1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpander.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/MathExtras.h" 132 #include "llvm/Support/raw_ostream.h" 133 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 134 #include "llvm/Transforms/Utils/LoopSimplify.h" 135 #include "llvm/Transforms/Utils/LoopUtils.h" 136 #include "llvm/Transforms/Utils/LoopVersioning.h" 137 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 138 #include <algorithm> 139 #include <cassert> 140 #include <cstdint> 141 #include <cstdlib> 142 #include <functional> 143 #include <iterator> 144 #include <limits> 145 #include <memory> 146 #include <string> 147 #include <tuple> 148 #include <utility> 149 #include <vector> 150 151 using namespace llvm; 152 153 #define LV_NAME "loop-vectorize" 154 #define DEBUG_TYPE LV_NAME 155 156 /// @{ 157 /// Metadata attribute names 158 static const char *const LLVMLoopVectorizeFollowupAll = 159 "llvm.loop.vectorize.followup_all"; 160 static const char *const LLVMLoopVectorizeFollowupVectorized = 161 "llvm.loop.vectorize.followup_vectorized"; 162 static const char *const LLVMLoopVectorizeFollowupEpilogue = 163 "llvm.loop.vectorize.followup_epilogue"; 164 /// @} 165 166 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 167 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 168 169 /// Loops with a known constant trip count below this number are vectorized only 170 /// if no scalar iteration overheads are incurred. 171 static cl::opt<unsigned> TinyTripCountVectorThreshold( 172 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 173 cl::desc("Loops with a constant trip count that is smaller than this " 174 "value are vectorized only if no scalar iteration overheads " 175 "are incurred.")); 176 177 static cl::opt<bool> MaximizeBandwidth( 178 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 179 cl::desc("Maximize bandwidth when selecting vectorization factor which " 180 "will be determined by the smallest type in loop.")); 181 182 static cl::opt<bool> EnableInterleavedMemAccesses( 183 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 184 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 185 186 /// An interleave-group may need masking if it resides in a block that needs 187 /// predication, or in order to mask away gaps. 188 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 189 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 190 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 191 192 /// We don't interleave loops with a known constant trip count below this 193 /// number. 194 static const unsigned TinyTripCountInterleaveThreshold = 128; 195 196 static cl::opt<unsigned> ForceTargetNumScalarRegs( 197 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 198 cl::desc("A flag that overrides the target's number of scalar registers.")); 199 200 static cl::opt<unsigned> ForceTargetNumVectorRegs( 201 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's number of vector registers.")); 203 204 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 205 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 206 cl::desc("A flag that overrides the target's max interleave factor for " 207 "scalar loops.")); 208 209 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 210 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's max interleave factor for " 212 "vectorized loops.")); 213 214 static cl::opt<unsigned> ForceTargetInstructionCost( 215 "force-target-instruction-cost", cl::init(0), cl::Hidden, 216 cl::desc("A flag that overrides the target's expected cost for " 217 "an instruction to a single constant value. Mostly " 218 "useful for getting consistent testing.")); 219 220 static cl::opt<unsigned> SmallLoopCost( 221 "small-loop-cost", cl::init(20), cl::Hidden, 222 cl::desc( 223 "The cost of a loop that is considered 'small' by the interleaver.")); 224 225 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 226 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 227 cl::desc("Enable the use of the block frequency analysis to access PGO " 228 "heuristics minimizing code growth in cold regions and being more " 229 "aggressive in hot regions.")); 230 231 // Runtime interleave loops for load/store throughput. 232 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 233 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 234 cl::desc( 235 "Enable runtime interleaving until load/store ports are saturated")); 236 237 /// The number of stores in a loop that are allowed to need predication. 238 static cl::opt<unsigned> NumberOfStoresToPredicate( 239 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 240 cl::desc("Max number of stores to be predicated behind an if.")); 241 242 static cl::opt<bool> EnableIndVarRegisterHeur( 243 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 244 cl::desc("Count the induction variable only once when interleaving")); 245 246 static cl::opt<bool> EnableCondStoresVectorization( 247 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 248 cl::desc("Enable if predication of stores during vectorization.")); 249 250 static cl::opt<unsigned> MaxNestedScalarReductionIC( 251 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 252 cl::desc("The maximum interleave count to use when interleaving a scalar " 253 "reduction in a nested loop.")); 254 255 cl::opt<bool> EnableVPlanNativePath( 256 "enable-vplan-native-path", cl::init(false), cl::Hidden, 257 cl::desc("Enable VPlan-native vectorization path with " 258 "support for outer loop vectorization.")); 259 260 // FIXME: Remove this switch once we have divergence analysis. Currently we 261 // assume divergent non-backedge branches when this switch is true. 262 cl::opt<bool> EnableVPlanPredication( 263 "enable-vplan-predication", cl::init(false), cl::Hidden, 264 cl::desc("Enable VPlan-native vectorization path predicator with " 265 "support for outer loop vectorization.")); 266 267 // This flag enables the stress testing of the VPlan H-CFG construction in the 268 // VPlan-native vectorization path. It must be used in conjuction with 269 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 270 // verification of the H-CFGs built. 271 static cl::opt<bool> VPlanBuildStressTest( 272 "vplan-build-stress-test", cl::init(false), cl::Hidden, 273 cl::desc( 274 "Build VPlan for every supported loop nest in the function and bail " 275 "out right after the build (stress test the VPlan H-CFG construction " 276 "in the VPlan-native vectorization path).")); 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 /// A helper function that returns the type of loaded or stored value. 288 static Type *getMemInstValueType(Value *I) { 289 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 290 "Expected Load or Store instruction"); 291 if (auto *LI = dyn_cast<LoadInst>(I)) 292 return LI->getType(); 293 return cast<StoreInst>(I)->getValueOperand()->getType(); 294 } 295 296 /// A helper function that returns true if the given type is irregular. The 297 /// type is irregular if its allocated size doesn't equal the store size of an 298 /// element of the corresponding vector type at the given vectorization factor. 299 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 300 // Determine if an array of VF elements of type Ty is "bitcast compatible" 301 // with a <VF x Ty> vector. 302 if (VF > 1) { 303 auto *VectorTy = VectorType::get(Ty, VF); 304 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 305 } 306 307 // If the vectorization factor is one, we just check if an array of type Ty 308 // requires padding between elements. 309 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 310 } 311 312 /// A helper function that returns the reciprocal of the block probability of 313 /// predicated blocks. If we return X, we are assuming the predicated block 314 /// will execute once for every X iterations of the loop header. 315 /// 316 /// TODO: We should use actual block probability here, if available. Currently, 317 /// we always assume predicated blocks have a 50% chance of executing. 318 static unsigned getReciprocalPredBlockProb() { return 2; } 319 320 /// A helper function that adds a 'fast' flag to floating-point operations. 321 static Value *addFastMathFlag(Value *V) { 322 if (isa<FPMathOperator>(V)) { 323 FastMathFlags Flags; 324 Flags.setFast(); 325 cast<Instruction>(V)->setFastMathFlags(Flags); 326 } 327 return V; 328 } 329 330 /// A helper function that returns an integer or floating-point constant with 331 /// value C. 332 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 333 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 334 : ConstantFP::get(Ty, C); 335 } 336 337 namespace llvm { 338 339 /// InnerLoopVectorizer vectorizes loops which contain only one basic 340 /// block to a specified vectorization factor (VF). 341 /// This class performs the widening of scalars into vectors, or multiple 342 /// scalars. This class also implements the following features: 343 /// * It inserts an epilogue loop for handling loops that don't have iteration 344 /// counts that are known to be a multiple of the vectorization factor. 345 /// * It handles the code generation for reduction variables. 346 /// * Scalarization (implementation using scalars) of un-vectorizable 347 /// instructions. 348 /// InnerLoopVectorizer does not perform any vectorization-legality 349 /// checks, and relies on the caller to check for the different legality 350 /// aspects. The InnerLoopVectorizer relies on the 351 /// LoopVectorizationLegality class to provide information about the induction 352 /// and reduction variables that were found to a given vectorization factor. 353 class InnerLoopVectorizer { 354 public: 355 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 356 LoopInfo *LI, DominatorTree *DT, 357 const TargetLibraryInfo *TLI, 358 const TargetTransformInfo *TTI, AssumptionCache *AC, 359 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 360 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 361 LoopVectorizationCostModel *CM) 362 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 363 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 364 Builder(PSE.getSE()->getContext()), 365 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 366 virtual ~InnerLoopVectorizer() = default; 367 368 /// Create a new empty loop. Unlink the old loop and connect the new one. 369 /// Return the pre-header block of the new loop. 370 BasicBlock *createVectorizedLoopSkeleton(); 371 372 /// Widen a single instruction within the innermost loop. 373 void widenInstruction(Instruction &I); 374 375 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 376 void fixVectorizedLoop(); 377 378 // Return true if any runtime check is added. 379 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 380 381 /// A type for vectorized values in the new loop. Each value from the 382 /// original loop, when vectorized, is represented by UF vector values in the 383 /// new unrolled loop, where UF is the unroll factor. 384 using VectorParts = SmallVector<Value *, 2>; 385 386 /// Vectorize a single PHINode in a block. This method handles the induction 387 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 388 /// arbitrary length vectors. 389 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 390 391 /// A helper function to scalarize a single Instruction in the innermost loop. 392 /// Generates a sequence of scalar instances for each lane between \p MinLane 393 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 394 /// inclusive.. 395 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 396 bool IfPredicateInstr); 397 398 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 399 /// is provided, the integer induction variable will first be truncated to 400 /// the corresponding type. 401 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 402 403 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 404 /// vector or scalar value on-demand if one is not yet available. When 405 /// vectorizing a loop, we visit the definition of an instruction before its 406 /// uses. When visiting the definition, we either vectorize or scalarize the 407 /// instruction, creating an entry for it in the corresponding map. (In some 408 /// cases, such as induction variables, we will create both vector and scalar 409 /// entries.) Then, as we encounter uses of the definition, we derive values 410 /// for each scalar or vector use unless such a value is already available. 411 /// For example, if we scalarize a definition and one of its uses is vector, 412 /// we build the required vector on-demand with an insertelement sequence 413 /// when visiting the use. Otherwise, if the use is scalar, we can use the 414 /// existing scalar definition. 415 /// 416 /// Return a value in the new loop corresponding to \p V from the original 417 /// loop at unroll index \p Part. If the value has already been vectorized, 418 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 419 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 420 /// a new vector value on-demand by inserting the scalar values into a vector 421 /// with an insertelement sequence. If the value has been neither vectorized 422 /// nor scalarized, it must be loop invariant, so we simply broadcast the 423 /// value into a vector. 424 Value *getOrCreateVectorValue(Value *V, unsigned Part); 425 426 /// Return a value in the new loop corresponding to \p V from the original 427 /// loop at unroll and vector indices \p Instance. If the value has been 428 /// vectorized but not scalarized, the necessary extractelement instruction 429 /// will be generated. 430 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 431 432 /// Construct the vector value of a scalarized value \p V one lane at a time. 433 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 434 435 /// Try to vectorize the interleaved access group that \p Instr belongs to, 436 /// optionally masking the vector operations if \p BlockInMask is non-null. 437 void vectorizeInterleaveGroup(Instruction *Instr, 438 VectorParts *BlockInMask = nullptr); 439 440 /// Vectorize Load and Store instructions, optionally masking the vector 441 /// operations if \p BlockInMask is non-null. 442 void vectorizeMemoryInstruction(Instruction *Instr, 443 VectorParts *BlockInMask = nullptr); 444 445 /// Set the debug location in the builder using the debug location in 446 /// the instruction. 447 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 448 449 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 450 void fixNonInductionPHIs(void); 451 452 protected: 453 friend class LoopVectorizationPlanner; 454 455 /// A small list of PHINodes. 456 using PhiVector = SmallVector<PHINode *, 4>; 457 458 /// A type for scalarized values in the new loop. Each value from the 459 /// original loop, when scalarized, is represented by UF x VF scalar values 460 /// in the new unrolled loop, where UF is the unroll factor and VF is the 461 /// vectorization factor. 462 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 463 464 /// Set up the values of the IVs correctly when exiting the vector loop. 465 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 466 Value *CountRoundDown, Value *EndValue, 467 BasicBlock *MiddleBlock); 468 469 /// Create a new induction variable inside L. 470 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 471 Value *Step, Instruction *DL); 472 473 /// Handle all cross-iteration phis in the header. 474 void fixCrossIterationPHIs(); 475 476 /// Fix a first-order recurrence. This is the second phase of vectorizing 477 /// this phi node. 478 void fixFirstOrderRecurrence(PHINode *Phi); 479 480 /// Fix a reduction cross-iteration phi. This is the second phase of 481 /// vectorizing this phi node. 482 void fixReduction(PHINode *Phi); 483 484 /// The Loop exit block may have single value PHI nodes with some 485 /// incoming value. While vectorizing we only handled real values 486 /// that were defined inside the loop and we should have one value for 487 /// each predecessor of its parent basic block. See PR14725. 488 void fixLCSSAPHIs(); 489 490 /// Iteratively sink the scalarized operands of a predicated instruction into 491 /// the block that was created for it. 492 void sinkScalarOperands(Instruction *PredInst); 493 494 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 495 /// represented as. 496 void truncateToMinimalBitwidths(); 497 498 /// Insert the new loop to the loop hierarchy and pass manager 499 /// and update the analysis passes. 500 void updateAnalysis(); 501 502 /// Create a broadcast instruction. This method generates a broadcast 503 /// instruction (shuffle) for loop invariant values and for the induction 504 /// value. If this is the induction variable then we extend it to N, N+1, ... 505 /// this is needed because each iteration in the loop corresponds to a SIMD 506 /// element. 507 virtual Value *getBroadcastInstrs(Value *V); 508 509 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 510 /// to each vector element of Val. The sequence starts at StartIndex. 511 /// \p Opcode is relevant for FP induction variable. 512 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 513 Instruction::BinaryOps Opcode = 514 Instruction::BinaryOpsEnd); 515 516 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 517 /// variable on which to base the steps, \p Step is the size of the step, and 518 /// \p EntryVal is the value from the original loop that maps to the steps. 519 /// Note that \p EntryVal doesn't have to be an induction variable - it 520 /// can also be a truncate instruction. 521 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 522 const InductionDescriptor &ID); 523 524 /// Create a vector induction phi node based on an existing scalar one. \p 525 /// EntryVal is the value from the original loop that maps to the vector phi 526 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 527 /// truncate instruction, instead of widening the original IV, we widen a 528 /// version of the IV truncated to \p EntryVal's type. 529 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 530 Value *Step, Instruction *EntryVal); 531 532 /// Returns true if an instruction \p I should be scalarized instead of 533 /// vectorized for the chosen vectorization factor. 534 bool shouldScalarizeInstruction(Instruction *I) const; 535 536 /// Returns true if we should generate a scalar version of \p IV. 537 bool needsScalarInduction(Instruction *IV) const; 538 539 /// If there is a cast involved in the induction variable \p ID, which should 540 /// be ignored in the vectorized loop body, this function records the 541 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 542 /// cast. We had already proved that the casted Phi is equal to the uncasted 543 /// Phi in the vectorized loop (under a runtime guard), and therefore 544 /// there is no need to vectorize the cast - the same value can be used in the 545 /// vector loop for both the Phi and the cast. 546 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 547 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 548 /// 549 /// \p EntryVal is the value from the original loop that maps to the vector 550 /// phi node and is used to distinguish what is the IV currently being 551 /// processed - original one (if \p EntryVal is a phi corresponding to the 552 /// original IV) or the "newly-created" one based on the proof mentioned above 553 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 554 /// latter case \p EntryVal is a TruncInst and we must not record anything for 555 /// that IV, but it's error-prone to expect callers of this routine to care 556 /// about that, hence this explicit parameter. 557 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 558 const Instruction *EntryVal, 559 Value *VectorLoopValue, 560 unsigned Part, 561 unsigned Lane = UINT_MAX); 562 563 /// Generate a shuffle sequence that will reverse the vector Vec. 564 virtual Value *reverseVector(Value *Vec); 565 566 /// Returns (and creates if needed) the original loop trip count. 567 Value *getOrCreateTripCount(Loop *NewLoop); 568 569 /// Returns (and creates if needed) the trip count of the widened loop. 570 Value *getOrCreateVectorTripCount(Loop *NewLoop); 571 572 /// Returns a bitcasted value to the requested vector type. 573 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 574 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 575 const DataLayout &DL); 576 577 /// Emit a bypass check to see if the vector trip count is zero, including if 578 /// it overflows. 579 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 580 581 /// Emit a bypass check to see if all of the SCEV assumptions we've 582 /// had to make are correct. 583 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 584 585 /// Emit bypass checks to check any memory assumptions we may have made. 586 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Compute the transformed value of Index at offset StartValue using step 589 /// StepValue. 590 /// For integer induction, returns StartValue + Index * StepValue. 591 /// For pointer induction, returns StartValue[Index * StepValue]. 592 /// FIXME: The newly created binary instructions should contain nsw/nuw 593 /// flags, which can be found from the original scalar operations. 594 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 595 const DataLayout &DL, 596 const InductionDescriptor &ID) const; 597 598 /// Add additional metadata to \p To that was not present on \p Orig. 599 /// 600 /// Currently this is used to add the noalias annotations based on the 601 /// inserted memchecks. Use this for instructions that are *cloned* into the 602 /// vector loop. 603 void addNewMetadata(Instruction *To, const Instruction *Orig); 604 605 /// Add metadata from one instruction to another. 606 /// 607 /// This includes both the original MDs from \p From and additional ones (\see 608 /// addNewMetadata). Use this for *newly created* instructions in the vector 609 /// loop. 610 void addMetadata(Instruction *To, Instruction *From); 611 612 /// Similar to the previous function but it adds the metadata to a 613 /// vector of instructions. 614 void addMetadata(ArrayRef<Value *> To, Instruction *From); 615 616 /// The original loop. 617 Loop *OrigLoop; 618 619 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 620 /// dynamic knowledge to simplify SCEV expressions and converts them to a 621 /// more usable form. 622 PredicatedScalarEvolution &PSE; 623 624 /// Loop Info. 625 LoopInfo *LI; 626 627 /// Dominator Tree. 628 DominatorTree *DT; 629 630 /// Alias Analysis. 631 AliasAnalysis *AA; 632 633 /// Target Library Info. 634 const TargetLibraryInfo *TLI; 635 636 /// Target Transform Info. 637 const TargetTransformInfo *TTI; 638 639 /// Assumption Cache. 640 AssumptionCache *AC; 641 642 /// Interface to emit optimization remarks. 643 OptimizationRemarkEmitter *ORE; 644 645 /// LoopVersioning. It's only set up (non-null) if memchecks were 646 /// used. 647 /// 648 /// This is currently only used to add no-alias metadata based on the 649 /// memchecks. The actually versioning is performed manually. 650 std::unique_ptr<LoopVersioning> LVer; 651 652 /// The vectorization SIMD factor to use. Each vector will have this many 653 /// vector elements. 654 unsigned VF; 655 656 /// The vectorization unroll factor to use. Each scalar is vectorized to this 657 /// many different vector instructions. 658 unsigned UF; 659 660 /// The builder that we use 661 IRBuilder<> Builder; 662 663 // --- Vectorization state --- 664 665 /// The vector-loop preheader. 666 BasicBlock *LoopVectorPreHeader; 667 668 /// The scalar-loop preheader. 669 BasicBlock *LoopScalarPreHeader; 670 671 /// Middle Block between the vector and the scalar. 672 BasicBlock *LoopMiddleBlock; 673 674 /// The ExitBlock of the scalar loop. 675 BasicBlock *LoopExitBlock; 676 677 /// The vector loop body. 678 BasicBlock *LoopVectorBody; 679 680 /// The scalar loop body. 681 BasicBlock *LoopScalarBody; 682 683 /// A list of all bypass blocks. The first block is the entry of the loop. 684 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 685 686 /// The new Induction variable which was added to the new block. 687 PHINode *Induction = nullptr; 688 689 /// The induction variable of the old basic block. 690 PHINode *OldInduction = nullptr; 691 692 /// Maps values from the original loop to their corresponding values in the 693 /// vectorized loop. A key value can map to either vector values, scalar 694 /// values or both kinds of values, depending on whether the key was 695 /// vectorized and scalarized. 696 VectorizerValueMap VectorLoopValueMap; 697 698 /// Store instructions that were predicated. 699 SmallVector<Instruction *, 4> PredicatedInstructions; 700 701 /// Trip count of the original loop. 702 Value *TripCount = nullptr; 703 704 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 705 Value *VectorTripCount = nullptr; 706 707 /// The legality analysis. 708 LoopVectorizationLegality *Legal; 709 710 /// The profitablity analysis. 711 LoopVectorizationCostModel *Cost; 712 713 // Record whether runtime checks are added. 714 bool AddedSafetyChecks = false; 715 716 // Holds the end values for each induction variable. We save the end values 717 // so we can later fix-up the external users of the induction variables. 718 DenseMap<PHINode *, Value *> IVEndValues; 719 720 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 721 // fixed up at the end of vector code generation. 722 SmallVector<PHINode *, 8> OrigPHIsToFix; 723 }; 724 725 class InnerLoopUnroller : public InnerLoopVectorizer { 726 public: 727 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 728 LoopInfo *LI, DominatorTree *DT, 729 const TargetLibraryInfo *TLI, 730 const TargetTransformInfo *TTI, AssumptionCache *AC, 731 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 732 LoopVectorizationLegality *LVL, 733 LoopVectorizationCostModel *CM) 734 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 735 UnrollFactor, LVL, CM) {} 736 737 private: 738 Value *getBroadcastInstrs(Value *V) override; 739 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 740 Instruction::BinaryOps Opcode = 741 Instruction::BinaryOpsEnd) override; 742 Value *reverseVector(Value *Vec) override; 743 }; 744 745 } // end namespace llvm 746 747 /// Look for a meaningful debug location on the instruction or it's 748 /// operands. 749 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 750 if (!I) 751 return I; 752 753 DebugLoc Empty; 754 if (I->getDebugLoc() != Empty) 755 return I; 756 757 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 758 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 759 if (OpInst->getDebugLoc() != Empty) 760 return OpInst; 761 } 762 763 return I; 764 } 765 766 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 767 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 768 const DILocation *DIL = Inst->getDebugLoc(); 769 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 770 !isa<DbgInfoIntrinsic>(Inst)) { 771 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 772 if (NewDIL) 773 B.SetCurrentDebugLocation(NewDIL.getValue()); 774 else 775 LLVM_DEBUG(dbgs() 776 << "Failed to create new discriminator: " 777 << DIL->getFilename() << " Line: " << DIL->getLine()); 778 } 779 else 780 B.SetCurrentDebugLocation(DIL); 781 } else 782 B.SetCurrentDebugLocation(DebugLoc()); 783 } 784 785 #ifndef NDEBUG 786 /// \return string containing a file name and a line # for the given loop. 787 static std::string getDebugLocString(const Loop *L) { 788 std::string Result; 789 if (L) { 790 raw_string_ostream OS(Result); 791 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 792 LoopDbgLoc.print(OS); 793 else 794 // Just print the module name. 795 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 796 OS.flush(); 797 } 798 return Result; 799 } 800 #endif 801 802 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 803 const Instruction *Orig) { 804 // If the loop was versioned with memchecks, add the corresponding no-alias 805 // metadata. 806 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 807 LVer->annotateInstWithNoAlias(To, Orig); 808 } 809 810 void InnerLoopVectorizer::addMetadata(Instruction *To, 811 Instruction *From) { 812 propagateMetadata(To, From); 813 addNewMetadata(To, From); 814 } 815 816 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 817 Instruction *From) { 818 for (Value *V : To) { 819 if (Instruction *I = dyn_cast<Instruction>(V)) 820 addMetadata(I, From); 821 } 822 } 823 824 namespace llvm { 825 826 /// LoopVectorizationCostModel - estimates the expected speedups due to 827 /// vectorization. 828 /// In many cases vectorization is not profitable. This can happen because of 829 /// a number of reasons. In this class we mainly attempt to predict the 830 /// expected speedup/slowdowns due to the supported instruction set. We use the 831 /// TargetTransformInfo to query the different backends for the cost of 832 /// different operations. 833 class LoopVectorizationCostModel { 834 public: 835 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 836 LoopInfo *LI, LoopVectorizationLegality *Legal, 837 const TargetTransformInfo &TTI, 838 const TargetLibraryInfo *TLI, DemandedBits *DB, 839 AssumptionCache *AC, 840 OptimizationRemarkEmitter *ORE, const Function *F, 841 const LoopVectorizeHints *Hints, 842 InterleavedAccessInfo &IAI) 843 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 844 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 845 846 /// \return An upper bound for the vectorization factor, or None if 847 /// vectorization and interleaving should be avoided up front. 848 Optional<unsigned> computeMaxVF(bool OptForSize); 849 850 /// \return The most profitable vectorization factor and the cost of that VF. 851 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 852 /// then this vectorization factor will be selected if vectorization is 853 /// possible. 854 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 855 856 /// Setup cost-based decisions for user vectorization factor. 857 void selectUserVectorizationFactor(unsigned UserVF) { 858 collectUniformsAndScalars(UserVF); 859 collectInstsToScalarize(UserVF); 860 } 861 862 /// \return The size (in bits) of the smallest and widest types in the code 863 /// that needs to be vectorized. We ignore values that remain scalar such as 864 /// 64 bit loop indices. 865 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 866 867 /// \return The desired interleave count. 868 /// If interleave count has been specified by metadata it will be returned. 869 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 870 /// are the selected vectorization factor and the cost of the selected VF. 871 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 872 unsigned LoopCost); 873 874 /// Memory access instruction may be vectorized in more than one way. 875 /// Form of instruction after vectorization depends on cost. 876 /// This function takes cost-based decisions for Load/Store instructions 877 /// and collects them in a map. This decisions map is used for building 878 /// the lists of loop-uniform and loop-scalar instructions. 879 /// The calculated cost is saved with widening decision in order to 880 /// avoid redundant calculations. 881 void setCostBasedWideningDecision(unsigned VF); 882 883 /// A struct that represents some properties of the register usage 884 /// of a loop. 885 struct RegisterUsage { 886 /// Holds the number of loop invariant values that are used in the loop. 887 unsigned LoopInvariantRegs; 888 889 /// Holds the maximum number of concurrent live intervals in the loop. 890 unsigned MaxLocalUsers; 891 }; 892 893 /// \return Returns information about the register usages of the loop for the 894 /// given vectorization factors. 895 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 896 897 /// Collect values we want to ignore in the cost model. 898 void collectValuesToIgnore(); 899 900 /// \returns The smallest bitwidth each instruction can be represented with. 901 /// The vector equivalents of these instructions should be truncated to this 902 /// type. 903 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 904 return MinBWs; 905 } 906 907 /// \returns True if it is more profitable to scalarize instruction \p I for 908 /// vectorization factor \p VF. 909 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 910 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 911 912 // Cost model is not run in the VPlan-native path - return conservative 913 // result until this changes. 914 if (EnableVPlanNativePath) 915 return false; 916 917 auto Scalars = InstsToScalarize.find(VF); 918 assert(Scalars != InstsToScalarize.end() && 919 "VF not yet analyzed for scalarization profitability"); 920 return Scalars->second.find(I) != Scalars->second.end(); 921 } 922 923 /// Returns true if \p I is known to be uniform after vectorization. 924 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 925 if (VF == 1) 926 return true; 927 928 // Cost model is not run in the VPlan-native path - return conservative 929 // result until this changes. 930 if (EnableVPlanNativePath) 931 return false; 932 933 auto UniformsPerVF = Uniforms.find(VF); 934 assert(UniformsPerVF != Uniforms.end() && 935 "VF not yet analyzed for uniformity"); 936 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 937 } 938 939 /// Returns true if \p I is known to be scalar after vectorization. 940 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 941 if (VF == 1) 942 return true; 943 944 // Cost model is not run in the VPlan-native path - return conservative 945 // result until this changes. 946 if (EnableVPlanNativePath) 947 return false; 948 949 auto ScalarsPerVF = Scalars.find(VF); 950 assert(ScalarsPerVF != Scalars.end() && 951 "Scalar values are not calculated for VF"); 952 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 953 } 954 955 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 956 /// for vectorization factor \p VF. 957 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 958 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 959 !isProfitableToScalarize(I, VF) && 960 !isScalarAfterVectorization(I, VF); 961 } 962 963 /// Decision that was taken during cost calculation for memory instruction. 964 enum InstWidening { 965 CM_Unknown, 966 CM_Widen, // For consecutive accesses with stride +1. 967 CM_Widen_Reverse, // For consecutive accesses with stride -1. 968 CM_Interleave, 969 CM_GatherScatter, 970 CM_Scalarize 971 }; 972 973 /// Save vectorization decision \p W and \p Cost taken by the cost model for 974 /// instruction \p I and vector width \p VF. 975 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 976 unsigned Cost) { 977 assert(VF >= 2 && "Expected VF >=2"); 978 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 979 } 980 981 /// Save vectorization decision \p W and \p Cost taken by the cost model for 982 /// interleaving group \p Grp and vector width \p VF. 983 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 984 InstWidening W, unsigned Cost) { 985 assert(VF >= 2 && "Expected VF >=2"); 986 /// Broadcast this decicion to all instructions inside the group. 987 /// But the cost will be assigned to one instruction only. 988 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 989 if (auto *I = Grp->getMember(i)) { 990 if (Grp->getInsertPos() == I) 991 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 992 else 993 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 994 } 995 } 996 } 997 998 /// Return the cost model decision for the given instruction \p I and vector 999 /// width \p VF. Return CM_Unknown if this instruction did not pass 1000 /// through the cost modeling. 1001 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1002 assert(VF >= 2 && "Expected VF >=2"); 1003 1004 // Cost model is not run in the VPlan-native path - return conservative 1005 // result until this changes. 1006 if (EnableVPlanNativePath) 1007 return CM_GatherScatter; 1008 1009 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1010 auto Itr = WideningDecisions.find(InstOnVF); 1011 if (Itr == WideningDecisions.end()) 1012 return CM_Unknown; 1013 return Itr->second.first; 1014 } 1015 1016 /// Return the vectorization cost for the given instruction \p I and vector 1017 /// width \p VF. 1018 unsigned getWideningCost(Instruction *I, unsigned VF) { 1019 assert(VF >= 2 && "Expected VF >=2"); 1020 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1021 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1022 "The cost is not calculated"); 1023 return WideningDecisions[InstOnVF].second; 1024 } 1025 1026 /// Return True if instruction \p I is an optimizable truncate whose operand 1027 /// is an induction variable. Such a truncate will be removed by adding a new 1028 /// induction variable with the destination type. 1029 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1030 // If the instruction is not a truncate, return false. 1031 auto *Trunc = dyn_cast<TruncInst>(I); 1032 if (!Trunc) 1033 return false; 1034 1035 // Get the source and destination types of the truncate. 1036 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1037 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1038 1039 // If the truncate is free for the given types, return false. Replacing a 1040 // free truncate with an induction variable would add an induction variable 1041 // update instruction to each iteration of the loop. We exclude from this 1042 // check the primary induction variable since it will need an update 1043 // instruction regardless. 1044 Value *Op = Trunc->getOperand(0); 1045 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1046 return false; 1047 1048 // If the truncated value is not an induction variable, return false. 1049 return Legal->isInductionPhi(Op); 1050 } 1051 1052 /// Collects the instructions to scalarize for each predicated instruction in 1053 /// the loop. 1054 void collectInstsToScalarize(unsigned VF); 1055 1056 /// Collect Uniform and Scalar values for the given \p VF. 1057 /// The sets depend on CM decision for Load/Store instructions 1058 /// that may be vectorized as interleave, gather-scatter or scalarized. 1059 void collectUniformsAndScalars(unsigned VF) { 1060 // Do the analysis once. 1061 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1062 return; 1063 setCostBasedWideningDecision(VF); 1064 collectLoopUniforms(VF); 1065 collectLoopScalars(VF); 1066 } 1067 1068 /// Returns true if the target machine supports masked store operation 1069 /// for the given \p DataType and kind of access to \p Ptr. 1070 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1071 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1072 } 1073 1074 /// Returns true if the target machine supports masked load operation 1075 /// for the given \p DataType and kind of access to \p Ptr. 1076 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1077 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1078 } 1079 1080 /// Returns true if the target machine supports masked scatter operation 1081 /// for the given \p DataType. 1082 bool isLegalMaskedScatter(Type *DataType) { 1083 return TTI.isLegalMaskedScatter(DataType); 1084 } 1085 1086 /// Returns true if the target machine supports masked gather operation 1087 /// for the given \p DataType. 1088 bool isLegalMaskedGather(Type *DataType) { 1089 return TTI.isLegalMaskedGather(DataType); 1090 } 1091 1092 /// Returns true if the target machine can represent \p V as a masked gather 1093 /// or scatter operation. 1094 bool isLegalGatherOrScatter(Value *V) { 1095 bool LI = isa<LoadInst>(V); 1096 bool SI = isa<StoreInst>(V); 1097 if (!LI && !SI) 1098 return false; 1099 auto *Ty = getMemInstValueType(V); 1100 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1101 } 1102 1103 /// Returns true if \p I is an instruction that will be scalarized with 1104 /// predication. Such instructions include conditional stores and 1105 /// instructions that may divide by zero. 1106 /// If a non-zero VF has been calculated, we check if I will be scalarized 1107 /// predication for that VF. 1108 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1109 1110 // Returns true if \p I is an instruction that will be predicated either 1111 // through scalar predication or masked load/store or masked gather/scatter. 1112 // Superset of instructions that return true for isScalarWithPredication. 1113 bool isPredicatedInst(Instruction *I) { 1114 if (!blockNeedsPredication(I->getParent())) 1115 return false; 1116 // Loads and stores that need some form of masked operation are predicated 1117 // instructions. 1118 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1119 return Legal->isMaskRequired(I); 1120 return isScalarWithPredication(I); 1121 } 1122 1123 /// Returns true if \p I is a memory instruction with consecutive memory 1124 /// access that can be widened. 1125 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1126 1127 /// Returns true if \p I is a memory instruction in an interleaved-group 1128 /// of memory accesses that can be vectorized with wide vector loads/stores 1129 /// and shuffles. 1130 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1131 1132 /// Check if \p Instr belongs to any interleaved access group. 1133 bool isAccessInterleaved(Instruction *Instr) { 1134 return InterleaveInfo.isInterleaved(Instr); 1135 } 1136 1137 /// Get the interleaved access group that \p Instr belongs to. 1138 const InterleaveGroup<Instruction> * 1139 getInterleavedAccessGroup(Instruction *Instr) { 1140 return InterleaveInfo.getInterleaveGroup(Instr); 1141 } 1142 1143 /// Returns true if an interleaved group requires a scalar iteration 1144 /// to handle accesses with gaps, and there is nothing preventing us from 1145 /// creating a scalar epilogue. 1146 bool requiresScalarEpilogue() const { 1147 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1148 } 1149 1150 /// Returns true if a scalar epilogue is not allowed due to optsize. 1151 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1152 1153 /// Returns true if all loop blocks should be masked to fold tail loop. 1154 bool foldTailByMasking() const { return FoldTailByMasking; } 1155 1156 bool blockNeedsPredication(BasicBlock *BB) { 1157 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1158 } 1159 1160 private: 1161 unsigned NumPredStores = 0; 1162 1163 /// \return An upper bound for the vectorization factor, larger than zero. 1164 /// One is returned if vectorization should best be avoided due to cost. 1165 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1166 1167 /// The vectorization cost is a combination of the cost itself and a boolean 1168 /// indicating whether any of the contributing operations will actually 1169 /// operate on 1170 /// vector values after type legalization in the backend. If this latter value 1171 /// is 1172 /// false, then all operations will be scalarized (i.e. no vectorization has 1173 /// actually taken place). 1174 using VectorizationCostTy = std::pair<unsigned, bool>; 1175 1176 /// Returns the expected execution cost. The unit of the cost does 1177 /// not matter because we use the 'cost' units to compare different 1178 /// vector widths. The cost that is returned is *not* normalized by 1179 /// the factor width. 1180 VectorizationCostTy expectedCost(unsigned VF); 1181 1182 /// Returns the execution time cost of an instruction for a given vector 1183 /// width. Vector width of one means scalar. 1184 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1185 1186 /// The cost-computation logic from getInstructionCost which provides 1187 /// the vector type as an output parameter. 1188 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1189 1190 /// Calculate vectorization cost of memory instruction \p I. 1191 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1192 1193 /// The cost computation for scalarized memory instruction. 1194 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1195 1196 /// The cost computation for interleaving group of memory instructions. 1197 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1198 1199 /// The cost computation for Gather/Scatter instruction. 1200 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1201 1202 /// The cost computation for widening instruction \p I with consecutive 1203 /// memory access. 1204 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1205 1206 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1207 /// Load: scalar load + broadcast. 1208 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1209 /// element) 1210 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1211 1212 /// Returns whether the instruction is a load or store and will be a emitted 1213 /// as a vector operation. 1214 bool isConsecutiveLoadOrStore(Instruction *I); 1215 1216 /// Returns true if an artificially high cost for emulated masked memrefs 1217 /// should be used. 1218 bool useEmulatedMaskMemRefHack(Instruction *I); 1219 1220 /// Create an analysis remark that explains why vectorization failed 1221 /// 1222 /// \p RemarkName is the identifier for the remark. \return the remark object 1223 /// that can be streamed to. 1224 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1225 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1226 RemarkName, TheLoop); 1227 } 1228 1229 /// Map of scalar integer values to the smallest bitwidth they can be legally 1230 /// represented as. The vector equivalents of these values should be truncated 1231 /// to this type. 1232 MapVector<Instruction *, uint64_t> MinBWs; 1233 1234 /// A type representing the costs for instructions if they were to be 1235 /// scalarized rather than vectorized. The entries are Instruction-Cost 1236 /// pairs. 1237 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1238 1239 /// A set containing all BasicBlocks that are known to present after 1240 /// vectorization as a predicated block. 1241 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1242 1243 /// Records whether it is allowed to have the original scalar loop execute at 1244 /// least once. This may be needed as a fallback loop in case runtime 1245 /// aliasing/dependence checks fail, or to handle the tail/remainder 1246 /// iterations when the trip count is unknown or doesn't divide by the VF, 1247 /// or as a peel-loop to handle gaps in interleave-groups. 1248 /// Under optsize and when the trip count is very small we don't allow any 1249 /// iterations to execute in the scalar loop. 1250 bool IsScalarEpilogueAllowed = true; 1251 1252 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1253 bool FoldTailByMasking = false; 1254 1255 /// A map holding scalar costs for different vectorization factors. The 1256 /// presence of a cost for an instruction in the mapping indicates that the 1257 /// instruction will be scalarized when vectorizing with the associated 1258 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1259 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1260 1261 /// Holds the instructions known to be uniform after vectorization. 1262 /// The data is collected per VF. 1263 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1264 1265 /// Holds the instructions known to be scalar after vectorization. 1266 /// The data is collected per VF. 1267 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1268 1269 /// Holds the instructions (address computations) that are forced to be 1270 /// scalarized. 1271 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1272 1273 /// Returns the expected difference in cost from scalarizing the expression 1274 /// feeding a predicated instruction \p PredInst. The instructions to 1275 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1276 /// non-negative return value implies the expression will be scalarized. 1277 /// Currently, only single-use chains are considered for scalarization. 1278 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1279 unsigned VF); 1280 1281 /// Collect the instructions that are uniform after vectorization. An 1282 /// instruction is uniform if we represent it with a single scalar value in 1283 /// the vectorized loop corresponding to each vector iteration. Examples of 1284 /// uniform instructions include pointer operands of consecutive or 1285 /// interleaved memory accesses. Note that although uniformity implies an 1286 /// instruction will be scalar, the reverse is not true. In general, a 1287 /// scalarized instruction will be represented by VF scalar values in the 1288 /// vectorized loop, each corresponding to an iteration of the original 1289 /// scalar loop. 1290 void collectLoopUniforms(unsigned VF); 1291 1292 /// Collect the instructions that are scalar after vectorization. An 1293 /// instruction is scalar if it is known to be uniform or will be scalarized 1294 /// during vectorization. Non-uniform scalarized instructions will be 1295 /// represented by VF values in the vectorized loop, each corresponding to an 1296 /// iteration of the original scalar loop. 1297 void collectLoopScalars(unsigned VF); 1298 1299 /// Keeps cost model vectorization decision and cost for instructions. 1300 /// Right now it is used for memory instructions only. 1301 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1302 std::pair<InstWidening, unsigned>>; 1303 1304 DecisionList WideningDecisions; 1305 1306 public: 1307 /// The loop that we evaluate. 1308 Loop *TheLoop; 1309 1310 /// Predicated scalar evolution analysis. 1311 PredicatedScalarEvolution &PSE; 1312 1313 /// Loop Info analysis. 1314 LoopInfo *LI; 1315 1316 /// Vectorization legality. 1317 LoopVectorizationLegality *Legal; 1318 1319 /// Vector target information. 1320 const TargetTransformInfo &TTI; 1321 1322 /// Target Library Info. 1323 const TargetLibraryInfo *TLI; 1324 1325 /// Demanded bits analysis. 1326 DemandedBits *DB; 1327 1328 /// Assumption cache. 1329 AssumptionCache *AC; 1330 1331 /// Interface to emit optimization remarks. 1332 OptimizationRemarkEmitter *ORE; 1333 1334 const Function *TheFunction; 1335 1336 /// Loop Vectorize Hint. 1337 const LoopVectorizeHints *Hints; 1338 1339 /// The interleave access information contains groups of interleaved accesses 1340 /// with the same stride and close to each other. 1341 InterleavedAccessInfo &InterleaveInfo; 1342 1343 /// Values to ignore in the cost model. 1344 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1345 1346 /// Values to ignore in the cost model when VF > 1. 1347 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1348 }; 1349 1350 } // end namespace llvm 1351 1352 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1353 // vectorization. The loop needs to be annotated with #pragma omp simd 1354 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1355 // vector length information is not provided, vectorization is not considered 1356 // explicit. Interleave hints are not allowed either. These limitations will be 1357 // relaxed in the future. 1358 // Please, note that we are currently forced to abuse the pragma 'clang 1359 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1360 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1361 // provides *explicit vectorization hints* (LV can bypass legal checks and 1362 // assume that vectorization is legal). However, both hints are implemented 1363 // using the same metadata (llvm.loop.vectorize, processed by 1364 // LoopVectorizeHints). This will be fixed in the future when the native IR 1365 // representation for pragma 'omp simd' is introduced. 1366 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1367 OptimizationRemarkEmitter *ORE) { 1368 assert(!OuterLp->empty() && "This is not an outer loop"); 1369 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1370 1371 // Only outer loops with an explicit vectorization hint are supported. 1372 // Unannotated outer loops are ignored. 1373 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1374 return false; 1375 1376 Function *Fn = OuterLp->getHeader()->getParent(); 1377 if (!Hints.allowVectorization(Fn, OuterLp, 1378 true /*VectorizeOnlyWhenForced*/)) { 1379 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1380 return false; 1381 } 1382 1383 if (!Hints.getWidth()) { 1384 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1385 Hints.emitRemarkWithHints(); 1386 return false; 1387 } 1388 1389 if (Hints.getInterleave() > 1) { 1390 // TODO: Interleave support is future work. 1391 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1392 "outer loops.\n"); 1393 Hints.emitRemarkWithHints(); 1394 return false; 1395 } 1396 1397 return true; 1398 } 1399 1400 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1401 OptimizationRemarkEmitter *ORE, 1402 SmallVectorImpl<Loop *> &V) { 1403 // Collect inner loops and outer loops without irreducible control flow. For 1404 // now, only collect outer loops that have explicit vectorization hints. If we 1405 // are stress testing the VPlan H-CFG construction, we collect the outermost 1406 // loop of every loop nest. 1407 if (L.empty() || VPlanBuildStressTest || 1408 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1409 LoopBlocksRPO RPOT(&L); 1410 RPOT.perform(LI); 1411 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1412 V.push_back(&L); 1413 // TODO: Collect inner loops inside marked outer loops in case 1414 // vectorization fails for the outer loop. Do not invoke 1415 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1416 // already known to be reducible. We can use an inherited attribute for 1417 // that. 1418 return; 1419 } 1420 } 1421 for (Loop *InnerL : L) 1422 collectSupportedLoops(*InnerL, LI, ORE, V); 1423 } 1424 1425 namespace { 1426 1427 /// The LoopVectorize Pass. 1428 struct LoopVectorize : public FunctionPass { 1429 /// Pass identification, replacement for typeid 1430 static char ID; 1431 1432 LoopVectorizePass Impl; 1433 1434 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1435 bool VectorizeOnlyWhenForced = false) 1436 : FunctionPass(ID) { 1437 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1438 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1439 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1440 } 1441 1442 bool runOnFunction(Function &F) override { 1443 if (skipFunction(F)) 1444 return false; 1445 1446 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1447 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1448 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1449 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1450 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1451 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1452 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1453 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1454 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1455 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1456 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1457 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1458 1459 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1460 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1461 1462 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1463 GetLAA, *ORE); 1464 } 1465 1466 void getAnalysisUsage(AnalysisUsage &AU) const override { 1467 AU.addRequired<AssumptionCacheTracker>(); 1468 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1469 AU.addRequired<DominatorTreeWrapperPass>(); 1470 AU.addRequired<LoopInfoWrapperPass>(); 1471 AU.addRequired<ScalarEvolutionWrapperPass>(); 1472 AU.addRequired<TargetTransformInfoWrapperPass>(); 1473 AU.addRequired<AAResultsWrapperPass>(); 1474 AU.addRequired<LoopAccessLegacyAnalysis>(); 1475 AU.addRequired<DemandedBitsWrapperPass>(); 1476 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1477 1478 // We currently do not preserve loopinfo/dominator analyses with outer loop 1479 // vectorization. Until this is addressed, mark these analyses as preserved 1480 // only for non-VPlan-native path. 1481 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1482 if (!EnableVPlanNativePath) { 1483 AU.addPreserved<LoopInfoWrapperPass>(); 1484 AU.addPreserved<DominatorTreeWrapperPass>(); 1485 } 1486 1487 AU.addPreserved<BasicAAWrapperPass>(); 1488 AU.addPreserved<GlobalsAAWrapperPass>(); 1489 } 1490 }; 1491 1492 } // end anonymous namespace 1493 1494 //===----------------------------------------------------------------------===// 1495 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1496 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1497 //===----------------------------------------------------------------------===// 1498 1499 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1500 // We need to place the broadcast of invariant variables outside the loop, 1501 // but only if it's proven safe to do so. Else, broadcast will be inside 1502 // vector loop body. 1503 Instruction *Instr = dyn_cast<Instruction>(V); 1504 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1505 (!Instr || 1506 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1507 // Place the code for broadcasting invariant variables in the new preheader. 1508 IRBuilder<>::InsertPointGuard Guard(Builder); 1509 if (SafeToHoist) 1510 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1511 1512 // Broadcast the scalar into all locations in the vector. 1513 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1514 1515 return Shuf; 1516 } 1517 1518 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1519 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1520 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1521 "Expected either an induction phi-node or a truncate of it!"); 1522 Value *Start = II.getStartValue(); 1523 1524 // Construct the initial value of the vector IV in the vector loop preheader 1525 auto CurrIP = Builder.saveIP(); 1526 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1527 if (isa<TruncInst>(EntryVal)) { 1528 assert(Start->getType()->isIntegerTy() && 1529 "Truncation requires an integer type"); 1530 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1531 Step = Builder.CreateTrunc(Step, TruncType); 1532 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1533 } 1534 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1535 Value *SteppedStart = 1536 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1537 1538 // We create vector phi nodes for both integer and floating-point induction 1539 // variables. Here, we determine the kind of arithmetic we will perform. 1540 Instruction::BinaryOps AddOp; 1541 Instruction::BinaryOps MulOp; 1542 if (Step->getType()->isIntegerTy()) { 1543 AddOp = Instruction::Add; 1544 MulOp = Instruction::Mul; 1545 } else { 1546 AddOp = II.getInductionOpcode(); 1547 MulOp = Instruction::FMul; 1548 } 1549 1550 // Multiply the vectorization factor by the step using integer or 1551 // floating-point arithmetic as appropriate. 1552 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1553 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1554 1555 // Create a vector splat to use in the induction update. 1556 // 1557 // FIXME: If the step is non-constant, we create the vector splat with 1558 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1559 // handle a constant vector splat. 1560 Value *SplatVF = isa<Constant>(Mul) 1561 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1562 : Builder.CreateVectorSplat(VF, Mul); 1563 Builder.restoreIP(CurrIP); 1564 1565 // We may need to add the step a number of times, depending on the unroll 1566 // factor. The last of those goes into the PHI. 1567 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1568 &*LoopVectorBody->getFirstInsertionPt()); 1569 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1570 Instruction *LastInduction = VecInd; 1571 for (unsigned Part = 0; Part < UF; ++Part) { 1572 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1573 1574 if (isa<TruncInst>(EntryVal)) 1575 addMetadata(LastInduction, EntryVal); 1576 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1577 1578 LastInduction = cast<Instruction>(addFastMathFlag( 1579 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1580 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1581 } 1582 1583 // Move the last step to the end of the latch block. This ensures consistent 1584 // placement of all induction updates. 1585 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1586 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1587 auto *ICmp = cast<Instruction>(Br->getCondition()); 1588 LastInduction->moveBefore(ICmp); 1589 LastInduction->setName("vec.ind.next"); 1590 1591 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1592 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1593 } 1594 1595 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1596 return Cost->isScalarAfterVectorization(I, VF) || 1597 Cost->isProfitableToScalarize(I, VF); 1598 } 1599 1600 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1601 if (shouldScalarizeInstruction(IV)) 1602 return true; 1603 auto isScalarInst = [&](User *U) -> bool { 1604 auto *I = cast<Instruction>(U); 1605 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1606 }; 1607 return llvm::any_of(IV->users(), isScalarInst); 1608 } 1609 1610 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1611 const InductionDescriptor &ID, const Instruction *EntryVal, 1612 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1613 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1614 "Expected either an induction phi-node or a truncate of it!"); 1615 1616 // This induction variable is not the phi from the original loop but the 1617 // newly-created IV based on the proof that casted Phi is equal to the 1618 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1619 // re-uses the same InductionDescriptor that original IV uses but we don't 1620 // have to do any recording in this case - that is done when original IV is 1621 // processed. 1622 if (isa<TruncInst>(EntryVal)) 1623 return; 1624 1625 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1626 if (Casts.empty()) 1627 return; 1628 // Only the first Cast instruction in the Casts vector is of interest. 1629 // The rest of the Casts (if exist) have no uses outside the 1630 // induction update chain itself. 1631 Instruction *CastInst = *Casts.begin(); 1632 if (Lane < UINT_MAX) 1633 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1634 else 1635 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1636 } 1637 1638 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1639 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1640 "Primary induction variable must have an integer type"); 1641 1642 auto II = Legal->getInductionVars()->find(IV); 1643 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1644 1645 auto ID = II->second; 1646 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1647 1648 // The scalar value to broadcast. This will be derived from the canonical 1649 // induction variable. 1650 Value *ScalarIV = nullptr; 1651 1652 // The value from the original loop to which we are mapping the new induction 1653 // variable. 1654 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1655 1656 // True if we have vectorized the induction variable. 1657 auto VectorizedIV = false; 1658 1659 // Determine if we want a scalar version of the induction variable. This is 1660 // true if the induction variable itself is not widened, or if it has at 1661 // least one user in the loop that is not widened. 1662 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1663 1664 // Generate code for the induction step. Note that induction steps are 1665 // required to be loop-invariant 1666 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1667 "Induction step should be loop invariant"); 1668 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1669 Value *Step = nullptr; 1670 if (PSE.getSE()->isSCEVable(IV->getType())) { 1671 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1672 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1673 LoopVectorPreHeader->getTerminator()); 1674 } else { 1675 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1676 } 1677 1678 // Try to create a new independent vector induction variable. If we can't 1679 // create the phi node, we will splat the scalar induction variable in each 1680 // loop iteration. 1681 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1682 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1683 VectorizedIV = true; 1684 } 1685 1686 // If we haven't yet vectorized the induction variable, or if we will create 1687 // a scalar one, we need to define the scalar induction variable and step 1688 // values. If we were given a truncation type, truncate the canonical 1689 // induction variable and step. Otherwise, derive these values from the 1690 // induction descriptor. 1691 if (!VectorizedIV || NeedsScalarIV) { 1692 ScalarIV = Induction; 1693 if (IV != OldInduction) { 1694 ScalarIV = IV->getType()->isIntegerTy() 1695 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1696 : Builder.CreateCast(Instruction::SIToFP, Induction, 1697 IV->getType()); 1698 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1699 ScalarIV->setName("offset.idx"); 1700 } 1701 if (Trunc) { 1702 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1703 assert(Step->getType()->isIntegerTy() && 1704 "Truncation requires an integer step"); 1705 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1706 Step = Builder.CreateTrunc(Step, TruncType); 1707 } 1708 } 1709 1710 // If we haven't yet vectorized the induction variable, splat the scalar 1711 // induction variable, and build the necessary step vectors. 1712 // TODO: Don't do it unless the vectorized IV is really required. 1713 if (!VectorizedIV) { 1714 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1715 for (unsigned Part = 0; Part < UF; ++Part) { 1716 Value *EntryPart = 1717 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1718 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1719 if (Trunc) 1720 addMetadata(EntryPart, Trunc); 1721 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1722 } 1723 } 1724 1725 // If an induction variable is only used for counting loop iterations or 1726 // calculating addresses, it doesn't need to be widened. Create scalar steps 1727 // that can be used by instructions we will later scalarize. Note that the 1728 // addition of the scalar steps will not increase the number of instructions 1729 // in the loop in the common case prior to InstCombine. We will be trading 1730 // one vector extract for each scalar step. 1731 if (NeedsScalarIV) 1732 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1733 } 1734 1735 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1736 Instruction::BinaryOps BinOp) { 1737 // Create and check the types. 1738 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1739 int VLen = Val->getType()->getVectorNumElements(); 1740 1741 Type *STy = Val->getType()->getScalarType(); 1742 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1743 "Induction Step must be an integer or FP"); 1744 assert(Step->getType() == STy && "Step has wrong type"); 1745 1746 SmallVector<Constant *, 8> Indices; 1747 1748 if (STy->isIntegerTy()) { 1749 // Create a vector of consecutive numbers from zero to VF. 1750 for (int i = 0; i < VLen; ++i) 1751 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1752 1753 // Add the consecutive indices to the vector value. 1754 Constant *Cv = ConstantVector::get(Indices); 1755 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1756 Step = Builder.CreateVectorSplat(VLen, Step); 1757 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1758 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1759 // which can be found from the original scalar operations. 1760 Step = Builder.CreateMul(Cv, Step); 1761 return Builder.CreateAdd(Val, Step, "induction"); 1762 } 1763 1764 // Floating point induction. 1765 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1766 "Binary Opcode should be specified for FP induction"); 1767 // Create a vector of consecutive numbers from zero to VF. 1768 for (int i = 0; i < VLen; ++i) 1769 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1770 1771 // Add the consecutive indices to the vector value. 1772 Constant *Cv = ConstantVector::get(Indices); 1773 1774 Step = Builder.CreateVectorSplat(VLen, Step); 1775 1776 // Floating point operations had to be 'fast' to enable the induction. 1777 FastMathFlags Flags; 1778 Flags.setFast(); 1779 1780 Value *MulOp = Builder.CreateFMul(Cv, Step); 1781 if (isa<Instruction>(MulOp)) 1782 // Have to check, MulOp may be a constant 1783 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1784 1785 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1786 if (isa<Instruction>(BOp)) 1787 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1788 return BOp; 1789 } 1790 1791 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1792 Instruction *EntryVal, 1793 const InductionDescriptor &ID) { 1794 // We shouldn't have to build scalar steps if we aren't vectorizing. 1795 assert(VF > 1 && "VF should be greater than one"); 1796 1797 // Get the value type and ensure it and the step have the same integer type. 1798 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1799 assert(ScalarIVTy == Step->getType() && 1800 "Val and Step should have the same type"); 1801 1802 // We build scalar steps for both integer and floating-point induction 1803 // variables. Here, we determine the kind of arithmetic we will perform. 1804 Instruction::BinaryOps AddOp; 1805 Instruction::BinaryOps MulOp; 1806 if (ScalarIVTy->isIntegerTy()) { 1807 AddOp = Instruction::Add; 1808 MulOp = Instruction::Mul; 1809 } else { 1810 AddOp = ID.getInductionOpcode(); 1811 MulOp = Instruction::FMul; 1812 } 1813 1814 // Determine the number of scalars we need to generate for each unroll 1815 // iteration. If EntryVal is uniform, we only need to generate the first 1816 // lane. Otherwise, we generate all VF values. 1817 unsigned Lanes = 1818 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1819 : VF; 1820 // Compute the scalar steps and save the results in VectorLoopValueMap. 1821 for (unsigned Part = 0; Part < UF; ++Part) { 1822 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1823 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1824 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1825 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1826 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1827 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1828 } 1829 } 1830 } 1831 1832 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1833 assert(V != Induction && "The new induction variable should not be used."); 1834 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1835 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1836 1837 // If we have a stride that is replaced by one, do it here. Defer this for 1838 // the VPlan-native path until we start running Legal checks in that path. 1839 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1840 V = ConstantInt::get(V->getType(), 1); 1841 1842 // If we have a vector mapped to this value, return it. 1843 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1844 return VectorLoopValueMap.getVectorValue(V, Part); 1845 1846 // If the value has not been vectorized, check if it has been scalarized 1847 // instead. If it has been scalarized, and we actually need the value in 1848 // vector form, we will construct the vector values on demand. 1849 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1850 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1851 1852 // If we've scalarized a value, that value should be an instruction. 1853 auto *I = cast<Instruction>(V); 1854 1855 // If we aren't vectorizing, we can just copy the scalar map values over to 1856 // the vector map. 1857 if (VF == 1) { 1858 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1859 return ScalarValue; 1860 } 1861 1862 // Get the last scalar instruction we generated for V and Part. If the value 1863 // is known to be uniform after vectorization, this corresponds to lane zero 1864 // of the Part unroll iteration. Otherwise, the last instruction is the one 1865 // we created for the last vector lane of the Part unroll iteration. 1866 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1867 auto *LastInst = cast<Instruction>( 1868 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1869 1870 // Set the insert point after the last scalarized instruction. This ensures 1871 // the insertelement sequence will directly follow the scalar definitions. 1872 auto OldIP = Builder.saveIP(); 1873 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1874 Builder.SetInsertPoint(&*NewIP); 1875 1876 // However, if we are vectorizing, we need to construct the vector values. 1877 // If the value is known to be uniform after vectorization, we can just 1878 // broadcast the scalar value corresponding to lane zero for each unroll 1879 // iteration. Otherwise, we construct the vector values using insertelement 1880 // instructions. Since the resulting vectors are stored in 1881 // VectorLoopValueMap, we will only generate the insertelements once. 1882 Value *VectorValue = nullptr; 1883 if (Cost->isUniformAfterVectorization(I, VF)) { 1884 VectorValue = getBroadcastInstrs(ScalarValue); 1885 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1886 } else { 1887 // Initialize packing with insertelements to start from undef. 1888 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1889 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1890 for (unsigned Lane = 0; Lane < VF; ++Lane) 1891 packScalarIntoVectorValue(V, {Part, Lane}); 1892 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1893 } 1894 Builder.restoreIP(OldIP); 1895 return VectorValue; 1896 } 1897 1898 // If this scalar is unknown, assume that it is a constant or that it is 1899 // loop invariant. Broadcast V and save the value for future uses. 1900 Value *B = getBroadcastInstrs(V); 1901 VectorLoopValueMap.setVectorValue(V, Part, B); 1902 return B; 1903 } 1904 1905 Value * 1906 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1907 const VPIteration &Instance) { 1908 // If the value is not an instruction contained in the loop, it should 1909 // already be scalar. 1910 if (OrigLoop->isLoopInvariant(V)) 1911 return V; 1912 1913 assert(Instance.Lane > 0 1914 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1915 : true && "Uniform values only have lane zero"); 1916 1917 // If the value from the original loop has not been vectorized, it is 1918 // represented by UF x VF scalar values in the new loop. Return the requested 1919 // scalar value. 1920 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1921 return VectorLoopValueMap.getScalarValue(V, Instance); 1922 1923 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1924 // for the given unroll part. If this entry is not a vector type (i.e., the 1925 // vectorization factor is one), there is no need to generate an 1926 // extractelement instruction. 1927 auto *U = getOrCreateVectorValue(V, Instance.Part); 1928 if (!U->getType()->isVectorTy()) { 1929 assert(VF == 1 && "Value not scalarized has non-vector type"); 1930 return U; 1931 } 1932 1933 // Otherwise, the value from the original loop has been vectorized and is 1934 // represented by UF vector values. Extract and return the requested scalar 1935 // value from the appropriate vector lane. 1936 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1937 } 1938 1939 void InnerLoopVectorizer::packScalarIntoVectorValue( 1940 Value *V, const VPIteration &Instance) { 1941 assert(V != Induction && "The new induction variable should not be used."); 1942 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1943 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1944 1945 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1946 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1947 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1948 Builder.getInt32(Instance.Lane)); 1949 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1950 } 1951 1952 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1953 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1954 SmallVector<Constant *, 8> ShuffleMask; 1955 for (unsigned i = 0; i < VF; ++i) 1956 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1957 1958 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1959 ConstantVector::get(ShuffleMask), 1960 "reverse"); 1961 } 1962 1963 // Return whether we allow using masked interleave-groups (for dealing with 1964 // strided loads/stores that reside in predicated blocks, or for dealing 1965 // with gaps). 1966 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1967 // If an override option has been passed in for interleaved accesses, use it. 1968 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1969 return EnableMaskedInterleavedMemAccesses; 1970 1971 return TTI.enableMaskedInterleavedAccessVectorization(); 1972 } 1973 1974 // Try to vectorize the interleave group that \p Instr belongs to. 1975 // 1976 // E.g. Translate following interleaved load group (factor = 3): 1977 // for (i = 0; i < N; i+=3) { 1978 // R = Pic[i]; // Member of index 0 1979 // G = Pic[i+1]; // Member of index 1 1980 // B = Pic[i+2]; // Member of index 2 1981 // ... // do something to R, G, B 1982 // } 1983 // To: 1984 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1985 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1986 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1987 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1988 // 1989 // Or translate following interleaved store group (factor = 3): 1990 // for (i = 0; i < N; i+=3) { 1991 // ... do something to R, G, B 1992 // Pic[i] = R; // Member of index 0 1993 // Pic[i+1] = G; // Member of index 1 1994 // Pic[i+2] = B; // Member of index 2 1995 // } 1996 // To: 1997 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1998 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1999 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2000 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2001 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2002 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2003 VectorParts *BlockInMask) { 2004 const InterleaveGroup<Instruction> *Group = 2005 Cost->getInterleavedAccessGroup(Instr); 2006 assert(Group && "Fail to get an interleaved access group."); 2007 2008 // Skip if current instruction is not the insert position. 2009 if (Instr != Group->getInsertPos()) 2010 return; 2011 2012 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2013 Value *Ptr = getLoadStorePointerOperand(Instr); 2014 2015 // Prepare for the vector type of the interleaved load/store. 2016 Type *ScalarTy = getMemInstValueType(Instr); 2017 unsigned InterleaveFactor = Group->getFactor(); 2018 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2019 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2020 2021 // Prepare for the new pointers. 2022 setDebugLocFromInst(Builder, Ptr); 2023 SmallVector<Value *, 2> NewPtrs; 2024 unsigned Index = Group->getIndex(Instr); 2025 2026 VectorParts Mask; 2027 bool IsMaskForCondRequired = BlockInMask; 2028 if (IsMaskForCondRequired) { 2029 Mask = *BlockInMask; 2030 // TODO: extend the masked interleaved-group support to reversed access. 2031 assert(!Group->isReverse() && "Reversed masked interleave-group " 2032 "not supported."); 2033 } 2034 2035 // If the group is reverse, adjust the index to refer to the last vector lane 2036 // instead of the first. We adjust the index from the first vector lane, 2037 // rather than directly getting the pointer for lane VF - 1, because the 2038 // pointer operand of the interleaved access is supposed to be uniform. For 2039 // uniform instructions, we're only required to generate a value for the 2040 // first vector lane in each unroll iteration. 2041 if (Group->isReverse()) 2042 Index += (VF - 1) * Group->getFactor(); 2043 2044 bool InBounds = false; 2045 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2046 InBounds = gep->isInBounds(); 2047 2048 for (unsigned Part = 0; Part < UF; Part++) { 2049 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2050 2051 // Notice current instruction could be any index. Need to adjust the address 2052 // to the member of index 0. 2053 // 2054 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2055 // b = A[i]; // Member of index 0 2056 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2057 // 2058 // E.g. A[i+1] = a; // Member of index 1 2059 // A[i] = b; // Member of index 0 2060 // A[i+2] = c; // Member of index 2 (Current instruction) 2061 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2062 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2063 if (InBounds) 2064 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2065 2066 // Cast to the vector pointer type. 2067 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2068 } 2069 2070 setDebugLocFromInst(Builder, Instr); 2071 Value *UndefVec = UndefValue::get(VecTy); 2072 2073 Value *MaskForGaps = nullptr; 2074 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2075 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2076 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2077 } 2078 2079 // Vectorize the interleaved load group. 2080 if (isa<LoadInst>(Instr)) { 2081 // For each unroll part, create a wide load for the group. 2082 SmallVector<Value *, 2> NewLoads; 2083 for (unsigned Part = 0; Part < UF; Part++) { 2084 Instruction *NewLoad; 2085 if (IsMaskForCondRequired || MaskForGaps) { 2086 assert(useMaskedInterleavedAccesses(*TTI) && 2087 "masked interleaved groups are not allowed."); 2088 Value *GroupMask = MaskForGaps; 2089 if (IsMaskForCondRequired) { 2090 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2091 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2092 Value *ShuffledMask = Builder.CreateShuffleVector( 2093 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2094 GroupMask = MaskForGaps 2095 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2096 MaskForGaps) 2097 : ShuffledMask; 2098 } 2099 NewLoad = 2100 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2101 GroupMask, UndefVec, "wide.masked.vec"); 2102 } 2103 else 2104 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2105 Group->getAlignment(), "wide.vec"); 2106 Group->addMetadata(NewLoad); 2107 NewLoads.push_back(NewLoad); 2108 } 2109 2110 // For each member in the group, shuffle out the appropriate data from the 2111 // wide loads. 2112 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2113 Instruction *Member = Group->getMember(I); 2114 2115 // Skip the gaps in the group. 2116 if (!Member) 2117 continue; 2118 2119 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2120 for (unsigned Part = 0; Part < UF; Part++) { 2121 Value *StridedVec = Builder.CreateShuffleVector( 2122 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2123 2124 // If this member has different type, cast the result type. 2125 if (Member->getType() != ScalarTy) { 2126 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2127 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2128 } 2129 2130 if (Group->isReverse()) 2131 StridedVec = reverseVector(StridedVec); 2132 2133 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2134 } 2135 } 2136 return; 2137 } 2138 2139 // The sub vector type for current instruction. 2140 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2141 2142 // Vectorize the interleaved store group. 2143 for (unsigned Part = 0; Part < UF; Part++) { 2144 // Collect the stored vector from each member. 2145 SmallVector<Value *, 4> StoredVecs; 2146 for (unsigned i = 0; i < InterleaveFactor; i++) { 2147 // Interleaved store group doesn't allow a gap, so each index has a member 2148 Instruction *Member = Group->getMember(i); 2149 assert(Member && "Fail to get a member from an interleaved store group"); 2150 2151 Value *StoredVec = getOrCreateVectorValue( 2152 cast<StoreInst>(Member)->getValueOperand(), Part); 2153 if (Group->isReverse()) 2154 StoredVec = reverseVector(StoredVec); 2155 2156 // If this member has different type, cast it to a unified type. 2157 2158 if (StoredVec->getType() != SubVT) 2159 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2160 2161 StoredVecs.push_back(StoredVec); 2162 } 2163 2164 // Concatenate all vectors into a wide vector. 2165 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2166 2167 // Interleave the elements in the wide vector. 2168 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2169 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2170 "interleaved.vec"); 2171 2172 Instruction *NewStoreInstr; 2173 if (IsMaskForCondRequired) { 2174 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2175 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2176 Value *ShuffledMask = Builder.CreateShuffleVector( 2177 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2178 NewStoreInstr = Builder.CreateMaskedStore( 2179 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2180 } 2181 else 2182 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2183 Group->getAlignment()); 2184 2185 Group->addMetadata(NewStoreInstr); 2186 } 2187 } 2188 2189 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2190 VectorParts *BlockInMask) { 2191 // Attempt to issue a wide load. 2192 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2193 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2194 2195 assert((LI || SI) && "Invalid Load/Store instruction"); 2196 2197 LoopVectorizationCostModel::InstWidening Decision = 2198 Cost->getWideningDecision(Instr, VF); 2199 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2200 "CM decision should be taken at this point"); 2201 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2202 return vectorizeInterleaveGroup(Instr); 2203 2204 Type *ScalarDataTy = getMemInstValueType(Instr); 2205 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2206 Value *Ptr = getLoadStorePointerOperand(Instr); 2207 unsigned Alignment = getLoadStoreAlignment(Instr); 2208 // An alignment of 0 means target abi alignment. We need to use the scalar's 2209 // target abi alignment in such a case. 2210 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2211 if (!Alignment) 2212 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2213 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2214 2215 // Determine if the pointer operand of the access is either consecutive or 2216 // reverse consecutive. 2217 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2218 bool ConsecutiveStride = 2219 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2220 bool CreateGatherScatter = 2221 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2222 2223 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2224 // gather/scatter. Otherwise Decision should have been to Scalarize. 2225 assert((ConsecutiveStride || CreateGatherScatter) && 2226 "The instruction should be scalarized"); 2227 2228 // Handle consecutive loads/stores. 2229 if (ConsecutiveStride) 2230 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2231 2232 VectorParts Mask; 2233 bool isMaskRequired = BlockInMask; 2234 if (isMaskRequired) 2235 Mask = *BlockInMask; 2236 2237 bool InBounds = false; 2238 if (auto *gep = dyn_cast<GetElementPtrInst>( 2239 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2240 InBounds = gep->isInBounds(); 2241 2242 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2243 // Calculate the pointer for the specific unroll-part. 2244 GetElementPtrInst *PartPtr = nullptr; 2245 2246 if (Reverse) { 2247 // If the address is consecutive but reversed, then the 2248 // wide store needs to start at the last vector element. 2249 PartPtr = cast<GetElementPtrInst>( 2250 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2251 PartPtr->setIsInBounds(InBounds); 2252 PartPtr = cast<GetElementPtrInst>( 2253 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2254 PartPtr->setIsInBounds(InBounds); 2255 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2256 Mask[Part] = reverseVector(Mask[Part]); 2257 } else { 2258 PartPtr = cast<GetElementPtrInst>( 2259 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2260 PartPtr->setIsInBounds(InBounds); 2261 } 2262 2263 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2264 }; 2265 2266 // Handle Stores: 2267 if (SI) { 2268 setDebugLocFromInst(Builder, SI); 2269 2270 for (unsigned Part = 0; Part < UF; ++Part) { 2271 Instruction *NewSI = nullptr; 2272 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2273 if (CreateGatherScatter) { 2274 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2275 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2276 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2277 MaskPart); 2278 } else { 2279 if (Reverse) { 2280 // If we store to reverse consecutive memory locations, then we need 2281 // to reverse the order of elements in the stored value. 2282 StoredVal = reverseVector(StoredVal); 2283 // We don't want to update the value in the map as it might be used in 2284 // another expression. So don't call resetVectorValue(StoredVal). 2285 } 2286 auto *VecPtr = CreateVecPtr(Part, Ptr); 2287 if (isMaskRequired) 2288 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2289 Mask[Part]); 2290 else 2291 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2292 } 2293 addMetadata(NewSI, SI); 2294 } 2295 return; 2296 } 2297 2298 // Handle loads. 2299 assert(LI && "Must have a load instruction"); 2300 setDebugLocFromInst(Builder, LI); 2301 for (unsigned Part = 0; Part < UF; ++Part) { 2302 Value *NewLI; 2303 if (CreateGatherScatter) { 2304 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2305 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2306 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2307 nullptr, "wide.masked.gather"); 2308 addMetadata(NewLI, LI); 2309 } else { 2310 auto *VecPtr = CreateVecPtr(Part, Ptr); 2311 if (isMaskRequired) 2312 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2313 UndefValue::get(DataTy), 2314 "wide.masked.load"); 2315 else 2316 NewLI = 2317 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2318 2319 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2320 addMetadata(NewLI, LI); 2321 if (Reverse) 2322 NewLI = reverseVector(NewLI); 2323 } 2324 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2325 } 2326 } 2327 2328 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2329 const VPIteration &Instance, 2330 bool IfPredicateInstr) { 2331 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2332 2333 setDebugLocFromInst(Builder, Instr); 2334 2335 // Does this instruction return a value ? 2336 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2337 2338 Instruction *Cloned = Instr->clone(); 2339 if (!IsVoidRetTy) 2340 Cloned->setName(Instr->getName() + ".cloned"); 2341 2342 // Replace the operands of the cloned instructions with their scalar 2343 // equivalents in the new loop. 2344 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2345 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2346 Cloned->setOperand(op, NewOp); 2347 } 2348 addNewMetadata(Cloned, Instr); 2349 2350 // Place the cloned scalar in the new loop. 2351 Builder.Insert(Cloned); 2352 2353 // Add the cloned scalar to the scalar map entry. 2354 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2355 2356 // If we just cloned a new assumption, add it the assumption cache. 2357 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2358 if (II->getIntrinsicID() == Intrinsic::assume) 2359 AC->registerAssumption(II); 2360 2361 // End if-block. 2362 if (IfPredicateInstr) 2363 PredicatedInstructions.push_back(Cloned); 2364 } 2365 2366 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2367 Value *End, Value *Step, 2368 Instruction *DL) { 2369 BasicBlock *Header = L->getHeader(); 2370 BasicBlock *Latch = L->getLoopLatch(); 2371 // As we're just creating this loop, it's possible no latch exists 2372 // yet. If so, use the header as this will be a single block loop. 2373 if (!Latch) 2374 Latch = Header; 2375 2376 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2377 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2378 setDebugLocFromInst(Builder, OldInst); 2379 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2380 2381 Builder.SetInsertPoint(Latch->getTerminator()); 2382 setDebugLocFromInst(Builder, OldInst); 2383 2384 // Create i+1 and fill the PHINode. 2385 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2386 Induction->addIncoming(Start, L->getLoopPreheader()); 2387 Induction->addIncoming(Next, Latch); 2388 // Create the compare. 2389 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2390 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2391 2392 // Now we have two terminators. Remove the old one from the block. 2393 Latch->getTerminator()->eraseFromParent(); 2394 2395 return Induction; 2396 } 2397 2398 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2399 if (TripCount) 2400 return TripCount; 2401 2402 assert(L && "Create Trip Count for null loop."); 2403 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2404 // Find the loop boundaries. 2405 ScalarEvolution *SE = PSE.getSE(); 2406 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2407 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2408 "Invalid loop count"); 2409 2410 Type *IdxTy = Legal->getWidestInductionType(); 2411 assert(IdxTy && "No type for induction"); 2412 2413 // The exit count might have the type of i64 while the phi is i32. This can 2414 // happen if we have an induction variable that is sign extended before the 2415 // compare. The only way that we get a backedge taken count is that the 2416 // induction variable was signed and as such will not overflow. In such a case 2417 // truncation is legal. 2418 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2419 IdxTy->getPrimitiveSizeInBits()) 2420 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2421 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2422 2423 // Get the total trip count from the count by adding 1. 2424 const SCEV *ExitCount = SE->getAddExpr( 2425 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2426 2427 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2428 2429 // Expand the trip count and place the new instructions in the preheader. 2430 // Notice that the pre-header does not change, only the loop body. 2431 SCEVExpander Exp(*SE, DL, "induction"); 2432 2433 // Count holds the overall loop count (N). 2434 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2435 L->getLoopPreheader()->getTerminator()); 2436 2437 if (TripCount->getType()->isPointerTy()) 2438 TripCount = 2439 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2440 L->getLoopPreheader()->getTerminator()); 2441 2442 return TripCount; 2443 } 2444 2445 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2446 if (VectorTripCount) 2447 return VectorTripCount; 2448 2449 Value *TC = getOrCreateTripCount(L); 2450 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2451 2452 Type *Ty = TC->getType(); 2453 Constant *Step = ConstantInt::get(Ty, VF * UF); 2454 2455 // If the tail is to be folded by masking, round the number of iterations N 2456 // up to a multiple of Step instead of rounding down. This is done by first 2457 // adding Step-1 and then rounding down. Note that it's ok if this addition 2458 // overflows: the vector induction variable will eventually wrap to zero given 2459 // that it starts at zero and its Step is a power of two; the loop will then 2460 // exit, with the last early-exit vector comparison also producing all-true. 2461 if (Cost->foldTailByMasking()) { 2462 assert(isPowerOf2_32(VF * UF) && 2463 "VF*UF must be a power of 2 when folding tail by masking"); 2464 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2465 } 2466 2467 // Now we need to generate the expression for the part of the loop that the 2468 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2469 // iterations are not required for correctness, or N - Step, otherwise. Step 2470 // is equal to the vectorization factor (number of SIMD elements) times the 2471 // unroll factor (number of SIMD instructions). 2472 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2473 2474 // If there is a non-reversed interleaved group that may speculatively access 2475 // memory out-of-bounds, we need to ensure that there will be at least one 2476 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2477 // the trip count, we set the remainder to be equal to the step. If the step 2478 // does not evenly divide the trip count, no adjustment is necessary since 2479 // there will already be scalar iterations. Note that the minimum iterations 2480 // check ensures that N >= Step. 2481 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2482 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2483 R = Builder.CreateSelect(IsZero, Step, R); 2484 } 2485 2486 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2487 2488 return VectorTripCount; 2489 } 2490 2491 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2492 const DataLayout &DL) { 2493 // Verify that V is a vector type with same number of elements as DstVTy. 2494 unsigned VF = DstVTy->getNumElements(); 2495 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2496 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2497 Type *SrcElemTy = SrcVecTy->getElementType(); 2498 Type *DstElemTy = DstVTy->getElementType(); 2499 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2500 "Vector elements must have same size"); 2501 2502 // Do a direct cast if element types are castable. 2503 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2504 return Builder.CreateBitOrPointerCast(V, DstVTy); 2505 } 2506 // V cannot be directly casted to desired vector type. 2507 // May happen when V is a floating point vector but DstVTy is a vector of 2508 // pointers or vice-versa. Handle this using a two-step bitcast using an 2509 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2510 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2511 "Only one type should be a pointer type"); 2512 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2513 "Only one type should be a floating point type"); 2514 Type *IntTy = 2515 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2516 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2517 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2518 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2519 } 2520 2521 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2522 BasicBlock *Bypass) { 2523 Value *Count = getOrCreateTripCount(L); 2524 BasicBlock *BB = L->getLoopPreheader(); 2525 IRBuilder<> Builder(BB->getTerminator()); 2526 2527 // Generate code to check if the loop's trip count is less than VF * UF, or 2528 // equal to it in case a scalar epilogue is required; this implies that the 2529 // vector trip count is zero. This check also covers the case where adding one 2530 // to the backedge-taken count overflowed leading to an incorrect trip count 2531 // of zero. In this case we will also jump to the scalar loop. 2532 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2533 : ICmpInst::ICMP_ULT; 2534 2535 // If tail is to be folded, vector loop takes care of all iterations. 2536 Value *CheckMinIters = Builder.getFalse(); 2537 if (!Cost->foldTailByMasking()) 2538 CheckMinIters = Builder.CreateICmp( 2539 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2540 "min.iters.check"); 2541 2542 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2543 // Update dominator tree immediately if the generated block is a 2544 // LoopBypassBlock because SCEV expansions to generate loop bypass 2545 // checks may query it before the current function is finished. 2546 DT->addNewBlock(NewBB, BB); 2547 if (L->getParentLoop()) 2548 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2549 ReplaceInstWithInst(BB->getTerminator(), 2550 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2551 LoopBypassBlocks.push_back(BB); 2552 } 2553 2554 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2555 BasicBlock *BB = L->getLoopPreheader(); 2556 2557 // Generate the code to check that the SCEV assumptions that we made. 2558 // We want the new basic block to start at the first instruction in a 2559 // sequence of instructions that form a check. 2560 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2561 "scev.check"); 2562 Value *SCEVCheck = 2563 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2564 2565 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2566 if (C->isZero()) 2567 return; 2568 2569 assert(!Cost->foldTailByMasking() && 2570 "Cannot SCEV check stride or overflow when folding tail"); 2571 // Create a new block containing the stride check. 2572 BB->setName("vector.scevcheck"); 2573 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2574 // Update dominator tree immediately if the generated block is a 2575 // LoopBypassBlock because SCEV expansions to generate loop bypass 2576 // checks may query it before the current function is finished. 2577 DT->addNewBlock(NewBB, BB); 2578 if (L->getParentLoop()) 2579 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2580 ReplaceInstWithInst(BB->getTerminator(), 2581 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2582 LoopBypassBlocks.push_back(BB); 2583 AddedSafetyChecks = true; 2584 } 2585 2586 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2587 // VPlan-native path does not do any analysis for runtime checks currently. 2588 if (EnableVPlanNativePath) 2589 return; 2590 2591 BasicBlock *BB = L->getLoopPreheader(); 2592 2593 // Generate the code that checks in runtime if arrays overlap. We put the 2594 // checks into a separate block to make the more common case of few elements 2595 // faster. 2596 Instruction *FirstCheckInst; 2597 Instruction *MemRuntimeCheck; 2598 std::tie(FirstCheckInst, MemRuntimeCheck) = 2599 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2600 if (!MemRuntimeCheck) 2601 return; 2602 2603 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2604 // Create a new block containing the memory check. 2605 BB->setName("vector.memcheck"); 2606 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2607 // Update dominator tree immediately if the generated block is a 2608 // LoopBypassBlock because SCEV expansions to generate loop bypass 2609 // checks may query it before the current function is finished. 2610 DT->addNewBlock(NewBB, BB); 2611 if (L->getParentLoop()) 2612 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2613 ReplaceInstWithInst(BB->getTerminator(), 2614 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2615 LoopBypassBlocks.push_back(BB); 2616 AddedSafetyChecks = true; 2617 2618 // We currently don't use LoopVersioning for the actual loop cloning but we 2619 // still use it to add the noalias metadata. 2620 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2621 PSE.getSE()); 2622 LVer->prepareNoAliasMetadata(); 2623 } 2624 2625 Value *InnerLoopVectorizer::emitTransformedIndex( 2626 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2627 const InductionDescriptor &ID) const { 2628 2629 SCEVExpander Exp(*SE, DL, "induction"); 2630 auto Step = ID.getStep(); 2631 auto StartValue = ID.getStartValue(); 2632 assert(Index->getType() == Step->getType() && 2633 "Index type does not match StepValue type"); 2634 2635 // Note: the IR at this point is broken. We cannot use SE to create any new 2636 // SCEV and then expand it, hoping that SCEV's simplification will give us 2637 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2638 // lead to various SCEV crashes. So all we can do is to use builder and rely 2639 // on InstCombine for future simplifications. Here we handle some trivial 2640 // cases only. 2641 auto CreateAdd = [&B](Value *X, Value *Y) { 2642 assert(X->getType() == Y->getType() && "Types don't match!"); 2643 if (auto *CX = dyn_cast<ConstantInt>(X)) 2644 if (CX->isZero()) 2645 return Y; 2646 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2647 if (CY->isZero()) 2648 return X; 2649 return B.CreateAdd(X, Y); 2650 }; 2651 2652 auto CreateMul = [&B](Value *X, Value *Y) { 2653 assert(X->getType() == Y->getType() && "Types don't match!"); 2654 if (auto *CX = dyn_cast<ConstantInt>(X)) 2655 if (CX->isOne()) 2656 return Y; 2657 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2658 if (CY->isOne()) 2659 return X; 2660 return B.CreateMul(X, Y); 2661 }; 2662 2663 switch (ID.getKind()) { 2664 case InductionDescriptor::IK_IntInduction: { 2665 assert(Index->getType() == StartValue->getType() && 2666 "Index type does not match StartValue type"); 2667 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2668 return B.CreateSub(StartValue, Index); 2669 auto *Offset = CreateMul( 2670 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2671 return CreateAdd(StartValue, Offset); 2672 } 2673 case InductionDescriptor::IK_PtrInduction: { 2674 assert(isa<SCEVConstant>(Step) && 2675 "Expected constant step for pointer induction"); 2676 return B.CreateGEP( 2677 StartValue->getType()->getPointerElementType(), StartValue, 2678 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2679 &*B.GetInsertPoint()))); 2680 } 2681 case InductionDescriptor::IK_FpInduction: { 2682 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2683 auto InductionBinOp = ID.getInductionBinOp(); 2684 assert(InductionBinOp && 2685 (InductionBinOp->getOpcode() == Instruction::FAdd || 2686 InductionBinOp->getOpcode() == Instruction::FSub) && 2687 "Original bin op should be defined for FP induction"); 2688 2689 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2690 2691 // Floating point operations had to be 'fast' to enable the induction. 2692 FastMathFlags Flags; 2693 Flags.setFast(); 2694 2695 Value *MulExp = B.CreateFMul(StepValue, Index); 2696 if (isa<Instruction>(MulExp)) 2697 // We have to check, the MulExp may be a constant. 2698 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2699 2700 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2701 "induction"); 2702 if (isa<Instruction>(BOp)) 2703 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2704 2705 return BOp; 2706 } 2707 case InductionDescriptor::IK_NoInduction: 2708 return nullptr; 2709 } 2710 llvm_unreachable("invalid enum"); 2711 } 2712 2713 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2714 /* 2715 In this function we generate a new loop. The new loop will contain 2716 the vectorized instructions while the old loop will continue to run the 2717 scalar remainder. 2718 2719 [ ] <-- loop iteration number check. 2720 / | 2721 / v 2722 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2723 | / | 2724 | / v 2725 || [ ] <-- vector pre header. 2726 |/ | 2727 | v 2728 | [ ] \ 2729 | [ ]_| <-- vector loop. 2730 | | 2731 | v 2732 | -[ ] <--- middle-block. 2733 | / | 2734 | / v 2735 -|- >[ ] <--- new preheader. 2736 | | 2737 | v 2738 | [ ] \ 2739 | [ ]_| <-- old scalar loop to handle remainder. 2740 \ | 2741 \ v 2742 >[ ] <-- exit block. 2743 ... 2744 */ 2745 2746 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2747 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2748 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2749 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2750 assert(VectorPH && "Invalid loop structure"); 2751 assert(ExitBlock && "Must have an exit block"); 2752 2753 // Some loops have a single integer induction variable, while other loops 2754 // don't. One example is c++ iterators that often have multiple pointer 2755 // induction variables. In the code below we also support a case where we 2756 // don't have a single induction variable. 2757 // 2758 // We try to obtain an induction variable from the original loop as hard 2759 // as possible. However if we don't find one that: 2760 // - is an integer 2761 // - counts from zero, stepping by one 2762 // - is the size of the widest induction variable type 2763 // then we create a new one. 2764 OldInduction = Legal->getPrimaryInduction(); 2765 Type *IdxTy = Legal->getWidestInductionType(); 2766 2767 // Split the single block loop into the two loop structure described above. 2768 BasicBlock *VecBody = 2769 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2770 BasicBlock *MiddleBlock = 2771 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2772 BasicBlock *ScalarPH = 2773 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2774 2775 // Create and register the new vector loop. 2776 Loop *Lp = LI->AllocateLoop(); 2777 Loop *ParentLoop = OrigLoop->getParentLoop(); 2778 2779 // Insert the new loop into the loop nest and register the new basic blocks 2780 // before calling any utilities such as SCEV that require valid LoopInfo. 2781 if (ParentLoop) { 2782 ParentLoop->addChildLoop(Lp); 2783 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2784 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2785 } else { 2786 LI->addTopLevelLoop(Lp); 2787 } 2788 Lp->addBasicBlockToLoop(VecBody, *LI); 2789 2790 // Find the loop boundaries. 2791 Value *Count = getOrCreateTripCount(Lp); 2792 2793 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2794 2795 // Now, compare the new count to zero. If it is zero skip the vector loop and 2796 // jump to the scalar loop. This check also covers the case where the 2797 // backedge-taken count is uint##_max: adding one to it will overflow leading 2798 // to an incorrect trip count of zero. In this (rare) case we will also jump 2799 // to the scalar loop. 2800 emitMinimumIterationCountCheck(Lp, ScalarPH); 2801 2802 // Generate the code to check any assumptions that we've made for SCEV 2803 // expressions. 2804 emitSCEVChecks(Lp, ScalarPH); 2805 2806 // Generate the code that checks in runtime if arrays overlap. We put the 2807 // checks into a separate block to make the more common case of few elements 2808 // faster. 2809 emitMemRuntimeChecks(Lp, ScalarPH); 2810 2811 // Generate the induction variable. 2812 // The loop step is equal to the vectorization factor (num of SIMD elements) 2813 // times the unroll factor (num of SIMD instructions). 2814 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2815 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2816 Induction = 2817 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2818 getDebugLocFromInstOrOperands(OldInduction)); 2819 2820 // We are going to resume the execution of the scalar loop. 2821 // Go over all of the induction variables that we found and fix the 2822 // PHIs that are left in the scalar version of the loop. 2823 // The starting values of PHI nodes depend on the counter of the last 2824 // iteration in the vectorized loop. 2825 // If we come from a bypass edge then we need to start from the original 2826 // start value. 2827 2828 // This variable saves the new starting index for the scalar loop. It is used 2829 // to test if there are any tail iterations left once the vector loop has 2830 // completed. 2831 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2832 for (auto &InductionEntry : *List) { 2833 PHINode *OrigPhi = InductionEntry.first; 2834 InductionDescriptor II = InductionEntry.second; 2835 2836 // Create phi nodes to merge from the backedge-taken check block. 2837 PHINode *BCResumeVal = PHINode::Create( 2838 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2839 // Copy original phi DL over to the new one. 2840 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2841 Value *&EndValue = IVEndValues[OrigPhi]; 2842 if (OrigPhi == OldInduction) { 2843 // We know what the end value is. 2844 EndValue = CountRoundDown; 2845 } else { 2846 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2847 Type *StepType = II.getStep()->getType(); 2848 Instruction::CastOps CastOp = 2849 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2850 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2851 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2852 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2853 EndValue->setName("ind.end"); 2854 } 2855 2856 // The new PHI merges the original incoming value, in case of a bypass, 2857 // or the value at the end of the vectorized loop. 2858 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2859 2860 // Fix the scalar body counter (PHI node). 2861 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2862 2863 // The old induction's phi node in the scalar body needs the truncated 2864 // value. 2865 for (BasicBlock *BB : LoopBypassBlocks) 2866 BCResumeVal->addIncoming(II.getStartValue(), BB); 2867 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2868 } 2869 2870 // Add a check in the middle block to see if we have completed 2871 // all of the iterations in the first vector loop. 2872 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2873 // If tail is to be folded, we know we don't need to run the remainder. 2874 Value *CmpN = Builder.getTrue(); 2875 if (!Cost->foldTailByMasking()) 2876 CmpN = 2877 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2878 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2879 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2880 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2881 2882 // Get ready to start creating new instructions into the vectorized body. 2883 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2884 2885 // Save the state. 2886 LoopVectorPreHeader = Lp->getLoopPreheader(); 2887 LoopScalarPreHeader = ScalarPH; 2888 LoopMiddleBlock = MiddleBlock; 2889 LoopExitBlock = ExitBlock; 2890 LoopVectorBody = VecBody; 2891 LoopScalarBody = OldBasicBlock; 2892 2893 Optional<MDNode *> VectorizedLoopID = 2894 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2895 LLVMLoopVectorizeFollowupVectorized}); 2896 if (VectorizedLoopID.hasValue()) { 2897 Lp->setLoopID(VectorizedLoopID.getValue()); 2898 2899 // Do not setAlreadyVectorized if loop attributes have been defined 2900 // explicitly. 2901 return LoopVectorPreHeader; 2902 } 2903 2904 // Keep all loop hints from the original loop on the vector loop (we'll 2905 // replace the vectorizer-specific hints below). 2906 if (MDNode *LID = OrigLoop->getLoopID()) 2907 Lp->setLoopID(LID); 2908 2909 LoopVectorizeHints Hints(Lp, true, *ORE); 2910 Hints.setAlreadyVectorized(); 2911 2912 return LoopVectorPreHeader; 2913 } 2914 2915 // Fix up external users of the induction variable. At this point, we are 2916 // in LCSSA form, with all external PHIs that use the IV having one input value, 2917 // coming from the remainder loop. We need those PHIs to also have a correct 2918 // value for the IV when arriving directly from the middle block. 2919 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2920 const InductionDescriptor &II, 2921 Value *CountRoundDown, Value *EndValue, 2922 BasicBlock *MiddleBlock) { 2923 // There are two kinds of external IV usages - those that use the value 2924 // computed in the last iteration (the PHI) and those that use the penultimate 2925 // value (the value that feeds into the phi from the loop latch). 2926 // We allow both, but they, obviously, have different values. 2927 2928 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2929 2930 DenseMap<Value *, Value *> MissingVals; 2931 2932 // An external user of the last iteration's value should see the value that 2933 // the remainder loop uses to initialize its own IV. 2934 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2935 for (User *U : PostInc->users()) { 2936 Instruction *UI = cast<Instruction>(U); 2937 if (!OrigLoop->contains(UI)) { 2938 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2939 MissingVals[UI] = EndValue; 2940 } 2941 } 2942 2943 // An external user of the penultimate value need to see EndValue - Step. 2944 // The simplest way to get this is to recompute it from the constituent SCEVs, 2945 // that is Start + (Step * (CRD - 1)). 2946 for (User *U : OrigPhi->users()) { 2947 auto *UI = cast<Instruction>(U); 2948 if (!OrigLoop->contains(UI)) { 2949 const DataLayout &DL = 2950 OrigLoop->getHeader()->getModule()->getDataLayout(); 2951 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2952 2953 IRBuilder<> B(MiddleBlock->getTerminator()); 2954 Value *CountMinusOne = B.CreateSub( 2955 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2956 Value *CMO = 2957 !II.getStep()->getType()->isIntegerTy() 2958 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2959 II.getStep()->getType()) 2960 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2961 CMO->setName("cast.cmo"); 2962 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2963 Escape->setName("ind.escape"); 2964 MissingVals[UI] = Escape; 2965 } 2966 } 2967 2968 for (auto &I : MissingVals) { 2969 PHINode *PHI = cast<PHINode>(I.first); 2970 // One corner case we have to handle is two IVs "chasing" each-other, 2971 // that is %IV2 = phi [...], [ %IV1, %latch ] 2972 // In this case, if IV1 has an external use, we need to avoid adding both 2973 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2974 // don't already have an incoming value for the middle block. 2975 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2976 PHI->addIncoming(I.second, MiddleBlock); 2977 } 2978 } 2979 2980 namespace { 2981 2982 struct CSEDenseMapInfo { 2983 static bool canHandle(const Instruction *I) { 2984 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2985 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2986 } 2987 2988 static inline Instruction *getEmptyKey() { 2989 return DenseMapInfo<Instruction *>::getEmptyKey(); 2990 } 2991 2992 static inline Instruction *getTombstoneKey() { 2993 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2994 } 2995 2996 static unsigned getHashValue(const Instruction *I) { 2997 assert(canHandle(I) && "Unknown instruction!"); 2998 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2999 I->value_op_end())); 3000 } 3001 3002 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3003 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3004 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3005 return LHS == RHS; 3006 return LHS->isIdenticalTo(RHS); 3007 } 3008 }; 3009 3010 } // end anonymous namespace 3011 3012 ///Perform cse of induction variable instructions. 3013 static void cse(BasicBlock *BB) { 3014 // Perform simple cse. 3015 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3016 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3017 Instruction *In = &*I++; 3018 3019 if (!CSEDenseMapInfo::canHandle(In)) 3020 continue; 3021 3022 // Check if we can replace this instruction with any of the 3023 // visited instructions. 3024 if (Instruction *V = CSEMap.lookup(In)) { 3025 In->replaceAllUsesWith(V); 3026 In->eraseFromParent(); 3027 continue; 3028 } 3029 3030 CSEMap[In] = In; 3031 } 3032 } 3033 3034 /// Estimate the overhead of scalarizing an instruction. This is a 3035 /// convenience wrapper for the type-based getScalarizationOverhead API. 3036 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3037 const TargetTransformInfo &TTI) { 3038 if (VF == 1) 3039 return 0; 3040 3041 unsigned Cost = 0; 3042 Type *RetTy = ToVectorTy(I->getType(), VF); 3043 if (!RetTy->isVoidTy() && 3044 (!isa<LoadInst>(I) || 3045 !TTI.supportsEfficientVectorElementLoadStore())) 3046 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3047 3048 // Some targets keep addresses scalar. 3049 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3050 return Cost; 3051 3052 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3053 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3054 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3055 } 3056 else if (!isa<StoreInst>(I) || 3057 !TTI.supportsEfficientVectorElementLoadStore()) { 3058 SmallVector<const Value *, 4> Operands(I->operand_values()); 3059 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3060 } 3061 3062 return Cost; 3063 } 3064 3065 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3066 // Return the cost of the instruction, including scalarization overhead if it's 3067 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3068 // i.e. either vector version isn't available, or is too expensive. 3069 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3070 const TargetTransformInfo &TTI, 3071 const TargetLibraryInfo *TLI, 3072 bool &NeedToScalarize) { 3073 Function *F = CI->getCalledFunction(); 3074 StringRef FnName = CI->getCalledFunction()->getName(); 3075 Type *ScalarRetTy = CI->getType(); 3076 SmallVector<Type *, 4> Tys, ScalarTys; 3077 for (auto &ArgOp : CI->arg_operands()) 3078 ScalarTys.push_back(ArgOp->getType()); 3079 3080 // Estimate cost of scalarized vector call. The source operands are assumed 3081 // to be vectors, so we need to extract individual elements from there, 3082 // execute VF scalar calls, and then gather the result into the vector return 3083 // value. 3084 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3085 if (VF == 1) 3086 return ScalarCallCost; 3087 3088 // Compute corresponding vector type for return value and arguments. 3089 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3090 for (Type *ScalarTy : ScalarTys) 3091 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3092 3093 // Compute costs of unpacking argument values for the scalar calls and 3094 // packing the return values to a vector. 3095 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3096 3097 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3098 3099 // If we can't emit a vector call for this function, then the currently found 3100 // cost is the cost we need to return. 3101 NeedToScalarize = true; 3102 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3103 return Cost; 3104 3105 // If the corresponding vector cost is cheaper, return its cost. 3106 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3107 if (VectorCallCost < Cost) { 3108 NeedToScalarize = false; 3109 return VectorCallCost; 3110 } 3111 return Cost; 3112 } 3113 3114 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3115 // factor VF. Return the cost of the instruction, including scalarization 3116 // overhead if it's needed. 3117 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3118 const TargetTransformInfo &TTI, 3119 const TargetLibraryInfo *TLI) { 3120 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3121 assert(ID && "Expected intrinsic call!"); 3122 3123 FastMathFlags FMF; 3124 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3125 FMF = FPMO->getFastMathFlags(); 3126 3127 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3128 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3129 } 3130 3131 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3132 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3133 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3134 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3135 } 3136 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3137 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3138 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3139 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3140 } 3141 3142 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3143 // For every instruction `I` in MinBWs, truncate the operands, create a 3144 // truncated version of `I` and reextend its result. InstCombine runs 3145 // later and will remove any ext/trunc pairs. 3146 SmallPtrSet<Value *, 4> Erased; 3147 for (const auto &KV : Cost->getMinimalBitwidths()) { 3148 // If the value wasn't vectorized, we must maintain the original scalar 3149 // type. The absence of the value from VectorLoopValueMap indicates that it 3150 // wasn't vectorized. 3151 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3152 continue; 3153 for (unsigned Part = 0; Part < UF; ++Part) { 3154 Value *I = getOrCreateVectorValue(KV.first, Part); 3155 if (Erased.find(I) != Erased.end() || I->use_empty() || 3156 !isa<Instruction>(I)) 3157 continue; 3158 Type *OriginalTy = I->getType(); 3159 Type *ScalarTruncatedTy = 3160 IntegerType::get(OriginalTy->getContext(), KV.second); 3161 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3162 OriginalTy->getVectorNumElements()); 3163 if (TruncatedTy == OriginalTy) 3164 continue; 3165 3166 IRBuilder<> B(cast<Instruction>(I)); 3167 auto ShrinkOperand = [&](Value *V) -> Value * { 3168 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3169 if (ZI->getSrcTy() == TruncatedTy) 3170 return ZI->getOperand(0); 3171 return B.CreateZExtOrTrunc(V, TruncatedTy); 3172 }; 3173 3174 // The actual instruction modification depends on the instruction type, 3175 // unfortunately. 3176 Value *NewI = nullptr; 3177 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3178 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3179 ShrinkOperand(BO->getOperand(1))); 3180 3181 // Any wrapping introduced by shrinking this operation shouldn't be 3182 // considered undefined behavior. So, we can't unconditionally copy 3183 // arithmetic wrapping flags to NewI. 3184 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3185 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3186 NewI = 3187 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3188 ShrinkOperand(CI->getOperand(1))); 3189 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3190 NewI = B.CreateSelect(SI->getCondition(), 3191 ShrinkOperand(SI->getTrueValue()), 3192 ShrinkOperand(SI->getFalseValue())); 3193 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3194 switch (CI->getOpcode()) { 3195 default: 3196 llvm_unreachable("Unhandled cast!"); 3197 case Instruction::Trunc: 3198 NewI = ShrinkOperand(CI->getOperand(0)); 3199 break; 3200 case Instruction::SExt: 3201 NewI = B.CreateSExtOrTrunc( 3202 CI->getOperand(0), 3203 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3204 break; 3205 case Instruction::ZExt: 3206 NewI = B.CreateZExtOrTrunc( 3207 CI->getOperand(0), 3208 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3209 break; 3210 } 3211 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3212 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3213 auto *O0 = B.CreateZExtOrTrunc( 3214 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3215 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3216 auto *O1 = B.CreateZExtOrTrunc( 3217 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3218 3219 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3220 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3221 // Don't do anything with the operands, just extend the result. 3222 continue; 3223 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3224 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3225 auto *O0 = B.CreateZExtOrTrunc( 3226 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3227 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3228 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3229 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3230 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3231 auto *O0 = B.CreateZExtOrTrunc( 3232 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3233 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3234 } else { 3235 // If we don't know what to do, be conservative and don't do anything. 3236 continue; 3237 } 3238 3239 // Lastly, extend the result. 3240 NewI->takeName(cast<Instruction>(I)); 3241 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3242 I->replaceAllUsesWith(Res); 3243 cast<Instruction>(I)->eraseFromParent(); 3244 Erased.insert(I); 3245 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3246 } 3247 } 3248 3249 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3250 for (const auto &KV : Cost->getMinimalBitwidths()) { 3251 // If the value wasn't vectorized, we must maintain the original scalar 3252 // type. The absence of the value from VectorLoopValueMap indicates that it 3253 // wasn't vectorized. 3254 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3255 continue; 3256 for (unsigned Part = 0; Part < UF; ++Part) { 3257 Value *I = getOrCreateVectorValue(KV.first, Part); 3258 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3259 if (Inst && Inst->use_empty()) { 3260 Value *NewI = Inst->getOperand(0); 3261 Inst->eraseFromParent(); 3262 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3263 } 3264 } 3265 } 3266 } 3267 3268 void InnerLoopVectorizer::fixVectorizedLoop() { 3269 // Insert truncates and extends for any truncated instructions as hints to 3270 // InstCombine. 3271 if (VF > 1) 3272 truncateToMinimalBitwidths(); 3273 3274 // Fix widened non-induction PHIs by setting up the PHI operands. 3275 if (OrigPHIsToFix.size()) { 3276 assert(EnableVPlanNativePath && 3277 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3278 fixNonInductionPHIs(); 3279 } 3280 3281 // At this point every instruction in the original loop is widened to a 3282 // vector form. Now we need to fix the recurrences in the loop. These PHI 3283 // nodes are currently empty because we did not want to introduce cycles. 3284 // This is the second stage of vectorizing recurrences. 3285 fixCrossIterationPHIs(); 3286 3287 // Update the dominator tree. 3288 // 3289 // FIXME: After creating the structure of the new loop, the dominator tree is 3290 // no longer up-to-date, and it remains that way until we update it 3291 // here. An out-of-date dominator tree is problematic for SCEV, 3292 // because SCEVExpander uses it to guide code generation. The 3293 // vectorizer use SCEVExpanders in several places. Instead, we should 3294 // keep the dominator tree up-to-date as we go. 3295 updateAnalysis(); 3296 3297 // Fix-up external users of the induction variables. 3298 for (auto &Entry : *Legal->getInductionVars()) 3299 fixupIVUsers(Entry.first, Entry.second, 3300 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3301 IVEndValues[Entry.first], LoopMiddleBlock); 3302 3303 fixLCSSAPHIs(); 3304 for (Instruction *PI : PredicatedInstructions) 3305 sinkScalarOperands(&*PI); 3306 3307 // Remove redundant induction instructions. 3308 cse(LoopVectorBody); 3309 } 3310 3311 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3312 // In order to support recurrences we need to be able to vectorize Phi nodes. 3313 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3314 // stage #2: We now need to fix the recurrences by adding incoming edges to 3315 // the currently empty PHI nodes. At this point every instruction in the 3316 // original loop is widened to a vector form so we can use them to construct 3317 // the incoming edges. 3318 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3319 // Handle first-order recurrences and reductions that need to be fixed. 3320 if (Legal->isFirstOrderRecurrence(&Phi)) 3321 fixFirstOrderRecurrence(&Phi); 3322 else if (Legal->isReductionVariable(&Phi)) 3323 fixReduction(&Phi); 3324 } 3325 } 3326 3327 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3328 // This is the second phase of vectorizing first-order recurrences. An 3329 // overview of the transformation is described below. Suppose we have the 3330 // following loop. 3331 // 3332 // for (int i = 0; i < n; ++i) 3333 // b[i] = a[i] - a[i - 1]; 3334 // 3335 // There is a first-order recurrence on "a". For this loop, the shorthand 3336 // scalar IR looks like: 3337 // 3338 // scalar.ph: 3339 // s_init = a[-1] 3340 // br scalar.body 3341 // 3342 // scalar.body: 3343 // i = phi [0, scalar.ph], [i+1, scalar.body] 3344 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3345 // s2 = a[i] 3346 // b[i] = s2 - s1 3347 // br cond, scalar.body, ... 3348 // 3349 // In this example, s1 is a recurrence because it's value depends on the 3350 // previous iteration. In the first phase of vectorization, we created a 3351 // temporary value for s1. We now complete the vectorization and produce the 3352 // shorthand vector IR shown below (for VF = 4, UF = 1). 3353 // 3354 // vector.ph: 3355 // v_init = vector(..., ..., ..., a[-1]) 3356 // br vector.body 3357 // 3358 // vector.body 3359 // i = phi [0, vector.ph], [i+4, vector.body] 3360 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3361 // v2 = a[i, i+1, i+2, i+3]; 3362 // v3 = vector(v1(3), v2(0, 1, 2)) 3363 // b[i, i+1, i+2, i+3] = v2 - v3 3364 // br cond, vector.body, middle.block 3365 // 3366 // middle.block: 3367 // x = v2(3) 3368 // br scalar.ph 3369 // 3370 // scalar.ph: 3371 // s_init = phi [x, middle.block], [a[-1], otherwise] 3372 // br scalar.body 3373 // 3374 // After execution completes the vector loop, we extract the next value of 3375 // the recurrence (x) to use as the initial value in the scalar loop. 3376 3377 // Get the original loop preheader and single loop latch. 3378 auto *Preheader = OrigLoop->getLoopPreheader(); 3379 auto *Latch = OrigLoop->getLoopLatch(); 3380 3381 // Get the initial and previous values of the scalar recurrence. 3382 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3383 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3384 3385 // Create a vector from the initial value. 3386 auto *VectorInit = ScalarInit; 3387 if (VF > 1) { 3388 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3389 VectorInit = Builder.CreateInsertElement( 3390 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3391 Builder.getInt32(VF - 1), "vector.recur.init"); 3392 } 3393 3394 // We constructed a temporary phi node in the first phase of vectorization. 3395 // This phi node will eventually be deleted. 3396 Builder.SetInsertPoint( 3397 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3398 3399 // Create a phi node for the new recurrence. The current value will either be 3400 // the initial value inserted into a vector or loop-varying vector value. 3401 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3402 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3403 3404 // Get the vectorized previous value of the last part UF - 1. It appears last 3405 // among all unrolled iterations, due to the order of their construction. 3406 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3407 3408 // Set the insertion point after the previous value if it is an instruction. 3409 // Note that the previous value may have been constant-folded so it is not 3410 // guaranteed to be an instruction in the vector loop. Also, if the previous 3411 // value is a phi node, we should insert after all the phi nodes to avoid 3412 // breaking basic block verification. 3413 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3414 isa<PHINode>(PreviousLastPart)) 3415 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3416 else 3417 Builder.SetInsertPoint( 3418 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3419 3420 // We will construct a vector for the recurrence by combining the values for 3421 // the current and previous iterations. This is the required shuffle mask. 3422 SmallVector<Constant *, 8> ShuffleMask(VF); 3423 ShuffleMask[0] = Builder.getInt32(VF - 1); 3424 for (unsigned I = 1; I < VF; ++I) 3425 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3426 3427 // The vector from which to take the initial value for the current iteration 3428 // (actual or unrolled). Initially, this is the vector phi node. 3429 Value *Incoming = VecPhi; 3430 3431 // Shuffle the current and previous vector and update the vector parts. 3432 for (unsigned Part = 0; Part < UF; ++Part) { 3433 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3434 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3435 auto *Shuffle = 3436 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3437 ConstantVector::get(ShuffleMask)) 3438 : Incoming; 3439 PhiPart->replaceAllUsesWith(Shuffle); 3440 cast<Instruction>(PhiPart)->eraseFromParent(); 3441 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3442 Incoming = PreviousPart; 3443 } 3444 3445 // Fix the latch value of the new recurrence in the vector loop. 3446 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3447 3448 // Extract the last vector element in the middle block. This will be the 3449 // initial value for the recurrence when jumping to the scalar loop. 3450 auto *ExtractForScalar = Incoming; 3451 if (VF > 1) { 3452 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3453 ExtractForScalar = Builder.CreateExtractElement( 3454 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3455 } 3456 // Extract the second last element in the middle block if the 3457 // Phi is used outside the loop. We need to extract the phi itself 3458 // and not the last element (the phi update in the current iteration). This 3459 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3460 // when the scalar loop is not run at all. 3461 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3462 if (VF > 1) 3463 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3464 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3465 // When loop is unrolled without vectorizing, initialize 3466 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3467 // `Incoming`. This is analogous to the vectorized case above: extracting the 3468 // second last element when VF > 1. 3469 else if (UF > 1) 3470 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3471 3472 // Fix the initial value of the original recurrence in the scalar loop. 3473 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3474 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3475 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3476 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3477 Start->addIncoming(Incoming, BB); 3478 } 3479 3480 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3481 Phi->setName("scalar.recur"); 3482 3483 // Finally, fix users of the recurrence outside the loop. The users will need 3484 // either the last value of the scalar recurrence or the last value of the 3485 // vector recurrence we extracted in the middle block. Since the loop is in 3486 // LCSSA form, we just need to find all the phi nodes for the original scalar 3487 // recurrence in the exit block, and then add an edge for the middle block. 3488 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3489 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3490 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3491 } 3492 } 3493 } 3494 3495 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3496 Constant *Zero = Builder.getInt32(0); 3497 3498 // Get it's reduction variable descriptor. 3499 assert(Legal->isReductionVariable(Phi) && 3500 "Unable to find the reduction variable"); 3501 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3502 3503 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3504 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3505 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3506 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3507 RdxDesc.getMinMaxRecurrenceKind(); 3508 setDebugLocFromInst(Builder, ReductionStartValue); 3509 3510 // We need to generate a reduction vector from the incoming scalar. 3511 // To do so, we need to generate the 'identity' vector and override 3512 // one of the elements with the incoming scalar reduction. We need 3513 // to do it in the vector-loop preheader. 3514 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3515 3516 // This is the vector-clone of the value that leaves the loop. 3517 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3518 3519 // Find the reduction identity variable. Zero for addition, or, xor, 3520 // one for multiplication, -1 for And. 3521 Value *Identity; 3522 Value *VectorStart; 3523 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3524 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3525 // MinMax reduction have the start value as their identify. 3526 if (VF == 1) { 3527 VectorStart = Identity = ReductionStartValue; 3528 } else { 3529 VectorStart = Identity = 3530 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3531 } 3532 } else { 3533 // Handle other reduction kinds: 3534 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3535 RK, VecTy->getScalarType()); 3536 if (VF == 1) { 3537 Identity = Iden; 3538 // This vector is the Identity vector where the first element is the 3539 // incoming scalar reduction. 3540 VectorStart = ReductionStartValue; 3541 } else { 3542 Identity = ConstantVector::getSplat(VF, Iden); 3543 3544 // This vector is the Identity vector where the first element is the 3545 // incoming scalar reduction. 3546 VectorStart = 3547 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3548 } 3549 } 3550 3551 // Fix the vector-loop phi. 3552 3553 // Reductions do not have to start at zero. They can start with 3554 // any loop invariant values. 3555 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3556 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3557 for (unsigned Part = 0; Part < UF; ++Part) { 3558 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3559 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3560 // Make sure to add the reduction stat value only to the 3561 // first unroll part. 3562 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3563 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3564 cast<PHINode>(VecRdxPhi) 3565 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3566 } 3567 3568 // Before each round, move the insertion point right between 3569 // the PHIs and the values we are going to write. 3570 // This allows us to write both PHINodes and the extractelement 3571 // instructions. 3572 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3573 3574 setDebugLocFromInst(Builder, LoopExitInst); 3575 3576 // If the vector reduction can be performed in a smaller type, we truncate 3577 // then extend the loop exit value to enable InstCombine to evaluate the 3578 // entire expression in the smaller type. 3579 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3580 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3581 Builder.SetInsertPoint( 3582 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3583 VectorParts RdxParts(UF); 3584 for (unsigned Part = 0; Part < UF; ++Part) { 3585 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3586 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3587 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3588 : Builder.CreateZExt(Trunc, VecTy); 3589 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3590 UI != RdxParts[Part]->user_end();) 3591 if (*UI != Trunc) { 3592 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3593 RdxParts[Part] = Extnd; 3594 } else { 3595 ++UI; 3596 } 3597 } 3598 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3599 for (unsigned Part = 0; Part < UF; ++Part) { 3600 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3601 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3602 } 3603 } 3604 3605 // Reduce all of the unrolled parts into a single vector. 3606 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3607 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3608 setDebugLocFromInst(Builder, ReducedPartRdx); 3609 for (unsigned Part = 1; Part < UF; ++Part) { 3610 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3611 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3612 // Floating point operations had to be 'fast' to enable the reduction. 3613 ReducedPartRdx = addFastMathFlag( 3614 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3615 ReducedPartRdx, "bin.rdx")); 3616 else 3617 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3618 RdxPart); 3619 } 3620 3621 if (VF > 1) { 3622 bool NoNaN = Legal->hasFunNoNaNAttr(); 3623 ReducedPartRdx = 3624 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3625 // If the reduction can be performed in a smaller type, we need to extend 3626 // the reduction to the wider type before we branch to the original loop. 3627 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3628 ReducedPartRdx = 3629 RdxDesc.isSigned() 3630 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3631 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3632 } 3633 3634 // Create a phi node that merges control-flow from the backedge-taken check 3635 // block and the middle block. 3636 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3637 LoopScalarPreHeader->getTerminator()); 3638 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3639 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3640 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3641 3642 // Now, we need to fix the users of the reduction variable 3643 // inside and outside of the scalar remainder loop. 3644 // We know that the loop is in LCSSA form. We need to update the 3645 // PHI nodes in the exit blocks. 3646 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3647 // All PHINodes need to have a single entry edge, or two if 3648 // we already fixed them. 3649 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3650 3651 // We found a reduction value exit-PHI. Update it with the 3652 // incoming bypass edge. 3653 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3654 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3655 } // end of the LCSSA phi scan. 3656 3657 // Fix the scalar loop reduction variable with the incoming reduction sum 3658 // from the vector body and from the backedge value. 3659 int IncomingEdgeBlockIdx = 3660 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3661 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3662 // Pick the other block. 3663 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3664 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3665 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3666 } 3667 3668 void InnerLoopVectorizer::fixLCSSAPHIs() { 3669 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3670 if (LCSSAPhi.getNumIncomingValues() == 1) { 3671 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3672 // Non-instruction incoming values will have only one value. 3673 unsigned LastLane = 0; 3674 if (isa<Instruction>(IncomingValue)) 3675 LastLane = Cost->isUniformAfterVectorization( 3676 cast<Instruction>(IncomingValue), VF) 3677 ? 0 3678 : VF - 1; 3679 // Can be a loop invariant incoming value or the last scalar value to be 3680 // extracted from the vectorized loop. 3681 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3682 Value *lastIncomingValue = 3683 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3684 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3685 } 3686 } 3687 } 3688 3689 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3690 // The basic block and loop containing the predicated instruction. 3691 auto *PredBB = PredInst->getParent(); 3692 auto *VectorLoop = LI->getLoopFor(PredBB); 3693 3694 // Initialize a worklist with the operands of the predicated instruction. 3695 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3696 3697 // Holds instructions that we need to analyze again. An instruction may be 3698 // reanalyzed if we don't yet know if we can sink it or not. 3699 SmallVector<Instruction *, 8> InstsToReanalyze; 3700 3701 // Returns true if a given use occurs in the predicated block. Phi nodes use 3702 // their operands in their corresponding predecessor blocks. 3703 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3704 auto *I = cast<Instruction>(U.getUser()); 3705 BasicBlock *BB = I->getParent(); 3706 if (auto *Phi = dyn_cast<PHINode>(I)) 3707 BB = Phi->getIncomingBlock( 3708 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3709 return BB == PredBB; 3710 }; 3711 3712 // Iteratively sink the scalarized operands of the predicated instruction 3713 // into the block we created for it. When an instruction is sunk, it's 3714 // operands are then added to the worklist. The algorithm ends after one pass 3715 // through the worklist doesn't sink a single instruction. 3716 bool Changed; 3717 do { 3718 // Add the instructions that need to be reanalyzed to the worklist, and 3719 // reset the changed indicator. 3720 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3721 InstsToReanalyze.clear(); 3722 Changed = false; 3723 3724 while (!Worklist.empty()) { 3725 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3726 3727 // We can't sink an instruction if it is a phi node, is already in the 3728 // predicated block, is not in the loop, or may have side effects. 3729 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3730 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3731 continue; 3732 3733 // It's legal to sink the instruction if all its uses occur in the 3734 // predicated block. Otherwise, there's nothing to do yet, and we may 3735 // need to reanalyze the instruction. 3736 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3737 InstsToReanalyze.push_back(I); 3738 continue; 3739 } 3740 3741 // Move the instruction to the beginning of the predicated block, and add 3742 // it's operands to the worklist. 3743 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3744 Worklist.insert(I->op_begin(), I->op_end()); 3745 3746 // The sinking may have enabled other instructions to be sunk, so we will 3747 // need to iterate. 3748 Changed = true; 3749 } 3750 } while (Changed); 3751 } 3752 3753 void InnerLoopVectorizer::fixNonInductionPHIs() { 3754 for (PHINode *OrigPhi : OrigPHIsToFix) { 3755 PHINode *NewPhi = 3756 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3757 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3758 3759 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3760 predecessors(OrigPhi->getParent())); 3761 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3762 predecessors(NewPhi->getParent())); 3763 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3764 "Scalar and Vector BB should have the same number of predecessors"); 3765 3766 // The insertion point in Builder may be invalidated by the time we get 3767 // here. Force the Builder insertion point to something valid so that we do 3768 // not run into issues during insertion point restore in 3769 // getOrCreateVectorValue calls below. 3770 Builder.SetInsertPoint(NewPhi); 3771 3772 // The predecessor order is preserved and we can rely on mapping between 3773 // scalar and vector block predecessors. 3774 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3775 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3776 3777 // When looking up the new scalar/vector values to fix up, use incoming 3778 // values from original phi. 3779 Value *ScIncV = 3780 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3781 3782 // Scalar incoming value may need a broadcast 3783 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3784 NewPhi->addIncoming(NewIncV, NewPredBB); 3785 } 3786 } 3787 } 3788 3789 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3790 unsigned VF) { 3791 PHINode *P = cast<PHINode>(PN); 3792 if (EnableVPlanNativePath) { 3793 // Currently we enter here in the VPlan-native path for non-induction 3794 // PHIs where all control flow is uniform. We simply widen these PHIs. 3795 // Create a vector phi with no operands - the vector phi operands will be 3796 // set at the end of vector code generation. 3797 Type *VecTy = 3798 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3799 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3800 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3801 OrigPHIsToFix.push_back(P); 3802 3803 return; 3804 } 3805 3806 assert(PN->getParent() == OrigLoop->getHeader() && 3807 "Non-header phis should have been handled elsewhere"); 3808 3809 // In order to support recurrences we need to be able to vectorize Phi nodes. 3810 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3811 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3812 // this value when we vectorize all of the instructions that use the PHI. 3813 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3814 for (unsigned Part = 0; Part < UF; ++Part) { 3815 // This is phase one of vectorizing PHIs. 3816 Type *VecTy = 3817 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3818 Value *EntryPart = PHINode::Create( 3819 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3820 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3821 } 3822 return; 3823 } 3824 3825 setDebugLocFromInst(Builder, P); 3826 3827 // This PHINode must be an induction variable. 3828 // Make sure that we know about it. 3829 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3830 3831 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3832 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3833 3834 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3835 // which can be found from the original scalar operations. 3836 switch (II.getKind()) { 3837 case InductionDescriptor::IK_NoInduction: 3838 llvm_unreachable("Unknown induction"); 3839 case InductionDescriptor::IK_IntInduction: 3840 case InductionDescriptor::IK_FpInduction: 3841 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3842 case InductionDescriptor::IK_PtrInduction: { 3843 // Handle the pointer induction variable case. 3844 assert(P->getType()->isPointerTy() && "Unexpected type."); 3845 // This is the normalized GEP that starts counting at zero. 3846 Value *PtrInd = Induction; 3847 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3848 // Determine the number of scalars we need to generate for each unroll 3849 // iteration. If the instruction is uniform, we only need to generate the 3850 // first lane. Otherwise, we generate all VF values. 3851 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3852 // These are the scalar results. Notice that we don't generate vector GEPs 3853 // because scalar GEPs result in better code. 3854 for (unsigned Part = 0; Part < UF; ++Part) { 3855 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3856 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3857 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3858 Value *SclrGep = 3859 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3860 SclrGep->setName("next.gep"); 3861 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3862 } 3863 } 3864 return; 3865 } 3866 } 3867 } 3868 3869 /// A helper function for checking whether an integer division-related 3870 /// instruction may divide by zero (in which case it must be predicated if 3871 /// executed conditionally in the scalar code). 3872 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3873 /// Non-zero divisors that are non compile-time constants will not be 3874 /// converted into multiplication, so we will still end up scalarizing 3875 /// the division, but can do so w/o predication. 3876 static bool mayDivideByZero(Instruction &I) { 3877 assert((I.getOpcode() == Instruction::UDiv || 3878 I.getOpcode() == Instruction::SDiv || 3879 I.getOpcode() == Instruction::URem || 3880 I.getOpcode() == Instruction::SRem) && 3881 "Unexpected instruction"); 3882 Value *Divisor = I.getOperand(1); 3883 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3884 return !CInt || CInt->isZero(); 3885 } 3886 3887 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3888 switch (I.getOpcode()) { 3889 case Instruction::Br: 3890 case Instruction::PHI: 3891 llvm_unreachable("This instruction is handled by a different recipe."); 3892 case Instruction::GetElementPtr: { 3893 // Construct a vector GEP by widening the operands of the scalar GEP as 3894 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3895 // results in a vector of pointers when at least one operand of the GEP 3896 // is vector-typed. Thus, to keep the representation compact, we only use 3897 // vector-typed operands for loop-varying values. 3898 auto *GEP = cast<GetElementPtrInst>(&I); 3899 3900 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3901 // If we are vectorizing, but the GEP has only loop-invariant operands, 3902 // the GEP we build (by only using vector-typed operands for 3903 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3904 // produce a vector of pointers, we need to either arbitrarily pick an 3905 // operand to broadcast, or broadcast a clone of the original GEP. 3906 // Here, we broadcast a clone of the original. 3907 // 3908 // TODO: If at some point we decide to scalarize instructions having 3909 // loop-invariant operands, this special case will no longer be 3910 // required. We would add the scalarization decision to 3911 // collectLoopScalars() and teach getVectorValue() to broadcast 3912 // the lane-zero scalar value. 3913 auto *Clone = Builder.Insert(GEP->clone()); 3914 for (unsigned Part = 0; Part < UF; ++Part) { 3915 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3916 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3917 addMetadata(EntryPart, GEP); 3918 } 3919 } else { 3920 // If the GEP has at least one loop-varying operand, we are sure to 3921 // produce a vector of pointers. But if we are only unrolling, we want 3922 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3923 // produce with the code below will be scalar (if VF == 1) or vector 3924 // (otherwise). Note that for the unroll-only case, we still maintain 3925 // values in the vector mapping with initVector, as we do for other 3926 // instructions. 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 // The pointer operand of the new GEP. If it's loop-invariant, we 3929 // won't broadcast it. 3930 auto *Ptr = 3931 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3932 ? GEP->getPointerOperand() 3933 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3934 3935 // Collect all the indices for the new GEP. If any index is 3936 // loop-invariant, we won't broadcast it. 3937 SmallVector<Value *, 4> Indices; 3938 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3939 if (OrigLoop->isLoopInvariant(U.get())) 3940 Indices.push_back(U.get()); 3941 else 3942 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3943 } 3944 3945 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3946 // but it should be a vector, otherwise. 3947 auto *NewGEP = 3948 GEP->isInBounds() 3949 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3950 Indices) 3951 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3952 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3953 "NewGEP is not a pointer vector"); 3954 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3955 addMetadata(NewGEP, GEP); 3956 } 3957 } 3958 3959 break; 3960 } 3961 case Instruction::UDiv: 3962 case Instruction::SDiv: 3963 case Instruction::SRem: 3964 case Instruction::URem: 3965 case Instruction::Add: 3966 case Instruction::FAdd: 3967 case Instruction::Sub: 3968 case Instruction::FSub: 3969 case Instruction::Mul: 3970 case Instruction::FMul: 3971 case Instruction::FDiv: 3972 case Instruction::FRem: 3973 case Instruction::Shl: 3974 case Instruction::LShr: 3975 case Instruction::AShr: 3976 case Instruction::And: 3977 case Instruction::Or: 3978 case Instruction::Xor: { 3979 // Just widen binops. 3980 auto *BinOp = cast<BinaryOperator>(&I); 3981 setDebugLocFromInst(Builder, BinOp); 3982 3983 for (unsigned Part = 0; Part < UF; ++Part) { 3984 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3985 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3986 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3987 3988 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3989 VecOp->copyIRFlags(BinOp); 3990 3991 // Use this vector value for all users of the original instruction. 3992 VectorLoopValueMap.setVectorValue(&I, Part, V); 3993 addMetadata(V, BinOp); 3994 } 3995 3996 break; 3997 } 3998 case Instruction::Select: { 3999 // Widen selects. 4000 // If the selector is loop invariant we can create a select 4001 // instruction with a scalar condition. Otherwise, use vector-select. 4002 auto *SE = PSE.getSE(); 4003 bool InvariantCond = 4004 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4005 setDebugLocFromInst(Builder, &I); 4006 4007 // The condition can be loop invariant but still defined inside the 4008 // loop. This means that we can't just use the original 'cond' value. 4009 // We have to take the 'vectorized' value and pick the first lane. 4010 // Instcombine will make this a no-op. 4011 4012 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4013 4014 for (unsigned Part = 0; Part < UF; ++Part) { 4015 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4016 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4017 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4018 Value *Sel = 4019 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4020 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4021 addMetadata(Sel, &I); 4022 } 4023 4024 break; 4025 } 4026 4027 case Instruction::ICmp: 4028 case Instruction::FCmp: { 4029 // Widen compares. Generate vector compares. 4030 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4031 auto *Cmp = dyn_cast<CmpInst>(&I); 4032 setDebugLocFromInst(Builder, Cmp); 4033 for (unsigned Part = 0; Part < UF; ++Part) { 4034 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4035 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4036 Value *C = nullptr; 4037 if (FCmp) { 4038 // Propagate fast math flags. 4039 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4040 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4041 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4042 } else { 4043 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4044 } 4045 VectorLoopValueMap.setVectorValue(&I, Part, C); 4046 addMetadata(C, &I); 4047 } 4048 4049 break; 4050 } 4051 4052 case Instruction::ZExt: 4053 case Instruction::SExt: 4054 case Instruction::FPToUI: 4055 case Instruction::FPToSI: 4056 case Instruction::FPExt: 4057 case Instruction::PtrToInt: 4058 case Instruction::IntToPtr: 4059 case Instruction::SIToFP: 4060 case Instruction::UIToFP: 4061 case Instruction::Trunc: 4062 case Instruction::FPTrunc: 4063 case Instruction::BitCast: { 4064 auto *CI = dyn_cast<CastInst>(&I); 4065 setDebugLocFromInst(Builder, CI); 4066 4067 /// Vectorize casts. 4068 Type *DestTy = 4069 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4070 4071 for (unsigned Part = 0; Part < UF; ++Part) { 4072 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4073 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4074 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4075 addMetadata(Cast, &I); 4076 } 4077 break; 4078 } 4079 4080 case Instruction::Call: { 4081 // Ignore dbg intrinsics. 4082 if (isa<DbgInfoIntrinsic>(I)) 4083 break; 4084 setDebugLocFromInst(Builder, &I); 4085 4086 Module *M = I.getParent()->getParent()->getParent(); 4087 auto *CI = cast<CallInst>(&I); 4088 4089 StringRef FnName = CI->getCalledFunction()->getName(); 4090 Function *F = CI->getCalledFunction(); 4091 Type *RetTy = ToVectorTy(CI->getType(), VF); 4092 SmallVector<Type *, 4> Tys; 4093 for (Value *ArgOperand : CI->arg_operands()) 4094 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4095 4096 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4097 4098 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4099 // version of the instruction. 4100 // Is it beneficial to perform intrinsic call compared to lib call? 4101 bool NeedToScalarize; 4102 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4103 bool UseVectorIntrinsic = 4104 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4105 assert((UseVectorIntrinsic || !NeedToScalarize) && 4106 "Instruction should be scalarized elsewhere."); 4107 4108 for (unsigned Part = 0; Part < UF; ++Part) { 4109 SmallVector<Value *, 4> Args; 4110 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4111 Value *Arg = CI->getArgOperand(i); 4112 // Some intrinsics have a scalar argument - don't replace it with a 4113 // vector. 4114 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4115 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4116 Args.push_back(Arg); 4117 } 4118 4119 Function *VectorF; 4120 if (UseVectorIntrinsic) { 4121 // Use vector version of the intrinsic. 4122 Type *TysForDecl[] = {CI->getType()}; 4123 if (VF > 1) 4124 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4125 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4126 } else { 4127 // Use vector version of the library call. 4128 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4129 assert(!VFnName.empty() && "Vector function name is empty."); 4130 VectorF = M->getFunction(VFnName); 4131 if (!VectorF) { 4132 // Generate a declaration 4133 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4134 VectorF = 4135 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4136 VectorF->copyAttributesFrom(F); 4137 } 4138 } 4139 assert(VectorF && "Can't create vector function."); 4140 4141 SmallVector<OperandBundleDef, 1> OpBundles; 4142 CI->getOperandBundlesAsDefs(OpBundles); 4143 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4144 4145 if (isa<FPMathOperator>(V)) 4146 V->copyFastMathFlags(CI); 4147 4148 VectorLoopValueMap.setVectorValue(&I, Part, V); 4149 addMetadata(V, &I); 4150 } 4151 4152 break; 4153 } 4154 4155 default: 4156 // This instruction is not vectorized by simple widening. 4157 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4158 llvm_unreachable("Unhandled instruction!"); 4159 } // end of switch. 4160 } 4161 4162 void InnerLoopVectorizer::updateAnalysis() { 4163 // Forget the original basic block. 4164 PSE.getSE()->forgetLoop(OrigLoop); 4165 4166 // DT is not kept up-to-date for outer loop vectorization 4167 if (EnableVPlanNativePath) 4168 return; 4169 4170 // Update the dominator tree information. 4171 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4172 "Entry does not dominate exit."); 4173 4174 DT->addNewBlock(LoopMiddleBlock, 4175 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4176 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4177 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4178 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4179 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4180 } 4181 4182 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4183 // We should not collect Scalars more than once per VF. Right now, this 4184 // function is called from collectUniformsAndScalars(), which already does 4185 // this check. Collecting Scalars for VF=1 does not make any sense. 4186 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4187 "This function should not be visited twice for the same VF"); 4188 4189 SmallSetVector<Instruction *, 8> Worklist; 4190 4191 // These sets are used to seed the analysis with pointers used by memory 4192 // accesses that will remain scalar. 4193 SmallSetVector<Instruction *, 8> ScalarPtrs; 4194 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4195 4196 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4197 // The pointer operands of loads and stores will be scalar as long as the 4198 // memory access is not a gather or scatter operation. The value operand of a 4199 // store will remain scalar if the store is scalarized. 4200 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4201 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4202 assert(WideningDecision != CM_Unknown && 4203 "Widening decision should be ready at this moment"); 4204 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4205 if (Ptr == Store->getValueOperand()) 4206 return WideningDecision == CM_Scalarize; 4207 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4208 "Ptr is neither a value or pointer operand"); 4209 return WideningDecision != CM_GatherScatter; 4210 }; 4211 4212 // A helper that returns true if the given value is a bitcast or 4213 // getelementptr instruction contained in the loop. 4214 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4215 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4216 isa<GetElementPtrInst>(V)) && 4217 !TheLoop->isLoopInvariant(V); 4218 }; 4219 4220 // A helper that evaluates a memory access's use of a pointer. If the use 4221 // will be a scalar use, and the pointer is only used by memory accesses, we 4222 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4223 // PossibleNonScalarPtrs. 4224 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4225 // We only care about bitcast and getelementptr instructions contained in 4226 // the loop. 4227 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4228 return; 4229 4230 // If the pointer has already been identified as scalar (e.g., if it was 4231 // also identified as uniform), there's nothing to do. 4232 auto *I = cast<Instruction>(Ptr); 4233 if (Worklist.count(I)) 4234 return; 4235 4236 // If the use of the pointer will be a scalar use, and all users of the 4237 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4238 // place the pointer in PossibleNonScalarPtrs. 4239 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4240 return isa<LoadInst>(U) || isa<StoreInst>(U); 4241 })) 4242 ScalarPtrs.insert(I); 4243 else 4244 PossibleNonScalarPtrs.insert(I); 4245 }; 4246 4247 // We seed the scalars analysis with three classes of instructions: (1) 4248 // instructions marked uniform-after-vectorization, (2) bitcast and 4249 // getelementptr instructions used by memory accesses requiring a scalar use, 4250 // and (3) pointer induction variables and their update instructions (we 4251 // currently only scalarize these). 4252 // 4253 // (1) Add to the worklist all instructions that have been identified as 4254 // uniform-after-vectorization. 4255 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4256 4257 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4258 // memory accesses requiring a scalar use. The pointer operands of loads and 4259 // stores will be scalar as long as the memory accesses is not a gather or 4260 // scatter operation. The value operand of a store will remain scalar if the 4261 // store is scalarized. 4262 for (auto *BB : TheLoop->blocks()) 4263 for (auto &I : *BB) { 4264 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4265 evaluatePtrUse(Load, Load->getPointerOperand()); 4266 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4267 evaluatePtrUse(Store, Store->getPointerOperand()); 4268 evaluatePtrUse(Store, Store->getValueOperand()); 4269 } 4270 } 4271 for (auto *I : ScalarPtrs) 4272 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4273 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4274 Worklist.insert(I); 4275 } 4276 4277 // (3) Add to the worklist all pointer induction variables and their update 4278 // instructions. 4279 // 4280 // TODO: Once we are able to vectorize pointer induction variables we should 4281 // no longer insert them into the worklist here. 4282 auto *Latch = TheLoop->getLoopLatch(); 4283 for (auto &Induction : *Legal->getInductionVars()) { 4284 auto *Ind = Induction.first; 4285 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4286 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4287 continue; 4288 Worklist.insert(Ind); 4289 Worklist.insert(IndUpdate); 4290 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4291 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4292 << "\n"); 4293 } 4294 4295 // Insert the forced scalars. 4296 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4297 // induction variable when the PHI user is scalarized. 4298 auto ForcedScalar = ForcedScalars.find(VF); 4299 if (ForcedScalar != ForcedScalars.end()) 4300 for (auto *I : ForcedScalar->second) 4301 Worklist.insert(I); 4302 4303 // Expand the worklist by looking through any bitcasts and getelementptr 4304 // instructions we've already identified as scalar. This is similar to the 4305 // expansion step in collectLoopUniforms(); however, here we're only 4306 // expanding to include additional bitcasts and getelementptr instructions. 4307 unsigned Idx = 0; 4308 while (Idx != Worklist.size()) { 4309 Instruction *Dst = Worklist[Idx++]; 4310 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4311 continue; 4312 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4313 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4314 auto *J = cast<Instruction>(U); 4315 return !TheLoop->contains(J) || Worklist.count(J) || 4316 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4317 isScalarUse(J, Src)); 4318 })) { 4319 Worklist.insert(Src); 4320 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4321 } 4322 } 4323 4324 // An induction variable will remain scalar if all users of the induction 4325 // variable and induction variable update remain scalar. 4326 for (auto &Induction : *Legal->getInductionVars()) { 4327 auto *Ind = Induction.first; 4328 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4329 4330 // We already considered pointer induction variables, so there's no reason 4331 // to look at their users again. 4332 // 4333 // TODO: Once we are able to vectorize pointer induction variables we 4334 // should no longer skip over them here. 4335 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4336 continue; 4337 4338 // Determine if all users of the induction variable are scalar after 4339 // vectorization. 4340 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4341 auto *I = cast<Instruction>(U); 4342 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4343 }); 4344 if (!ScalarInd) 4345 continue; 4346 4347 // Determine if all users of the induction variable update instruction are 4348 // scalar after vectorization. 4349 auto ScalarIndUpdate = 4350 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4351 auto *I = cast<Instruction>(U); 4352 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4353 }); 4354 if (!ScalarIndUpdate) 4355 continue; 4356 4357 // The induction variable and its update instruction will remain scalar. 4358 Worklist.insert(Ind); 4359 Worklist.insert(IndUpdate); 4360 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4361 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4362 << "\n"); 4363 } 4364 4365 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4366 } 4367 4368 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4369 if (!blockNeedsPredication(I->getParent())) 4370 return false; 4371 switch(I->getOpcode()) { 4372 default: 4373 break; 4374 case Instruction::Load: 4375 case Instruction::Store: { 4376 if (!Legal->isMaskRequired(I)) 4377 return false; 4378 auto *Ptr = getLoadStorePointerOperand(I); 4379 auto *Ty = getMemInstValueType(I); 4380 // We have already decided how to vectorize this instruction, get that 4381 // result. 4382 if (VF > 1) { 4383 InstWidening WideningDecision = getWideningDecision(I, VF); 4384 assert(WideningDecision != CM_Unknown && 4385 "Widening decision should be ready at this moment"); 4386 return WideningDecision == CM_Scalarize; 4387 } 4388 return isa<LoadInst>(I) ? 4389 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4390 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4391 } 4392 case Instruction::UDiv: 4393 case Instruction::SDiv: 4394 case Instruction::SRem: 4395 case Instruction::URem: 4396 return mayDivideByZero(*I); 4397 } 4398 return false; 4399 } 4400 4401 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4402 unsigned VF) { 4403 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4404 assert(getWideningDecision(I, VF) == CM_Unknown && 4405 "Decision should not be set yet."); 4406 auto *Group = getInterleavedAccessGroup(I); 4407 assert(Group && "Must have a group."); 4408 4409 // Check if masking is required. 4410 // A Group may need masking for one of two reasons: it resides in a block that 4411 // needs predication, or it was decided to use masking to deal with gaps. 4412 bool PredicatedAccessRequiresMasking = 4413 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4414 bool AccessWithGapsRequiresMasking = 4415 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4416 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4417 return true; 4418 4419 // If masked interleaving is required, we expect that the user/target had 4420 // enabled it, because otherwise it either wouldn't have been created or 4421 // it should have been invalidated by the CostModel. 4422 assert(useMaskedInterleavedAccesses(TTI) && 4423 "Masked interleave-groups for predicated accesses are not enabled."); 4424 4425 auto *Ty = getMemInstValueType(I); 4426 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4427 : TTI.isLegalMaskedStore(Ty); 4428 } 4429 4430 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4431 unsigned VF) { 4432 // Get and ensure we have a valid memory instruction. 4433 LoadInst *LI = dyn_cast<LoadInst>(I); 4434 StoreInst *SI = dyn_cast<StoreInst>(I); 4435 assert((LI || SI) && "Invalid memory instruction"); 4436 4437 auto *Ptr = getLoadStorePointerOperand(I); 4438 4439 // In order to be widened, the pointer should be consecutive, first of all. 4440 if (!Legal->isConsecutivePtr(Ptr)) 4441 return false; 4442 4443 // If the instruction is a store located in a predicated block, it will be 4444 // scalarized. 4445 if (isScalarWithPredication(I)) 4446 return false; 4447 4448 // If the instruction's allocated size doesn't equal it's type size, it 4449 // requires padding and will be scalarized. 4450 auto &DL = I->getModule()->getDataLayout(); 4451 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4452 if (hasIrregularType(ScalarTy, DL, VF)) 4453 return false; 4454 4455 return true; 4456 } 4457 4458 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4459 // We should not collect Uniforms more than once per VF. Right now, 4460 // this function is called from collectUniformsAndScalars(), which 4461 // already does this check. Collecting Uniforms for VF=1 does not make any 4462 // sense. 4463 4464 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4465 "This function should not be visited twice for the same VF"); 4466 4467 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4468 // not analyze again. Uniforms.count(VF) will return 1. 4469 Uniforms[VF].clear(); 4470 4471 // We now know that the loop is vectorizable! 4472 // Collect instructions inside the loop that will remain uniform after 4473 // vectorization. 4474 4475 // Global values, params and instructions outside of current loop are out of 4476 // scope. 4477 auto isOutOfScope = [&](Value *V) -> bool { 4478 Instruction *I = dyn_cast<Instruction>(V); 4479 return (!I || !TheLoop->contains(I)); 4480 }; 4481 4482 SetVector<Instruction *> Worklist; 4483 BasicBlock *Latch = TheLoop->getLoopLatch(); 4484 4485 // Start with the conditional branch. If the branch condition is an 4486 // instruction contained in the loop that is only used by the branch, it is 4487 // uniform. 4488 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4489 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4490 Worklist.insert(Cmp); 4491 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4492 } 4493 4494 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4495 // are pointers that are treated like consecutive pointers during 4496 // vectorization. The pointer operands of interleaved accesses are an 4497 // example. 4498 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4499 4500 // Holds pointer operands of instructions that are possibly non-uniform. 4501 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4502 4503 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4504 InstWidening WideningDecision = getWideningDecision(I, VF); 4505 assert(WideningDecision != CM_Unknown && 4506 "Widening decision should be ready at this moment"); 4507 4508 return (WideningDecision == CM_Widen || 4509 WideningDecision == CM_Widen_Reverse || 4510 WideningDecision == CM_Interleave); 4511 }; 4512 // Iterate over the instructions in the loop, and collect all 4513 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4514 // that a consecutive-like pointer operand will be scalarized, we collect it 4515 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4516 // getelementptr instruction can be used by both vectorized and scalarized 4517 // memory instructions. For example, if a loop loads and stores from the same 4518 // location, but the store is conditional, the store will be scalarized, and 4519 // the getelementptr won't remain uniform. 4520 for (auto *BB : TheLoop->blocks()) 4521 for (auto &I : *BB) { 4522 // If there's no pointer operand, there's nothing to do. 4523 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4524 if (!Ptr) 4525 continue; 4526 4527 // True if all users of Ptr are memory accesses that have Ptr as their 4528 // pointer operand. 4529 auto UsersAreMemAccesses = 4530 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4531 return getLoadStorePointerOperand(U) == Ptr; 4532 }); 4533 4534 // Ensure the memory instruction will not be scalarized or used by 4535 // gather/scatter, making its pointer operand non-uniform. If the pointer 4536 // operand is used by any instruction other than a memory access, we 4537 // conservatively assume the pointer operand may be non-uniform. 4538 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4539 PossibleNonUniformPtrs.insert(Ptr); 4540 4541 // If the memory instruction will be vectorized and its pointer operand 4542 // is consecutive-like, or interleaving - the pointer operand should 4543 // remain uniform. 4544 else 4545 ConsecutiveLikePtrs.insert(Ptr); 4546 } 4547 4548 // Add to the Worklist all consecutive and consecutive-like pointers that 4549 // aren't also identified as possibly non-uniform. 4550 for (auto *V : ConsecutiveLikePtrs) 4551 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4552 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4553 Worklist.insert(V); 4554 } 4555 4556 // Expand Worklist in topological order: whenever a new instruction 4557 // is added , its users should be already inside Worklist. It ensures 4558 // a uniform instruction will only be used by uniform instructions. 4559 unsigned idx = 0; 4560 while (idx != Worklist.size()) { 4561 Instruction *I = Worklist[idx++]; 4562 4563 for (auto OV : I->operand_values()) { 4564 // isOutOfScope operands cannot be uniform instructions. 4565 if (isOutOfScope(OV)) 4566 continue; 4567 // First order recurrence Phi's should typically be considered 4568 // non-uniform. 4569 auto *OP = dyn_cast<PHINode>(OV); 4570 if (OP && Legal->isFirstOrderRecurrence(OP)) 4571 continue; 4572 // If all the users of the operand are uniform, then add the 4573 // operand into the uniform worklist. 4574 auto *OI = cast<Instruction>(OV); 4575 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4576 auto *J = cast<Instruction>(U); 4577 return Worklist.count(J) || 4578 (OI == getLoadStorePointerOperand(J) && 4579 isUniformDecision(J, VF)); 4580 })) { 4581 Worklist.insert(OI); 4582 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4583 } 4584 } 4585 } 4586 4587 // Returns true if Ptr is the pointer operand of a memory access instruction 4588 // I, and I is known to not require scalarization. 4589 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4590 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4591 }; 4592 4593 // For an instruction to be added into Worklist above, all its users inside 4594 // the loop should also be in Worklist. However, this condition cannot be 4595 // true for phi nodes that form a cyclic dependence. We must process phi 4596 // nodes separately. An induction variable will remain uniform if all users 4597 // of the induction variable and induction variable update remain uniform. 4598 // The code below handles both pointer and non-pointer induction variables. 4599 for (auto &Induction : *Legal->getInductionVars()) { 4600 auto *Ind = Induction.first; 4601 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4602 4603 // Determine if all users of the induction variable are uniform after 4604 // vectorization. 4605 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4606 auto *I = cast<Instruction>(U); 4607 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4608 isVectorizedMemAccessUse(I, Ind); 4609 }); 4610 if (!UniformInd) 4611 continue; 4612 4613 // Determine if all users of the induction variable update instruction are 4614 // uniform after vectorization. 4615 auto UniformIndUpdate = 4616 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4617 auto *I = cast<Instruction>(U); 4618 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4619 isVectorizedMemAccessUse(I, IndUpdate); 4620 }); 4621 if (!UniformIndUpdate) 4622 continue; 4623 4624 // The induction variable and its update instruction will remain uniform. 4625 Worklist.insert(Ind); 4626 Worklist.insert(IndUpdate); 4627 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4628 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4629 << "\n"); 4630 } 4631 4632 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4633 } 4634 4635 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4636 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4637 // TODO: It may by useful to do since it's still likely to be dynamically 4638 // uniform if the target can skip. 4639 LLVM_DEBUG( 4640 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4641 4642 ORE->emit( 4643 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4644 << "runtime pointer checks needed. Not enabled for divergent target"); 4645 4646 return None; 4647 } 4648 4649 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4650 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4651 return computeFeasibleMaxVF(OptForSize, TC); 4652 4653 if (Legal->getRuntimePointerChecking()->Need) { 4654 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4655 << "runtime pointer checks needed. Enable vectorization of this " 4656 "loop with '#pragma clang loop vectorize(enable)' when " 4657 "compiling with -Os/-Oz"); 4658 LLVM_DEBUG( 4659 dbgs() 4660 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4661 return None; 4662 } 4663 4664 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4665 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4666 << "runtime SCEV checks needed. Enable vectorization of this " 4667 "loop with '#pragma clang loop vectorize(enable)' when " 4668 "compiling with -Os/-Oz"); 4669 LLVM_DEBUG( 4670 dbgs() 4671 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4672 return None; 4673 } 4674 4675 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4676 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4677 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4678 << "runtime stride == 1 checks needed. Enable vectorization of " 4679 "this loop with '#pragma clang loop vectorize(enable)' when " 4680 "compiling with -Os/-Oz"); 4681 LLVM_DEBUG( 4682 dbgs() 4683 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4684 return None; 4685 } 4686 4687 // If we optimize the program for size, avoid creating the tail loop. 4688 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4689 4690 if (TC == 1) { 4691 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4692 << "loop trip count is one, irrelevant for vectorization"); 4693 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4694 return None; 4695 } 4696 4697 // Record that scalar epilogue is not allowed. 4698 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4699 4700 IsScalarEpilogueAllowed = !OptForSize; 4701 4702 // We don't create an epilogue when optimizing for size. 4703 // Invalidate interleave groups that require an epilogue if we can't mask 4704 // the interleave-group. 4705 if (!useMaskedInterleavedAccesses(TTI)) 4706 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4707 4708 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4709 4710 if (TC > 0 && TC % MaxVF == 0) { 4711 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4712 return MaxVF; 4713 } 4714 4715 // If we don't know the precise trip count, or if the trip count that we 4716 // found modulo the vectorization factor is not zero, try to fold the tail 4717 // by masking. 4718 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4719 if (Legal->canFoldTailByMasking()) { 4720 FoldTailByMasking = true; 4721 return MaxVF; 4722 } 4723 4724 if (TC == 0) { 4725 ORE->emit( 4726 createMissedAnalysis("UnknownLoopCountComplexCFG") 4727 << "unable to calculate the loop count due to complex control flow"); 4728 return None; 4729 } 4730 4731 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4732 << "cannot optimize for size and vectorize at the same time. " 4733 "Enable vectorization of this loop with '#pragma clang loop " 4734 "vectorize(enable)' when compiling with -Os/-Oz"); 4735 return None; 4736 } 4737 4738 unsigned 4739 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4740 unsigned ConstTripCount) { 4741 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4742 unsigned SmallestType, WidestType; 4743 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4744 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4745 4746 // Get the maximum safe dependence distance in bits computed by LAA. 4747 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4748 // the memory accesses that is most restrictive (involved in the smallest 4749 // dependence distance). 4750 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4751 4752 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4753 4754 unsigned MaxVectorSize = WidestRegister / WidestType; 4755 4756 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4757 << " / " << WidestType << " bits.\n"); 4758 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4759 << WidestRegister << " bits.\n"); 4760 4761 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4762 " into one vector!"); 4763 if (MaxVectorSize == 0) { 4764 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4765 MaxVectorSize = 1; 4766 return MaxVectorSize; 4767 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4768 isPowerOf2_32(ConstTripCount)) { 4769 // We need to clamp the VF to be the ConstTripCount. There is no point in 4770 // choosing a higher viable VF as done in the loop below. 4771 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4772 << ConstTripCount << "\n"); 4773 MaxVectorSize = ConstTripCount; 4774 return MaxVectorSize; 4775 } 4776 4777 unsigned MaxVF = MaxVectorSize; 4778 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4779 (MaximizeBandwidth && !OptForSize)) { 4780 // Collect all viable vectorization factors larger than the default MaxVF 4781 // (i.e. MaxVectorSize). 4782 SmallVector<unsigned, 8> VFs; 4783 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4784 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4785 VFs.push_back(VS); 4786 4787 // For each VF calculate its register usage. 4788 auto RUs = calculateRegisterUsage(VFs); 4789 4790 // Select the largest VF which doesn't require more registers than existing 4791 // ones. 4792 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4793 for (int i = RUs.size() - 1; i >= 0; --i) { 4794 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4795 MaxVF = VFs[i]; 4796 break; 4797 } 4798 } 4799 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4800 if (MaxVF < MinVF) { 4801 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4802 << ") with target's minimum: " << MinVF << '\n'); 4803 MaxVF = MinVF; 4804 } 4805 } 4806 } 4807 return MaxVF; 4808 } 4809 4810 VectorizationFactor 4811 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4812 float Cost = expectedCost(1).first; 4813 const float ScalarCost = Cost; 4814 unsigned Width = 1; 4815 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4816 4817 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4818 if (ForceVectorization && MaxVF > 1) { 4819 // Ignore scalar width, because the user explicitly wants vectorization. 4820 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4821 // evaluation. 4822 Cost = std::numeric_limits<float>::max(); 4823 } 4824 4825 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4826 // Notice that the vector loop needs to be executed less times, so 4827 // we need to divide the cost of the vector loops by the width of 4828 // the vector elements. 4829 VectorizationCostTy C = expectedCost(i); 4830 float VectorCost = C.first / (float)i; 4831 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4832 << " costs: " << (int)VectorCost << ".\n"); 4833 if (!C.second && !ForceVectorization) { 4834 LLVM_DEBUG( 4835 dbgs() << "LV: Not considering vector loop of width " << i 4836 << " because it will not generate any vector instructions.\n"); 4837 continue; 4838 } 4839 if (VectorCost < Cost) { 4840 Cost = VectorCost; 4841 Width = i; 4842 } 4843 } 4844 4845 if (!EnableCondStoresVectorization && NumPredStores) { 4846 ORE->emit(createMissedAnalysis("ConditionalStore") 4847 << "store that is conditionally executed prevents vectorization"); 4848 LLVM_DEBUG( 4849 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4850 Width = 1; 4851 Cost = ScalarCost; 4852 } 4853 4854 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4855 << "LV: Vectorization seems to be not beneficial, " 4856 << "but was forced by a user.\n"); 4857 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4858 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4859 return Factor; 4860 } 4861 4862 std::pair<unsigned, unsigned> 4863 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4864 unsigned MinWidth = -1U; 4865 unsigned MaxWidth = 8; 4866 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4867 4868 // For each block. 4869 for (BasicBlock *BB : TheLoop->blocks()) { 4870 // For each instruction in the loop. 4871 for (Instruction &I : BB->instructionsWithoutDebug()) { 4872 Type *T = I.getType(); 4873 4874 // Skip ignored values. 4875 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4876 continue; 4877 4878 // Only examine Loads, Stores and PHINodes. 4879 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4880 continue; 4881 4882 // Examine PHI nodes that are reduction variables. Update the type to 4883 // account for the recurrence type. 4884 if (auto *PN = dyn_cast<PHINode>(&I)) { 4885 if (!Legal->isReductionVariable(PN)) 4886 continue; 4887 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4888 T = RdxDesc.getRecurrenceType(); 4889 } 4890 4891 // Examine the stored values. 4892 if (auto *ST = dyn_cast<StoreInst>(&I)) 4893 T = ST->getValueOperand()->getType(); 4894 4895 // Ignore loaded pointer types and stored pointer types that are not 4896 // vectorizable. 4897 // 4898 // FIXME: The check here attempts to predict whether a load or store will 4899 // be vectorized. We only know this for certain after a VF has 4900 // been selected. Here, we assume that if an access can be 4901 // vectorized, it will be. We should also look at extending this 4902 // optimization to non-pointer types. 4903 // 4904 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4905 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4906 continue; 4907 4908 MinWidth = std::min(MinWidth, 4909 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4910 MaxWidth = std::max(MaxWidth, 4911 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4912 } 4913 } 4914 4915 return {MinWidth, MaxWidth}; 4916 } 4917 4918 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4919 unsigned VF, 4920 unsigned LoopCost) { 4921 // -- The interleave heuristics -- 4922 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4923 // There are many micro-architectural considerations that we can't predict 4924 // at this level. For example, frontend pressure (on decode or fetch) due to 4925 // code size, or the number and capabilities of the execution ports. 4926 // 4927 // We use the following heuristics to select the interleave count: 4928 // 1. If the code has reductions, then we interleave to break the cross 4929 // iteration dependency. 4930 // 2. If the loop is really small, then we interleave to reduce the loop 4931 // overhead. 4932 // 3. We don't interleave if we think that we will spill registers to memory 4933 // due to the increased register pressure. 4934 4935 // When we optimize for size, we don't interleave. 4936 if (OptForSize) 4937 return 1; 4938 4939 // We used the distance for the interleave count. 4940 if (Legal->getMaxSafeDepDistBytes() != -1U) 4941 return 1; 4942 4943 // Do not interleave loops with a relatively small trip count. 4944 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4945 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4946 return 1; 4947 4948 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4949 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4950 << " registers\n"); 4951 4952 if (VF == 1) { 4953 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4954 TargetNumRegisters = ForceTargetNumScalarRegs; 4955 } else { 4956 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4957 TargetNumRegisters = ForceTargetNumVectorRegs; 4958 } 4959 4960 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4961 // We divide by these constants so assume that we have at least one 4962 // instruction that uses at least one register. 4963 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4964 4965 // We calculate the interleave count using the following formula. 4966 // Subtract the number of loop invariants from the number of available 4967 // registers. These registers are used by all of the interleaved instances. 4968 // Next, divide the remaining registers by the number of registers that is 4969 // required by the loop, in order to estimate how many parallel instances 4970 // fit without causing spills. All of this is rounded down if necessary to be 4971 // a power of two. We want power of two interleave count to simplify any 4972 // addressing operations or alignment considerations. 4973 // We also want power of two interleave counts to ensure that the induction 4974 // variable of the vector loop wraps to zero, when tail is folded by masking; 4975 // this currently happens when OptForSize, in which case IC is set to 1 above. 4976 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4977 R.MaxLocalUsers); 4978 4979 // Don't count the induction variable as interleaved. 4980 if (EnableIndVarRegisterHeur) 4981 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4982 std::max(1U, (R.MaxLocalUsers - 1))); 4983 4984 // Clamp the interleave ranges to reasonable counts. 4985 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4986 4987 // Check if the user has overridden the max. 4988 if (VF == 1) { 4989 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4990 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4991 } else { 4992 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4993 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4994 } 4995 4996 // If we did not calculate the cost for VF (because the user selected the VF) 4997 // then we calculate the cost of VF here. 4998 if (LoopCost == 0) 4999 LoopCost = expectedCost(VF).first; 5000 5001 // Clamp the calculated IC to be between the 1 and the max interleave count 5002 // that the target allows. 5003 if (IC > MaxInterleaveCount) 5004 IC = MaxInterleaveCount; 5005 else if (IC < 1) 5006 IC = 1; 5007 5008 // Interleave if we vectorized this loop and there is a reduction that could 5009 // benefit from interleaving. 5010 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5011 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5012 return IC; 5013 } 5014 5015 // Note that if we've already vectorized the loop we will have done the 5016 // runtime check and so interleaving won't require further checks. 5017 bool InterleavingRequiresRuntimePointerCheck = 5018 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5019 5020 // We want to interleave small loops in order to reduce the loop overhead and 5021 // potentially expose ILP opportunities. 5022 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5023 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5024 // We assume that the cost overhead is 1 and we use the cost model 5025 // to estimate the cost of the loop and interleave until the cost of the 5026 // loop overhead is about 5% of the cost of the loop. 5027 unsigned SmallIC = 5028 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5029 5030 // Interleave until store/load ports (estimated by max interleave count) are 5031 // saturated. 5032 unsigned NumStores = Legal->getNumStores(); 5033 unsigned NumLoads = Legal->getNumLoads(); 5034 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5035 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5036 5037 // If we have a scalar reduction (vector reductions are already dealt with 5038 // by this point), we can increase the critical path length if the loop 5039 // we're interleaving is inside another loop. Limit, by default to 2, so the 5040 // critical path only gets increased by one reduction operation. 5041 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5042 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5043 SmallIC = std::min(SmallIC, F); 5044 StoresIC = std::min(StoresIC, F); 5045 LoadsIC = std::min(LoadsIC, F); 5046 } 5047 5048 if (EnableLoadStoreRuntimeInterleave && 5049 std::max(StoresIC, LoadsIC) > SmallIC) { 5050 LLVM_DEBUG( 5051 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5052 return std::max(StoresIC, LoadsIC); 5053 } 5054 5055 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5056 return SmallIC; 5057 } 5058 5059 // Interleave if this is a large loop (small loops are already dealt with by 5060 // this point) that could benefit from interleaving. 5061 bool HasReductions = !Legal->getReductionVars()->empty(); 5062 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5063 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5064 return IC; 5065 } 5066 5067 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5068 return 1; 5069 } 5070 5071 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5072 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5073 // This function calculates the register usage by measuring the highest number 5074 // of values that are alive at a single location. Obviously, this is a very 5075 // rough estimation. We scan the loop in a topological order in order and 5076 // assign a number to each instruction. We use RPO to ensure that defs are 5077 // met before their users. We assume that each instruction that has in-loop 5078 // users starts an interval. We record every time that an in-loop value is 5079 // used, so we have a list of the first and last occurrences of each 5080 // instruction. Next, we transpose this data structure into a multi map that 5081 // holds the list of intervals that *end* at a specific location. This multi 5082 // map allows us to perform a linear search. We scan the instructions linearly 5083 // and record each time that a new interval starts, by placing it in a set. 5084 // If we find this value in the multi-map then we remove it from the set. 5085 // The max register usage is the maximum size of the set. 5086 // We also search for instructions that are defined outside the loop, but are 5087 // used inside the loop. We need this number separately from the max-interval 5088 // usage number because when we unroll, loop-invariant values do not take 5089 // more register. 5090 LoopBlocksDFS DFS(TheLoop); 5091 DFS.perform(LI); 5092 5093 RegisterUsage RU; 5094 5095 // Each 'key' in the map opens a new interval. The values 5096 // of the map are the index of the 'last seen' usage of the 5097 // instruction that is the key. 5098 using IntervalMap = DenseMap<Instruction *, unsigned>; 5099 5100 // Maps instruction to its index. 5101 SmallVector<Instruction *, 64> IdxToInstr; 5102 // Marks the end of each interval. 5103 IntervalMap EndPoint; 5104 // Saves the list of instruction indices that are used in the loop. 5105 SmallPtrSet<Instruction *, 8> Ends; 5106 // Saves the list of values that are used in the loop but are 5107 // defined outside the loop, such as arguments and constants. 5108 SmallPtrSet<Value *, 8> LoopInvariants; 5109 5110 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5111 for (Instruction &I : BB->instructionsWithoutDebug()) { 5112 IdxToInstr.push_back(&I); 5113 5114 // Save the end location of each USE. 5115 for (Value *U : I.operands()) { 5116 auto *Instr = dyn_cast<Instruction>(U); 5117 5118 // Ignore non-instruction values such as arguments, constants, etc. 5119 if (!Instr) 5120 continue; 5121 5122 // If this instruction is outside the loop then record it and continue. 5123 if (!TheLoop->contains(Instr)) { 5124 LoopInvariants.insert(Instr); 5125 continue; 5126 } 5127 5128 // Overwrite previous end points. 5129 EndPoint[Instr] = IdxToInstr.size(); 5130 Ends.insert(Instr); 5131 } 5132 } 5133 } 5134 5135 // Saves the list of intervals that end with the index in 'key'. 5136 using InstrList = SmallVector<Instruction *, 2>; 5137 DenseMap<unsigned, InstrList> TransposeEnds; 5138 5139 // Transpose the EndPoints to a list of values that end at each index. 5140 for (auto &Interval : EndPoint) 5141 TransposeEnds[Interval.second].push_back(Interval.first); 5142 5143 SmallPtrSet<Instruction *, 8> OpenIntervals; 5144 5145 // Get the size of the widest register. 5146 unsigned MaxSafeDepDist = -1U; 5147 if (Legal->getMaxSafeDepDistBytes() != -1U) 5148 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5149 unsigned WidestRegister = 5150 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5151 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5152 5153 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5154 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5155 5156 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5157 5158 // A lambda that gets the register usage for the given type and VF. 5159 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5160 if (Ty->isTokenTy()) 5161 return 0U; 5162 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5163 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5164 }; 5165 5166 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5167 Instruction *I = IdxToInstr[i]; 5168 5169 // Remove all of the instructions that end at this location. 5170 InstrList &List = TransposeEnds[i]; 5171 for (Instruction *ToRemove : List) 5172 OpenIntervals.erase(ToRemove); 5173 5174 // Ignore instructions that are never used within the loop. 5175 if (Ends.find(I) == Ends.end()) 5176 continue; 5177 5178 // Skip ignored values. 5179 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5180 continue; 5181 5182 // For each VF find the maximum usage of registers. 5183 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5184 if (VFs[j] == 1) { 5185 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5186 continue; 5187 } 5188 collectUniformsAndScalars(VFs[j]); 5189 // Count the number of live intervals. 5190 unsigned RegUsage = 0; 5191 for (auto Inst : OpenIntervals) { 5192 // Skip ignored values for VF > 1. 5193 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5194 isScalarAfterVectorization(Inst, VFs[j])) 5195 continue; 5196 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5197 } 5198 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5199 } 5200 5201 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5202 << OpenIntervals.size() << '\n'); 5203 5204 // Add the current instruction to the list of open intervals. 5205 OpenIntervals.insert(I); 5206 } 5207 5208 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5209 unsigned Invariant = 0; 5210 if (VFs[i] == 1) 5211 Invariant = LoopInvariants.size(); 5212 else { 5213 for (auto Inst : LoopInvariants) 5214 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5215 } 5216 5217 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5218 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5219 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5220 << '\n'); 5221 5222 RU.LoopInvariantRegs = Invariant; 5223 RU.MaxLocalUsers = MaxUsages[i]; 5224 RUs[i] = RU; 5225 } 5226 5227 return RUs; 5228 } 5229 5230 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5231 // TODO: Cost model for emulated masked load/store is completely 5232 // broken. This hack guides the cost model to use an artificially 5233 // high enough value to practically disable vectorization with such 5234 // operations, except where previously deployed legality hack allowed 5235 // using very low cost values. This is to avoid regressions coming simply 5236 // from moving "masked load/store" check from legality to cost model. 5237 // Masked Load/Gather emulation was previously never allowed. 5238 // Limited number of Masked Store/Scatter emulation was allowed. 5239 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5240 return isa<LoadInst>(I) || 5241 (isa<StoreInst>(I) && 5242 NumPredStores > NumberOfStoresToPredicate); 5243 } 5244 5245 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5246 // If we aren't vectorizing the loop, or if we've already collected the 5247 // instructions to scalarize, there's nothing to do. Collection may already 5248 // have occurred if we have a user-selected VF and are now computing the 5249 // expected cost for interleaving. 5250 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5251 return; 5252 5253 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5254 // not profitable to scalarize any instructions, the presence of VF in the 5255 // map will indicate that we've analyzed it already. 5256 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5257 5258 // Find all the instructions that are scalar with predication in the loop and 5259 // determine if it would be better to not if-convert the blocks they are in. 5260 // If so, we also record the instructions to scalarize. 5261 for (BasicBlock *BB : TheLoop->blocks()) { 5262 if (!blockNeedsPredication(BB)) 5263 continue; 5264 for (Instruction &I : *BB) 5265 if (isScalarWithPredication(&I)) { 5266 ScalarCostsTy ScalarCosts; 5267 // Do not apply discount logic if hacked cost is needed 5268 // for emulated masked memrefs. 5269 if (!useEmulatedMaskMemRefHack(&I) && 5270 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5271 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5272 // Remember that BB will remain after vectorization. 5273 PredicatedBBsAfterVectorization.insert(BB); 5274 } 5275 } 5276 } 5277 5278 int LoopVectorizationCostModel::computePredInstDiscount( 5279 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5280 unsigned VF) { 5281 assert(!isUniformAfterVectorization(PredInst, VF) && 5282 "Instruction marked uniform-after-vectorization will be predicated"); 5283 5284 // Initialize the discount to zero, meaning that the scalar version and the 5285 // vector version cost the same. 5286 int Discount = 0; 5287 5288 // Holds instructions to analyze. The instructions we visit are mapped in 5289 // ScalarCosts. Those instructions are the ones that would be scalarized if 5290 // we find that the scalar version costs less. 5291 SmallVector<Instruction *, 8> Worklist; 5292 5293 // Returns true if the given instruction can be scalarized. 5294 auto canBeScalarized = [&](Instruction *I) -> bool { 5295 // We only attempt to scalarize instructions forming a single-use chain 5296 // from the original predicated block that would otherwise be vectorized. 5297 // Although not strictly necessary, we give up on instructions we know will 5298 // already be scalar to avoid traversing chains that are unlikely to be 5299 // beneficial. 5300 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5301 isScalarAfterVectorization(I, VF)) 5302 return false; 5303 5304 // If the instruction is scalar with predication, it will be analyzed 5305 // separately. We ignore it within the context of PredInst. 5306 if (isScalarWithPredication(I)) 5307 return false; 5308 5309 // If any of the instruction's operands are uniform after vectorization, 5310 // the instruction cannot be scalarized. This prevents, for example, a 5311 // masked load from being scalarized. 5312 // 5313 // We assume we will only emit a value for lane zero of an instruction 5314 // marked uniform after vectorization, rather than VF identical values. 5315 // Thus, if we scalarize an instruction that uses a uniform, we would 5316 // create uses of values corresponding to the lanes we aren't emitting code 5317 // for. This behavior can be changed by allowing getScalarValue to clone 5318 // the lane zero values for uniforms rather than asserting. 5319 for (Use &U : I->operands()) 5320 if (auto *J = dyn_cast<Instruction>(U.get())) 5321 if (isUniformAfterVectorization(J, VF)) 5322 return false; 5323 5324 // Otherwise, we can scalarize the instruction. 5325 return true; 5326 }; 5327 5328 // Returns true if an operand that cannot be scalarized must be extracted 5329 // from a vector. We will account for this scalarization overhead below. Note 5330 // that the non-void predicated instructions are placed in their own blocks, 5331 // and their return values are inserted into vectors. Thus, an extract would 5332 // still be required. 5333 auto needsExtract = [&](Instruction *I) -> bool { 5334 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5335 }; 5336 5337 // Compute the expected cost discount from scalarizing the entire expression 5338 // feeding the predicated instruction. We currently only consider expressions 5339 // that are single-use instruction chains. 5340 Worklist.push_back(PredInst); 5341 while (!Worklist.empty()) { 5342 Instruction *I = Worklist.pop_back_val(); 5343 5344 // If we've already analyzed the instruction, there's nothing to do. 5345 if (ScalarCosts.find(I) != ScalarCosts.end()) 5346 continue; 5347 5348 // Compute the cost of the vector instruction. Note that this cost already 5349 // includes the scalarization overhead of the predicated instruction. 5350 unsigned VectorCost = getInstructionCost(I, VF).first; 5351 5352 // Compute the cost of the scalarized instruction. This cost is the cost of 5353 // the instruction as if it wasn't if-converted and instead remained in the 5354 // predicated block. We will scale this cost by block probability after 5355 // computing the scalarization overhead. 5356 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5357 5358 // Compute the scalarization overhead of needed insertelement instructions 5359 // and phi nodes. 5360 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5361 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5362 true, false); 5363 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5364 } 5365 5366 // Compute the scalarization overhead of needed extractelement 5367 // instructions. For each of the instruction's operands, if the operand can 5368 // be scalarized, add it to the worklist; otherwise, account for the 5369 // overhead. 5370 for (Use &U : I->operands()) 5371 if (auto *J = dyn_cast<Instruction>(U.get())) { 5372 assert(VectorType::isValidElementType(J->getType()) && 5373 "Instruction has non-scalar type"); 5374 if (canBeScalarized(J)) 5375 Worklist.push_back(J); 5376 else if (needsExtract(J)) 5377 ScalarCost += TTI.getScalarizationOverhead( 5378 ToVectorTy(J->getType(),VF), false, true); 5379 } 5380 5381 // Scale the total scalar cost by block probability. 5382 ScalarCost /= getReciprocalPredBlockProb(); 5383 5384 // Compute the discount. A non-negative discount means the vector version 5385 // of the instruction costs more, and scalarizing would be beneficial. 5386 Discount += VectorCost - ScalarCost; 5387 ScalarCosts[I] = ScalarCost; 5388 } 5389 5390 return Discount; 5391 } 5392 5393 LoopVectorizationCostModel::VectorizationCostTy 5394 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5395 VectorizationCostTy Cost; 5396 5397 // For each block. 5398 for (BasicBlock *BB : TheLoop->blocks()) { 5399 VectorizationCostTy BlockCost; 5400 5401 // For each instruction in the old loop. 5402 for (Instruction &I : BB->instructionsWithoutDebug()) { 5403 // Skip ignored values. 5404 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5405 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5406 continue; 5407 5408 VectorizationCostTy C = getInstructionCost(&I, VF); 5409 5410 // Check if we should override the cost. 5411 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5412 C.first = ForceTargetInstructionCost; 5413 5414 BlockCost.first += C.first; 5415 BlockCost.second |= C.second; 5416 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5417 << " for VF " << VF << " For instruction: " << I 5418 << '\n'); 5419 } 5420 5421 // If we are vectorizing a predicated block, it will have been 5422 // if-converted. This means that the block's instructions (aside from 5423 // stores and instructions that may divide by zero) will now be 5424 // unconditionally executed. For the scalar case, we may not always execute 5425 // the predicated block. Thus, scale the block's cost by the probability of 5426 // executing it. 5427 if (VF == 1 && blockNeedsPredication(BB)) 5428 BlockCost.first /= getReciprocalPredBlockProb(); 5429 5430 Cost.first += BlockCost.first; 5431 Cost.second |= BlockCost.second; 5432 } 5433 5434 return Cost; 5435 } 5436 5437 /// Gets Address Access SCEV after verifying that the access pattern 5438 /// is loop invariant except the induction variable dependence. 5439 /// 5440 /// This SCEV can be sent to the Target in order to estimate the address 5441 /// calculation cost. 5442 static const SCEV *getAddressAccessSCEV( 5443 Value *Ptr, 5444 LoopVectorizationLegality *Legal, 5445 PredicatedScalarEvolution &PSE, 5446 const Loop *TheLoop) { 5447 5448 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5449 if (!Gep) 5450 return nullptr; 5451 5452 // We are looking for a gep with all loop invariant indices except for one 5453 // which should be an induction variable. 5454 auto SE = PSE.getSE(); 5455 unsigned NumOperands = Gep->getNumOperands(); 5456 for (unsigned i = 1; i < NumOperands; ++i) { 5457 Value *Opd = Gep->getOperand(i); 5458 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5459 !Legal->isInductionVariable(Opd)) 5460 return nullptr; 5461 } 5462 5463 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5464 return PSE.getSCEV(Ptr); 5465 } 5466 5467 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5468 return Legal->hasStride(I->getOperand(0)) || 5469 Legal->hasStride(I->getOperand(1)); 5470 } 5471 5472 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5473 unsigned VF) { 5474 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5475 Type *ValTy = getMemInstValueType(I); 5476 auto SE = PSE.getSE(); 5477 5478 unsigned Alignment = getLoadStoreAlignment(I); 5479 unsigned AS = getLoadStoreAddressSpace(I); 5480 Value *Ptr = getLoadStorePointerOperand(I); 5481 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5482 5483 // Figure out whether the access is strided and get the stride value 5484 // if it's known in compile time 5485 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5486 5487 // Get the cost of the scalar memory instruction and address computation. 5488 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5489 5490 // Don't pass *I here, since it is scalar but will actually be part of a 5491 // vectorized loop where the user of it is a vectorized instruction. 5492 Cost += VF * 5493 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5494 AS); 5495 5496 // Get the overhead of the extractelement and insertelement instructions 5497 // we might create due to scalarization. 5498 Cost += getScalarizationOverhead(I, VF, TTI); 5499 5500 // If we have a predicated store, it may not be executed for each vector 5501 // lane. Scale the cost by the probability of executing the predicated 5502 // block. 5503 if (isPredicatedInst(I)) { 5504 Cost /= getReciprocalPredBlockProb(); 5505 5506 if (useEmulatedMaskMemRefHack(I)) 5507 // Artificially setting to a high enough value to practically disable 5508 // vectorization with such operations. 5509 Cost = 3000000; 5510 } 5511 5512 return Cost; 5513 } 5514 5515 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5516 unsigned VF) { 5517 Type *ValTy = getMemInstValueType(I); 5518 Type *VectorTy = ToVectorTy(ValTy, VF); 5519 unsigned Alignment = getLoadStoreAlignment(I); 5520 Value *Ptr = getLoadStorePointerOperand(I); 5521 unsigned AS = getLoadStoreAddressSpace(I); 5522 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5523 5524 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5525 "Stride should be 1 or -1 for consecutive memory access"); 5526 unsigned Cost = 0; 5527 if (Legal->isMaskRequired(I)) 5528 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5529 else 5530 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5531 5532 bool Reverse = ConsecutiveStride < 0; 5533 if (Reverse) 5534 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5535 return Cost; 5536 } 5537 5538 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5539 unsigned VF) { 5540 Type *ValTy = getMemInstValueType(I); 5541 Type *VectorTy = ToVectorTy(ValTy, VF); 5542 unsigned Alignment = getLoadStoreAlignment(I); 5543 unsigned AS = getLoadStoreAddressSpace(I); 5544 if (isa<LoadInst>(I)) { 5545 return TTI.getAddressComputationCost(ValTy) + 5546 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5547 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5548 } 5549 StoreInst *SI = cast<StoreInst>(I); 5550 5551 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5552 return TTI.getAddressComputationCost(ValTy) + 5553 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5554 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5555 Instruction::ExtractElement, 5556 VectorTy, VF - 1)); 5557 } 5558 5559 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5560 unsigned VF) { 5561 Type *ValTy = getMemInstValueType(I); 5562 Type *VectorTy = ToVectorTy(ValTy, VF); 5563 unsigned Alignment = getLoadStoreAlignment(I); 5564 Value *Ptr = getLoadStorePointerOperand(I); 5565 5566 return TTI.getAddressComputationCost(VectorTy) + 5567 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5568 Legal->isMaskRequired(I), Alignment); 5569 } 5570 5571 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5572 unsigned VF) { 5573 Type *ValTy = getMemInstValueType(I); 5574 Type *VectorTy = ToVectorTy(ValTy, VF); 5575 unsigned AS = getLoadStoreAddressSpace(I); 5576 5577 auto Group = getInterleavedAccessGroup(I); 5578 assert(Group && "Fail to get an interleaved access group."); 5579 5580 unsigned InterleaveFactor = Group->getFactor(); 5581 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5582 5583 // Holds the indices of existing members in an interleaved load group. 5584 // An interleaved store group doesn't need this as it doesn't allow gaps. 5585 SmallVector<unsigned, 4> Indices; 5586 if (isa<LoadInst>(I)) { 5587 for (unsigned i = 0; i < InterleaveFactor; i++) 5588 if (Group->getMember(i)) 5589 Indices.push_back(i); 5590 } 5591 5592 // Calculate the cost of the whole interleaved group. 5593 bool UseMaskForGaps = 5594 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5595 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5596 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5597 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5598 5599 if (Group->isReverse()) { 5600 // TODO: Add support for reversed masked interleaved access. 5601 assert(!Legal->isMaskRequired(I) && 5602 "Reverse masked interleaved access not supported."); 5603 Cost += Group->getNumMembers() * 5604 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5605 } 5606 return Cost; 5607 } 5608 5609 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5610 unsigned VF) { 5611 // Calculate scalar cost only. Vectorization cost should be ready at this 5612 // moment. 5613 if (VF == 1) { 5614 Type *ValTy = getMemInstValueType(I); 5615 unsigned Alignment = getLoadStoreAlignment(I); 5616 unsigned AS = getLoadStoreAddressSpace(I); 5617 5618 return TTI.getAddressComputationCost(ValTy) + 5619 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5620 } 5621 return getWideningCost(I, VF); 5622 } 5623 5624 LoopVectorizationCostModel::VectorizationCostTy 5625 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5626 // If we know that this instruction will remain uniform, check the cost of 5627 // the scalar version. 5628 if (isUniformAfterVectorization(I, VF)) 5629 VF = 1; 5630 5631 if (VF > 1 && isProfitableToScalarize(I, VF)) 5632 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5633 5634 // Forced scalars do not have any scalarization overhead. 5635 auto ForcedScalar = ForcedScalars.find(VF); 5636 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5637 auto InstSet = ForcedScalar->second; 5638 if (InstSet.find(I) != InstSet.end()) 5639 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5640 } 5641 5642 Type *VectorTy; 5643 unsigned C = getInstructionCost(I, VF, VectorTy); 5644 5645 bool TypeNotScalarized = 5646 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5647 return VectorizationCostTy(C, TypeNotScalarized); 5648 } 5649 5650 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5651 if (VF == 1) 5652 return; 5653 NumPredStores = 0; 5654 for (BasicBlock *BB : TheLoop->blocks()) { 5655 // For each instruction in the old loop. 5656 for (Instruction &I : *BB) { 5657 Value *Ptr = getLoadStorePointerOperand(&I); 5658 if (!Ptr) 5659 continue; 5660 5661 // TODO: We should generate better code and update the cost model for 5662 // predicated uniform stores. Today they are treated as any other 5663 // predicated store (see added test cases in 5664 // invariant-store-vectorization.ll). 5665 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5666 NumPredStores++; 5667 5668 if (Legal->isUniform(Ptr) && 5669 // Conditional loads and stores should be scalarized and predicated. 5670 // isScalarWithPredication cannot be used here since masked 5671 // gather/scatters are not considered scalar with predication. 5672 !Legal->blockNeedsPredication(I.getParent())) { 5673 // TODO: Avoid replicating loads and stores instead of 5674 // relying on instcombine to remove them. 5675 // Load: Scalar load + broadcast 5676 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5677 unsigned Cost = getUniformMemOpCost(&I, VF); 5678 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5679 continue; 5680 } 5681 5682 // We assume that widening is the best solution when possible. 5683 if (memoryInstructionCanBeWidened(&I, VF)) { 5684 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5685 int ConsecutiveStride = 5686 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5687 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5688 "Expected consecutive stride."); 5689 InstWidening Decision = 5690 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5691 setWideningDecision(&I, VF, Decision, Cost); 5692 continue; 5693 } 5694 5695 // Choose between Interleaving, Gather/Scatter or Scalarization. 5696 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5697 unsigned NumAccesses = 1; 5698 if (isAccessInterleaved(&I)) { 5699 auto Group = getInterleavedAccessGroup(&I); 5700 assert(Group && "Fail to get an interleaved access group."); 5701 5702 // Make one decision for the whole group. 5703 if (getWideningDecision(&I, VF) != CM_Unknown) 5704 continue; 5705 5706 NumAccesses = Group->getNumMembers(); 5707 if (interleavedAccessCanBeWidened(&I, VF)) 5708 InterleaveCost = getInterleaveGroupCost(&I, VF); 5709 } 5710 5711 unsigned GatherScatterCost = 5712 isLegalGatherOrScatter(&I) 5713 ? getGatherScatterCost(&I, VF) * NumAccesses 5714 : std::numeric_limits<unsigned>::max(); 5715 5716 unsigned ScalarizationCost = 5717 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5718 5719 // Choose better solution for the current VF, 5720 // write down this decision and use it during vectorization. 5721 unsigned Cost; 5722 InstWidening Decision; 5723 if (InterleaveCost <= GatherScatterCost && 5724 InterleaveCost < ScalarizationCost) { 5725 Decision = CM_Interleave; 5726 Cost = InterleaveCost; 5727 } else if (GatherScatterCost < ScalarizationCost) { 5728 Decision = CM_GatherScatter; 5729 Cost = GatherScatterCost; 5730 } else { 5731 Decision = CM_Scalarize; 5732 Cost = ScalarizationCost; 5733 } 5734 // If the instructions belongs to an interleave group, the whole group 5735 // receives the same decision. The whole group receives the cost, but 5736 // the cost will actually be assigned to one instruction. 5737 if (auto Group = getInterleavedAccessGroup(&I)) 5738 setWideningDecision(Group, VF, Decision, Cost); 5739 else 5740 setWideningDecision(&I, VF, Decision, Cost); 5741 } 5742 } 5743 5744 // Make sure that any load of address and any other address computation 5745 // remains scalar unless there is gather/scatter support. This avoids 5746 // inevitable extracts into address registers, and also has the benefit of 5747 // activating LSR more, since that pass can't optimize vectorized 5748 // addresses. 5749 if (TTI.prefersVectorizedAddressing()) 5750 return; 5751 5752 // Start with all scalar pointer uses. 5753 SmallPtrSet<Instruction *, 8> AddrDefs; 5754 for (BasicBlock *BB : TheLoop->blocks()) 5755 for (Instruction &I : *BB) { 5756 Instruction *PtrDef = 5757 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5758 if (PtrDef && TheLoop->contains(PtrDef) && 5759 getWideningDecision(&I, VF) != CM_GatherScatter) 5760 AddrDefs.insert(PtrDef); 5761 } 5762 5763 // Add all instructions used to generate the addresses. 5764 SmallVector<Instruction *, 4> Worklist; 5765 for (auto *I : AddrDefs) 5766 Worklist.push_back(I); 5767 while (!Worklist.empty()) { 5768 Instruction *I = Worklist.pop_back_val(); 5769 for (auto &Op : I->operands()) 5770 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5771 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5772 AddrDefs.insert(InstOp).second) 5773 Worklist.push_back(InstOp); 5774 } 5775 5776 for (auto *I : AddrDefs) { 5777 if (isa<LoadInst>(I)) { 5778 // Setting the desired widening decision should ideally be handled in 5779 // by cost functions, but since this involves the task of finding out 5780 // if the loaded register is involved in an address computation, it is 5781 // instead changed here when we know this is the case. 5782 InstWidening Decision = getWideningDecision(I, VF); 5783 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5784 // Scalarize a widened load of address. 5785 setWideningDecision(I, VF, CM_Scalarize, 5786 (VF * getMemoryInstructionCost(I, 1))); 5787 else if (auto Group = getInterleavedAccessGroup(I)) { 5788 // Scalarize an interleave group of address loads. 5789 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5790 if (Instruction *Member = Group->getMember(I)) 5791 setWideningDecision(Member, VF, CM_Scalarize, 5792 (VF * getMemoryInstructionCost(Member, 1))); 5793 } 5794 } 5795 } else 5796 // Make sure I gets scalarized and a cost estimate without 5797 // scalarization overhead. 5798 ForcedScalars[VF].insert(I); 5799 } 5800 } 5801 5802 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5803 unsigned VF, 5804 Type *&VectorTy) { 5805 Type *RetTy = I->getType(); 5806 if (canTruncateToMinimalBitwidth(I, VF)) 5807 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5808 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5809 auto SE = PSE.getSE(); 5810 5811 // TODO: We need to estimate the cost of intrinsic calls. 5812 switch (I->getOpcode()) { 5813 case Instruction::GetElementPtr: 5814 // We mark this instruction as zero-cost because the cost of GEPs in 5815 // vectorized code depends on whether the corresponding memory instruction 5816 // is scalarized or not. Therefore, we handle GEPs with the memory 5817 // instruction cost. 5818 return 0; 5819 case Instruction::Br: { 5820 // In cases of scalarized and predicated instructions, there will be VF 5821 // predicated blocks in the vectorized loop. Each branch around these 5822 // blocks requires also an extract of its vector compare i1 element. 5823 bool ScalarPredicatedBB = false; 5824 BranchInst *BI = cast<BranchInst>(I); 5825 if (VF > 1 && BI->isConditional() && 5826 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5827 PredicatedBBsAfterVectorization.end() || 5828 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5829 PredicatedBBsAfterVectorization.end())) 5830 ScalarPredicatedBB = true; 5831 5832 if (ScalarPredicatedBB) { 5833 // Return cost for branches around scalarized and predicated blocks. 5834 Type *Vec_i1Ty = 5835 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5836 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5837 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5838 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5839 // The back-edge branch will remain, as will all scalar branches. 5840 return TTI.getCFInstrCost(Instruction::Br); 5841 else 5842 // This branch will be eliminated by if-conversion. 5843 return 0; 5844 // Note: We currently assume zero cost for an unconditional branch inside 5845 // a predicated block since it will become a fall-through, although we 5846 // may decide in the future to call TTI for all branches. 5847 } 5848 case Instruction::PHI: { 5849 auto *Phi = cast<PHINode>(I); 5850 5851 // First-order recurrences are replaced by vector shuffles inside the loop. 5852 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5853 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5854 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5855 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5856 5857 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5858 // converted into select instructions. We require N - 1 selects per phi 5859 // node, where N is the number of incoming values. 5860 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5861 return (Phi->getNumIncomingValues() - 1) * 5862 TTI.getCmpSelInstrCost( 5863 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5864 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5865 5866 return TTI.getCFInstrCost(Instruction::PHI); 5867 } 5868 case Instruction::UDiv: 5869 case Instruction::SDiv: 5870 case Instruction::URem: 5871 case Instruction::SRem: 5872 // If we have a predicated instruction, it may not be executed for each 5873 // vector lane. Get the scalarization cost and scale this amount by the 5874 // probability of executing the predicated block. If the instruction is not 5875 // predicated, we fall through to the next case. 5876 if (VF > 1 && isScalarWithPredication(I)) { 5877 unsigned Cost = 0; 5878 5879 // These instructions have a non-void type, so account for the phi nodes 5880 // that we will create. This cost is likely to be zero. The phi node 5881 // cost, if any, should be scaled by the block probability because it 5882 // models a copy at the end of each predicated block. 5883 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5884 5885 // The cost of the non-predicated instruction. 5886 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5887 5888 // The cost of insertelement and extractelement instructions needed for 5889 // scalarization. 5890 Cost += getScalarizationOverhead(I, VF, TTI); 5891 5892 // Scale the cost by the probability of executing the predicated blocks. 5893 // This assumes the predicated block for each vector lane is equally 5894 // likely. 5895 return Cost / getReciprocalPredBlockProb(); 5896 } 5897 LLVM_FALLTHROUGH; 5898 case Instruction::Add: 5899 case Instruction::FAdd: 5900 case Instruction::Sub: 5901 case Instruction::FSub: 5902 case Instruction::Mul: 5903 case Instruction::FMul: 5904 case Instruction::FDiv: 5905 case Instruction::FRem: 5906 case Instruction::Shl: 5907 case Instruction::LShr: 5908 case Instruction::AShr: 5909 case Instruction::And: 5910 case Instruction::Or: 5911 case Instruction::Xor: { 5912 // Since we will replace the stride by 1 the multiplication should go away. 5913 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5914 return 0; 5915 // Certain instructions can be cheaper to vectorize if they have a constant 5916 // second vector operand. One example of this are shifts on x86. 5917 Value *Op2 = I->getOperand(1); 5918 TargetTransformInfo::OperandValueProperties Op2VP; 5919 TargetTransformInfo::OperandValueKind Op2VK = 5920 TTI.getOperandInfo(Op2, Op2VP); 5921 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5922 Op2VK = TargetTransformInfo::OK_UniformValue; 5923 5924 SmallVector<const Value *, 4> Operands(I->operand_values()); 5925 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5926 return N * TTI.getArithmeticInstrCost( 5927 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5928 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5929 } 5930 case Instruction::Select: { 5931 SelectInst *SI = cast<SelectInst>(I); 5932 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5933 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5934 Type *CondTy = SI->getCondition()->getType(); 5935 if (!ScalarCond) 5936 CondTy = VectorType::get(CondTy, VF); 5937 5938 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5939 } 5940 case Instruction::ICmp: 5941 case Instruction::FCmp: { 5942 Type *ValTy = I->getOperand(0)->getType(); 5943 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5944 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5945 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5946 VectorTy = ToVectorTy(ValTy, VF); 5947 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5948 } 5949 case Instruction::Store: 5950 case Instruction::Load: { 5951 unsigned Width = VF; 5952 if (Width > 1) { 5953 InstWidening Decision = getWideningDecision(I, Width); 5954 assert(Decision != CM_Unknown && 5955 "CM decision should be taken at this point"); 5956 if (Decision == CM_Scalarize) 5957 Width = 1; 5958 } 5959 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5960 return getMemoryInstructionCost(I, VF); 5961 } 5962 case Instruction::ZExt: 5963 case Instruction::SExt: 5964 case Instruction::FPToUI: 5965 case Instruction::FPToSI: 5966 case Instruction::FPExt: 5967 case Instruction::PtrToInt: 5968 case Instruction::IntToPtr: 5969 case Instruction::SIToFP: 5970 case Instruction::UIToFP: 5971 case Instruction::Trunc: 5972 case Instruction::FPTrunc: 5973 case Instruction::BitCast: { 5974 // We optimize the truncation of induction variables having constant 5975 // integer steps. The cost of these truncations is the same as the scalar 5976 // operation. 5977 if (isOptimizableIVTruncate(I, VF)) { 5978 auto *Trunc = cast<TruncInst>(I); 5979 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5980 Trunc->getSrcTy(), Trunc); 5981 } 5982 5983 Type *SrcScalarTy = I->getOperand(0)->getType(); 5984 Type *SrcVecTy = 5985 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5986 if (canTruncateToMinimalBitwidth(I, VF)) { 5987 // This cast is going to be shrunk. This may remove the cast or it might 5988 // turn it into slightly different cast. For example, if MinBW == 16, 5989 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5990 // 5991 // Calculate the modified src and dest types. 5992 Type *MinVecTy = VectorTy; 5993 if (I->getOpcode() == Instruction::Trunc) { 5994 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5995 VectorTy = 5996 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5997 } else if (I->getOpcode() == Instruction::ZExt || 5998 I->getOpcode() == Instruction::SExt) { 5999 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6000 VectorTy = 6001 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6002 } 6003 } 6004 6005 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6006 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6007 } 6008 case Instruction::Call: { 6009 bool NeedToScalarize; 6010 CallInst *CI = cast<CallInst>(I); 6011 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6012 if (getVectorIntrinsicIDForCall(CI, TLI)) 6013 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6014 return CallCost; 6015 } 6016 default: 6017 // The cost of executing VF copies of the scalar instruction. This opcode 6018 // is unknown. Assume that it is the same as 'mul'. 6019 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6020 getScalarizationOverhead(I, VF, TTI); 6021 } // end of switch. 6022 } 6023 6024 char LoopVectorize::ID = 0; 6025 6026 static const char lv_name[] = "Loop Vectorization"; 6027 6028 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6029 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6030 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6031 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6032 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6033 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6034 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6035 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6036 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6037 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6038 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6039 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6040 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6041 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6042 6043 namespace llvm { 6044 6045 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6046 bool VectorizeOnlyWhenForced) { 6047 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6048 } 6049 6050 } // end namespace llvm 6051 6052 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6053 // Check if the pointer operand of a load or store instruction is 6054 // consecutive. 6055 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6056 return Legal->isConsecutivePtr(Ptr); 6057 return false; 6058 } 6059 6060 void LoopVectorizationCostModel::collectValuesToIgnore() { 6061 // Ignore ephemeral values. 6062 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6063 6064 // Ignore type-promoting instructions we identified during reduction 6065 // detection. 6066 for (auto &Reduction : *Legal->getReductionVars()) { 6067 RecurrenceDescriptor &RedDes = Reduction.second; 6068 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6069 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6070 } 6071 // Ignore type-casting instructions we identified during induction 6072 // detection. 6073 for (auto &Induction : *Legal->getInductionVars()) { 6074 InductionDescriptor &IndDes = Induction.second; 6075 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6076 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6077 } 6078 } 6079 6080 VectorizationFactor 6081 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6082 unsigned UserVF) { 6083 // Outer loop handling: They may require CFG and instruction level 6084 // transformations before even evaluating whether vectorization is profitable. 6085 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6086 // the vectorization pipeline. 6087 if (!OrigLoop->empty()) { 6088 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6089 // This won't be necessary when UserVF is not required in the VPlan-native 6090 // path. 6091 if (VPlanBuildStressTest && !UserVF) 6092 UserVF = 4; 6093 6094 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6095 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6096 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6097 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6098 buildVPlans(UserVF, UserVF); 6099 6100 // For VPlan build stress testing, we bail out after VPlan construction. 6101 if (VPlanBuildStressTest) 6102 return VectorizationFactor::Disabled(); 6103 6104 return {UserVF, 0}; 6105 } 6106 6107 LLVM_DEBUG( 6108 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6109 "VPlan-native path.\n"); 6110 return VectorizationFactor::Disabled(); 6111 } 6112 6113 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6114 unsigned UserVF) { 6115 assert(OrigLoop->empty() && "Inner loop expected."); 6116 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6117 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6118 return None; 6119 6120 // Invalidate interleave groups if all blocks of loop will be predicated. 6121 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6122 !useMaskedInterleavedAccesses(*TTI)) { 6123 LLVM_DEBUG( 6124 dbgs() 6125 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6126 "which requires masked-interleaved support.\n"); 6127 CM.InterleaveInfo.reset(); 6128 } 6129 6130 if (UserVF) { 6131 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6132 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6133 // Collect the instructions (and their associated costs) that will be more 6134 // profitable to scalarize. 6135 CM.selectUserVectorizationFactor(UserVF); 6136 buildVPlansWithVPRecipes(UserVF, UserVF); 6137 LLVM_DEBUG(printPlans(dbgs())); 6138 return {{UserVF, 0}}; 6139 } 6140 6141 unsigned MaxVF = MaybeMaxVF.getValue(); 6142 assert(MaxVF != 0 && "MaxVF is zero."); 6143 6144 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6145 // Collect Uniform and Scalar instructions after vectorization with VF. 6146 CM.collectUniformsAndScalars(VF); 6147 6148 // Collect the instructions (and their associated costs) that will be more 6149 // profitable to scalarize. 6150 if (VF > 1) 6151 CM.collectInstsToScalarize(VF); 6152 } 6153 6154 buildVPlansWithVPRecipes(1, MaxVF); 6155 LLVM_DEBUG(printPlans(dbgs())); 6156 if (MaxVF == 1) 6157 return VectorizationFactor::Disabled(); 6158 6159 // Select the optimal vectorization factor. 6160 return CM.selectVectorizationFactor(MaxVF); 6161 } 6162 6163 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6164 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6165 << '\n'); 6166 BestVF = VF; 6167 BestUF = UF; 6168 6169 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6170 return !Plan->hasVF(VF); 6171 }); 6172 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6173 } 6174 6175 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6176 DominatorTree *DT) { 6177 // Perform the actual loop transformation. 6178 6179 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6180 VPCallbackILV CallbackILV(ILV); 6181 6182 VPTransformState State{BestVF, BestUF, LI, 6183 DT, ILV.Builder, ILV.VectorLoopValueMap, 6184 &ILV, CallbackILV}; 6185 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6186 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6187 6188 //===------------------------------------------------===// 6189 // 6190 // Notice: any optimization or new instruction that go 6191 // into the code below should also be implemented in 6192 // the cost-model. 6193 // 6194 //===------------------------------------------------===// 6195 6196 // 2. Copy and widen instructions from the old loop into the new loop. 6197 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6198 VPlans.front()->execute(&State); 6199 6200 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6201 // predication, updating analyses. 6202 ILV.fixVectorizedLoop(); 6203 } 6204 6205 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6206 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6207 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6208 6209 // We create new control-flow for the vectorized loop, so the original 6210 // condition will be dead after vectorization if it's only used by the 6211 // branch. 6212 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6213 if (Cmp && Cmp->hasOneUse()) 6214 DeadInstructions.insert(Cmp); 6215 6216 // We create new "steps" for induction variable updates to which the original 6217 // induction variables map. An original update instruction will be dead if 6218 // all its users except the induction variable are dead. 6219 for (auto &Induction : *Legal->getInductionVars()) { 6220 PHINode *Ind = Induction.first; 6221 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6222 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6223 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6224 DeadInstructions.end(); 6225 })) 6226 DeadInstructions.insert(IndUpdate); 6227 6228 // We record as "Dead" also the type-casting instructions we had identified 6229 // during induction analysis. We don't need any handling for them in the 6230 // vectorized loop because we have proven that, under a proper runtime 6231 // test guarding the vectorized loop, the value of the phi, and the casted 6232 // value of the phi, are the same. The last instruction in this casting chain 6233 // will get its scalar/vector/widened def from the scalar/vector/widened def 6234 // of the respective phi node. Any other casts in the induction def-use chain 6235 // have no other uses outside the phi update chain, and will be ignored. 6236 InductionDescriptor &IndDes = Induction.second; 6237 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6238 DeadInstructions.insert(Casts.begin(), Casts.end()); 6239 } 6240 } 6241 6242 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6243 6244 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6245 6246 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6247 Instruction::BinaryOps BinOp) { 6248 // When unrolling and the VF is 1, we only need to add a simple scalar. 6249 Type *Ty = Val->getType(); 6250 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6251 6252 if (Ty->isFloatingPointTy()) { 6253 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6254 6255 // Floating point operations had to be 'fast' to enable the unrolling. 6256 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6257 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6258 } 6259 Constant *C = ConstantInt::get(Ty, StartIdx); 6260 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6261 } 6262 6263 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6264 SmallVector<Metadata *, 4> MDs; 6265 // Reserve first location for self reference to the LoopID metadata node. 6266 MDs.push_back(nullptr); 6267 bool IsUnrollMetadata = false; 6268 MDNode *LoopID = L->getLoopID(); 6269 if (LoopID) { 6270 // First find existing loop unrolling disable metadata. 6271 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6272 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6273 if (MD) { 6274 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6275 IsUnrollMetadata = 6276 S && S->getString().startswith("llvm.loop.unroll.disable"); 6277 } 6278 MDs.push_back(LoopID->getOperand(i)); 6279 } 6280 } 6281 6282 if (!IsUnrollMetadata) { 6283 // Add runtime unroll disable metadata. 6284 LLVMContext &Context = L->getHeader()->getContext(); 6285 SmallVector<Metadata *, 1> DisableOperands; 6286 DisableOperands.push_back( 6287 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6288 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6289 MDs.push_back(DisableNode); 6290 MDNode *NewLoopID = MDNode::get(Context, MDs); 6291 // Set operand 0 to refer to the loop id itself. 6292 NewLoopID->replaceOperandWith(0, NewLoopID); 6293 L->setLoopID(NewLoopID); 6294 } 6295 } 6296 6297 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6298 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6299 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6300 bool PredicateAtRangeStart = Predicate(Range.Start); 6301 6302 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6303 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6304 Range.End = TmpVF; 6305 break; 6306 } 6307 6308 return PredicateAtRangeStart; 6309 } 6310 6311 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6312 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6313 /// of VF's starting at a given VF and extending it as much as possible. Each 6314 /// vectorization decision can potentially shorten this sub-range during 6315 /// buildVPlan(). 6316 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6317 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6318 VFRange SubRange = {VF, MaxVF + 1}; 6319 VPlans.push_back(buildVPlan(SubRange)); 6320 VF = SubRange.End; 6321 } 6322 } 6323 6324 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6325 VPlanPtr &Plan) { 6326 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6327 6328 // Look for cached value. 6329 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6330 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6331 if (ECEntryIt != EdgeMaskCache.end()) 6332 return ECEntryIt->second; 6333 6334 VPValue *SrcMask = createBlockInMask(Src, Plan); 6335 6336 // The terminator has to be a branch inst! 6337 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6338 assert(BI && "Unexpected terminator found"); 6339 6340 if (!BI->isConditional()) 6341 return EdgeMaskCache[Edge] = SrcMask; 6342 6343 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6344 assert(EdgeMask && "No Edge Mask found for condition"); 6345 6346 if (BI->getSuccessor(0) != Dst) 6347 EdgeMask = Builder.createNot(EdgeMask); 6348 6349 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6350 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6351 6352 return EdgeMaskCache[Edge] = EdgeMask; 6353 } 6354 6355 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6356 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6357 6358 // Look for cached value. 6359 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6360 if (BCEntryIt != BlockMaskCache.end()) 6361 return BCEntryIt->second; 6362 6363 // All-one mask is modelled as no-mask following the convention for masked 6364 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6365 VPValue *BlockMask = nullptr; 6366 6367 if (OrigLoop->getHeader() == BB) { 6368 if (!CM.blockNeedsPredication(BB)) 6369 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6370 6371 // Introduce the early-exit compare IV <= BTC to form header block mask. 6372 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6373 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6374 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6375 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6376 return BlockMaskCache[BB] = BlockMask; 6377 } 6378 6379 // This is the block mask. We OR all incoming edges. 6380 for (auto *Predecessor : predecessors(BB)) { 6381 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6382 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6383 return BlockMaskCache[BB] = EdgeMask; 6384 6385 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6386 BlockMask = EdgeMask; 6387 continue; 6388 } 6389 6390 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6391 } 6392 6393 return BlockMaskCache[BB] = BlockMask; 6394 } 6395 6396 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6397 VFRange &Range, 6398 VPlanPtr &Plan) { 6399 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6400 if (!IG) 6401 return nullptr; 6402 6403 // Now check if IG is relevant for VF's in the given range. 6404 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6405 return [=](unsigned VF) -> bool { 6406 return (VF >= 2 && // Query is illegal for VF == 1 6407 CM.getWideningDecision(I, VF) == 6408 LoopVectorizationCostModel::CM_Interleave); 6409 }; 6410 }; 6411 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6412 return nullptr; 6413 6414 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6415 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6416 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6417 assert(I == IG->getInsertPos() && 6418 "Generating a recipe for an adjunct member of an interleave group"); 6419 6420 VPValue *Mask = nullptr; 6421 if (Legal->isMaskRequired(I)) 6422 Mask = createBlockInMask(I->getParent(), Plan); 6423 6424 return new VPInterleaveRecipe(IG, Mask); 6425 } 6426 6427 VPWidenMemoryInstructionRecipe * 6428 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6429 VPlanPtr &Plan) { 6430 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6431 return nullptr; 6432 6433 auto willWiden = [&](unsigned VF) -> bool { 6434 if (VF == 1) 6435 return false; 6436 if (CM.isScalarAfterVectorization(I, VF) || 6437 CM.isProfitableToScalarize(I, VF)) 6438 return false; 6439 LoopVectorizationCostModel::InstWidening Decision = 6440 CM.getWideningDecision(I, VF); 6441 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6442 "CM decision should be taken at this point."); 6443 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6444 "Interleave memory opportunity should be caught earlier."); 6445 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6446 }; 6447 6448 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6449 return nullptr; 6450 6451 VPValue *Mask = nullptr; 6452 if (Legal->isMaskRequired(I)) 6453 Mask = createBlockInMask(I->getParent(), Plan); 6454 6455 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6456 } 6457 6458 VPWidenIntOrFpInductionRecipe * 6459 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6460 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6461 // Check if this is an integer or fp induction. If so, build the recipe that 6462 // produces its scalar and vector values. 6463 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6464 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6465 II.getKind() == InductionDescriptor::IK_FpInduction) 6466 return new VPWidenIntOrFpInductionRecipe(Phi); 6467 6468 return nullptr; 6469 } 6470 6471 // Optimize the special case where the source is a constant integer 6472 // induction variable. Notice that we can only optimize the 'trunc' case 6473 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6474 // (c) other casts depend on pointer size. 6475 6476 // Determine whether \p K is a truncation based on an induction variable that 6477 // can be optimized. 6478 auto isOptimizableIVTruncate = 6479 [&](Instruction *K) -> std::function<bool(unsigned)> { 6480 return 6481 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6482 }; 6483 6484 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6485 isOptimizableIVTruncate(I), Range)) 6486 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6487 cast<TruncInst>(I)); 6488 return nullptr; 6489 } 6490 6491 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6492 PHINode *Phi = dyn_cast<PHINode>(I); 6493 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6494 return nullptr; 6495 6496 // We know that all PHIs in non-header blocks are converted into selects, so 6497 // we don't have to worry about the insertion order and we can just use the 6498 // builder. At this point we generate the predication tree. There may be 6499 // duplications since this is a simple recursive scan, but future 6500 // optimizations will clean it up. 6501 6502 SmallVector<VPValue *, 2> Masks; 6503 unsigned NumIncoming = Phi->getNumIncomingValues(); 6504 for (unsigned In = 0; In < NumIncoming; In++) { 6505 VPValue *EdgeMask = 6506 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6507 assert((EdgeMask || NumIncoming == 1) && 6508 "Multiple predecessors with one having a full mask"); 6509 if (EdgeMask) 6510 Masks.push_back(EdgeMask); 6511 } 6512 return new VPBlendRecipe(Phi, Masks); 6513 } 6514 6515 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6516 VFRange &Range) { 6517 6518 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6519 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6520 6521 if (IsPredicated) 6522 return false; 6523 6524 auto IsVectorizableOpcode = [](unsigned Opcode) { 6525 switch (Opcode) { 6526 case Instruction::Add: 6527 case Instruction::And: 6528 case Instruction::AShr: 6529 case Instruction::BitCast: 6530 case Instruction::Br: 6531 case Instruction::Call: 6532 case Instruction::FAdd: 6533 case Instruction::FCmp: 6534 case Instruction::FDiv: 6535 case Instruction::FMul: 6536 case Instruction::FPExt: 6537 case Instruction::FPToSI: 6538 case Instruction::FPToUI: 6539 case Instruction::FPTrunc: 6540 case Instruction::FRem: 6541 case Instruction::FSub: 6542 case Instruction::GetElementPtr: 6543 case Instruction::ICmp: 6544 case Instruction::IntToPtr: 6545 case Instruction::Load: 6546 case Instruction::LShr: 6547 case Instruction::Mul: 6548 case Instruction::Or: 6549 case Instruction::PHI: 6550 case Instruction::PtrToInt: 6551 case Instruction::SDiv: 6552 case Instruction::Select: 6553 case Instruction::SExt: 6554 case Instruction::Shl: 6555 case Instruction::SIToFP: 6556 case Instruction::SRem: 6557 case Instruction::Store: 6558 case Instruction::Sub: 6559 case Instruction::Trunc: 6560 case Instruction::UDiv: 6561 case Instruction::UIToFP: 6562 case Instruction::URem: 6563 case Instruction::Xor: 6564 case Instruction::ZExt: 6565 return true; 6566 } 6567 return false; 6568 }; 6569 6570 if (!IsVectorizableOpcode(I->getOpcode())) 6571 return false; 6572 6573 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6574 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6575 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6576 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6577 return false; 6578 } 6579 6580 auto willWiden = [&](unsigned VF) -> bool { 6581 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6582 CM.isProfitableToScalarize(I, VF))) 6583 return false; 6584 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6585 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6586 // The following case may be scalarized depending on the VF. 6587 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6588 // version of the instruction. 6589 // Is it beneficial to perform intrinsic call compared to lib call? 6590 bool NeedToScalarize; 6591 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6592 bool UseVectorIntrinsic = 6593 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6594 return UseVectorIntrinsic || !NeedToScalarize; 6595 } 6596 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6597 assert(CM.getWideningDecision(I, VF) == 6598 LoopVectorizationCostModel::CM_Scalarize && 6599 "Memory widening decisions should have been taken care by now"); 6600 return false; 6601 } 6602 return true; 6603 }; 6604 6605 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6606 return false; 6607 6608 // Success: widen this instruction. We optimize the common case where 6609 // consecutive instructions can be represented by a single recipe. 6610 if (!VPBB->empty()) { 6611 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6612 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6613 return true; 6614 } 6615 6616 VPBB->appendRecipe(new VPWidenRecipe(I)); 6617 return true; 6618 } 6619 6620 VPBasicBlock *VPRecipeBuilder::handleReplication( 6621 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6622 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6623 VPlanPtr &Plan) { 6624 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6625 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6626 Range); 6627 6628 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6629 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6630 6631 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6632 6633 // Find if I uses a predicated instruction. If so, it will use its scalar 6634 // value. Avoid hoisting the insert-element which packs the scalar value into 6635 // a vector value, as that happens iff all users use the vector value. 6636 for (auto &Op : I->operands()) 6637 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6638 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6639 PredInst2Recipe[PredInst]->setAlsoPack(false); 6640 6641 // Finalize the recipe for Instr, first if it is not predicated. 6642 if (!IsPredicated) { 6643 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6644 VPBB->appendRecipe(Recipe); 6645 return VPBB; 6646 } 6647 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6648 assert(VPBB->getSuccessors().empty() && 6649 "VPBB has successors when handling predicated replication."); 6650 // Record predicated instructions for above packing optimizations. 6651 PredInst2Recipe[I] = Recipe; 6652 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6653 VPBlockUtils::insertBlockAfter(Region, VPBB); 6654 auto *RegSucc = new VPBasicBlock(); 6655 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6656 return RegSucc; 6657 } 6658 6659 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6660 VPRecipeBase *PredRecipe, 6661 VPlanPtr &Plan) { 6662 // Instructions marked for predication are replicated and placed under an 6663 // if-then construct to prevent side-effects. 6664 6665 // Generate recipes to compute the block mask for this region. 6666 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6667 6668 // Build the triangular if-then region. 6669 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6670 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6671 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6672 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6673 auto *PHIRecipe = 6674 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6675 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6676 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6677 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6678 6679 // Note: first set Entry as region entry and then connect successors starting 6680 // from it in order, to propagate the "parent" of each VPBasicBlock. 6681 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6682 VPBlockUtils::connectBlocks(Pred, Exit); 6683 6684 return Region; 6685 } 6686 6687 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6688 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6689 VPRecipeBase *Recipe = nullptr; 6690 // Check if Instr should belong to an interleave memory recipe, or already 6691 // does. In the latter case Instr is irrelevant. 6692 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6693 VPBB->appendRecipe(Recipe); 6694 return true; 6695 } 6696 6697 // Check if Instr is a memory operation that should be widened. 6698 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6699 VPBB->appendRecipe(Recipe); 6700 return true; 6701 } 6702 6703 // Check if Instr should form some PHI recipe. 6704 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6705 VPBB->appendRecipe(Recipe); 6706 return true; 6707 } 6708 if ((Recipe = tryToBlend(Instr, Plan))) { 6709 VPBB->appendRecipe(Recipe); 6710 return true; 6711 } 6712 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6713 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6714 return true; 6715 } 6716 6717 // Check if Instr is to be widened by a general VPWidenRecipe, after 6718 // having first checked for specific widening recipes that deal with 6719 // Interleave Groups, Inductions and Phi nodes. 6720 if (tryToWiden(Instr, VPBB, Range)) 6721 return true; 6722 6723 return false; 6724 } 6725 6726 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6727 unsigned MaxVF) { 6728 assert(OrigLoop->empty() && "Inner loop expected."); 6729 6730 // Collect conditions feeding internal conditional branches; they need to be 6731 // represented in VPlan for it to model masking. 6732 SmallPtrSet<Value *, 1> NeedDef; 6733 6734 auto *Latch = OrigLoop->getLoopLatch(); 6735 for (BasicBlock *BB : OrigLoop->blocks()) { 6736 if (BB == Latch) 6737 continue; 6738 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6739 if (Branch && Branch->isConditional()) 6740 NeedDef.insert(Branch->getCondition()); 6741 } 6742 6743 // If the tail is to be folded by masking, the primary induction variable 6744 // needs to be represented in VPlan for it to model early-exit masking. 6745 if (CM.foldTailByMasking()) 6746 NeedDef.insert(Legal->getPrimaryInduction()); 6747 6748 // Collect instructions from the original loop that will become trivially dead 6749 // in the vectorized loop. We don't need to vectorize these instructions. For 6750 // example, original induction update instructions can become dead because we 6751 // separately emit induction "steps" when generating code for the new loop. 6752 // Similarly, we create a new latch condition when setting up the structure 6753 // of the new loop, so the old one can become dead. 6754 SmallPtrSet<Instruction *, 4> DeadInstructions; 6755 collectTriviallyDeadInstructions(DeadInstructions); 6756 6757 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6758 VFRange SubRange = {VF, MaxVF + 1}; 6759 VPlans.push_back( 6760 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6761 VF = SubRange.End; 6762 } 6763 } 6764 6765 LoopVectorizationPlanner::VPlanPtr 6766 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6767 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6768 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6769 // Hold a mapping from predicated instructions to their recipes, in order to 6770 // fix their AlsoPack behavior if a user is determined to replicate and use a 6771 // scalar instead of vector value. 6772 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6773 6774 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6775 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6776 6777 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6778 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6779 auto Plan = llvm::make_unique<VPlan>(VPBB); 6780 6781 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6782 // Represent values that will have defs inside VPlan. 6783 for (Value *V : NeedDef) 6784 Plan->addVPValue(V); 6785 6786 // Scan the body of the loop in a topological order to visit each basic block 6787 // after having visited its predecessor basic blocks. 6788 LoopBlocksDFS DFS(OrigLoop); 6789 DFS.perform(LI); 6790 6791 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6792 // Relevant instructions from basic block BB will be grouped into VPRecipe 6793 // ingredients and fill a new VPBasicBlock. 6794 unsigned VPBBsForBB = 0; 6795 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6796 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6797 VPBB = FirstVPBBForBB; 6798 Builder.setInsertPoint(VPBB); 6799 6800 std::vector<Instruction *> Ingredients; 6801 6802 // Organize the ingredients to vectorize from current basic block in the 6803 // right order. 6804 for (Instruction &I : BB->instructionsWithoutDebug()) { 6805 Instruction *Instr = &I; 6806 6807 // First filter out irrelevant instructions, to ensure no recipes are 6808 // built for them. 6809 if (isa<BranchInst>(Instr) || 6810 DeadInstructions.find(Instr) != DeadInstructions.end()) 6811 continue; 6812 6813 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6814 // member of the IG, do not construct any Recipe for it. 6815 const InterleaveGroup<Instruction> *IG = 6816 CM.getInterleavedAccessGroup(Instr); 6817 if (IG && Instr != IG->getInsertPos() && 6818 Range.Start >= 2 && // Query is illegal for VF == 1 6819 CM.getWideningDecision(Instr, Range.Start) == 6820 LoopVectorizationCostModel::CM_Interleave) { 6821 auto SinkCandidate = SinkAfterInverse.find(Instr); 6822 if (SinkCandidate != SinkAfterInverse.end()) 6823 Ingredients.push_back(SinkCandidate->second); 6824 continue; 6825 } 6826 6827 // Move instructions to handle first-order recurrences, step 1: avoid 6828 // handling this instruction until after we've handled the instruction it 6829 // should follow. 6830 auto SAIt = SinkAfter.find(Instr); 6831 if (SAIt != SinkAfter.end()) { 6832 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6833 << *SAIt->second 6834 << " to vectorize a 1st order recurrence.\n"); 6835 SinkAfterInverse[SAIt->second] = Instr; 6836 continue; 6837 } 6838 6839 Ingredients.push_back(Instr); 6840 6841 // Move instructions to handle first-order recurrences, step 2: push the 6842 // instruction to be sunk at its insertion point. 6843 auto SAInvIt = SinkAfterInverse.find(Instr); 6844 if (SAInvIt != SinkAfterInverse.end()) 6845 Ingredients.push_back(SAInvIt->second); 6846 } 6847 6848 // Introduce each ingredient into VPlan. 6849 for (Instruction *Instr : Ingredients) { 6850 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6851 continue; 6852 6853 // Otherwise, if all widening options failed, Instruction is to be 6854 // replicated. This may create a successor for VPBB. 6855 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6856 Instr, Range, VPBB, PredInst2Recipe, Plan); 6857 if (NextVPBB != VPBB) { 6858 VPBB = NextVPBB; 6859 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6860 : ""); 6861 } 6862 } 6863 } 6864 6865 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6866 // may also be empty, such as the last one VPBB, reflecting original 6867 // basic-blocks with no recipes. 6868 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6869 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6870 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6871 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6872 delete PreEntry; 6873 6874 std::string PlanName; 6875 raw_string_ostream RSO(PlanName); 6876 unsigned VF = Range.Start; 6877 Plan->addVF(VF); 6878 RSO << "Initial VPlan for VF={" << VF; 6879 for (VF *= 2; VF < Range.End; VF *= 2) { 6880 Plan->addVF(VF); 6881 RSO << "," << VF; 6882 } 6883 RSO << "},UF>=1"; 6884 RSO.flush(); 6885 Plan->setName(PlanName); 6886 6887 return Plan; 6888 } 6889 6890 LoopVectorizationPlanner::VPlanPtr 6891 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6892 // Outer loop handling: They may require CFG and instruction level 6893 // transformations before even evaluating whether vectorization is profitable. 6894 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6895 // the vectorization pipeline. 6896 assert(!OrigLoop->empty()); 6897 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6898 6899 // Create new empty VPlan 6900 auto Plan = llvm::make_unique<VPlan>(); 6901 6902 // Build hierarchical CFG 6903 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6904 HCFGBuilder.buildHierarchicalCFG(); 6905 6906 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6907 Plan->addVF(VF); 6908 6909 if (EnableVPlanPredication) { 6910 VPlanPredicator VPP(*Plan); 6911 VPP.predicate(); 6912 6913 // Avoid running transformation to recipes until masked code generation in 6914 // VPlan-native path is in place. 6915 return Plan; 6916 } 6917 6918 SmallPtrSet<Instruction *, 1> DeadInstructions; 6919 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6920 Plan, Legal->getInductionVars(), DeadInstructions); 6921 6922 return Plan; 6923 } 6924 6925 Value* LoopVectorizationPlanner::VPCallbackILV:: 6926 getOrCreateVectorValues(Value *V, unsigned Part) { 6927 return ILV.getOrCreateVectorValue(V, Part); 6928 } 6929 6930 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6931 O << " +\n" 6932 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6933 IG->getInsertPos()->printAsOperand(O, false); 6934 if (User) { 6935 O << ", "; 6936 User->getOperand(0)->printAsOperand(O); 6937 } 6938 O << "\\l\""; 6939 for (unsigned i = 0; i < IG->getFactor(); ++i) 6940 if (Instruction *I = IG->getMember(i)) 6941 O << " +\n" 6942 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6943 } 6944 6945 void VPWidenRecipe::execute(VPTransformState &State) { 6946 for (auto &Instr : make_range(Begin, End)) 6947 State.ILV->widenInstruction(Instr); 6948 } 6949 6950 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6951 assert(!State.Instance && "Int or FP induction being replicated."); 6952 State.ILV->widenIntOrFpInduction(IV, Trunc); 6953 } 6954 6955 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6956 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6957 } 6958 6959 void VPBlendRecipe::execute(VPTransformState &State) { 6960 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6961 // We know that all PHIs in non-header blocks are converted into 6962 // selects, so we don't have to worry about the insertion order and we 6963 // can just use the builder. 6964 // At this point we generate the predication tree. There may be 6965 // duplications since this is a simple recursive scan, but future 6966 // optimizations will clean it up. 6967 6968 unsigned NumIncoming = Phi->getNumIncomingValues(); 6969 6970 assert((User || NumIncoming == 1) && 6971 "Multiple predecessors with predecessors having a full mask"); 6972 // Generate a sequence of selects of the form: 6973 // SELECT(Mask3, In3, 6974 // SELECT(Mask2, In2, 6975 // ( ...))) 6976 InnerLoopVectorizer::VectorParts Entry(State.UF); 6977 for (unsigned In = 0; In < NumIncoming; ++In) { 6978 for (unsigned Part = 0; Part < State.UF; ++Part) { 6979 // We might have single edge PHIs (blocks) - use an identity 6980 // 'select' for the first PHI operand. 6981 Value *In0 = 6982 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6983 if (In == 0) 6984 Entry[Part] = In0; // Initialize with the first incoming value. 6985 else { 6986 // Select between the current value and the previous incoming edge 6987 // based on the incoming mask. 6988 Value *Cond = State.get(User->getOperand(In), Part); 6989 Entry[Part] = 6990 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6991 } 6992 } 6993 } 6994 for (unsigned Part = 0; Part < State.UF; ++Part) 6995 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6996 } 6997 6998 void VPInterleaveRecipe::execute(VPTransformState &State) { 6999 assert(!State.Instance && "Interleave group being replicated."); 7000 if (!User) 7001 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7002 7003 // Last (and currently only) operand is a mask. 7004 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7005 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7006 for (unsigned Part = 0; Part < State.UF; ++Part) 7007 MaskValues[Part] = State.get(Mask, Part); 7008 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7009 } 7010 7011 void VPReplicateRecipe::execute(VPTransformState &State) { 7012 if (State.Instance) { // Generate a single instance. 7013 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7014 // Insert scalar instance packing it into a vector. 7015 if (AlsoPack && State.VF > 1) { 7016 // If we're constructing lane 0, initialize to start from undef. 7017 if (State.Instance->Lane == 0) { 7018 Value *Undef = 7019 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7020 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7021 } 7022 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7023 } 7024 return; 7025 } 7026 7027 // Generate scalar instances for all VF lanes of all UF parts, unless the 7028 // instruction is uniform inwhich case generate only the first lane for each 7029 // of the UF parts. 7030 unsigned EndLane = IsUniform ? 1 : State.VF; 7031 for (unsigned Part = 0; Part < State.UF; ++Part) 7032 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7033 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7034 } 7035 7036 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7037 assert(State.Instance && "Branch on Mask works only on single instance."); 7038 7039 unsigned Part = State.Instance->Part; 7040 unsigned Lane = State.Instance->Lane; 7041 7042 Value *ConditionBit = nullptr; 7043 if (!User) // Block in mask is all-one. 7044 ConditionBit = State.Builder.getTrue(); 7045 else { 7046 VPValue *BlockInMask = User->getOperand(0); 7047 ConditionBit = State.get(BlockInMask, Part); 7048 if (ConditionBit->getType()->isVectorTy()) 7049 ConditionBit = State.Builder.CreateExtractElement( 7050 ConditionBit, State.Builder.getInt32(Lane)); 7051 } 7052 7053 // Replace the temporary unreachable terminator with a new conditional branch, 7054 // whose two destinations will be set later when they are created. 7055 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7056 assert(isa<UnreachableInst>(CurrentTerminator) && 7057 "Expected to replace unreachable terminator with conditional branch."); 7058 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7059 CondBr->setSuccessor(0, nullptr); 7060 ReplaceInstWithInst(CurrentTerminator, CondBr); 7061 } 7062 7063 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7064 assert(State.Instance && "Predicated instruction PHI works per instance."); 7065 Instruction *ScalarPredInst = cast<Instruction>( 7066 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7067 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7068 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7069 assert(PredicatingBB && "Predicated block has no single predecessor."); 7070 7071 // By current pack/unpack logic we need to generate only a single phi node: if 7072 // a vector value for the predicated instruction exists at this point it means 7073 // the instruction has vector users only, and a phi for the vector value is 7074 // needed. In this case the recipe of the predicated instruction is marked to 7075 // also do that packing, thereby "hoisting" the insert-element sequence. 7076 // Otherwise, a phi node for the scalar value is needed. 7077 unsigned Part = State.Instance->Part; 7078 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7079 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7080 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7081 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7082 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7083 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7084 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7085 } else { 7086 Type *PredInstType = PredInst->getType(); 7087 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7088 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7089 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7090 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7091 } 7092 } 7093 7094 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7095 if (!User) 7096 return State.ILV->vectorizeMemoryInstruction(&Instr); 7097 7098 // Last (and currently only) operand is a mask. 7099 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7100 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7101 for (unsigned Part = 0; Part < State.UF; ++Part) 7102 MaskValues[Part] = State.get(Mask, Part); 7103 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7104 } 7105 7106 // Process the loop in the VPlan-native vectorization path. This path builds 7107 // VPlan upfront in the vectorization pipeline, which allows to apply 7108 // VPlan-to-VPlan transformations from the very beginning without modifying the 7109 // input LLVM IR. 7110 static bool processLoopInVPlanNativePath( 7111 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7112 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7113 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7114 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7115 7116 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7117 Function *F = L->getHeader()->getParent(); 7118 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7119 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7120 &Hints, IAI); 7121 // Use the planner for outer loop vectorization. 7122 // TODO: CM is not used at this point inside the planner. Turn CM into an 7123 // optional argument if we don't need it in the future. 7124 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7125 7126 // Get user vectorization factor. 7127 unsigned UserVF = Hints.getWidth(); 7128 7129 // Check the function attributes to find out if this function should be 7130 // optimized for size. 7131 bool OptForSize = 7132 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7133 7134 // Plan how to best vectorize, return the best VF and its cost. 7135 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7136 7137 // If we are stress testing VPlan builds, do not attempt to generate vector 7138 // code. Masked vector code generation support will follow soon. 7139 if (VPlanBuildStressTest || EnableVPlanPredication) 7140 return false; 7141 7142 LVP.setBestPlan(VF.Width, 1); 7143 7144 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 7145 &CM); 7146 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7147 << L->getHeader()->getParent()->getName() << "\"\n"); 7148 LVP.executePlan(LB, DT); 7149 7150 // Mark the loop as already vectorized to avoid vectorizing again. 7151 Hints.setAlreadyVectorized(); 7152 7153 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7154 return true; 7155 } 7156 7157 bool LoopVectorizePass::processLoop(Loop *L) { 7158 assert((EnableVPlanNativePath || L->empty()) && 7159 "VPlan-native path is not enabled. Only process inner loops."); 7160 7161 #ifndef NDEBUG 7162 const std::string DebugLocStr = getDebugLocString(L); 7163 #endif /* NDEBUG */ 7164 7165 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7166 << L->getHeader()->getParent()->getName() << "\" from " 7167 << DebugLocStr << "\n"); 7168 7169 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7170 7171 LLVM_DEBUG( 7172 dbgs() << "LV: Loop hints:" 7173 << " force=" 7174 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7175 ? "disabled" 7176 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7177 ? "enabled" 7178 : "?")) 7179 << " width=" << Hints.getWidth() 7180 << " unroll=" << Hints.getInterleave() << "\n"); 7181 7182 // Function containing loop 7183 Function *F = L->getHeader()->getParent(); 7184 7185 // Looking at the diagnostic output is the only way to determine if a loop 7186 // was vectorized (other than looking at the IR or machine code), so it 7187 // is important to generate an optimization remark for each loop. Most of 7188 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7189 // generated as OptimizationRemark and OptimizationRemarkMissed are 7190 // less verbose reporting vectorized loops and unvectorized loops that may 7191 // benefit from vectorization, respectively. 7192 7193 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7194 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7195 return false; 7196 } 7197 7198 PredicatedScalarEvolution PSE(*SE, *L); 7199 7200 // Check if it is legal to vectorize the loop. 7201 LoopVectorizationRequirements Requirements(*ORE); 7202 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7203 &Requirements, &Hints, DB, AC); 7204 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7205 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7206 Hints.emitRemarkWithHints(); 7207 return false; 7208 } 7209 7210 // Check the function attributes to find out if this function should be 7211 // optimized for size. 7212 bool OptForSize = 7213 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7214 7215 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7216 // here. They may require CFG and instruction level transformations before 7217 // even evaluating whether vectorization is profitable. Since we cannot modify 7218 // the incoming IR, we need to build VPlan upfront in the vectorization 7219 // pipeline. 7220 if (!L->empty()) 7221 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7222 ORE, Hints); 7223 7224 assert(L->empty() && "Inner loop expected."); 7225 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7226 // count by optimizing for size, to minimize overheads. 7227 // Prefer constant trip counts over profile data, over upper bound estimate. 7228 unsigned ExpectedTC = 0; 7229 bool HasExpectedTC = false; 7230 if (const SCEVConstant *ConstExits = 7231 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7232 const APInt &ExitsCount = ConstExits->getAPInt(); 7233 // We are interested in small values for ExpectedTC. Skip over those that 7234 // can't fit an unsigned. 7235 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7236 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7237 HasExpectedTC = true; 7238 } 7239 } 7240 // ExpectedTC may be large because it's bound by a variable. Check 7241 // profiling information to validate we should vectorize. 7242 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7243 auto EstimatedTC = getLoopEstimatedTripCount(L); 7244 if (EstimatedTC) { 7245 ExpectedTC = *EstimatedTC; 7246 HasExpectedTC = true; 7247 } 7248 } 7249 if (!HasExpectedTC) { 7250 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7251 HasExpectedTC = (ExpectedTC > 0); 7252 } 7253 7254 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7255 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7256 << "This loop is worth vectorizing only if no scalar " 7257 << "iteration overheads are incurred."); 7258 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7259 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7260 else { 7261 LLVM_DEBUG(dbgs() << "\n"); 7262 // Loops with a very small trip count are considered for vectorization 7263 // under OptForSize, thereby making sure the cost of their loop body is 7264 // dominant, free of runtime guards and scalar iteration overheads. 7265 OptForSize = true; 7266 } 7267 } 7268 7269 // Check the function attributes to see if implicit floats are allowed. 7270 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7271 // an integer loop and the vector instructions selected are purely integer 7272 // vector instructions? 7273 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7274 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7275 "attribute is used.\n"); 7276 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7277 "NoImplicitFloat", L) 7278 << "loop not vectorized due to NoImplicitFloat attribute"); 7279 Hints.emitRemarkWithHints(); 7280 return false; 7281 } 7282 7283 // Check if the target supports potentially unsafe FP vectorization. 7284 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7285 // for the target we're vectorizing for, to make sure none of the 7286 // additional fp-math flags can help. 7287 if (Hints.isPotentiallyUnsafe() && 7288 TTI->isFPVectorizationPotentiallyUnsafe()) { 7289 LLVM_DEBUG( 7290 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7291 ORE->emit( 7292 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7293 << "loop not vectorized due to unsafe FP support."); 7294 Hints.emitRemarkWithHints(); 7295 return false; 7296 } 7297 7298 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7299 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7300 7301 // If an override option has been passed in for interleaved accesses, use it. 7302 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7303 UseInterleaved = EnableInterleavedMemAccesses; 7304 7305 // Analyze interleaved memory accesses. 7306 if (UseInterleaved) { 7307 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7308 } 7309 7310 // Use the cost model. 7311 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7312 &Hints, IAI); 7313 CM.collectValuesToIgnore(); 7314 7315 // Use the planner for vectorization. 7316 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7317 7318 // Get user vectorization factor. 7319 unsigned UserVF = Hints.getWidth(); 7320 7321 // Plan how to best vectorize, return the best VF and its cost. 7322 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7323 7324 VectorizationFactor VF = VectorizationFactor::Disabled(); 7325 unsigned IC = 1; 7326 unsigned UserIC = Hints.getInterleave(); 7327 7328 if (MaybeVF) { 7329 VF = *MaybeVF; 7330 // Select the interleave count. 7331 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7332 } 7333 7334 // Identify the diagnostic messages that should be produced. 7335 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7336 bool VectorizeLoop = true, InterleaveLoop = true; 7337 if (Requirements.doesNotMeet(F, L, Hints)) { 7338 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7339 "requirements.\n"); 7340 Hints.emitRemarkWithHints(); 7341 return false; 7342 } 7343 7344 if (VF.Width == 1) { 7345 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7346 VecDiagMsg = std::make_pair( 7347 "VectorizationNotBeneficial", 7348 "the cost-model indicates that vectorization is not beneficial"); 7349 VectorizeLoop = false; 7350 } 7351 7352 if (!MaybeVF && UserIC > 1) { 7353 // Tell the user interleaving was avoided up-front, despite being explicitly 7354 // requested. 7355 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7356 "interleaving should be avoided up front\n"); 7357 IntDiagMsg = std::make_pair( 7358 "InterleavingAvoided", 7359 "Ignoring UserIC, because interleaving was avoided up front"); 7360 InterleaveLoop = false; 7361 } else if (IC == 1 && UserIC <= 1) { 7362 // Tell the user interleaving is not beneficial. 7363 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7364 IntDiagMsg = std::make_pair( 7365 "InterleavingNotBeneficial", 7366 "the cost-model indicates that interleaving is not beneficial"); 7367 InterleaveLoop = false; 7368 if (UserIC == 1) { 7369 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7370 IntDiagMsg.second += 7371 " and is explicitly disabled or interleave count is set to 1"; 7372 } 7373 } else if (IC > 1 && UserIC == 1) { 7374 // Tell the user interleaving is beneficial, but it explicitly disabled. 7375 LLVM_DEBUG( 7376 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7377 IntDiagMsg = std::make_pair( 7378 "InterleavingBeneficialButDisabled", 7379 "the cost-model indicates that interleaving is beneficial " 7380 "but is explicitly disabled or interleave count is set to 1"); 7381 InterleaveLoop = false; 7382 } 7383 7384 // Override IC if user provided an interleave count. 7385 IC = UserIC > 0 ? UserIC : IC; 7386 7387 // Emit diagnostic messages, if any. 7388 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7389 if (!VectorizeLoop && !InterleaveLoop) { 7390 // Do not vectorize or interleaving the loop. 7391 ORE->emit([&]() { 7392 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7393 L->getStartLoc(), L->getHeader()) 7394 << VecDiagMsg.second; 7395 }); 7396 ORE->emit([&]() { 7397 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7398 L->getStartLoc(), L->getHeader()) 7399 << IntDiagMsg.second; 7400 }); 7401 return false; 7402 } else if (!VectorizeLoop && InterleaveLoop) { 7403 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7404 ORE->emit([&]() { 7405 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7406 L->getStartLoc(), L->getHeader()) 7407 << VecDiagMsg.second; 7408 }); 7409 } else if (VectorizeLoop && !InterleaveLoop) { 7410 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7411 << ") in " << DebugLocStr << '\n'); 7412 ORE->emit([&]() { 7413 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7414 L->getStartLoc(), L->getHeader()) 7415 << IntDiagMsg.second; 7416 }); 7417 } else if (VectorizeLoop && InterleaveLoop) { 7418 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7419 << ") in " << DebugLocStr << '\n'); 7420 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7421 } 7422 7423 LVP.setBestPlan(VF.Width, IC); 7424 7425 using namespace ore; 7426 bool DisableRuntimeUnroll = false; 7427 MDNode *OrigLoopID = L->getLoopID(); 7428 7429 if (!VectorizeLoop) { 7430 assert(IC > 1 && "interleave count should not be 1 or 0"); 7431 // If we decided that it is not legal to vectorize the loop, then 7432 // interleave it. 7433 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7434 &CM); 7435 LVP.executePlan(Unroller, DT); 7436 7437 ORE->emit([&]() { 7438 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7439 L->getHeader()) 7440 << "interleaved loop (interleaved count: " 7441 << NV("InterleaveCount", IC) << ")"; 7442 }); 7443 } else { 7444 // If we decided that it is *legal* to vectorize the loop, then do it. 7445 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7446 &LVL, &CM); 7447 LVP.executePlan(LB, DT); 7448 ++LoopsVectorized; 7449 7450 // Add metadata to disable runtime unrolling a scalar loop when there are 7451 // no runtime checks about strides and memory. A scalar loop that is 7452 // rarely used is not worth unrolling. 7453 if (!LB.areSafetyChecksAdded()) 7454 DisableRuntimeUnroll = true; 7455 7456 // Report the vectorization decision. 7457 ORE->emit([&]() { 7458 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7459 L->getHeader()) 7460 << "vectorized loop (vectorization width: " 7461 << NV("VectorizationFactor", VF.Width) 7462 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7463 }); 7464 } 7465 7466 Optional<MDNode *> RemainderLoopID = 7467 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7468 LLVMLoopVectorizeFollowupEpilogue}); 7469 if (RemainderLoopID.hasValue()) { 7470 L->setLoopID(RemainderLoopID.getValue()); 7471 } else { 7472 if (DisableRuntimeUnroll) 7473 AddRuntimeUnrollDisableMetaData(L); 7474 7475 // Mark the loop as already vectorized to avoid vectorizing again. 7476 Hints.setAlreadyVectorized(); 7477 } 7478 7479 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7480 return true; 7481 } 7482 7483 bool LoopVectorizePass::runImpl( 7484 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7485 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7486 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7487 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7488 OptimizationRemarkEmitter &ORE_) { 7489 SE = &SE_; 7490 LI = &LI_; 7491 TTI = &TTI_; 7492 DT = &DT_; 7493 BFI = &BFI_; 7494 TLI = TLI_; 7495 AA = &AA_; 7496 AC = &AC_; 7497 GetLAA = &GetLAA_; 7498 DB = &DB_; 7499 ORE = &ORE_; 7500 7501 // Don't attempt if 7502 // 1. the target claims to have no vector registers, and 7503 // 2. interleaving won't help ILP. 7504 // 7505 // The second condition is necessary because, even if the target has no 7506 // vector registers, loop vectorization may still enable scalar 7507 // interleaving. 7508 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7509 return false; 7510 7511 bool Changed = false; 7512 7513 // The vectorizer requires loops to be in simplified form. 7514 // Since simplification may add new inner loops, it has to run before the 7515 // legality and profitability checks. This means running the loop vectorizer 7516 // will simplify all loops, regardless of whether anything end up being 7517 // vectorized. 7518 for (auto &L : *LI) 7519 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7520 7521 // Build up a worklist of inner-loops to vectorize. This is necessary as 7522 // the act of vectorizing or partially unrolling a loop creates new loops 7523 // and can invalidate iterators across the loops. 7524 SmallVector<Loop *, 8> Worklist; 7525 7526 for (Loop *L : *LI) 7527 collectSupportedLoops(*L, LI, ORE, Worklist); 7528 7529 LoopsAnalyzed += Worklist.size(); 7530 7531 // Now walk the identified inner loops. 7532 while (!Worklist.empty()) { 7533 Loop *L = Worklist.pop_back_val(); 7534 7535 // For the inner loops we actually process, form LCSSA to simplify the 7536 // transform. 7537 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7538 7539 Changed |= processLoop(L); 7540 } 7541 7542 // Process each loop nest in the function. 7543 return Changed; 7544 } 7545 7546 PreservedAnalyses LoopVectorizePass::run(Function &F, 7547 FunctionAnalysisManager &AM) { 7548 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7549 auto &LI = AM.getResult<LoopAnalysis>(F); 7550 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7551 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7552 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7553 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7554 auto &AA = AM.getResult<AAManager>(F); 7555 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7556 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7557 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7558 MemorySSA *MSSA = EnableMSSALoopDependency 7559 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7560 : nullptr; 7561 7562 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7563 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7564 [&](Loop &L) -> const LoopAccessInfo & { 7565 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7566 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7567 }; 7568 bool Changed = 7569 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7570 if (!Changed) 7571 return PreservedAnalyses::all(); 7572 PreservedAnalyses PA; 7573 7574 // We currently do not preserve loopinfo/dominator analyses with outer loop 7575 // vectorization. Until this is addressed, mark these analyses as preserved 7576 // only for non-VPlan-native path. 7577 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7578 if (!EnableVPlanNativePath) { 7579 PA.preserve<LoopAnalysis>(); 7580 PA.preserve<DominatorTreeAnalysis>(); 7581 } 7582 PA.preserve<BasicAA>(); 7583 PA.preserve<GlobalsAA>(); 7584 return PA; 7585 } 7586