1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, const InductionDescriptor &ID, 514 Value *Start, TruncInst *Trunc, VPValue *Def, 515 VPTransformState &State, Value *CanonicalIV); 516 517 /// Construct the vector value of a scalarized value \p V one lane at a time. 518 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 519 VPTransformState &State); 520 521 /// Try to vectorize interleaved access group \p Group with the base address 522 /// given in \p Addr, optionally masking the vector operations if \p 523 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 524 /// values in the vectorized loop. 525 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 526 ArrayRef<VPValue *> VPDefs, 527 VPTransformState &State, VPValue *Addr, 528 ArrayRef<VPValue *> StoredValues, 529 VPValue *BlockInMask = nullptr); 530 531 /// Set the debug location in the builder \p Ptr using the debug location in 532 /// \p V. If \p Ptr is None then it uses the class member's Builder. 533 void setDebugLocFromInst(const Value *V, 534 Optional<IRBuilder<> *> CustomBuilder = None); 535 536 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 537 void fixNonInductionPHIs(VPTransformState &State); 538 539 /// Returns true if the reordering of FP operations is not allowed, but we are 540 /// able to vectorize with strict in-order reductions for the given RdxDesc. 541 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 542 543 /// Create a broadcast instruction. This method generates a broadcast 544 /// instruction (shuffle) for loop invariant values and for the induction 545 /// value. If this is the induction variable then we extend it to N, N+1, ... 546 /// this is needed because each iteration in the loop corresponds to a SIMD 547 /// element. 548 virtual Value *getBroadcastInstrs(Value *V); 549 550 /// Add metadata from one instruction to another. 551 /// 552 /// This includes both the original MDs from \p From and additional ones (\see 553 /// addNewMetadata). Use this for *newly created* instructions in the vector 554 /// loop. 555 void addMetadata(Instruction *To, Instruction *From); 556 557 /// Similar to the previous function but it adds the metadata to a 558 /// vector of instructions. 559 void addMetadata(ArrayRef<Value *> To, Instruction *From); 560 561 protected: 562 friend class LoopVectorizationPlanner; 563 564 /// A small list of PHINodes. 565 using PhiVector = SmallVector<PHINode *, 4>; 566 567 /// A type for scalarized values in the new loop. Each value from the 568 /// original loop, when scalarized, is represented by UF x VF scalar values 569 /// in the new unrolled loop, where UF is the unroll factor and VF is the 570 /// vectorization factor. 571 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 572 573 /// Set up the values of the IVs correctly when exiting the vector loop. 574 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 575 Value *CountRoundDown, Value *EndValue, 576 BasicBlock *MiddleBlock); 577 578 /// Introduce a conditional branch (on true, condition to be set later) at the 579 /// end of the header=latch connecting it to itself (across the backedge) and 580 /// to the exit block of \p L. 581 void createHeaderBranch(Loop *L); 582 583 /// Handle all cross-iteration phis in the header. 584 void fixCrossIterationPHIs(VPTransformState &State); 585 586 /// Create the exit value of first order recurrences in the middle block and 587 /// update their users. 588 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 589 VPTransformState &State); 590 591 /// Create code for the loop exit value of the reduction. 592 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 593 594 /// Clear NSW/NUW flags from reduction instructions if necessary. 595 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 596 VPTransformState &State); 597 598 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 599 /// means we need to add the appropriate incoming value from the middle 600 /// block as exiting edges from the scalar epilogue loop (if present) are 601 /// already in place, and we exit the vector loop exclusively to the middle 602 /// block. 603 void fixLCSSAPHIs(VPTransformState &State); 604 605 /// Iteratively sink the scalarized operands of a predicated instruction into 606 /// the block that was created for it. 607 void sinkScalarOperands(Instruction *PredInst); 608 609 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 610 /// represented as. 611 void truncateToMinimalBitwidths(VPTransformState &State); 612 613 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 614 /// variable on which to base the steps, \p Step is the size of the step, and 615 /// \p EntryVal is the value from the original loop that maps to the steps. 616 /// Note that \p EntryVal doesn't have to be an induction variable - it 617 /// can also be a truncate instruction. 618 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 619 const InductionDescriptor &ID, VPValue *Def, 620 VPTransformState &State); 621 622 /// Create a vector induction phi node based on an existing scalar one. \p 623 /// EntryVal is the value from the original loop that maps to the vector phi 624 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 625 /// truncate instruction, instead of widening the original IV, we widen a 626 /// version of the IV truncated to \p EntryVal's type. 627 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 628 Value *Step, Value *Start, 629 Instruction *EntryVal, VPValue *Def, 630 VPTransformState &State); 631 632 /// Returns true if an instruction \p I should be scalarized instead of 633 /// vectorized for the chosen vectorization factor. 634 bool shouldScalarizeInstruction(Instruction *I) const; 635 636 /// Returns true if we should generate a scalar version of \p IV. 637 bool needsScalarInduction(Instruction *IV) const; 638 639 /// Returns (and creates if needed) the original loop trip count. 640 Value *getOrCreateTripCount(Loop *NewLoop); 641 642 /// Returns (and creates if needed) the trip count of the widened loop. 643 Value *getOrCreateVectorTripCount(Loop *NewLoop); 644 645 /// Returns a bitcasted value to the requested vector type. 646 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 647 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 648 const DataLayout &DL); 649 650 /// Emit a bypass check to see if the vector trip count is zero, including if 651 /// it overflows. 652 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 653 654 /// Emit a bypass check to see if all of the SCEV assumptions we've 655 /// had to make are correct. Returns the block containing the checks or 656 /// nullptr if no checks have been added. 657 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 658 659 /// Emit bypass checks to check any memory assumptions we may have made. 660 /// Returns the block containing the checks or nullptr if no checks have been 661 /// added. 662 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 663 664 /// Compute the transformed value of Index at offset StartValue using step 665 /// StepValue. 666 /// For integer induction, returns StartValue + Index * StepValue. 667 /// For pointer induction, returns StartValue[Index * StepValue]. 668 /// FIXME: The newly created binary instructions should contain nsw/nuw 669 /// flags, which can be found from the original scalar operations. 670 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 671 const DataLayout &DL, 672 const InductionDescriptor &ID, 673 BasicBlock *VectorHeader) const; 674 675 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 676 /// vector loop preheader, middle block and scalar preheader. Also 677 /// allocate a loop object for the new vector loop and return it. 678 Loop *createVectorLoopSkeleton(StringRef Prefix); 679 680 /// Create new phi nodes for the induction variables to resume iteration count 681 /// in the scalar epilogue, from where the vectorized loop left off. 682 /// In cases where the loop skeleton is more complicated (eg. epilogue 683 /// vectorization) and the resume values can come from an additional bypass 684 /// block, the \p AdditionalBypass pair provides information about the bypass 685 /// block and the end value on the edge from bypass to this loop. 686 void createInductionResumeValues( 687 Loop *L, 688 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 689 690 /// Complete the loop skeleton by adding debug MDs, creating appropriate 691 /// conditional branches in the middle block, preparing the builder and 692 /// running the verifier. Take in the vector loop \p L as argument, and return 693 /// the preheader of the completed vector loop. 694 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 695 696 /// Add additional metadata to \p To that was not present on \p Orig. 697 /// 698 /// Currently this is used to add the noalias annotations based on the 699 /// inserted memchecks. Use this for instructions that are *cloned* into the 700 /// vector loop. 701 void addNewMetadata(Instruction *To, const Instruction *Orig); 702 703 /// Collect poison-generating recipes that may generate a poison value that is 704 /// used after vectorization, even when their operands are not poison. Those 705 /// recipes meet the following conditions: 706 /// * Contribute to the address computation of a recipe generating a widen 707 /// memory load/store (VPWidenMemoryInstructionRecipe or 708 /// VPInterleaveRecipe). 709 /// * Such a widen memory load/store has at least one underlying Instruction 710 /// that is in a basic block that needs predication and after vectorization 711 /// the generated instruction won't be predicated. 712 void collectPoisonGeneratingRecipes(VPTransformState &State); 713 714 /// Allow subclasses to override and print debug traces before/after vplan 715 /// execution, when trace information is requested. 716 virtual void printDebugTracesAtStart(){}; 717 virtual void printDebugTracesAtEnd(){}; 718 719 /// The original loop. 720 Loop *OrigLoop; 721 722 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 723 /// dynamic knowledge to simplify SCEV expressions and converts them to a 724 /// more usable form. 725 PredicatedScalarEvolution &PSE; 726 727 /// Loop Info. 728 LoopInfo *LI; 729 730 /// Dominator Tree. 731 DominatorTree *DT; 732 733 /// Alias Analysis. 734 AAResults *AA; 735 736 /// Target Library Info. 737 const TargetLibraryInfo *TLI; 738 739 /// Target Transform Info. 740 const TargetTransformInfo *TTI; 741 742 /// Assumption Cache. 743 AssumptionCache *AC; 744 745 /// Interface to emit optimization remarks. 746 OptimizationRemarkEmitter *ORE; 747 748 /// LoopVersioning. It's only set up (non-null) if memchecks were 749 /// used. 750 /// 751 /// This is currently only used to add no-alias metadata based on the 752 /// memchecks. The actually versioning is performed manually. 753 std::unique_ptr<LoopVersioning> LVer; 754 755 /// The vectorization SIMD factor to use. Each vector will have this many 756 /// vector elements. 757 ElementCount VF; 758 759 /// The vectorization unroll factor to use. Each scalar is vectorized to this 760 /// many different vector instructions. 761 unsigned UF; 762 763 /// The builder that we use 764 IRBuilder<> Builder; 765 766 // --- Vectorization state --- 767 768 /// The vector-loop preheader. 769 BasicBlock *LoopVectorPreHeader; 770 771 /// The scalar-loop preheader. 772 BasicBlock *LoopScalarPreHeader; 773 774 /// Middle Block between the vector and the scalar. 775 BasicBlock *LoopMiddleBlock; 776 777 /// The unique ExitBlock of the scalar loop if one exists. Note that 778 /// there can be multiple exiting edges reaching this block. 779 BasicBlock *LoopExitBlock; 780 781 /// The vector loop body. 782 BasicBlock *LoopVectorBody; 783 784 /// The scalar loop body. 785 BasicBlock *LoopScalarBody; 786 787 /// A list of all bypass blocks. The first block is the entry of the loop. 788 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 789 790 /// Store instructions that were predicated. 791 SmallVector<Instruction *, 4> PredicatedInstructions; 792 793 /// Trip count of the original loop. 794 Value *TripCount = nullptr; 795 796 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 797 Value *VectorTripCount = nullptr; 798 799 /// The legality analysis. 800 LoopVectorizationLegality *Legal; 801 802 /// The profitablity analysis. 803 LoopVectorizationCostModel *Cost; 804 805 // Record whether runtime checks are added. 806 bool AddedSafetyChecks = false; 807 808 // Holds the end values for each induction variable. We save the end values 809 // so we can later fix-up the external users of the induction variables. 810 DenseMap<PHINode *, Value *> IVEndValues; 811 812 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 813 // fixed up at the end of vector code generation. 814 SmallVector<PHINode *, 8> OrigPHIsToFix; 815 816 /// BFI and PSI are used to check for profile guided size optimizations. 817 BlockFrequencyInfo *BFI; 818 ProfileSummaryInfo *PSI; 819 820 // Whether this loop should be optimized for size based on profile guided size 821 // optimizatios. 822 bool OptForSizeBasedOnProfile; 823 824 /// Structure to hold information about generated runtime checks, responsible 825 /// for cleaning the checks, if vectorization turns out unprofitable. 826 GeneratedRTChecks &RTChecks; 827 }; 828 829 class InnerLoopUnroller : public InnerLoopVectorizer { 830 public: 831 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, DominatorTree *DT, 833 const TargetLibraryInfo *TLI, 834 const TargetTransformInfo *TTI, AssumptionCache *AC, 835 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 836 LoopVectorizationLegality *LVL, 837 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 838 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 839 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 840 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 841 BFI, PSI, Check) {} 842 843 private: 844 Value *getBroadcastInstrs(Value *V) override; 845 }; 846 847 /// Encapsulate information regarding vectorization of a loop and its epilogue. 848 /// This information is meant to be updated and used across two stages of 849 /// epilogue vectorization. 850 struct EpilogueLoopVectorizationInfo { 851 ElementCount MainLoopVF = ElementCount::getFixed(0); 852 unsigned MainLoopUF = 0; 853 ElementCount EpilogueVF = ElementCount::getFixed(0); 854 unsigned EpilogueUF = 0; 855 BasicBlock *MainLoopIterationCountCheck = nullptr; 856 BasicBlock *EpilogueIterationCountCheck = nullptr; 857 BasicBlock *SCEVSafetyCheck = nullptr; 858 BasicBlock *MemSafetyCheck = nullptr; 859 Value *TripCount = nullptr; 860 Value *VectorTripCount = nullptr; 861 862 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 863 ElementCount EVF, unsigned EUF) 864 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 865 assert(EUF == 1 && 866 "A high UF for the epilogue loop is likely not beneficial."); 867 } 868 }; 869 870 /// An extension of the inner loop vectorizer that creates a skeleton for a 871 /// vectorized loop that has its epilogue (residual) also vectorized. 872 /// The idea is to run the vplan on a given loop twice, firstly to setup the 873 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 874 /// from the first step and vectorize the epilogue. This is achieved by 875 /// deriving two concrete strategy classes from this base class and invoking 876 /// them in succession from the loop vectorizer planner. 877 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 878 public: 879 InnerLoopAndEpilogueVectorizer( 880 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 881 DominatorTree *DT, const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 884 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 885 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 886 GeneratedRTChecks &Checks) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 889 Checks), 890 EPI(EPI) {} 891 892 // Override this function to handle the more complex control flow around the 893 // three loops. 894 std::pair<BasicBlock *, Value *> 895 createVectorizedLoopSkeleton() final override { 896 return createEpilogueVectorizedLoopSkeleton(); 897 } 898 899 /// The interface for creating a vectorized skeleton using one of two 900 /// different strategies, each corresponding to one execution of the vplan 901 /// as described above. 902 virtual std::pair<BasicBlock *, Value *> 903 createEpilogueVectorizedLoopSkeleton() = 0; 904 905 /// Holds and updates state information required to vectorize the main loop 906 /// and its epilogue in two separate passes. This setup helps us avoid 907 /// regenerating and recomputing runtime safety checks. It also helps us to 908 /// shorten the iteration-count-check path length for the cases where the 909 /// iteration count of the loop is so small that the main vector loop is 910 /// completely skipped. 911 EpilogueLoopVectorizationInfo &EPI; 912 }; 913 914 /// A specialized derived class of inner loop vectorizer that performs 915 /// vectorization of *main* loops in the process of vectorizing loops and their 916 /// epilogues. 917 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 918 public: 919 EpilogueVectorizerMainLoop( 920 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 921 DominatorTree *DT, const TargetLibraryInfo *TLI, 922 const TargetTransformInfo *TTI, AssumptionCache *AC, 923 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 924 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 925 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 926 GeneratedRTChecks &Check) 927 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 928 EPI, LVL, CM, BFI, PSI, Check) {} 929 /// Implements the interface for creating a vectorized skeleton using the 930 /// *main loop* strategy (ie the first pass of vplan execution). 931 std::pair<BasicBlock *, Value *> 932 createEpilogueVectorizedLoopSkeleton() final override; 933 934 protected: 935 /// Emits an iteration count bypass check once for the main loop (when \p 936 /// ForEpilogue is false) and once for the epilogue loop (when \p 937 /// ForEpilogue is true). 938 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 939 bool ForEpilogue); 940 void printDebugTracesAtStart() override; 941 void printDebugTracesAtEnd() override; 942 }; 943 944 // A specialized derived class of inner loop vectorizer that performs 945 // vectorization of *epilogue* loops in the process of vectorizing loops and 946 // their epilogues. 947 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 948 public: 949 EpilogueVectorizerEpilogueLoop( 950 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 951 DominatorTree *DT, const TargetLibraryInfo *TLI, 952 const TargetTransformInfo *TTI, AssumptionCache *AC, 953 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 954 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 955 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 956 GeneratedRTChecks &Checks) 957 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 958 EPI, LVL, CM, BFI, PSI, Checks) {} 959 /// Implements the interface for creating a vectorized skeleton using the 960 /// *epilogue loop* strategy (ie the second pass of vplan execution). 961 std::pair<BasicBlock *, Value *> 962 createEpilogueVectorizedLoopSkeleton() final override; 963 964 protected: 965 /// Emits an iteration count bypass check after the main vector loop has 966 /// finished to see if there are any iterations left to execute by either 967 /// the vector epilogue or the scalar epilogue. 968 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 969 BasicBlock *Bypass, 970 BasicBlock *Insert); 971 void printDebugTracesAtStart() override; 972 void printDebugTracesAtEnd() override; 973 }; 974 } // end namespace llvm 975 976 /// Look for a meaningful debug location on the instruction or it's 977 /// operands. 978 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 979 if (!I) 980 return I; 981 982 DebugLoc Empty; 983 if (I->getDebugLoc() != Empty) 984 return I; 985 986 for (Use &Op : I->operands()) { 987 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 988 if (OpInst->getDebugLoc() != Empty) 989 return OpInst; 990 } 991 992 return I; 993 } 994 995 void InnerLoopVectorizer::setDebugLocFromInst( 996 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 997 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 998 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 999 const DILocation *DIL = Inst->getDebugLoc(); 1000 1001 // When a FSDiscriminator is enabled, we don't need to add the multiply 1002 // factors to the discriminators. 1003 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1004 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1005 // FIXME: For scalable vectors, assume vscale=1. 1006 auto NewDIL = 1007 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1008 if (NewDIL) 1009 B->SetCurrentDebugLocation(NewDIL.getValue()); 1010 else 1011 LLVM_DEBUG(dbgs() 1012 << "Failed to create new discriminator: " 1013 << DIL->getFilename() << " Line: " << DIL->getLine()); 1014 } else 1015 B->SetCurrentDebugLocation(DIL); 1016 } else 1017 B->SetCurrentDebugLocation(DebugLoc()); 1018 } 1019 1020 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1021 /// is passed, the message relates to that particular instruction. 1022 #ifndef NDEBUG 1023 static void debugVectorizationMessage(const StringRef Prefix, 1024 const StringRef DebugMsg, 1025 Instruction *I) { 1026 dbgs() << "LV: " << Prefix << DebugMsg; 1027 if (I != nullptr) 1028 dbgs() << " " << *I; 1029 else 1030 dbgs() << '.'; 1031 dbgs() << '\n'; 1032 } 1033 #endif 1034 1035 /// Create an analysis remark that explains why vectorization failed 1036 /// 1037 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1038 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1039 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1040 /// the location of the remark. \return the remark object that can be 1041 /// streamed to. 1042 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1043 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1044 Value *CodeRegion = TheLoop->getHeader(); 1045 DebugLoc DL = TheLoop->getStartLoc(); 1046 1047 if (I) { 1048 CodeRegion = I->getParent(); 1049 // If there is no debug location attached to the instruction, revert back to 1050 // using the loop's. 1051 if (I->getDebugLoc()) 1052 DL = I->getDebugLoc(); 1053 } 1054 1055 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1056 } 1057 1058 namespace llvm { 1059 1060 /// Return a value for Step multiplied by VF. 1061 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1062 int64_t Step) { 1063 assert(Ty->isIntegerTy() && "Expected an integer step"); 1064 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1065 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1066 } 1067 1068 /// Return the runtime value for VF. 1069 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1070 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1071 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1072 } 1073 1074 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1075 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1076 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1077 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1078 return B.CreateUIToFP(RuntimeVF, FTy); 1079 } 1080 1081 void reportVectorizationFailure(const StringRef DebugMsg, 1082 const StringRef OREMsg, const StringRef ORETag, 1083 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1084 Instruction *I) { 1085 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1086 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1087 ORE->emit( 1088 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1089 << "loop not vectorized: " << OREMsg); 1090 } 1091 1092 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1093 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1094 Instruction *I) { 1095 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1096 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1097 ORE->emit( 1098 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1099 << Msg); 1100 } 1101 1102 } // end namespace llvm 1103 1104 #ifndef NDEBUG 1105 /// \return string containing a file name and a line # for the given loop. 1106 static std::string getDebugLocString(const Loop *L) { 1107 std::string Result; 1108 if (L) { 1109 raw_string_ostream OS(Result); 1110 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1111 LoopDbgLoc.print(OS); 1112 else 1113 // Just print the module name. 1114 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1115 OS.flush(); 1116 } 1117 return Result; 1118 } 1119 #endif 1120 1121 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1122 const Instruction *Orig) { 1123 // If the loop was versioned with memchecks, add the corresponding no-alias 1124 // metadata. 1125 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1126 LVer->annotateInstWithNoAlias(To, Orig); 1127 } 1128 1129 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1130 VPTransformState &State) { 1131 1132 // Collect recipes in the backward slice of `Root` that may generate a poison 1133 // value that is used after vectorization. 1134 SmallPtrSet<VPRecipeBase *, 16> Visited; 1135 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1136 SmallVector<VPRecipeBase *, 16> Worklist; 1137 Worklist.push_back(Root); 1138 1139 // Traverse the backward slice of Root through its use-def chain. 1140 while (!Worklist.empty()) { 1141 VPRecipeBase *CurRec = Worklist.back(); 1142 Worklist.pop_back(); 1143 1144 if (!Visited.insert(CurRec).second) 1145 continue; 1146 1147 // Prune search if we find another recipe generating a widen memory 1148 // instruction. Widen memory instructions involved in address computation 1149 // will lead to gather/scatter instructions, which don't need to be 1150 // handled. 1151 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1152 isa<VPInterleaveRecipe>(CurRec) || 1153 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1154 continue; 1155 1156 // This recipe contributes to the address computation of a widen 1157 // load/store. Collect recipe if its underlying instruction has 1158 // poison-generating flags. 1159 Instruction *Instr = CurRec->getUnderlyingInstr(); 1160 if (Instr && Instr->hasPoisonGeneratingFlags()) 1161 State.MayGeneratePoisonRecipes.insert(CurRec); 1162 1163 // Add new definitions to the worklist. 1164 for (VPValue *operand : CurRec->operands()) 1165 if (VPDef *OpDef = operand->getDef()) 1166 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1167 } 1168 }); 1169 1170 // Traverse all the recipes in the VPlan and collect the poison-generating 1171 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1172 // VPInterleaveRecipe. 1173 auto Iter = depth_first( 1174 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1175 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1176 for (VPRecipeBase &Recipe : *VPBB) { 1177 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1178 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1179 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1180 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1181 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1182 collectPoisonGeneratingInstrsInBackwardSlice( 1183 cast<VPRecipeBase>(AddrDef)); 1184 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1185 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1186 if (AddrDef) { 1187 // Check if any member of the interleave group needs predication. 1188 const InterleaveGroup<Instruction> *InterGroup = 1189 InterleaveRec->getInterleaveGroup(); 1190 bool NeedPredication = false; 1191 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1192 I < NumMembers; ++I) { 1193 Instruction *Member = InterGroup->getMember(I); 1194 if (Member) 1195 NeedPredication |= 1196 Legal->blockNeedsPredication(Member->getParent()); 1197 } 1198 1199 if (NeedPredication) 1200 collectPoisonGeneratingInstrsInBackwardSlice( 1201 cast<VPRecipeBase>(AddrDef)); 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 void InnerLoopVectorizer::addMetadata(Instruction *To, 1209 Instruction *From) { 1210 propagateMetadata(To, From); 1211 addNewMetadata(To, From); 1212 } 1213 1214 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1215 Instruction *From) { 1216 for (Value *V : To) { 1217 if (Instruction *I = dyn_cast<Instruction>(V)) 1218 addMetadata(I, From); 1219 } 1220 } 1221 1222 namespace llvm { 1223 1224 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1225 // lowered. 1226 enum ScalarEpilogueLowering { 1227 1228 // The default: allowing scalar epilogues. 1229 CM_ScalarEpilogueAllowed, 1230 1231 // Vectorization with OptForSize: don't allow epilogues. 1232 CM_ScalarEpilogueNotAllowedOptSize, 1233 1234 // A special case of vectorisation with OptForSize: loops with a very small 1235 // trip count are considered for vectorization under OptForSize, thereby 1236 // making sure the cost of their loop body is dominant, free of runtime 1237 // guards and scalar iteration overheads. 1238 CM_ScalarEpilogueNotAllowedLowTripLoop, 1239 1240 // Loop hint predicate indicating an epilogue is undesired. 1241 CM_ScalarEpilogueNotNeededUsePredicate, 1242 1243 // Directive indicating we must either tail fold or not vectorize 1244 CM_ScalarEpilogueNotAllowedUsePredicate 1245 }; 1246 1247 /// ElementCountComparator creates a total ordering for ElementCount 1248 /// for the purposes of using it in a set structure. 1249 struct ElementCountComparator { 1250 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1251 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1252 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1253 } 1254 }; 1255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1256 1257 /// LoopVectorizationCostModel - estimates the expected speedups due to 1258 /// vectorization. 1259 /// In many cases vectorization is not profitable. This can happen because of 1260 /// a number of reasons. In this class we mainly attempt to predict the 1261 /// expected speedup/slowdowns due to the supported instruction set. We use the 1262 /// TargetTransformInfo to query the different backends for the cost of 1263 /// different operations. 1264 class LoopVectorizationCostModel { 1265 public: 1266 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1267 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1268 LoopVectorizationLegality *Legal, 1269 const TargetTransformInfo &TTI, 1270 const TargetLibraryInfo *TLI, DemandedBits *DB, 1271 AssumptionCache *AC, 1272 OptimizationRemarkEmitter *ORE, const Function *F, 1273 const LoopVectorizeHints *Hints, 1274 InterleavedAccessInfo &IAI) 1275 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1276 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1277 Hints(Hints), InterleaveInfo(IAI) {} 1278 1279 /// \return An upper bound for the vectorization factors (both fixed and 1280 /// scalable). If the factors are 0, vectorization and interleaving should be 1281 /// avoided up front. 1282 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1283 1284 /// \return True if runtime checks are required for vectorization, and false 1285 /// otherwise. 1286 bool runtimeChecksRequired(); 1287 1288 /// \return The most profitable vectorization factor and the cost of that VF. 1289 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1290 /// then this vectorization factor will be selected if vectorization is 1291 /// possible. 1292 VectorizationFactor 1293 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1294 1295 VectorizationFactor 1296 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1297 const LoopVectorizationPlanner &LVP); 1298 1299 /// Setup cost-based decisions for user vectorization factor. 1300 /// \return true if the UserVF is a feasible VF to be chosen. 1301 bool selectUserVectorizationFactor(ElementCount UserVF) { 1302 collectUniformsAndScalars(UserVF); 1303 collectInstsToScalarize(UserVF); 1304 return expectedCost(UserVF).first.isValid(); 1305 } 1306 1307 /// \return The size (in bits) of the smallest and widest types in the code 1308 /// that needs to be vectorized. We ignore values that remain scalar such as 1309 /// 64 bit loop indices. 1310 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1311 1312 /// \return The desired interleave count. 1313 /// If interleave count has been specified by metadata it will be returned. 1314 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1315 /// are the selected vectorization factor and the cost of the selected VF. 1316 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1317 1318 /// Memory access instruction may be vectorized in more than one way. 1319 /// Form of instruction after vectorization depends on cost. 1320 /// This function takes cost-based decisions for Load/Store instructions 1321 /// and collects them in a map. This decisions map is used for building 1322 /// the lists of loop-uniform and loop-scalar instructions. 1323 /// The calculated cost is saved with widening decision in order to 1324 /// avoid redundant calculations. 1325 void setCostBasedWideningDecision(ElementCount VF); 1326 1327 /// A struct that represents some properties of the register usage 1328 /// of a loop. 1329 struct RegisterUsage { 1330 /// Holds the number of loop invariant values that are used in the loop. 1331 /// The key is ClassID of target-provided register class. 1332 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1333 /// Holds the maximum number of concurrent live intervals in the loop. 1334 /// The key is ClassID of target-provided register class. 1335 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1336 }; 1337 1338 /// \return Returns information about the register usages of the loop for the 1339 /// given vectorization factors. 1340 SmallVector<RegisterUsage, 8> 1341 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1342 1343 /// Collect values we want to ignore in the cost model. 1344 void collectValuesToIgnore(); 1345 1346 /// Collect all element types in the loop for which widening is needed. 1347 void collectElementTypesForWidening(); 1348 1349 /// Split reductions into those that happen in the loop, and those that happen 1350 /// outside. In loop reductions are collected into InLoopReductionChains. 1351 void collectInLoopReductions(); 1352 1353 /// Returns true if we should use strict in-order reductions for the given 1354 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1355 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1356 /// of FP operations. 1357 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1358 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1359 } 1360 1361 /// \returns The smallest bitwidth each instruction can be represented with. 1362 /// The vector equivalents of these instructions should be truncated to this 1363 /// type. 1364 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1365 return MinBWs; 1366 } 1367 1368 /// \returns True if it is more profitable to scalarize instruction \p I for 1369 /// vectorization factor \p VF. 1370 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1371 assert(VF.isVector() && 1372 "Profitable to scalarize relevant only for VF > 1."); 1373 1374 // Cost model is not run in the VPlan-native path - return conservative 1375 // result until this changes. 1376 if (EnableVPlanNativePath) 1377 return false; 1378 1379 auto Scalars = InstsToScalarize.find(VF); 1380 assert(Scalars != InstsToScalarize.end() && 1381 "VF not yet analyzed for scalarization profitability"); 1382 return Scalars->second.find(I) != Scalars->second.end(); 1383 } 1384 1385 /// Returns true if \p I is known to be uniform after vectorization. 1386 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1387 if (VF.isScalar()) 1388 return true; 1389 1390 // Cost model is not run in the VPlan-native path - return conservative 1391 // result until this changes. 1392 if (EnableVPlanNativePath) 1393 return false; 1394 1395 auto UniformsPerVF = Uniforms.find(VF); 1396 assert(UniformsPerVF != Uniforms.end() && 1397 "VF not yet analyzed for uniformity"); 1398 return UniformsPerVF->second.count(I); 1399 } 1400 1401 /// Returns true if \p I is known to be scalar after vectorization. 1402 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1403 if (VF.isScalar()) 1404 return true; 1405 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return false; 1410 1411 auto ScalarsPerVF = Scalars.find(VF); 1412 assert(ScalarsPerVF != Scalars.end() && 1413 "Scalar values are not calculated for VF"); 1414 return ScalarsPerVF->second.count(I); 1415 } 1416 1417 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1418 /// for vectorization factor \p VF. 1419 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1420 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1421 !isProfitableToScalarize(I, VF) && 1422 !isScalarAfterVectorization(I, VF); 1423 } 1424 1425 /// Decision that was taken during cost calculation for memory instruction. 1426 enum InstWidening { 1427 CM_Unknown, 1428 CM_Widen, // For consecutive accesses with stride +1. 1429 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1430 CM_Interleave, 1431 CM_GatherScatter, 1432 CM_Scalarize 1433 }; 1434 1435 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1436 /// instruction \p I and vector width \p VF. 1437 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1438 InstructionCost Cost) { 1439 assert(VF.isVector() && "Expected VF >=2"); 1440 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1441 } 1442 1443 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1444 /// interleaving group \p Grp and vector width \p VF. 1445 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1446 ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 /// Broadcast this decicion to all instructions inside the group. 1450 /// But the cost will be assigned to one instruction only. 1451 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1452 if (auto *I = Grp->getMember(i)) { 1453 if (Grp->getInsertPos() == I) 1454 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1455 else 1456 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1457 } 1458 } 1459 } 1460 1461 /// Return the cost model decision for the given instruction \p I and vector 1462 /// width \p VF. Return CM_Unknown if this instruction did not pass 1463 /// through the cost modeling. 1464 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1465 assert(VF.isVector() && "Expected VF to be a vector VF"); 1466 // Cost model is not run in the VPlan-native path - return conservative 1467 // result until this changes. 1468 if (EnableVPlanNativePath) 1469 return CM_GatherScatter; 1470 1471 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1472 auto Itr = WideningDecisions.find(InstOnVF); 1473 if (Itr == WideningDecisions.end()) 1474 return CM_Unknown; 1475 return Itr->second.first; 1476 } 1477 1478 /// Return the vectorization cost for the given instruction \p I and vector 1479 /// width \p VF. 1480 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1481 assert(VF.isVector() && "Expected VF >=2"); 1482 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1483 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1484 "The cost is not calculated"); 1485 return WideningDecisions[InstOnVF].second; 1486 } 1487 1488 /// Return True if instruction \p I is an optimizable truncate whose operand 1489 /// is an induction variable. Such a truncate will be removed by adding a new 1490 /// induction variable with the destination type. 1491 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1492 // If the instruction is not a truncate, return false. 1493 auto *Trunc = dyn_cast<TruncInst>(I); 1494 if (!Trunc) 1495 return false; 1496 1497 // Get the source and destination types of the truncate. 1498 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1499 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1500 1501 // If the truncate is free for the given types, return false. Replacing a 1502 // free truncate with an induction variable would add an induction variable 1503 // update instruction to each iteration of the loop. We exclude from this 1504 // check the primary induction variable since it will need an update 1505 // instruction regardless. 1506 Value *Op = Trunc->getOperand(0); 1507 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1508 return false; 1509 1510 // If the truncated value is not an induction variable, return false. 1511 return Legal->isInductionPhi(Op); 1512 } 1513 1514 /// Collects the instructions to scalarize for each predicated instruction in 1515 /// the loop. 1516 void collectInstsToScalarize(ElementCount VF); 1517 1518 /// Collect Uniform and Scalar values for the given \p VF. 1519 /// The sets depend on CM decision for Load/Store instructions 1520 /// that may be vectorized as interleave, gather-scatter or scalarized. 1521 void collectUniformsAndScalars(ElementCount VF) { 1522 // Do the analysis once. 1523 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1524 return; 1525 setCostBasedWideningDecision(VF); 1526 collectLoopUniforms(VF); 1527 collectLoopScalars(VF); 1528 } 1529 1530 /// Returns true if the target machine supports masked store operation 1531 /// for the given \p DataType and kind of access to \p Ptr. 1532 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1533 return Legal->isConsecutivePtr(DataType, Ptr) && 1534 TTI.isLegalMaskedStore(DataType, Alignment); 1535 } 1536 1537 /// Returns true if the target machine supports masked load operation 1538 /// for the given \p DataType and kind of access to \p Ptr. 1539 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1540 return Legal->isConsecutivePtr(DataType, Ptr) && 1541 TTI.isLegalMaskedLoad(DataType, Alignment); 1542 } 1543 1544 /// Returns true if the target machine can represent \p V as a masked gather 1545 /// or scatter operation. 1546 bool isLegalGatherOrScatter(Value *V, 1547 ElementCount VF = ElementCount::getFixed(1)) { 1548 bool LI = isa<LoadInst>(V); 1549 bool SI = isa<StoreInst>(V); 1550 if (!LI && !SI) 1551 return false; 1552 auto *Ty = getLoadStoreType(V); 1553 Align Align = getLoadStoreAlignment(V); 1554 if (VF.isVector()) 1555 Ty = VectorType::get(Ty, VF); 1556 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1557 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1558 } 1559 1560 /// Returns true if the target machine supports all of the reduction 1561 /// variables found for the given VF. 1562 bool canVectorizeReductions(ElementCount VF) const { 1563 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1564 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1565 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1566 })); 1567 } 1568 1569 /// Returns true if \p I is an instruction that will be scalarized with 1570 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1571 /// instructions include conditional stores and instructions that may divide 1572 /// by zero. 1573 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1574 1575 // Returns true if \p I is an instruction that will be predicated either 1576 // through scalar predication or masked load/store or masked gather/scatter. 1577 // \p VF is the vectorization factor that will be used to vectorize \p I. 1578 // Superset of instructions that return true for isScalarWithPredication. 1579 bool isPredicatedInst(Instruction *I, ElementCount VF, 1580 bool IsKnownUniform = false) { 1581 // When we know the load is uniform and the original scalar loop was not 1582 // predicated we don't need to mark it as a predicated instruction. Any 1583 // vectorised blocks created when tail-folding are something artificial we 1584 // have introduced and we know there is always at least one active lane. 1585 // That's why we call Legal->blockNeedsPredication here because it doesn't 1586 // query tail-folding. 1587 if (IsKnownUniform && isa<LoadInst>(I) && 1588 !Legal->blockNeedsPredication(I->getParent())) 1589 return false; 1590 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1591 return false; 1592 // Loads and stores that need some form of masked operation are predicated 1593 // instructions. 1594 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1595 return Legal->isMaskRequired(I); 1596 return isScalarWithPredication(I, VF); 1597 } 1598 1599 /// Returns true if \p I is a memory instruction with consecutive memory 1600 /// access that can be widened. 1601 bool 1602 memoryInstructionCanBeWidened(Instruction *I, 1603 ElementCount VF = ElementCount::getFixed(1)); 1604 1605 /// Returns true if \p I is a memory instruction in an interleaved-group 1606 /// of memory accesses that can be vectorized with wide vector loads/stores 1607 /// and shuffles. 1608 bool 1609 interleavedAccessCanBeWidened(Instruction *I, 1610 ElementCount VF = ElementCount::getFixed(1)); 1611 1612 /// Check if \p Instr belongs to any interleaved access group. 1613 bool isAccessInterleaved(Instruction *Instr) { 1614 return InterleaveInfo.isInterleaved(Instr); 1615 } 1616 1617 /// Get the interleaved access group that \p Instr belongs to. 1618 const InterleaveGroup<Instruction> * 1619 getInterleavedAccessGroup(Instruction *Instr) { 1620 return InterleaveInfo.getInterleaveGroup(Instr); 1621 } 1622 1623 /// Returns true if we're required to use a scalar epilogue for at least 1624 /// the final iteration of the original loop. 1625 bool requiresScalarEpilogue(ElementCount VF) const { 1626 if (!isScalarEpilogueAllowed()) 1627 return false; 1628 // If we might exit from anywhere but the latch, must run the exiting 1629 // iteration in scalar form. 1630 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1631 return true; 1632 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1633 } 1634 1635 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1636 /// loop hint annotation. 1637 bool isScalarEpilogueAllowed() const { 1638 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1639 } 1640 1641 /// Returns true if all loop blocks should be masked to fold tail loop. 1642 bool foldTailByMasking() const { return FoldTailByMasking; } 1643 1644 /// Returns true if the instructions in this block requires predication 1645 /// for any reason, e.g. because tail folding now requires a predicate 1646 /// or because the block in the original loop was predicated. 1647 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1648 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1649 } 1650 1651 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1652 /// nodes to the chain of instructions representing the reductions. Uses a 1653 /// MapVector to ensure deterministic iteration order. 1654 using ReductionChainMap = 1655 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1656 1657 /// Return the chain of instructions representing an inloop reduction. 1658 const ReductionChainMap &getInLoopReductionChains() const { 1659 return InLoopReductionChains; 1660 } 1661 1662 /// Returns true if the Phi is part of an inloop reduction. 1663 bool isInLoopReduction(PHINode *Phi) const { 1664 return InLoopReductionChains.count(Phi); 1665 } 1666 1667 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1668 /// with factor VF. Return the cost of the instruction, including 1669 /// scalarization overhead if it's needed. 1670 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1671 1672 /// Estimate cost of a call instruction CI if it were vectorized with factor 1673 /// VF. Return the cost of the instruction, including scalarization overhead 1674 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1675 /// scalarized - 1676 /// i.e. either vector version isn't available, or is too expensive. 1677 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1678 bool &NeedToScalarize) const; 1679 1680 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1681 /// that of B. 1682 bool isMoreProfitable(const VectorizationFactor &A, 1683 const VectorizationFactor &B) const; 1684 1685 /// Invalidates decisions already taken by the cost model. 1686 void invalidateCostModelingDecisions() { 1687 WideningDecisions.clear(); 1688 Uniforms.clear(); 1689 Scalars.clear(); 1690 } 1691 1692 private: 1693 unsigned NumPredStores = 0; 1694 1695 /// \return An upper bound for the vectorization factors for both 1696 /// fixed and scalable vectorization, where the minimum-known number of 1697 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1698 /// disabled or unsupported, then the scalable part will be equal to 1699 /// ElementCount::getScalable(0). 1700 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1701 ElementCount UserVF, 1702 bool FoldTailByMasking); 1703 1704 /// \return the maximized element count based on the targets vector 1705 /// registers and the loop trip-count, but limited to a maximum safe VF. 1706 /// This is a helper function of computeFeasibleMaxVF. 1707 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1708 /// issue that occurred on one of the buildbots which cannot be reproduced 1709 /// without having access to the properietary compiler (see comments on 1710 /// D98509). The issue is currently under investigation and this workaround 1711 /// will be removed as soon as possible. 1712 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1713 unsigned SmallestType, 1714 unsigned WidestType, 1715 const ElementCount &MaxSafeVF, 1716 bool FoldTailByMasking); 1717 1718 /// \return the maximum legal scalable VF, based on the safe max number 1719 /// of elements. 1720 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1721 1722 /// The vectorization cost is a combination of the cost itself and a boolean 1723 /// indicating whether any of the contributing operations will actually 1724 /// operate on vector values after type legalization in the backend. If this 1725 /// latter value is false, then all operations will be scalarized (i.e. no 1726 /// vectorization has actually taken place). 1727 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1728 1729 /// Returns the expected execution cost. The unit of the cost does 1730 /// not matter because we use the 'cost' units to compare different 1731 /// vector widths. The cost that is returned is *not* normalized by 1732 /// the factor width. If \p Invalid is not nullptr, this function 1733 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1734 /// each instruction that has an Invalid cost for the given VF. 1735 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1736 VectorizationCostTy 1737 expectedCost(ElementCount VF, 1738 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1739 1740 /// Returns the execution time cost of an instruction for a given vector 1741 /// width. Vector width of one means scalar. 1742 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1743 1744 /// The cost-computation logic from getInstructionCost which provides 1745 /// the vector type as an output parameter. 1746 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1747 Type *&VectorTy); 1748 1749 /// Return the cost of instructions in an inloop reduction pattern, if I is 1750 /// part of that pattern. 1751 Optional<InstructionCost> 1752 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1753 TTI::TargetCostKind CostKind); 1754 1755 /// Calculate vectorization cost of memory instruction \p I. 1756 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1757 1758 /// The cost computation for scalarized memory instruction. 1759 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1760 1761 /// The cost computation for interleaving group of memory instructions. 1762 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1763 1764 /// The cost computation for Gather/Scatter instruction. 1765 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for widening instruction \p I with consecutive 1768 /// memory access. 1769 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1770 1771 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1772 /// Load: scalar load + broadcast. 1773 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1774 /// element) 1775 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1776 1777 /// Estimate the overhead of scalarizing an instruction. This is a 1778 /// convenience wrapper for the type-based getScalarizationOverhead API. 1779 InstructionCost getScalarizationOverhead(Instruction *I, 1780 ElementCount VF) const; 1781 1782 /// Returns whether the instruction is a load or store and will be a emitted 1783 /// as a vector operation. 1784 bool isConsecutiveLoadOrStore(Instruction *I); 1785 1786 /// Returns true if an artificially high cost for emulated masked memrefs 1787 /// should be used. 1788 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1789 1790 /// Map of scalar integer values to the smallest bitwidth they can be legally 1791 /// represented as. The vector equivalents of these values should be truncated 1792 /// to this type. 1793 MapVector<Instruction *, uint64_t> MinBWs; 1794 1795 /// A type representing the costs for instructions if they were to be 1796 /// scalarized rather than vectorized. The entries are Instruction-Cost 1797 /// pairs. 1798 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1799 1800 /// A set containing all BasicBlocks that are known to present after 1801 /// vectorization as a predicated block. 1802 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1803 1804 /// Records whether it is allowed to have the original scalar loop execute at 1805 /// least once. This may be needed as a fallback loop in case runtime 1806 /// aliasing/dependence checks fail, or to handle the tail/remainder 1807 /// iterations when the trip count is unknown or doesn't divide by the VF, 1808 /// or as a peel-loop to handle gaps in interleave-groups. 1809 /// Under optsize and when the trip count is very small we don't allow any 1810 /// iterations to execute in the scalar loop. 1811 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1812 1813 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1814 bool FoldTailByMasking = false; 1815 1816 /// A map holding scalar costs for different vectorization factors. The 1817 /// presence of a cost for an instruction in the mapping indicates that the 1818 /// instruction will be scalarized when vectorizing with the associated 1819 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1820 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1821 1822 /// Holds the instructions known to be uniform after vectorization. 1823 /// The data is collected per VF. 1824 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1825 1826 /// Holds the instructions known to be scalar after vectorization. 1827 /// The data is collected per VF. 1828 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1829 1830 /// Holds the instructions (address computations) that are forced to be 1831 /// scalarized. 1832 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1833 1834 /// PHINodes of the reductions that should be expanded in-loop along with 1835 /// their associated chains of reduction operations, in program order from top 1836 /// (PHI) to bottom 1837 ReductionChainMap InLoopReductionChains; 1838 1839 /// A Map of inloop reduction operations and their immediate chain operand. 1840 /// FIXME: This can be removed once reductions can be costed correctly in 1841 /// vplan. This was added to allow quick lookup to the inloop operations, 1842 /// without having to loop through InLoopReductionChains. 1843 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1844 1845 /// Returns the expected difference in cost from scalarizing the expression 1846 /// feeding a predicated instruction \p PredInst. The instructions to 1847 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1848 /// non-negative return value implies the expression will be scalarized. 1849 /// Currently, only single-use chains are considered for scalarization. 1850 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1851 ElementCount VF); 1852 1853 /// Collect the instructions that are uniform after vectorization. An 1854 /// instruction is uniform if we represent it with a single scalar value in 1855 /// the vectorized loop corresponding to each vector iteration. Examples of 1856 /// uniform instructions include pointer operands of consecutive or 1857 /// interleaved memory accesses. Note that although uniformity implies an 1858 /// instruction will be scalar, the reverse is not true. In general, a 1859 /// scalarized instruction will be represented by VF scalar values in the 1860 /// vectorized loop, each corresponding to an iteration of the original 1861 /// scalar loop. 1862 void collectLoopUniforms(ElementCount VF); 1863 1864 /// Collect the instructions that are scalar after vectorization. An 1865 /// instruction is scalar if it is known to be uniform or will be scalarized 1866 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1867 /// to the list if they are used by a load/store instruction that is marked as 1868 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1869 /// VF values in the vectorized loop, each corresponding to an iteration of 1870 /// the original scalar loop. 1871 void collectLoopScalars(ElementCount VF); 1872 1873 /// Keeps cost model vectorization decision and cost for instructions. 1874 /// Right now it is used for memory instructions only. 1875 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1876 std::pair<InstWidening, InstructionCost>>; 1877 1878 DecisionList WideningDecisions; 1879 1880 /// Returns true if \p V is expected to be vectorized and it needs to be 1881 /// extracted. 1882 bool needsExtract(Value *V, ElementCount VF) const { 1883 Instruction *I = dyn_cast<Instruction>(V); 1884 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1885 TheLoop->isLoopInvariant(I)) 1886 return false; 1887 1888 // Assume we can vectorize V (and hence we need extraction) if the 1889 // scalars are not computed yet. This can happen, because it is called 1890 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1891 // the scalars are collected. That should be a safe assumption in most 1892 // cases, because we check if the operands have vectorizable types 1893 // beforehand in LoopVectorizationLegality. 1894 return Scalars.find(VF) == Scalars.end() || 1895 !isScalarAfterVectorization(I, VF); 1896 }; 1897 1898 /// Returns a range containing only operands needing to be extracted. 1899 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1900 ElementCount VF) const { 1901 return SmallVector<Value *, 4>(make_filter_range( 1902 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1903 } 1904 1905 /// Determines if we have the infrastructure to vectorize loop \p L and its 1906 /// epilogue, assuming the main loop is vectorized by \p VF. 1907 bool isCandidateForEpilogueVectorization(const Loop &L, 1908 const ElementCount VF) const; 1909 1910 /// Returns true if epilogue vectorization is considered profitable, and 1911 /// false otherwise. 1912 /// \p VF is the vectorization factor chosen for the original loop. 1913 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1914 1915 public: 1916 /// The loop that we evaluate. 1917 Loop *TheLoop; 1918 1919 /// Predicated scalar evolution analysis. 1920 PredicatedScalarEvolution &PSE; 1921 1922 /// Loop Info analysis. 1923 LoopInfo *LI; 1924 1925 /// Vectorization legality. 1926 LoopVectorizationLegality *Legal; 1927 1928 /// Vector target information. 1929 const TargetTransformInfo &TTI; 1930 1931 /// Target Library Info. 1932 const TargetLibraryInfo *TLI; 1933 1934 /// Demanded bits analysis. 1935 DemandedBits *DB; 1936 1937 /// Assumption cache. 1938 AssumptionCache *AC; 1939 1940 /// Interface to emit optimization remarks. 1941 OptimizationRemarkEmitter *ORE; 1942 1943 const Function *TheFunction; 1944 1945 /// Loop Vectorize Hint. 1946 const LoopVectorizeHints *Hints; 1947 1948 /// The interleave access information contains groups of interleaved accesses 1949 /// with the same stride and close to each other. 1950 InterleavedAccessInfo &InterleaveInfo; 1951 1952 /// Values to ignore in the cost model. 1953 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1954 1955 /// Values to ignore in the cost model when VF > 1. 1956 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1957 1958 /// All element types found in the loop. 1959 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1960 1961 /// Profitable vector factors. 1962 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1963 }; 1964 } // end namespace llvm 1965 1966 /// Helper struct to manage generating runtime checks for vectorization. 1967 /// 1968 /// The runtime checks are created up-front in temporary blocks to allow better 1969 /// estimating the cost and un-linked from the existing IR. After deciding to 1970 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1971 /// temporary blocks are completely removed. 1972 class GeneratedRTChecks { 1973 /// Basic block which contains the generated SCEV checks, if any. 1974 BasicBlock *SCEVCheckBlock = nullptr; 1975 1976 /// The value representing the result of the generated SCEV checks. If it is 1977 /// nullptr, either no SCEV checks have been generated or they have been used. 1978 Value *SCEVCheckCond = nullptr; 1979 1980 /// Basic block which contains the generated memory runtime checks, if any. 1981 BasicBlock *MemCheckBlock = nullptr; 1982 1983 /// The value representing the result of the generated memory runtime checks. 1984 /// If it is nullptr, either no memory runtime checks have been generated or 1985 /// they have been used. 1986 Value *MemRuntimeCheckCond = nullptr; 1987 1988 DominatorTree *DT; 1989 LoopInfo *LI; 1990 1991 SCEVExpander SCEVExp; 1992 SCEVExpander MemCheckExp; 1993 1994 public: 1995 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1996 const DataLayout &DL) 1997 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1998 MemCheckExp(SE, DL, "scev.check") {} 1999 2000 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2001 /// accurately estimate the cost of the runtime checks. The blocks are 2002 /// un-linked from the IR and is added back during vector code generation. If 2003 /// there is no vector code generation, the check blocks are removed 2004 /// completely. 2005 void Create(Loop *L, const LoopAccessInfo &LAI, 2006 const SCEVUnionPredicate &UnionPred) { 2007 2008 BasicBlock *LoopHeader = L->getHeader(); 2009 BasicBlock *Preheader = L->getLoopPreheader(); 2010 2011 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2012 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2013 // may be used by SCEVExpander. The blocks will be un-linked from their 2014 // predecessors and removed from LI & DT at the end of the function. 2015 if (!UnionPred.isAlwaysTrue()) { 2016 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2017 nullptr, "vector.scevcheck"); 2018 2019 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2020 &UnionPred, SCEVCheckBlock->getTerminator()); 2021 } 2022 2023 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2024 if (RtPtrChecking.Need) { 2025 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2026 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2027 "vector.memcheck"); 2028 2029 MemRuntimeCheckCond = 2030 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2031 RtPtrChecking.getChecks(), MemCheckExp); 2032 assert(MemRuntimeCheckCond && 2033 "no RT checks generated although RtPtrChecking " 2034 "claimed checks are required"); 2035 } 2036 2037 if (!MemCheckBlock && !SCEVCheckBlock) 2038 return; 2039 2040 // Unhook the temporary block with the checks, update various places 2041 // accordingly. 2042 if (SCEVCheckBlock) 2043 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2044 if (MemCheckBlock) 2045 MemCheckBlock->replaceAllUsesWith(Preheader); 2046 2047 if (SCEVCheckBlock) { 2048 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2049 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2050 Preheader->getTerminator()->eraseFromParent(); 2051 } 2052 if (MemCheckBlock) { 2053 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2054 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2055 Preheader->getTerminator()->eraseFromParent(); 2056 } 2057 2058 DT->changeImmediateDominator(LoopHeader, Preheader); 2059 if (MemCheckBlock) { 2060 DT->eraseNode(MemCheckBlock); 2061 LI->removeBlock(MemCheckBlock); 2062 } 2063 if (SCEVCheckBlock) { 2064 DT->eraseNode(SCEVCheckBlock); 2065 LI->removeBlock(SCEVCheckBlock); 2066 } 2067 } 2068 2069 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2070 /// unused. 2071 ~GeneratedRTChecks() { 2072 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2073 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2074 if (!SCEVCheckCond) 2075 SCEVCleaner.markResultUsed(); 2076 2077 if (!MemRuntimeCheckCond) 2078 MemCheckCleaner.markResultUsed(); 2079 2080 if (MemRuntimeCheckCond) { 2081 auto &SE = *MemCheckExp.getSE(); 2082 // Memory runtime check generation creates compares that use expanded 2083 // values. Remove them before running the SCEVExpanderCleaners. 2084 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2085 if (MemCheckExp.isInsertedInstruction(&I)) 2086 continue; 2087 SE.forgetValue(&I); 2088 I.eraseFromParent(); 2089 } 2090 } 2091 MemCheckCleaner.cleanup(); 2092 SCEVCleaner.cleanup(); 2093 2094 if (SCEVCheckCond) 2095 SCEVCheckBlock->eraseFromParent(); 2096 if (MemRuntimeCheckCond) 2097 MemCheckBlock->eraseFromParent(); 2098 } 2099 2100 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2101 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2102 /// depending on the generated condition. 2103 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2104 BasicBlock *LoopVectorPreHeader, 2105 BasicBlock *LoopExitBlock) { 2106 if (!SCEVCheckCond) 2107 return nullptr; 2108 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2109 if (C->isZero()) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 2114 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2115 // Create new preheader for vector loop. 2116 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2117 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2118 2119 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2120 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2121 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2122 SCEVCheckBlock); 2123 2124 DT->addNewBlock(SCEVCheckBlock, Pred); 2125 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2126 2127 ReplaceInstWithInst( 2128 SCEVCheckBlock->getTerminator(), 2129 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2130 // Mark the check as used, to prevent it from being removed during cleanup. 2131 SCEVCheckCond = nullptr; 2132 return SCEVCheckBlock; 2133 } 2134 2135 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2136 /// the branches to branch to the vector preheader or \p Bypass, depending on 2137 /// the generated condition. 2138 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2139 BasicBlock *LoopVectorPreHeader) { 2140 // Check if we generated code that checks in runtime if arrays overlap. 2141 if (!MemRuntimeCheckCond) 2142 return nullptr; 2143 2144 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2145 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2146 MemCheckBlock); 2147 2148 DT->addNewBlock(MemCheckBlock, Pred); 2149 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2150 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2151 2152 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2153 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2154 2155 ReplaceInstWithInst( 2156 MemCheckBlock->getTerminator(), 2157 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2158 MemCheckBlock->getTerminator()->setDebugLoc( 2159 Pred->getTerminator()->getDebugLoc()); 2160 2161 // Mark the check as used, to prevent it from being removed during cleanup. 2162 MemRuntimeCheckCond = nullptr; 2163 return MemCheckBlock; 2164 } 2165 }; 2166 2167 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2168 // vectorization. The loop needs to be annotated with #pragma omp simd 2169 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2170 // vector length information is not provided, vectorization is not considered 2171 // explicit. Interleave hints are not allowed either. These limitations will be 2172 // relaxed in the future. 2173 // Please, note that we are currently forced to abuse the pragma 'clang 2174 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2175 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2176 // provides *explicit vectorization hints* (LV can bypass legal checks and 2177 // assume that vectorization is legal). However, both hints are implemented 2178 // using the same metadata (llvm.loop.vectorize, processed by 2179 // LoopVectorizeHints). This will be fixed in the future when the native IR 2180 // representation for pragma 'omp simd' is introduced. 2181 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2182 OptimizationRemarkEmitter *ORE) { 2183 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2184 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2185 2186 // Only outer loops with an explicit vectorization hint are supported. 2187 // Unannotated outer loops are ignored. 2188 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2189 return false; 2190 2191 Function *Fn = OuterLp->getHeader()->getParent(); 2192 if (!Hints.allowVectorization(Fn, OuterLp, 2193 true /*VectorizeOnlyWhenForced*/)) { 2194 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2195 return false; 2196 } 2197 2198 if (Hints.getInterleave() > 1) { 2199 // TODO: Interleave support is future work. 2200 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2201 "outer loops.\n"); 2202 Hints.emitRemarkWithHints(); 2203 return false; 2204 } 2205 2206 return true; 2207 } 2208 2209 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2210 OptimizationRemarkEmitter *ORE, 2211 SmallVectorImpl<Loop *> &V) { 2212 // Collect inner loops and outer loops without irreducible control flow. For 2213 // now, only collect outer loops that have explicit vectorization hints. If we 2214 // are stress testing the VPlan H-CFG construction, we collect the outermost 2215 // loop of every loop nest. 2216 if (L.isInnermost() || VPlanBuildStressTest || 2217 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2218 LoopBlocksRPO RPOT(&L); 2219 RPOT.perform(LI); 2220 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2221 V.push_back(&L); 2222 // TODO: Collect inner loops inside marked outer loops in case 2223 // vectorization fails for the outer loop. Do not invoke 2224 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2225 // already known to be reducible. We can use an inherited attribute for 2226 // that. 2227 return; 2228 } 2229 } 2230 for (Loop *InnerL : L) 2231 collectSupportedLoops(*InnerL, LI, ORE, V); 2232 } 2233 2234 namespace { 2235 2236 /// The LoopVectorize Pass. 2237 struct LoopVectorize : public FunctionPass { 2238 /// Pass identification, replacement for typeid 2239 static char ID; 2240 2241 LoopVectorizePass Impl; 2242 2243 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2244 bool VectorizeOnlyWhenForced = false) 2245 : FunctionPass(ID), 2246 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2247 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2248 } 2249 2250 bool runOnFunction(Function &F) override { 2251 if (skipFunction(F)) 2252 return false; 2253 2254 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2255 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2256 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2257 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2258 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2259 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2260 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2261 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2262 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2263 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2264 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2265 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2266 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2267 2268 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2269 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2270 2271 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2272 GetLAA, *ORE, PSI).MadeAnyChange; 2273 } 2274 2275 void getAnalysisUsage(AnalysisUsage &AU) const override { 2276 AU.addRequired<AssumptionCacheTracker>(); 2277 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2278 AU.addRequired<DominatorTreeWrapperPass>(); 2279 AU.addRequired<LoopInfoWrapperPass>(); 2280 AU.addRequired<ScalarEvolutionWrapperPass>(); 2281 AU.addRequired<TargetTransformInfoWrapperPass>(); 2282 AU.addRequired<AAResultsWrapperPass>(); 2283 AU.addRequired<LoopAccessLegacyAnalysis>(); 2284 AU.addRequired<DemandedBitsWrapperPass>(); 2285 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2286 AU.addRequired<InjectTLIMappingsLegacy>(); 2287 2288 // We currently do not preserve loopinfo/dominator analyses with outer loop 2289 // vectorization. Until this is addressed, mark these analyses as preserved 2290 // only for non-VPlan-native path. 2291 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2292 if (!EnableVPlanNativePath) { 2293 AU.addPreserved<LoopInfoWrapperPass>(); 2294 AU.addPreserved<DominatorTreeWrapperPass>(); 2295 } 2296 2297 AU.addPreserved<BasicAAWrapperPass>(); 2298 AU.addPreserved<GlobalsAAWrapperPass>(); 2299 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2300 } 2301 }; 2302 2303 } // end anonymous namespace 2304 2305 //===----------------------------------------------------------------------===// 2306 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2307 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2308 //===----------------------------------------------------------------------===// 2309 2310 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2311 // We need to place the broadcast of invariant variables outside the loop, 2312 // but only if it's proven safe to do so. Else, broadcast will be inside 2313 // vector loop body. 2314 Instruction *Instr = dyn_cast<Instruction>(V); 2315 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2316 (!Instr || 2317 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2318 // Place the code for broadcasting invariant variables in the new preheader. 2319 IRBuilder<>::InsertPointGuard Guard(Builder); 2320 if (SafeToHoist) 2321 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2322 2323 // Broadcast the scalar into all locations in the vector. 2324 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2325 2326 return Shuf; 2327 } 2328 2329 /// This function adds 2330 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2331 /// to each vector element of Val. The sequence starts at StartIndex. 2332 /// \p Opcode is relevant for FP induction variable. 2333 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2334 Instruction::BinaryOps BinOp, ElementCount VF, 2335 IRBuilder<> &Builder) { 2336 if (VF.isScalar()) { 2337 // When unrolling and the VF is 1, we only need to add a simple scalar. 2338 Type *Ty = Val->getType(); 2339 assert(!Ty->isVectorTy() && "Val must be a scalar"); 2340 2341 if (Ty->isFloatingPointTy()) { 2342 // Floating-point operations inherit FMF via the builder's flags. 2343 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 2344 return Builder.CreateBinOp(BinOp, Val, MulOp); 2345 } 2346 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), 2347 "induction"); 2348 } 2349 2350 // Create and check the types. 2351 auto *ValVTy = cast<VectorType>(Val->getType()); 2352 ElementCount VLen = ValVTy->getElementCount(); 2353 2354 Type *STy = Val->getType()->getScalarType(); 2355 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2356 "Induction Step must be an integer or FP"); 2357 assert(Step->getType() == STy && "Step has wrong type"); 2358 2359 SmallVector<Constant *, 8> Indices; 2360 2361 // Create a vector of consecutive numbers from zero to VF. 2362 VectorType *InitVecValVTy = ValVTy; 2363 Type *InitVecValSTy = STy; 2364 if (STy->isFloatingPointTy()) { 2365 InitVecValSTy = 2366 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2367 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2368 } 2369 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2370 2371 // Splat the StartIdx 2372 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2373 2374 if (STy->isIntegerTy()) { 2375 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2376 Step = Builder.CreateVectorSplat(VLen, Step); 2377 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2378 // FIXME: The newly created binary instructions should contain nsw/nuw 2379 // flags, which can be found from the original scalar operations. 2380 Step = Builder.CreateMul(InitVec, Step); 2381 return Builder.CreateAdd(Val, Step, "induction"); 2382 } 2383 2384 // Floating point induction. 2385 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2386 "Binary Opcode should be specified for FP induction"); 2387 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2388 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2389 2390 Step = Builder.CreateVectorSplat(VLen, Step); 2391 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2392 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2393 } 2394 2395 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2396 const InductionDescriptor &II, Value *Step, Value *Start, 2397 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2398 IRBuilder<> &Builder = State.Builder; 2399 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2400 "Expected either an induction phi-node or a truncate of it!"); 2401 2402 // Construct the initial value of the vector IV in the vector loop preheader 2403 auto CurrIP = Builder.saveIP(); 2404 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2405 if (isa<TruncInst>(EntryVal)) { 2406 assert(Start->getType()->isIntegerTy() && 2407 "Truncation requires an integer type"); 2408 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2409 Step = Builder.CreateTrunc(Step, TruncType); 2410 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2411 } 2412 2413 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2414 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2415 Value *SteppedStart = getStepVector( 2416 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2417 2418 // We create vector phi nodes for both integer and floating-point induction 2419 // variables. Here, we determine the kind of arithmetic we will perform. 2420 Instruction::BinaryOps AddOp; 2421 Instruction::BinaryOps MulOp; 2422 if (Step->getType()->isIntegerTy()) { 2423 AddOp = Instruction::Add; 2424 MulOp = Instruction::Mul; 2425 } else { 2426 AddOp = II.getInductionOpcode(); 2427 MulOp = Instruction::FMul; 2428 } 2429 2430 // Multiply the vectorization factor by the step using integer or 2431 // floating-point arithmetic as appropriate. 2432 Type *StepType = Step->getType(); 2433 Value *RuntimeVF; 2434 if (Step->getType()->isFloatingPointTy()) 2435 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2436 else 2437 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2438 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2439 2440 // Create a vector splat to use in the induction update. 2441 // 2442 // FIXME: If the step is non-constant, we create the vector splat with 2443 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2444 // handle a constant vector splat. 2445 Value *SplatVF = isa<Constant>(Mul) 2446 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2447 : Builder.CreateVectorSplat(State.VF, Mul); 2448 Builder.restoreIP(CurrIP); 2449 2450 // We may need to add the step a number of times, depending on the unroll 2451 // factor. The last of those goes into the PHI. 2452 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2453 &*LoopVectorBody->getFirstInsertionPt()); 2454 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2455 Instruction *LastInduction = VecInd; 2456 for (unsigned Part = 0; Part < UF; ++Part) { 2457 State.set(Def, LastInduction, Part); 2458 2459 if (isa<TruncInst>(EntryVal)) 2460 addMetadata(LastInduction, EntryVal); 2461 2462 LastInduction = cast<Instruction>( 2463 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2464 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2465 } 2466 2467 // Move the last step to the end of the latch block. This ensures consistent 2468 // placement of all induction updates. 2469 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2470 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2471 LastInduction->moveBefore(Br); 2472 LastInduction->setName("vec.ind.next"); 2473 2474 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2475 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2476 } 2477 2478 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2479 return Cost->isScalarAfterVectorization(I, VF) || 2480 Cost->isProfitableToScalarize(I, VF); 2481 } 2482 2483 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2484 if (shouldScalarizeInstruction(IV)) 2485 return true; 2486 auto isScalarInst = [&](User *U) -> bool { 2487 auto *I = cast<Instruction>(U); 2488 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2489 }; 2490 return llvm::any_of(IV->users(), isScalarInst); 2491 } 2492 2493 /// Returns true if \p ID starts at 0 and has a step of 1. 2494 static bool isCanonicalID(const InductionDescriptor &ID) { 2495 if (!ID.getConstIntStepValue() || !ID.getConstIntStepValue()->isOne()) 2496 return false; 2497 auto *StartC = dyn_cast<ConstantInt>(ID.getStartValue()); 2498 return StartC && StartC->isZero(); 2499 } 2500 2501 void InnerLoopVectorizer::widenIntOrFpInduction( 2502 PHINode *IV, const InductionDescriptor &ID, Value *Start, TruncInst *Trunc, 2503 VPValue *Def, VPTransformState &State, Value *CanonicalIV) { 2504 IRBuilder<> &Builder = State.Builder; 2505 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2506 assert(!State.VF.isZero() && "VF must be non-zero"); 2507 2508 // The value from the original loop to which we are mapping the new induction 2509 // variable. 2510 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2511 2512 auto &DL = EntryVal->getModule()->getDataLayout(); 2513 2514 // Generate code for the induction step. Note that induction steps are 2515 // required to be loop-invariant 2516 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2517 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2518 "Induction step should be loop invariant"); 2519 if (PSE.getSE()->isSCEVable(IV->getType())) { 2520 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2521 return Exp.expandCodeFor(Step, Step->getType(), 2522 State.CFG.VectorPreHeader->getTerminator()); 2523 } 2524 return cast<SCEVUnknown>(Step)->getValue(); 2525 }; 2526 2527 // The scalar value to broadcast. This is derived from the canonical 2528 // induction variable. If a truncation type is given, truncate the canonical 2529 // induction variable and step. Otherwise, derive these values from the 2530 // induction descriptor. 2531 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2532 Value *ScalarIV = CanonicalIV; 2533 Type *NeededType = IV->getType(); 2534 if (!isCanonicalID(ID) || ScalarIV->getType() != NeededType) { 2535 ScalarIV = 2536 NeededType->isIntegerTy() 2537 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2538 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2539 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2540 State.CFG.PrevBB); 2541 ScalarIV->setName("offset.idx"); 2542 } 2543 if (Trunc) { 2544 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2545 assert(Step->getType()->isIntegerTy() && 2546 "Truncation requires an integer step"); 2547 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2548 Step = Builder.CreateTrunc(Step, TruncType); 2549 } 2550 return ScalarIV; 2551 }; 2552 2553 // Create the vector values from the scalar IV, in the absence of creating a 2554 // vector IV. 2555 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2556 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2557 for (unsigned Part = 0; Part < UF; ++Part) { 2558 Value *StartIdx; 2559 if (Step->getType()->isFloatingPointTy()) 2560 StartIdx = 2561 getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part); 2562 else 2563 StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part); 2564 2565 Value *EntryPart = 2566 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(), 2567 State.VF, State.Builder); 2568 State.set(Def, EntryPart, Part); 2569 if (Trunc) 2570 addMetadata(EntryPart, Trunc); 2571 } 2572 }; 2573 2574 // Fast-math-flags propagate from the original induction instruction. 2575 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2576 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2577 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2578 2579 // Now do the actual transformations, and start with creating the step value. 2580 Value *Step = CreateStepValue(ID.getStep()); 2581 if (State.VF.isScalar()) { 2582 Value *ScalarIV = CreateScalarIV(Step); 2583 CreateSplatIV(ScalarIV, Step); 2584 return; 2585 } 2586 2587 // Determine if we want a scalar version of the induction variable. This is 2588 // true if the induction variable itself is not widened, or if it has at 2589 // least one user in the loop that is not widened. 2590 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2591 if (!NeedsScalarIV) { 2592 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2593 return; 2594 } 2595 2596 // Try to create a new independent vector induction variable. If we can't 2597 // create the phi node, we will splat the scalar induction variable in each 2598 // loop iteration. 2599 if (!shouldScalarizeInstruction(EntryVal)) { 2600 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2601 Value *ScalarIV = CreateScalarIV(Step); 2602 // Create scalar steps that can be used by instructions we will later 2603 // scalarize. Note that the addition of the scalar steps will not increase 2604 // the number of instructions in the loop in the common case prior to 2605 // InstCombine. We will be trading one vector extract for each scalar step. 2606 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2607 return; 2608 } 2609 2610 // All IV users are scalar instructions, so only emit a scalar IV, not a 2611 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2612 // predicate used by the masked loads/stores. 2613 Value *ScalarIV = CreateScalarIV(Step); 2614 if (!Cost->isScalarEpilogueAllowed()) 2615 CreateSplatIV(ScalarIV, Step); 2616 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2617 } 2618 2619 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2620 Instruction *EntryVal, 2621 const InductionDescriptor &ID, 2622 VPValue *Def, 2623 VPTransformState &State) { 2624 IRBuilder<> &Builder = State.Builder; 2625 // We shouldn't have to build scalar steps if we aren't vectorizing. 2626 assert(State.VF.isVector() && "VF should be greater than one"); 2627 // Get the value type and ensure it and the step have the same integer type. 2628 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2629 assert(ScalarIVTy == Step->getType() && 2630 "Val and Step should have the same type"); 2631 2632 // We build scalar steps for both integer and floating-point induction 2633 // variables. Here, we determine the kind of arithmetic we will perform. 2634 Instruction::BinaryOps AddOp; 2635 Instruction::BinaryOps MulOp; 2636 if (ScalarIVTy->isIntegerTy()) { 2637 AddOp = Instruction::Add; 2638 MulOp = Instruction::Mul; 2639 } else { 2640 AddOp = ID.getInductionOpcode(); 2641 MulOp = Instruction::FMul; 2642 } 2643 2644 // Determine the number of scalars we need to generate for each unroll 2645 // iteration. If EntryVal is uniform, we only need to generate the first 2646 // lane. Otherwise, we generate all VF values. 2647 bool IsUniform = 2648 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF); 2649 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 2650 // Compute the scalar steps and save the results in State. 2651 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2652 ScalarIVTy->getScalarSizeInBits()); 2653 Type *VecIVTy = nullptr; 2654 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2655 if (!IsUniform && State.VF.isScalable()) { 2656 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2657 UnitStepVec = 2658 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2659 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2660 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2661 } 2662 2663 for (unsigned Part = 0; Part < State.UF; ++Part) { 2664 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2665 2666 if (!IsUniform && State.VF.isScalable()) { 2667 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2668 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2669 if (ScalarIVTy->isFloatingPointTy()) 2670 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2671 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2672 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2673 State.set(Def, Add, Part); 2674 // It's useful to record the lane values too for the known minimum number 2675 // of elements so we do those below. This improves the code quality when 2676 // trying to extract the first element, for example. 2677 } 2678 2679 if (ScalarIVTy->isFloatingPointTy()) 2680 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2681 2682 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2683 Value *StartIdx = Builder.CreateBinOp( 2684 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2685 // The step returned by `createStepForVF` is a runtime-evaluated value 2686 // when VF is scalable. Otherwise, it should be folded into a Constant. 2687 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2688 "Expected StartIdx to be folded to a constant when VF is not " 2689 "scalable"); 2690 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2691 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2692 State.set(Def, Add, VPIteration(Part, Lane)); 2693 } 2694 } 2695 } 2696 2697 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2698 const VPIteration &Instance, 2699 VPTransformState &State) { 2700 Value *ScalarInst = State.get(Def, Instance); 2701 Value *VectorValue = State.get(Def, Instance.Part); 2702 VectorValue = Builder.CreateInsertElement( 2703 VectorValue, ScalarInst, 2704 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2705 State.set(Def, VectorValue, Instance.Part); 2706 } 2707 2708 // Return whether we allow using masked interleave-groups (for dealing with 2709 // strided loads/stores that reside in predicated blocks, or for dealing 2710 // with gaps). 2711 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2712 // If an override option has been passed in for interleaved accesses, use it. 2713 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2714 return EnableMaskedInterleavedMemAccesses; 2715 2716 return TTI.enableMaskedInterleavedAccessVectorization(); 2717 } 2718 2719 // Try to vectorize the interleave group that \p Instr belongs to. 2720 // 2721 // E.g. Translate following interleaved load group (factor = 3): 2722 // for (i = 0; i < N; i+=3) { 2723 // R = Pic[i]; // Member of index 0 2724 // G = Pic[i+1]; // Member of index 1 2725 // B = Pic[i+2]; // Member of index 2 2726 // ... // do something to R, G, B 2727 // } 2728 // To: 2729 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2730 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2731 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2732 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2733 // 2734 // Or translate following interleaved store group (factor = 3): 2735 // for (i = 0; i < N; i+=3) { 2736 // ... do something to R, G, B 2737 // Pic[i] = R; // Member of index 0 2738 // Pic[i+1] = G; // Member of index 1 2739 // Pic[i+2] = B; // Member of index 2 2740 // } 2741 // To: 2742 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2743 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2744 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2745 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2746 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2747 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2748 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2749 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2750 VPValue *BlockInMask) { 2751 Instruction *Instr = Group->getInsertPos(); 2752 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2753 2754 // Prepare for the vector type of the interleaved load/store. 2755 Type *ScalarTy = getLoadStoreType(Instr); 2756 unsigned InterleaveFactor = Group->getFactor(); 2757 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2758 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2759 2760 // Prepare for the new pointers. 2761 SmallVector<Value *, 2> AddrParts; 2762 unsigned Index = Group->getIndex(Instr); 2763 2764 // TODO: extend the masked interleaved-group support to reversed access. 2765 assert((!BlockInMask || !Group->isReverse()) && 2766 "Reversed masked interleave-group not supported."); 2767 2768 // If the group is reverse, adjust the index to refer to the last vector lane 2769 // instead of the first. We adjust the index from the first vector lane, 2770 // rather than directly getting the pointer for lane VF - 1, because the 2771 // pointer operand of the interleaved access is supposed to be uniform. For 2772 // uniform instructions, we're only required to generate a value for the 2773 // first vector lane in each unroll iteration. 2774 if (Group->isReverse()) 2775 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2776 2777 for (unsigned Part = 0; Part < UF; Part++) { 2778 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2779 setDebugLocFromInst(AddrPart); 2780 2781 // Notice current instruction could be any index. Need to adjust the address 2782 // to the member of index 0. 2783 // 2784 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2785 // b = A[i]; // Member of index 0 2786 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2787 // 2788 // E.g. A[i+1] = a; // Member of index 1 2789 // A[i] = b; // Member of index 0 2790 // A[i+2] = c; // Member of index 2 (Current instruction) 2791 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2792 2793 bool InBounds = false; 2794 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2795 InBounds = gep->isInBounds(); 2796 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2797 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2798 2799 // Cast to the vector pointer type. 2800 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2801 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2802 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2803 } 2804 2805 setDebugLocFromInst(Instr); 2806 Value *PoisonVec = PoisonValue::get(VecTy); 2807 2808 Value *MaskForGaps = nullptr; 2809 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2810 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2811 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2812 } 2813 2814 // Vectorize the interleaved load group. 2815 if (isa<LoadInst>(Instr)) { 2816 // For each unroll part, create a wide load for the group. 2817 SmallVector<Value *, 2> NewLoads; 2818 for (unsigned Part = 0; Part < UF; Part++) { 2819 Instruction *NewLoad; 2820 if (BlockInMask || MaskForGaps) { 2821 assert(useMaskedInterleavedAccesses(*TTI) && 2822 "masked interleaved groups are not allowed."); 2823 Value *GroupMask = MaskForGaps; 2824 if (BlockInMask) { 2825 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2826 Value *ShuffledMask = Builder.CreateShuffleVector( 2827 BlockInMaskPart, 2828 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2829 "interleaved.mask"); 2830 GroupMask = MaskForGaps 2831 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2832 MaskForGaps) 2833 : ShuffledMask; 2834 } 2835 NewLoad = 2836 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2837 GroupMask, PoisonVec, "wide.masked.vec"); 2838 } 2839 else 2840 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2841 Group->getAlign(), "wide.vec"); 2842 Group->addMetadata(NewLoad); 2843 NewLoads.push_back(NewLoad); 2844 } 2845 2846 // For each member in the group, shuffle out the appropriate data from the 2847 // wide loads. 2848 unsigned J = 0; 2849 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2850 Instruction *Member = Group->getMember(I); 2851 2852 // Skip the gaps in the group. 2853 if (!Member) 2854 continue; 2855 2856 auto StrideMask = 2857 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2858 for (unsigned Part = 0; Part < UF; Part++) { 2859 Value *StridedVec = Builder.CreateShuffleVector( 2860 NewLoads[Part], StrideMask, "strided.vec"); 2861 2862 // If this member has different type, cast the result type. 2863 if (Member->getType() != ScalarTy) { 2864 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2865 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2866 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2867 } 2868 2869 if (Group->isReverse()) 2870 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2871 2872 State.set(VPDefs[J], StridedVec, Part); 2873 } 2874 ++J; 2875 } 2876 return; 2877 } 2878 2879 // The sub vector type for current instruction. 2880 auto *SubVT = VectorType::get(ScalarTy, VF); 2881 2882 // Vectorize the interleaved store group. 2883 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2884 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2885 "masked interleaved groups are not allowed."); 2886 assert((!MaskForGaps || !VF.isScalable()) && 2887 "masking gaps for scalable vectors is not yet supported."); 2888 for (unsigned Part = 0; Part < UF; Part++) { 2889 // Collect the stored vector from each member. 2890 SmallVector<Value *, 4> StoredVecs; 2891 for (unsigned i = 0; i < InterleaveFactor; i++) { 2892 assert((Group->getMember(i) || MaskForGaps) && 2893 "Fail to get a member from an interleaved store group"); 2894 Instruction *Member = Group->getMember(i); 2895 2896 // Skip the gaps in the group. 2897 if (!Member) { 2898 Value *Undef = PoisonValue::get(SubVT); 2899 StoredVecs.push_back(Undef); 2900 continue; 2901 } 2902 2903 Value *StoredVec = State.get(StoredValues[i], Part); 2904 2905 if (Group->isReverse()) 2906 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2907 2908 // If this member has different type, cast it to a unified type. 2909 2910 if (StoredVec->getType() != SubVT) 2911 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2912 2913 StoredVecs.push_back(StoredVec); 2914 } 2915 2916 // Concatenate all vectors into a wide vector. 2917 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2918 2919 // Interleave the elements in the wide vector. 2920 Value *IVec = Builder.CreateShuffleVector( 2921 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2922 "interleaved.vec"); 2923 2924 Instruction *NewStoreInstr; 2925 if (BlockInMask || MaskForGaps) { 2926 Value *GroupMask = MaskForGaps; 2927 if (BlockInMask) { 2928 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2929 Value *ShuffledMask = Builder.CreateShuffleVector( 2930 BlockInMaskPart, 2931 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2932 "interleaved.mask"); 2933 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2934 ShuffledMask, MaskForGaps) 2935 : ShuffledMask; 2936 } 2937 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2938 Group->getAlign(), GroupMask); 2939 } else 2940 NewStoreInstr = 2941 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2942 2943 Group->addMetadata(NewStoreInstr); 2944 } 2945 } 2946 2947 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2948 VPReplicateRecipe *RepRecipe, 2949 const VPIteration &Instance, 2950 bool IfPredicateInstr, 2951 VPTransformState &State) { 2952 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2953 2954 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2955 // the first lane and part. 2956 if (isa<NoAliasScopeDeclInst>(Instr)) 2957 if (!Instance.isFirstIteration()) 2958 return; 2959 2960 setDebugLocFromInst(Instr); 2961 2962 // Does this instruction return a value ? 2963 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2964 2965 Instruction *Cloned = Instr->clone(); 2966 if (!IsVoidRetTy) 2967 Cloned->setName(Instr->getName() + ".cloned"); 2968 2969 // If the scalarized instruction contributes to the address computation of a 2970 // widen masked load/store which was in a basic block that needed predication 2971 // and is not predicated after vectorization, we can't propagate 2972 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2973 // instruction could feed a poison value to the base address of the widen 2974 // load/store. 2975 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2976 Cloned->dropPoisonGeneratingFlags(); 2977 2978 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2979 Builder.GetInsertPoint()); 2980 // Replace the operands of the cloned instructions with their scalar 2981 // equivalents in the new loop. 2982 for (auto &I : enumerate(RepRecipe->operands())) { 2983 auto InputInstance = Instance; 2984 VPValue *Operand = I.value(); 2985 if (State.Plan->isUniformAfterVectorization(Operand)) 2986 InputInstance.Lane = VPLane::getFirstLane(); 2987 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2988 } 2989 addNewMetadata(Cloned, Instr); 2990 2991 // Place the cloned scalar in the new loop. 2992 Builder.Insert(Cloned); 2993 2994 State.set(RepRecipe, Cloned, Instance); 2995 2996 // If we just cloned a new assumption, add it the assumption cache. 2997 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2998 AC->registerAssumption(II); 2999 3000 // End if-block. 3001 if (IfPredicateInstr) 3002 PredicatedInstructions.push_back(Cloned); 3003 } 3004 3005 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 3006 BasicBlock *Header = L->getHeader(); 3007 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 3008 3009 IRBuilder<> B(Header->getTerminator()); 3010 Instruction *OldInst = 3011 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 3012 setDebugLocFromInst(OldInst, &B); 3013 3014 // Connect the header to the exit and header blocks and replace the old 3015 // terminator. 3016 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 3017 3018 // Now we have two terminators. Remove the old one from the block. 3019 Header->getTerminator()->eraseFromParent(); 3020 } 3021 3022 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3023 if (TripCount) 3024 return TripCount; 3025 3026 assert(L && "Create Trip Count for null loop."); 3027 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3028 // Find the loop boundaries. 3029 ScalarEvolution *SE = PSE.getSE(); 3030 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3031 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3032 "Invalid loop count"); 3033 3034 Type *IdxTy = Legal->getWidestInductionType(); 3035 assert(IdxTy && "No type for induction"); 3036 3037 // The exit count might have the type of i64 while the phi is i32. This can 3038 // happen if we have an induction variable that is sign extended before the 3039 // compare. The only way that we get a backedge taken count is that the 3040 // induction variable was signed and as such will not overflow. In such a case 3041 // truncation is legal. 3042 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3043 IdxTy->getPrimitiveSizeInBits()) 3044 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3045 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3046 3047 // Get the total trip count from the count by adding 1. 3048 const SCEV *ExitCount = SE->getAddExpr( 3049 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3050 3051 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3052 3053 // Expand the trip count and place the new instructions in the preheader. 3054 // Notice that the pre-header does not change, only the loop body. 3055 SCEVExpander Exp(*SE, DL, "induction"); 3056 3057 // Count holds the overall loop count (N). 3058 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3059 L->getLoopPreheader()->getTerminator()); 3060 3061 if (TripCount->getType()->isPointerTy()) 3062 TripCount = 3063 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3064 L->getLoopPreheader()->getTerminator()); 3065 3066 return TripCount; 3067 } 3068 3069 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3070 if (VectorTripCount) 3071 return VectorTripCount; 3072 3073 Value *TC = getOrCreateTripCount(L); 3074 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3075 3076 Type *Ty = TC->getType(); 3077 // This is where we can make the step a runtime constant. 3078 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3079 3080 // If the tail is to be folded by masking, round the number of iterations N 3081 // up to a multiple of Step instead of rounding down. This is done by first 3082 // adding Step-1 and then rounding down. Note that it's ok if this addition 3083 // overflows: the vector induction variable will eventually wrap to zero given 3084 // that it starts at zero and its Step is a power of two; the loop will then 3085 // exit, with the last early-exit vector comparison also producing all-true. 3086 if (Cost->foldTailByMasking()) { 3087 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3088 "VF*UF must be a power of 2 when folding tail by masking"); 3089 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3090 TC = Builder.CreateAdd( 3091 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3092 } 3093 3094 // Now we need to generate the expression for the part of the loop that the 3095 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3096 // iterations are not required for correctness, or N - Step, otherwise. Step 3097 // is equal to the vectorization factor (number of SIMD elements) times the 3098 // unroll factor (number of SIMD instructions). 3099 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3100 3101 // There are cases where we *must* run at least one iteration in the remainder 3102 // loop. See the cost model for when this can happen. If the step evenly 3103 // divides the trip count, we set the remainder to be equal to the step. If 3104 // the step does not evenly divide the trip count, no adjustment is necessary 3105 // since there will already be scalar iterations. Note that the minimum 3106 // iterations check ensures that N >= Step. 3107 if (Cost->requiresScalarEpilogue(VF)) { 3108 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3109 R = Builder.CreateSelect(IsZero, Step, R); 3110 } 3111 3112 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3113 3114 return VectorTripCount; 3115 } 3116 3117 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3118 const DataLayout &DL) { 3119 // Verify that V is a vector type with same number of elements as DstVTy. 3120 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3121 unsigned VF = DstFVTy->getNumElements(); 3122 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3123 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3124 Type *SrcElemTy = SrcVecTy->getElementType(); 3125 Type *DstElemTy = DstFVTy->getElementType(); 3126 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3127 "Vector elements must have same size"); 3128 3129 // Do a direct cast if element types are castable. 3130 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3131 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3132 } 3133 // V cannot be directly casted to desired vector type. 3134 // May happen when V is a floating point vector but DstVTy is a vector of 3135 // pointers or vice-versa. Handle this using a two-step bitcast using an 3136 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3137 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3138 "Only one type should be a pointer type"); 3139 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3140 "Only one type should be a floating point type"); 3141 Type *IntTy = 3142 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3143 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3144 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3145 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3146 } 3147 3148 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3149 BasicBlock *Bypass) { 3150 Value *Count = getOrCreateTripCount(L); 3151 // Reuse existing vector loop preheader for TC checks. 3152 // Note that new preheader block is generated for vector loop. 3153 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3154 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3155 3156 // Generate code to check if the loop's trip count is less than VF * UF, or 3157 // equal to it in case a scalar epilogue is required; this implies that the 3158 // vector trip count is zero. This check also covers the case where adding one 3159 // to the backedge-taken count overflowed leading to an incorrect trip count 3160 // of zero. In this case we will also jump to the scalar loop. 3161 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3162 : ICmpInst::ICMP_ULT; 3163 3164 // If tail is to be folded, vector loop takes care of all iterations. 3165 Value *CheckMinIters = Builder.getFalse(); 3166 if (!Cost->foldTailByMasking()) { 3167 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3168 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3169 } 3170 // Create new preheader for vector loop. 3171 LoopVectorPreHeader = 3172 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3173 "vector.ph"); 3174 3175 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3176 DT->getNode(Bypass)->getIDom()) && 3177 "TC check is expected to dominate Bypass"); 3178 3179 // Update dominator for Bypass & LoopExit (if needed). 3180 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3181 if (!Cost->requiresScalarEpilogue(VF)) 3182 // If there is an epilogue which must run, there's no edge from the 3183 // middle block to exit blocks and thus no need to update the immediate 3184 // dominator of the exit blocks. 3185 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3186 3187 ReplaceInstWithInst( 3188 TCCheckBlock->getTerminator(), 3189 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3190 LoopBypassBlocks.push_back(TCCheckBlock); 3191 } 3192 3193 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3194 3195 BasicBlock *const SCEVCheckBlock = 3196 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3197 if (!SCEVCheckBlock) 3198 return nullptr; 3199 3200 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3201 (OptForSizeBasedOnProfile && 3202 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3203 "Cannot SCEV check stride or overflow when optimizing for size"); 3204 3205 3206 // Update dominator only if this is first RT check. 3207 if (LoopBypassBlocks.empty()) { 3208 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3209 if (!Cost->requiresScalarEpilogue(VF)) 3210 // If there is an epilogue which must run, there's no edge from the 3211 // middle block to exit blocks and thus no need to update the immediate 3212 // dominator of the exit blocks. 3213 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3214 } 3215 3216 LoopBypassBlocks.push_back(SCEVCheckBlock); 3217 AddedSafetyChecks = true; 3218 return SCEVCheckBlock; 3219 } 3220 3221 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3222 BasicBlock *Bypass) { 3223 // VPlan-native path does not do any analysis for runtime checks currently. 3224 if (EnableVPlanNativePath) 3225 return nullptr; 3226 3227 BasicBlock *const MemCheckBlock = 3228 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3229 3230 // Check if we generated code that checks in runtime if arrays overlap. We put 3231 // the checks into a separate block to make the more common case of few 3232 // elements faster. 3233 if (!MemCheckBlock) 3234 return nullptr; 3235 3236 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3237 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3238 "Cannot emit memory checks when optimizing for size, unless forced " 3239 "to vectorize."); 3240 ORE->emit([&]() { 3241 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3242 L->getStartLoc(), L->getHeader()) 3243 << "Code-size may be reduced by not forcing " 3244 "vectorization, or by source-code modifications " 3245 "eliminating the need for runtime checks " 3246 "(e.g., adding 'restrict')."; 3247 }); 3248 } 3249 3250 LoopBypassBlocks.push_back(MemCheckBlock); 3251 3252 AddedSafetyChecks = true; 3253 3254 // We currently don't use LoopVersioning for the actual loop cloning but we 3255 // still use it to add the noalias metadata. 3256 LVer = std::make_unique<LoopVersioning>( 3257 *Legal->getLAI(), 3258 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3259 DT, PSE.getSE()); 3260 LVer->prepareNoAliasMetadata(); 3261 return MemCheckBlock; 3262 } 3263 3264 Value *InnerLoopVectorizer::emitTransformedIndex( 3265 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3266 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3267 3268 SCEVExpander Exp(*SE, DL, "induction"); 3269 auto Step = ID.getStep(); 3270 auto StartValue = ID.getStartValue(); 3271 assert(Index->getType()->getScalarType() == Step->getType() && 3272 "Index scalar type does not match StepValue type"); 3273 3274 // Note: the IR at this point is broken. We cannot use SE to create any new 3275 // SCEV and then expand it, hoping that SCEV's simplification will give us 3276 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3277 // lead to various SCEV crashes. So all we can do is to use builder and rely 3278 // on InstCombine for future simplifications. Here we handle some trivial 3279 // cases only. 3280 auto CreateAdd = [&B](Value *X, Value *Y) { 3281 assert(X->getType() == Y->getType() && "Types don't match!"); 3282 if (auto *CX = dyn_cast<ConstantInt>(X)) 3283 if (CX->isZero()) 3284 return Y; 3285 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3286 if (CY->isZero()) 3287 return X; 3288 return B.CreateAdd(X, Y); 3289 }; 3290 3291 // We allow X to be a vector type, in which case Y will potentially be 3292 // splatted into a vector with the same element count. 3293 auto CreateMul = [&B](Value *X, Value *Y) { 3294 assert(X->getType()->getScalarType() == Y->getType() && 3295 "Types don't match!"); 3296 if (auto *CX = dyn_cast<ConstantInt>(X)) 3297 if (CX->isOne()) 3298 return Y; 3299 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3300 if (CY->isOne()) 3301 return X; 3302 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3303 if (XVTy && !isa<VectorType>(Y->getType())) 3304 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3305 return B.CreateMul(X, Y); 3306 }; 3307 3308 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3309 // loop, choose the end of the vector loop header (=VectorHeader), because 3310 // the DomTree is not kept up-to-date for additional blocks generated in the 3311 // vector loop. By using the header as insertion point, we guarantee that the 3312 // expanded instructions dominate all their uses. 3313 auto GetInsertPoint = [this, &B, VectorHeader]() { 3314 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3315 if (InsertBB != LoopVectorBody && 3316 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3317 return VectorHeader->getTerminator(); 3318 return &*B.GetInsertPoint(); 3319 }; 3320 3321 switch (ID.getKind()) { 3322 case InductionDescriptor::IK_IntInduction: { 3323 assert(!isa<VectorType>(Index->getType()) && 3324 "Vector indices not supported for integer inductions yet"); 3325 assert(Index->getType() == StartValue->getType() && 3326 "Index type does not match StartValue type"); 3327 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3328 return B.CreateSub(StartValue, Index); 3329 auto *Offset = CreateMul( 3330 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3331 return CreateAdd(StartValue, Offset); 3332 } 3333 case InductionDescriptor::IK_PtrInduction: { 3334 assert(isa<SCEVConstant>(Step) && 3335 "Expected constant step for pointer induction"); 3336 return B.CreateGEP( 3337 ID.getElementType(), StartValue, 3338 CreateMul(Index, 3339 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3340 GetInsertPoint()))); 3341 } 3342 case InductionDescriptor::IK_FpInduction: { 3343 assert(!isa<VectorType>(Index->getType()) && 3344 "Vector indices not supported for FP inductions yet"); 3345 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3346 auto InductionBinOp = ID.getInductionBinOp(); 3347 assert(InductionBinOp && 3348 (InductionBinOp->getOpcode() == Instruction::FAdd || 3349 InductionBinOp->getOpcode() == Instruction::FSub) && 3350 "Original bin op should be defined for FP induction"); 3351 3352 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3353 Value *MulExp = B.CreateFMul(StepValue, Index); 3354 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3355 "induction"); 3356 } 3357 case InductionDescriptor::IK_NoInduction: 3358 return nullptr; 3359 } 3360 llvm_unreachable("invalid enum"); 3361 } 3362 3363 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3364 LoopScalarBody = OrigLoop->getHeader(); 3365 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3366 assert(LoopVectorPreHeader && "Invalid loop structure"); 3367 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3368 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3369 "multiple exit loop without required epilogue?"); 3370 3371 LoopMiddleBlock = 3372 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3373 LI, nullptr, Twine(Prefix) + "middle.block"); 3374 LoopScalarPreHeader = 3375 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3376 nullptr, Twine(Prefix) + "scalar.ph"); 3377 3378 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3379 3380 // Set up the middle block terminator. Two cases: 3381 // 1) If we know that we must execute the scalar epilogue, emit an 3382 // unconditional branch. 3383 // 2) Otherwise, we must have a single unique exit block (due to how we 3384 // implement the multiple exit case). In this case, set up a conditonal 3385 // branch from the middle block to the loop scalar preheader, and the 3386 // exit block. completeLoopSkeleton will update the condition to use an 3387 // iteration check, if required to decide whether to execute the remainder. 3388 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3389 BranchInst::Create(LoopScalarPreHeader) : 3390 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3391 Builder.getTrue()); 3392 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3393 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3394 3395 // We intentionally don't let SplitBlock to update LoopInfo since 3396 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3397 // LoopVectorBody is explicitly added to the correct place few lines later. 3398 LoopVectorBody = 3399 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3400 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3401 3402 // Update dominator for loop exit. 3403 if (!Cost->requiresScalarEpilogue(VF)) 3404 // If there is an epilogue which must run, there's no edge from the 3405 // middle block to exit blocks and thus no need to update the immediate 3406 // dominator of the exit blocks. 3407 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3408 3409 // Create and register the new vector loop. 3410 Loop *Lp = LI->AllocateLoop(); 3411 Loop *ParentLoop = OrigLoop->getParentLoop(); 3412 3413 // Insert the new loop into the loop nest and register the new basic blocks 3414 // before calling any utilities such as SCEV that require valid LoopInfo. 3415 if (ParentLoop) { 3416 ParentLoop->addChildLoop(Lp); 3417 } else { 3418 LI->addTopLevelLoop(Lp); 3419 } 3420 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3421 return Lp; 3422 } 3423 3424 void InnerLoopVectorizer::createInductionResumeValues( 3425 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3426 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3427 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3428 "Inconsistent information about additional bypass."); 3429 3430 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3431 assert(VectorTripCount && L && "Expected valid arguments"); 3432 // We are going to resume the execution of the scalar loop. 3433 // Go over all of the induction variables that we found and fix the 3434 // PHIs that are left in the scalar version of the loop. 3435 // The starting values of PHI nodes depend on the counter of the last 3436 // iteration in the vectorized loop. 3437 // If we come from a bypass edge then we need to start from the original 3438 // start value. 3439 Instruction *OldInduction = Legal->getPrimaryInduction(); 3440 for (auto &InductionEntry : Legal->getInductionVars()) { 3441 PHINode *OrigPhi = InductionEntry.first; 3442 InductionDescriptor II = InductionEntry.second; 3443 3444 // Create phi nodes to merge from the backedge-taken check block. 3445 PHINode *BCResumeVal = 3446 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3447 LoopScalarPreHeader->getTerminator()); 3448 // Copy original phi DL over to the new one. 3449 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3450 Value *&EndValue = IVEndValues[OrigPhi]; 3451 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3452 if (OrigPhi == OldInduction) { 3453 // We know what the end value is. 3454 EndValue = VectorTripCount; 3455 } else { 3456 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3457 3458 // Fast-math-flags propagate from the original induction instruction. 3459 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3460 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3461 3462 Type *StepType = II.getStep()->getType(); 3463 Instruction::CastOps CastOp = 3464 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3465 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3466 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3467 EndValue = 3468 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3469 EndValue->setName("ind.end"); 3470 3471 // Compute the end value for the additional bypass (if applicable). 3472 if (AdditionalBypass.first) { 3473 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3474 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3475 StepType, true); 3476 CRD = 3477 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3478 EndValueFromAdditionalBypass = 3479 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3480 EndValueFromAdditionalBypass->setName("ind.end"); 3481 } 3482 } 3483 // The new PHI merges the original incoming value, in case of a bypass, 3484 // or the value at the end of the vectorized loop. 3485 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3486 3487 // Fix the scalar body counter (PHI node). 3488 // The old induction's phi node in the scalar body needs the truncated 3489 // value. 3490 for (BasicBlock *BB : LoopBypassBlocks) 3491 BCResumeVal->addIncoming(II.getStartValue(), BB); 3492 3493 if (AdditionalBypass.first) 3494 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3495 EndValueFromAdditionalBypass); 3496 3497 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3498 } 3499 } 3500 3501 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3502 MDNode *OrigLoopID) { 3503 assert(L && "Expected valid loop."); 3504 3505 // The trip counts should be cached by now. 3506 Value *Count = getOrCreateTripCount(L); 3507 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3508 3509 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3510 3511 // Add a check in the middle block to see if we have completed 3512 // all of the iterations in the first vector loop. Three cases: 3513 // 1) If we require a scalar epilogue, there is no conditional branch as 3514 // we unconditionally branch to the scalar preheader. Do nothing. 3515 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3516 // Thus if tail is to be folded, we know we don't need to run the 3517 // remainder and we can use the previous value for the condition (true). 3518 // 3) Otherwise, construct a runtime check. 3519 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3520 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3521 Count, VectorTripCount, "cmp.n", 3522 LoopMiddleBlock->getTerminator()); 3523 3524 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3525 // of the corresponding compare because they may have ended up with 3526 // different line numbers and we want to avoid awkward line stepping while 3527 // debugging. Eg. if the compare has got a line number inside the loop. 3528 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3529 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3530 } 3531 3532 // Get ready to start creating new instructions into the vectorized body. 3533 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3534 "Inconsistent vector loop preheader"); 3535 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3536 3537 #ifdef EXPENSIVE_CHECKS 3538 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3539 LI->verify(*DT); 3540 #endif 3541 3542 return LoopVectorPreHeader; 3543 } 3544 3545 std::pair<BasicBlock *, Value *> 3546 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3547 /* 3548 In this function we generate a new loop. The new loop will contain 3549 the vectorized instructions while the old loop will continue to run the 3550 scalar remainder. 3551 3552 [ ] <-- loop iteration number check. 3553 / | 3554 / v 3555 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3556 | / | 3557 | / v 3558 || [ ] <-- vector pre header. 3559 |/ | 3560 | v 3561 | [ ] \ 3562 | [ ]_| <-- vector loop. 3563 | | 3564 | v 3565 \ -[ ] <--- middle-block. 3566 \/ | 3567 /\ v 3568 | ->[ ] <--- new preheader. 3569 | | 3570 (opt) v <-- edge from middle to exit iff epilogue is not required. 3571 | [ ] \ 3572 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3573 \ | 3574 \ v 3575 >[ ] <-- exit block(s). 3576 ... 3577 */ 3578 3579 // Get the metadata of the original loop before it gets modified. 3580 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3581 3582 // Workaround! Compute the trip count of the original loop and cache it 3583 // before we start modifying the CFG. This code has a systemic problem 3584 // wherein it tries to run analysis over partially constructed IR; this is 3585 // wrong, and not simply for SCEV. The trip count of the original loop 3586 // simply happens to be prone to hitting this in practice. In theory, we 3587 // can hit the same issue for any SCEV, or ValueTracking query done during 3588 // mutation. See PR49900. 3589 getOrCreateTripCount(OrigLoop); 3590 3591 // Create an empty vector loop, and prepare basic blocks for the runtime 3592 // checks. 3593 Loop *Lp = createVectorLoopSkeleton(""); 3594 3595 // Now, compare the new count to zero. If it is zero skip the vector loop and 3596 // jump to the scalar loop. This check also covers the case where the 3597 // backedge-taken count is uint##_max: adding one to it will overflow leading 3598 // to an incorrect trip count of zero. In this (rare) case we will also jump 3599 // to the scalar loop. 3600 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3601 3602 // Generate the code to check any assumptions that we've made for SCEV 3603 // expressions. 3604 emitSCEVChecks(Lp, LoopScalarPreHeader); 3605 3606 // Generate the code that checks in runtime if arrays overlap. We put the 3607 // checks into a separate block to make the more common case of few elements 3608 // faster. 3609 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3610 3611 createHeaderBranch(Lp); 3612 3613 // Emit phis for the new starting index of the scalar loop. 3614 createInductionResumeValues(Lp); 3615 3616 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3617 } 3618 3619 // Fix up external users of the induction variable. At this point, we are 3620 // in LCSSA form, with all external PHIs that use the IV having one input value, 3621 // coming from the remainder loop. We need those PHIs to also have a correct 3622 // value for the IV when arriving directly from the middle block. 3623 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3624 const InductionDescriptor &II, 3625 Value *CountRoundDown, Value *EndValue, 3626 BasicBlock *MiddleBlock) { 3627 // There are two kinds of external IV usages - those that use the value 3628 // computed in the last iteration (the PHI) and those that use the penultimate 3629 // value (the value that feeds into the phi from the loop latch). 3630 // We allow both, but they, obviously, have different values. 3631 3632 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3633 3634 DenseMap<Value *, Value *> MissingVals; 3635 3636 // An external user of the last iteration's value should see the value that 3637 // the remainder loop uses to initialize its own IV. 3638 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3639 for (User *U : PostInc->users()) { 3640 Instruction *UI = cast<Instruction>(U); 3641 if (!OrigLoop->contains(UI)) { 3642 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3643 MissingVals[UI] = EndValue; 3644 } 3645 } 3646 3647 // An external user of the penultimate value need to see EndValue - Step. 3648 // The simplest way to get this is to recompute it from the constituent SCEVs, 3649 // that is Start + (Step * (CRD - 1)). 3650 for (User *U : OrigPhi->users()) { 3651 auto *UI = cast<Instruction>(U); 3652 if (!OrigLoop->contains(UI)) { 3653 const DataLayout &DL = 3654 OrigLoop->getHeader()->getModule()->getDataLayout(); 3655 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3656 3657 IRBuilder<> B(MiddleBlock->getTerminator()); 3658 3659 // Fast-math-flags propagate from the original induction instruction. 3660 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3661 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3662 3663 Value *CountMinusOne = B.CreateSub( 3664 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3665 Value *CMO = 3666 !II.getStep()->getType()->isIntegerTy() 3667 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3668 II.getStep()->getType()) 3669 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3670 CMO->setName("cast.cmo"); 3671 Value *Escape = 3672 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3673 Escape->setName("ind.escape"); 3674 MissingVals[UI] = Escape; 3675 } 3676 } 3677 3678 for (auto &I : MissingVals) { 3679 PHINode *PHI = cast<PHINode>(I.first); 3680 // One corner case we have to handle is two IVs "chasing" each-other, 3681 // that is %IV2 = phi [...], [ %IV1, %latch ] 3682 // In this case, if IV1 has an external use, we need to avoid adding both 3683 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3684 // don't already have an incoming value for the middle block. 3685 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3686 PHI->addIncoming(I.second, MiddleBlock); 3687 } 3688 } 3689 3690 namespace { 3691 3692 struct CSEDenseMapInfo { 3693 static bool canHandle(const Instruction *I) { 3694 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3695 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3696 } 3697 3698 static inline Instruction *getEmptyKey() { 3699 return DenseMapInfo<Instruction *>::getEmptyKey(); 3700 } 3701 3702 static inline Instruction *getTombstoneKey() { 3703 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3704 } 3705 3706 static unsigned getHashValue(const Instruction *I) { 3707 assert(canHandle(I) && "Unknown instruction!"); 3708 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3709 I->value_op_end())); 3710 } 3711 3712 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3713 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3714 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3715 return LHS == RHS; 3716 return LHS->isIdenticalTo(RHS); 3717 } 3718 }; 3719 3720 } // end anonymous namespace 3721 3722 ///Perform cse of induction variable instructions. 3723 static void cse(BasicBlock *BB) { 3724 // Perform simple cse. 3725 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3726 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3727 if (!CSEDenseMapInfo::canHandle(&In)) 3728 continue; 3729 3730 // Check if we can replace this instruction with any of the 3731 // visited instructions. 3732 if (Instruction *V = CSEMap.lookup(&In)) { 3733 In.replaceAllUsesWith(V); 3734 In.eraseFromParent(); 3735 continue; 3736 } 3737 3738 CSEMap[&In] = &In; 3739 } 3740 } 3741 3742 InstructionCost 3743 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3744 bool &NeedToScalarize) const { 3745 Function *F = CI->getCalledFunction(); 3746 Type *ScalarRetTy = CI->getType(); 3747 SmallVector<Type *, 4> Tys, ScalarTys; 3748 for (auto &ArgOp : CI->args()) 3749 ScalarTys.push_back(ArgOp->getType()); 3750 3751 // Estimate cost of scalarized vector call. The source operands are assumed 3752 // to be vectors, so we need to extract individual elements from there, 3753 // execute VF scalar calls, and then gather the result into the vector return 3754 // value. 3755 InstructionCost ScalarCallCost = 3756 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3757 if (VF.isScalar()) 3758 return ScalarCallCost; 3759 3760 // Compute corresponding vector type for return value and arguments. 3761 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3762 for (Type *ScalarTy : ScalarTys) 3763 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3764 3765 // Compute costs of unpacking argument values for the scalar calls and 3766 // packing the return values to a vector. 3767 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3768 3769 InstructionCost Cost = 3770 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3771 3772 // If we can't emit a vector call for this function, then the currently found 3773 // cost is the cost we need to return. 3774 NeedToScalarize = true; 3775 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3776 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3777 3778 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3779 return Cost; 3780 3781 // If the corresponding vector cost is cheaper, return its cost. 3782 InstructionCost VectorCallCost = 3783 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3784 if (VectorCallCost < Cost) { 3785 NeedToScalarize = false; 3786 Cost = VectorCallCost; 3787 } 3788 return Cost; 3789 } 3790 3791 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3792 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3793 return Elt; 3794 return VectorType::get(Elt, VF); 3795 } 3796 3797 InstructionCost 3798 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3799 ElementCount VF) const { 3800 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3801 assert(ID && "Expected intrinsic call!"); 3802 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3803 FastMathFlags FMF; 3804 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3805 FMF = FPMO->getFastMathFlags(); 3806 3807 SmallVector<const Value *> Arguments(CI->args()); 3808 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3809 SmallVector<Type *> ParamTys; 3810 std::transform(FTy->param_begin(), FTy->param_end(), 3811 std::back_inserter(ParamTys), 3812 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3813 3814 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3815 dyn_cast<IntrinsicInst>(CI)); 3816 return TTI.getIntrinsicInstrCost(CostAttrs, 3817 TargetTransformInfo::TCK_RecipThroughput); 3818 } 3819 3820 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3821 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3822 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3823 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3824 } 3825 3826 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3827 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3828 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3829 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3830 } 3831 3832 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3833 // For every instruction `I` in MinBWs, truncate the operands, create a 3834 // truncated version of `I` and reextend its result. InstCombine runs 3835 // later and will remove any ext/trunc pairs. 3836 SmallPtrSet<Value *, 4> Erased; 3837 for (const auto &KV : Cost->getMinimalBitwidths()) { 3838 // If the value wasn't vectorized, we must maintain the original scalar 3839 // type. The absence of the value from State indicates that it 3840 // wasn't vectorized. 3841 // FIXME: Should not rely on getVPValue at this point. 3842 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3843 if (!State.hasAnyVectorValue(Def)) 3844 continue; 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 Value *I = State.get(Def, Part); 3847 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3848 continue; 3849 Type *OriginalTy = I->getType(); 3850 Type *ScalarTruncatedTy = 3851 IntegerType::get(OriginalTy->getContext(), KV.second); 3852 auto *TruncatedTy = VectorType::get( 3853 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3854 if (TruncatedTy == OriginalTy) 3855 continue; 3856 3857 IRBuilder<> B(cast<Instruction>(I)); 3858 auto ShrinkOperand = [&](Value *V) -> Value * { 3859 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3860 if (ZI->getSrcTy() == TruncatedTy) 3861 return ZI->getOperand(0); 3862 return B.CreateZExtOrTrunc(V, TruncatedTy); 3863 }; 3864 3865 // The actual instruction modification depends on the instruction type, 3866 // unfortunately. 3867 Value *NewI = nullptr; 3868 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3869 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3870 ShrinkOperand(BO->getOperand(1))); 3871 3872 // Any wrapping introduced by shrinking this operation shouldn't be 3873 // considered undefined behavior. So, we can't unconditionally copy 3874 // arithmetic wrapping flags to NewI. 3875 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3876 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3877 NewI = 3878 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3879 ShrinkOperand(CI->getOperand(1))); 3880 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3881 NewI = B.CreateSelect(SI->getCondition(), 3882 ShrinkOperand(SI->getTrueValue()), 3883 ShrinkOperand(SI->getFalseValue())); 3884 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3885 switch (CI->getOpcode()) { 3886 default: 3887 llvm_unreachable("Unhandled cast!"); 3888 case Instruction::Trunc: 3889 NewI = ShrinkOperand(CI->getOperand(0)); 3890 break; 3891 case Instruction::SExt: 3892 NewI = B.CreateSExtOrTrunc( 3893 CI->getOperand(0), 3894 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3895 break; 3896 case Instruction::ZExt: 3897 NewI = B.CreateZExtOrTrunc( 3898 CI->getOperand(0), 3899 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3900 break; 3901 } 3902 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3903 auto Elements0 = 3904 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3905 auto *O0 = B.CreateZExtOrTrunc( 3906 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3907 auto Elements1 = 3908 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3909 auto *O1 = B.CreateZExtOrTrunc( 3910 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3911 3912 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3913 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3914 // Don't do anything with the operands, just extend the result. 3915 continue; 3916 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3917 auto Elements = 3918 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3919 auto *O0 = B.CreateZExtOrTrunc( 3920 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3921 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3922 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3923 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3924 auto Elements = 3925 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3926 auto *O0 = B.CreateZExtOrTrunc( 3927 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3928 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3929 } else { 3930 // If we don't know what to do, be conservative and don't do anything. 3931 continue; 3932 } 3933 3934 // Lastly, extend the result. 3935 NewI->takeName(cast<Instruction>(I)); 3936 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3937 I->replaceAllUsesWith(Res); 3938 cast<Instruction>(I)->eraseFromParent(); 3939 Erased.insert(I); 3940 State.reset(Def, Res, Part); 3941 } 3942 } 3943 3944 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3945 for (const auto &KV : Cost->getMinimalBitwidths()) { 3946 // If the value wasn't vectorized, we must maintain the original scalar 3947 // type. The absence of the value from State indicates that it 3948 // wasn't vectorized. 3949 // FIXME: Should not rely on getVPValue at this point. 3950 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3951 if (!State.hasAnyVectorValue(Def)) 3952 continue; 3953 for (unsigned Part = 0; Part < UF; ++Part) { 3954 Value *I = State.get(Def, Part); 3955 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3956 if (Inst && Inst->use_empty()) { 3957 Value *NewI = Inst->getOperand(0); 3958 Inst->eraseFromParent(); 3959 State.reset(Def, NewI, Part); 3960 } 3961 } 3962 } 3963 } 3964 3965 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3966 // Insert truncates and extends for any truncated instructions as hints to 3967 // InstCombine. 3968 if (VF.isVector()) 3969 truncateToMinimalBitwidths(State); 3970 3971 // Fix widened non-induction PHIs by setting up the PHI operands. 3972 if (OrigPHIsToFix.size()) { 3973 assert(EnableVPlanNativePath && 3974 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3975 fixNonInductionPHIs(State); 3976 } 3977 3978 // At this point every instruction in the original loop is widened to a 3979 // vector form. Now we need to fix the recurrences in the loop. These PHI 3980 // nodes are currently empty because we did not want to introduce cycles. 3981 // This is the second stage of vectorizing recurrences. 3982 fixCrossIterationPHIs(State); 3983 3984 // Forget the original basic block. 3985 PSE.getSE()->forgetLoop(OrigLoop); 3986 3987 // If we inserted an edge from the middle block to the unique exit block, 3988 // update uses outside the loop (phis) to account for the newly inserted 3989 // edge. 3990 if (!Cost->requiresScalarEpilogue(VF)) { 3991 // Fix-up external users of the induction variables. 3992 for (auto &Entry : Legal->getInductionVars()) 3993 fixupIVUsers(Entry.first, Entry.second, 3994 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3995 IVEndValues[Entry.first], LoopMiddleBlock); 3996 3997 fixLCSSAPHIs(State); 3998 } 3999 4000 for (Instruction *PI : PredicatedInstructions) 4001 sinkScalarOperands(&*PI); 4002 4003 // Remove redundant induction instructions. 4004 cse(LoopVectorBody); 4005 4006 // Set/update profile weights for the vector and remainder loops as original 4007 // loop iterations are now distributed among them. Note that original loop 4008 // represented by LoopScalarBody becomes remainder loop after vectorization. 4009 // 4010 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4011 // end up getting slightly roughened result but that should be OK since 4012 // profile is not inherently precise anyway. Note also possible bypass of 4013 // vector code caused by legality checks is ignored, assigning all the weight 4014 // to the vector loop, optimistically. 4015 // 4016 // For scalable vectorization we can't know at compile time how many iterations 4017 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4018 // vscale of '1'. 4019 setProfileInfoAfterUnrolling( 4020 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4021 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4022 } 4023 4024 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4025 // In order to support recurrences we need to be able to vectorize Phi nodes. 4026 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4027 // stage #2: We now need to fix the recurrences by adding incoming edges to 4028 // the currently empty PHI nodes. At this point every instruction in the 4029 // original loop is widened to a vector form so we can use them to construct 4030 // the incoming edges. 4031 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4032 for (VPRecipeBase &R : Header->phis()) { 4033 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4034 fixReduction(ReductionPhi, State); 4035 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4036 fixFirstOrderRecurrence(FOR, State); 4037 } 4038 } 4039 4040 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4041 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4042 // This is the second phase of vectorizing first-order recurrences. An 4043 // overview of the transformation is described below. Suppose we have the 4044 // following loop. 4045 // 4046 // for (int i = 0; i < n; ++i) 4047 // b[i] = a[i] - a[i - 1]; 4048 // 4049 // There is a first-order recurrence on "a". For this loop, the shorthand 4050 // scalar IR looks like: 4051 // 4052 // scalar.ph: 4053 // s_init = a[-1] 4054 // br scalar.body 4055 // 4056 // scalar.body: 4057 // i = phi [0, scalar.ph], [i+1, scalar.body] 4058 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4059 // s2 = a[i] 4060 // b[i] = s2 - s1 4061 // br cond, scalar.body, ... 4062 // 4063 // In this example, s1 is a recurrence because it's value depends on the 4064 // previous iteration. In the first phase of vectorization, we created a 4065 // vector phi v1 for s1. We now complete the vectorization and produce the 4066 // shorthand vector IR shown below (for VF = 4, UF = 1). 4067 // 4068 // vector.ph: 4069 // v_init = vector(..., ..., ..., a[-1]) 4070 // br vector.body 4071 // 4072 // vector.body 4073 // i = phi [0, vector.ph], [i+4, vector.body] 4074 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4075 // v2 = a[i, i+1, i+2, i+3]; 4076 // v3 = vector(v1(3), v2(0, 1, 2)) 4077 // b[i, i+1, i+2, i+3] = v2 - v3 4078 // br cond, vector.body, middle.block 4079 // 4080 // middle.block: 4081 // x = v2(3) 4082 // br scalar.ph 4083 // 4084 // scalar.ph: 4085 // s_init = phi [x, middle.block], [a[-1], otherwise] 4086 // br scalar.body 4087 // 4088 // After execution completes the vector loop, we extract the next value of 4089 // the recurrence (x) to use as the initial value in the scalar loop. 4090 4091 // Extract the last vector element in the middle block. This will be the 4092 // initial value for the recurrence when jumping to the scalar loop. 4093 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4094 Value *Incoming = State.get(PreviousDef, UF - 1); 4095 auto *ExtractForScalar = Incoming; 4096 auto *IdxTy = Builder.getInt32Ty(); 4097 if (VF.isVector()) { 4098 auto *One = ConstantInt::get(IdxTy, 1); 4099 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4100 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4101 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4102 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4103 "vector.recur.extract"); 4104 } 4105 // Extract the second last element in the middle block if the 4106 // Phi is used outside the loop. We need to extract the phi itself 4107 // and not the last element (the phi update in the current iteration). This 4108 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4109 // when the scalar loop is not run at all. 4110 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4111 if (VF.isVector()) { 4112 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4113 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4114 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4115 Incoming, Idx, "vector.recur.extract.for.phi"); 4116 } else if (UF > 1) 4117 // When loop is unrolled without vectorizing, initialize 4118 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4119 // of `Incoming`. This is analogous to the vectorized case above: extracting 4120 // the second last element when VF > 1. 4121 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4122 4123 // Fix the initial value of the original recurrence in the scalar loop. 4124 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4125 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4126 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4127 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4128 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4129 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4130 Start->addIncoming(Incoming, BB); 4131 } 4132 4133 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4134 Phi->setName("scalar.recur"); 4135 4136 // Finally, fix users of the recurrence outside the loop. The users will need 4137 // either the last value of the scalar recurrence or the last value of the 4138 // vector recurrence we extracted in the middle block. Since the loop is in 4139 // LCSSA form, we just need to find all the phi nodes for the original scalar 4140 // recurrence in the exit block, and then add an edge for the middle block. 4141 // Note that LCSSA does not imply single entry when the original scalar loop 4142 // had multiple exiting edges (as we always run the last iteration in the 4143 // scalar epilogue); in that case, there is no edge from middle to exit and 4144 // and thus no phis which needed updated. 4145 if (!Cost->requiresScalarEpilogue(VF)) 4146 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4147 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4148 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4149 } 4150 4151 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4152 VPTransformState &State) { 4153 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4154 // Get it's reduction variable descriptor. 4155 assert(Legal->isReductionVariable(OrigPhi) && 4156 "Unable to find the reduction variable"); 4157 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4158 4159 RecurKind RK = RdxDesc.getRecurrenceKind(); 4160 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4161 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4162 setDebugLocFromInst(ReductionStartValue); 4163 4164 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4165 // This is the vector-clone of the value that leaves the loop. 4166 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4167 4168 // Wrap flags are in general invalid after vectorization, clear them. 4169 clearReductionWrapFlags(RdxDesc, State); 4170 4171 // Before each round, move the insertion point right between 4172 // the PHIs and the values we are going to write. 4173 // This allows us to write both PHINodes and the extractelement 4174 // instructions. 4175 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4176 4177 setDebugLocFromInst(LoopExitInst); 4178 4179 Type *PhiTy = OrigPhi->getType(); 4180 // If tail is folded by masking, the vector value to leave the loop should be 4181 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4182 // instead of the former. For an inloop reduction the reduction will already 4183 // be predicated, and does not need to be handled here. 4184 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4185 for (unsigned Part = 0; Part < UF; ++Part) { 4186 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4187 Value *Sel = nullptr; 4188 for (User *U : VecLoopExitInst->users()) { 4189 if (isa<SelectInst>(U)) { 4190 assert(!Sel && "Reduction exit feeding two selects"); 4191 Sel = U; 4192 } else 4193 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4194 } 4195 assert(Sel && "Reduction exit feeds no select"); 4196 State.reset(LoopExitInstDef, Sel, Part); 4197 4198 // If the target can create a predicated operator for the reduction at no 4199 // extra cost in the loop (for example a predicated vadd), it can be 4200 // cheaper for the select to remain in the loop than be sunk out of it, 4201 // and so use the select value for the phi instead of the old 4202 // LoopExitValue. 4203 if (PreferPredicatedReductionSelect || 4204 TTI->preferPredicatedReductionSelect( 4205 RdxDesc.getOpcode(), PhiTy, 4206 TargetTransformInfo::ReductionFlags())) { 4207 auto *VecRdxPhi = 4208 cast<PHINode>(State.get(PhiR, Part)); 4209 VecRdxPhi->setIncomingValueForBlock( 4210 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4211 } 4212 } 4213 } 4214 4215 // If the vector reduction can be performed in a smaller type, we truncate 4216 // then extend the loop exit value to enable InstCombine to evaluate the 4217 // entire expression in the smaller type. 4218 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4219 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4220 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4221 Builder.SetInsertPoint( 4222 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4223 VectorParts RdxParts(UF); 4224 for (unsigned Part = 0; Part < UF; ++Part) { 4225 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4226 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4227 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4228 : Builder.CreateZExt(Trunc, VecTy); 4229 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4230 if (U != Trunc) { 4231 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4232 RdxParts[Part] = Extnd; 4233 } 4234 } 4235 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4236 for (unsigned Part = 0; Part < UF; ++Part) { 4237 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4238 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4239 } 4240 } 4241 4242 // Reduce all of the unrolled parts into a single vector. 4243 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4244 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4245 4246 // The middle block terminator has already been assigned a DebugLoc here (the 4247 // OrigLoop's single latch terminator). We want the whole middle block to 4248 // appear to execute on this line because: (a) it is all compiler generated, 4249 // (b) these instructions are always executed after evaluating the latch 4250 // conditional branch, and (c) other passes may add new predecessors which 4251 // terminate on this line. This is the easiest way to ensure we don't 4252 // accidentally cause an extra step back into the loop while debugging. 4253 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4254 if (PhiR->isOrdered()) 4255 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4256 else { 4257 // Floating-point operations should have some FMF to enable the reduction. 4258 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4259 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4260 for (unsigned Part = 1; Part < UF; ++Part) { 4261 Value *RdxPart = State.get(LoopExitInstDef, Part); 4262 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4263 ReducedPartRdx = Builder.CreateBinOp( 4264 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4265 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4266 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4267 ReducedPartRdx, RdxPart); 4268 else 4269 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4270 } 4271 } 4272 4273 // Create the reduction after the loop. Note that inloop reductions create the 4274 // target reduction in the loop using a Reduction recipe. 4275 if (VF.isVector() && !PhiR->isInLoop()) { 4276 ReducedPartRdx = 4277 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4278 // If the reduction can be performed in a smaller type, we need to extend 4279 // the reduction to the wider type before we branch to the original loop. 4280 if (PhiTy != RdxDesc.getRecurrenceType()) 4281 ReducedPartRdx = RdxDesc.isSigned() 4282 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4283 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4284 } 4285 4286 // Create a phi node that merges control-flow from the backedge-taken check 4287 // block and the middle block. 4288 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4289 LoopScalarPreHeader->getTerminator()); 4290 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4291 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4292 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4293 4294 // Now, we need to fix the users of the reduction variable 4295 // inside and outside of the scalar remainder loop. 4296 4297 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4298 // in the exit blocks. See comment on analogous loop in 4299 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4300 if (!Cost->requiresScalarEpilogue(VF)) 4301 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4302 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4303 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4304 4305 // Fix the scalar loop reduction variable with the incoming reduction sum 4306 // from the vector body and from the backedge value. 4307 int IncomingEdgeBlockIdx = 4308 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4309 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4310 // Pick the other block. 4311 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4312 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4313 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4314 } 4315 4316 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4317 VPTransformState &State) { 4318 RecurKind RK = RdxDesc.getRecurrenceKind(); 4319 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4320 return; 4321 4322 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4323 assert(LoopExitInstr && "null loop exit instruction"); 4324 SmallVector<Instruction *, 8> Worklist; 4325 SmallPtrSet<Instruction *, 8> Visited; 4326 Worklist.push_back(LoopExitInstr); 4327 Visited.insert(LoopExitInstr); 4328 4329 while (!Worklist.empty()) { 4330 Instruction *Cur = Worklist.pop_back_val(); 4331 if (isa<OverflowingBinaryOperator>(Cur)) 4332 for (unsigned Part = 0; Part < UF; ++Part) { 4333 // FIXME: Should not rely on getVPValue at this point. 4334 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4335 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4336 } 4337 4338 for (User *U : Cur->users()) { 4339 Instruction *UI = cast<Instruction>(U); 4340 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4341 Visited.insert(UI).second) 4342 Worklist.push_back(UI); 4343 } 4344 } 4345 } 4346 4347 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4348 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4349 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4350 // Some phis were already hand updated by the reduction and recurrence 4351 // code above, leave them alone. 4352 continue; 4353 4354 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4355 // Non-instruction incoming values will have only one value. 4356 4357 VPLane Lane = VPLane::getFirstLane(); 4358 if (isa<Instruction>(IncomingValue) && 4359 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4360 VF)) 4361 Lane = VPLane::getLastLaneForVF(VF); 4362 4363 // Can be a loop invariant incoming value or the last scalar value to be 4364 // extracted from the vectorized loop. 4365 // FIXME: Should not rely on getVPValue at this point. 4366 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4367 Value *lastIncomingValue = 4368 OrigLoop->isLoopInvariant(IncomingValue) 4369 ? IncomingValue 4370 : State.get(State.Plan->getVPValue(IncomingValue, true), 4371 VPIteration(UF - 1, Lane)); 4372 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4373 } 4374 } 4375 4376 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4377 // The basic block and loop containing the predicated instruction. 4378 auto *PredBB = PredInst->getParent(); 4379 auto *VectorLoop = LI->getLoopFor(PredBB); 4380 4381 // Initialize a worklist with the operands of the predicated instruction. 4382 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4383 4384 // Holds instructions that we need to analyze again. An instruction may be 4385 // reanalyzed if we don't yet know if we can sink it or not. 4386 SmallVector<Instruction *, 8> InstsToReanalyze; 4387 4388 // Returns true if a given use occurs in the predicated block. Phi nodes use 4389 // their operands in their corresponding predecessor blocks. 4390 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4391 auto *I = cast<Instruction>(U.getUser()); 4392 BasicBlock *BB = I->getParent(); 4393 if (auto *Phi = dyn_cast<PHINode>(I)) 4394 BB = Phi->getIncomingBlock( 4395 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4396 return BB == PredBB; 4397 }; 4398 4399 // Iteratively sink the scalarized operands of the predicated instruction 4400 // into the block we created for it. When an instruction is sunk, it's 4401 // operands are then added to the worklist. The algorithm ends after one pass 4402 // through the worklist doesn't sink a single instruction. 4403 bool Changed; 4404 do { 4405 // Add the instructions that need to be reanalyzed to the worklist, and 4406 // reset the changed indicator. 4407 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4408 InstsToReanalyze.clear(); 4409 Changed = false; 4410 4411 while (!Worklist.empty()) { 4412 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4413 4414 // We can't sink an instruction if it is a phi node, is not in the loop, 4415 // or may have side effects. 4416 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4417 I->mayHaveSideEffects()) 4418 continue; 4419 4420 // If the instruction is already in PredBB, check if we can sink its 4421 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4422 // sinking the scalar instruction I, hence it appears in PredBB; but it 4423 // may have failed to sink I's operands (recursively), which we try 4424 // (again) here. 4425 if (I->getParent() == PredBB) { 4426 Worklist.insert(I->op_begin(), I->op_end()); 4427 continue; 4428 } 4429 4430 // It's legal to sink the instruction if all its uses occur in the 4431 // predicated block. Otherwise, there's nothing to do yet, and we may 4432 // need to reanalyze the instruction. 4433 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4434 InstsToReanalyze.push_back(I); 4435 continue; 4436 } 4437 4438 // Move the instruction to the beginning of the predicated block, and add 4439 // it's operands to the worklist. 4440 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4441 Worklist.insert(I->op_begin(), I->op_end()); 4442 4443 // The sinking may have enabled other instructions to be sunk, so we will 4444 // need to iterate. 4445 Changed = true; 4446 } 4447 } while (Changed); 4448 } 4449 4450 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4451 for (PHINode *OrigPhi : OrigPHIsToFix) { 4452 VPWidenPHIRecipe *VPPhi = 4453 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4454 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4455 // Make sure the builder has a valid insert point. 4456 Builder.SetInsertPoint(NewPhi); 4457 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4458 VPValue *Inc = VPPhi->getIncomingValue(i); 4459 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4460 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4461 } 4462 } 4463 } 4464 4465 bool InnerLoopVectorizer::useOrderedReductions( 4466 const RecurrenceDescriptor &RdxDesc) { 4467 return Cost->useOrderedReductions(RdxDesc); 4468 } 4469 4470 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4471 VPWidenPHIRecipe *PhiR, 4472 VPTransformState &State) { 4473 PHINode *P = cast<PHINode>(PN); 4474 if (EnableVPlanNativePath) { 4475 // Currently we enter here in the VPlan-native path for non-induction 4476 // PHIs where all control flow is uniform. We simply widen these PHIs. 4477 // Create a vector phi with no operands - the vector phi operands will be 4478 // set at the end of vector code generation. 4479 Type *VecTy = (State.VF.isScalar()) 4480 ? PN->getType() 4481 : VectorType::get(PN->getType(), State.VF); 4482 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4483 State.set(PhiR, VecPhi, 0); 4484 OrigPHIsToFix.push_back(P); 4485 4486 return; 4487 } 4488 4489 assert(PN->getParent() == OrigLoop->getHeader() && 4490 "Non-header phis should have been handled elsewhere"); 4491 4492 // In order to support recurrences we need to be able to vectorize Phi nodes. 4493 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4494 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4495 // this value when we vectorize all of the instructions that use the PHI. 4496 4497 assert(!Legal->isReductionVariable(P) && 4498 "reductions should be handled elsewhere"); 4499 4500 setDebugLocFromInst(P); 4501 4502 // This PHINode must be an induction variable. 4503 // Make sure that we know about it. 4504 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4505 4506 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4507 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4508 4509 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4510 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4511 4512 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4513 // which can be found from the original scalar operations. 4514 switch (II.getKind()) { 4515 case InductionDescriptor::IK_NoInduction: 4516 llvm_unreachable("Unknown induction"); 4517 case InductionDescriptor::IK_IntInduction: 4518 case InductionDescriptor::IK_FpInduction: 4519 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4520 case InductionDescriptor::IK_PtrInduction: { 4521 // Handle the pointer induction variable case. 4522 assert(P->getType()->isPointerTy() && "Unexpected type."); 4523 4524 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4525 // This is the normalized GEP that starts counting at zero. 4526 Value *PtrInd = 4527 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4528 // Determine the number of scalars we need to generate for each unroll 4529 // iteration. If the instruction is uniform, we only need to generate the 4530 // first lane. Otherwise, we generate all VF values. 4531 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4532 assert((IsUniform || !State.VF.isScalable()) && 4533 "Cannot scalarize a scalable VF"); 4534 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4535 4536 for (unsigned Part = 0; Part < UF; ++Part) { 4537 Value *PartStart = 4538 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4539 4540 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4541 Value *Idx = Builder.CreateAdd( 4542 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4543 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4544 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4545 DL, II, State.CFG.PrevBB); 4546 SclrGep->setName("next.gep"); 4547 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4548 } 4549 } 4550 return; 4551 } 4552 assert(isa<SCEVConstant>(II.getStep()) && 4553 "Induction step not a SCEV constant!"); 4554 Type *PhiType = II.getStep()->getType(); 4555 4556 // Build a pointer phi 4557 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4558 Type *ScStValueType = ScalarStartValue->getType(); 4559 PHINode *NewPointerPhi = 4560 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4561 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4562 4563 // A pointer induction, performed by using a gep 4564 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4565 Instruction *InductionLoc = LoopLatch->getTerminator(); 4566 const SCEV *ScalarStep = II.getStep(); 4567 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4568 Value *ScalarStepValue = 4569 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4570 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4571 Value *NumUnrolledElems = 4572 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4573 Value *InductionGEP = GetElementPtrInst::Create( 4574 II.getElementType(), NewPointerPhi, 4575 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4576 InductionLoc); 4577 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4578 4579 // Create UF many actual address geps that use the pointer 4580 // phi as base and a vectorized version of the step value 4581 // (<step*0, ..., step*N>) as offset. 4582 for (unsigned Part = 0; Part < State.UF; ++Part) { 4583 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4584 Value *StartOffsetScalar = 4585 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4586 Value *StartOffset = 4587 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4588 // Create a vector of consecutive numbers from zero to VF. 4589 StartOffset = 4590 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4591 4592 Value *GEP = Builder.CreateGEP( 4593 II.getElementType(), NewPointerPhi, 4594 Builder.CreateMul( 4595 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4596 "vector.gep")); 4597 State.set(PhiR, GEP, Part); 4598 } 4599 } 4600 } 4601 } 4602 4603 /// A helper function for checking whether an integer division-related 4604 /// instruction may divide by zero (in which case it must be predicated if 4605 /// executed conditionally in the scalar code). 4606 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4607 /// Non-zero divisors that are non compile-time constants will not be 4608 /// converted into multiplication, so we will still end up scalarizing 4609 /// the division, but can do so w/o predication. 4610 static bool mayDivideByZero(Instruction &I) { 4611 assert((I.getOpcode() == Instruction::UDiv || 4612 I.getOpcode() == Instruction::SDiv || 4613 I.getOpcode() == Instruction::URem || 4614 I.getOpcode() == Instruction::SRem) && 4615 "Unexpected instruction"); 4616 Value *Divisor = I.getOperand(1); 4617 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4618 return !CInt || CInt->isZero(); 4619 } 4620 4621 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4622 VPUser &ArgOperands, 4623 VPTransformState &State) { 4624 assert(!isa<DbgInfoIntrinsic>(I) && 4625 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4626 setDebugLocFromInst(&I); 4627 4628 Module *M = I.getParent()->getParent()->getParent(); 4629 auto *CI = cast<CallInst>(&I); 4630 4631 SmallVector<Type *, 4> Tys; 4632 for (Value *ArgOperand : CI->args()) 4633 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4634 4635 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4636 4637 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4638 // version of the instruction. 4639 // Is it beneficial to perform intrinsic call compared to lib call? 4640 bool NeedToScalarize = false; 4641 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4642 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4643 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4644 assert((UseVectorIntrinsic || !NeedToScalarize) && 4645 "Instruction should be scalarized elsewhere."); 4646 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4647 "Either the intrinsic cost or vector call cost must be valid"); 4648 4649 for (unsigned Part = 0; Part < UF; ++Part) { 4650 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4651 SmallVector<Value *, 4> Args; 4652 for (auto &I : enumerate(ArgOperands.operands())) { 4653 // Some intrinsics have a scalar argument - don't replace it with a 4654 // vector. 4655 Value *Arg; 4656 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4657 Arg = State.get(I.value(), Part); 4658 else { 4659 Arg = State.get(I.value(), VPIteration(0, 0)); 4660 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4661 TysForDecl.push_back(Arg->getType()); 4662 } 4663 Args.push_back(Arg); 4664 } 4665 4666 Function *VectorF; 4667 if (UseVectorIntrinsic) { 4668 // Use vector version of the intrinsic. 4669 if (VF.isVector()) 4670 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4671 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4672 assert(VectorF && "Can't retrieve vector intrinsic."); 4673 } else { 4674 // Use vector version of the function call. 4675 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4676 #ifndef NDEBUG 4677 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4678 "Can't create vector function."); 4679 #endif 4680 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4681 } 4682 SmallVector<OperandBundleDef, 1> OpBundles; 4683 CI->getOperandBundlesAsDefs(OpBundles); 4684 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4685 4686 if (isa<FPMathOperator>(V)) 4687 V->copyFastMathFlags(CI); 4688 4689 State.set(Def, V, Part); 4690 addMetadata(V, &I); 4691 } 4692 } 4693 4694 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4695 // We should not collect Scalars more than once per VF. Right now, this 4696 // function is called from collectUniformsAndScalars(), which already does 4697 // this check. Collecting Scalars for VF=1 does not make any sense. 4698 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4699 "This function should not be visited twice for the same VF"); 4700 4701 SmallSetVector<Instruction *, 8> Worklist; 4702 4703 // These sets are used to seed the analysis with pointers used by memory 4704 // accesses that will remain scalar. 4705 SmallSetVector<Instruction *, 8> ScalarPtrs; 4706 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4707 auto *Latch = TheLoop->getLoopLatch(); 4708 4709 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4710 // The pointer operands of loads and stores will be scalar as long as the 4711 // memory access is not a gather or scatter operation. The value operand of a 4712 // store will remain scalar if the store is scalarized. 4713 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4714 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4715 assert(WideningDecision != CM_Unknown && 4716 "Widening decision should be ready at this moment"); 4717 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4718 if (Ptr == Store->getValueOperand()) 4719 return WideningDecision == CM_Scalarize; 4720 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4721 "Ptr is neither a value or pointer operand"); 4722 return WideningDecision != CM_GatherScatter; 4723 }; 4724 4725 // A helper that returns true if the given value is a bitcast or 4726 // getelementptr instruction contained in the loop. 4727 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4728 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4729 isa<GetElementPtrInst>(V)) && 4730 !TheLoop->isLoopInvariant(V); 4731 }; 4732 4733 // A helper that evaluates a memory access's use of a pointer. If the use will 4734 // be a scalar use and the pointer is only used by memory accesses, we place 4735 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4736 // PossibleNonScalarPtrs. 4737 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4738 // We only care about bitcast and getelementptr instructions contained in 4739 // the loop. 4740 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4741 return; 4742 4743 // If the pointer has already been identified as scalar (e.g., if it was 4744 // also identified as uniform), there's nothing to do. 4745 auto *I = cast<Instruction>(Ptr); 4746 if (Worklist.count(I)) 4747 return; 4748 4749 // If the use of the pointer will be a scalar use, and all users of the 4750 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4751 // place the pointer in PossibleNonScalarPtrs. 4752 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4753 return isa<LoadInst>(U) || isa<StoreInst>(U); 4754 })) 4755 ScalarPtrs.insert(I); 4756 else 4757 PossibleNonScalarPtrs.insert(I); 4758 }; 4759 4760 // We seed the scalars analysis with three classes of instructions: (1) 4761 // instructions marked uniform-after-vectorization and (2) bitcast, 4762 // getelementptr and (pointer) phi instructions used by memory accesses 4763 // requiring a scalar use. 4764 // 4765 // (1) Add to the worklist all instructions that have been identified as 4766 // uniform-after-vectorization. 4767 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4768 4769 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4770 // memory accesses requiring a scalar use. The pointer operands of loads and 4771 // stores will be scalar as long as the memory accesses is not a gather or 4772 // scatter operation. The value operand of a store will remain scalar if the 4773 // store is scalarized. 4774 for (auto *BB : TheLoop->blocks()) 4775 for (auto &I : *BB) { 4776 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4777 evaluatePtrUse(Load, Load->getPointerOperand()); 4778 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4779 evaluatePtrUse(Store, Store->getPointerOperand()); 4780 evaluatePtrUse(Store, Store->getValueOperand()); 4781 } 4782 } 4783 for (auto *I : ScalarPtrs) 4784 if (!PossibleNonScalarPtrs.count(I)) { 4785 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4786 Worklist.insert(I); 4787 } 4788 4789 // Insert the forced scalars. 4790 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4791 // induction variable when the PHI user is scalarized. 4792 auto ForcedScalar = ForcedScalars.find(VF); 4793 if (ForcedScalar != ForcedScalars.end()) 4794 for (auto *I : ForcedScalar->second) 4795 Worklist.insert(I); 4796 4797 // Expand the worklist by looking through any bitcasts and getelementptr 4798 // instructions we've already identified as scalar. This is similar to the 4799 // expansion step in collectLoopUniforms(); however, here we're only 4800 // expanding to include additional bitcasts and getelementptr instructions. 4801 unsigned Idx = 0; 4802 while (Idx != Worklist.size()) { 4803 Instruction *Dst = Worklist[Idx++]; 4804 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4805 continue; 4806 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4807 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4808 auto *J = cast<Instruction>(U); 4809 return !TheLoop->contains(J) || Worklist.count(J) || 4810 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4811 isScalarUse(J, Src)); 4812 })) { 4813 Worklist.insert(Src); 4814 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4815 } 4816 } 4817 4818 // An induction variable will remain scalar if all users of the induction 4819 // variable and induction variable update remain scalar. 4820 for (auto &Induction : Legal->getInductionVars()) { 4821 auto *Ind = Induction.first; 4822 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4823 4824 // If tail-folding is applied, the primary induction variable will be used 4825 // to feed a vector compare. 4826 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4827 continue; 4828 4829 // Returns true if \p Indvar is a pointer induction that is used directly by 4830 // load/store instruction \p I. 4831 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4832 Instruction *I) { 4833 return Induction.second.getKind() == 4834 InductionDescriptor::IK_PtrInduction && 4835 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4836 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4837 }; 4838 4839 // Determine if all users of the induction variable are scalar after 4840 // vectorization. 4841 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4842 auto *I = cast<Instruction>(U); 4843 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4844 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4845 }); 4846 if (!ScalarInd) 4847 continue; 4848 4849 // Determine if all users of the induction variable update instruction are 4850 // scalar after vectorization. 4851 auto ScalarIndUpdate = 4852 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4853 auto *I = cast<Instruction>(U); 4854 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4855 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4856 }); 4857 if (!ScalarIndUpdate) 4858 continue; 4859 4860 // The induction variable and its update instruction will remain scalar. 4861 Worklist.insert(Ind); 4862 Worklist.insert(IndUpdate); 4863 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4864 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4865 << "\n"); 4866 } 4867 4868 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4869 } 4870 4871 bool LoopVectorizationCostModel::isScalarWithPredication( 4872 Instruction *I, ElementCount VF) const { 4873 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4874 return false; 4875 switch(I->getOpcode()) { 4876 default: 4877 break; 4878 case Instruction::Load: 4879 case Instruction::Store: { 4880 if (!Legal->isMaskRequired(I)) 4881 return false; 4882 auto *Ptr = getLoadStorePointerOperand(I); 4883 auto *Ty = getLoadStoreType(I); 4884 Type *VTy = Ty; 4885 if (VF.isVector()) 4886 VTy = VectorType::get(Ty, VF); 4887 const Align Alignment = getLoadStoreAlignment(I); 4888 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4889 TTI.isLegalMaskedGather(VTy, Alignment)) 4890 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4891 TTI.isLegalMaskedScatter(VTy, Alignment)); 4892 } 4893 case Instruction::UDiv: 4894 case Instruction::SDiv: 4895 case Instruction::SRem: 4896 case Instruction::URem: 4897 return mayDivideByZero(*I); 4898 } 4899 return false; 4900 } 4901 4902 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4903 Instruction *I, ElementCount VF) { 4904 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4905 assert(getWideningDecision(I, VF) == CM_Unknown && 4906 "Decision should not be set yet."); 4907 auto *Group = getInterleavedAccessGroup(I); 4908 assert(Group && "Must have a group."); 4909 4910 // If the instruction's allocated size doesn't equal it's type size, it 4911 // requires padding and will be scalarized. 4912 auto &DL = I->getModule()->getDataLayout(); 4913 auto *ScalarTy = getLoadStoreType(I); 4914 if (hasIrregularType(ScalarTy, DL)) 4915 return false; 4916 4917 // Check if masking is required. 4918 // A Group may need masking for one of two reasons: it resides in a block that 4919 // needs predication, or it was decided to use masking to deal with gaps 4920 // (either a gap at the end of a load-access that may result in a speculative 4921 // load, or any gaps in a store-access). 4922 bool PredicatedAccessRequiresMasking = 4923 blockNeedsPredicationForAnyReason(I->getParent()) && 4924 Legal->isMaskRequired(I); 4925 bool LoadAccessWithGapsRequiresEpilogMasking = 4926 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4927 !isScalarEpilogueAllowed(); 4928 bool StoreAccessWithGapsRequiresMasking = 4929 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4930 if (!PredicatedAccessRequiresMasking && 4931 !LoadAccessWithGapsRequiresEpilogMasking && 4932 !StoreAccessWithGapsRequiresMasking) 4933 return true; 4934 4935 // If masked interleaving is required, we expect that the user/target had 4936 // enabled it, because otherwise it either wouldn't have been created or 4937 // it should have been invalidated by the CostModel. 4938 assert(useMaskedInterleavedAccesses(TTI) && 4939 "Masked interleave-groups for predicated accesses are not enabled."); 4940 4941 if (Group->isReverse()) 4942 return false; 4943 4944 auto *Ty = getLoadStoreType(I); 4945 const Align Alignment = getLoadStoreAlignment(I); 4946 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4947 : TTI.isLegalMaskedStore(Ty, Alignment); 4948 } 4949 4950 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4951 Instruction *I, ElementCount VF) { 4952 // Get and ensure we have a valid memory instruction. 4953 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4954 4955 auto *Ptr = getLoadStorePointerOperand(I); 4956 auto *ScalarTy = getLoadStoreType(I); 4957 4958 // In order to be widened, the pointer should be consecutive, first of all. 4959 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4960 return false; 4961 4962 // If the instruction is a store located in a predicated block, it will be 4963 // scalarized. 4964 if (isScalarWithPredication(I, VF)) 4965 return false; 4966 4967 // If the instruction's allocated size doesn't equal it's type size, it 4968 // requires padding and will be scalarized. 4969 auto &DL = I->getModule()->getDataLayout(); 4970 if (hasIrregularType(ScalarTy, DL)) 4971 return false; 4972 4973 return true; 4974 } 4975 4976 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4977 // We should not collect Uniforms more than once per VF. Right now, 4978 // this function is called from collectUniformsAndScalars(), which 4979 // already does this check. Collecting Uniforms for VF=1 does not make any 4980 // sense. 4981 4982 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4983 "This function should not be visited twice for the same VF"); 4984 4985 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4986 // not analyze again. Uniforms.count(VF) will return 1. 4987 Uniforms[VF].clear(); 4988 4989 // We now know that the loop is vectorizable! 4990 // Collect instructions inside the loop that will remain uniform after 4991 // vectorization. 4992 4993 // Global values, params and instructions outside of current loop are out of 4994 // scope. 4995 auto isOutOfScope = [&](Value *V) -> bool { 4996 Instruction *I = dyn_cast<Instruction>(V); 4997 return (!I || !TheLoop->contains(I)); 4998 }; 4999 5000 // Worklist containing uniform instructions demanding lane 0. 5001 SetVector<Instruction *> Worklist; 5002 BasicBlock *Latch = TheLoop->getLoopLatch(); 5003 5004 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5005 // that are scalar with predication must not be considered uniform after 5006 // vectorization, because that would create an erroneous replicating region 5007 // where only a single instance out of VF should be formed. 5008 // TODO: optimize such seldom cases if found important, see PR40816. 5009 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5010 if (isOutOfScope(I)) { 5011 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5012 << *I << "\n"); 5013 return; 5014 } 5015 if (isScalarWithPredication(I, VF)) { 5016 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5017 << *I << "\n"); 5018 return; 5019 } 5020 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5021 Worklist.insert(I); 5022 }; 5023 5024 // Start with the conditional branch. If the branch condition is an 5025 // instruction contained in the loop that is only used by the branch, it is 5026 // uniform. 5027 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5028 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5029 addToWorklistIfAllowed(Cmp); 5030 5031 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5032 InstWidening WideningDecision = getWideningDecision(I, VF); 5033 assert(WideningDecision != CM_Unknown && 5034 "Widening decision should be ready at this moment"); 5035 5036 // A uniform memory op is itself uniform. We exclude uniform stores 5037 // here as they demand the last lane, not the first one. 5038 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5039 assert(WideningDecision == CM_Scalarize); 5040 return true; 5041 } 5042 5043 return (WideningDecision == CM_Widen || 5044 WideningDecision == CM_Widen_Reverse || 5045 WideningDecision == CM_Interleave); 5046 }; 5047 5048 5049 // Returns true if Ptr is the pointer operand of a memory access instruction 5050 // I, and I is known to not require scalarization. 5051 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5052 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5053 }; 5054 5055 // Holds a list of values which are known to have at least one uniform use. 5056 // Note that there may be other uses which aren't uniform. A "uniform use" 5057 // here is something which only demands lane 0 of the unrolled iterations; 5058 // it does not imply that all lanes produce the same value (e.g. this is not 5059 // the usual meaning of uniform) 5060 SetVector<Value *> HasUniformUse; 5061 5062 // Scan the loop for instructions which are either a) known to have only 5063 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5064 for (auto *BB : TheLoop->blocks()) 5065 for (auto &I : *BB) { 5066 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5067 switch (II->getIntrinsicID()) { 5068 case Intrinsic::sideeffect: 5069 case Intrinsic::experimental_noalias_scope_decl: 5070 case Intrinsic::assume: 5071 case Intrinsic::lifetime_start: 5072 case Intrinsic::lifetime_end: 5073 if (TheLoop->hasLoopInvariantOperands(&I)) 5074 addToWorklistIfAllowed(&I); 5075 break; 5076 default: 5077 break; 5078 } 5079 } 5080 5081 // ExtractValue instructions must be uniform, because the operands are 5082 // known to be loop-invariant. 5083 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5084 assert(isOutOfScope(EVI->getAggregateOperand()) && 5085 "Expected aggregate value to be loop invariant"); 5086 addToWorklistIfAllowed(EVI); 5087 continue; 5088 } 5089 5090 // If there's no pointer operand, there's nothing to do. 5091 auto *Ptr = getLoadStorePointerOperand(&I); 5092 if (!Ptr) 5093 continue; 5094 5095 // A uniform memory op is itself uniform. We exclude uniform stores 5096 // here as they demand the last lane, not the first one. 5097 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5098 addToWorklistIfAllowed(&I); 5099 5100 if (isUniformDecision(&I, VF)) { 5101 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5102 HasUniformUse.insert(Ptr); 5103 } 5104 } 5105 5106 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5107 // demanding) users. Since loops are assumed to be in LCSSA form, this 5108 // disallows uses outside the loop as well. 5109 for (auto *V : HasUniformUse) { 5110 if (isOutOfScope(V)) 5111 continue; 5112 auto *I = cast<Instruction>(V); 5113 auto UsersAreMemAccesses = 5114 llvm::all_of(I->users(), [&](User *U) -> bool { 5115 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5116 }); 5117 if (UsersAreMemAccesses) 5118 addToWorklistIfAllowed(I); 5119 } 5120 5121 // Expand Worklist in topological order: whenever a new instruction 5122 // is added , its users should be already inside Worklist. It ensures 5123 // a uniform instruction will only be used by uniform instructions. 5124 unsigned idx = 0; 5125 while (idx != Worklist.size()) { 5126 Instruction *I = Worklist[idx++]; 5127 5128 for (auto OV : I->operand_values()) { 5129 // isOutOfScope operands cannot be uniform instructions. 5130 if (isOutOfScope(OV)) 5131 continue; 5132 // First order recurrence Phi's should typically be considered 5133 // non-uniform. 5134 auto *OP = dyn_cast<PHINode>(OV); 5135 if (OP && Legal->isFirstOrderRecurrence(OP)) 5136 continue; 5137 // If all the users of the operand are uniform, then add the 5138 // operand into the uniform worklist. 5139 auto *OI = cast<Instruction>(OV); 5140 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5141 auto *J = cast<Instruction>(U); 5142 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5143 })) 5144 addToWorklistIfAllowed(OI); 5145 } 5146 } 5147 5148 // For an instruction to be added into Worklist above, all its users inside 5149 // the loop should also be in Worklist. However, this condition cannot be 5150 // true for phi nodes that form a cyclic dependence. We must process phi 5151 // nodes separately. An induction variable will remain uniform if all users 5152 // of the induction variable and induction variable update remain uniform. 5153 // The code below handles both pointer and non-pointer induction variables. 5154 for (auto &Induction : Legal->getInductionVars()) { 5155 auto *Ind = Induction.first; 5156 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5157 5158 // Determine if all users of the induction variable are uniform after 5159 // vectorization. 5160 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5161 auto *I = cast<Instruction>(U); 5162 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5163 isVectorizedMemAccessUse(I, Ind); 5164 }); 5165 if (!UniformInd) 5166 continue; 5167 5168 // Determine if all users of the induction variable update instruction are 5169 // uniform after vectorization. 5170 auto UniformIndUpdate = 5171 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5172 auto *I = cast<Instruction>(U); 5173 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5174 isVectorizedMemAccessUse(I, IndUpdate); 5175 }); 5176 if (!UniformIndUpdate) 5177 continue; 5178 5179 // The induction variable and its update instruction will remain uniform. 5180 addToWorklistIfAllowed(Ind); 5181 addToWorklistIfAllowed(IndUpdate); 5182 } 5183 5184 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5185 } 5186 5187 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5188 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5189 5190 if (Legal->getRuntimePointerChecking()->Need) { 5191 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5192 "runtime pointer checks needed. Enable vectorization of this " 5193 "loop with '#pragma clang loop vectorize(enable)' when " 5194 "compiling with -Os/-Oz", 5195 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5196 return true; 5197 } 5198 5199 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5200 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5201 "runtime SCEV checks needed. Enable vectorization of this " 5202 "loop with '#pragma clang loop vectorize(enable)' when " 5203 "compiling with -Os/-Oz", 5204 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5205 return true; 5206 } 5207 5208 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5209 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5210 reportVectorizationFailure("Runtime stride check for small trip count", 5211 "runtime stride == 1 checks needed. Enable vectorization of " 5212 "this loop without such check by compiling with -Os/-Oz", 5213 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5214 return true; 5215 } 5216 5217 return false; 5218 } 5219 5220 ElementCount 5221 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5222 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5223 return ElementCount::getScalable(0); 5224 5225 if (Hints->isScalableVectorizationDisabled()) { 5226 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5227 "ScalableVectorizationDisabled", ORE, TheLoop); 5228 return ElementCount::getScalable(0); 5229 } 5230 5231 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5232 5233 auto MaxScalableVF = ElementCount::getScalable( 5234 std::numeric_limits<ElementCount::ScalarTy>::max()); 5235 5236 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5237 // FIXME: While for scalable vectors this is currently sufficient, this should 5238 // be replaced by a more detailed mechanism that filters out specific VFs, 5239 // instead of invalidating vectorization for a whole set of VFs based on the 5240 // MaxVF. 5241 5242 // Disable scalable vectorization if the loop contains unsupported reductions. 5243 if (!canVectorizeReductions(MaxScalableVF)) { 5244 reportVectorizationInfo( 5245 "Scalable vectorization not supported for the reduction " 5246 "operations found in this loop.", 5247 "ScalableVFUnfeasible", ORE, TheLoop); 5248 return ElementCount::getScalable(0); 5249 } 5250 5251 // Disable scalable vectorization if the loop contains any instructions 5252 // with element types not supported for scalable vectors. 5253 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5254 return !Ty->isVoidTy() && 5255 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5256 })) { 5257 reportVectorizationInfo("Scalable vectorization is not supported " 5258 "for all element types found in this loop.", 5259 "ScalableVFUnfeasible", ORE, TheLoop); 5260 return ElementCount::getScalable(0); 5261 } 5262 5263 if (Legal->isSafeForAnyVectorWidth()) 5264 return MaxScalableVF; 5265 5266 // Limit MaxScalableVF by the maximum safe dependence distance. 5267 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5268 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5269 MaxVScale = 5270 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5271 MaxScalableVF = ElementCount::getScalable( 5272 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5273 if (!MaxScalableVF) 5274 reportVectorizationInfo( 5275 "Max legal vector width too small, scalable vectorization " 5276 "unfeasible.", 5277 "ScalableVFUnfeasible", ORE, TheLoop); 5278 5279 return MaxScalableVF; 5280 } 5281 5282 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5283 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5284 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5285 unsigned SmallestType, WidestType; 5286 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5287 5288 // Get the maximum safe dependence distance in bits computed by LAA. 5289 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5290 // the memory accesses that is most restrictive (involved in the smallest 5291 // dependence distance). 5292 unsigned MaxSafeElements = 5293 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5294 5295 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5296 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5297 5298 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5299 << ".\n"); 5300 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5301 << ".\n"); 5302 5303 // First analyze the UserVF, fall back if the UserVF should be ignored. 5304 if (UserVF) { 5305 auto MaxSafeUserVF = 5306 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5307 5308 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5309 // If `VF=vscale x N` is safe, then so is `VF=N` 5310 if (UserVF.isScalable()) 5311 return FixedScalableVFPair( 5312 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5313 else 5314 return UserVF; 5315 } 5316 5317 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5318 5319 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5320 // is better to ignore the hint and let the compiler choose a suitable VF. 5321 if (!UserVF.isScalable()) { 5322 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5323 << " is unsafe, clamping to max safe VF=" 5324 << MaxSafeFixedVF << ".\n"); 5325 ORE->emit([&]() { 5326 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5327 TheLoop->getStartLoc(), 5328 TheLoop->getHeader()) 5329 << "User-specified vectorization factor " 5330 << ore::NV("UserVectorizationFactor", UserVF) 5331 << " is unsafe, clamping to maximum safe vectorization factor " 5332 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5333 }); 5334 return MaxSafeFixedVF; 5335 } 5336 5337 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5338 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5339 << " is ignored because scalable vectors are not " 5340 "available.\n"); 5341 ORE->emit([&]() { 5342 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5343 TheLoop->getStartLoc(), 5344 TheLoop->getHeader()) 5345 << "User-specified vectorization factor " 5346 << ore::NV("UserVectorizationFactor", UserVF) 5347 << " is ignored because the target does not support scalable " 5348 "vectors. The compiler will pick a more suitable value."; 5349 }); 5350 } else { 5351 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5352 << " is unsafe. Ignoring scalable UserVF.\n"); 5353 ORE->emit([&]() { 5354 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5355 TheLoop->getStartLoc(), 5356 TheLoop->getHeader()) 5357 << "User-specified vectorization factor " 5358 << ore::NV("UserVectorizationFactor", UserVF) 5359 << " is unsafe. Ignoring the hint to let the compiler pick a " 5360 "more suitable value."; 5361 }); 5362 } 5363 } 5364 5365 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5366 << " / " << WidestType << " bits.\n"); 5367 5368 FixedScalableVFPair Result(ElementCount::getFixed(1), 5369 ElementCount::getScalable(0)); 5370 if (auto MaxVF = 5371 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5372 MaxSafeFixedVF, FoldTailByMasking)) 5373 Result.FixedVF = MaxVF; 5374 5375 if (auto MaxVF = 5376 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5377 MaxSafeScalableVF, FoldTailByMasking)) 5378 if (MaxVF.isScalable()) { 5379 Result.ScalableVF = MaxVF; 5380 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5381 << "\n"); 5382 } 5383 5384 return Result; 5385 } 5386 5387 FixedScalableVFPair 5388 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5389 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5390 // TODO: It may by useful to do since it's still likely to be dynamically 5391 // uniform if the target can skip. 5392 reportVectorizationFailure( 5393 "Not inserting runtime ptr check for divergent target", 5394 "runtime pointer checks needed. Not enabled for divergent target", 5395 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5396 return FixedScalableVFPair::getNone(); 5397 } 5398 5399 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5400 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5401 if (TC == 1) { 5402 reportVectorizationFailure("Single iteration (non) loop", 5403 "loop trip count is one, irrelevant for vectorization", 5404 "SingleIterationLoop", ORE, TheLoop); 5405 return FixedScalableVFPair::getNone(); 5406 } 5407 5408 switch (ScalarEpilogueStatus) { 5409 case CM_ScalarEpilogueAllowed: 5410 return computeFeasibleMaxVF(TC, UserVF, false); 5411 case CM_ScalarEpilogueNotAllowedUsePredicate: 5412 LLVM_FALLTHROUGH; 5413 case CM_ScalarEpilogueNotNeededUsePredicate: 5414 LLVM_DEBUG( 5415 dbgs() << "LV: vector predicate hint/switch found.\n" 5416 << "LV: Not allowing scalar epilogue, creating predicated " 5417 << "vector loop.\n"); 5418 break; 5419 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5420 // fallthrough as a special case of OptForSize 5421 case CM_ScalarEpilogueNotAllowedOptSize: 5422 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5423 LLVM_DEBUG( 5424 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5425 else 5426 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5427 << "count.\n"); 5428 5429 // Bail if runtime checks are required, which are not good when optimising 5430 // for size. 5431 if (runtimeChecksRequired()) 5432 return FixedScalableVFPair::getNone(); 5433 5434 break; 5435 } 5436 5437 // The only loops we can vectorize without a scalar epilogue, are loops with 5438 // a bottom-test and a single exiting block. We'd have to handle the fact 5439 // that not every instruction executes on the last iteration. This will 5440 // require a lane mask which varies through the vector loop body. (TODO) 5441 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5442 // If there was a tail-folding hint/switch, but we can't fold the tail by 5443 // masking, fallback to a vectorization with a scalar epilogue. 5444 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5445 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5446 "scalar epilogue instead.\n"); 5447 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5448 return computeFeasibleMaxVF(TC, UserVF, false); 5449 } 5450 return FixedScalableVFPair::getNone(); 5451 } 5452 5453 // Now try the tail folding 5454 5455 // Invalidate interleave groups that require an epilogue if we can't mask 5456 // the interleave-group. 5457 if (!useMaskedInterleavedAccesses(TTI)) { 5458 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5459 "No decisions should have been taken at this point"); 5460 // Note: There is no need to invalidate any cost modeling decisions here, as 5461 // non where taken so far. 5462 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5463 } 5464 5465 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5466 // Avoid tail folding if the trip count is known to be a multiple of any VF 5467 // we chose. 5468 // FIXME: The condition below pessimises the case for fixed-width vectors, 5469 // when scalable VFs are also candidates for vectorization. 5470 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5471 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5472 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5473 "MaxFixedVF must be a power of 2"); 5474 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5475 : MaxFixedVF.getFixedValue(); 5476 ScalarEvolution *SE = PSE.getSE(); 5477 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5478 const SCEV *ExitCount = SE->getAddExpr( 5479 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5480 const SCEV *Rem = SE->getURemExpr( 5481 SE->applyLoopGuards(ExitCount, TheLoop), 5482 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5483 if (Rem->isZero()) { 5484 // Accept MaxFixedVF if we do not have a tail. 5485 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5486 return MaxFactors; 5487 } 5488 } 5489 5490 // For scalable vectors don't use tail folding for low trip counts or 5491 // optimizing for code size. We only permit this if the user has explicitly 5492 // requested it. 5493 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5494 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5495 MaxFactors.ScalableVF.isVector()) 5496 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5497 5498 // If we don't know the precise trip count, or if the trip count that we 5499 // found modulo the vectorization factor is not zero, try to fold the tail 5500 // by masking. 5501 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5502 if (Legal->prepareToFoldTailByMasking()) { 5503 FoldTailByMasking = true; 5504 return MaxFactors; 5505 } 5506 5507 // If there was a tail-folding hint/switch, but we can't fold the tail by 5508 // masking, fallback to a vectorization with a scalar epilogue. 5509 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5510 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5511 "scalar epilogue instead.\n"); 5512 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5513 return MaxFactors; 5514 } 5515 5516 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5517 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5518 return FixedScalableVFPair::getNone(); 5519 } 5520 5521 if (TC == 0) { 5522 reportVectorizationFailure( 5523 "Unable to calculate the loop count due to complex control flow", 5524 "unable to calculate the loop count due to complex control flow", 5525 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5526 return FixedScalableVFPair::getNone(); 5527 } 5528 5529 reportVectorizationFailure( 5530 "Cannot optimize for size and vectorize at the same time.", 5531 "cannot optimize for size and vectorize at the same time. " 5532 "Enable vectorization of this loop with '#pragma clang loop " 5533 "vectorize(enable)' when compiling with -Os/-Oz", 5534 "NoTailLoopWithOptForSize", ORE, TheLoop); 5535 return FixedScalableVFPair::getNone(); 5536 } 5537 5538 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5539 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5540 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5541 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5542 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5543 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5544 : TargetTransformInfo::RGK_FixedWidthVector); 5545 5546 // Convenience function to return the minimum of two ElementCounts. 5547 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5548 assert((LHS.isScalable() == RHS.isScalable()) && 5549 "Scalable flags must match"); 5550 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5551 }; 5552 5553 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5554 // Note that both WidestRegister and WidestType may not be a powers of 2. 5555 auto MaxVectorElementCount = ElementCount::get( 5556 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5557 ComputeScalableMaxVF); 5558 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5559 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5560 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5561 5562 if (!MaxVectorElementCount) { 5563 LLVM_DEBUG(dbgs() << "LV: The target has no " 5564 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5565 << " vector registers.\n"); 5566 return ElementCount::getFixed(1); 5567 } 5568 5569 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5570 if (ConstTripCount && 5571 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5572 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5573 // If loop trip count (TC) is known at compile time there is no point in 5574 // choosing VF greater than TC (as done in the loop below). Select maximum 5575 // power of two which doesn't exceed TC. 5576 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5577 // when the TC is less than or equal to the known number of lanes. 5578 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5579 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5580 "exceeding the constant trip count: " 5581 << ClampedConstTripCount << "\n"); 5582 return ElementCount::getFixed(ClampedConstTripCount); 5583 } 5584 5585 ElementCount MaxVF = MaxVectorElementCount; 5586 if (TTI.shouldMaximizeVectorBandwidth() || 5587 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5588 auto MaxVectorElementCountMaxBW = ElementCount::get( 5589 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5590 ComputeScalableMaxVF); 5591 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5592 5593 // Collect all viable vectorization factors larger than the default MaxVF 5594 // (i.e. MaxVectorElementCount). 5595 SmallVector<ElementCount, 8> VFs; 5596 for (ElementCount VS = MaxVectorElementCount * 2; 5597 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5598 VFs.push_back(VS); 5599 5600 // For each VF calculate its register usage. 5601 auto RUs = calculateRegisterUsage(VFs); 5602 5603 // Select the largest VF which doesn't require more registers than existing 5604 // ones. 5605 for (int i = RUs.size() - 1; i >= 0; --i) { 5606 bool Selected = true; 5607 for (auto &pair : RUs[i].MaxLocalUsers) { 5608 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5609 if (pair.second > TargetNumRegisters) 5610 Selected = false; 5611 } 5612 if (Selected) { 5613 MaxVF = VFs[i]; 5614 break; 5615 } 5616 } 5617 if (ElementCount MinVF = 5618 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5619 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5620 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5621 << ") with target's minimum: " << MinVF << '\n'); 5622 MaxVF = MinVF; 5623 } 5624 } 5625 } 5626 return MaxVF; 5627 } 5628 5629 bool LoopVectorizationCostModel::isMoreProfitable( 5630 const VectorizationFactor &A, const VectorizationFactor &B) const { 5631 InstructionCost CostA = A.Cost; 5632 InstructionCost CostB = B.Cost; 5633 5634 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5635 5636 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5637 MaxTripCount) { 5638 // If we are folding the tail and the trip count is a known (possibly small) 5639 // constant, the trip count will be rounded up to an integer number of 5640 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5641 // which we compare directly. When not folding the tail, the total cost will 5642 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5643 // approximated with the per-lane cost below instead of using the tripcount 5644 // as here. 5645 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5646 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5647 return RTCostA < RTCostB; 5648 } 5649 5650 // Improve estimate for the vector width if it is scalable. 5651 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5652 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5653 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5654 if (A.Width.isScalable()) 5655 EstimatedWidthA *= VScale.getValue(); 5656 if (B.Width.isScalable()) 5657 EstimatedWidthB *= VScale.getValue(); 5658 } 5659 5660 // Assume vscale may be larger than 1 (or the value being tuned for), 5661 // so that scalable vectorization is slightly favorable over fixed-width 5662 // vectorization. 5663 if (A.Width.isScalable() && !B.Width.isScalable()) 5664 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5665 5666 // To avoid the need for FP division: 5667 // (CostA / A.Width) < (CostB / B.Width) 5668 // <=> (CostA * B.Width) < (CostB * A.Width) 5669 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5670 } 5671 5672 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5673 const ElementCountSet &VFCandidates) { 5674 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5675 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5676 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5677 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5678 "Expected Scalar VF to be a candidate"); 5679 5680 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5681 VectorizationFactor ChosenFactor = ScalarCost; 5682 5683 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5684 if (ForceVectorization && VFCandidates.size() > 1) { 5685 // Ignore scalar width, because the user explicitly wants vectorization. 5686 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5687 // evaluation. 5688 ChosenFactor.Cost = InstructionCost::getMax(); 5689 } 5690 5691 SmallVector<InstructionVFPair> InvalidCosts; 5692 for (const auto &i : VFCandidates) { 5693 // The cost for scalar VF=1 is already calculated, so ignore it. 5694 if (i.isScalar()) 5695 continue; 5696 5697 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5698 VectorizationFactor Candidate(i, C.first); 5699 5700 #ifndef NDEBUG 5701 unsigned AssumedMinimumVscale = 1; 5702 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5703 AssumedMinimumVscale = VScale.getValue(); 5704 unsigned Width = 5705 Candidate.Width.isScalable() 5706 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5707 : Candidate.Width.getFixedValue(); 5708 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5709 << " costs: " << (Candidate.Cost / Width)); 5710 if (i.isScalable()) 5711 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5712 << AssumedMinimumVscale << ")"); 5713 LLVM_DEBUG(dbgs() << ".\n"); 5714 #endif 5715 5716 if (!C.second && !ForceVectorization) { 5717 LLVM_DEBUG( 5718 dbgs() << "LV: Not considering vector loop of width " << i 5719 << " because it will not generate any vector instructions.\n"); 5720 continue; 5721 } 5722 5723 // If profitable add it to ProfitableVF list. 5724 if (isMoreProfitable(Candidate, ScalarCost)) 5725 ProfitableVFs.push_back(Candidate); 5726 5727 if (isMoreProfitable(Candidate, ChosenFactor)) 5728 ChosenFactor = Candidate; 5729 } 5730 5731 // Emit a report of VFs with invalid costs in the loop. 5732 if (!InvalidCosts.empty()) { 5733 // Group the remarks per instruction, keeping the instruction order from 5734 // InvalidCosts. 5735 std::map<Instruction *, unsigned> Numbering; 5736 unsigned I = 0; 5737 for (auto &Pair : InvalidCosts) 5738 if (!Numbering.count(Pair.first)) 5739 Numbering[Pair.first] = I++; 5740 5741 // Sort the list, first on instruction(number) then on VF. 5742 llvm::sort(InvalidCosts, 5743 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5744 if (Numbering[A.first] != Numbering[B.first]) 5745 return Numbering[A.first] < Numbering[B.first]; 5746 ElementCountComparator ECC; 5747 return ECC(A.second, B.second); 5748 }); 5749 5750 // For a list of ordered instruction-vf pairs: 5751 // [(load, vf1), (load, vf2), (store, vf1)] 5752 // Group the instructions together to emit separate remarks for: 5753 // load (vf1, vf2) 5754 // store (vf1) 5755 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5756 auto Subset = ArrayRef<InstructionVFPair>(); 5757 do { 5758 if (Subset.empty()) 5759 Subset = Tail.take_front(1); 5760 5761 Instruction *I = Subset.front().first; 5762 5763 // If the next instruction is different, or if there are no other pairs, 5764 // emit a remark for the collated subset. e.g. 5765 // [(load, vf1), (load, vf2))] 5766 // to emit: 5767 // remark: invalid costs for 'load' at VF=(vf, vf2) 5768 if (Subset == Tail || Tail[Subset.size()].first != I) { 5769 std::string OutString; 5770 raw_string_ostream OS(OutString); 5771 assert(!Subset.empty() && "Unexpected empty range"); 5772 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5773 for (auto &Pair : Subset) 5774 OS << (Pair.second == Subset.front().second ? "" : ", ") 5775 << Pair.second; 5776 OS << "):"; 5777 if (auto *CI = dyn_cast<CallInst>(I)) 5778 OS << " call to " << CI->getCalledFunction()->getName(); 5779 else 5780 OS << " " << I->getOpcodeName(); 5781 OS.flush(); 5782 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5783 Tail = Tail.drop_front(Subset.size()); 5784 Subset = {}; 5785 } else 5786 // Grow the subset by one element 5787 Subset = Tail.take_front(Subset.size() + 1); 5788 } while (!Tail.empty()); 5789 } 5790 5791 if (!EnableCondStoresVectorization && NumPredStores) { 5792 reportVectorizationFailure("There are conditional stores.", 5793 "store that is conditionally executed prevents vectorization", 5794 "ConditionalStore", ORE, TheLoop); 5795 ChosenFactor = ScalarCost; 5796 } 5797 5798 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5799 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5800 << "LV: Vectorization seems to be not beneficial, " 5801 << "but was forced by a user.\n"); 5802 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5803 return ChosenFactor; 5804 } 5805 5806 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5807 const Loop &L, ElementCount VF) const { 5808 // Cross iteration phis such as reductions need special handling and are 5809 // currently unsupported. 5810 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5811 return Legal->isFirstOrderRecurrence(&Phi) || 5812 Legal->isReductionVariable(&Phi); 5813 })) 5814 return false; 5815 5816 // Phis with uses outside of the loop require special handling and are 5817 // currently unsupported. 5818 for (auto &Entry : Legal->getInductionVars()) { 5819 // Look for uses of the value of the induction at the last iteration. 5820 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5821 for (User *U : PostInc->users()) 5822 if (!L.contains(cast<Instruction>(U))) 5823 return false; 5824 // Look for uses of penultimate value of the induction. 5825 for (User *U : Entry.first->users()) 5826 if (!L.contains(cast<Instruction>(U))) 5827 return false; 5828 } 5829 5830 // Induction variables that are widened require special handling that is 5831 // currently not supported. 5832 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5833 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5834 this->isProfitableToScalarize(Entry.first, VF)); 5835 })) 5836 return false; 5837 5838 // Epilogue vectorization code has not been auditted to ensure it handles 5839 // non-latch exits properly. It may be fine, but it needs auditted and 5840 // tested. 5841 if (L.getExitingBlock() != L.getLoopLatch()) 5842 return false; 5843 5844 return true; 5845 } 5846 5847 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5848 const ElementCount VF) const { 5849 // FIXME: We need a much better cost-model to take different parameters such 5850 // as register pressure, code size increase and cost of extra branches into 5851 // account. For now we apply a very crude heuristic and only consider loops 5852 // with vectorization factors larger than a certain value. 5853 // We also consider epilogue vectorization unprofitable for targets that don't 5854 // consider interleaving beneficial (eg. MVE). 5855 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5856 return false; 5857 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5858 return true; 5859 return false; 5860 } 5861 5862 VectorizationFactor 5863 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5864 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5865 VectorizationFactor Result = VectorizationFactor::Disabled(); 5866 if (!EnableEpilogueVectorization) { 5867 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5868 return Result; 5869 } 5870 5871 if (!isScalarEpilogueAllowed()) { 5872 LLVM_DEBUG( 5873 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5874 "allowed.\n";); 5875 return Result; 5876 } 5877 5878 // Not really a cost consideration, but check for unsupported cases here to 5879 // simplify the logic. 5880 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5881 LLVM_DEBUG( 5882 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5883 "not a supported candidate.\n";); 5884 return Result; 5885 } 5886 5887 if (EpilogueVectorizationForceVF > 1) { 5888 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5889 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5890 if (LVP.hasPlanWithVF(ForcedEC)) 5891 return {ForcedEC, 0}; 5892 else { 5893 LLVM_DEBUG( 5894 dbgs() 5895 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5896 return Result; 5897 } 5898 } 5899 5900 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5901 TheLoop->getHeader()->getParent()->hasMinSize()) { 5902 LLVM_DEBUG( 5903 dbgs() 5904 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5905 return Result; 5906 } 5907 5908 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5909 if (MainLoopVF.isScalable()) 5910 LLVM_DEBUG( 5911 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 5912 "yet supported. Converting to fixed-width (VF=" 5913 << FixedMainLoopVF << ") instead\n"); 5914 5915 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 5916 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5917 "this loop\n"); 5918 return Result; 5919 } 5920 5921 for (auto &NextVF : ProfitableVFs) 5922 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 5923 (Result.Width.getFixedValue() == 1 || 5924 isMoreProfitable(NextVF, Result)) && 5925 LVP.hasPlanWithVF(NextVF.Width)) 5926 Result = NextVF; 5927 5928 if (Result != VectorizationFactor::Disabled()) 5929 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5930 << Result.Width.getFixedValue() << "\n";); 5931 return Result; 5932 } 5933 5934 std::pair<unsigned, unsigned> 5935 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5936 unsigned MinWidth = -1U; 5937 unsigned MaxWidth = 8; 5938 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5939 // For in-loop reductions, no element types are added to ElementTypesInLoop 5940 // if there are no loads/stores in the loop. In this case, check through the 5941 // reduction variables to determine the maximum width. 5942 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5943 // Reset MaxWidth so that we can find the smallest type used by recurrences 5944 // in the loop. 5945 MaxWidth = -1U; 5946 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5947 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5948 // When finding the min width used by the recurrence we need to account 5949 // for casts on the input operands of the recurrence. 5950 MaxWidth = std::min<unsigned>( 5951 MaxWidth, std::min<unsigned>( 5952 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5953 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5954 } 5955 } else { 5956 for (Type *T : ElementTypesInLoop) { 5957 MinWidth = std::min<unsigned>( 5958 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5959 MaxWidth = std::max<unsigned>( 5960 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5961 } 5962 } 5963 return {MinWidth, MaxWidth}; 5964 } 5965 5966 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5967 ElementTypesInLoop.clear(); 5968 // For each block. 5969 for (BasicBlock *BB : TheLoop->blocks()) { 5970 // For each instruction in the loop. 5971 for (Instruction &I : BB->instructionsWithoutDebug()) { 5972 Type *T = I.getType(); 5973 5974 // Skip ignored values. 5975 if (ValuesToIgnore.count(&I)) 5976 continue; 5977 5978 // Only examine Loads, Stores and PHINodes. 5979 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5980 continue; 5981 5982 // Examine PHI nodes that are reduction variables. Update the type to 5983 // account for the recurrence type. 5984 if (auto *PN = dyn_cast<PHINode>(&I)) { 5985 if (!Legal->isReductionVariable(PN)) 5986 continue; 5987 const RecurrenceDescriptor &RdxDesc = 5988 Legal->getReductionVars().find(PN)->second; 5989 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5990 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5991 RdxDesc.getRecurrenceType(), 5992 TargetTransformInfo::ReductionFlags())) 5993 continue; 5994 T = RdxDesc.getRecurrenceType(); 5995 } 5996 5997 // Examine the stored values. 5998 if (auto *ST = dyn_cast<StoreInst>(&I)) 5999 T = ST->getValueOperand()->getType(); 6000 6001 assert(T->isSized() && 6002 "Expected the load/store/recurrence type to be sized"); 6003 6004 ElementTypesInLoop.insert(T); 6005 } 6006 } 6007 } 6008 6009 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6010 unsigned LoopCost) { 6011 // -- The interleave heuristics -- 6012 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6013 // There are many micro-architectural considerations that we can't predict 6014 // at this level. For example, frontend pressure (on decode or fetch) due to 6015 // code size, or the number and capabilities of the execution ports. 6016 // 6017 // We use the following heuristics to select the interleave count: 6018 // 1. If the code has reductions, then we interleave to break the cross 6019 // iteration dependency. 6020 // 2. If the loop is really small, then we interleave to reduce the loop 6021 // overhead. 6022 // 3. We don't interleave if we think that we will spill registers to memory 6023 // due to the increased register pressure. 6024 6025 if (!isScalarEpilogueAllowed()) 6026 return 1; 6027 6028 // We used the distance for the interleave count. 6029 if (Legal->getMaxSafeDepDistBytes() != -1U) 6030 return 1; 6031 6032 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6033 const bool HasReductions = !Legal->getReductionVars().empty(); 6034 // Do not interleave loops with a relatively small known or estimated trip 6035 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6036 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6037 // because with the above conditions interleaving can expose ILP and break 6038 // cross iteration dependences for reductions. 6039 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6040 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6041 return 1; 6042 6043 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6044 // We divide by these constants so assume that we have at least one 6045 // instruction that uses at least one register. 6046 for (auto& pair : R.MaxLocalUsers) { 6047 pair.second = std::max(pair.second, 1U); 6048 } 6049 6050 // We calculate the interleave count using the following formula. 6051 // Subtract the number of loop invariants from the number of available 6052 // registers. These registers are used by all of the interleaved instances. 6053 // Next, divide the remaining registers by the number of registers that is 6054 // required by the loop, in order to estimate how many parallel instances 6055 // fit without causing spills. All of this is rounded down if necessary to be 6056 // a power of two. We want power of two interleave count to simplify any 6057 // addressing operations or alignment considerations. 6058 // We also want power of two interleave counts to ensure that the induction 6059 // variable of the vector loop wraps to zero, when tail is folded by masking; 6060 // this currently happens when OptForSize, in which case IC is set to 1 above. 6061 unsigned IC = UINT_MAX; 6062 6063 for (auto& pair : R.MaxLocalUsers) { 6064 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6065 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6066 << " registers of " 6067 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6068 if (VF.isScalar()) { 6069 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6070 TargetNumRegisters = ForceTargetNumScalarRegs; 6071 } else { 6072 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6073 TargetNumRegisters = ForceTargetNumVectorRegs; 6074 } 6075 unsigned MaxLocalUsers = pair.second; 6076 unsigned LoopInvariantRegs = 0; 6077 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6078 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6079 6080 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6081 // Don't count the induction variable as interleaved. 6082 if (EnableIndVarRegisterHeur) { 6083 TmpIC = 6084 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6085 std::max(1U, (MaxLocalUsers - 1))); 6086 } 6087 6088 IC = std::min(IC, TmpIC); 6089 } 6090 6091 // Clamp the interleave ranges to reasonable counts. 6092 unsigned MaxInterleaveCount = 6093 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6094 6095 // Check if the user has overridden the max. 6096 if (VF.isScalar()) { 6097 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6098 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6099 } else { 6100 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6101 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6102 } 6103 6104 // If trip count is known or estimated compile time constant, limit the 6105 // interleave count to be less than the trip count divided by VF, provided it 6106 // is at least 1. 6107 // 6108 // For scalable vectors we can't know if interleaving is beneficial. It may 6109 // not be beneficial for small loops if none of the lanes in the second vector 6110 // iterations is enabled. However, for larger loops, there is likely to be a 6111 // similar benefit as for fixed-width vectors. For now, we choose to leave 6112 // the InterleaveCount as if vscale is '1', although if some information about 6113 // the vector is known (e.g. min vector size), we can make a better decision. 6114 if (BestKnownTC) { 6115 MaxInterleaveCount = 6116 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6117 // Make sure MaxInterleaveCount is greater than 0. 6118 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6119 } 6120 6121 assert(MaxInterleaveCount > 0 && 6122 "Maximum interleave count must be greater than 0"); 6123 6124 // Clamp the calculated IC to be between the 1 and the max interleave count 6125 // that the target and trip count allows. 6126 if (IC > MaxInterleaveCount) 6127 IC = MaxInterleaveCount; 6128 else 6129 // Make sure IC is greater than 0. 6130 IC = std::max(1u, IC); 6131 6132 assert(IC > 0 && "Interleave count must be greater than 0."); 6133 6134 // If we did not calculate the cost for VF (because the user selected the VF) 6135 // then we calculate the cost of VF here. 6136 if (LoopCost == 0) { 6137 InstructionCost C = expectedCost(VF).first; 6138 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6139 LoopCost = *C.getValue(); 6140 } 6141 6142 assert(LoopCost && "Non-zero loop cost expected"); 6143 6144 // Interleave if we vectorized this loop and there is a reduction that could 6145 // benefit from interleaving. 6146 if (VF.isVector() && HasReductions) { 6147 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6148 return IC; 6149 } 6150 6151 // Note that if we've already vectorized the loop we will have done the 6152 // runtime check and so interleaving won't require further checks. 6153 bool InterleavingRequiresRuntimePointerCheck = 6154 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6155 6156 // We want to interleave small loops in order to reduce the loop overhead and 6157 // potentially expose ILP opportunities. 6158 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6159 << "LV: IC is " << IC << '\n' 6160 << "LV: VF is " << VF << '\n'); 6161 const bool AggressivelyInterleaveReductions = 6162 TTI.enableAggressiveInterleaving(HasReductions); 6163 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6164 // We assume that the cost overhead is 1 and we use the cost model 6165 // to estimate the cost of the loop and interleave until the cost of the 6166 // loop overhead is about 5% of the cost of the loop. 6167 unsigned SmallIC = 6168 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6169 6170 // Interleave until store/load ports (estimated by max interleave count) are 6171 // saturated. 6172 unsigned NumStores = Legal->getNumStores(); 6173 unsigned NumLoads = Legal->getNumLoads(); 6174 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6175 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6176 6177 // There is little point in interleaving for reductions containing selects 6178 // and compares when VF=1 since it may just create more overhead than it's 6179 // worth for loops with small trip counts. This is because we still have to 6180 // do the final reduction after the loop. 6181 bool HasSelectCmpReductions = 6182 HasReductions && 6183 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6184 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6185 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6186 RdxDesc.getRecurrenceKind()); 6187 }); 6188 if (HasSelectCmpReductions) { 6189 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6190 return 1; 6191 } 6192 6193 // If we have a scalar reduction (vector reductions are already dealt with 6194 // by this point), we can increase the critical path length if the loop 6195 // we're interleaving is inside another loop. For tree-wise reductions 6196 // set the limit to 2, and for ordered reductions it's best to disable 6197 // interleaving entirely. 6198 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6199 bool HasOrderedReductions = 6200 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6201 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6202 return RdxDesc.isOrdered(); 6203 }); 6204 if (HasOrderedReductions) { 6205 LLVM_DEBUG( 6206 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6207 return 1; 6208 } 6209 6210 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6211 SmallIC = std::min(SmallIC, F); 6212 StoresIC = std::min(StoresIC, F); 6213 LoadsIC = std::min(LoadsIC, F); 6214 } 6215 6216 if (EnableLoadStoreRuntimeInterleave && 6217 std::max(StoresIC, LoadsIC) > SmallIC) { 6218 LLVM_DEBUG( 6219 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6220 return std::max(StoresIC, LoadsIC); 6221 } 6222 6223 // If there are scalar reductions and TTI has enabled aggressive 6224 // interleaving for reductions, we will interleave to expose ILP. 6225 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6226 AggressivelyInterleaveReductions) { 6227 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6228 // Interleave no less than SmallIC but not as aggressive as the normal IC 6229 // to satisfy the rare situation when resources are too limited. 6230 return std::max(IC / 2, SmallIC); 6231 } else { 6232 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6233 return SmallIC; 6234 } 6235 } 6236 6237 // Interleave if this is a large loop (small loops are already dealt with by 6238 // this point) that could benefit from interleaving. 6239 if (AggressivelyInterleaveReductions) { 6240 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6241 return IC; 6242 } 6243 6244 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6245 return 1; 6246 } 6247 6248 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6249 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6250 // This function calculates the register usage by measuring the highest number 6251 // of values that are alive at a single location. Obviously, this is a very 6252 // rough estimation. We scan the loop in a topological order in order and 6253 // assign a number to each instruction. We use RPO to ensure that defs are 6254 // met before their users. We assume that each instruction that has in-loop 6255 // users starts an interval. We record every time that an in-loop value is 6256 // used, so we have a list of the first and last occurrences of each 6257 // instruction. Next, we transpose this data structure into a multi map that 6258 // holds the list of intervals that *end* at a specific location. This multi 6259 // map allows us to perform a linear search. We scan the instructions linearly 6260 // and record each time that a new interval starts, by placing it in a set. 6261 // If we find this value in the multi-map then we remove it from the set. 6262 // The max register usage is the maximum size of the set. 6263 // We also search for instructions that are defined outside the loop, but are 6264 // used inside the loop. We need this number separately from the max-interval 6265 // usage number because when we unroll, loop-invariant values do not take 6266 // more register. 6267 LoopBlocksDFS DFS(TheLoop); 6268 DFS.perform(LI); 6269 6270 RegisterUsage RU; 6271 6272 // Each 'key' in the map opens a new interval. The values 6273 // of the map are the index of the 'last seen' usage of the 6274 // instruction that is the key. 6275 using IntervalMap = DenseMap<Instruction *, unsigned>; 6276 6277 // Maps instruction to its index. 6278 SmallVector<Instruction *, 64> IdxToInstr; 6279 // Marks the end of each interval. 6280 IntervalMap EndPoint; 6281 // Saves the list of instruction indices that are used in the loop. 6282 SmallPtrSet<Instruction *, 8> Ends; 6283 // Saves the list of values that are used in the loop but are 6284 // defined outside the loop, such as arguments and constants. 6285 SmallPtrSet<Value *, 8> LoopInvariants; 6286 6287 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6288 for (Instruction &I : BB->instructionsWithoutDebug()) { 6289 IdxToInstr.push_back(&I); 6290 6291 // Save the end location of each USE. 6292 for (Value *U : I.operands()) { 6293 auto *Instr = dyn_cast<Instruction>(U); 6294 6295 // Ignore non-instruction values such as arguments, constants, etc. 6296 if (!Instr) 6297 continue; 6298 6299 // If this instruction is outside the loop then record it and continue. 6300 if (!TheLoop->contains(Instr)) { 6301 LoopInvariants.insert(Instr); 6302 continue; 6303 } 6304 6305 // Overwrite previous end points. 6306 EndPoint[Instr] = IdxToInstr.size(); 6307 Ends.insert(Instr); 6308 } 6309 } 6310 } 6311 6312 // Saves the list of intervals that end with the index in 'key'. 6313 using InstrList = SmallVector<Instruction *, 2>; 6314 DenseMap<unsigned, InstrList> TransposeEnds; 6315 6316 // Transpose the EndPoints to a list of values that end at each index. 6317 for (auto &Interval : EndPoint) 6318 TransposeEnds[Interval.second].push_back(Interval.first); 6319 6320 SmallPtrSet<Instruction *, 8> OpenIntervals; 6321 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6322 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6323 6324 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6325 6326 // A lambda that gets the register usage for the given type and VF. 6327 const auto &TTICapture = TTI; 6328 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6329 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6330 return 0; 6331 InstructionCost::CostType RegUsage = 6332 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6333 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6334 "Nonsensical values for register usage."); 6335 return RegUsage; 6336 }; 6337 6338 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6339 Instruction *I = IdxToInstr[i]; 6340 6341 // Remove all of the instructions that end at this location. 6342 InstrList &List = TransposeEnds[i]; 6343 for (Instruction *ToRemove : List) 6344 OpenIntervals.erase(ToRemove); 6345 6346 // Ignore instructions that are never used within the loop. 6347 if (!Ends.count(I)) 6348 continue; 6349 6350 // Skip ignored values. 6351 if (ValuesToIgnore.count(I)) 6352 continue; 6353 6354 // For each VF find the maximum usage of registers. 6355 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6356 // Count the number of live intervals. 6357 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6358 6359 if (VFs[j].isScalar()) { 6360 for (auto Inst : OpenIntervals) { 6361 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6362 if (RegUsage.find(ClassID) == RegUsage.end()) 6363 RegUsage[ClassID] = 1; 6364 else 6365 RegUsage[ClassID] += 1; 6366 } 6367 } else { 6368 collectUniformsAndScalars(VFs[j]); 6369 for (auto Inst : OpenIntervals) { 6370 // Skip ignored values for VF > 1. 6371 if (VecValuesToIgnore.count(Inst)) 6372 continue; 6373 if (isScalarAfterVectorization(Inst, VFs[j])) { 6374 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6375 if (RegUsage.find(ClassID) == RegUsage.end()) 6376 RegUsage[ClassID] = 1; 6377 else 6378 RegUsage[ClassID] += 1; 6379 } else { 6380 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6381 if (RegUsage.find(ClassID) == RegUsage.end()) 6382 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6383 else 6384 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6385 } 6386 } 6387 } 6388 6389 for (auto& pair : RegUsage) { 6390 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6391 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6392 else 6393 MaxUsages[j][pair.first] = pair.second; 6394 } 6395 } 6396 6397 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6398 << OpenIntervals.size() << '\n'); 6399 6400 // Add the current instruction to the list of open intervals. 6401 OpenIntervals.insert(I); 6402 } 6403 6404 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6405 SmallMapVector<unsigned, unsigned, 4> Invariant; 6406 6407 for (auto Inst : LoopInvariants) { 6408 unsigned Usage = 6409 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6410 unsigned ClassID = 6411 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6412 if (Invariant.find(ClassID) == Invariant.end()) 6413 Invariant[ClassID] = Usage; 6414 else 6415 Invariant[ClassID] += Usage; 6416 } 6417 6418 LLVM_DEBUG({ 6419 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6420 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6421 << " item\n"; 6422 for (const auto &pair : MaxUsages[i]) { 6423 dbgs() << "LV(REG): RegisterClass: " 6424 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6425 << " registers\n"; 6426 } 6427 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6428 << " item\n"; 6429 for (const auto &pair : Invariant) { 6430 dbgs() << "LV(REG): RegisterClass: " 6431 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6432 << " registers\n"; 6433 } 6434 }); 6435 6436 RU.LoopInvariantRegs = Invariant; 6437 RU.MaxLocalUsers = MaxUsages[i]; 6438 RUs[i] = RU; 6439 } 6440 6441 return RUs; 6442 } 6443 6444 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6445 ElementCount VF) { 6446 // TODO: Cost model for emulated masked load/store is completely 6447 // broken. This hack guides the cost model to use an artificially 6448 // high enough value to practically disable vectorization with such 6449 // operations, except where previously deployed legality hack allowed 6450 // using very low cost values. This is to avoid regressions coming simply 6451 // from moving "masked load/store" check from legality to cost model. 6452 // Masked Load/Gather emulation was previously never allowed. 6453 // Limited number of Masked Store/Scatter emulation was allowed. 6454 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6455 return isa<LoadInst>(I) || 6456 (isa<StoreInst>(I) && 6457 NumPredStores > NumberOfStoresToPredicate); 6458 } 6459 6460 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6461 // If we aren't vectorizing the loop, or if we've already collected the 6462 // instructions to scalarize, there's nothing to do. Collection may already 6463 // have occurred if we have a user-selected VF and are now computing the 6464 // expected cost for interleaving. 6465 if (VF.isScalar() || VF.isZero() || 6466 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6467 return; 6468 6469 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6470 // not profitable to scalarize any instructions, the presence of VF in the 6471 // map will indicate that we've analyzed it already. 6472 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6473 6474 // Find all the instructions that are scalar with predication in the loop and 6475 // determine if it would be better to not if-convert the blocks they are in. 6476 // If so, we also record the instructions to scalarize. 6477 for (BasicBlock *BB : TheLoop->blocks()) { 6478 if (!blockNeedsPredicationForAnyReason(BB)) 6479 continue; 6480 for (Instruction &I : *BB) 6481 if (isScalarWithPredication(&I, VF)) { 6482 ScalarCostsTy ScalarCosts; 6483 // Do not apply discount if scalable, because that would lead to 6484 // invalid scalarization costs. 6485 // Do not apply discount logic if hacked cost is needed 6486 // for emulated masked memrefs. 6487 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6488 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6489 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6490 // Remember that BB will remain after vectorization. 6491 PredicatedBBsAfterVectorization.insert(BB); 6492 } 6493 } 6494 } 6495 6496 int LoopVectorizationCostModel::computePredInstDiscount( 6497 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6498 assert(!isUniformAfterVectorization(PredInst, VF) && 6499 "Instruction marked uniform-after-vectorization will be predicated"); 6500 6501 // Initialize the discount to zero, meaning that the scalar version and the 6502 // vector version cost the same. 6503 InstructionCost Discount = 0; 6504 6505 // Holds instructions to analyze. The instructions we visit are mapped in 6506 // ScalarCosts. Those instructions are the ones that would be scalarized if 6507 // we find that the scalar version costs less. 6508 SmallVector<Instruction *, 8> Worklist; 6509 6510 // Returns true if the given instruction can be scalarized. 6511 auto canBeScalarized = [&](Instruction *I) -> bool { 6512 // We only attempt to scalarize instructions forming a single-use chain 6513 // from the original predicated block that would otherwise be vectorized. 6514 // Although not strictly necessary, we give up on instructions we know will 6515 // already be scalar to avoid traversing chains that are unlikely to be 6516 // beneficial. 6517 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6518 isScalarAfterVectorization(I, VF)) 6519 return false; 6520 6521 // If the instruction is scalar with predication, it will be analyzed 6522 // separately. We ignore it within the context of PredInst. 6523 if (isScalarWithPredication(I, VF)) 6524 return false; 6525 6526 // If any of the instruction's operands are uniform after vectorization, 6527 // the instruction cannot be scalarized. This prevents, for example, a 6528 // masked load from being scalarized. 6529 // 6530 // We assume we will only emit a value for lane zero of an instruction 6531 // marked uniform after vectorization, rather than VF identical values. 6532 // Thus, if we scalarize an instruction that uses a uniform, we would 6533 // create uses of values corresponding to the lanes we aren't emitting code 6534 // for. This behavior can be changed by allowing getScalarValue to clone 6535 // the lane zero values for uniforms rather than asserting. 6536 for (Use &U : I->operands()) 6537 if (auto *J = dyn_cast<Instruction>(U.get())) 6538 if (isUniformAfterVectorization(J, VF)) 6539 return false; 6540 6541 // Otherwise, we can scalarize the instruction. 6542 return true; 6543 }; 6544 6545 // Compute the expected cost discount from scalarizing the entire expression 6546 // feeding the predicated instruction. We currently only consider expressions 6547 // that are single-use instruction chains. 6548 Worklist.push_back(PredInst); 6549 while (!Worklist.empty()) { 6550 Instruction *I = Worklist.pop_back_val(); 6551 6552 // If we've already analyzed the instruction, there's nothing to do. 6553 if (ScalarCosts.find(I) != ScalarCosts.end()) 6554 continue; 6555 6556 // Compute the cost of the vector instruction. Note that this cost already 6557 // includes the scalarization overhead of the predicated instruction. 6558 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6559 6560 // Compute the cost of the scalarized instruction. This cost is the cost of 6561 // the instruction as if it wasn't if-converted and instead remained in the 6562 // predicated block. We will scale this cost by block probability after 6563 // computing the scalarization overhead. 6564 InstructionCost ScalarCost = 6565 VF.getFixedValue() * 6566 getInstructionCost(I, ElementCount::getFixed(1)).first; 6567 6568 // Compute the scalarization overhead of needed insertelement instructions 6569 // and phi nodes. 6570 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6571 ScalarCost += TTI.getScalarizationOverhead( 6572 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6573 APInt::getAllOnes(VF.getFixedValue()), true, false); 6574 ScalarCost += 6575 VF.getFixedValue() * 6576 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6577 } 6578 6579 // Compute the scalarization overhead of needed extractelement 6580 // instructions. For each of the instruction's operands, if the operand can 6581 // be scalarized, add it to the worklist; otherwise, account for the 6582 // overhead. 6583 for (Use &U : I->operands()) 6584 if (auto *J = dyn_cast<Instruction>(U.get())) { 6585 assert(VectorType::isValidElementType(J->getType()) && 6586 "Instruction has non-scalar type"); 6587 if (canBeScalarized(J)) 6588 Worklist.push_back(J); 6589 else if (needsExtract(J, VF)) { 6590 ScalarCost += TTI.getScalarizationOverhead( 6591 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6592 APInt::getAllOnes(VF.getFixedValue()), false, true); 6593 } 6594 } 6595 6596 // Scale the total scalar cost by block probability. 6597 ScalarCost /= getReciprocalPredBlockProb(); 6598 6599 // Compute the discount. A non-negative discount means the vector version 6600 // of the instruction costs more, and scalarizing would be beneficial. 6601 Discount += VectorCost - ScalarCost; 6602 ScalarCosts[I] = ScalarCost; 6603 } 6604 6605 return *Discount.getValue(); 6606 } 6607 6608 LoopVectorizationCostModel::VectorizationCostTy 6609 LoopVectorizationCostModel::expectedCost( 6610 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6611 VectorizationCostTy Cost; 6612 6613 // For each block. 6614 for (BasicBlock *BB : TheLoop->blocks()) { 6615 VectorizationCostTy BlockCost; 6616 6617 // For each instruction in the old loop. 6618 for (Instruction &I : BB->instructionsWithoutDebug()) { 6619 // Skip ignored values. 6620 if (ValuesToIgnore.count(&I) || 6621 (VF.isVector() && VecValuesToIgnore.count(&I))) 6622 continue; 6623 6624 VectorizationCostTy C = getInstructionCost(&I, VF); 6625 6626 // Check if we should override the cost. 6627 if (C.first.isValid() && 6628 ForceTargetInstructionCost.getNumOccurrences() > 0) 6629 C.first = InstructionCost(ForceTargetInstructionCost); 6630 6631 // Keep a list of instructions with invalid costs. 6632 if (Invalid && !C.first.isValid()) 6633 Invalid->emplace_back(&I, VF); 6634 6635 BlockCost.first += C.first; 6636 BlockCost.second |= C.second; 6637 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6638 << " for VF " << VF << " For instruction: " << I 6639 << '\n'); 6640 } 6641 6642 // If we are vectorizing a predicated block, it will have been 6643 // if-converted. This means that the block's instructions (aside from 6644 // stores and instructions that may divide by zero) will now be 6645 // unconditionally executed. For the scalar case, we may not always execute 6646 // the predicated block, if it is an if-else block. Thus, scale the block's 6647 // cost by the probability of executing it. blockNeedsPredication from 6648 // Legal is used so as to not include all blocks in tail folded loops. 6649 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6650 BlockCost.first /= getReciprocalPredBlockProb(); 6651 6652 Cost.first += BlockCost.first; 6653 Cost.second |= BlockCost.second; 6654 } 6655 6656 return Cost; 6657 } 6658 6659 /// Gets Address Access SCEV after verifying that the access pattern 6660 /// is loop invariant except the induction variable dependence. 6661 /// 6662 /// This SCEV can be sent to the Target in order to estimate the address 6663 /// calculation cost. 6664 static const SCEV *getAddressAccessSCEV( 6665 Value *Ptr, 6666 LoopVectorizationLegality *Legal, 6667 PredicatedScalarEvolution &PSE, 6668 const Loop *TheLoop) { 6669 6670 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6671 if (!Gep) 6672 return nullptr; 6673 6674 // We are looking for a gep with all loop invariant indices except for one 6675 // which should be an induction variable. 6676 auto SE = PSE.getSE(); 6677 unsigned NumOperands = Gep->getNumOperands(); 6678 for (unsigned i = 1; i < NumOperands; ++i) { 6679 Value *Opd = Gep->getOperand(i); 6680 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6681 !Legal->isInductionVariable(Opd)) 6682 return nullptr; 6683 } 6684 6685 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6686 return PSE.getSCEV(Ptr); 6687 } 6688 6689 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6690 return Legal->hasStride(I->getOperand(0)) || 6691 Legal->hasStride(I->getOperand(1)); 6692 } 6693 6694 InstructionCost 6695 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6696 ElementCount VF) { 6697 assert(VF.isVector() && 6698 "Scalarization cost of instruction implies vectorization."); 6699 if (VF.isScalable()) 6700 return InstructionCost::getInvalid(); 6701 6702 Type *ValTy = getLoadStoreType(I); 6703 auto SE = PSE.getSE(); 6704 6705 unsigned AS = getLoadStoreAddressSpace(I); 6706 Value *Ptr = getLoadStorePointerOperand(I); 6707 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6708 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6709 // that it is being called from this specific place. 6710 6711 // Figure out whether the access is strided and get the stride value 6712 // if it's known in compile time 6713 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6714 6715 // Get the cost of the scalar memory instruction and address computation. 6716 InstructionCost Cost = 6717 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6718 6719 // Don't pass *I here, since it is scalar but will actually be part of a 6720 // vectorized loop where the user of it is a vectorized instruction. 6721 const Align Alignment = getLoadStoreAlignment(I); 6722 Cost += VF.getKnownMinValue() * 6723 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6724 AS, TTI::TCK_RecipThroughput); 6725 6726 // Get the overhead of the extractelement and insertelement instructions 6727 // we might create due to scalarization. 6728 Cost += getScalarizationOverhead(I, VF); 6729 6730 // If we have a predicated load/store, it will need extra i1 extracts and 6731 // conditional branches, but may not be executed for each vector lane. Scale 6732 // the cost by the probability of executing the predicated block. 6733 if (isPredicatedInst(I, VF)) { 6734 Cost /= getReciprocalPredBlockProb(); 6735 6736 // Add the cost of an i1 extract and a branch 6737 auto *Vec_i1Ty = 6738 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6739 Cost += TTI.getScalarizationOverhead( 6740 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6741 /*Insert=*/false, /*Extract=*/true); 6742 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6743 6744 if (useEmulatedMaskMemRefHack(I, VF)) 6745 // Artificially setting to a high enough value to practically disable 6746 // vectorization with such operations. 6747 Cost = 3000000; 6748 } 6749 6750 return Cost; 6751 } 6752 6753 InstructionCost 6754 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6755 ElementCount VF) { 6756 Type *ValTy = getLoadStoreType(I); 6757 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6758 Value *Ptr = getLoadStorePointerOperand(I); 6759 unsigned AS = getLoadStoreAddressSpace(I); 6760 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6761 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6762 6763 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6764 "Stride should be 1 or -1 for consecutive memory access"); 6765 const Align Alignment = getLoadStoreAlignment(I); 6766 InstructionCost Cost = 0; 6767 if (Legal->isMaskRequired(I)) 6768 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6769 CostKind); 6770 else 6771 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6772 CostKind, I); 6773 6774 bool Reverse = ConsecutiveStride < 0; 6775 if (Reverse) 6776 Cost += 6777 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6778 return Cost; 6779 } 6780 6781 InstructionCost 6782 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6783 ElementCount VF) { 6784 assert(Legal->isUniformMemOp(*I)); 6785 6786 Type *ValTy = getLoadStoreType(I); 6787 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6788 const Align Alignment = getLoadStoreAlignment(I); 6789 unsigned AS = getLoadStoreAddressSpace(I); 6790 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6791 if (isa<LoadInst>(I)) { 6792 return TTI.getAddressComputationCost(ValTy) + 6793 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6794 CostKind) + 6795 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6796 } 6797 StoreInst *SI = cast<StoreInst>(I); 6798 6799 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6800 return TTI.getAddressComputationCost(ValTy) + 6801 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6802 CostKind) + 6803 (isLoopInvariantStoreValue 6804 ? 0 6805 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6806 VF.getKnownMinValue() - 1)); 6807 } 6808 6809 InstructionCost 6810 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6811 ElementCount VF) { 6812 Type *ValTy = getLoadStoreType(I); 6813 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6814 const Align Alignment = getLoadStoreAlignment(I); 6815 const Value *Ptr = getLoadStorePointerOperand(I); 6816 6817 return TTI.getAddressComputationCost(VectorTy) + 6818 TTI.getGatherScatterOpCost( 6819 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6820 TargetTransformInfo::TCK_RecipThroughput, I); 6821 } 6822 6823 InstructionCost 6824 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6825 ElementCount VF) { 6826 // TODO: Once we have support for interleaving with scalable vectors 6827 // we can calculate the cost properly here. 6828 if (VF.isScalable()) 6829 return InstructionCost::getInvalid(); 6830 6831 Type *ValTy = getLoadStoreType(I); 6832 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6833 unsigned AS = getLoadStoreAddressSpace(I); 6834 6835 auto Group = getInterleavedAccessGroup(I); 6836 assert(Group && "Fail to get an interleaved access group."); 6837 6838 unsigned InterleaveFactor = Group->getFactor(); 6839 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6840 6841 // Holds the indices of existing members in the interleaved group. 6842 SmallVector<unsigned, 4> Indices; 6843 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6844 if (Group->getMember(IF)) 6845 Indices.push_back(IF); 6846 6847 // Calculate the cost of the whole interleaved group. 6848 bool UseMaskForGaps = 6849 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6850 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6851 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6852 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6853 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6854 6855 if (Group->isReverse()) { 6856 // TODO: Add support for reversed masked interleaved access. 6857 assert(!Legal->isMaskRequired(I) && 6858 "Reverse masked interleaved access not supported."); 6859 Cost += 6860 Group->getNumMembers() * 6861 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6862 } 6863 return Cost; 6864 } 6865 6866 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6867 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6868 using namespace llvm::PatternMatch; 6869 // Early exit for no inloop reductions 6870 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6871 return None; 6872 auto *VectorTy = cast<VectorType>(Ty); 6873 6874 // We are looking for a pattern of, and finding the minimal acceptable cost: 6875 // reduce(mul(ext(A), ext(B))) or 6876 // reduce(mul(A, B)) or 6877 // reduce(ext(A)) or 6878 // reduce(A). 6879 // The basic idea is that we walk down the tree to do that, finding the root 6880 // reduction instruction in InLoopReductionImmediateChains. From there we find 6881 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6882 // of the components. If the reduction cost is lower then we return it for the 6883 // reduction instruction and 0 for the other instructions in the pattern. If 6884 // it is not we return an invalid cost specifying the orignal cost method 6885 // should be used. 6886 Instruction *RetI = I; 6887 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6888 if (!RetI->hasOneUser()) 6889 return None; 6890 RetI = RetI->user_back(); 6891 } 6892 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6893 RetI->user_back()->getOpcode() == Instruction::Add) { 6894 if (!RetI->hasOneUser()) 6895 return None; 6896 RetI = RetI->user_back(); 6897 } 6898 6899 // Test if the found instruction is a reduction, and if not return an invalid 6900 // cost specifying the parent to use the original cost modelling. 6901 if (!InLoopReductionImmediateChains.count(RetI)) 6902 return None; 6903 6904 // Find the reduction this chain is a part of and calculate the basic cost of 6905 // the reduction on its own. 6906 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6907 Instruction *ReductionPhi = LastChain; 6908 while (!isa<PHINode>(ReductionPhi)) 6909 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6910 6911 const RecurrenceDescriptor &RdxDesc = 6912 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6913 6914 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6915 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6916 6917 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6918 // normal fmul instruction to the cost of the fadd reduction. 6919 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6920 BaseCost += 6921 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6922 6923 // If we're using ordered reductions then we can just return the base cost 6924 // here, since getArithmeticReductionCost calculates the full ordered 6925 // reduction cost when FP reassociation is not allowed. 6926 if (useOrderedReductions(RdxDesc)) 6927 return BaseCost; 6928 6929 // Get the operand that was not the reduction chain and match it to one of the 6930 // patterns, returning the better cost if it is found. 6931 Instruction *RedOp = RetI->getOperand(1) == LastChain 6932 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6933 : dyn_cast<Instruction>(RetI->getOperand(1)); 6934 6935 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6936 6937 Instruction *Op0, *Op1; 6938 if (RedOp && 6939 match(RedOp, 6940 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6941 match(Op0, m_ZExtOrSExt(m_Value())) && 6942 Op0->getOpcode() == Op1->getOpcode() && 6943 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6944 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6945 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6946 6947 // Matched reduce(ext(mul(ext(A), ext(B))) 6948 // Note that the extend opcodes need to all match, or if A==B they will have 6949 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6950 // which is equally fine. 6951 bool IsUnsigned = isa<ZExtInst>(Op0); 6952 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6953 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6954 6955 InstructionCost ExtCost = 6956 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6957 TTI::CastContextHint::None, CostKind, Op0); 6958 InstructionCost MulCost = 6959 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6960 InstructionCost Ext2Cost = 6961 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6962 TTI::CastContextHint::None, CostKind, RedOp); 6963 6964 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6965 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6966 CostKind); 6967 6968 if (RedCost.isValid() && 6969 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6970 return I == RetI ? RedCost : 0; 6971 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6972 !TheLoop->isLoopInvariant(RedOp)) { 6973 // Matched reduce(ext(A)) 6974 bool IsUnsigned = isa<ZExtInst>(RedOp); 6975 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6976 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6977 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6978 CostKind); 6979 6980 InstructionCost ExtCost = 6981 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6982 TTI::CastContextHint::None, CostKind, RedOp); 6983 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6984 return I == RetI ? RedCost : 0; 6985 } else if (RedOp && 6986 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6987 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6988 Op0->getOpcode() == Op1->getOpcode() && 6989 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6990 bool IsUnsigned = isa<ZExtInst>(Op0); 6991 Type *Op0Ty = Op0->getOperand(0)->getType(); 6992 Type *Op1Ty = Op1->getOperand(0)->getType(); 6993 Type *LargestOpTy = 6994 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6995 : Op0Ty; 6996 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6997 6998 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6999 // different sizes. We take the largest type as the ext to reduce, and add 7000 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 7001 InstructionCost ExtCost0 = TTI.getCastInstrCost( 7002 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 7003 TTI::CastContextHint::None, CostKind, Op0); 7004 InstructionCost ExtCost1 = TTI.getCastInstrCost( 7005 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 7006 TTI::CastContextHint::None, CostKind, Op1); 7007 InstructionCost MulCost = 7008 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7009 7010 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7011 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7012 CostKind); 7013 InstructionCost ExtraExtCost = 0; 7014 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7015 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7016 ExtraExtCost = TTI.getCastInstrCost( 7017 ExtraExtOp->getOpcode(), ExtType, 7018 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7019 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7020 } 7021 7022 if (RedCost.isValid() && 7023 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7024 return I == RetI ? RedCost : 0; 7025 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7026 // Matched reduce(mul()) 7027 InstructionCost MulCost = 7028 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7029 7030 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7031 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7032 CostKind); 7033 7034 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7035 return I == RetI ? RedCost : 0; 7036 } 7037 } 7038 7039 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7040 } 7041 7042 InstructionCost 7043 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7044 ElementCount VF) { 7045 // Calculate scalar cost only. Vectorization cost should be ready at this 7046 // moment. 7047 if (VF.isScalar()) { 7048 Type *ValTy = getLoadStoreType(I); 7049 const Align Alignment = getLoadStoreAlignment(I); 7050 unsigned AS = getLoadStoreAddressSpace(I); 7051 7052 return TTI.getAddressComputationCost(ValTy) + 7053 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7054 TTI::TCK_RecipThroughput, I); 7055 } 7056 return getWideningCost(I, VF); 7057 } 7058 7059 LoopVectorizationCostModel::VectorizationCostTy 7060 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7061 ElementCount VF) { 7062 // If we know that this instruction will remain uniform, check the cost of 7063 // the scalar version. 7064 if (isUniformAfterVectorization(I, VF)) 7065 VF = ElementCount::getFixed(1); 7066 7067 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7068 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7069 7070 // Forced scalars do not have any scalarization overhead. 7071 auto ForcedScalar = ForcedScalars.find(VF); 7072 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7073 auto InstSet = ForcedScalar->second; 7074 if (InstSet.count(I)) 7075 return VectorizationCostTy( 7076 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7077 VF.getKnownMinValue()), 7078 false); 7079 } 7080 7081 Type *VectorTy; 7082 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7083 7084 bool TypeNotScalarized = false; 7085 if (VF.isVector() && VectorTy->isVectorTy()) { 7086 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7087 if (NumParts) 7088 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7089 else 7090 C = InstructionCost::getInvalid(); 7091 } 7092 return VectorizationCostTy(C, TypeNotScalarized); 7093 } 7094 7095 InstructionCost 7096 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7097 ElementCount VF) const { 7098 7099 // There is no mechanism yet to create a scalable scalarization loop, 7100 // so this is currently Invalid. 7101 if (VF.isScalable()) 7102 return InstructionCost::getInvalid(); 7103 7104 if (VF.isScalar()) 7105 return 0; 7106 7107 InstructionCost Cost = 0; 7108 Type *RetTy = ToVectorTy(I->getType(), VF); 7109 if (!RetTy->isVoidTy() && 7110 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7111 Cost += TTI.getScalarizationOverhead( 7112 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7113 false); 7114 7115 // Some targets keep addresses scalar. 7116 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7117 return Cost; 7118 7119 // Some targets support efficient element stores. 7120 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7121 return Cost; 7122 7123 // Collect operands to consider. 7124 CallInst *CI = dyn_cast<CallInst>(I); 7125 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7126 7127 // Skip operands that do not require extraction/scalarization and do not incur 7128 // any overhead. 7129 SmallVector<Type *> Tys; 7130 for (auto *V : filterExtractingOperands(Ops, VF)) 7131 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7132 return Cost + TTI.getOperandsScalarizationOverhead( 7133 filterExtractingOperands(Ops, VF), Tys); 7134 } 7135 7136 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7137 if (VF.isScalar()) 7138 return; 7139 NumPredStores = 0; 7140 for (BasicBlock *BB : TheLoop->blocks()) { 7141 // For each instruction in the old loop. 7142 for (Instruction &I : *BB) { 7143 Value *Ptr = getLoadStorePointerOperand(&I); 7144 if (!Ptr) 7145 continue; 7146 7147 // TODO: We should generate better code and update the cost model for 7148 // predicated uniform stores. Today they are treated as any other 7149 // predicated store (see added test cases in 7150 // invariant-store-vectorization.ll). 7151 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7152 NumPredStores++; 7153 7154 if (Legal->isUniformMemOp(I)) { 7155 // TODO: Avoid replicating loads and stores instead of 7156 // relying on instcombine to remove them. 7157 // Load: Scalar load + broadcast 7158 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7159 InstructionCost Cost; 7160 if (isa<StoreInst>(&I) && VF.isScalable() && 7161 isLegalGatherOrScatter(&I, VF)) { 7162 Cost = getGatherScatterCost(&I, VF); 7163 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7164 } else { 7165 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7166 "Cannot yet scalarize uniform stores"); 7167 Cost = getUniformMemOpCost(&I, VF); 7168 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7169 } 7170 continue; 7171 } 7172 7173 // We assume that widening is the best solution when possible. 7174 if (memoryInstructionCanBeWidened(&I, VF)) { 7175 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7176 int ConsecutiveStride = Legal->isConsecutivePtr( 7177 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7178 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7179 "Expected consecutive stride."); 7180 InstWidening Decision = 7181 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7182 setWideningDecision(&I, VF, Decision, Cost); 7183 continue; 7184 } 7185 7186 // Choose between Interleaving, Gather/Scatter or Scalarization. 7187 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7188 unsigned NumAccesses = 1; 7189 if (isAccessInterleaved(&I)) { 7190 auto Group = getInterleavedAccessGroup(&I); 7191 assert(Group && "Fail to get an interleaved access group."); 7192 7193 // Make one decision for the whole group. 7194 if (getWideningDecision(&I, VF) != CM_Unknown) 7195 continue; 7196 7197 NumAccesses = Group->getNumMembers(); 7198 if (interleavedAccessCanBeWidened(&I, VF)) 7199 InterleaveCost = getInterleaveGroupCost(&I, VF); 7200 } 7201 7202 InstructionCost GatherScatterCost = 7203 isLegalGatherOrScatter(&I, VF) 7204 ? getGatherScatterCost(&I, VF) * NumAccesses 7205 : InstructionCost::getInvalid(); 7206 7207 InstructionCost ScalarizationCost = 7208 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7209 7210 // Choose better solution for the current VF, 7211 // write down this decision and use it during vectorization. 7212 InstructionCost Cost; 7213 InstWidening Decision; 7214 if (InterleaveCost <= GatherScatterCost && 7215 InterleaveCost < ScalarizationCost) { 7216 Decision = CM_Interleave; 7217 Cost = InterleaveCost; 7218 } else if (GatherScatterCost < ScalarizationCost) { 7219 Decision = CM_GatherScatter; 7220 Cost = GatherScatterCost; 7221 } else { 7222 Decision = CM_Scalarize; 7223 Cost = ScalarizationCost; 7224 } 7225 // If the instructions belongs to an interleave group, the whole group 7226 // receives the same decision. The whole group receives the cost, but 7227 // the cost will actually be assigned to one instruction. 7228 if (auto Group = getInterleavedAccessGroup(&I)) 7229 setWideningDecision(Group, VF, Decision, Cost); 7230 else 7231 setWideningDecision(&I, VF, Decision, Cost); 7232 } 7233 } 7234 7235 // Make sure that any load of address and any other address computation 7236 // remains scalar unless there is gather/scatter support. This avoids 7237 // inevitable extracts into address registers, and also has the benefit of 7238 // activating LSR more, since that pass can't optimize vectorized 7239 // addresses. 7240 if (TTI.prefersVectorizedAddressing()) 7241 return; 7242 7243 // Start with all scalar pointer uses. 7244 SmallPtrSet<Instruction *, 8> AddrDefs; 7245 for (BasicBlock *BB : TheLoop->blocks()) 7246 for (Instruction &I : *BB) { 7247 Instruction *PtrDef = 7248 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7249 if (PtrDef && TheLoop->contains(PtrDef) && 7250 getWideningDecision(&I, VF) != CM_GatherScatter) 7251 AddrDefs.insert(PtrDef); 7252 } 7253 7254 // Add all instructions used to generate the addresses. 7255 SmallVector<Instruction *, 4> Worklist; 7256 append_range(Worklist, AddrDefs); 7257 while (!Worklist.empty()) { 7258 Instruction *I = Worklist.pop_back_val(); 7259 for (auto &Op : I->operands()) 7260 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7261 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7262 AddrDefs.insert(InstOp).second) 7263 Worklist.push_back(InstOp); 7264 } 7265 7266 for (auto *I : AddrDefs) { 7267 if (isa<LoadInst>(I)) { 7268 // Setting the desired widening decision should ideally be handled in 7269 // by cost functions, but since this involves the task of finding out 7270 // if the loaded register is involved in an address computation, it is 7271 // instead changed here when we know this is the case. 7272 InstWidening Decision = getWideningDecision(I, VF); 7273 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7274 // Scalarize a widened load of address. 7275 setWideningDecision( 7276 I, VF, CM_Scalarize, 7277 (VF.getKnownMinValue() * 7278 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7279 else if (auto Group = getInterleavedAccessGroup(I)) { 7280 // Scalarize an interleave group of address loads. 7281 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7282 if (Instruction *Member = Group->getMember(I)) 7283 setWideningDecision( 7284 Member, VF, CM_Scalarize, 7285 (VF.getKnownMinValue() * 7286 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7287 } 7288 } 7289 } else 7290 // Make sure I gets scalarized and a cost estimate without 7291 // scalarization overhead. 7292 ForcedScalars[VF].insert(I); 7293 } 7294 } 7295 7296 InstructionCost 7297 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7298 Type *&VectorTy) { 7299 Type *RetTy = I->getType(); 7300 if (canTruncateToMinimalBitwidth(I, VF)) 7301 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7302 auto SE = PSE.getSE(); 7303 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7304 7305 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7306 ElementCount VF) -> bool { 7307 if (VF.isScalar()) 7308 return true; 7309 7310 auto Scalarized = InstsToScalarize.find(VF); 7311 assert(Scalarized != InstsToScalarize.end() && 7312 "VF not yet analyzed for scalarization profitability"); 7313 return !Scalarized->second.count(I) && 7314 llvm::all_of(I->users(), [&](User *U) { 7315 auto *UI = cast<Instruction>(U); 7316 return !Scalarized->second.count(UI); 7317 }); 7318 }; 7319 (void) hasSingleCopyAfterVectorization; 7320 7321 if (isScalarAfterVectorization(I, VF)) { 7322 // With the exception of GEPs and PHIs, after scalarization there should 7323 // only be one copy of the instruction generated in the loop. This is 7324 // because the VF is either 1, or any instructions that need scalarizing 7325 // have already been dealt with by the the time we get here. As a result, 7326 // it means we don't have to multiply the instruction cost by VF. 7327 assert(I->getOpcode() == Instruction::GetElementPtr || 7328 I->getOpcode() == Instruction::PHI || 7329 (I->getOpcode() == Instruction::BitCast && 7330 I->getType()->isPointerTy()) || 7331 hasSingleCopyAfterVectorization(I, VF)); 7332 VectorTy = RetTy; 7333 } else 7334 VectorTy = ToVectorTy(RetTy, VF); 7335 7336 // TODO: We need to estimate the cost of intrinsic calls. 7337 switch (I->getOpcode()) { 7338 case Instruction::GetElementPtr: 7339 // We mark this instruction as zero-cost because the cost of GEPs in 7340 // vectorized code depends on whether the corresponding memory instruction 7341 // is scalarized or not. Therefore, we handle GEPs with the memory 7342 // instruction cost. 7343 return 0; 7344 case Instruction::Br: { 7345 // In cases of scalarized and predicated instructions, there will be VF 7346 // predicated blocks in the vectorized loop. Each branch around these 7347 // blocks requires also an extract of its vector compare i1 element. 7348 bool ScalarPredicatedBB = false; 7349 BranchInst *BI = cast<BranchInst>(I); 7350 if (VF.isVector() && BI->isConditional() && 7351 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7352 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7353 ScalarPredicatedBB = true; 7354 7355 if (ScalarPredicatedBB) { 7356 // Not possible to scalarize scalable vector with predicated instructions. 7357 if (VF.isScalable()) 7358 return InstructionCost::getInvalid(); 7359 // Return cost for branches around scalarized and predicated blocks. 7360 auto *Vec_i1Ty = 7361 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7362 return ( 7363 TTI.getScalarizationOverhead( 7364 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7365 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7366 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7367 // The back-edge branch will remain, as will all scalar branches. 7368 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7369 else 7370 // This branch will be eliminated by if-conversion. 7371 return 0; 7372 // Note: We currently assume zero cost for an unconditional branch inside 7373 // a predicated block since it will become a fall-through, although we 7374 // may decide in the future to call TTI for all branches. 7375 } 7376 case Instruction::PHI: { 7377 auto *Phi = cast<PHINode>(I); 7378 7379 // First-order recurrences are replaced by vector shuffles inside the loop. 7380 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7381 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7382 return TTI.getShuffleCost( 7383 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7384 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7385 7386 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7387 // converted into select instructions. We require N - 1 selects per phi 7388 // node, where N is the number of incoming values. 7389 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7390 return (Phi->getNumIncomingValues() - 1) * 7391 TTI.getCmpSelInstrCost( 7392 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7393 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7394 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7395 7396 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7397 } 7398 case Instruction::UDiv: 7399 case Instruction::SDiv: 7400 case Instruction::URem: 7401 case Instruction::SRem: 7402 // If we have a predicated instruction, it may not be executed for each 7403 // vector lane. Get the scalarization cost and scale this amount by the 7404 // probability of executing the predicated block. If the instruction is not 7405 // predicated, we fall through to the next case. 7406 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7407 InstructionCost Cost = 0; 7408 7409 // These instructions have a non-void type, so account for the phi nodes 7410 // that we will create. This cost is likely to be zero. The phi node 7411 // cost, if any, should be scaled by the block probability because it 7412 // models a copy at the end of each predicated block. 7413 Cost += VF.getKnownMinValue() * 7414 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7415 7416 // The cost of the non-predicated instruction. 7417 Cost += VF.getKnownMinValue() * 7418 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7419 7420 // The cost of insertelement and extractelement instructions needed for 7421 // scalarization. 7422 Cost += getScalarizationOverhead(I, VF); 7423 7424 // Scale the cost by the probability of executing the predicated blocks. 7425 // This assumes the predicated block for each vector lane is equally 7426 // likely. 7427 return Cost / getReciprocalPredBlockProb(); 7428 } 7429 LLVM_FALLTHROUGH; 7430 case Instruction::Add: 7431 case Instruction::FAdd: 7432 case Instruction::Sub: 7433 case Instruction::FSub: 7434 case Instruction::Mul: 7435 case Instruction::FMul: 7436 case Instruction::FDiv: 7437 case Instruction::FRem: 7438 case Instruction::Shl: 7439 case Instruction::LShr: 7440 case Instruction::AShr: 7441 case Instruction::And: 7442 case Instruction::Or: 7443 case Instruction::Xor: { 7444 // Since we will replace the stride by 1 the multiplication should go away. 7445 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7446 return 0; 7447 7448 // Detect reduction patterns 7449 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7450 return *RedCost; 7451 7452 // Certain instructions can be cheaper to vectorize if they have a constant 7453 // second vector operand. One example of this are shifts on x86. 7454 Value *Op2 = I->getOperand(1); 7455 TargetTransformInfo::OperandValueProperties Op2VP; 7456 TargetTransformInfo::OperandValueKind Op2VK = 7457 TTI.getOperandInfo(Op2, Op2VP); 7458 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7459 Op2VK = TargetTransformInfo::OK_UniformValue; 7460 7461 SmallVector<const Value *, 4> Operands(I->operand_values()); 7462 return TTI.getArithmeticInstrCost( 7463 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7464 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7465 } 7466 case Instruction::FNeg: { 7467 return TTI.getArithmeticInstrCost( 7468 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7469 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7470 TargetTransformInfo::OP_None, I->getOperand(0), I); 7471 } 7472 case Instruction::Select: { 7473 SelectInst *SI = cast<SelectInst>(I); 7474 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7475 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7476 7477 const Value *Op0, *Op1; 7478 using namespace llvm::PatternMatch; 7479 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7480 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7481 // select x, y, false --> x & y 7482 // select x, true, y --> x | y 7483 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7484 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7485 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7486 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7487 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7488 Op1->getType()->getScalarSizeInBits() == 1); 7489 7490 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7491 return TTI.getArithmeticInstrCost( 7492 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7493 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7494 } 7495 7496 Type *CondTy = SI->getCondition()->getType(); 7497 if (!ScalarCond) 7498 CondTy = VectorType::get(CondTy, VF); 7499 7500 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7501 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7502 Pred = Cmp->getPredicate(); 7503 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7504 CostKind, I); 7505 } 7506 case Instruction::ICmp: 7507 case Instruction::FCmp: { 7508 Type *ValTy = I->getOperand(0)->getType(); 7509 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7510 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7511 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7512 VectorTy = ToVectorTy(ValTy, VF); 7513 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7514 cast<CmpInst>(I)->getPredicate(), CostKind, 7515 I); 7516 } 7517 case Instruction::Store: 7518 case Instruction::Load: { 7519 ElementCount Width = VF; 7520 if (Width.isVector()) { 7521 InstWidening Decision = getWideningDecision(I, Width); 7522 assert(Decision != CM_Unknown && 7523 "CM decision should be taken at this point"); 7524 if (Decision == CM_Scalarize) 7525 Width = ElementCount::getFixed(1); 7526 } 7527 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7528 return getMemoryInstructionCost(I, VF); 7529 } 7530 case Instruction::BitCast: 7531 if (I->getType()->isPointerTy()) 7532 return 0; 7533 LLVM_FALLTHROUGH; 7534 case Instruction::ZExt: 7535 case Instruction::SExt: 7536 case Instruction::FPToUI: 7537 case Instruction::FPToSI: 7538 case Instruction::FPExt: 7539 case Instruction::PtrToInt: 7540 case Instruction::IntToPtr: 7541 case Instruction::SIToFP: 7542 case Instruction::UIToFP: 7543 case Instruction::Trunc: 7544 case Instruction::FPTrunc: { 7545 // Computes the CastContextHint from a Load/Store instruction. 7546 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7547 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7548 "Expected a load or a store!"); 7549 7550 if (VF.isScalar() || !TheLoop->contains(I)) 7551 return TTI::CastContextHint::Normal; 7552 7553 switch (getWideningDecision(I, VF)) { 7554 case LoopVectorizationCostModel::CM_GatherScatter: 7555 return TTI::CastContextHint::GatherScatter; 7556 case LoopVectorizationCostModel::CM_Interleave: 7557 return TTI::CastContextHint::Interleave; 7558 case LoopVectorizationCostModel::CM_Scalarize: 7559 case LoopVectorizationCostModel::CM_Widen: 7560 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7561 : TTI::CastContextHint::Normal; 7562 case LoopVectorizationCostModel::CM_Widen_Reverse: 7563 return TTI::CastContextHint::Reversed; 7564 case LoopVectorizationCostModel::CM_Unknown: 7565 llvm_unreachable("Instr did not go through cost modelling?"); 7566 } 7567 7568 llvm_unreachable("Unhandled case!"); 7569 }; 7570 7571 unsigned Opcode = I->getOpcode(); 7572 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7573 // For Trunc, the context is the only user, which must be a StoreInst. 7574 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7575 if (I->hasOneUse()) 7576 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7577 CCH = ComputeCCH(Store); 7578 } 7579 // For Z/Sext, the context is the operand, which must be a LoadInst. 7580 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7581 Opcode == Instruction::FPExt) { 7582 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7583 CCH = ComputeCCH(Load); 7584 } 7585 7586 // We optimize the truncation of induction variables having constant 7587 // integer steps. The cost of these truncations is the same as the scalar 7588 // operation. 7589 if (isOptimizableIVTruncate(I, VF)) { 7590 auto *Trunc = cast<TruncInst>(I); 7591 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7592 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7593 } 7594 7595 // Detect reduction patterns 7596 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7597 return *RedCost; 7598 7599 Type *SrcScalarTy = I->getOperand(0)->getType(); 7600 Type *SrcVecTy = 7601 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7602 if (canTruncateToMinimalBitwidth(I, VF)) { 7603 // This cast is going to be shrunk. This may remove the cast or it might 7604 // turn it into slightly different cast. For example, if MinBW == 16, 7605 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7606 // 7607 // Calculate the modified src and dest types. 7608 Type *MinVecTy = VectorTy; 7609 if (Opcode == Instruction::Trunc) { 7610 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7611 VectorTy = 7612 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7613 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7614 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7615 VectorTy = 7616 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7617 } 7618 } 7619 7620 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7621 } 7622 case Instruction::Call: { 7623 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7624 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7625 return *RedCost; 7626 bool NeedToScalarize; 7627 CallInst *CI = cast<CallInst>(I); 7628 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7629 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7630 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7631 return std::min(CallCost, IntrinsicCost); 7632 } 7633 return CallCost; 7634 } 7635 case Instruction::ExtractValue: 7636 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7637 case Instruction::Alloca: 7638 // We cannot easily widen alloca to a scalable alloca, as 7639 // the result would need to be a vector of pointers. 7640 if (VF.isScalable()) 7641 return InstructionCost::getInvalid(); 7642 LLVM_FALLTHROUGH; 7643 default: 7644 // This opcode is unknown. Assume that it is the same as 'mul'. 7645 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7646 } // end of switch. 7647 } 7648 7649 char LoopVectorize::ID = 0; 7650 7651 static const char lv_name[] = "Loop Vectorization"; 7652 7653 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7654 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7655 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7656 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7657 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7658 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7659 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7660 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7661 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7662 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7663 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7664 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7665 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7666 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7667 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7668 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7669 7670 namespace llvm { 7671 7672 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7673 7674 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7675 bool VectorizeOnlyWhenForced) { 7676 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7677 } 7678 7679 } // end namespace llvm 7680 7681 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7682 // Check if the pointer operand of a load or store instruction is 7683 // consecutive. 7684 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7685 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7686 return false; 7687 } 7688 7689 void LoopVectorizationCostModel::collectValuesToIgnore() { 7690 // Ignore ephemeral values. 7691 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7692 7693 // Ignore type-promoting instructions we identified during reduction 7694 // detection. 7695 for (auto &Reduction : Legal->getReductionVars()) { 7696 const RecurrenceDescriptor &RedDes = Reduction.second; 7697 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7698 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7699 } 7700 // Ignore type-casting instructions we identified during induction 7701 // detection. 7702 for (auto &Induction : Legal->getInductionVars()) { 7703 const InductionDescriptor &IndDes = Induction.second; 7704 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7705 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7706 } 7707 } 7708 7709 void LoopVectorizationCostModel::collectInLoopReductions() { 7710 for (auto &Reduction : Legal->getReductionVars()) { 7711 PHINode *Phi = Reduction.first; 7712 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7713 7714 // We don't collect reductions that are type promoted (yet). 7715 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7716 continue; 7717 7718 // If the target would prefer this reduction to happen "in-loop", then we 7719 // want to record it as such. 7720 unsigned Opcode = RdxDesc.getOpcode(); 7721 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7722 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7723 TargetTransformInfo::ReductionFlags())) 7724 continue; 7725 7726 // Check that we can correctly put the reductions into the loop, by 7727 // finding the chain of operations that leads from the phi to the loop 7728 // exit value. 7729 SmallVector<Instruction *, 4> ReductionOperations = 7730 RdxDesc.getReductionOpChain(Phi, TheLoop); 7731 bool InLoop = !ReductionOperations.empty(); 7732 if (InLoop) { 7733 InLoopReductionChains[Phi] = ReductionOperations; 7734 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7735 Instruction *LastChain = Phi; 7736 for (auto *I : ReductionOperations) { 7737 InLoopReductionImmediateChains[I] = LastChain; 7738 LastChain = I; 7739 } 7740 } 7741 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7742 << " reduction for phi: " << *Phi << "\n"); 7743 } 7744 } 7745 7746 // TODO: we could return a pair of values that specify the max VF and 7747 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7748 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7749 // doesn't have a cost model that can choose which plan to execute if 7750 // more than one is generated. 7751 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7752 LoopVectorizationCostModel &CM) { 7753 unsigned WidestType; 7754 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7755 return WidestVectorRegBits / WidestType; 7756 } 7757 7758 VectorizationFactor 7759 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7760 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7761 ElementCount VF = UserVF; 7762 // Outer loop handling: They may require CFG and instruction level 7763 // transformations before even evaluating whether vectorization is profitable. 7764 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7765 // the vectorization pipeline. 7766 if (!OrigLoop->isInnermost()) { 7767 // If the user doesn't provide a vectorization factor, determine a 7768 // reasonable one. 7769 if (UserVF.isZero()) { 7770 VF = ElementCount::getFixed(determineVPlanVF( 7771 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7772 .getFixedSize(), 7773 CM)); 7774 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7775 7776 // Make sure we have a VF > 1 for stress testing. 7777 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7778 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7779 << "overriding computed VF.\n"); 7780 VF = ElementCount::getFixed(4); 7781 } 7782 } 7783 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7784 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7785 "VF needs to be a power of two"); 7786 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7787 << "VF " << VF << " to build VPlans.\n"); 7788 buildVPlans(VF, VF); 7789 7790 // For VPlan build stress testing, we bail out after VPlan construction. 7791 if (VPlanBuildStressTest) 7792 return VectorizationFactor::Disabled(); 7793 7794 return {VF, 0 /*Cost*/}; 7795 } 7796 7797 LLVM_DEBUG( 7798 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7799 "VPlan-native path.\n"); 7800 return VectorizationFactor::Disabled(); 7801 } 7802 7803 Optional<VectorizationFactor> 7804 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7805 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7806 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7807 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7808 return None; 7809 7810 // Invalidate interleave groups if all blocks of loop will be predicated. 7811 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7812 !useMaskedInterleavedAccesses(*TTI)) { 7813 LLVM_DEBUG( 7814 dbgs() 7815 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7816 "which requires masked-interleaved support.\n"); 7817 if (CM.InterleaveInfo.invalidateGroups()) 7818 // Invalidating interleave groups also requires invalidating all decisions 7819 // based on them, which includes widening decisions and uniform and scalar 7820 // values. 7821 CM.invalidateCostModelingDecisions(); 7822 } 7823 7824 ElementCount MaxUserVF = 7825 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7826 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7827 if (!UserVF.isZero() && UserVFIsLegal) { 7828 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7829 "VF needs to be a power of two"); 7830 // Collect the instructions (and their associated costs) that will be more 7831 // profitable to scalarize. 7832 if (CM.selectUserVectorizationFactor(UserVF)) { 7833 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7834 CM.collectInLoopReductions(); 7835 buildVPlansWithVPRecipes(UserVF, UserVF); 7836 LLVM_DEBUG(printPlans(dbgs())); 7837 return {{UserVF, 0}}; 7838 } else 7839 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7840 "InvalidCost", ORE, OrigLoop); 7841 } 7842 7843 // Populate the set of Vectorization Factor Candidates. 7844 ElementCountSet VFCandidates; 7845 for (auto VF = ElementCount::getFixed(1); 7846 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7847 VFCandidates.insert(VF); 7848 for (auto VF = ElementCount::getScalable(1); 7849 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7850 VFCandidates.insert(VF); 7851 7852 for (const auto &VF : VFCandidates) { 7853 // Collect Uniform and Scalar instructions after vectorization with VF. 7854 CM.collectUniformsAndScalars(VF); 7855 7856 // Collect the instructions (and their associated costs) that will be more 7857 // profitable to scalarize. 7858 if (VF.isVector()) 7859 CM.collectInstsToScalarize(VF); 7860 } 7861 7862 CM.collectInLoopReductions(); 7863 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7864 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7865 7866 LLVM_DEBUG(printPlans(dbgs())); 7867 if (!MaxFactors.hasVector()) 7868 return VectorizationFactor::Disabled(); 7869 7870 // Select the optimal vectorization factor. 7871 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7872 7873 // Check if it is profitable to vectorize with runtime checks. 7874 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7875 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7876 bool PragmaThresholdReached = 7877 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7878 bool ThresholdReached = 7879 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7880 if ((ThresholdReached && !Hints.allowReordering()) || 7881 PragmaThresholdReached) { 7882 ORE->emit([&]() { 7883 return OptimizationRemarkAnalysisAliasing( 7884 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7885 OrigLoop->getHeader()) 7886 << "loop not vectorized: cannot prove it is safe to reorder " 7887 "memory operations"; 7888 }); 7889 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7890 Hints.emitRemarkWithHints(); 7891 return VectorizationFactor::Disabled(); 7892 } 7893 } 7894 return SelectedVF; 7895 } 7896 7897 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7898 assert(count_if(VPlans, 7899 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7900 1 && 7901 "Best VF has not a single VPlan."); 7902 7903 for (const VPlanPtr &Plan : VPlans) { 7904 if (Plan->hasVF(VF)) 7905 return *Plan.get(); 7906 } 7907 llvm_unreachable("No plan found!"); 7908 } 7909 7910 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7911 VPlan &BestVPlan, 7912 InnerLoopVectorizer &ILV, 7913 DominatorTree *DT) { 7914 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7915 << '\n'); 7916 7917 // Perform the actual loop transformation. 7918 7919 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7920 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7921 Value *CanonicalIVStartValue; 7922 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7923 ILV.createVectorizedLoopSkeleton(); 7924 ILV.collectPoisonGeneratingRecipes(State); 7925 7926 ILV.printDebugTracesAtStart(); 7927 7928 //===------------------------------------------------===// 7929 // 7930 // Notice: any optimization or new instruction that go 7931 // into the code below should also be implemented in 7932 // the cost-model. 7933 // 7934 //===------------------------------------------------===// 7935 7936 // 2. Copy and widen instructions from the old loop into the new loop. 7937 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7938 ILV.getOrCreateVectorTripCount(nullptr), 7939 CanonicalIVStartValue, State); 7940 BestVPlan.execute(&State); 7941 7942 // Keep all loop hints from the original loop on the vector loop (we'll 7943 // replace the vectorizer-specific hints below). 7944 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7945 7946 Optional<MDNode *> VectorizedLoopID = 7947 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7948 LLVMLoopVectorizeFollowupVectorized}); 7949 7950 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7951 if (VectorizedLoopID.hasValue()) 7952 L->setLoopID(VectorizedLoopID.getValue()); 7953 else { 7954 // Keep all loop hints from the original loop on the vector loop (we'll 7955 // replace the vectorizer-specific hints below). 7956 if (MDNode *LID = OrigLoop->getLoopID()) 7957 L->setLoopID(LID); 7958 7959 LoopVectorizeHints Hints(L, true, *ORE); 7960 Hints.setAlreadyVectorized(); 7961 } 7962 7963 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7964 // predication, updating analyses. 7965 ILV.fixVectorizedLoop(State); 7966 7967 ILV.printDebugTracesAtEnd(); 7968 } 7969 7970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7971 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7972 for (const auto &Plan : VPlans) 7973 if (PrintVPlansInDotFormat) 7974 Plan->printDOT(O); 7975 else 7976 Plan->print(O); 7977 } 7978 #endif 7979 7980 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7981 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7982 7983 // We create new control-flow for the vectorized loop, so the original exit 7984 // conditions will be dead after vectorization if it's only used by the 7985 // terminator 7986 SmallVector<BasicBlock*> ExitingBlocks; 7987 OrigLoop->getExitingBlocks(ExitingBlocks); 7988 for (auto *BB : ExitingBlocks) { 7989 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7990 if (!Cmp || !Cmp->hasOneUse()) 7991 continue; 7992 7993 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7994 if (!DeadInstructions.insert(Cmp).second) 7995 continue; 7996 7997 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7998 // TODO: can recurse through operands in general 7999 for (Value *Op : Cmp->operands()) { 8000 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8001 DeadInstructions.insert(cast<Instruction>(Op)); 8002 } 8003 } 8004 8005 // We create new "steps" for induction variable updates to which the original 8006 // induction variables map. An original update instruction will be dead if 8007 // all its users except the induction variable are dead. 8008 auto *Latch = OrigLoop->getLoopLatch(); 8009 for (auto &Induction : Legal->getInductionVars()) { 8010 PHINode *Ind = Induction.first; 8011 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8012 8013 // If the tail is to be folded by masking, the primary induction variable, 8014 // if exists, isn't dead: it will be used for masking. Don't kill it. 8015 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8016 continue; 8017 8018 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8019 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8020 })) 8021 DeadInstructions.insert(IndUpdate); 8022 } 8023 } 8024 8025 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8026 8027 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8028 SmallVector<Metadata *, 4> MDs; 8029 // Reserve first location for self reference to the LoopID metadata node. 8030 MDs.push_back(nullptr); 8031 bool IsUnrollMetadata = false; 8032 MDNode *LoopID = L->getLoopID(); 8033 if (LoopID) { 8034 // First find existing loop unrolling disable metadata. 8035 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8036 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8037 if (MD) { 8038 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8039 IsUnrollMetadata = 8040 S && S->getString().startswith("llvm.loop.unroll.disable"); 8041 } 8042 MDs.push_back(LoopID->getOperand(i)); 8043 } 8044 } 8045 8046 if (!IsUnrollMetadata) { 8047 // Add runtime unroll disable metadata. 8048 LLVMContext &Context = L->getHeader()->getContext(); 8049 SmallVector<Metadata *, 1> DisableOperands; 8050 DisableOperands.push_back( 8051 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8052 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8053 MDs.push_back(DisableNode); 8054 MDNode *NewLoopID = MDNode::get(Context, MDs); 8055 // Set operand 0 to refer to the loop id itself. 8056 NewLoopID->replaceOperandWith(0, NewLoopID); 8057 L->setLoopID(NewLoopID); 8058 } 8059 } 8060 8061 //===--------------------------------------------------------------------===// 8062 // EpilogueVectorizerMainLoop 8063 //===--------------------------------------------------------------------===// 8064 8065 /// This function is partially responsible for generating the control flow 8066 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8067 std::pair<BasicBlock *, Value *> 8068 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8069 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8070 Loop *Lp = createVectorLoopSkeleton(""); 8071 8072 // Generate the code to check the minimum iteration count of the vector 8073 // epilogue (see below). 8074 EPI.EpilogueIterationCountCheck = 8075 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8076 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8077 8078 // Generate the code to check any assumptions that we've made for SCEV 8079 // expressions. 8080 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8081 8082 // Generate the code that checks at runtime if arrays overlap. We put the 8083 // checks into a separate block to make the more common case of few elements 8084 // faster. 8085 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8086 8087 // Generate the iteration count check for the main loop, *after* the check 8088 // for the epilogue loop, so that the path-length is shorter for the case 8089 // that goes directly through the vector epilogue. The longer-path length for 8090 // the main loop is compensated for, by the gain from vectorizing the larger 8091 // trip count. Note: the branch will get updated later on when we vectorize 8092 // the epilogue. 8093 EPI.MainLoopIterationCountCheck = 8094 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8095 8096 // Generate the induction variable. 8097 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8098 EPI.VectorTripCount = CountRoundDown; 8099 createHeaderBranch(Lp); 8100 8101 // Skip induction resume value creation here because they will be created in 8102 // the second pass. If we created them here, they wouldn't be used anyway, 8103 // because the vplan in the second pass still contains the inductions from the 8104 // original loop. 8105 8106 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8107 } 8108 8109 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8110 LLVM_DEBUG({ 8111 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8112 << "Main Loop VF:" << EPI.MainLoopVF 8113 << ", Main Loop UF:" << EPI.MainLoopUF 8114 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8115 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8116 }); 8117 } 8118 8119 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8120 DEBUG_WITH_TYPE(VerboseDebug, { 8121 dbgs() << "intermediate fn:\n" 8122 << *OrigLoop->getHeader()->getParent() << "\n"; 8123 }); 8124 } 8125 8126 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8127 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8128 assert(L && "Expected valid Loop."); 8129 assert(Bypass && "Expected valid bypass basic block."); 8130 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8131 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8132 Value *Count = getOrCreateTripCount(L); 8133 // Reuse existing vector loop preheader for TC checks. 8134 // Note that new preheader block is generated for vector loop. 8135 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8136 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8137 8138 // Generate code to check if the loop's trip count is less than VF * UF of the 8139 // main vector loop. 8140 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8141 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8142 8143 Value *CheckMinIters = Builder.CreateICmp( 8144 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8145 "min.iters.check"); 8146 8147 if (!ForEpilogue) 8148 TCCheckBlock->setName("vector.main.loop.iter.check"); 8149 8150 // Create new preheader for vector loop. 8151 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8152 DT, LI, nullptr, "vector.ph"); 8153 8154 if (ForEpilogue) { 8155 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8156 DT->getNode(Bypass)->getIDom()) && 8157 "TC check is expected to dominate Bypass"); 8158 8159 // Update dominator for Bypass & LoopExit. 8160 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8161 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8162 // For loops with multiple exits, there's no edge from the middle block 8163 // to exit blocks (as the epilogue must run) and thus no need to update 8164 // the immediate dominator of the exit blocks. 8165 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8166 8167 LoopBypassBlocks.push_back(TCCheckBlock); 8168 8169 // Save the trip count so we don't have to regenerate it in the 8170 // vec.epilog.iter.check. This is safe to do because the trip count 8171 // generated here dominates the vector epilog iter check. 8172 EPI.TripCount = Count; 8173 } 8174 8175 ReplaceInstWithInst( 8176 TCCheckBlock->getTerminator(), 8177 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8178 8179 return TCCheckBlock; 8180 } 8181 8182 //===--------------------------------------------------------------------===// 8183 // EpilogueVectorizerEpilogueLoop 8184 //===--------------------------------------------------------------------===// 8185 8186 /// This function is partially responsible for generating the control flow 8187 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8188 std::pair<BasicBlock *, Value *> 8189 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8190 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8191 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8192 8193 // Now, compare the remaining count and if there aren't enough iterations to 8194 // execute the vectorized epilogue skip to the scalar part. 8195 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8196 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8197 LoopVectorPreHeader = 8198 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8199 LI, nullptr, "vec.epilog.ph"); 8200 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8201 VecEpilogueIterationCountCheck); 8202 8203 // Adjust the control flow taking the state info from the main loop 8204 // vectorization into account. 8205 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8206 "expected this to be saved from the previous pass."); 8207 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8208 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8209 8210 DT->changeImmediateDominator(LoopVectorPreHeader, 8211 EPI.MainLoopIterationCountCheck); 8212 8213 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8214 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8215 8216 if (EPI.SCEVSafetyCheck) 8217 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8218 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8219 if (EPI.MemSafetyCheck) 8220 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8221 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8222 8223 DT->changeImmediateDominator( 8224 VecEpilogueIterationCountCheck, 8225 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8226 8227 DT->changeImmediateDominator(LoopScalarPreHeader, 8228 EPI.EpilogueIterationCountCheck); 8229 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8230 // If there is an epilogue which must run, there's no edge from the 8231 // middle block to exit blocks and thus no need to update the immediate 8232 // dominator of the exit blocks. 8233 DT->changeImmediateDominator(LoopExitBlock, 8234 EPI.EpilogueIterationCountCheck); 8235 8236 // Keep track of bypass blocks, as they feed start values to the induction 8237 // phis in the scalar loop preheader. 8238 if (EPI.SCEVSafetyCheck) 8239 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8240 if (EPI.MemSafetyCheck) 8241 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8242 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8243 8244 // Generate a resume induction for the vector epilogue and put it in the 8245 // vector epilogue preheader 8246 Type *IdxTy = Legal->getWidestInductionType(); 8247 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8248 LoopVectorPreHeader->getFirstNonPHI()); 8249 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8250 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8251 EPI.MainLoopIterationCountCheck); 8252 8253 // Generate the induction variable. 8254 createHeaderBranch(Lp); 8255 8256 // Generate induction resume values. These variables save the new starting 8257 // indexes for the scalar loop. They are used to test if there are any tail 8258 // iterations left once the vector loop has completed. 8259 // Note that when the vectorized epilogue is skipped due to iteration count 8260 // check, then the resume value for the induction variable comes from 8261 // the trip count of the main vector loop, hence passing the AdditionalBypass 8262 // argument. 8263 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8264 EPI.VectorTripCount} /* AdditionalBypass */); 8265 8266 AddRuntimeUnrollDisableMetaData(Lp); 8267 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8268 } 8269 8270 BasicBlock * 8271 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8272 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8273 8274 assert(EPI.TripCount && 8275 "Expected trip count to have been safed in the first pass."); 8276 assert( 8277 (!isa<Instruction>(EPI.TripCount) || 8278 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8279 "saved trip count does not dominate insertion point."); 8280 Value *TC = EPI.TripCount; 8281 IRBuilder<> Builder(Insert->getTerminator()); 8282 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8283 8284 // Generate code to check if the loop's trip count is less than VF * UF of the 8285 // vector epilogue loop. 8286 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8287 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8288 8289 Value *CheckMinIters = 8290 Builder.CreateICmp(P, Count, 8291 createStepForVF(Builder, Count->getType(), 8292 EPI.EpilogueVF, EPI.EpilogueUF), 8293 "min.epilog.iters.check"); 8294 8295 ReplaceInstWithInst( 8296 Insert->getTerminator(), 8297 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8298 8299 LoopBypassBlocks.push_back(Insert); 8300 return Insert; 8301 } 8302 8303 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8304 LLVM_DEBUG({ 8305 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8306 << "Epilogue Loop VF:" << EPI.EpilogueVF 8307 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8308 }); 8309 } 8310 8311 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8312 DEBUG_WITH_TYPE(VerboseDebug, { 8313 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8314 }); 8315 } 8316 8317 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8318 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8319 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8320 bool PredicateAtRangeStart = Predicate(Range.Start); 8321 8322 for (ElementCount TmpVF = Range.Start * 2; 8323 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8324 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8325 Range.End = TmpVF; 8326 break; 8327 } 8328 8329 return PredicateAtRangeStart; 8330 } 8331 8332 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8333 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8334 /// of VF's starting at a given VF and extending it as much as possible. Each 8335 /// vectorization decision can potentially shorten this sub-range during 8336 /// buildVPlan(). 8337 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8338 ElementCount MaxVF) { 8339 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8340 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8341 VFRange SubRange = {VF, MaxVFPlusOne}; 8342 VPlans.push_back(buildVPlan(SubRange)); 8343 VF = SubRange.End; 8344 } 8345 } 8346 8347 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8348 VPlanPtr &Plan) { 8349 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8350 8351 // Look for cached value. 8352 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8353 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8354 if (ECEntryIt != EdgeMaskCache.end()) 8355 return ECEntryIt->second; 8356 8357 VPValue *SrcMask = createBlockInMask(Src, Plan); 8358 8359 // The terminator has to be a branch inst! 8360 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8361 assert(BI && "Unexpected terminator found"); 8362 8363 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8364 return EdgeMaskCache[Edge] = SrcMask; 8365 8366 // If source is an exiting block, we know the exit edge is dynamically dead 8367 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8368 // adding uses of an otherwise potentially dead instruction. 8369 if (OrigLoop->isLoopExiting(Src)) 8370 return EdgeMaskCache[Edge] = SrcMask; 8371 8372 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8373 assert(EdgeMask && "No Edge Mask found for condition"); 8374 8375 if (BI->getSuccessor(0) != Dst) 8376 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8377 8378 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8379 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8380 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8381 // The select version does not introduce new UB if SrcMask is false and 8382 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8383 VPValue *False = Plan->getOrAddVPValue( 8384 ConstantInt::getFalse(BI->getCondition()->getType())); 8385 EdgeMask = 8386 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8387 } 8388 8389 return EdgeMaskCache[Edge] = EdgeMask; 8390 } 8391 8392 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8393 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8394 8395 // Look for cached value. 8396 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8397 if (BCEntryIt != BlockMaskCache.end()) 8398 return BCEntryIt->second; 8399 8400 // All-one mask is modelled as no-mask following the convention for masked 8401 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8402 VPValue *BlockMask = nullptr; 8403 8404 if (OrigLoop->getHeader() == BB) { 8405 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8406 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8407 8408 // Introduce the early-exit compare IV <= BTC to form header block mask. 8409 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8410 // constructing the desired canonical IV in the header block as its first 8411 // non-phi instructions. 8412 assert(CM.foldTailByMasking() && "must fold the tail"); 8413 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8414 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8415 8416 VPValue *IV = nullptr; 8417 if (Legal->getPrimaryInduction()) 8418 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8419 else { 8420 auto *IVRecipe = new VPWidenCanonicalIVRecipe(); 8421 HeaderVPBB->insert(IVRecipe, NewInsertionPoint); 8422 IV = IVRecipe; 8423 } 8424 8425 VPBuilder::InsertPointGuard Guard(Builder); 8426 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8427 if (CM.TTI.emitGetActiveLaneMask()) { 8428 VPValue *TC = Plan->getOrCreateTripCount(); 8429 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8430 } else { 8431 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8432 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8433 } 8434 return BlockMaskCache[BB] = BlockMask; 8435 } 8436 8437 // This is the block mask. We OR all incoming edges. 8438 for (auto *Predecessor : predecessors(BB)) { 8439 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8440 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8441 return BlockMaskCache[BB] = EdgeMask; 8442 8443 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8444 BlockMask = EdgeMask; 8445 continue; 8446 } 8447 8448 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8449 } 8450 8451 return BlockMaskCache[BB] = BlockMask; 8452 } 8453 8454 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8455 ArrayRef<VPValue *> Operands, 8456 VFRange &Range, 8457 VPlanPtr &Plan) { 8458 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8459 "Must be called with either a load or store"); 8460 8461 auto willWiden = [&](ElementCount VF) -> bool { 8462 if (VF.isScalar()) 8463 return false; 8464 LoopVectorizationCostModel::InstWidening Decision = 8465 CM.getWideningDecision(I, VF); 8466 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8467 "CM decision should be taken at this point."); 8468 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8469 return true; 8470 if (CM.isScalarAfterVectorization(I, VF) || 8471 CM.isProfitableToScalarize(I, VF)) 8472 return false; 8473 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8474 }; 8475 8476 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8477 return nullptr; 8478 8479 VPValue *Mask = nullptr; 8480 if (Legal->isMaskRequired(I)) 8481 Mask = createBlockInMask(I->getParent(), Plan); 8482 8483 // Determine if the pointer operand of the access is either consecutive or 8484 // reverse consecutive. 8485 LoopVectorizationCostModel::InstWidening Decision = 8486 CM.getWideningDecision(I, Range.Start); 8487 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8488 bool Consecutive = 8489 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8490 8491 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8492 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8493 Consecutive, Reverse); 8494 8495 StoreInst *Store = cast<StoreInst>(I); 8496 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8497 Mask, Consecutive, Reverse); 8498 } 8499 8500 VPWidenIntOrFpInductionRecipe * 8501 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8502 ArrayRef<VPValue *> Operands) const { 8503 // Check if this is an integer or fp induction. If so, build the recipe that 8504 // produces its scalar and vector values. 8505 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) { 8506 assert(II->getStartValue() == 8507 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8508 return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II); 8509 } 8510 8511 return nullptr; 8512 } 8513 8514 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8515 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8516 VPlan &Plan) const { 8517 // Optimize the special case where the source is a constant integer 8518 // induction variable. Notice that we can only optimize the 'trunc' case 8519 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8520 // (c) other casts depend on pointer size. 8521 8522 // Determine whether \p K is a truncation based on an induction variable that 8523 // can be optimized. 8524 auto isOptimizableIVTruncate = 8525 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8526 return [=](ElementCount VF) -> bool { 8527 return CM.isOptimizableIVTruncate(K, VF); 8528 }; 8529 }; 8530 8531 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8532 isOptimizableIVTruncate(I), Range)) { 8533 8534 auto *Phi = cast<PHINode>(I->getOperand(0)); 8535 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8536 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8537 return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I); 8538 } 8539 return nullptr; 8540 } 8541 8542 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8543 ArrayRef<VPValue *> Operands, 8544 VPlanPtr &Plan) { 8545 // If all incoming values are equal, the incoming VPValue can be used directly 8546 // instead of creating a new VPBlendRecipe. 8547 VPValue *FirstIncoming = Operands[0]; 8548 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8549 return FirstIncoming == Inc; 8550 })) { 8551 return Operands[0]; 8552 } 8553 8554 // We know that all PHIs in non-header blocks are converted into selects, so 8555 // we don't have to worry about the insertion order and we can just use the 8556 // builder. At this point we generate the predication tree. There may be 8557 // duplications since this is a simple recursive scan, but future 8558 // optimizations will clean it up. 8559 SmallVector<VPValue *, 2> OperandsWithMask; 8560 unsigned NumIncoming = Phi->getNumIncomingValues(); 8561 8562 for (unsigned In = 0; In < NumIncoming; In++) { 8563 VPValue *EdgeMask = 8564 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8565 assert((EdgeMask || NumIncoming == 1) && 8566 "Multiple predecessors with one having a full mask"); 8567 OperandsWithMask.push_back(Operands[In]); 8568 if (EdgeMask) 8569 OperandsWithMask.push_back(EdgeMask); 8570 } 8571 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8572 } 8573 8574 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8575 ArrayRef<VPValue *> Operands, 8576 VFRange &Range) const { 8577 8578 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8579 [this, CI](ElementCount VF) { 8580 return CM.isScalarWithPredication(CI, VF); 8581 }, 8582 Range); 8583 8584 if (IsPredicated) 8585 return nullptr; 8586 8587 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8588 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8589 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8590 ID == Intrinsic::pseudoprobe || 8591 ID == Intrinsic::experimental_noalias_scope_decl)) 8592 return nullptr; 8593 8594 auto willWiden = [&](ElementCount VF) -> bool { 8595 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8596 // The following case may be scalarized depending on the VF. 8597 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8598 // version of the instruction. 8599 // Is it beneficial to perform intrinsic call compared to lib call? 8600 bool NeedToScalarize = false; 8601 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8602 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8603 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8604 return UseVectorIntrinsic || !NeedToScalarize; 8605 }; 8606 8607 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8608 return nullptr; 8609 8610 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8611 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8612 } 8613 8614 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8615 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8616 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8617 // Instruction should be widened, unless it is scalar after vectorization, 8618 // scalarization is profitable or it is predicated. 8619 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8620 return CM.isScalarAfterVectorization(I, VF) || 8621 CM.isProfitableToScalarize(I, VF) || 8622 CM.isScalarWithPredication(I, VF); 8623 }; 8624 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8625 Range); 8626 } 8627 8628 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8629 ArrayRef<VPValue *> Operands) const { 8630 auto IsVectorizableOpcode = [](unsigned Opcode) { 8631 switch (Opcode) { 8632 case Instruction::Add: 8633 case Instruction::And: 8634 case Instruction::AShr: 8635 case Instruction::BitCast: 8636 case Instruction::FAdd: 8637 case Instruction::FCmp: 8638 case Instruction::FDiv: 8639 case Instruction::FMul: 8640 case Instruction::FNeg: 8641 case Instruction::FPExt: 8642 case Instruction::FPToSI: 8643 case Instruction::FPToUI: 8644 case Instruction::FPTrunc: 8645 case Instruction::FRem: 8646 case Instruction::FSub: 8647 case Instruction::ICmp: 8648 case Instruction::IntToPtr: 8649 case Instruction::LShr: 8650 case Instruction::Mul: 8651 case Instruction::Or: 8652 case Instruction::PtrToInt: 8653 case Instruction::SDiv: 8654 case Instruction::Select: 8655 case Instruction::SExt: 8656 case Instruction::Shl: 8657 case Instruction::SIToFP: 8658 case Instruction::SRem: 8659 case Instruction::Sub: 8660 case Instruction::Trunc: 8661 case Instruction::UDiv: 8662 case Instruction::UIToFP: 8663 case Instruction::URem: 8664 case Instruction::Xor: 8665 case Instruction::ZExt: 8666 return true; 8667 } 8668 return false; 8669 }; 8670 8671 if (!IsVectorizableOpcode(I->getOpcode())) 8672 return nullptr; 8673 8674 // Success: widen this instruction. 8675 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8676 } 8677 8678 void VPRecipeBuilder::fixHeaderPhis() { 8679 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8680 for (VPHeaderPHIRecipe *R : PhisToFix) { 8681 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8682 VPRecipeBase *IncR = 8683 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8684 R->addOperand(IncR->getVPSingleValue()); 8685 } 8686 } 8687 8688 VPBasicBlock *VPRecipeBuilder::handleReplication( 8689 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8690 VPlanPtr &Plan) { 8691 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8692 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8693 Range); 8694 8695 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8696 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8697 Range); 8698 8699 // Even if the instruction is not marked as uniform, there are certain 8700 // intrinsic calls that can be effectively treated as such, so we check for 8701 // them here. Conservatively, we only do this for scalable vectors, since 8702 // for fixed-width VFs we can always fall back on full scalarization. 8703 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8704 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8705 case Intrinsic::assume: 8706 case Intrinsic::lifetime_start: 8707 case Intrinsic::lifetime_end: 8708 // For scalable vectors if one of the operands is variant then we still 8709 // want to mark as uniform, which will generate one instruction for just 8710 // the first lane of the vector. We can't scalarize the call in the same 8711 // way as for fixed-width vectors because we don't know how many lanes 8712 // there are. 8713 // 8714 // The reasons for doing it this way for scalable vectors are: 8715 // 1. For the assume intrinsic generating the instruction for the first 8716 // lane is still be better than not generating any at all. For 8717 // example, the input may be a splat across all lanes. 8718 // 2. For the lifetime start/end intrinsics the pointer operand only 8719 // does anything useful when the input comes from a stack object, 8720 // which suggests it should always be uniform. For non-stack objects 8721 // the effect is to poison the object, which still allows us to 8722 // remove the call. 8723 IsUniform = true; 8724 break; 8725 default: 8726 break; 8727 } 8728 } 8729 8730 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8731 IsUniform, IsPredicated); 8732 setRecipe(I, Recipe); 8733 Plan->addVPValue(I, Recipe); 8734 8735 // Find if I uses a predicated instruction. If so, it will use its scalar 8736 // value. Avoid hoisting the insert-element which packs the scalar value into 8737 // a vector value, as that happens iff all users use the vector value. 8738 for (VPValue *Op : Recipe->operands()) { 8739 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8740 if (!PredR) 8741 continue; 8742 auto *RepR = 8743 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8744 assert(RepR->isPredicated() && 8745 "expected Replicate recipe to be predicated"); 8746 RepR->setAlsoPack(false); 8747 } 8748 8749 // Finalize the recipe for Instr, first if it is not predicated. 8750 if (!IsPredicated) { 8751 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8752 VPBB->appendRecipe(Recipe); 8753 return VPBB; 8754 } 8755 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8756 8757 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8758 assert(SingleSucc && "VPBB must have a single successor when handling " 8759 "predicated replication."); 8760 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8761 // Record predicated instructions for above packing optimizations. 8762 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8763 VPBlockUtils::insertBlockAfter(Region, VPBB); 8764 auto *RegSucc = new VPBasicBlock(); 8765 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8766 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8767 return RegSucc; 8768 } 8769 8770 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8771 VPRecipeBase *PredRecipe, 8772 VPlanPtr &Plan) { 8773 // Instructions marked for predication are replicated and placed under an 8774 // if-then construct to prevent side-effects. 8775 8776 // Generate recipes to compute the block mask for this region. 8777 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8778 8779 // Build the triangular if-then region. 8780 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8781 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8782 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8783 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8784 auto *PHIRecipe = Instr->getType()->isVoidTy() 8785 ? nullptr 8786 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8787 if (PHIRecipe) { 8788 Plan->removeVPValueFor(Instr); 8789 Plan->addVPValue(Instr, PHIRecipe); 8790 } 8791 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8792 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8793 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8794 8795 // Note: first set Entry as region entry and then connect successors starting 8796 // from it in order, to propagate the "parent" of each VPBasicBlock. 8797 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8798 VPBlockUtils::connectBlocks(Pred, Exit); 8799 8800 return Region; 8801 } 8802 8803 VPRecipeOrVPValueTy 8804 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8805 ArrayRef<VPValue *> Operands, 8806 VFRange &Range, VPlanPtr &Plan) { 8807 // First, check for specific widening recipes that deal with calls, memory 8808 // operations, inductions and Phi nodes. 8809 if (auto *CI = dyn_cast<CallInst>(Instr)) 8810 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8811 8812 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8813 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8814 8815 VPRecipeBase *Recipe; 8816 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8817 if (Phi->getParent() != OrigLoop->getHeader()) 8818 return tryToBlend(Phi, Operands, Plan); 8819 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8820 return toVPRecipeResult(Recipe); 8821 8822 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8823 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8824 VPValue *StartV = Operands[0]; 8825 if (Legal->isReductionVariable(Phi)) { 8826 const RecurrenceDescriptor &RdxDesc = 8827 Legal->getReductionVars().find(Phi)->second; 8828 assert(RdxDesc.getRecurrenceStartValue() == 8829 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8830 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8831 CM.isInLoopReduction(Phi), 8832 CM.useOrderedReductions(RdxDesc)); 8833 } else { 8834 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8835 } 8836 8837 // Record the incoming value from the backedge, so we can add the incoming 8838 // value from the backedge after all recipes have been created. 8839 recordRecipeOf(cast<Instruction>( 8840 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8841 PhisToFix.push_back(PhiRecipe); 8842 } else { 8843 // TODO: record backedge value for remaining pointer induction phis. 8844 assert(Phi->getType()->isPointerTy() && 8845 "only pointer phis should be handled here"); 8846 assert(Legal->getInductionVars().count(Phi) && 8847 "Not an induction variable"); 8848 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8849 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8850 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8851 } 8852 8853 return toVPRecipeResult(PhiRecipe); 8854 } 8855 8856 if (isa<TruncInst>(Instr) && 8857 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8858 Range, *Plan))) 8859 return toVPRecipeResult(Recipe); 8860 8861 if (!shouldWiden(Instr, Range)) 8862 return nullptr; 8863 8864 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8865 return toVPRecipeResult(new VPWidenGEPRecipe( 8866 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8867 8868 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8869 bool InvariantCond = 8870 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8871 return toVPRecipeResult(new VPWidenSelectRecipe( 8872 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8873 } 8874 8875 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8876 } 8877 8878 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8879 ElementCount MaxVF) { 8880 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8881 8882 // Collect instructions from the original loop that will become trivially dead 8883 // in the vectorized loop. We don't need to vectorize these instructions. For 8884 // example, original induction update instructions can become dead because we 8885 // separately emit induction "steps" when generating code for the new loop. 8886 // Similarly, we create a new latch condition when setting up the structure 8887 // of the new loop, so the old one can become dead. 8888 SmallPtrSet<Instruction *, 4> DeadInstructions; 8889 collectTriviallyDeadInstructions(DeadInstructions); 8890 8891 // Add assume instructions we need to drop to DeadInstructions, to prevent 8892 // them from being added to the VPlan. 8893 // TODO: We only need to drop assumes in blocks that get flattend. If the 8894 // control flow is preserved, we should keep them. 8895 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8896 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8897 8898 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8899 // Dead instructions do not need sinking. Remove them from SinkAfter. 8900 for (Instruction *I : DeadInstructions) 8901 SinkAfter.erase(I); 8902 8903 // Cannot sink instructions after dead instructions (there won't be any 8904 // recipes for them). Instead, find the first non-dead previous instruction. 8905 for (auto &P : Legal->getSinkAfter()) { 8906 Instruction *SinkTarget = P.second; 8907 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8908 (void)FirstInst; 8909 while (DeadInstructions.contains(SinkTarget)) { 8910 assert( 8911 SinkTarget != FirstInst && 8912 "Must find a live instruction (at least the one feeding the " 8913 "first-order recurrence PHI) before reaching beginning of the block"); 8914 SinkTarget = SinkTarget->getPrevNode(); 8915 assert(SinkTarget != P.first && 8916 "sink source equals target, no sinking required"); 8917 } 8918 P.second = SinkTarget; 8919 } 8920 8921 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8922 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8923 VFRange SubRange = {VF, MaxVFPlusOne}; 8924 VPlans.push_back( 8925 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8926 VF = SubRange.End; 8927 } 8928 } 8929 8930 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8931 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8932 // BranchOnCount VPInstruction to the latch. 8933 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8934 bool HasNUW, bool IsVPlanNative) { 8935 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8936 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8937 8938 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8939 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8940 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8941 if (IsVPlanNative) 8942 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8943 Header->insert(CanonicalIVPHI, Header->begin()); 8944 8945 auto *CanonicalIVIncrement = 8946 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8947 : VPInstruction::CanonicalIVIncrement, 8948 {CanonicalIVPHI}, DL); 8949 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8950 8951 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8952 if (IsVPlanNative) { 8953 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8954 EB->setCondBit(nullptr); 8955 } 8956 EB->appendRecipe(CanonicalIVIncrement); 8957 8958 auto *BranchOnCount = 8959 new VPInstruction(VPInstruction::BranchOnCount, 8960 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8961 EB->appendRecipe(BranchOnCount); 8962 } 8963 8964 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8965 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8966 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8967 8968 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8969 8970 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8971 8972 // --------------------------------------------------------------------------- 8973 // Pre-construction: record ingredients whose recipes we'll need to further 8974 // process after constructing the initial VPlan. 8975 // --------------------------------------------------------------------------- 8976 8977 // Mark instructions we'll need to sink later and their targets as 8978 // ingredients whose recipe we'll need to record. 8979 for (auto &Entry : SinkAfter) { 8980 RecipeBuilder.recordRecipeOf(Entry.first); 8981 RecipeBuilder.recordRecipeOf(Entry.second); 8982 } 8983 for (auto &Reduction : CM.getInLoopReductionChains()) { 8984 PHINode *Phi = Reduction.first; 8985 RecurKind Kind = 8986 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8987 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8988 8989 RecipeBuilder.recordRecipeOf(Phi); 8990 for (auto &R : ReductionOperations) { 8991 RecipeBuilder.recordRecipeOf(R); 8992 // For min/max reducitons, where we have a pair of icmp/select, we also 8993 // need to record the ICmp recipe, so it can be removed later. 8994 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8995 "Only min/max recurrences allowed for inloop reductions"); 8996 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8997 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8998 } 8999 } 9000 9001 // For each interleave group which is relevant for this (possibly trimmed) 9002 // Range, add it to the set of groups to be later applied to the VPlan and add 9003 // placeholders for its members' Recipes which we'll be replacing with a 9004 // single VPInterleaveRecipe. 9005 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9006 auto applyIG = [IG, this](ElementCount VF) -> bool { 9007 return (VF.isVector() && // Query is illegal for VF == 1 9008 CM.getWideningDecision(IG->getInsertPos(), VF) == 9009 LoopVectorizationCostModel::CM_Interleave); 9010 }; 9011 if (!getDecisionAndClampRange(applyIG, Range)) 9012 continue; 9013 InterleaveGroups.insert(IG); 9014 for (unsigned i = 0; i < IG->getFactor(); i++) 9015 if (Instruction *Member = IG->getMember(i)) 9016 RecipeBuilder.recordRecipeOf(Member); 9017 }; 9018 9019 // --------------------------------------------------------------------------- 9020 // Build initial VPlan: Scan the body of the loop in a topological order to 9021 // visit each basic block after having visited its predecessor basic blocks. 9022 // --------------------------------------------------------------------------- 9023 9024 // Create initial VPlan skeleton, with separate header and latch blocks. 9025 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9026 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9027 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9028 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9029 auto Plan = std::make_unique<VPlan>(TopRegion); 9030 9031 Instruction *DLInst = 9032 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9033 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9034 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9035 !CM.foldTailByMasking(), false); 9036 9037 // Scan the body of the loop in a topological order to visit each basic block 9038 // after having visited its predecessor basic blocks. 9039 LoopBlocksDFS DFS(OrigLoop); 9040 DFS.perform(LI); 9041 9042 VPBasicBlock *VPBB = HeaderVPBB; 9043 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9044 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9045 // Relevant instructions from basic block BB will be grouped into VPRecipe 9046 // ingredients and fill a new VPBasicBlock. 9047 unsigned VPBBsForBB = 0; 9048 VPBB->setName(BB->getName()); 9049 Builder.setInsertPoint(VPBB); 9050 9051 // Introduce each ingredient into VPlan. 9052 // TODO: Model and preserve debug instrinsics in VPlan. 9053 for (Instruction &I : BB->instructionsWithoutDebug()) { 9054 Instruction *Instr = &I; 9055 9056 // First filter out irrelevant instructions, to ensure no recipes are 9057 // built for them. 9058 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9059 continue; 9060 9061 SmallVector<VPValue *, 4> Operands; 9062 auto *Phi = dyn_cast<PHINode>(Instr); 9063 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9064 Operands.push_back(Plan->getOrAddVPValue( 9065 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9066 } else { 9067 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9068 Operands = {OpRange.begin(), OpRange.end()}; 9069 } 9070 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9071 Instr, Operands, Range, Plan)) { 9072 // If Instr can be simplified to an existing VPValue, use it. 9073 if (RecipeOrValue.is<VPValue *>()) { 9074 auto *VPV = RecipeOrValue.get<VPValue *>(); 9075 Plan->addVPValue(Instr, VPV); 9076 // If the re-used value is a recipe, register the recipe for the 9077 // instruction, in case the recipe for Instr needs to be recorded. 9078 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9079 RecipeBuilder.setRecipe(Instr, R); 9080 continue; 9081 } 9082 // Otherwise, add the new recipe. 9083 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9084 for (auto *Def : Recipe->definedValues()) { 9085 auto *UV = Def->getUnderlyingValue(); 9086 Plan->addVPValue(UV, Def); 9087 } 9088 9089 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9090 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9091 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9092 // of the header block. That can happen for truncates of induction 9093 // variables. Those recipes are moved to the phi section of the header 9094 // block after applying SinkAfter, which relies on the original 9095 // position of the trunc. 9096 assert(isa<TruncInst>(Instr)); 9097 InductionsToMove.push_back( 9098 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9099 } 9100 RecipeBuilder.setRecipe(Instr, Recipe); 9101 VPBB->appendRecipe(Recipe); 9102 continue; 9103 } 9104 9105 // Otherwise, if all widening options failed, Instruction is to be 9106 // replicated. This may create a successor for VPBB. 9107 VPBasicBlock *NextVPBB = 9108 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9109 if (NextVPBB != VPBB) { 9110 VPBB = NextVPBB; 9111 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9112 : ""); 9113 } 9114 } 9115 9116 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9117 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9118 } 9119 9120 // Fold the last, empty block into its predecessor. 9121 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9122 assert(VPBB && "expected to fold last (empty) block"); 9123 // After here, VPBB should not be used. 9124 VPBB = nullptr; 9125 9126 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9127 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9128 "entry block must be set to a VPRegionBlock having a non-empty entry " 9129 "VPBasicBlock"); 9130 RecipeBuilder.fixHeaderPhis(); 9131 9132 // --------------------------------------------------------------------------- 9133 // Transform initial VPlan: Apply previously taken decisions, in order, to 9134 // bring the VPlan to its final state. 9135 // --------------------------------------------------------------------------- 9136 9137 // Apply Sink-After legal constraints. 9138 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9139 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9140 if (Region && Region->isReplicator()) { 9141 assert(Region->getNumSuccessors() == 1 && 9142 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9143 assert(R->getParent()->size() == 1 && 9144 "A recipe in an original replicator region must be the only " 9145 "recipe in its block"); 9146 return Region; 9147 } 9148 return nullptr; 9149 }; 9150 for (auto &Entry : SinkAfter) { 9151 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9152 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9153 9154 auto *TargetRegion = GetReplicateRegion(Target); 9155 auto *SinkRegion = GetReplicateRegion(Sink); 9156 if (!SinkRegion) { 9157 // If the sink source is not a replicate region, sink the recipe directly. 9158 if (TargetRegion) { 9159 // The target is in a replication region, make sure to move Sink to 9160 // the block after it, not into the replication region itself. 9161 VPBasicBlock *NextBlock = 9162 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9163 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9164 } else 9165 Sink->moveAfter(Target); 9166 continue; 9167 } 9168 9169 // The sink source is in a replicate region. Unhook the region from the CFG. 9170 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9171 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9172 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9173 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9174 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9175 9176 if (TargetRegion) { 9177 // The target recipe is also in a replicate region, move the sink region 9178 // after the target region. 9179 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9180 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9181 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9182 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9183 } else { 9184 // The sink source is in a replicate region, we need to move the whole 9185 // replicate region, which should only contain a single recipe in the 9186 // main block. 9187 auto *SplitBlock = 9188 Target->getParent()->splitAt(std::next(Target->getIterator())); 9189 9190 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9191 9192 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9193 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9194 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9195 } 9196 } 9197 9198 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9199 9200 // Now that sink-after is done, move induction recipes for optimized truncates 9201 // to the phi section of the header block. 9202 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9203 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9204 9205 // Adjust the recipes for any inloop reductions. 9206 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9207 RecipeBuilder, Range.Start); 9208 9209 // Introduce a recipe to combine the incoming and previous values of a 9210 // first-order recurrence. 9211 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9212 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9213 if (!RecurPhi) 9214 continue; 9215 9216 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9217 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9218 auto *Region = GetReplicateRegion(PrevRecipe); 9219 if (Region) 9220 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9221 if (Region || PrevRecipe->isPhi()) 9222 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9223 else 9224 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9225 9226 auto *RecurSplice = cast<VPInstruction>( 9227 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9228 {RecurPhi, RecurPhi->getBackedgeValue()})); 9229 9230 RecurPhi->replaceAllUsesWith(RecurSplice); 9231 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9232 // all users. 9233 RecurSplice->setOperand(0, RecurPhi); 9234 } 9235 9236 // Interleave memory: for each Interleave Group we marked earlier as relevant 9237 // for this VPlan, replace the Recipes widening its memory instructions with a 9238 // single VPInterleaveRecipe at its insertion point. 9239 for (auto IG : InterleaveGroups) { 9240 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9241 RecipeBuilder.getRecipe(IG->getInsertPos())); 9242 SmallVector<VPValue *, 4> StoredValues; 9243 for (unsigned i = 0; i < IG->getFactor(); ++i) 9244 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9245 auto *StoreR = 9246 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9247 StoredValues.push_back(StoreR->getStoredValue()); 9248 } 9249 9250 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9251 Recipe->getMask()); 9252 VPIG->insertBefore(Recipe); 9253 unsigned J = 0; 9254 for (unsigned i = 0; i < IG->getFactor(); ++i) 9255 if (Instruction *Member = IG->getMember(i)) { 9256 if (!Member->getType()->isVoidTy()) { 9257 VPValue *OriginalV = Plan->getVPValue(Member); 9258 Plan->removeVPValueFor(Member); 9259 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9260 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9261 J++; 9262 } 9263 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9264 } 9265 } 9266 9267 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9268 // in ways that accessing values using original IR values is incorrect. 9269 Plan->disableValue2VPValue(); 9270 9271 VPlanTransforms::sinkScalarOperands(*Plan); 9272 VPlanTransforms::mergeReplicateRegions(*Plan); 9273 9274 std::string PlanName; 9275 raw_string_ostream RSO(PlanName); 9276 ElementCount VF = Range.Start; 9277 Plan->addVF(VF); 9278 RSO << "Initial VPlan for VF={" << VF; 9279 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9280 Plan->addVF(VF); 9281 RSO << "," << VF; 9282 } 9283 RSO << "},UF>=1"; 9284 RSO.flush(); 9285 Plan->setName(PlanName); 9286 9287 // Fold Exit block into its predecessor if possible. 9288 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9289 // VPBasicBlock as exit. 9290 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9291 9292 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9293 return Plan; 9294 } 9295 9296 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9297 // Outer loop handling: They may require CFG and instruction level 9298 // transformations before even evaluating whether vectorization is profitable. 9299 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9300 // the vectorization pipeline. 9301 assert(!OrigLoop->isInnermost()); 9302 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9303 9304 // Create new empty VPlan 9305 auto Plan = std::make_unique<VPlan>(); 9306 9307 // Build hierarchical CFG 9308 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9309 HCFGBuilder.buildHierarchicalCFG(); 9310 9311 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9312 VF *= 2) 9313 Plan->addVF(VF); 9314 9315 if (EnableVPlanPredication) { 9316 VPlanPredicator VPP(*Plan); 9317 VPP.predicate(); 9318 9319 // Avoid running transformation to recipes until masked code generation in 9320 // VPlan-native path is in place. 9321 return Plan; 9322 } 9323 9324 SmallPtrSet<Instruction *, 1> DeadInstructions; 9325 VPlanTransforms::VPInstructionsToVPRecipes( 9326 OrigLoop, Plan, 9327 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9328 DeadInstructions, *PSE.getSE()); 9329 9330 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9331 true, true); 9332 return Plan; 9333 } 9334 9335 // Adjust the recipes for reductions. For in-loop reductions the chain of 9336 // instructions leading from the loop exit instr to the phi need to be converted 9337 // to reductions, with one operand being vector and the other being the scalar 9338 // reduction chain. For other reductions, a select is introduced between the phi 9339 // and live-out recipes when folding the tail. 9340 void LoopVectorizationPlanner::adjustRecipesForReductions( 9341 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9342 ElementCount MinVF) { 9343 for (auto &Reduction : CM.getInLoopReductionChains()) { 9344 PHINode *Phi = Reduction.first; 9345 const RecurrenceDescriptor &RdxDesc = 9346 Legal->getReductionVars().find(Phi)->second; 9347 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9348 9349 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9350 continue; 9351 9352 // ReductionOperations are orders top-down from the phi's use to the 9353 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9354 // which of the two operands will remain scalar and which will be reduced. 9355 // For minmax the chain will be the select instructions. 9356 Instruction *Chain = Phi; 9357 for (Instruction *R : ReductionOperations) { 9358 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9359 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9360 9361 VPValue *ChainOp = Plan->getVPValue(Chain); 9362 unsigned FirstOpId; 9363 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9364 "Only min/max recurrences allowed for inloop reductions"); 9365 // Recognize a call to the llvm.fmuladd intrinsic. 9366 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9367 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9368 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9369 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9370 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9371 "Expected to replace a VPWidenSelectSC"); 9372 FirstOpId = 1; 9373 } else { 9374 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9375 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9376 "Expected to replace a VPWidenSC"); 9377 FirstOpId = 0; 9378 } 9379 unsigned VecOpId = 9380 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9381 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9382 9383 auto *CondOp = CM.foldTailByMasking() 9384 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9385 : nullptr; 9386 9387 if (IsFMulAdd) { 9388 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9389 // need to create an fmul recipe to use as the vector operand for the 9390 // fadd reduction. 9391 VPInstruction *FMulRecipe = new VPInstruction( 9392 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9393 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9394 WidenRecipe->getParent()->insert(FMulRecipe, 9395 WidenRecipe->getIterator()); 9396 VecOp = FMulRecipe; 9397 } 9398 VPReductionRecipe *RedRecipe = 9399 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9400 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9401 Plan->removeVPValueFor(R); 9402 Plan->addVPValue(R, RedRecipe); 9403 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9404 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9405 WidenRecipe->eraseFromParent(); 9406 9407 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9408 VPRecipeBase *CompareRecipe = 9409 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9410 assert(isa<VPWidenRecipe>(CompareRecipe) && 9411 "Expected to replace a VPWidenSC"); 9412 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9413 "Expected no remaining users"); 9414 CompareRecipe->eraseFromParent(); 9415 } 9416 Chain = R; 9417 } 9418 } 9419 9420 // If tail is folded by masking, introduce selects between the phi 9421 // and the live-out instruction of each reduction, at the beginning of the 9422 // dedicated latch block. 9423 if (CM.foldTailByMasking()) { 9424 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9425 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9426 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9427 if (!PhiR || PhiR->isInLoop()) 9428 continue; 9429 VPValue *Cond = 9430 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9431 VPValue *Red = PhiR->getBackedgeValue(); 9432 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9433 "reduction recipe must be defined before latch"); 9434 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9435 } 9436 } 9437 } 9438 9439 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9440 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9441 VPSlotTracker &SlotTracker) const { 9442 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9443 IG->getInsertPos()->printAsOperand(O, false); 9444 O << ", "; 9445 getAddr()->printAsOperand(O, SlotTracker); 9446 VPValue *Mask = getMask(); 9447 if (Mask) { 9448 O << ", "; 9449 Mask->printAsOperand(O, SlotTracker); 9450 } 9451 9452 unsigned OpIdx = 0; 9453 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9454 if (!IG->getMember(i)) 9455 continue; 9456 if (getNumStoreOperands() > 0) { 9457 O << "\n" << Indent << " store "; 9458 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9459 O << " to index " << i; 9460 } else { 9461 O << "\n" << Indent << " "; 9462 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9463 O << " = load from index " << i; 9464 } 9465 ++OpIdx; 9466 } 9467 } 9468 #endif 9469 9470 void VPWidenCallRecipe::execute(VPTransformState &State) { 9471 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9472 *this, State); 9473 } 9474 9475 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9476 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9477 State.ILV->setDebugLocFromInst(&I); 9478 9479 // The condition can be loop invariant but still defined inside the 9480 // loop. This means that we can't just use the original 'cond' value. 9481 // We have to take the 'vectorized' value and pick the first lane. 9482 // Instcombine will make this a no-op. 9483 auto *InvarCond = 9484 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9485 9486 for (unsigned Part = 0; Part < State.UF; ++Part) { 9487 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9488 Value *Op0 = State.get(getOperand(1), Part); 9489 Value *Op1 = State.get(getOperand(2), Part); 9490 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9491 State.set(this, Sel, Part); 9492 State.ILV->addMetadata(Sel, &I); 9493 } 9494 } 9495 9496 void VPWidenRecipe::execute(VPTransformState &State) { 9497 auto &I = *cast<Instruction>(getUnderlyingValue()); 9498 auto &Builder = State.Builder; 9499 switch (I.getOpcode()) { 9500 case Instruction::Call: 9501 case Instruction::Br: 9502 case Instruction::PHI: 9503 case Instruction::GetElementPtr: 9504 case Instruction::Select: 9505 llvm_unreachable("This instruction is handled by a different recipe."); 9506 case Instruction::UDiv: 9507 case Instruction::SDiv: 9508 case Instruction::SRem: 9509 case Instruction::URem: 9510 case Instruction::Add: 9511 case Instruction::FAdd: 9512 case Instruction::Sub: 9513 case Instruction::FSub: 9514 case Instruction::FNeg: 9515 case Instruction::Mul: 9516 case Instruction::FMul: 9517 case Instruction::FDiv: 9518 case Instruction::FRem: 9519 case Instruction::Shl: 9520 case Instruction::LShr: 9521 case Instruction::AShr: 9522 case Instruction::And: 9523 case Instruction::Or: 9524 case Instruction::Xor: { 9525 // Just widen unops and binops. 9526 State.ILV->setDebugLocFromInst(&I); 9527 9528 for (unsigned Part = 0; Part < State.UF; ++Part) { 9529 SmallVector<Value *, 2> Ops; 9530 for (VPValue *VPOp : operands()) 9531 Ops.push_back(State.get(VPOp, Part)); 9532 9533 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9534 9535 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9536 VecOp->copyIRFlags(&I); 9537 9538 // If the instruction is vectorized and was in a basic block that needed 9539 // predication, we can't propagate poison-generating flags (nuw/nsw, 9540 // exact, etc.). The control flow has been linearized and the 9541 // instruction is no longer guarded by the predicate, which could make 9542 // the flag properties to no longer hold. 9543 if (State.MayGeneratePoisonRecipes.contains(this)) 9544 VecOp->dropPoisonGeneratingFlags(); 9545 } 9546 9547 // Use this vector value for all users of the original instruction. 9548 State.set(this, V, Part); 9549 State.ILV->addMetadata(V, &I); 9550 } 9551 9552 break; 9553 } 9554 case Instruction::ICmp: 9555 case Instruction::FCmp: { 9556 // Widen compares. Generate vector compares. 9557 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9558 auto *Cmp = cast<CmpInst>(&I); 9559 State.ILV->setDebugLocFromInst(Cmp); 9560 for (unsigned Part = 0; Part < State.UF; ++Part) { 9561 Value *A = State.get(getOperand(0), Part); 9562 Value *B = State.get(getOperand(1), Part); 9563 Value *C = nullptr; 9564 if (FCmp) { 9565 // Propagate fast math flags. 9566 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9567 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9568 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9569 } else { 9570 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9571 } 9572 State.set(this, C, Part); 9573 State.ILV->addMetadata(C, &I); 9574 } 9575 9576 break; 9577 } 9578 9579 case Instruction::ZExt: 9580 case Instruction::SExt: 9581 case Instruction::FPToUI: 9582 case Instruction::FPToSI: 9583 case Instruction::FPExt: 9584 case Instruction::PtrToInt: 9585 case Instruction::IntToPtr: 9586 case Instruction::SIToFP: 9587 case Instruction::UIToFP: 9588 case Instruction::Trunc: 9589 case Instruction::FPTrunc: 9590 case Instruction::BitCast: { 9591 auto *CI = cast<CastInst>(&I); 9592 State.ILV->setDebugLocFromInst(CI); 9593 9594 /// Vectorize casts. 9595 Type *DestTy = (State.VF.isScalar()) 9596 ? CI->getType() 9597 : VectorType::get(CI->getType(), State.VF); 9598 9599 for (unsigned Part = 0; Part < State.UF; ++Part) { 9600 Value *A = State.get(getOperand(0), Part); 9601 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9602 State.set(this, Cast, Part); 9603 State.ILV->addMetadata(Cast, &I); 9604 } 9605 break; 9606 } 9607 default: 9608 // This instruction is not vectorized by simple widening. 9609 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9610 llvm_unreachable("Unhandled instruction!"); 9611 } // end of switch. 9612 } 9613 9614 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9615 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9616 // Construct a vector GEP by widening the operands of the scalar GEP as 9617 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9618 // results in a vector of pointers when at least one operand of the GEP 9619 // is vector-typed. Thus, to keep the representation compact, we only use 9620 // vector-typed operands for loop-varying values. 9621 9622 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9623 // If we are vectorizing, but the GEP has only loop-invariant operands, 9624 // the GEP we build (by only using vector-typed operands for 9625 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9626 // produce a vector of pointers, we need to either arbitrarily pick an 9627 // operand to broadcast, or broadcast a clone of the original GEP. 9628 // Here, we broadcast a clone of the original. 9629 // 9630 // TODO: If at some point we decide to scalarize instructions having 9631 // loop-invariant operands, this special case will no longer be 9632 // required. We would add the scalarization decision to 9633 // collectLoopScalars() and teach getVectorValue() to broadcast 9634 // the lane-zero scalar value. 9635 auto *Clone = State.Builder.Insert(GEP->clone()); 9636 for (unsigned Part = 0; Part < State.UF; ++Part) { 9637 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9638 State.set(this, EntryPart, Part); 9639 State.ILV->addMetadata(EntryPart, GEP); 9640 } 9641 } else { 9642 // If the GEP has at least one loop-varying operand, we are sure to 9643 // produce a vector of pointers. But if we are only unrolling, we want 9644 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9645 // produce with the code below will be scalar (if VF == 1) or vector 9646 // (otherwise). Note that for the unroll-only case, we still maintain 9647 // values in the vector mapping with initVector, as we do for other 9648 // instructions. 9649 for (unsigned Part = 0; Part < State.UF; ++Part) { 9650 // The pointer operand of the new GEP. If it's loop-invariant, we 9651 // won't broadcast it. 9652 auto *Ptr = IsPtrLoopInvariant 9653 ? State.get(getOperand(0), VPIteration(0, 0)) 9654 : State.get(getOperand(0), Part); 9655 9656 // Collect all the indices for the new GEP. If any index is 9657 // loop-invariant, we won't broadcast it. 9658 SmallVector<Value *, 4> Indices; 9659 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9660 VPValue *Operand = getOperand(I); 9661 if (IsIndexLoopInvariant[I - 1]) 9662 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9663 else 9664 Indices.push_back(State.get(Operand, Part)); 9665 } 9666 9667 // If the GEP instruction is vectorized and was in a basic block that 9668 // needed predication, we can't propagate the poison-generating 'inbounds' 9669 // flag. The control flow has been linearized and the GEP is no longer 9670 // guarded by the predicate, which could make the 'inbounds' properties to 9671 // no longer hold. 9672 bool IsInBounds = 9673 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9674 9675 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9676 // but it should be a vector, otherwise. 9677 auto *NewGEP = IsInBounds 9678 ? State.Builder.CreateInBoundsGEP( 9679 GEP->getSourceElementType(), Ptr, Indices) 9680 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9681 Ptr, Indices); 9682 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9683 "NewGEP is not a pointer vector"); 9684 State.set(this, NewGEP, Part); 9685 State.ILV->addMetadata(NewGEP, GEP); 9686 } 9687 } 9688 } 9689 9690 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9691 assert(!State.Instance && "Int or FP induction being replicated."); 9692 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9693 State.ILV->widenIntOrFpInduction(IV, getInductionDescriptor(), 9694 getStartValue()->getLiveInIRValue(), 9695 getTruncInst(), this, State, CanonicalIV); 9696 } 9697 9698 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9699 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9700 State); 9701 } 9702 9703 void VPBlendRecipe::execute(VPTransformState &State) { 9704 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9705 // We know that all PHIs in non-header blocks are converted into 9706 // selects, so we don't have to worry about the insertion order and we 9707 // can just use the builder. 9708 // At this point we generate the predication tree. There may be 9709 // duplications since this is a simple recursive scan, but future 9710 // optimizations will clean it up. 9711 9712 unsigned NumIncoming = getNumIncomingValues(); 9713 9714 // Generate a sequence of selects of the form: 9715 // SELECT(Mask3, In3, 9716 // SELECT(Mask2, In2, 9717 // SELECT(Mask1, In1, 9718 // In0))) 9719 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9720 // are essentially undef are taken from In0. 9721 InnerLoopVectorizer::VectorParts Entry(State.UF); 9722 for (unsigned In = 0; In < NumIncoming; ++In) { 9723 for (unsigned Part = 0; Part < State.UF; ++Part) { 9724 // We might have single edge PHIs (blocks) - use an identity 9725 // 'select' for the first PHI operand. 9726 Value *In0 = State.get(getIncomingValue(In), Part); 9727 if (In == 0) 9728 Entry[Part] = In0; // Initialize with the first incoming value. 9729 else { 9730 // Select between the current value and the previous incoming edge 9731 // based on the incoming mask. 9732 Value *Cond = State.get(getMask(In), Part); 9733 Entry[Part] = 9734 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9735 } 9736 } 9737 } 9738 for (unsigned Part = 0; Part < State.UF; ++Part) 9739 State.set(this, Entry[Part], Part); 9740 } 9741 9742 void VPInterleaveRecipe::execute(VPTransformState &State) { 9743 assert(!State.Instance && "Interleave group being replicated."); 9744 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9745 getStoredValues(), getMask()); 9746 } 9747 9748 void VPReductionRecipe::execute(VPTransformState &State) { 9749 assert(!State.Instance && "Reduction being replicated."); 9750 Value *PrevInChain = State.get(getChainOp(), 0); 9751 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9752 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9753 // Propagate the fast-math flags carried by the underlying instruction. 9754 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9755 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9756 for (unsigned Part = 0; Part < State.UF; ++Part) { 9757 Value *NewVecOp = State.get(getVecOp(), Part); 9758 if (VPValue *Cond = getCondOp()) { 9759 Value *NewCond = State.get(Cond, Part); 9760 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9761 Value *Iden = RdxDesc->getRecurrenceIdentity( 9762 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9763 Value *IdenVec = 9764 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9765 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9766 NewVecOp = Select; 9767 } 9768 Value *NewRed; 9769 Value *NextInChain; 9770 if (IsOrdered) { 9771 if (State.VF.isVector()) 9772 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9773 PrevInChain); 9774 else 9775 NewRed = State.Builder.CreateBinOp( 9776 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9777 NewVecOp); 9778 PrevInChain = NewRed; 9779 } else { 9780 PrevInChain = State.get(getChainOp(), Part); 9781 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9782 } 9783 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9784 NextInChain = 9785 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9786 NewRed, PrevInChain); 9787 } else if (IsOrdered) 9788 NextInChain = NewRed; 9789 else 9790 NextInChain = State.Builder.CreateBinOp( 9791 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9792 PrevInChain); 9793 State.set(this, NextInChain, Part); 9794 } 9795 } 9796 9797 void VPReplicateRecipe::execute(VPTransformState &State) { 9798 if (State.Instance) { // Generate a single instance. 9799 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9800 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9801 IsPredicated, State); 9802 // Insert scalar instance packing it into a vector. 9803 if (AlsoPack && State.VF.isVector()) { 9804 // If we're constructing lane 0, initialize to start from poison. 9805 if (State.Instance->Lane.isFirstLane()) { 9806 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9807 Value *Poison = PoisonValue::get( 9808 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9809 State.set(this, Poison, State.Instance->Part); 9810 } 9811 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9812 } 9813 return; 9814 } 9815 9816 // Generate scalar instances for all VF lanes of all UF parts, unless the 9817 // instruction is uniform inwhich case generate only the first lane for each 9818 // of the UF parts. 9819 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9820 assert((!State.VF.isScalable() || IsUniform) && 9821 "Can't scalarize a scalable vector"); 9822 for (unsigned Part = 0; Part < State.UF; ++Part) 9823 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9824 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9825 VPIteration(Part, Lane), IsPredicated, 9826 State); 9827 } 9828 9829 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9830 assert(State.Instance && "Branch on Mask works only on single instance."); 9831 9832 unsigned Part = State.Instance->Part; 9833 unsigned Lane = State.Instance->Lane.getKnownLane(); 9834 9835 Value *ConditionBit = nullptr; 9836 VPValue *BlockInMask = getMask(); 9837 if (BlockInMask) { 9838 ConditionBit = State.get(BlockInMask, Part); 9839 if (ConditionBit->getType()->isVectorTy()) 9840 ConditionBit = State.Builder.CreateExtractElement( 9841 ConditionBit, State.Builder.getInt32(Lane)); 9842 } else // Block in mask is all-one. 9843 ConditionBit = State.Builder.getTrue(); 9844 9845 // Replace the temporary unreachable terminator with a new conditional branch, 9846 // whose two destinations will be set later when they are created. 9847 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9848 assert(isa<UnreachableInst>(CurrentTerminator) && 9849 "Expected to replace unreachable terminator with conditional branch."); 9850 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9851 CondBr->setSuccessor(0, nullptr); 9852 ReplaceInstWithInst(CurrentTerminator, CondBr); 9853 } 9854 9855 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9856 assert(State.Instance && "Predicated instruction PHI works per instance."); 9857 Instruction *ScalarPredInst = 9858 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9859 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9860 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9861 assert(PredicatingBB && "Predicated block has no single predecessor."); 9862 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9863 "operand must be VPReplicateRecipe"); 9864 9865 // By current pack/unpack logic we need to generate only a single phi node: if 9866 // a vector value for the predicated instruction exists at this point it means 9867 // the instruction has vector users only, and a phi for the vector value is 9868 // needed. In this case the recipe of the predicated instruction is marked to 9869 // also do that packing, thereby "hoisting" the insert-element sequence. 9870 // Otherwise, a phi node for the scalar value is needed. 9871 unsigned Part = State.Instance->Part; 9872 if (State.hasVectorValue(getOperand(0), Part)) { 9873 Value *VectorValue = State.get(getOperand(0), Part); 9874 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9875 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9876 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9877 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9878 if (State.hasVectorValue(this, Part)) 9879 State.reset(this, VPhi, Part); 9880 else 9881 State.set(this, VPhi, Part); 9882 // NOTE: Currently we need to update the value of the operand, so the next 9883 // predicated iteration inserts its generated value in the correct vector. 9884 State.reset(getOperand(0), VPhi, Part); 9885 } else { 9886 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9887 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9888 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9889 PredicatingBB); 9890 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9891 if (State.hasScalarValue(this, *State.Instance)) 9892 State.reset(this, Phi, *State.Instance); 9893 else 9894 State.set(this, Phi, *State.Instance); 9895 // NOTE: Currently we need to update the value of the operand, so the next 9896 // predicated iteration inserts its generated value in the correct vector. 9897 State.reset(getOperand(0), Phi, *State.Instance); 9898 } 9899 } 9900 9901 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9902 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9903 9904 // Attempt to issue a wide load. 9905 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9906 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9907 9908 assert((LI || SI) && "Invalid Load/Store instruction"); 9909 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9910 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9911 9912 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9913 9914 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9915 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9916 bool CreateGatherScatter = !Consecutive; 9917 9918 auto &Builder = State.Builder; 9919 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9920 bool isMaskRequired = getMask(); 9921 if (isMaskRequired) 9922 for (unsigned Part = 0; Part < State.UF; ++Part) 9923 BlockInMaskParts[Part] = State.get(getMask(), Part); 9924 9925 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9926 // Calculate the pointer for the specific unroll-part. 9927 GetElementPtrInst *PartPtr = nullptr; 9928 9929 bool InBounds = false; 9930 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9931 InBounds = gep->isInBounds(); 9932 if (Reverse) { 9933 // If the address is consecutive but reversed, then the 9934 // wide store needs to start at the last vector element. 9935 // RunTimeVF = VScale * VF.getKnownMinValue() 9936 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9937 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9938 // NumElt = -Part * RunTimeVF 9939 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9940 // LastLane = 1 - RunTimeVF 9941 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9942 PartPtr = 9943 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9944 PartPtr->setIsInBounds(InBounds); 9945 PartPtr = cast<GetElementPtrInst>( 9946 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9947 PartPtr->setIsInBounds(InBounds); 9948 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9949 BlockInMaskParts[Part] = 9950 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9951 } else { 9952 Value *Increment = 9953 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9954 PartPtr = cast<GetElementPtrInst>( 9955 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9956 PartPtr->setIsInBounds(InBounds); 9957 } 9958 9959 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9960 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9961 }; 9962 9963 // Handle Stores: 9964 if (SI) { 9965 State.ILV->setDebugLocFromInst(SI); 9966 9967 for (unsigned Part = 0; Part < State.UF; ++Part) { 9968 Instruction *NewSI = nullptr; 9969 Value *StoredVal = State.get(StoredValue, Part); 9970 if (CreateGatherScatter) { 9971 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9972 Value *VectorGep = State.get(getAddr(), Part); 9973 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9974 MaskPart); 9975 } else { 9976 if (Reverse) { 9977 // If we store to reverse consecutive memory locations, then we need 9978 // to reverse the order of elements in the stored value. 9979 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9980 // We don't want to update the value in the map as it might be used in 9981 // another expression. So don't call resetVectorValue(StoredVal). 9982 } 9983 auto *VecPtr = 9984 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9985 if (isMaskRequired) 9986 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9987 BlockInMaskParts[Part]); 9988 else 9989 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9990 } 9991 State.ILV->addMetadata(NewSI, SI); 9992 } 9993 return; 9994 } 9995 9996 // Handle loads. 9997 assert(LI && "Must have a load instruction"); 9998 State.ILV->setDebugLocFromInst(LI); 9999 for (unsigned Part = 0; Part < State.UF; ++Part) { 10000 Value *NewLI; 10001 if (CreateGatherScatter) { 10002 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10003 Value *VectorGep = State.get(getAddr(), Part); 10004 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10005 nullptr, "wide.masked.gather"); 10006 State.ILV->addMetadata(NewLI, LI); 10007 } else { 10008 auto *VecPtr = 10009 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10010 if (isMaskRequired) 10011 NewLI = Builder.CreateMaskedLoad( 10012 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10013 PoisonValue::get(DataTy), "wide.masked.load"); 10014 else 10015 NewLI = 10016 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10017 10018 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10019 State.ILV->addMetadata(NewLI, LI); 10020 if (Reverse) 10021 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10022 } 10023 10024 State.set(this, NewLI, Part); 10025 } 10026 } 10027 10028 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10029 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10030 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10031 // for predication. 10032 static ScalarEpilogueLowering getScalarEpilogueLowering( 10033 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10034 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10035 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10036 LoopVectorizationLegality &LVL) { 10037 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10038 // don't look at hints or options, and don't request a scalar epilogue. 10039 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10040 // LoopAccessInfo (due to code dependency and not being able to reliably get 10041 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10042 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10043 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10044 // back to the old way and vectorize with versioning when forced. See D81345.) 10045 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10046 PGSOQueryType::IRPass) && 10047 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10048 return CM_ScalarEpilogueNotAllowedOptSize; 10049 10050 // 2) If set, obey the directives 10051 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10052 switch (PreferPredicateOverEpilogue) { 10053 case PreferPredicateTy::ScalarEpilogue: 10054 return CM_ScalarEpilogueAllowed; 10055 case PreferPredicateTy::PredicateElseScalarEpilogue: 10056 return CM_ScalarEpilogueNotNeededUsePredicate; 10057 case PreferPredicateTy::PredicateOrDontVectorize: 10058 return CM_ScalarEpilogueNotAllowedUsePredicate; 10059 }; 10060 } 10061 10062 // 3) If set, obey the hints 10063 switch (Hints.getPredicate()) { 10064 case LoopVectorizeHints::FK_Enabled: 10065 return CM_ScalarEpilogueNotNeededUsePredicate; 10066 case LoopVectorizeHints::FK_Disabled: 10067 return CM_ScalarEpilogueAllowed; 10068 }; 10069 10070 // 4) if the TTI hook indicates this is profitable, request predication. 10071 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10072 LVL.getLAI())) 10073 return CM_ScalarEpilogueNotNeededUsePredicate; 10074 10075 return CM_ScalarEpilogueAllowed; 10076 } 10077 10078 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10079 // If Values have been set for this Def return the one relevant for \p Part. 10080 if (hasVectorValue(Def, Part)) 10081 return Data.PerPartOutput[Def][Part]; 10082 10083 if (!hasScalarValue(Def, {Part, 0})) { 10084 Value *IRV = Def->getLiveInIRValue(); 10085 Value *B = ILV->getBroadcastInstrs(IRV); 10086 set(Def, B, Part); 10087 return B; 10088 } 10089 10090 Value *ScalarValue = get(Def, {Part, 0}); 10091 // If we aren't vectorizing, we can just copy the scalar map values over 10092 // to the vector map. 10093 if (VF.isScalar()) { 10094 set(Def, ScalarValue, Part); 10095 return ScalarValue; 10096 } 10097 10098 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10099 bool IsUniform = RepR && RepR->isUniform(); 10100 10101 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10102 // Check if there is a scalar value for the selected lane. 10103 if (!hasScalarValue(Def, {Part, LastLane})) { 10104 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10105 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10106 "unexpected recipe found to be invariant"); 10107 IsUniform = true; 10108 LastLane = 0; 10109 } 10110 10111 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10112 // Set the insert point after the last scalarized instruction or after the 10113 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10114 // will directly follow the scalar definitions. 10115 auto OldIP = Builder.saveIP(); 10116 auto NewIP = 10117 isa<PHINode>(LastInst) 10118 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10119 : std::next(BasicBlock::iterator(LastInst)); 10120 Builder.SetInsertPoint(&*NewIP); 10121 10122 // However, if we are vectorizing, we need to construct the vector values. 10123 // If the value is known to be uniform after vectorization, we can just 10124 // broadcast the scalar value corresponding to lane zero for each unroll 10125 // iteration. Otherwise, we construct the vector values using 10126 // insertelement instructions. Since the resulting vectors are stored in 10127 // State, we will only generate the insertelements once. 10128 Value *VectorValue = nullptr; 10129 if (IsUniform) { 10130 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10131 set(Def, VectorValue, Part); 10132 } else { 10133 // Initialize packing with insertelements to start from undef. 10134 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10135 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10136 set(Def, Undef, Part); 10137 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10138 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10139 VectorValue = get(Def, Part); 10140 } 10141 Builder.restoreIP(OldIP); 10142 return VectorValue; 10143 } 10144 10145 // Process the loop in the VPlan-native vectorization path. This path builds 10146 // VPlan upfront in the vectorization pipeline, which allows to apply 10147 // VPlan-to-VPlan transformations from the very beginning without modifying the 10148 // input LLVM IR. 10149 static bool processLoopInVPlanNativePath( 10150 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10151 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10152 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10153 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10154 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10155 LoopVectorizationRequirements &Requirements) { 10156 10157 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10158 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10159 return false; 10160 } 10161 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10162 Function *F = L->getHeader()->getParent(); 10163 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10164 10165 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10166 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10167 10168 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10169 &Hints, IAI); 10170 // Use the planner for outer loop vectorization. 10171 // TODO: CM is not used at this point inside the planner. Turn CM into an 10172 // optional argument if we don't need it in the future. 10173 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10174 Requirements, ORE); 10175 10176 // Get user vectorization factor. 10177 ElementCount UserVF = Hints.getWidth(); 10178 10179 CM.collectElementTypesForWidening(); 10180 10181 // Plan how to best vectorize, return the best VF and its cost. 10182 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10183 10184 // If we are stress testing VPlan builds, do not attempt to generate vector 10185 // code. Masked vector code generation support will follow soon. 10186 // Also, do not attempt to vectorize if no vector code will be produced. 10187 if (VPlanBuildStressTest || EnableVPlanPredication || 10188 VectorizationFactor::Disabled() == VF) 10189 return false; 10190 10191 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10192 10193 { 10194 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10195 F->getParent()->getDataLayout()); 10196 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10197 &CM, BFI, PSI, Checks); 10198 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10199 << L->getHeader()->getParent()->getName() << "\"\n"); 10200 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10201 } 10202 10203 // Mark the loop as already vectorized to avoid vectorizing again. 10204 Hints.setAlreadyVectorized(); 10205 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10206 return true; 10207 } 10208 10209 // Emit a remark if there are stores to floats that required a floating point 10210 // extension. If the vectorized loop was generated with floating point there 10211 // will be a performance penalty from the conversion overhead and the change in 10212 // the vector width. 10213 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10214 SmallVector<Instruction *, 4> Worklist; 10215 for (BasicBlock *BB : L->getBlocks()) { 10216 for (Instruction &Inst : *BB) { 10217 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10218 if (S->getValueOperand()->getType()->isFloatTy()) 10219 Worklist.push_back(S); 10220 } 10221 } 10222 } 10223 10224 // Traverse the floating point stores upwards searching, for floating point 10225 // conversions. 10226 SmallPtrSet<const Instruction *, 4> Visited; 10227 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10228 while (!Worklist.empty()) { 10229 auto *I = Worklist.pop_back_val(); 10230 if (!L->contains(I)) 10231 continue; 10232 if (!Visited.insert(I).second) 10233 continue; 10234 10235 // Emit a remark if the floating point store required a floating 10236 // point conversion. 10237 // TODO: More work could be done to identify the root cause such as a 10238 // constant or a function return type and point the user to it. 10239 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10240 ORE->emit([&]() { 10241 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10242 I->getDebugLoc(), L->getHeader()) 10243 << "floating point conversion changes vector width. " 10244 << "Mixed floating point precision requires an up/down " 10245 << "cast that will negatively impact performance."; 10246 }); 10247 10248 for (Use &Op : I->operands()) 10249 if (auto *OpI = dyn_cast<Instruction>(Op)) 10250 Worklist.push_back(OpI); 10251 } 10252 } 10253 10254 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10255 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10256 !EnableLoopInterleaving), 10257 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10258 !EnableLoopVectorization) {} 10259 10260 bool LoopVectorizePass::processLoop(Loop *L) { 10261 assert((EnableVPlanNativePath || L->isInnermost()) && 10262 "VPlan-native path is not enabled. Only process inner loops."); 10263 10264 #ifndef NDEBUG 10265 const std::string DebugLocStr = getDebugLocString(L); 10266 #endif /* NDEBUG */ 10267 10268 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10269 << L->getHeader()->getParent()->getName() << "\" from " 10270 << DebugLocStr << "\n"); 10271 10272 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10273 10274 LLVM_DEBUG( 10275 dbgs() << "LV: Loop hints:" 10276 << " force=" 10277 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10278 ? "disabled" 10279 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10280 ? "enabled" 10281 : "?")) 10282 << " width=" << Hints.getWidth() 10283 << " interleave=" << Hints.getInterleave() << "\n"); 10284 10285 // Function containing loop 10286 Function *F = L->getHeader()->getParent(); 10287 10288 // Looking at the diagnostic output is the only way to determine if a loop 10289 // was vectorized (other than looking at the IR or machine code), so it 10290 // is important to generate an optimization remark for each loop. Most of 10291 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10292 // generated as OptimizationRemark and OptimizationRemarkMissed are 10293 // less verbose reporting vectorized loops and unvectorized loops that may 10294 // benefit from vectorization, respectively. 10295 10296 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10297 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10298 return false; 10299 } 10300 10301 PredicatedScalarEvolution PSE(*SE, *L); 10302 10303 // Check if it is legal to vectorize the loop. 10304 LoopVectorizationRequirements Requirements; 10305 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10306 &Requirements, &Hints, DB, AC, BFI, PSI); 10307 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10308 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10309 Hints.emitRemarkWithHints(); 10310 return false; 10311 } 10312 10313 // Check the function attributes and profiles to find out if this function 10314 // should be optimized for size. 10315 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10316 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10317 10318 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10319 // here. They may require CFG and instruction level transformations before 10320 // even evaluating whether vectorization is profitable. Since we cannot modify 10321 // the incoming IR, we need to build VPlan upfront in the vectorization 10322 // pipeline. 10323 if (!L->isInnermost()) 10324 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10325 ORE, BFI, PSI, Hints, Requirements); 10326 10327 assert(L->isInnermost() && "Inner loop expected."); 10328 10329 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10330 // count by optimizing for size, to minimize overheads. 10331 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10332 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10333 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10334 << "This loop is worth vectorizing only if no scalar " 10335 << "iteration overheads are incurred."); 10336 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10337 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10338 else { 10339 LLVM_DEBUG(dbgs() << "\n"); 10340 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10341 } 10342 } 10343 10344 // Check the function attributes to see if implicit floats are allowed. 10345 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10346 // an integer loop and the vector instructions selected are purely integer 10347 // vector instructions? 10348 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10349 reportVectorizationFailure( 10350 "Can't vectorize when the NoImplicitFloat attribute is used", 10351 "loop not vectorized due to NoImplicitFloat attribute", 10352 "NoImplicitFloat", ORE, L); 10353 Hints.emitRemarkWithHints(); 10354 return false; 10355 } 10356 10357 // Check if the target supports potentially unsafe FP vectorization. 10358 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10359 // for the target we're vectorizing for, to make sure none of the 10360 // additional fp-math flags can help. 10361 if (Hints.isPotentiallyUnsafe() && 10362 TTI->isFPVectorizationPotentiallyUnsafe()) { 10363 reportVectorizationFailure( 10364 "Potentially unsafe FP op prevents vectorization", 10365 "loop not vectorized due to unsafe FP support.", 10366 "UnsafeFP", ORE, L); 10367 Hints.emitRemarkWithHints(); 10368 return false; 10369 } 10370 10371 bool AllowOrderedReductions; 10372 // If the flag is set, use that instead and override the TTI behaviour. 10373 if (ForceOrderedReductions.getNumOccurrences() > 0) 10374 AllowOrderedReductions = ForceOrderedReductions; 10375 else 10376 AllowOrderedReductions = TTI->enableOrderedReductions(); 10377 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10378 ORE->emit([&]() { 10379 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10380 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10381 ExactFPMathInst->getDebugLoc(), 10382 ExactFPMathInst->getParent()) 10383 << "loop not vectorized: cannot prove it is safe to reorder " 10384 "floating-point operations"; 10385 }); 10386 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10387 "reorder floating-point operations\n"); 10388 Hints.emitRemarkWithHints(); 10389 return false; 10390 } 10391 10392 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10393 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10394 10395 // If an override option has been passed in for interleaved accesses, use it. 10396 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10397 UseInterleaved = EnableInterleavedMemAccesses; 10398 10399 // Analyze interleaved memory accesses. 10400 if (UseInterleaved) { 10401 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10402 } 10403 10404 // Use the cost model. 10405 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10406 F, &Hints, IAI); 10407 CM.collectValuesToIgnore(); 10408 CM.collectElementTypesForWidening(); 10409 10410 // Use the planner for vectorization. 10411 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10412 Requirements, ORE); 10413 10414 // Get user vectorization factor and interleave count. 10415 ElementCount UserVF = Hints.getWidth(); 10416 unsigned UserIC = Hints.getInterleave(); 10417 10418 // Plan how to best vectorize, return the best VF and its cost. 10419 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10420 10421 VectorizationFactor VF = VectorizationFactor::Disabled(); 10422 unsigned IC = 1; 10423 10424 if (MaybeVF) { 10425 VF = *MaybeVF; 10426 // Select the interleave count. 10427 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10428 } 10429 10430 // Identify the diagnostic messages that should be produced. 10431 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10432 bool VectorizeLoop = true, InterleaveLoop = true; 10433 if (VF.Width.isScalar()) { 10434 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10435 VecDiagMsg = std::make_pair( 10436 "VectorizationNotBeneficial", 10437 "the cost-model indicates that vectorization is not beneficial"); 10438 VectorizeLoop = false; 10439 } 10440 10441 if (!MaybeVF && UserIC > 1) { 10442 // Tell the user interleaving was avoided up-front, despite being explicitly 10443 // requested. 10444 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10445 "interleaving should be avoided up front\n"); 10446 IntDiagMsg = std::make_pair( 10447 "InterleavingAvoided", 10448 "Ignoring UserIC, because interleaving was avoided up front"); 10449 InterleaveLoop = false; 10450 } else if (IC == 1 && UserIC <= 1) { 10451 // Tell the user interleaving is not beneficial. 10452 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10453 IntDiagMsg = std::make_pair( 10454 "InterleavingNotBeneficial", 10455 "the cost-model indicates that interleaving is not beneficial"); 10456 InterleaveLoop = false; 10457 if (UserIC == 1) { 10458 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10459 IntDiagMsg.second += 10460 " and is explicitly disabled or interleave count is set to 1"; 10461 } 10462 } else if (IC > 1 && UserIC == 1) { 10463 // Tell the user interleaving is beneficial, but it explicitly disabled. 10464 LLVM_DEBUG( 10465 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10466 IntDiagMsg = std::make_pair( 10467 "InterleavingBeneficialButDisabled", 10468 "the cost-model indicates that interleaving is beneficial " 10469 "but is explicitly disabled or interleave count is set to 1"); 10470 InterleaveLoop = false; 10471 } 10472 10473 // Override IC if user provided an interleave count. 10474 IC = UserIC > 0 ? UserIC : IC; 10475 10476 // Emit diagnostic messages, if any. 10477 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10478 if (!VectorizeLoop && !InterleaveLoop) { 10479 // Do not vectorize or interleaving the loop. 10480 ORE->emit([&]() { 10481 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10482 L->getStartLoc(), L->getHeader()) 10483 << VecDiagMsg.second; 10484 }); 10485 ORE->emit([&]() { 10486 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10487 L->getStartLoc(), L->getHeader()) 10488 << IntDiagMsg.second; 10489 }); 10490 return false; 10491 } else if (!VectorizeLoop && InterleaveLoop) { 10492 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10493 ORE->emit([&]() { 10494 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10495 L->getStartLoc(), L->getHeader()) 10496 << VecDiagMsg.second; 10497 }); 10498 } else if (VectorizeLoop && !InterleaveLoop) { 10499 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10500 << ") in " << DebugLocStr << '\n'); 10501 ORE->emit([&]() { 10502 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10503 L->getStartLoc(), L->getHeader()) 10504 << IntDiagMsg.second; 10505 }); 10506 } else if (VectorizeLoop && InterleaveLoop) { 10507 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10508 << ") in " << DebugLocStr << '\n'); 10509 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10510 } 10511 10512 bool DisableRuntimeUnroll = false; 10513 MDNode *OrigLoopID = L->getLoopID(); 10514 { 10515 // Optimistically generate runtime checks. Drop them if they turn out to not 10516 // be profitable. Limit the scope of Checks, so the cleanup happens 10517 // immediately after vector codegeneration is done. 10518 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10519 F->getParent()->getDataLayout()); 10520 if (!VF.Width.isScalar() || IC > 1) 10521 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10522 10523 using namespace ore; 10524 if (!VectorizeLoop) { 10525 assert(IC > 1 && "interleave count should not be 1 or 0"); 10526 // If we decided that it is not legal to vectorize the loop, then 10527 // interleave it. 10528 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10529 &CM, BFI, PSI, Checks); 10530 10531 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10532 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10533 10534 ORE->emit([&]() { 10535 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10536 L->getHeader()) 10537 << "interleaved loop (interleaved count: " 10538 << NV("InterleaveCount", IC) << ")"; 10539 }); 10540 } else { 10541 // If we decided that it is *legal* to vectorize the loop, then do it. 10542 10543 // Consider vectorizing the epilogue too if it's profitable. 10544 VectorizationFactor EpilogueVF = 10545 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10546 if (EpilogueVF.Width.isVector()) { 10547 10548 // The first pass vectorizes the main loop and creates a scalar epilogue 10549 // to be vectorized by executing the plan (potentially with a different 10550 // factor) again shortly afterwards. 10551 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10552 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10553 EPI, &LVL, &CM, BFI, PSI, Checks); 10554 10555 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10556 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10557 DT); 10558 ++LoopsVectorized; 10559 10560 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10561 formLCSSARecursively(*L, *DT, LI, SE); 10562 10563 // Second pass vectorizes the epilogue and adjusts the control flow 10564 // edges from the first pass. 10565 EPI.MainLoopVF = EPI.EpilogueVF; 10566 EPI.MainLoopUF = EPI.EpilogueUF; 10567 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10568 ORE, EPI, &LVL, &CM, BFI, PSI, 10569 Checks); 10570 10571 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10572 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10573 DT); 10574 ++LoopsEpilogueVectorized; 10575 10576 if (!MainILV.areSafetyChecksAdded()) 10577 DisableRuntimeUnroll = true; 10578 } else { 10579 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10580 &LVL, &CM, BFI, PSI, Checks); 10581 10582 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10583 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10584 ++LoopsVectorized; 10585 10586 // Add metadata to disable runtime unrolling a scalar loop when there 10587 // are no runtime checks about strides and memory. A scalar loop that is 10588 // rarely used is not worth unrolling. 10589 if (!LB.areSafetyChecksAdded()) 10590 DisableRuntimeUnroll = true; 10591 } 10592 // Report the vectorization decision. 10593 ORE->emit([&]() { 10594 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10595 L->getHeader()) 10596 << "vectorized loop (vectorization width: " 10597 << NV("VectorizationFactor", VF.Width) 10598 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10599 }); 10600 } 10601 10602 if (ORE->allowExtraAnalysis(LV_NAME)) 10603 checkMixedPrecision(L, ORE); 10604 } 10605 10606 Optional<MDNode *> RemainderLoopID = 10607 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10608 LLVMLoopVectorizeFollowupEpilogue}); 10609 if (RemainderLoopID.hasValue()) { 10610 L->setLoopID(RemainderLoopID.getValue()); 10611 } else { 10612 if (DisableRuntimeUnroll) 10613 AddRuntimeUnrollDisableMetaData(L); 10614 10615 // Mark the loop as already vectorized to avoid vectorizing again. 10616 Hints.setAlreadyVectorized(); 10617 } 10618 10619 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10620 return true; 10621 } 10622 10623 LoopVectorizeResult LoopVectorizePass::runImpl( 10624 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10625 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10626 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10627 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10628 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10629 SE = &SE_; 10630 LI = &LI_; 10631 TTI = &TTI_; 10632 DT = &DT_; 10633 BFI = &BFI_; 10634 TLI = TLI_; 10635 AA = &AA_; 10636 AC = &AC_; 10637 GetLAA = &GetLAA_; 10638 DB = &DB_; 10639 ORE = &ORE_; 10640 PSI = PSI_; 10641 10642 // Don't attempt if 10643 // 1. the target claims to have no vector registers, and 10644 // 2. interleaving won't help ILP. 10645 // 10646 // The second condition is necessary because, even if the target has no 10647 // vector registers, loop vectorization may still enable scalar 10648 // interleaving. 10649 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10650 TTI->getMaxInterleaveFactor(1) < 2) 10651 return LoopVectorizeResult(false, false); 10652 10653 bool Changed = false, CFGChanged = false; 10654 10655 // The vectorizer requires loops to be in simplified form. 10656 // Since simplification may add new inner loops, it has to run before the 10657 // legality and profitability checks. This means running the loop vectorizer 10658 // will simplify all loops, regardless of whether anything end up being 10659 // vectorized. 10660 for (auto &L : *LI) 10661 Changed |= CFGChanged |= 10662 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10663 10664 // Build up a worklist of inner-loops to vectorize. This is necessary as 10665 // the act of vectorizing or partially unrolling a loop creates new loops 10666 // and can invalidate iterators across the loops. 10667 SmallVector<Loop *, 8> Worklist; 10668 10669 for (Loop *L : *LI) 10670 collectSupportedLoops(*L, LI, ORE, Worklist); 10671 10672 LoopsAnalyzed += Worklist.size(); 10673 10674 // Now walk the identified inner loops. 10675 while (!Worklist.empty()) { 10676 Loop *L = Worklist.pop_back_val(); 10677 10678 // For the inner loops we actually process, form LCSSA to simplify the 10679 // transform. 10680 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10681 10682 Changed |= CFGChanged |= processLoop(L); 10683 } 10684 10685 // Process each loop nest in the function. 10686 return LoopVectorizeResult(Changed, CFGChanged); 10687 } 10688 10689 PreservedAnalyses LoopVectorizePass::run(Function &F, 10690 FunctionAnalysisManager &AM) { 10691 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10692 auto &LI = AM.getResult<LoopAnalysis>(F); 10693 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10694 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10695 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10696 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10697 auto &AA = AM.getResult<AAManager>(F); 10698 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10699 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10700 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10701 10702 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10703 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10704 [&](Loop &L) -> const LoopAccessInfo & { 10705 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10706 TLI, TTI, nullptr, nullptr, nullptr}; 10707 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10708 }; 10709 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10710 ProfileSummaryInfo *PSI = 10711 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10712 LoopVectorizeResult Result = 10713 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10714 if (!Result.MadeAnyChange) 10715 return PreservedAnalyses::all(); 10716 PreservedAnalyses PA; 10717 10718 // We currently do not preserve loopinfo/dominator analyses with outer loop 10719 // vectorization. Until this is addressed, mark these analyses as preserved 10720 // only for non-VPlan-native path. 10721 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10722 if (!EnableVPlanNativePath) { 10723 PA.preserve<LoopAnalysis>(); 10724 PA.preserve<DominatorTreeAnalysis>(); 10725 } 10726 10727 if (Result.MadeCFGChange) { 10728 // Making CFG changes likely means a loop got vectorized. Indicate that 10729 // extra simplification passes should be run. 10730 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10731 // be run if runtime checks have been added. 10732 AM.getResult<ShouldRunExtraVectorPasses>(F); 10733 PA.preserve<ShouldRunExtraVectorPasses>(); 10734 } else { 10735 PA.preserveSet<CFGAnalyses>(); 10736 } 10737 return PA; 10738 } 10739 10740 void LoopVectorizePass::printPipeline( 10741 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10742 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10743 OS, MapClassName2PassName); 10744 10745 OS << "<"; 10746 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10747 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10748 OS << ">"; 10749 } 10750