getString().startswith("llvm.loop.unroll.disable"); 7196 } 7197 MDs.push_back(LoopID->getOperand(i)); 7198 } 7199 } 7200 7201 if (!IsUnrollMetadata) { 7202 // Add runtime unroll disable metadata. 7203 LLVMContext &Context = L->getHeader()->getContext(); 7204 SmallVector<Metadata *, 1> DisableOperands; 7205 DisableOperands.push_back( 7206 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7207 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7208 MDs.push_back(DisableNode); 7209 MDNode *NewLoopID = MDNode::get(Context, MDs); 7210 // Set operand 0 to refer to the loop id itself. 7211 NewLoopID->replaceOperandWith(0, NewLoopID); 7212 L->setLoopID(NewLoopID); 7213 } 7214 } 7215 7216 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7217 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7218 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7219 bool PredicateAtRangeStart = Predicate(Range.Start); 7220 7221 for (ElementCount TmpVF = Range.Start * 2; 7222 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7223 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7224 Range.End = TmpVF; 7225 break; 7226 } 7227 7228 return PredicateAtRangeStart; 7229 } 7230 7231 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7232 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7233 /// of VF's starting at a given VF and extending it as much as possible. Each 7234 /// vectorization decision can potentially shorten this sub-range during 7235 /// buildVPlan(). 7236 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7237 ElementCount MaxVF) { 7238 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7239 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7240 VFRange SubRange = {VF, MaxVFPlusOne}; 7241 VPlans.push_back(buildVPlan(SubRange)); 7242 VF = SubRange.End; 7243 } 7244 } 7245 7246 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7247 VPlanPtr &Plan) { 7248 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7249 7250 // Look for cached value. 7251 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7252 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7253 if (ECEntryIt != EdgeMaskCache.end()) 7254 return ECEntryIt->second; 7255 7256 VPValue *SrcMask = createBlockInMask(Src, Plan); 7257 7258 // The terminator has to be a branch inst! 7259 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7260 assert(BI && "Unexpected terminator found"); 7261 7262 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7263 return EdgeMaskCache[Edge] = SrcMask; 7264 7265 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7266 assert(EdgeMask && "No Edge Mask found for condition"); 7267 7268 if (BI->getSuccessor(0) != Dst) 7269 EdgeMask = Builder.createNot(EdgeMask); 7270 7271 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7272 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7273 7274 return EdgeMaskCache[Edge] = EdgeMask; 7275 } 7276 7277 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7278 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7279 7280 // Look for cached value. 7281 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7282 if (BCEntryIt != BlockMaskCache.end()) 7283 return BCEntryIt->second; 7284 7285 // All-one mask is modelled as no-mask following the convention for masked 7286 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7287 VPValue *BlockMask = nullptr; 7288 7289 if (OrigLoop->getHeader() == BB) { 7290 if (!CM.blockNeedsPredication(BB)) 7291 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7292 7293 // Create the block in mask as the first non-phi instruction in the block. 7294 VPBuilder::InsertPointGuard Guard(Builder); 7295 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7296 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7297 7298 // Introduce the early-exit compare IV <= BTC to form header block mask. 7299 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7300 // Start by constructing the desired canonical IV. 7301 VPValue *IV = nullptr; 7302 if (Legal->getPrimaryInduction()) 7303 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 7304 else { 7305 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7306 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7307 IV = IVRecipe->getVPValue(); 7308 } 7309 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7310 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7311 7312 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7313 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7314 // as a second argument, we only pass the IV here and extract the 7315 // tripcount from the transform state where codegen of the VP instructions 7316 // happen. 7317 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7318 } else { 7319 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7320 } 7321 return BlockMaskCache[BB] = BlockMask; 7322 } 7323 7324 // This is the block mask. We OR all incoming edges. 7325 for (auto *Predecessor : predecessors(BB)) { 7326 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7327 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7328 return BlockMaskCache[BB] = EdgeMask; 7329 7330 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7331 BlockMask = EdgeMask; 7332 continue; 7333 } 7334 7335 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7336 } 7337 7338 return BlockMaskCache[BB] = BlockMask; 7339 } 7340 7341 VPWidenMemoryInstructionRecipe * 7342 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7343 VPlanPtr &Plan) { 7344 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7345 "Must be called with either a load or store"); 7346 7347 auto willWiden = [&](ElementCount VF) -> bool { 7348 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7349 if (VF.isScalar()) 7350 return false; 7351 LoopVectorizationCostModel::InstWidening Decision = 7352 CM.getWideningDecision(I, VF); 7353 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7354 "CM decision should be taken at this point."); 7355 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7356 return true; 7357 if (CM.isScalarAfterVectorization(I, VF) || 7358 CM.isProfitableToScalarize(I, VF)) 7359 return false; 7360 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7361 }; 7362 7363 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7364 return nullptr; 7365 7366 VPValue *Mask = nullptr; 7367 if (Legal->isMaskRequired(I)) 7368 Mask = createBlockInMask(I->getParent(), Plan); 7369 7370 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7371 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7372 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7373 7374 StoreInst *Store = cast<StoreInst>(I); 7375 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7376 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7377 } 7378 7379 VPWidenIntOrFpInductionRecipe * 7380 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7381 // Check if this is an integer or fp induction. If so, build the recipe that 7382 // produces its scalar and vector values. 7383 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7384 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7385 II.getKind() == InductionDescriptor::IK_FpInduction) 7386 return new VPWidenIntOrFpInductionRecipe(Phi); 7387 7388 return nullptr; 7389 } 7390 7391 VPWidenIntOrFpInductionRecipe * 7392 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7393 VFRange &Range) const { 7394 // Optimize the special case where the source is a constant integer 7395 // induction variable. Notice that we can only optimize the 'trunc' case 7396 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7397 // (c) other casts depend on pointer size. 7398 7399 // Determine whether \p K is a truncation based on an induction variable that 7400 // can be optimized. 7401 auto isOptimizableIVTruncate = 7402 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7403 return [=](ElementCount VF) -> bool { 7404 return CM.isOptimizableIVTruncate(K, VF); 7405 }; 7406 }; 7407 7408 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7409 isOptimizableIVTruncate(I), Range)) 7410 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7411 I); 7412 return nullptr; 7413 } 7414 7415 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7416 // We know that all PHIs in non-header blocks are converted into selects, so 7417 // we don't have to worry about the insertion order and we can just use the 7418 // builder. At this point we generate the predication tree. There may be 7419 // duplications since this is a simple recursive scan, but future 7420 // optimizations will clean it up. 7421 7422 SmallVector<VPValue *, 2> Operands; 7423 unsigned NumIncoming = Phi->getNumIncomingValues(); 7424 for (unsigned In = 0; In < NumIncoming; In++) { 7425 VPValue *EdgeMask = 7426 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7427 assert((EdgeMask || NumIncoming == 1) && 7428 "Multiple predecessors with one having a full mask"); 7429 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7430 if (EdgeMask) 7431 Operands.push_back(EdgeMask); 7432 } 7433 return new VPBlendRecipe(Phi, Operands); 7434 } 7435 7436 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7437 VPlan &Plan) const { 7438 7439 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7440 [this, CI](ElementCount VF) { 7441 return CM.isScalarWithPredication(CI, VF); 7442 }, 7443 Range); 7444 7445 if (IsPredicated) 7446 return nullptr; 7447 7448 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7449 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7450 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 7451 ID == Intrinsic::pseudoprobe)) 7452 return nullptr; 7453 7454 auto willWiden = [&](ElementCount VF) -> bool { 7455 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7456 // The following case may be scalarized depending on the VF. 7457 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7458 // version of the instruction. 7459 // Is it beneficial to perform intrinsic call compared to lib call? 7460 bool NeedToScalarize = false; 7461 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7462 bool UseVectorIntrinsic = 7463 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7464 return UseVectorIntrinsic || !NeedToScalarize; 7465 }; 7466 7467 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7468 return nullptr; 7469 7470 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7471 } 7472 7473 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7474 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7475 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7476 // Instruction should be widened, unless it is scalar after vectorization, 7477 // scalarization is profitable or it is predicated. 7478 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7479 return CM.isScalarAfterVectorization(I, VF) || 7480 CM.isProfitableToScalarize(I, VF) || 7481 CM.isScalarWithPredication(I, VF); 7482 }; 7483 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7484 Range); 7485 } 7486 7487 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7488 auto IsVectorizableOpcode = [](unsigned Opcode) { 7489 switch (Opcode) { 7490 case Instruction::Add: 7491 case Instruction::And: 7492 case Instruction::AShr: 7493 case Instruction::BitCast: 7494 case Instruction::FAdd: 7495 case Instruction::FCmp: 7496 case Instruction::FDiv: 7497 case Instruction::FMul: 7498 case Instruction::FNeg: 7499 case Instruction::FPExt: 7500 case Instruction::FPToSI: 7501 case Instruction::FPToUI: 7502 case Instruction::FPTrunc: 7503 case Instruction::FRem: 7504 case Instruction::FSub: 7505 case Instruction::ICmp: 7506 case Instruction::IntToPtr: 7507 case Instruction::LShr: 7508 case Instruction::Mul: 7509 case Instruction::Or: 7510 case Instruction::PtrToInt: 7511 case Instruction::SDiv: 7512 case Instruction::Select: 7513 case Instruction::SExt: 7514 case Instruction::Shl: 7515 case Instruction::SIToFP: 7516 case Instruction::SRem: 7517 case Instruction::Sub: 7518 case Instruction::Trunc: 7519 case Instruction::UDiv: 7520 case Instruction::UIToFP: 7521 case Instruction::URem: 7522 case Instruction::Xor: 7523 case Instruction::ZExt: 7524 return true; 7525 } 7526 return false; 7527 }; 7528 7529 if (!IsVectorizableOpcode(I->getOpcode())) 7530 return nullptr; 7531 7532 // Success: widen this instruction. 7533 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7534 } 7535 7536 VPBasicBlock *VPRecipeBuilder::handleReplication( 7537 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7538 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7539 VPlanPtr &Plan) { 7540 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7541 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7542 Range); 7543 7544 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7545 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7546 Range); 7547 7548 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7549 IsUniform, IsPredicated); 7550 setRecipe(I, Recipe); 7551 7552 // Find if I uses a predicated instruction. If so, it will use its scalar 7553 // value. Avoid hoisting the insert-element which packs the scalar value into 7554 // a vector value, as that happens iff all users use the vector value. 7555 for (auto &Op : I->operands()) 7556 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7557 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7558 PredInst2Recipe[PredInst]->setAlsoPack(false); 7559 7560 // Finalize the recipe for Instr, first if it is not predicated. 7561 if (!IsPredicated) { 7562 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7563 VPBB->appendRecipe(Recipe); 7564 return VPBB; 7565 } 7566 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7567 assert(VPBB->getSuccessors().empty() && 7568 "VPBB has successors when handling predicated replication."); 7569 // Record predicated instructions for above packing optimizations. 7570 PredInst2Recipe[I] = Recipe; 7571 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7572 VPBlockUtils::insertBlockAfter(Region, VPBB); 7573 auto *RegSucc = new VPBasicBlock(); 7574 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7575 return RegSucc; 7576 } 7577 7578 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7579 VPRecipeBase *PredRecipe, 7580 VPlanPtr &Plan) { 7581 // Instructions marked for predication are replicated and placed under an 7582 // if-then construct to prevent side-effects. 7583 7584 // Generate recipes to compute the block mask for this region. 7585 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7586 7587 // Build the triangular if-then region. 7588 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7589 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7590 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7591 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7592 auto *PHIRecipe = 7593 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7594 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7595 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7596 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7597 7598 // Note: first set Entry as region entry and then connect successors starting 7599 // from it in order, to propagate the "parent" of each VPBasicBlock. 7600 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7601 VPBlockUtils::connectBlocks(Pred, Exit); 7602 7603 return Region; 7604 } 7605 7606 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7607 VFRange &Range, 7608 VPlanPtr &Plan) { 7609 // First, check for specific widening recipes that deal with calls, memory 7610 // operations, inductions and Phi nodes. 7611 if (auto *CI = dyn_cast<CallInst>(Instr)) 7612 return tryToWidenCall(CI, Range, *Plan); 7613 7614 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7615 return tryToWidenMemory(Instr, Range, Plan); 7616 7617 VPRecipeBase *Recipe; 7618 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7619 if (Phi->getParent() != OrigLoop->getHeader()) 7620 return tryToBlend(Phi, Plan); 7621 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7622 return Recipe; 7623 return new VPWidenPHIRecipe(Phi); 7624 } 7625 7626 if (isa<TruncInst>(Instr) && 7627 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7628 return Recipe; 7629 7630 if (!shouldWiden(Instr, Range)) 7631 return nullptr; 7632 7633 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7634 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7635 OrigLoop); 7636 7637 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7638 bool InvariantCond = 7639 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7640 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7641 InvariantCond); 7642 } 7643 7644 return tryToWiden(Instr, *Plan); 7645 } 7646 7647 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 7648 ElementCount MaxVF) { 7649 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7650 7651 // Collect conditions feeding internal conditional branches; they need to be 7652 // represented in VPlan for it to model masking. 7653 SmallPtrSet<Value *, 1> NeedDef; 7654 7655 auto *Latch = OrigLoop->getLoopLatch(); 7656 for (BasicBlock *BB : OrigLoop->blocks()) { 7657 if (BB == Latch) 7658 continue; 7659 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7660 if (Branch && Branch->isConditional()) 7661 NeedDef.insert(Branch->getCondition()); 7662 } 7663 7664 // If the tail is to be folded by masking, the primary induction variable, if 7665 // exists needs to be represented in VPlan for it to model early-exit masking. 7666 if (CM.foldTailByMasking() && Legal->getPrimaryInduction()) 7667 NeedDef.insert(Legal->getPrimaryInduction()); 7668 7669 // Collect instructions from the original loop that will become trivially dead 7670 // in the vectorized loop. We don't need to vectorize these instructions. For 7671 // example, original induction update instructions can become dead because we 7672 // separately emit induction "steps" when generating code for the new loop. 7673 // Similarly, we create a new latch condition when setting up the structure 7674 // of the new loop, so the old one can become dead. 7675 SmallPtrSet<Instruction *, 4> DeadInstructions; 7676 collectTriviallyDeadInstructions(DeadInstructions); 7677 7678 // Add assume instructions we need to drop to DeadInstructions, to prevent 7679 // them from being added to the VPlan. 7680 // TODO: We only need to drop assumes in blocks that get flattend. If the 7681 // control flow is preserved, we should keep them. 7682 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7683 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7684 7685 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7686 // Dead instructions do not need sinking. Remove them from SinkAfter. 7687 for (Instruction *I : DeadInstructions) 7688 SinkAfter.erase(I); 7689 7690 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7691 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7692 VFRange SubRange = {VF, MaxVFPlusOne}; 7693 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7694 DeadInstructions, SinkAfter)); 7695 VF = SubRange.End; 7696 } 7697 } 7698 7699 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7700 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7701 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7702 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7703 7704 // Hold a mapping from predicated instructions to their recipes, in order to 7705 // fix their AlsoPack behavior if a user is determined to replicate and use a 7706 // scalar instead of vector value. 7707 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7708 7709 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7710 7711 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7712 7713 // --------------------------------------------------------------------------- 7714 // Pre-construction: record ingredients whose recipes we'll need to further 7715 // process after constructing the initial VPlan. 7716 // --------------------------------------------------------------------------- 7717 7718 // Mark instructions we'll need to sink later and their targets as 7719 // ingredients whose recipe we'll need to record. 7720 for (auto &Entry : SinkAfter) { 7721 RecipeBuilder.recordRecipeOf(Entry.first); 7722 RecipeBuilder.recordRecipeOf(Entry.second); 7723 } 7724 for (auto &Reduction : CM.getInLoopReductionChains()) { 7725 PHINode *Phi = Reduction.first; 7726 RecurrenceDescriptor::RecurrenceKind Kind = 7727 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7728 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7729 7730 RecipeBuilder.recordRecipeOf(Phi); 7731 for (auto &R : ReductionOperations) { 7732 RecipeBuilder.recordRecipeOf(R); 7733 // For min/max reducitons, where we have a pair of icmp/select, we also 7734 // need to record the ICmp recipe, so it can be removed later. 7735 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7736 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7737 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7738 } 7739 } 7740 } 7741 7742 // For each interleave group which is relevant for this (possibly trimmed) 7743 // Range, add it to the set of groups to be later applied to the VPlan and add 7744 // placeholders for its members' Recipes which we'll be replacing with a 7745 // single VPInterleaveRecipe. 7746 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7747 auto applyIG = [IG, this](ElementCount VF) -> bool { 7748 return (VF.isVector() && // Query is illegal for VF == 1 7749 CM.getWideningDecision(IG->getInsertPos(), VF) == 7750 LoopVectorizationCostModel::CM_Interleave); 7751 }; 7752 if (!getDecisionAndClampRange(applyIG, Range)) 7753 continue; 7754 InterleaveGroups.insert(IG); 7755 for (unsigned i = 0; i < IG->getFactor(); i++) 7756 if (Instruction *Member = IG->getMember(i)) 7757 RecipeBuilder.recordRecipeOf(Member); 7758 }; 7759 7760 // --------------------------------------------------------------------------- 7761 // Build initial VPlan: Scan the body of the loop in a topological order to 7762 // visit each basic block after having visited its predecessor basic blocks. 7763 // --------------------------------------------------------------------------- 7764 7765 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7766 auto Plan = std::make_unique<VPlan>(); 7767 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7768 Plan->setEntry(VPBB); 7769 7770 // Represent values that will have defs inside VPlan. 7771 for (Value *V : NeedDef) 7772 Plan->addVPValue(V); 7773 7774 // Scan the body of the loop in a topological order to visit each basic block 7775 // after having visited its predecessor basic blocks. 7776 LoopBlocksDFS DFS(OrigLoop); 7777 DFS.perform(LI); 7778 7779 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7780 // Relevant instructions from basic block BB will be grouped into VPRecipe 7781 // ingredients and fill a new VPBasicBlock. 7782 unsigned VPBBsForBB = 0; 7783 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7784 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7785 VPBB = FirstVPBBForBB; 7786 Builder.setInsertPoint(VPBB); 7787 7788 // Introduce each ingredient into VPlan. 7789 // TODO: Model and preserve debug instrinsics in VPlan. 7790 for (Instruction &I : BB->instructionsWithoutDebug()) { 7791 Instruction *Instr = &I; 7792 7793 // First filter out irrelevant instructions, to ensure no recipes are 7794 // built for them. 7795 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7796 continue; 7797 7798 if (auto Recipe = 7799 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7800 // Check if the recipe can be converted to a VPValue. We need the extra 7801 // down-casting step until VPRecipeBase inherits from VPValue. 7802 VPValue *MaybeVPValue = Recipe->toVPValue(); 7803 if (!Instr->getType()->isVoidTy() && MaybeVPValue) { 7804 if (NeedDef.contains(Instr)) 7805 Plan->addOrReplaceVPValue(Instr, MaybeVPValue); 7806 else 7807 Plan->addVPValue(Instr, MaybeVPValue); 7808 } 7809 7810 RecipeBuilder.setRecipe(Instr, Recipe); 7811 VPBB->appendRecipe(Recipe); 7812 continue; 7813 } 7814 7815 // Otherwise, if all widening options failed, Instruction is to be 7816 // replicated. This may create a successor for VPBB. 7817 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7818 Instr, Range, VPBB, PredInst2Recipe, Plan); 7819 if (NextVPBB != VPBB) { 7820 VPBB = NextVPBB; 7821 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7822 : ""); 7823 } 7824 } 7825 } 7826 7827 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7828 // may also be empty, such as the last one VPBB, reflecting original 7829 // basic-blocks with no recipes. 7830 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7831 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7832 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7833 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7834 delete PreEntry; 7835 7836 // --------------------------------------------------------------------------- 7837 // Transform initial VPlan: Apply previously taken decisions, in order, to 7838 // bring the VPlan to its final state. 7839 // --------------------------------------------------------------------------- 7840 7841 // Apply Sink-After legal constraints. 7842 for (auto &Entry : SinkAfter) { 7843 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7844 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7845 Sink->moveAfter(Target); 7846 } 7847 7848 // Interleave memory: for each Interleave Group we marked earlier as relevant 7849 // for this VPlan, replace the Recipes widening its memory instructions with a 7850 // single VPInterleaveRecipe at its insertion point. 7851 for (auto IG : InterleaveGroups) { 7852 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7853 RecipeBuilder.getRecipe(IG->getInsertPos())); 7854 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7855 ->insertBefore(Recipe); 7856 7857 for (unsigned i = 0; i < IG->getFactor(); ++i) 7858 if (Instruction *Member = IG->getMember(i)) { 7859 if (!Member->getType()->isVoidTy()) { 7860 VPValue *OriginalV = Plan->getVPValue(Member); 7861 Plan->removeVPValueFor(Member); 7862 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7863 } 7864 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7865 } 7866 } 7867 7868 // Adjust the recipes for any inloop reductions. 7869 if (Range.Start.isVector()) 7870 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7871 7872 // Finally, if tail is folded by masking, introduce selects between the phi 7873 // and the live-out instruction of each reduction, at the end of the latch. 7874 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7875 Builder.setInsertPoint(VPBB); 7876 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7877 for (auto &Reduction : Legal->getReductionVars()) { 7878 if (CM.isInLoopReduction(Reduction.first)) 7879 continue; 7880 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 7881 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 7882 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7883 } 7884 } 7885 7886 std::string PlanName; 7887 raw_string_ostream RSO(PlanName); 7888 ElementCount VF = Range.Start; 7889 Plan->addVF(VF); 7890 RSO << "Initial VPlan for VF={" << VF; 7891 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 7892 Plan->addVF(VF); 7893 RSO << "," << VF; 7894 } 7895 RSO << "},UF>=1"; 7896 RSO.flush(); 7897 Plan->setName(PlanName); 7898 7899 return Plan; 7900 } 7901 7902 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7903 // Outer loop handling: They may require CFG and instruction level 7904 // transformations before even evaluating whether vectorization is profitable. 7905 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7906 // the vectorization pipeline. 7907 assert(!OrigLoop->isInnermost()); 7908 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7909 7910 // Create new empty VPlan 7911 auto Plan = std::make_unique<VPlan>(); 7912 7913 // Build hierarchical CFG 7914 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7915 HCFGBuilder.buildHierarchicalCFG(); 7916 7917 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 7918 VF *= 2) 7919 Plan->addVF(VF); 7920 7921 if (EnableVPlanPredication) { 7922 VPlanPredicator VPP(*Plan); 7923 VPP.predicate(); 7924 7925 // Avoid running transformation to recipes until masked code generation in 7926 // VPlan-native path is in place. 7927 return Plan; 7928 } 7929 7930 SmallPtrSet<Instruction *, 1> DeadInstructions; 7931 VPlanTransforms::VPInstructionsToVPRecipes( 7932 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7933 return Plan; 7934 } 7935 7936 // Adjust the recipes for any inloop reductions. The chain of instructions 7937 // leading from the loop exit instr to the phi need to be converted to 7938 // reductions, with one operand being vector and the other being the scalar 7939 // reduction chain. 7940 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7941 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7942 for (auto &Reduction : CM.getInLoopReductionChains()) { 7943 PHINode *Phi = Reduction.first; 7944 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7945 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7946 7947 // ReductionOperations are orders top-down from the phi's use to the 7948 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7949 // which of the two operands will remain scalar and which will be reduced. 7950 // For minmax the chain will be the select instructions. 7951 Instruction *Chain = Phi; 7952 for (Instruction *R : ReductionOperations) { 7953 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7954 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7955 7956 VPValue *ChainOp = Plan->getVPValue(Chain); 7957 unsigned FirstOpId; 7958 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7959 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7960 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7961 "Expected to replace a VPWidenSelectSC"); 7962 FirstOpId = 1; 7963 } else { 7964 assert(isa<VPWidenRecipe>(WidenRecipe) && 7965 "Expected to replace a VPWidenSC"); 7966 FirstOpId = 0; 7967 } 7968 unsigned VecOpId = 7969 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7970 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7971 7972 auto *CondOp = CM.foldTailByMasking() 7973 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7974 : nullptr; 7975 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7976 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7977 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7978 WidenRecipe->eraseFromParent(); 7979 7980 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7981 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7982 VPRecipeBase *CompareRecipe = 7983 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7984 assert(isa<VPWidenRecipe>(CompareRecipe) && 7985 "Expected to replace a VPWidenSC"); 7986 CompareRecipe->eraseFromParent(); 7987 } 7988 Chain = R; 7989 } 7990 } 7991 } 7992 7993 Value* LoopVectorizationPlanner::VPCallbackILV:: 7994 getOrCreateVectorValues(Value *V, unsigned Part) { 7995 return ILV.getOrCreateVectorValue(V, Part); 7996 } 7997 7998 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7999 Value *V, const VPIteration &Instance) { 8000 return ILV.getOrCreateScalarValue(V, Instance); 8001 } 8002 8003 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8004 VPSlotTracker &SlotTracker) const { 8005 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8006 IG->getInsertPos()->printAsOperand(O, false); 8007 O << ", "; 8008 getAddr()->printAsOperand(O, SlotTracker); 8009 VPValue *Mask = getMask(); 8010 if (Mask) { 8011 O << ", "; 8012 Mask->printAsOperand(O, SlotTracker); 8013 } 8014 for (unsigned i = 0; i < IG->getFactor(); ++i) 8015 if (Instruction *I = IG->getMember(i)) 8016 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8017 } 8018 8019 void VPWidenCallRecipe::execute(VPTransformState &State) { 8020 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8021 *this, State); 8022 } 8023 8024 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8025 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8026 this, *this, InvariantCond, State); 8027 } 8028 8029 void VPWidenRecipe::execute(VPTransformState &State) { 8030 State.ILV->widenInstruction(Ingredient, *this, State); 8031 } 8032 8033 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8034 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8035 *this, State.UF, State.VF, IsPtrLoopInvariant, 8036 IsIndexLoopInvariant, State); 8037 } 8038 8039 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8040 assert(!State.Instance && "Int or FP induction being replicated."); 8041 State.ILV->widenIntOrFpInduction(IV, Trunc); 8042 } 8043 8044 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8045 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8046 } 8047 8048 void VPBlendRecipe::execute(VPTransformState &State) { 8049 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8050 // We know that all PHIs in non-header blocks are converted into 8051 // selects, so we don't have to worry about the insertion order and we 8052 // can just use the builder. 8053 // At this point we generate the predication tree. There may be 8054 // duplications since this is a simple recursive scan, but future 8055 // optimizations will clean it up. 8056 8057 unsigned NumIncoming = getNumIncomingValues(); 8058 8059 // Generate a sequence of selects of the form: 8060 // SELECT(Mask3, In3, 8061 // SELECT(Mask2, In2, 8062 // SELECT(Mask1, In1, 8063 // In0))) 8064 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8065 // are essentially undef are taken from In0. 8066 InnerLoopVectorizer::VectorParts Entry(State.UF); 8067 for (unsigned In = 0; In < NumIncoming; ++In) { 8068 for (unsigned Part = 0; Part < State.UF; ++Part) { 8069 // We might have single edge PHIs (blocks) - use an identity 8070 // 'select' for the first PHI operand. 8071 Value *In0 = State.get(getIncomingValue(In), Part); 8072 if (In == 0) 8073 Entry[Part] = In0; // Initialize with the first incoming value. 8074 else { 8075 // Select between the current value and the previous incoming edge 8076 // based on the incoming mask. 8077 Value *Cond = State.get(getMask(In), Part); 8078 Entry[Part] = 8079 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8080 } 8081 } 8082 } 8083 for (unsigned Part = 0; Part < State.UF; ++Part) 8084 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8085 } 8086 8087 void VPInterleaveRecipe::execute(VPTransformState &State) { 8088 assert(!State.Instance && "Interleave group being replicated."); 8089 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 8090 } 8091 8092 void VPReductionRecipe::execute(VPTransformState &State) { 8093 assert(!State.Instance && "Reduction being replicated."); 8094 for (unsigned Part = 0; Part < State.UF; ++Part) { 8095 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8096 Value *NewVecOp = State.get(VecOp, Part); 8097 if (CondOp) { 8098 Value *NewCond = State.get(CondOp, Part); 8099 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8100 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8101 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8102 Constant *IdenVec = 8103 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8104 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8105 NewVecOp = Select; 8106 } 8107 Value *NewRed = 8108 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8109 Value *PrevInChain = State.get(ChainOp, Part); 8110 Value *NextInChain; 8111 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8112 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8113 NextInChain = 8114 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8115 NewRed, PrevInChain); 8116 } else { 8117 NextInChain = State.Builder.CreateBinOp( 8118 (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain); 8119 } 8120 State.ValueMap.setVectorValue(I, Part, NextInChain); 8121 } 8122 } 8123 8124 void VPReplicateRecipe::execute(VPTransformState &State) { 8125 if (State.Instance) { // Generate a single instance. 8126 State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance, 8127 IsPredicated, State); 8128 // Insert scalar instance packing it into a vector. 8129 if (AlsoPack && State.VF.isVector()) { 8130 // If we're constructing lane 0, initialize to start from undef. 8131 if (State.Instance->Lane == 0) { 8132 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8133 Value *Undef = 8134 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8135 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8136 } 8137 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8138 } 8139 return; 8140 } 8141 8142 // Generate scalar instances for all VF lanes of all UF parts, unless the 8143 // instruction is uniform inwhich case generate only the first lane for each 8144 // of the UF parts. 8145 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8146 for (unsigned Part = 0; Part < State.UF; ++Part) 8147 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8148 State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane}, 8149 IsPredicated, State); 8150 } 8151 8152 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8153 assert(State.Instance && "Branch on Mask works only on single instance."); 8154 8155 unsigned Part = State.Instance->Part; 8156 unsigned Lane = State.Instance->Lane; 8157 8158 Value *ConditionBit = nullptr; 8159 VPValue *BlockInMask = getMask(); 8160 if (BlockInMask) { 8161 ConditionBit = State.get(BlockInMask, Part); 8162 if (ConditionBit->getType()->isVectorTy()) 8163 ConditionBit = State.Builder.CreateExtractElement( 8164 ConditionBit, State.Builder.getInt32(Lane)); 8165 } else // Block in mask is all-one. 8166 ConditionBit = State.Builder.getTrue(); 8167 8168 // Replace the temporary unreachable terminator with a new conditional branch, 8169 // whose two destinations will be set later when they are created. 8170 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8171 assert(isa<UnreachableInst>(CurrentTerminator) && 8172 "Expected to replace unreachable terminator with conditional branch."); 8173 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8174 CondBr->setSuccessor(0, nullptr); 8175 ReplaceInstWithInst(CurrentTerminator, CondBr); 8176 } 8177 8178 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8179 assert(State.Instance && "Predicated instruction PHI works per instance."); 8180 Instruction *ScalarPredInst = cast<Instruction>( 8181 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8182 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8183 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8184 assert(PredicatingBB && "Predicated block has no single predecessor."); 8185 8186 // By current pack/unpack logic we need to generate only a single phi node: if 8187 // a vector value for the predicated instruction exists at this point it means 8188 // the instruction has vector users only, and a phi for the vector value is 8189 // needed. In this case the recipe of the predicated instruction is marked to 8190 // also do that packing, thereby "hoisting" the insert-element sequence. 8191 // Otherwise, a phi node for the scalar value is needed. 8192 unsigned Part = State.Instance->Part; 8193 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8194 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8195 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8196 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8197 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8198 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8199 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8200 } else { 8201 Type *PredInstType = PredInst->getType(); 8202 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8203 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8204 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8205 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8206 } 8207 } 8208 8209 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8210 Instruction *Instr = getUnderlyingInstr(); 8211 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8212 State.ILV->vectorizeMemoryInstruction(Instr, State, 8213 StoredValue ? nullptr : this, getAddr(), 8214 StoredValue, getMask()); 8215 } 8216 8217 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8218 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8219 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8220 // for predication. 8221 static ScalarEpilogueLowering getScalarEpilogueLowering( 8222 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8223 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8224 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8225 LoopVectorizationLegality &LVL) { 8226 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8227 // don't look at hints or options, and don't request a scalar epilogue. 8228 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8229 // LoopAccessInfo (due to code dependency and not being able to reliably get 8230 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8231 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8232 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8233 // back to the old way and vectorize with versioning when forced. See D81345.) 8234 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8235 PGSOQueryType::IRPass) && 8236 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8237 return CM_ScalarEpilogueNotAllowedOptSize; 8238 8239 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8240 !PreferPredicateOverEpilogue; 8241 8242 // 2) Next, if disabling predication is requested on the command line, honour 8243 // this and request a scalar epilogue. 8244 if (PredicateOptDisabled) 8245 return CM_ScalarEpilogueAllowed; 8246 8247 // 3) and 4) look if enabling predication is requested on the command line, 8248 // with a loop hint, or if the TTI hook indicates this is profitable, request 8249 // predication. 8250 if (PreferPredicateOverEpilogue || 8251 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8252 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8253 LVL.getLAI()) && 8254 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8255 return CM_ScalarEpilogueNotNeededUsePredicate; 8256 8257 return CM_ScalarEpilogueAllowed; 8258 } 8259 8260 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8261 unsigned Part) { 8262 set(Def, V, Part); 8263 ILV->setVectorValue(IRDef, Part, V); 8264 } 8265 8266 // Process the loop in the VPlan-native vectorization path. This path builds 8267 // VPlan upfront in the vectorization pipeline, which allows to apply 8268 // VPlan-to-VPlan transformations from the very beginning without modifying the 8269 // input LLVM IR. 8270 static bool processLoopInVPlanNativePath( 8271 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8272 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8273 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8274 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8275 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8276 8277 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 8278 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8279 return false; 8280 } 8281 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8282 Function *F = L->getHeader()->getParent(); 8283 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8284 8285 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8286 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8287 8288 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8289 &Hints, IAI); 8290 // Use the planner for outer loop vectorization. 8291 // TODO: CM is not used at this point inside the planner. Turn CM into an 8292 // optional argument if we don't need it in the future. 8293 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8294 8295 // Get user vectorization factor. 8296 const unsigned UserVF = Hints.getWidth(); 8297 8298 // Plan how to best vectorize, return the best VF and its cost. 8299 const VectorizationFactor VF = 8300 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8301 8302 // If we are stress testing VPlan builds, do not attempt to generate vector 8303 // code. Masked vector code generation support will follow soon. 8304 // Also, do not attempt to vectorize if no vector code will be produced. 8305 if (VPlanBuildStressTest || EnableVPlanPredication || 8306 VectorizationFactor::Disabled() == VF) 8307 return false; 8308 8309 LVP.setBestPlan(VF.Width, 1); 8310 8311 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8312 &CM, BFI, PSI); 8313 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8314 << L->getHeader()->getParent()->getName() << "\"\n"); 8315 LVP.executePlan(LB, DT); 8316 8317 // Mark the loop as already vectorized to avoid vectorizing again. 8318 Hints.setAlreadyVectorized(); 8319 8320 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8321 return true; 8322 } 8323 8324 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8325 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8326 !EnableLoopInterleaving), 8327 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8328 !EnableLoopVectorization) {} 8329 8330 bool LoopVectorizePass::processLoop(Loop *L) { 8331 assert((EnableVPlanNativePath || L->isInnermost()) && 8332 "VPlan-native path is not enabled. Only process inner loops."); 8333 8334 #ifndef NDEBUG 8335 const std::string DebugLocStr = getDebugLocString(L); 8336 #endif /* NDEBUG */ 8337 8338 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8339 << L->getHeader()->getParent()->getName() << "\" from " 8340 << DebugLocStr << "\n"); 8341 8342 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8343 8344 LLVM_DEBUG( 8345 dbgs() << "LV: Loop hints:" 8346 << " force=" 8347 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8348 ? "disabled" 8349 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8350 ? "enabled" 8351 : "?")) 8352 << " width=" << Hints.getWidth() 8353 << " unroll=" << Hints.getInterleave() << "\n"); 8354 8355 // Function containing loop 8356 Function *F = L->getHeader()->getParent(); 8357 8358 // Looking at the diagnostic output is the only way to determine if a loop 8359 // was vectorized (other than looking at the IR or machine code), so it 8360 // is important to generate an optimization remark for each loop. Most of 8361 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8362 // generated as OptimizationRemark and OptimizationRemarkMissed are 8363 // less verbose reporting vectorized loops and unvectorized loops that may 8364 // benefit from vectorization, respectively. 8365 8366 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8367 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8368 return false; 8369 } 8370 8371 PredicatedScalarEvolution PSE(*SE, *L); 8372 8373 // Check if it is legal to vectorize the loop. 8374 LoopVectorizationRequirements Requirements(*ORE); 8375 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8376 &Requirements, &Hints, DB, AC, BFI, PSI); 8377 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8378 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8379 Hints.emitRemarkWithHints(); 8380 return false; 8381 } 8382 8383 // Check the function attributes and profiles to find out if this function 8384 // should be optimized for size. 8385 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8386 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8387 8388 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8389 // here. They may require CFG and instruction level transformations before 8390 // even evaluating whether vectorization is profitable. Since we cannot modify 8391 // the incoming IR, we need to build VPlan upfront in the vectorization 8392 // pipeline. 8393 if (!L->isInnermost()) 8394 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8395 ORE, BFI, PSI, Hints); 8396 8397 assert(L->isInnermost() && "Inner loop expected."); 8398 8399 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8400 // count by optimizing for size, to minimize overheads. 8401 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8402 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8403 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8404 << "This loop is worth vectorizing only if no scalar " 8405 << "iteration overheads are incurred."); 8406 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8407 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8408 else { 8409 LLVM_DEBUG(dbgs() << "\n"); 8410 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8411 } 8412 } 8413 8414 // Check the function attributes to see if implicit floats are allowed. 8415 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8416 // an integer loop and the vector instructions selected are purely integer 8417 // vector instructions? 8418 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8419 reportVectorizationFailure( 8420 "Can't vectorize when the NoImplicitFloat attribute is used", 8421 "loop not vectorized due to NoImplicitFloat attribute", 8422 "NoImplicitFloat", ORE, L); 8423 Hints.emitRemarkWithHints(); 8424 return false; 8425 } 8426 8427 // Check if the target supports potentially unsafe FP vectorization. 8428 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8429 // for the target we're vectorizing for, to make sure none of the 8430 // additional fp-math flags can help. 8431 if (Hints.isPotentiallyUnsafe() && 8432 TTI->isFPVectorizationPotentiallyUnsafe()) { 8433 reportVectorizationFailure( 8434 "Potentially unsafe FP op prevents vectorization", 8435 "loop not vectorized due to unsafe FP support.", 8436 "UnsafeFP", ORE, L); 8437 Hints.emitRemarkWithHints(); 8438 return false; 8439 } 8440 8441 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8442 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8443 8444 // If an override option has been passed in for interleaved accesses, use it. 8445 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8446 UseInterleaved = EnableInterleavedMemAccesses; 8447 8448 // Analyze interleaved memory accesses. 8449 if (UseInterleaved) { 8450 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8451 } 8452 8453 // Use the cost model. 8454 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8455 F, &Hints, IAI); 8456 CM.collectValuesToIgnore(); 8457 8458 // Use the planner for vectorization. 8459 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8460 8461 // Get user vectorization factor and interleave count. 8462 unsigned UserVF = Hints.getWidth(); 8463 unsigned UserIC = Hints.getInterleave(); 8464 8465 // Plan how to best vectorize, return the best VF and its cost. 8466 Optional<VectorizationFactor> MaybeVF = 8467 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8468 8469 VectorizationFactor VF = VectorizationFactor::Disabled(); 8470 unsigned IC = 1; 8471 8472 if (MaybeVF) { 8473 VF = *MaybeVF; 8474 // Select the interleave count. 8475 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8476 } 8477 8478 // Identify the diagnostic messages that should be produced. 8479 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8480 bool VectorizeLoop = true, InterleaveLoop = true; 8481 if (Requirements.doesNotMeet(F, L, Hints)) { 8482 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8483 "requirements.\n"); 8484 Hints.emitRemarkWithHints(); 8485 return false; 8486 } 8487 8488 if (VF.Width.isScalar()) { 8489 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8490 VecDiagMsg = std::make_pair( 8491 "VectorizationNotBeneficial", 8492 "the cost-model indicates that vectorization is not beneficial"); 8493 VectorizeLoop = false; 8494 } 8495 8496 if (!MaybeVF && UserIC > 1) { 8497 // Tell the user interleaving was avoided up-front, despite being explicitly 8498 // requested. 8499 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8500 "interleaving should be avoided up front\n"); 8501 IntDiagMsg = std::make_pair( 8502 "InterleavingAvoided", 8503 "Ignoring UserIC, because interleaving was avoided up front"); 8504 InterleaveLoop = false; 8505 } else if (IC == 1 && UserIC <= 1) { 8506 // Tell the user interleaving is not beneficial. 8507 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8508 IntDiagMsg = std::make_pair( 8509 "InterleavingNotBeneficial", 8510 "the cost-model indicates that interleaving is not beneficial"); 8511 InterleaveLoop = false; 8512 if (UserIC == 1) { 8513 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8514 IntDiagMsg.second += 8515 " and is explicitly disabled or interleave count is set to 1"; 8516 } 8517 } else if (IC > 1 && UserIC == 1) { 8518 // Tell the user interleaving is beneficial, but it explicitly disabled. 8519 LLVM_DEBUG( 8520 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8521 IntDiagMsg = std::make_pair( 8522 "InterleavingBeneficialButDisabled", 8523 "the cost-model indicates that interleaving is beneficial " 8524 "but is explicitly disabled or interleave count is set to 1"); 8525 InterleaveLoop = false; 8526 } 8527 8528 // Override IC if user provided an interleave count. 8529 IC = UserIC > 0 ? UserIC : IC; 8530 8531 // Emit diagnostic messages, if any. 8532 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8533 if (!VectorizeLoop && !InterleaveLoop) { 8534 // Do not vectorize or interleaving the loop. 8535 ORE->emit([&]() { 8536 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8537 L->getStartLoc(), L->getHeader()) 8538 << VecDiagMsg.second; 8539 }); 8540 ORE->emit([&]() { 8541 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8542 L->getStartLoc(), L->getHeader()) 8543 << IntDiagMsg.second; 8544 }); 8545 return false; 8546 } else if (!VectorizeLoop && InterleaveLoop) { 8547 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8548 ORE->emit([&]() { 8549 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8550 L->getStartLoc(), L->getHeader()) 8551 << VecDiagMsg.second; 8552 }); 8553 } else if (VectorizeLoop && !InterleaveLoop) { 8554 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8555 << ") in " << DebugLocStr << '\n'); 8556 ORE->emit([&]() { 8557 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8558 L->getStartLoc(), L->getHeader()) 8559 << IntDiagMsg.second; 8560 }); 8561 } else if (VectorizeLoop && InterleaveLoop) { 8562 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8563 << ") in " << DebugLocStr << '\n'); 8564 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8565 } 8566 8567 LVP.setBestPlan(VF.Width, IC); 8568 8569 using namespace ore; 8570 bool DisableRuntimeUnroll = false; 8571 MDNode *OrigLoopID = L->getLoopID(); 8572 8573 if (!VectorizeLoop) { 8574 assert(IC > 1 && "interleave count should not be 1 or 0"); 8575 // If we decided that it is not legal to vectorize the loop, then 8576 // interleave it. 8577 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8578 BFI, PSI); 8579 LVP.executePlan(Unroller, DT); 8580 8581 ORE->emit([&]() { 8582 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8583 L->getHeader()) 8584 << "interleaved loop (interleaved count: " 8585 << NV("InterleaveCount", IC) << ")"; 8586 }); 8587 } else { 8588 // If we decided that it is *legal* to vectorize the loop, then do it. 8589 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8590 &LVL, &CM, BFI, PSI); 8591 LVP.executePlan(LB, DT); 8592 ++LoopsVectorized; 8593 8594 // Add metadata to disable runtime unrolling a scalar loop when there are 8595 // no runtime checks about strides and memory. A scalar loop that is 8596 // rarely used is not worth unrolling. 8597 if (!LB.areSafetyChecksAdded()) 8598 DisableRuntimeUnroll = true; 8599 8600 // Report the vectorization decision. 8601 ORE->emit([&]() { 8602 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8603 L->getHeader()) 8604 << "vectorized loop (vectorization width: " 8605 << NV("VectorizationFactor", VF.Width) 8606 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8607 }); 8608 } 8609 8610 Optional<MDNode *> RemainderLoopID = 8611 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8612 LLVMLoopVectorizeFollowupEpilogue}); 8613 if (RemainderLoopID.hasValue()) { 8614 L->setLoopID(RemainderLoopID.getValue()); 8615 } else { 8616 if (DisableRuntimeUnroll) 8617 AddRuntimeUnrollDisableMetaData(L); 8618 8619 // Mark the loop as already vectorized to avoid vectorizing again. 8620 Hints.setAlreadyVectorized(); 8621 } 8622 8623 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8624 return true; 8625 } 8626 8627 LoopVectorizeResult LoopVectorizePass::runImpl( 8628 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8629 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8630 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8631 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8632 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8633 SE = &SE_; 8634 LI = &LI_; 8635 TTI = &TTI_; 8636 DT = &DT_; 8637 BFI = &BFI_; 8638 TLI = TLI_; 8639 AA = &AA_; 8640 AC = &AC_; 8641 GetLAA = &GetLAA_; 8642 DB = &DB_; 8643 ORE = &ORE_; 8644 PSI = PSI_; 8645 8646 // Don't attempt if 8647 // 1. the target claims to have no vector registers, and 8648 // 2. interleaving won't help ILP. 8649 // 8650 // The second condition is necessary because, even if the target has no 8651 // vector registers, loop vectorization may still enable scalar 8652 // interleaving. 8653 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8654 TTI->getMaxInterleaveFactor(1) < 2) 8655 return LoopVectorizeResult(false, false); 8656 8657 bool Changed = false, CFGChanged = false; 8658 8659 // The vectorizer requires loops to be in simplified form. 8660 // Since simplification may add new inner loops, it has to run before the 8661 // legality and profitability checks. This means running the loop vectorizer 8662 // will simplify all loops, regardless of whether anything end up being 8663 // vectorized. 8664 for (auto &L : *LI) 8665 Changed |= CFGChanged |= 8666 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8667 8668 // Build up a worklist of inner-loops to vectorize. This is necessary as 8669 // the act of vectorizing or partially unrolling a loop creates new loops 8670 // and can invalidate iterators across the loops. 8671 SmallVector<Loop *, 8> Worklist; 8672 8673 for (Loop *L : *LI) 8674 collectSupportedLoops(*L, LI, ORE, Worklist); 8675 8676 LoopsAnalyzed += Worklist.size(); 8677 8678 // Now walk the identified inner loops. 8679 while (!Worklist.empty()) { 8680 Loop *L = Worklist.pop_back_val(); 8681 8682 // For the inner loops we actually process, form LCSSA to simplify the 8683 // transform. 8684 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8685 8686 Changed |= CFGChanged |= processLoop(L); 8687 } 8688 8689 // Process each loop nest in the function. 8690 return LoopVectorizeResult(Changed, CFGChanged); 8691 } 8692 8693 PreservedAnalyses LoopVectorizePass::run(Function &F, 8694 FunctionAnalysisManager &AM) { 8695 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8696 auto &LI = AM.getResult<LoopAnalysis>(F); 8697 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8698 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8699 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8700 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8701 auto &AA = AM.getResult<AAManager>(F); 8702 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8703 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8704 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8705 MemorySSA *MSSA = EnableMSSALoopDependency 8706 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8707 : nullptr; 8708 8709 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8710 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8711 [&](Loop &L) -> const LoopAccessInfo & { 8712 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8713 TLI, TTI, nullptr, MSSA}; 8714 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8715 }; 8716 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8717 ProfileSummaryInfo *PSI = 8718 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8719 LoopVectorizeResult Result = 8720 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8721 if (!Result.MadeAnyChange) 8722 return PreservedAnalyses::all(); 8723 PreservedAnalyses PA; 8724 8725 // We currently do not preserve loopinfo/dominator analyses with outer loop 8726 // vectorization. Until this is addressed, mark these analyses as preserved 8727 // only for non-VPlan-native path. 8728 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8729 if (!EnableVPlanNativePath) { 8730 PA.preserve<LoopAnalysis>(); 8731 PA.preserve<DominatorTreeAnalysis>(); 8732 } 8733 PA.preserve<BasicAA>(); 8734 PA.preserve<GlobalsAA>(); 8735 if (!Result.MadeCFGChange) 8736 PA.preserveSet<CFGAnalyses>(); 8737 return PA; 8738 } 8739