1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 399 ProfileSummaryInfo *PSI) 400 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 401 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 402 Builder(PSE.getSE()->getContext()), 403 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 404 BFI(BFI), PSI(PSI) {} 405 virtual ~InnerLoopVectorizer() = default; 406 407 /// Create a new empty loop. Unlink the old loop and connect the new one. 408 /// Return the pre-header block of the new loop. 409 BasicBlock *createVectorizedLoopSkeleton(); 410 411 /// Widen a single instruction within the innermost loop. 412 void widenInstruction(Instruction &I, VPUser &Operands, 413 VPTransformState &State); 414 415 /// Widen a single call instruction within the innermost loop. 416 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 417 VPTransformState &State); 418 419 /// Widen a single select instruction within the innermost loop. 420 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 421 bool InvariantCond, VPTransformState &State); 422 423 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 424 void fixVectorizedLoop(); 425 426 // Return true if any runtime check is added. 427 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 428 429 /// A type for vectorized values in the new loop. Each value from the 430 /// original loop, when vectorized, is represented by UF vector values in the 431 /// new unrolled loop, where UF is the unroll factor. 432 using VectorParts = SmallVector<Value *, 2>; 433 434 /// Vectorize a single GetElementPtrInst based on information gathered and 435 /// decisions taken during planning. 436 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 437 unsigned VF, bool IsPtrLoopInvariant, 438 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 439 440 /// Vectorize a single PHINode in a block. This method handles the induction 441 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 442 /// arbitrary length vectors. 443 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 444 445 /// A helper function to scalarize a single Instruction in the innermost loop. 446 /// Generates a sequence of scalar instances for each lane between \p MinLane 447 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 448 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 449 /// Instr's operands. 450 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 451 const VPIteration &Instance, bool IfPredicateInstr, 452 VPTransformState &State); 453 454 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 455 /// is provided, the integer induction variable will first be truncated to 456 /// the corresponding type. 457 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 458 459 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 460 /// vector or scalar value on-demand if one is not yet available. When 461 /// vectorizing a loop, we visit the definition of an instruction before its 462 /// uses. When visiting the definition, we either vectorize or scalarize the 463 /// instruction, creating an entry for it in the corresponding map. (In some 464 /// cases, such as induction variables, we will create both vector and scalar 465 /// entries.) Then, as we encounter uses of the definition, we derive values 466 /// for each scalar or vector use unless such a value is already available. 467 /// For example, if we scalarize a definition and one of its uses is vector, 468 /// we build the required vector on-demand with an insertelement sequence 469 /// when visiting the use. Otherwise, if the use is scalar, we can use the 470 /// existing scalar definition. 471 /// 472 /// Return a value in the new loop corresponding to \p V from the original 473 /// loop at unroll index \p Part. If the value has already been vectorized, 474 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 475 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 476 /// a new vector value on-demand by inserting the scalar values into a vector 477 /// with an insertelement sequence. If the value has been neither vectorized 478 /// nor scalarized, it must be loop invariant, so we simply broadcast the 479 /// value into a vector. 480 Value *getOrCreateVectorValue(Value *V, unsigned Part); 481 482 /// Return a value in the new loop corresponding to \p V from the original 483 /// loop at unroll and vector indices \p Instance. If the value has been 484 /// vectorized but not scalarized, the necessary extractelement instruction 485 /// will be generated. 486 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 487 488 /// Construct the vector value of a scalarized value \p V one lane at a time. 489 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 490 491 /// Try to vectorize interleaved access group \p Group with the base address 492 /// given in \p Addr, optionally masking the vector operations if \p 493 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 494 /// values in the vectorized loop. 495 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 496 VPTransformState &State, VPValue *Addr, 497 VPValue *BlockInMask = nullptr); 498 499 /// Vectorize Load and Store instructions with the base address given in \p 500 /// Addr, optionally masking the vector operations if \p BlockInMask is 501 /// non-null. Use \p State to translate given VPValues to IR values in the 502 /// vectorized loop. 503 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 504 VPValue *Addr, VPValue *StoredValue, 505 VPValue *BlockInMask); 506 507 /// Set the debug location in the builder using the debug location in 508 /// the instruction. 509 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 510 511 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 512 void fixNonInductionPHIs(void); 513 514 protected: 515 friend class LoopVectorizationPlanner; 516 517 /// A small list of PHINodes. 518 using PhiVector = SmallVector<PHINode *, 4>; 519 520 /// A type for scalarized values in the new loop. Each value from the 521 /// original loop, when scalarized, is represented by UF x VF scalar values 522 /// in the new unrolled loop, where UF is the unroll factor and VF is the 523 /// vectorization factor. 524 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 525 526 /// Set up the values of the IVs correctly when exiting the vector loop. 527 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 528 Value *CountRoundDown, Value *EndValue, 529 BasicBlock *MiddleBlock); 530 531 /// Create a new induction variable inside L. 532 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 533 Value *Step, Instruction *DL); 534 535 /// Handle all cross-iteration phis in the header. 536 void fixCrossIterationPHIs(); 537 538 /// Fix a first-order recurrence. This is the second phase of vectorizing 539 /// this phi node. 540 void fixFirstOrderRecurrence(PHINode *Phi); 541 542 /// Fix a reduction cross-iteration phi. This is the second phase of 543 /// vectorizing this phi node. 544 void fixReduction(PHINode *Phi); 545 546 /// Clear NSW/NUW flags from reduction instructions if necessary. 547 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 548 549 /// The Loop exit block may have single value PHI nodes with some 550 /// incoming value. While vectorizing we only handled real values 551 /// that were defined inside the loop and we should have one value for 552 /// each predecessor of its parent basic block. See PR14725. 553 void fixLCSSAPHIs(); 554 555 /// Iteratively sink the scalarized operands of a predicated instruction into 556 /// the block that was created for it. 557 void sinkScalarOperands(Instruction *PredInst); 558 559 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 560 /// represented as. 561 void truncateToMinimalBitwidths(); 562 563 /// Create a broadcast instruction. This method generates a broadcast 564 /// instruction (shuffle) for loop invariant values and for the induction 565 /// value. If this is the induction variable then we extend it to N, N+1, ... 566 /// this is needed because each iteration in the loop corresponds to a SIMD 567 /// element. 568 virtual Value *getBroadcastInstrs(Value *V); 569 570 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 571 /// to each vector element of Val. The sequence starts at StartIndex. 572 /// \p Opcode is relevant for FP induction variable. 573 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 574 Instruction::BinaryOps Opcode = 575 Instruction::BinaryOpsEnd); 576 577 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 578 /// variable on which to base the steps, \p Step is the size of the step, and 579 /// \p EntryVal is the value from the original loop that maps to the steps. 580 /// Note that \p EntryVal doesn't have to be an induction variable - it 581 /// can also be a truncate instruction. 582 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 583 const InductionDescriptor &ID); 584 585 /// Create a vector induction phi node based on an existing scalar one. \p 586 /// EntryVal is the value from the original loop that maps to the vector phi 587 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 588 /// truncate instruction, instead of widening the original IV, we widen a 589 /// version of the IV truncated to \p EntryVal's type. 590 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 591 Value *Step, Instruction *EntryVal); 592 593 /// Returns true if an instruction \p I should be scalarized instead of 594 /// vectorized for the chosen vectorization factor. 595 bool shouldScalarizeInstruction(Instruction *I) const; 596 597 /// Returns true if we should generate a scalar version of \p IV. 598 bool needsScalarInduction(Instruction *IV) const; 599 600 /// If there is a cast involved in the induction variable \p ID, which should 601 /// be ignored in the vectorized loop body, this function records the 602 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 603 /// cast. We had already proved that the casted Phi is equal to the uncasted 604 /// Phi in the vectorized loop (under a runtime guard), and therefore 605 /// there is no need to vectorize the cast - the same value can be used in the 606 /// vector loop for both the Phi and the cast. 607 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 608 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 609 /// 610 /// \p EntryVal is the value from the original loop that maps to the vector 611 /// phi node and is used to distinguish what is the IV currently being 612 /// processed - original one (if \p EntryVal is a phi corresponding to the 613 /// original IV) or the "newly-created" one based on the proof mentioned above 614 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 615 /// latter case \p EntryVal is a TruncInst and we must not record anything for 616 /// that IV, but it's error-prone to expect callers of this routine to care 617 /// about that, hence this explicit parameter. 618 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 619 const Instruction *EntryVal, 620 Value *VectorLoopValue, 621 unsigned Part, 622 unsigned Lane = UINT_MAX); 623 624 /// Generate a shuffle sequence that will reverse the vector Vec. 625 virtual Value *reverseVector(Value *Vec); 626 627 /// Returns (and creates if needed) the original loop trip count. 628 Value *getOrCreateTripCount(Loop *NewLoop); 629 630 /// Returns (and creates if needed) the trip count of the widened loop. 631 Value *getOrCreateVectorTripCount(Loop *NewLoop); 632 633 /// Returns a bitcasted value to the requested vector type. 634 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 635 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 636 const DataLayout &DL); 637 638 /// Emit a bypass check to see if the vector trip count is zero, including if 639 /// it overflows. 640 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 641 642 /// Emit a bypass check to see if all of the SCEV assumptions we've 643 /// had to make are correct. 644 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 645 646 /// Emit bypass checks to check any memory assumptions we may have made. 647 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 648 649 /// Compute the transformed value of Index at offset StartValue using step 650 /// StepValue. 651 /// For integer induction, returns StartValue + Index * StepValue. 652 /// For pointer induction, returns StartValue[Index * StepValue]. 653 /// FIXME: The newly created binary instructions should contain nsw/nuw 654 /// flags, which can be found from the original scalar operations. 655 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 656 const DataLayout &DL, 657 const InductionDescriptor &ID) const; 658 659 /// Add additional metadata to \p To that was not present on \p Orig. 660 /// 661 /// Currently this is used to add the noalias annotations based on the 662 /// inserted memchecks. Use this for instructions that are *cloned* into the 663 /// vector loop. 664 void addNewMetadata(Instruction *To, const Instruction *Orig); 665 666 /// Add metadata from one instruction to another. 667 /// 668 /// This includes both the original MDs from \p From and additional ones (\see 669 /// addNewMetadata). Use this for *newly created* instructions in the vector 670 /// loop. 671 void addMetadata(Instruction *To, Instruction *From); 672 673 /// Similar to the previous function but it adds the metadata to a 674 /// vector of instructions. 675 void addMetadata(ArrayRef<Value *> To, Instruction *From); 676 677 /// The original loop. 678 Loop *OrigLoop; 679 680 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 681 /// dynamic knowledge to simplify SCEV expressions and converts them to a 682 /// more usable form. 683 PredicatedScalarEvolution &PSE; 684 685 /// Loop Info. 686 LoopInfo *LI; 687 688 /// Dominator Tree. 689 DominatorTree *DT; 690 691 /// Alias Analysis. 692 AAResults *AA; 693 694 /// Target Library Info. 695 const TargetLibraryInfo *TLI; 696 697 /// Target Transform Info. 698 const TargetTransformInfo *TTI; 699 700 /// Assumption Cache. 701 AssumptionCache *AC; 702 703 /// Interface to emit optimization remarks. 704 OptimizationRemarkEmitter *ORE; 705 706 /// LoopVersioning. It's only set up (non-null) if memchecks were 707 /// used. 708 /// 709 /// This is currently only used to add no-alias metadata based on the 710 /// memchecks. The actually versioning is performed manually. 711 std::unique_ptr<LoopVersioning> LVer; 712 713 /// The vectorization SIMD factor to use. Each vector will have this many 714 /// vector elements. 715 unsigned VF; 716 717 /// The vectorization unroll factor to use. Each scalar is vectorized to this 718 /// many different vector instructions. 719 unsigned UF; 720 721 /// The builder that we use 722 IRBuilder<> Builder; 723 724 // --- Vectorization state --- 725 726 /// The vector-loop preheader. 727 BasicBlock *LoopVectorPreHeader; 728 729 /// The scalar-loop preheader. 730 BasicBlock *LoopScalarPreHeader; 731 732 /// Middle Block between the vector and the scalar. 733 BasicBlock *LoopMiddleBlock; 734 735 /// The ExitBlock of the scalar loop. 736 BasicBlock *LoopExitBlock; 737 738 /// The vector loop body. 739 BasicBlock *LoopVectorBody; 740 741 /// The scalar loop body. 742 BasicBlock *LoopScalarBody; 743 744 /// A list of all bypass blocks. The first block is the entry of the loop. 745 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 746 747 /// The new Induction variable which was added to the new block. 748 PHINode *Induction = nullptr; 749 750 /// The induction variable of the old basic block. 751 PHINode *OldInduction = nullptr; 752 753 /// Maps values from the original loop to their corresponding values in the 754 /// vectorized loop. A key value can map to either vector values, scalar 755 /// values or both kinds of values, depending on whether the key was 756 /// vectorized and scalarized. 757 VectorizerValueMap VectorLoopValueMap; 758 759 /// Store instructions that were predicated. 760 SmallVector<Instruction *, 4> PredicatedInstructions; 761 762 /// Trip count of the original loop. 763 Value *TripCount = nullptr; 764 765 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 766 Value *VectorTripCount = nullptr; 767 768 /// The legality analysis. 769 LoopVectorizationLegality *Legal; 770 771 /// The profitablity analysis. 772 LoopVectorizationCostModel *Cost; 773 774 // Record whether runtime checks are added. 775 bool AddedSafetyChecks = false; 776 777 // Holds the end values for each induction variable. We save the end values 778 // so we can later fix-up the external users of the induction variables. 779 DenseMap<PHINode *, Value *> IVEndValues; 780 781 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 782 // fixed up at the end of vector code generation. 783 SmallVector<PHINode *, 8> OrigPHIsToFix; 784 785 /// BFI and PSI are used to check for profile guided size optimizations. 786 BlockFrequencyInfo *BFI; 787 ProfileSummaryInfo *PSI; 788 }; 789 790 class InnerLoopUnroller : public InnerLoopVectorizer { 791 public: 792 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 793 LoopInfo *LI, DominatorTree *DT, 794 const TargetLibraryInfo *TLI, 795 const TargetTransformInfo *TTI, AssumptionCache *AC, 796 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 797 LoopVectorizationLegality *LVL, 798 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 799 ProfileSummaryInfo *PSI) 800 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 801 UnrollFactor, LVL, CM, BFI, PSI) {} 802 803 private: 804 Value *getBroadcastInstrs(Value *V) override; 805 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 806 Instruction::BinaryOps Opcode = 807 Instruction::BinaryOpsEnd) override; 808 Value *reverseVector(Value *Vec) override; 809 }; 810 811 } // end namespace llvm 812 813 /// Look for a meaningful debug location on the instruction or it's 814 /// operands. 815 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 816 if (!I) 817 return I; 818 819 DebugLoc Empty; 820 if (I->getDebugLoc() != Empty) 821 return I; 822 823 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 824 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 825 if (OpInst->getDebugLoc() != Empty) 826 return OpInst; 827 } 828 829 return I; 830 } 831 832 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 833 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 834 const DILocation *DIL = Inst->getDebugLoc(); 835 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 836 !isa<DbgInfoIntrinsic>(Inst)) { 837 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 838 if (NewDIL) 839 B.SetCurrentDebugLocation(NewDIL.getValue()); 840 else 841 LLVM_DEBUG(dbgs() 842 << "Failed to create new discriminator: " 843 << DIL->getFilename() << " Line: " << DIL->getLine()); 844 } 845 else 846 B.SetCurrentDebugLocation(DIL); 847 } else 848 B.SetCurrentDebugLocation(DebugLoc()); 849 } 850 851 /// Write a record \p DebugMsg about vectorization failure to the debug 852 /// output stream. If \p I is passed, it is an instruction that prevents 853 /// vectorization. 854 #ifndef NDEBUG 855 static void debugVectorizationFailure(const StringRef DebugMsg, 856 Instruction *I) { 857 dbgs() << "LV: Not vectorizing: " << DebugMsg; 858 if (I != nullptr) 859 dbgs() << " " << *I; 860 else 861 dbgs() << '.'; 862 dbgs() << '\n'; 863 } 864 #endif 865 866 /// Create an analysis remark that explains why vectorization failed 867 /// 868 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 869 /// RemarkName is the identifier for the remark. If \p I is passed it is an 870 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 871 /// the location of the remark. \return the remark object that can be 872 /// streamed to. 873 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 874 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 875 Value *CodeRegion = TheLoop->getHeader(); 876 DebugLoc DL = TheLoop->getStartLoc(); 877 878 if (I) { 879 CodeRegion = I->getParent(); 880 // If there is no debug location attached to the instruction, revert back to 881 // using the loop's. 882 if (I->getDebugLoc()) 883 DL = I->getDebugLoc(); 884 } 885 886 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 887 R << "loop not vectorized: "; 888 return R; 889 } 890 891 namespace llvm { 892 893 void reportVectorizationFailure(const StringRef DebugMsg, 894 const StringRef OREMsg, const StringRef ORETag, 895 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 896 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 897 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 898 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 899 ORETag, TheLoop, I) << OREMsg); 900 } 901 902 } // end namespace llvm 903 904 #ifndef NDEBUG 905 /// \return string containing a file name and a line # for the given loop. 906 static std::string getDebugLocString(const Loop *L) { 907 std::string Result; 908 if (L) { 909 raw_string_ostream OS(Result); 910 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 911 LoopDbgLoc.print(OS); 912 else 913 // Just print the module name. 914 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 915 OS.flush(); 916 } 917 return Result; 918 } 919 #endif 920 921 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 922 const Instruction *Orig) { 923 // If the loop was versioned with memchecks, add the corresponding no-alias 924 // metadata. 925 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 926 LVer->annotateInstWithNoAlias(To, Orig); 927 } 928 929 void InnerLoopVectorizer::addMetadata(Instruction *To, 930 Instruction *From) { 931 propagateMetadata(To, From); 932 addNewMetadata(To, From); 933 } 934 935 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 936 Instruction *From) { 937 for (Value *V : To) { 938 if (Instruction *I = dyn_cast<Instruction>(V)) 939 addMetadata(I, From); 940 } 941 } 942 943 namespace llvm { 944 945 // Loop vectorization cost-model hints how the scalar epilogue loop should be 946 // lowered. 947 enum ScalarEpilogueLowering { 948 949 // The default: allowing scalar epilogues. 950 CM_ScalarEpilogueAllowed, 951 952 // Vectorization with OptForSize: don't allow epilogues. 953 CM_ScalarEpilogueNotAllowedOptSize, 954 955 // A special case of vectorisation with OptForSize: loops with a very small 956 // trip count are considered for vectorization under OptForSize, thereby 957 // making sure the cost of their loop body is dominant, free of runtime 958 // guards and scalar iteration overheads. 959 CM_ScalarEpilogueNotAllowedLowTripLoop, 960 961 // Loop hint predicate indicating an epilogue is undesired. 962 CM_ScalarEpilogueNotNeededUsePredicate 963 }; 964 965 /// LoopVectorizationCostModel - estimates the expected speedups due to 966 /// vectorization. 967 /// In many cases vectorization is not profitable. This can happen because of 968 /// a number of reasons. In this class we mainly attempt to predict the 969 /// expected speedup/slowdowns due to the supported instruction set. We use the 970 /// TargetTransformInfo to query the different backends for the cost of 971 /// different operations. 972 class LoopVectorizationCostModel { 973 public: 974 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 975 PredicatedScalarEvolution &PSE, LoopInfo *LI, 976 LoopVectorizationLegality *Legal, 977 const TargetTransformInfo &TTI, 978 const TargetLibraryInfo *TLI, DemandedBits *DB, 979 AssumptionCache *AC, 980 OptimizationRemarkEmitter *ORE, const Function *F, 981 const LoopVectorizeHints *Hints, 982 InterleavedAccessInfo &IAI) 983 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 984 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 985 Hints(Hints), InterleaveInfo(IAI) {} 986 987 /// \return An upper bound for the vectorization factor, or None if 988 /// vectorization and interleaving should be avoided up front. 989 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 990 991 /// \return True if runtime checks are required for vectorization, and false 992 /// otherwise. 993 bool runtimeChecksRequired(); 994 995 /// \return The most profitable vectorization factor and the cost of that VF. 996 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 997 /// then this vectorization factor will be selected if vectorization is 998 /// possible. 999 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1000 1001 /// Setup cost-based decisions for user vectorization factor. 1002 void selectUserVectorizationFactor(unsigned UserVF) { 1003 collectUniformsAndScalars(UserVF); 1004 collectInstsToScalarize(UserVF); 1005 } 1006 1007 /// \return The size (in bits) of the smallest and widest types in the code 1008 /// that needs to be vectorized. We ignore values that remain scalar such as 1009 /// 64 bit loop indices. 1010 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1011 1012 /// \return The desired interleave count. 1013 /// If interleave count has been specified by metadata it will be returned. 1014 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1015 /// are the selected vectorization factor and the cost of the selected VF. 1016 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1017 1018 /// Memory access instruction may be vectorized in more than one way. 1019 /// Form of instruction after vectorization depends on cost. 1020 /// This function takes cost-based decisions for Load/Store instructions 1021 /// and collects them in a map. This decisions map is used for building 1022 /// the lists of loop-uniform and loop-scalar instructions. 1023 /// The calculated cost is saved with widening decision in order to 1024 /// avoid redundant calculations. 1025 void setCostBasedWideningDecision(unsigned VF); 1026 1027 /// A struct that represents some properties of the register usage 1028 /// of a loop. 1029 struct RegisterUsage { 1030 /// Holds the number of loop invariant values that are used in the loop. 1031 /// The key is ClassID of target-provided register class. 1032 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1033 /// Holds the maximum number of concurrent live intervals in the loop. 1034 /// The key is ClassID of target-provided register class. 1035 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1036 }; 1037 1038 /// \return Returns information about the register usages of the loop for the 1039 /// given vectorization factors. 1040 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1041 1042 /// Collect values we want to ignore in the cost model. 1043 void collectValuesToIgnore(); 1044 1045 /// \returns The smallest bitwidth each instruction can be represented with. 1046 /// The vector equivalents of these instructions should be truncated to this 1047 /// type. 1048 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1049 return MinBWs; 1050 } 1051 1052 /// \returns True if it is more profitable to scalarize instruction \p I for 1053 /// vectorization factor \p VF. 1054 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1055 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1056 1057 // Cost model is not run in the VPlan-native path - return conservative 1058 // result until this changes. 1059 if (EnableVPlanNativePath) 1060 return false; 1061 1062 auto Scalars = InstsToScalarize.find(VF); 1063 assert(Scalars != InstsToScalarize.end() && 1064 "VF not yet analyzed for scalarization profitability"); 1065 return Scalars->second.find(I) != Scalars->second.end(); 1066 } 1067 1068 /// Returns true if \p I is known to be uniform after vectorization. 1069 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1070 if (VF == 1) 1071 return true; 1072 1073 // Cost model is not run in the VPlan-native path - return conservative 1074 // result until this changes. 1075 if (EnableVPlanNativePath) 1076 return false; 1077 1078 auto UniformsPerVF = Uniforms.find(VF); 1079 assert(UniformsPerVF != Uniforms.end() && 1080 "VF not yet analyzed for uniformity"); 1081 return UniformsPerVF->second.count(I); 1082 } 1083 1084 /// Returns true if \p I is known to be scalar after vectorization. 1085 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1086 if (VF == 1) 1087 return true; 1088 1089 // Cost model is not run in the VPlan-native path - return conservative 1090 // result until this changes. 1091 if (EnableVPlanNativePath) 1092 return false; 1093 1094 auto ScalarsPerVF = Scalars.find(VF); 1095 assert(ScalarsPerVF != Scalars.end() && 1096 "Scalar values are not calculated for VF"); 1097 return ScalarsPerVF->second.count(I); 1098 } 1099 1100 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1101 /// for vectorization factor \p VF. 1102 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1103 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1104 !isProfitableToScalarize(I, VF) && 1105 !isScalarAfterVectorization(I, VF); 1106 } 1107 1108 /// Decision that was taken during cost calculation for memory instruction. 1109 enum InstWidening { 1110 CM_Unknown, 1111 CM_Widen, // For consecutive accesses with stride +1. 1112 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1113 CM_Interleave, 1114 CM_GatherScatter, 1115 CM_Scalarize 1116 }; 1117 1118 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1119 /// instruction \p I and vector width \p VF. 1120 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1121 unsigned Cost) { 1122 assert(VF >= 2 && "Expected VF >=2"); 1123 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1124 } 1125 1126 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1127 /// interleaving group \p Grp and vector width \p VF. 1128 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1129 InstWidening W, unsigned Cost) { 1130 assert(VF >= 2 && "Expected VF >=2"); 1131 /// Broadcast this decicion to all instructions inside the group. 1132 /// But the cost will be assigned to one instruction only. 1133 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1134 if (auto *I = Grp->getMember(i)) { 1135 if (Grp->getInsertPos() == I) 1136 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1137 else 1138 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1139 } 1140 } 1141 } 1142 1143 /// Return the cost model decision for the given instruction \p I and vector 1144 /// width \p VF. Return CM_Unknown if this instruction did not pass 1145 /// through the cost modeling. 1146 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1147 assert(VF >= 2 && "Expected VF >=2"); 1148 1149 // Cost model is not run in the VPlan-native path - return conservative 1150 // result until this changes. 1151 if (EnableVPlanNativePath) 1152 return CM_GatherScatter; 1153 1154 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1155 auto Itr = WideningDecisions.find(InstOnVF); 1156 if (Itr == WideningDecisions.end()) 1157 return CM_Unknown; 1158 return Itr->second.first; 1159 } 1160 1161 /// Return the vectorization cost for the given instruction \p I and vector 1162 /// width \p VF. 1163 unsigned getWideningCost(Instruction *I, unsigned VF) { 1164 assert(VF >= 2 && "Expected VF >=2"); 1165 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1166 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1167 "The cost is not calculated"); 1168 return WideningDecisions[InstOnVF].second; 1169 } 1170 1171 /// Return True if instruction \p I is an optimizable truncate whose operand 1172 /// is an induction variable. Such a truncate will be removed by adding a new 1173 /// induction variable with the destination type. 1174 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1175 // If the instruction is not a truncate, return false. 1176 auto *Trunc = dyn_cast<TruncInst>(I); 1177 if (!Trunc) 1178 return false; 1179 1180 // Get the source and destination types of the truncate. 1181 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1182 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1183 1184 // If the truncate is free for the given types, return false. Replacing a 1185 // free truncate with an induction variable would add an induction variable 1186 // update instruction to each iteration of the loop. We exclude from this 1187 // check the primary induction variable since it will need an update 1188 // instruction regardless. 1189 Value *Op = Trunc->getOperand(0); 1190 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1191 return false; 1192 1193 // If the truncated value is not an induction variable, return false. 1194 return Legal->isInductionPhi(Op); 1195 } 1196 1197 /// Collects the instructions to scalarize for each predicated instruction in 1198 /// the loop. 1199 void collectInstsToScalarize(unsigned VF); 1200 1201 /// Collect Uniform and Scalar values for the given \p VF. 1202 /// The sets depend on CM decision for Load/Store instructions 1203 /// that may be vectorized as interleave, gather-scatter or scalarized. 1204 void collectUniformsAndScalars(unsigned VF) { 1205 // Do the analysis once. 1206 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1207 return; 1208 setCostBasedWideningDecision(VF); 1209 collectLoopUniforms(VF); 1210 collectLoopScalars(VF); 1211 } 1212 1213 /// Returns true if the target machine supports masked store operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedStore(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked load operation 1221 /// for the given \p DataType and kind of access to \p Ptr. 1222 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1223 return Legal->isConsecutivePtr(Ptr) && 1224 TTI.isLegalMaskedLoad(DataType, Alignment); 1225 } 1226 1227 /// Returns true if the target machine supports masked scatter operation 1228 /// for the given \p DataType. 1229 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1230 return TTI.isLegalMaskedScatter(DataType, Alignment); 1231 } 1232 1233 /// Returns true if the target machine supports masked gather operation 1234 /// for the given \p DataType. 1235 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1236 return TTI.isLegalMaskedGather(DataType, Alignment); 1237 } 1238 1239 /// Returns true if the target machine can represent \p V as a masked gather 1240 /// or scatter operation. 1241 bool isLegalGatherOrScatter(Value *V) { 1242 bool LI = isa<LoadInst>(V); 1243 bool SI = isa<StoreInst>(V); 1244 if (!LI && !SI) 1245 return false; 1246 auto *Ty = getMemInstValueType(V); 1247 Align Align = getLoadStoreAlignment(V); 1248 return (LI && isLegalMaskedGather(Ty, Align)) || 1249 (SI && isLegalMaskedScatter(Ty, Align)); 1250 } 1251 1252 /// Returns true if \p I is an instruction that will be scalarized with 1253 /// predication. Such instructions include conditional stores and 1254 /// instructions that may divide by zero. 1255 /// If a non-zero VF has been calculated, we check if I will be scalarized 1256 /// predication for that VF. 1257 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1258 1259 // Returns true if \p I is an instruction that will be predicated either 1260 // through scalar predication or masked load/store or masked gather/scatter. 1261 // Superset of instructions that return true for isScalarWithPredication. 1262 bool isPredicatedInst(Instruction *I) { 1263 if (!blockNeedsPredication(I->getParent())) 1264 return false; 1265 // Loads and stores that need some form of masked operation are predicated 1266 // instructions. 1267 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1268 return Legal->isMaskRequired(I); 1269 return isScalarWithPredication(I); 1270 } 1271 1272 /// Returns true if \p I is a memory instruction with consecutive memory 1273 /// access that can be widened. 1274 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1275 1276 /// Returns true if \p I is a memory instruction in an interleaved-group 1277 /// of memory accesses that can be vectorized with wide vector loads/stores 1278 /// and shuffles. 1279 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1280 1281 /// Check if \p Instr belongs to any interleaved access group. 1282 bool isAccessInterleaved(Instruction *Instr) { 1283 return InterleaveInfo.isInterleaved(Instr); 1284 } 1285 1286 /// Get the interleaved access group that \p Instr belongs to. 1287 const InterleaveGroup<Instruction> * 1288 getInterleavedAccessGroup(Instruction *Instr) { 1289 return InterleaveInfo.getInterleaveGroup(Instr); 1290 } 1291 1292 /// Returns true if an interleaved group requires a scalar iteration 1293 /// to handle accesses with gaps, and there is nothing preventing us from 1294 /// creating a scalar epilogue. 1295 bool requiresScalarEpilogue() const { 1296 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1297 } 1298 1299 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1300 /// loop hint annotation. 1301 bool isScalarEpilogueAllowed() const { 1302 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1303 } 1304 1305 /// Returns true if all loop blocks should be masked to fold tail loop. 1306 bool foldTailByMasking() const { return FoldTailByMasking; } 1307 1308 bool blockNeedsPredication(BasicBlock *BB) { 1309 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1310 } 1311 1312 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1313 /// with factor VF. Return the cost of the instruction, including 1314 /// scalarization overhead if it's needed. 1315 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1316 1317 /// Estimate cost of a call instruction CI if it were vectorized with factor 1318 /// VF. Return the cost of the instruction, including scalarization overhead 1319 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1320 /// scalarized - 1321 /// i.e. either vector version isn't available, or is too expensive. 1322 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1323 1324 /// Invalidates decisions already taken by the cost model. 1325 void invalidateCostModelingDecisions() { 1326 WideningDecisions.clear(); 1327 Uniforms.clear(); 1328 Scalars.clear(); 1329 } 1330 1331 private: 1332 unsigned NumPredStores = 0; 1333 1334 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1335 /// than zero. One is returned if vectorization should best be avoided due 1336 /// to cost. 1337 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1338 1339 /// The vectorization cost is a combination of the cost itself and a boolean 1340 /// indicating whether any of the contributing operations will actually 1341 /// operate on 1342 /// vector values after type legalization in the backend. If this latter value 1343 /// is 1344 /// false, then all operations will be scalarized (i.e. no vectorization has 1345 /// actually taken place). 1346 using VectorizationCostTy = std::pair<unsigned, bool>; 1347 1348 /// Returns the expected execution cost. The unit of the cost does 1349 /// not matter because we use the 'cost' units to compare different 1350 /// vector widths. The cost that is returned is *not* normalized by 1351 /// the factor width. 1352 VectorizationCostTy expectedCost(unsigned VF); 1353 1354 /// Returns the execution time cost of an instruction for a given vector 1355 /// width. Vector width of one means scalar. 1356 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost-computation logic from getInstructionCost which provides 1359 /// the vector type as an output parameter. 1360 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1361 1362 /// Calculate vectorization cost of memory instruction \p I. 1363 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1364 1365 /// The cost computation for scalarized memory instruction. 1366 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1367 1368 /// The cost computation for interleaving group of memory instructions. 1369 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1370 1371 /// The cost computation for Gather/Scatter instruction. 1372 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1373 1374 /// The cost computation for widening instruction \p I with consecutive 1375 /// memory access. 1376 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1377 1378 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1379 /// Load: scalar load + broadcast. 1380 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1381 /// element) 1382 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1383 1384 /// Estimate the overhead of scalarizing an instruction. This is a 1385 /// convenience wrapper for the type-based getScalarizationOverhead API. 1386 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1387 1388 /// Returns whether the instruction is a load or store and will be a emitted 1389 /// as a vector operation. 1390 bool isConsecutiveLoadOrStore(Instruction *I); 1391 1392 /// Returns true if an artificially high cost for emulated masked memrefs 1393 /// should be used. 1394 bool useEmulatedMaskMemRefHack(Instruction *I); 1395 1396 /// Map of scalar integer values to the smallest bitwidth they can be legally 1397 /// represented as. The vector equivalents of these values should be truncated 1398 /// to this type. 1399 MapVector<Instruction *, uint64_t> MinBWs; 1400 1401 /// A type representing the costs for instructions if they were to be 1402 /// scalarized rather than vectorized. The entries are Instruction-Cost 1403 /// pairs. 1404 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1405 1406 /// A set containing all BasicBlocks that are known to present after 1407 /// vectorization as a predicated block. 1408 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1409 1410 /// Records whether it is allowed to have the original scalar loop execute at 1411 /// least once. This may be needed as a fallback loop in case runtime 1412 /// aliasing/dependence checks fail, or to handle the tail/remainder 1413 /// iterations when the trip count is unknown or doesn't divide by the VF, 1414 /// or as a peel-loop to handle gaps in interleave-groups. 1415 /// Under optsize and when the trip count is very small we don't allow any 1416 /// iterations to execute in the scalar loop. 1417 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1418 1419 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1420 bool FoldTailByMasking = false; 1421 1422 /// A map holding scalar costs for different vectorization factors. The 1423 /// presence of a cost for an instruction in the mapping indicates that the 1424 /// instruction will be scalarized when vectorizing with the associated 1425 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1426 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1427 1428 /// Holds the instructions known to be uniform after vectorization. 1429 /// The data is collected per VF. 1430 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1431 1432 /// Holds the instructions known to be scalar after vectorization. 1433 /// The data is collected per VF. 1434 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1435 1436 /// Holds the instructions (address computations) that are forced to be 1437 /// scalarized. 1438 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1439 1440 /// Returns the expected difference in cost from scalarizing the expression 1441 /// feeding a predicated instruction \p PredInst. The instructions to 1442 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1443 /// non-negative return value implies the expression will be scalarized. 1444 /// Currently, only single-use chains are considered for scalarization. 1445 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1446 unsigned VF); 1447 1448 /// Collect the instructions that are uniform after vectorization. An 1449 /// instruction is uniform if we represent it with a single scalar value in 1450 /// the vectorized loop corresponding to each vector iteration. Examples of 1451 /// uniform instructions include pointer operands of consecutive or 1452 /// interleaved memory accesses. Note that although uniformity implies an 1453 /// instruction will be scalar, the reverse is not true. In general, a 1454 /// scalarized instruction will be represented by VF scalar values in the 1455 /// vectorized loop, each corresponding to an iteration of the original 1456 /// scalar loop. 1457 void collectLoopUniforms(unsigned VF); 1458 1459 /// Collect the instructions that are scalar after vectorization. An 1460 /// instruction is scalar if it is known to be uniform or will be scalarized 1461 /// during vectorization. Non-uniform scalarized instructions will be 1462 /// represented by VF values in the vectorized loop, each corresponding to an 1463 /// iteration of the original scalar loop. 1464 void collectLoopScalars(unsigned VF); 1465 1466 /// Keeps cost model vectorization decision and cost for instructions. 1467 /// Right now it is used for memory instructions only. 1468 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1469 std::pair<InstWidening, unsigned>>; 1470 1471 DecisionList WideningDecisions; 1472 1473 /// Returns true if \p V is expected to be vectorized and it needs to be 1474 /// extracted. 1475 bool needsExtract(Value *V, unsigned VF) const { 1476 Instruction *I = dyn_cast<Instruction>(V); 1477 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1478 return false; 1479 1480 // Assume we can vectorize V (and hence we need extraction) if the 1481 // scalars are not computed yet. This can happen, because it is called 1482 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1483 // the scalars are collected. That should be a safe assumption in most 1484 // cases, because we check if the operands have vectorizable types 1485 // beforehand in LoopVectorizationLegality. 1486 return Scalars.find(VF) == Scalars.end() || 1487 !isScalarAfterVectorization(I, VF); 1488 }; 1489 1490 /// Returns a range containing only operands needing to be extracted. 1491 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1492 unsigned VF) { 1493 return SmallVector<Value *, 4>(make_filter_range( 1494 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1495 } 1496 1497 public: 1498 /// The loop that we evaluate. 1499 Loop *TheLoop; 1500 1501 /// Predicated scalar evolution analysis. 1502 PredicatedScalarEvolution &PSE; 1503 1504 /// Loop Info analysis. 1505 LoopInfo *LI; 1506 1507 /// Vectorization legality. 1508 LoopVectorizationLegality *Legal; 1509 1510 /// Vector target information. 1511 const TargetTransformInfo &TTI; 1512 1513 /// Target Library Info. 1514 const TargetLibraryInfo *TLI; 1515 1516 /// Demanded bits analysis. 1517 DemandedBits *DB; 1518 1519 /// Assumption cache. 1520 AssumptionCache *AC; 1521 1522 /// Interface to emit optimization remarks. 1523 OptimizationRemarkEmitter *ORE; 1524 1525 const Function *TheFunction; 1526 1527 /// Loop Vectorize Hint. 1528 const LoopVectorizeHints *Hints; 1529 1530 /// The interleave access information contains groups of interleaved accesses 1531 /// with the same stride and close to each other. 1532 InterleavedAccessInfo &InterleaveInfo; 1533 1534 /// Values to ignore in the cost model. 1535 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1536 1537 /// Values to ignore in the cost model when VF > 1. 1538 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1539 }; 1540 1541 } // end namespace llvm 1542 1543 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1544 // vectorization. The loop needs to be annotated with #pragma omp simd 1545 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1546 // vector length information is not provided, vectorization is not considered 1547 // explicit. Interleave hints are not allowed either. These limitations will be 1548 // relaxed in the future. 1549 // Please, note that we are currently forced to abuse the pragma 'clang 1550 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1551 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1552 // provides *explicit vectorization hints* (LV can bypass legal checks and 1553 // assume that vectorization is legal). However, both hints are implemented 1554 // using the same metadata (llvm.loop.vectorize, processed by 1555 // LoopVectorizeHints). This will be fixed in the future when the native IR 1556 // representation for pragma 'omp simd' is introduced. 1557 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1558 OptimizationRemarkEmitter *ORE) { 1559 assert(!OuterLp->empty() && "This is not an outer loop"); 1560 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1561 1562 // Only outer loops with an explicit vectorization hint are supported. 1563 // Unannotated outer loops are ignored. 1564 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1565 return false; 1566 1567 Function *Fn = OuterLp->getHeader()->getParent(); 1568 if (!Hints.allowVectorization(Fn, OuterLp, 1569 true /*VectorizeOnlyWhenForced*/)) { 1570 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1571 return false; 1572 } 1573 1574 if (Hints.getInterleave() > 1) { 1575 // TODO: Interleave support is future work. 1576 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1577 "outer loops.\n"); 1578 Hints.emitRemarkWithHints(); 1579 return false; 1580 } 1581 1582 return true; 1583 } 1584 1585 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1586 OptimizationRemarkEmitter *ORE, 1587 SmallVectorImpl<Loop *> &V) { 1588 // Collect inner loops and outer loops without irreducible control flow. For 1589 // now, only collect outer loops that have explicit vectorization hints. If we 1590 // are stress testing the VPlan H-CFG construction, we collect the outermost 1591 // loop of every loop nest. 1592 if (L.empty() || VPlanBuildStressTest || 1593 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1594 LoopBlocksRPO RPOT(&L); 1595 RPOT.perform(LI); 1596 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1597 V.push_back(&L); 1598 // TODO: Collect inner loops inside marked outer loops in case 1599 // vectorization fails for the outer loop. Do not invoke 1600 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1601 // already known to be reducible. We can use an inherited attribute for 1602 // that. 1603 return; 1604 } 1605 } 1606 for (Loop *InnerL : L) 1607 collectSupportedLoops(*InnerL, LI, ORE, V); 1608 } 1609 1610 namespace { 1611 1612 /// The LoopVectorize Pass. 1613 struct LoopVectorize : public FunctionPass { 1614 /// Pass identification, replacement for typeid 1615 static char ID; 1616 1617 LoopVectorizePass Impl; 1618 1619 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1620 bool VectorizeOnlyWhenForced = false) 1621 : FunctionPass(ID), 1622 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1623 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1624 } 1625 1626 bool runOnFunction(Function &F) override { 1627 if (skipFunction(F)) 1628 return false; 1629 1630 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1631 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1632 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1633 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1634 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1635 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1636 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1637 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1638 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1639 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1640 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1641 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1642 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1643 1644 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1645 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1646 1647 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1648 GetLAA, *ORE, PSI).MadeAnyChange; 1649 } 1650 1651 void getAnalysisUsage(AnalysisUsage &AU) const override { 1652 AU.addRequired<AssumptionCacheTracker>(); 1653 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1654 AU.addRequired<DominatorTreeWrapperPass>(); 1655 AU.addRequired<LoopInfoWrapperPass>(); 1656 AU.addRequired<ScalarEvolutionWrapperPass>(); 1657 AU.addRequired<TargetTransformInfoWrapperPass>(); 1658 AU.addRequired<AAResultsWrapperPass>(); 1659 AU.addRequired<LoopAccessLegacyAnalysis>(); 1660 AU.addRequired<DemandedBitsWrapperPass>(); 1661 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1662 AU.addRequired<InjectTLIMappingsLegacy>(); 1663 1664 // We currently do not preserve loopinfo/dominator analyses with outer loop 1665 // vectorization. Until this is addressed, mark these analyses as preserved 1666 // only for non-VPlan-native path. 1667 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1668 if (!EnableVPlanNativePath) { 1669 AU.addPreserved<LoopInfoWrapperPass>(); 1670 AU.addPreserved<DominatorTreeWrapperPass>(); 1671 } 1672 1673 AU.addPreserved<BasicAAWrapperPass>(); 1674 AU.addPreserved<GlobalsAAWrapperPass>(); 1675 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1676 } 1677 }; 1678 1679 } // end anonymous namespace 1680 1681 //===----------------------------------------------------------------------===// 1682 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1683 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1684 //===----------------------------------------------------------------------===// 1685 1686 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1687 // We need to place the broadcast of invariant variables outside the loop, 1688 // but only if it's proven safe to do so. Else, broadcast will be inside 1689 // vector loop body. 1690 Instruction *Instr = dyn_cast<Instruction>(V); 1691 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1692 (!Instr || 1693 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1694 // Place the code for broadcasting invariant variables in the new preheader. 1695 IRBuilder<>::InsertPointGuard Guard(Builder); 1696 if (SafeToHoist) 1697 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1698 1699 // Broadcast the scalar into all locations in the vector. 1700 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1701 1702 return Shuf; 1703 } 1704 1705 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1706 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1707 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1708 "Expected either an induction phi-node or a truncate of it!"); 1709 Value *Start = II.getStartValue(); 1710 1711 // Construct the initial value of the vector IV in the vector loop preheader 1712 auto CurrIP = Builder.saveIP(); 1713 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1714 if (isa<TruncInst>(EntryVal)) { 1715 assert(Start->getType()->isIntegerTy() && 1716 "Truncation requires an integer type"); 1717 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1718 Step = Builder.CreateTrunc(Step, TruncType); 1719 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1720 } 1721 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1722 Value *SteppedStart = 1723 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1724 1725 // We create vector phi nodes for both integer and floating-point induction 1726 // variables. Here, we determine the kind of arithmetic we will perform. 1727 Instruction::BinaryOps AddOp; 1728 Instruction::BinaryOps MulOp; 1729 if (Step->getType()->isIntegerTy()) { 1730 AddOp = Instruction::Add; 1731 MulOp = Instruction::Mul; 1732 } else { 1733 AddOp = II.getInductionOpcode(); 1734 MulOp = Instruction::FMul; 1735 } 1736 1737 // Multiply the vectorization factor by the step using integer or 1738 // floating-point arithmetic as appropriate. 1739 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1740 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1741 1742 // Create a vector splat to use in the induction update. 1743 // 1744 // FIXME: If the step is non-constant, we create the vector splat with 1745 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1746 // handle a constant vector splat. 1747 Value *SplatVF = 1748 isa<Constant>(Mul) 1749 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1750 : Builder.CreateVectorSplat(VF, Mul); 1751 Builder.restoreIP(CurrIP); 1752 1753 // We may need to add the step a number of times, depending on the unroll 1754 // factor. The last of those goes into the PHI. 1755 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1756 &*LoopVectorBody->getFirstInsertionPt()); 1757 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1758 Instruction *LastInduction = VecInd; 1759 for (unsigned Part = 0; Part < UF; ++Part) { 1760 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1761 1762 if (isa<TruncInst>(EntryVal)) 1763 addMetadata(LastInduction, EntryVal); 1764 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1765 1766 LastInduction = cast<Instruction>(addFastMathFlag( 1767 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1768 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1769 } 1770 1771 // Move the last step to the end of the latch block. This ensures consistent 1772 // placement of all induction updates. 1773 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1774 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1775 auto *ICmp = cast<Instruction>(Br->getCondition()); 1776 LastInduction->moveBefore(ICmp); 1777 LastInduction->setName("vec.ind.next"); 1778 1779 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1780 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1781 } 1782 1783 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1784 return Cost->isScalarAfterVectorization(I, VF) || 1785 Cost->isProfitableToScalarize(I, VF); 1786 } 1787 1788 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1789 if (shouldScalarizeInstruction(IV)) 1790 return true; 1791 auto isScalarInst = [&](User *U) -> bool { 1792 auto *I = cast<Instruction>(U); 1793 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1794 }; 1795 return llvm::any_of(IV->users(), isScalarInst); 1796 } 1797 1798 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1799 const InductionDescriptor &ID, const Instruction *EntryVal, 1800 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1801 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1802 "Expected either an induction phi-node or a truncate of it!"); 1803 1804 // This induction variable is not the phi from the original loop but the 1805 // newly-created IV based on the proof that casted Phi is equal to the 1806 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1807 // re-uses the same InductionDescriptor that original IV uses but we don't 1808 // have to do any recording in this case - that is done when original IV is 1809 // processed. 1810 if (isa<TruncInst>(EntryVal)) 1811 return; 1812 1813 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1814 if (Casts.empty()) 1815 return; 1816 // Only the first Cast instruction in the Casts vector is of interest. 1817 // The rest of the Casts (if exist) have no uses outside the 1818 // induction update chain itself. 1819 Instruction *CastInst = *Casts.begin(); 1820 if (Lane < UINT_MAX) 1821 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1822 else 1823 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1824 } 1825 1826 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1827 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1828 "Primary induction variable must have an integer type"); 1829 1830 auto II = Legal->getInductionVars().find(IV); 1831 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1832 1833 auto ID = II->second; 1834 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1835 1836 // The value from the original loop to which we are mapping the new induction 1837 // variable. 1838 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1839 1840 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1841 1842 // Generate code for the induction step. Note that induction steps are 1843 // required to be loop-invariant 1844 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1845 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1846 "Induction step should be loop invariant"); 1847 if (PSE.getSE()->isSCEVable(IV->getType())) { 1848 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1849 return Exp.expandCodeFor(Step, Step->getType(), 1850 LoopVectorPreHeader->getTerminator()); 1851 } 1852 return cast<SCEVUnknown>(Step)->getValue(); 1853 }; 1854 1855 // The scalar value to broadcast. This is derived from the canonical 1856 // induction variable. If a truncation type is given, truncate the canonical 1857 // induction variable and step. Otherwise, derive these values from the 1858 // induction descriptor. 1859 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1860 Value *ScalarIV = Induction; 1861 if (IV != OldInduction) { 1862 ScalarIV = IV->getType()->isIntegerTy() 1863 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1864 : Builder.CreateCast(Instruction::SIToFP, Induction, 1865 IV->getType()); 1866 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1867 ScalarIV->setName("offset.idx"); 1868 } 1869 if (Trunc) { 1870 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1871 assert(Step->getType()->isIntegerTy() && 1872 "Truncation requires an integer step"); 1873 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1874 Step = Builder.CreateTrunc(Step, TruncType); 1875 } 1876 return ScalarIV; 1877 }; 1878 1879 // Create the vector values from the scalar IV, in the absence of creating a 1880 // vector IV. 1881 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1882 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1883 for (unsigned Part = 0; Part < UF; ++Part) { 1884 Value *EntryPart = 1885 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1886 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1887 if (Trunc) 1888 addMetadata(EntryPart, Trunc); 1889 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1890 } 1891 }; 1892 1893 // Now do the actual transformations, and start with creating the step value. 1894 Value *Step = CreateStepValue(ID.getStep()); 1895 if (VF <= 1) { 1896 Value *ScalarIV = CreateScalarIV(Step); 1897 CreateSplatIV(ScalarIV, Step); 1898 return; 1899 } 1900 1901 // Determine if we want a scalar version of the induction variable. This is 1902 // true if the induction variable itself is not widened, or if it has at 1903 // least one user in the loop that is not widened. 1904 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1905 if (!NeedsScalarIV) { 1906 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1907 return; 1908 } 1909 1910 // Try to create a new independent vector induction variable. If we can't 1911 // create the phi node, we will splat the scalar induction variable in each 1912 // loop iteration. 1913 if (!shouldScalarizeInstruction(EntryVal)) { 1914 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1915 Value *ScalarIV = CreateScalarIV(Step); 1916 // Create scalar steps that can be used by instructions we will later 1917 // scalarize. Note that the addition of the scalar steps will not increase 1918 // the number of instructions in the loop in the common case prior to 1919 // InstCombine. We will be trading one vector extract for each scalar step. 1920 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1921 return; 1922 } 1923 1924 // All IV users are scalar instructions, so only emit a scalar IV, not a 1925 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1926 // predicate used by the masked loads/stores. 1927 Value *ScalarIV = CreateScalarIV(Step); 1928 if (!Cost->isScalarEpilogueAllowed()) 1929 CreateSplatIV(ScalarIV, Step); 1930 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1931 } 1932 1933 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1934 Instruction::BinaryOps BinOp) { 1935 // Create and check the types. 1936 auto *ValVTy = cast<VectorType>(Val->getType()); 1937 int VLen = ValVTy->getNumElements(); 1938 1939 Type *STy = Val->getType()->getScalarType(); 1940 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1941 "Induction Step must be an integer or FP"); 1942 assert(Step->getType() == STy && "Step has wrong type"); 1943 1944 SmallVector<Constant *, 8> Indices; 1945 1946 if (STy->isIntegerTy()) { 1947 // Create a vector of consecutive numbers from zero to VF. 1948 for (int i = 0; i < VLen; ++i) 1949 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1950 1951 // Add the consecutive indices to the vector value. 1952 Constant *Cv = ConstantVector::get(Indices); 1953 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1954 Step = Builder.CreateVectorSplat(VLen, Step); 1955 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1956 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1957 // which can be found from the original scalar operations. 1958 Step = Builder.CreateMul(Cv, Step); 1959 return Builder.CreateAdd(Val, Step, "induction"); 1960 } 1961 1962 // Floating point induction. 1963 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1964 "Binary Opcode should be specified for FP induction"); 1965 // Create a vector of consecutive numbers from zero to VF. 1966 for (int i = 0; i < VLen; ++i) 1967 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1968 1969 // Add the consecutive indices to the vector value. 1970 Constant *Cv = ConstantVector::get(Indices); 1971 1972 Step = Builder.CreateVectorSplat(VLen, Step); 1973 1974 // Floating point operations had to be 'fast' to enable the induction. 1975 FastMathFlags Flags; 1976 Flags.setFast(); 1977 1978 Value *MulOp = Builder.CreateFMul(Cv, Step); 1979 if (isa<Instruction>(MulOp)) 1980 // Have to check, MulOp may be a constant 1981 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1982 1983 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1984 if (isa<Instruction>(BOp)) 1985 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1986 return BOp; 1987 } 1988 1989 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1990 Instruction *EntryVal, 1991 const InductionDescriptor &ID) { 1992 // We shouldn't have to build scalar steps if we aren't vectorizing. 1993 assert(VF > 1 && "VF should be greater than one"); 1994 1995 // Get the value type and ensure it and the step have the same integer type. 1996 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1997 assert(ScalarIVTy == Step->getType() && 1998 "Val and Step should have the same type"); 1999 2000 // We build scalar steps for both integer and floating-point induction 2001 // variables. Here, we determine the kind of arithmetic we will perform. 2002 Instruction::BinaryOps AddOp; 2003 Instruction::BinaryOps MulOp; 2004 if (ScalarIVTy->isIntegerTy()) { 2005 AddOp = Instruction::Add; 2006 MulOp = Instruction::Mul; 2007 } else { 2008 AddOp = ID.getInductionOpcode(); 2009 MulOp = Instruction::FMul; 2010 } 2011 2012 // Determine the number of scalars we need to generate for each unroll 2013 // iteration. If EntryVal is uniform, we only need to generate the first 2014 // lane. Otherwise, we generate all VF values. 2015 unsigned Lanes = 2016 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2017 : VF; 2018 // Compute the scalar steps and save the results in VectorLoopValueMap. 2019 for (unsigned Part = 0; Part < UF; ++Part) { 2020 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2021 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2022 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2023 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2024 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2025 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2026 } 2027 } 2028 } 2029 2030 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2031 assert(V != Induction && "The new induction variable should not be used."); 2032 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2033 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2034 2035 // If we have a stride that is replaced by one, do it here. Defer this for 2036 // the VPlan-native path until we start running Legal checks in that path. 2037 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2038 V = ConstantInt::get(V->getType(), 1); 2039 2040 // If we have a vector mapped to this value, return it. 2041 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2042 return VectorLoopValueMap.getVectorValue(V, Part); 2043 2044 // If the value has not been vectorized, check if it has been scalarized 2045 // instead. If it has been scalarized, and we actually need the value in 2046 // vector form, we will construct the vector values on demand. 2047 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2048 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2049 2050 // If we've scalarized a value, that value should be an instruction. 2051 auto *I = cast<Instruction>(V); 2052 2053 // If we aren't vectorizing, we can just copy the scalar map values over to 2054 // the vector map. 2055 if (VF == 1) { 2056 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2057 return ScalarValue; 2058 } 2059 2060 // Get the last scalar instruction we generated for V and Part. If the value 2061 // is known to be uniform after vectorization, this corresponds to lane zero 2062 // of the Part unroll iteration. Otherwise, the last instruction is the one 2063 // we created for the last vector lane of the Part unroll iteration. 2064 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2065 auto *LastInst = cast<Instruction>( 2066 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2067 2068 // Set the insert point after the last scalarized instruction. This ensures 2069 // the insertelement sequence will directly follow the scalar definitions. 2070 auto OldIP = Builder.saveIP(); 2071 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2072 Builder.SetInsertPoint(&*NewIP); 2073 2074 // However, if we are vectorizing, we need to construct the vector values. 2075 // If the value is known to be uniform after vectorization, we can just 2076 // broadcast the scalar value corresponding to lane zero for each unroll 2077 // iteration. Otherwise, we construct the vector values using insertelement 2078 // instructions. Since the resulting vectors are stored in 2079 // VectorLoopValueMap, we will only generate the insertelements once. 2080 Value *VectorValue = nullptr; 2081 if (Cost->isUniformAfterVectorization(I, VF)) { 2082 VectorValue = getBroadcastInstrs(ScalarValue); 2083 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2084 } else { 2085 // Initialize packing with insertelements to start from undef. 2086 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2087 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2088 for (unsigned Lane = 0; Lane < VF; ++Lane) 2089 packScalarIntoVectorValue(V, {Part, Lane}); 2090 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2091 } 2092 Builder.restoreIP(OldIP); 2093 return VectorValue; 2094 } 2095 2096 // If this scalar is unknown, assume that it is a constant or that it is 2097 // loop invariant. Broadcast V and save the value for future uses. 2098 Value *B = getBroadcastInstrs(V); 2099 VectorLoopValueMap.setVectorValue(V, Part, B); 2100 return B; 2101 } 2102 2103 Value * 2104 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2105 const VPIteration &Instance) { 2106 // If the value is not an instruction contained in the loop, it should 2107 // already be scalar. 2108 if (OrigLoop->isLoopInvariant(V)) 2109 return V; 2110 2111 assert(Instance.Lane > 0 2112 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2113 : true && "Uniform values only have lane zero"); 2114 2115 // If the value from the original loop has not been vectorized, it is 2116 // represented by UF x VF scalar values in the new loop. Return the requested 2117 // scalar value. 2118 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2119 return VectorLoopValueMap.getScalarValue(V, Instance); 2120 2121 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2122 // for the given unroll part. If this entry is not a vector type (i.e., the 2123 // vectorization factor is one), there is no need to generate an 2124 // extractelement instruction. 2125 auto *U = getOrCreateVectorValue(V, Instance.Part); 2126 if (!U->getType()->isVectorTy()) { 2127 assert(VF == 1 && "Value not scalarized has non-vector type"); 2128 return U; 2129 } 2130 2131 // Otherwise, the value from the original loop has been vectorized and is 2132 // represented by UF vector values. Extract and return the requested scalar 2133 // value from the appropriate vector lane. 2134 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2135 } 2136 2137 void InnerLoopVectorizer::packScalarIntoVectorValue( 2138 Value *V, const VPIteration &Instance) { 2139 assert(V != Induction && "The new induction variable should not be used."); 2140 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2141 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2142 2143 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2144 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2145 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2146 Builder.getInt32(Instance.Lane)); 2147 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2148 } 2149 2150 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2151 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2152 SmallVector<int, 8> ShuffleMask; 2153 for (unsigned i = 0; i < VF; ++i) 2154 ShuffleMask.push_back(VF - i - 1); 2155 2156 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2157 ShuffleMask, "reverse"); 2158 } 2159 2160 // Return whether we allow using masked interleave-groups (for dealing with 2161 // strided loads/stores that reside in predicated blocks, or for dealing 2162 // with gaps). 2163 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2164 // If an override option has been passed in for interleaved accesses, use it. 2165 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2166 return EnableMaskedInterleavedMemAccesses; 2167 2168 return TTI.enableMaskedInterleavedAccessVectorization(); 2169 } 2170 2171 // Try to vectorize the interleave group that \p Instr belongs to. 2172 // 2173 // E.g. Translate following interleaved load group (factor = 3): 2174 // for (i = 0; i < N; i+=3) { 2175 // R = Pic[i]; // Member of index 0 2176 // G = Pic[i+1]; // Member of index 1 2177 // B = Pic[i+2]; // Member of index 2 2178 // ... // do something to R, G, B 2179 // } 2180 // To: 2181 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2182 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2183 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2184 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2185 // 2186 // Or translate following interleaved store group (factor = 3): 2187 // for (i = 0; i < N; i+=3) { 2188 // ... do something to R, G, B 2189 // Pic[i] = R; // Member of index 0 2190 // Pic[i+1] = G; // Member of index 1 2191 // Pic[i+2] = B; // Member of index 2 2192 // } 2193 // To: 2194 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2195 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2196 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2197 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2198 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2199 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2200 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2201 VPValue *Addr, VPValue *BlockInMask) { 2202 Instruction *Instr = Group->getInsertPos(); 2203 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2204 2205 // Prepare for the vector type of the interleaved load/store. 2206 Type *ScalarTy = getMemInstValueType(Instr); 2207 unsigned InterleaveFactor = Group->getFactor(); 2208 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2209 2210 // Prepare for the new pointers. 2211 SmallVector<Value *, 2> AddrParts; 2212 unsigned Index = Group->getIndex(Instr); 2213 2214 // TODO: extend the masked interleaved-group support to reversed access. 2215 assert((!BlockInMask || !Group->isReverse()) && 2216 "Reversed masked interleave-group not supported."); 2217 2218 // If the group is reverse, adjust the index to refer to the last vector lane 2219 // instead of the first. We adjust the index from the first vector lane, 2220 // rather than directly getting the pointer for lane VF - 1, because the 2221 // pointer operand of the interleaved access is supposed to be uniform. For 2222 // uniform instructions, we're only required to generate a value for the 2223 // first vector lane in each unroll iteration. 2224 if (Group->isReverse()) 2225 Index += (VF - 1) * Group->getFactor(); 2226 2227 for (unsigned Part = 0; Part < UF; Part++) { 2228 Value *AddrPart = State.get(Addr, {Part, 0}); 2229 setDebugLocFromInst(Builder, AddrPart); 2230 2231 // Notice current instruction could be any index. Need to adjust the address 2232 // to the member of index 0. 2233 // 2234 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2235 // b = A[i]; // Member of index 0 2236 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2237 // 2238 // E.g. A[i+1] = a; // Member of index 1 2239 // A[i] = b; // Member of index 0 2240 // A[i+2] = c; // Member of index 2 (Current instruction) 2241 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2242 2243 bool InBounds = false; 2244 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2245 InBounds = gep->isInBounds(); 2246 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2247 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2248 2249 // Cast to the vector pointer type. 2250 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2251 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2252 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2253 } 2254 2255 setDebugLocFromInst(Builder, Instr); 2256 Value *UndefVec = UndefValue::get(VecTy); 2257 2258 Value *MaskForGaps = nullptr; 2259 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2260 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2261 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2262 } 2263 2264 // Vectorize the interleaved load group. 2265 if (isa<LoadInst>(Instr)) { 2266 // For each unroll part, create a wide load for the group. 2267 SmallVector<Value *, 2> NewLoads; 2268 for (unsigned Part = 0; Part < UF; Part++) { 2269 Instruction *NewLoad; 2270 if (BlockInMask || MaskForGaps) { 2271 assert(useMaskedInterleavedAccesses(*TTI) && 2272 "masked interleaved groups are not allowed."); 2273 Value *GroupMask = MaskForGaps; 2274 if (BlockInMask) { 2275 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2276 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2277 Value *ShuffledMask = Builder.CreateShuffleVector( 2278 BlockInMaskPart, Undefs, 2279 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2280 GroupMask = MaskForGaps 2281 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2282 MaskForGaps) 2283 : ShuffledMask; 2284 } 2285 NewLoad = 2286 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2287 GroupMask, UndefVec, "wide.masked.vec"); 2288 } 2289 else 2290 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2291 Group->getAlign(), "wide.vec"); 2292 Group->addMetadata(NewLoad); 2293 NewLoads.push_back(NewLoad); 2294 } 2295 2296 // For each member in the group, shuffle out the appropriate data from the 2297 // wide loads. 2298 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2299 Instruction *Member = Group->getMember(I); 2300 2301 // Skip the gaps in the group. 2302 if (!Member) 2303 continue; 2304 2305 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2306 for (unsigned Part = 0; Part < UF; Part++) { 2307 Value *StridedVec = Builder.CreateShuffleVector( 2308 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2309 2310 // If this member has different type, cast the result type. 2311 if (Member->getType() != ScalarTy) { 2312 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2313 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2314 } 2315 2316 if (Group->isReverse()) 2317 StridedVec = reverseVector(StridedVec); 2318 2319 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2320 } 2321 } 2322 return; 2323 } 2324 2325 // The sub vector type for current instruction. 2326 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2327 2328 // Vectorize the interleaved store group. 2329 for (unsigned Part = 0; Part < UF; Part++) { 2330 // Collect the stored vector from each member. 2331 SmallVector<Value *, 4> StoredVecs; 2332 for (unsigned i = 0; i < InterleaveFactor; i++) { 2333 // Interleaved store group doesn't allow a gap, so each index has a member 2334 Instruction *Member = Group->getMember(i); 2335 assert(Member && "Fail to get a member from an interleaved store group"); 2336 2337 Value *StoredVec = getOrCreateVectorValue( 2338 cast<StoreInst>(Member)->getValueOperand(), Part); 2339 if (Group->isReverse()) 2340 StoredVec = reverseVector(StoredVec); 2341 2342 // If this member has different type, cast it to a unified type. 2343 2344 if (StoredVec->getType() != SubVT) 2345 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2346 2347 StoredVecs.push_back(StoredVec); 2348 } 2349 2350 // Concatenate all vectors into a wide vector. 2351 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2352 2353 // Interleave the elements in the wide vector. 2354 Value *IVec = Builder.CreateShuffleVector( 2355 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2356 "interleaved.vec"); 2357 2358 Instruction *NewStoreInstr; 2359 if (BlockInMask) { 2360 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2361 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2362 Value *ShuffledMask = Builder.CreateShuffleVector( 2363 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2364 "interleaved.mask"); 2365 NewStoreInstr = Builder.CreateMaskedStore( 2366 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2367 } 2368 else 2369 NewStoreInstr = 2370 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2371 2372 Group->addMetadata(NewStoreInstr); 2373 } 2374 } 2375 2376 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2377 VPTransformState &State, 2378 VPValue *Addr, 2379 VPValue *StoredValue, 2380 VPValue *BlockInMask) { 2381 // Attempt to issue a wide load. 2382 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2383 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2384 2385 assert((LI || SI) && "Invalid Load/Store instruction"); 2386 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2387 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2388 2389 LoopVectorizationCostModel::InstWidening Decision = 2390 Cost->getWideningDecision(Instr, VF); 2391 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2392 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2393 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2394 "CM decision is not to widen the memory instruction"); 2395 2396 Type *ScalarDataTy = getMemInstValueType(Instr); 2397 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2398 const Align Alignment = getLoadStoreAlignment(Instr); 2399 2400 // Determine if the pointer operand of the access is either consecutive or 2401 // reverse consecutive. 2402 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2403 bool ConsecutiveStride = 2404 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2405 bool CreateGatherScatter = 2406 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2407 2408 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2409 // gather/scatter. Otherwise Decision should have been to Scalarize. 2410 assert((ConsecutiveStride || CreateGatherScatter) && 2411 "The instruction should be scalarized"); 2412 (void)ConsecutiveStride; 2413 2414 VectorParts BlockInMaskParts(UF); 2415 bool isMaskRequired = BlockInMask; 2416 if (isMaskRequired) 2417 for (unsigned Part = 0; Part < UF; ++Part) 2418 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2419 2420 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2421 // Calculate the pointer for the specific unroll-part. 2422 GetElementPtrInst *PartPtr = nullptr; 2423 2424 bool InBounds = false; 2425 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2426 InBounds = gep->isInBounds(); 2427 2428 if (Reverse) { 2429 // If the address is consecutive but reversed, then the 2430 // wide store needs to start at the last vector element. 2431 PartPtr = cast<GetElementPtrInst>( 2432 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2433 PartPtr->setIsInBounds(InBounds); 2434 PartPtr = cast<GetElementPtrInst>( 2435 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2436 PartPtr->setIsInBounds(InBounds); 2437 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2438 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2439 } else { 2440 PartPtr = cast<GetElementPtrInst>( 2441 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2442 PartPtr->setIsInBounds(InBounds); 2443 } 2444 2445 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2446 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2447 }; 2448 2449 // Handle Stores: 2450 if (SI) { 2451 setDebugLocFromInst(Builder, SI); 2452 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 Instruction *NewSI = nullptr; 2455 Value *StoredVal = State.get(StoredValue, Part); 2456 if (CreateGatherScatter) { 2457 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2458 Value *VectorGep = State.get(Addr, Part); 2459 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2460 MaskPart); 2461 } else { 2462 if (Reverse) { 2463 // If we store to reverse consecutive memory locations, then we need 2464 // to reverse the order of elements in the stored value. 2465 StoredVal = reverseVector(StoredVal); 2466 // We don't want to update the value in the map as it might be used in 2467 // another expression. So don't call resetVectorValue(StoredVal). 2468 } 2469 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2470 if (isMaskRequired) 2471 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2472 BlockInMaskParts[Part]); 2473 else 2474 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2475 } 2476 addMetadata(NewSI, SI); 2477 } 2478 return; 2479 } 2480 2481 // Handle loads. 2482 assert(LI && "Must have a load instruction"); 2483 setDebugLocFromInst(Builder, LI); 2484 for (unsigned Part = 0; Part < UF; ++Part) { 2485 Value *NewLI; 2486 if (CreateGatherScatter) { 2487 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2488 Value *VectorGep = State.get(Addr, Part); 2489 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2490 nullptr, "wide.masked.gather"); 2491 addMetadata(NewLI, LI); 2492 } else { 2493 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2494 if (isMaskRequired) 2495 NewLI = Builder.CreateMaskedLoad( 2496 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2497 "wide.masked.load"); 2498 else 2499 NewLI = 2500 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2501 2502 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2503 addMetadata(NewLI, LI); 2504 if (Reverse) 2505 NewLI = reverseVector(NewLI); 2506 } 2507 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2508 } 2509 } 2510 2511 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2512 const VPIteration &Instance, 2513 bool IfPredicateInstr, 2514 VPTransformState &State) { 2515 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2516 2517 setDebugLocFromInst(Builder, Instr); 2518 2519 // Does this instruction return a value ? 2520 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2521 2522 Instruction *Cloned = Instr->clone(); 2523 if (!IsVoidRetTy) 2524 Cloned->setName(Instr->getName() + ".cloned"); 2525 2526 // Replace the operands of the cloned instructions with their scalar 2527 // equivalents in the new loop. 2528 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2529 auto *NewOp = State.get(User.getOperand(op), Instance); 2530 Cloned->setOperand(op, NewOp); 2531 } 2532 addNewMetadata(Cloned, Instr); 2533 2534 // Place the cloned scalar in the new loop. 2535 Builder.Insert(Cloned); 2536 2537 // Add the cloned scalar to the scalar map entry. 2538 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2539 2540 // If we just cloned a new assumption, add it the assumption cache. 2541 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2542 if (II->getIntrinsicID() == Intrinsic::assume) 2543 AC->registerAssumption(II); 2544 2545 // End if-block. 2546 if (IfPredicateInstr) 2547 PredicatedInstructions.push_back(Cloned); 2548 } 2549 2550 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2551 Value *End, Value *Step, 2552 Instruction *DL) { 2553 BasicBlock *Header = L->getHeader(); 2554 BasicBlock *Latch = L->getLoopLatch(); 2555 // As we're just creating this loop, it's possible no latch exists 2556 // yet. If so, use the header as this will be a single block loop. 2557 if (!Latch) 2558 Latch = Header; 2559 2560 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2561 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2562 setDebugLocFromInst(Builder, OldInst); 2563 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2564 2565 Builder.SetInsertPoint(Latch->getTerminator()); 2566 setDebugLocFromInst(Builder, OldInst); 2567 2568 // Create i+1 and fill the PHINode. 2569 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2570 Induction->addIncoming(Start, L->getLoopPreheader()); 2571 Induction->addIncoming(Next, Latch); 2572 // Create the compare. 2573 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2574 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2575 2576 // Now we have two terminators. Remove the old one from the block. 2577 Latch->getTerminator()->eraseFromParent(); 2578 2579 return Induction; 2580 } 2581 2582 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2583 if (TripCount) 2584 return TripCount; 2585 2586 assert(L && "Create Trip Count for null loop."); 2587 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2588 // Find the loop boundaries. 2589 ScalarEvolution *SE = PSE.getSE(); 2590 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2591 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2592 "Invalid loop count"); 2593 2594 Type *IdxTy = Legal->getWidestInductionType(); 2595 assert(IdxTy && "No type for induction"); 2596 2597 // The exit count might have the type of i64 while the phi is i32. This can 2598 // happen if we have an induction variable that is sign extended before the 2599 // compare. The only way that we get a backedge taken count is that the 2600 // induction variable was signed and as such will not overflow. In such a case 2601 // truncation is legal. 2602 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2603 IdxTy->getPrimitiveSizeInBits()) 2604 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2605 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2606 2607 // Get the total trip count from the count by adding 1. 2608 const SCEV *ExitCount = SE->getAddExpr( 2609 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2610 2611 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2612 2613 // Expand the trip count and place the new instructions in the preheader. 2614 // Notice that the pre-header does not change, only the loop body. 2615 SCEVExpander Exp(*SE, DL, "induction"); 2616 2617 // Count holds the overall loop count (N). 2618 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2619 L->getLoopPreheader()->getTerminator()); 2620 2621 if (TripCount->getType()->isPointerTy()) 2622 TripCount = 2623 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2624 L->getLoopPreheader()->getTerminator()); 2625 2626 return TripCount; 2627 } 2628 2629 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2630 if (VectorTripCount) 2631 return VectorTripCount; 2632 2633 Value *TC = getOrCreateTripCount(L); 2634 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2635 2636 Type *Ty = TC->getType(); 2637 Constant *Step = ConstantInt::get(Ty, VF * UF); 2638 2639 // If the tail is to be folded by masking, round the number of iterations N 2640 // up to a multiple of Step instead of rounding down. This is done by first 2641 // adding Step-1 and then rounding down. Note that it's ok if this addition 2642 // overflows: the vector induction variable will eventually wrap to zero given 2643 // that it starts at zero and its Step is a power of two; the loop will then 2644 // exit, with the last early-exit vector comparison also producing all-true. 2645 if (Cost->foldTailByMasking()) { 2646 assert(isPowerOf2_32(VF * UF) && 2647 "VF*UF must be a power of 2 when folding tail by masking"); 2648 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2649 } 2650 2651 // Now we need to generate the expression for the part of the loop that the 2652 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2653 // iterations are not required for correctness, or N - Step, otherwise. Step 2654 // is equal to the vectorization factor (number of SIMD elements) times the 2655 // unroll factor (number of SIMD instructions). 2656 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2657 2658 // If there is a non-reversed interleaved group that may speculatively access 2659 // memory out-of-bounds, we need to ensure that there will be at least one 2660 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2661 // the trip count, we set the remainder to be equal to the step. If the step 2662 // does not evenly divide the trip count, no adjustment is necessary since 2663 // there will already be scalar iterations. Note that the minimum iterations 2664 // check ensures that N >= Step. 2665 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2666 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2667 R = Builder.CreateSelect(IsZero, Step, R); 2668 } 2669 2670 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2671 2672 return VectorTripCount; 2673 } 2674 2675 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2676 const DataLayout &DL) { 2677 // Verify that V is a vector type with same number of elements as DstVTy. 2678 unsigned VF = DstVTy->getNumElements(); 2679 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2680 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2681 Type *SrcElemTy = SrcVecTy->getElementType(); 2682 Type *DstElemTy = DstVTy->getElementType(); 2683 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2684 "Vector elements must have same size"); 2685 2686 // Do a direct cast if element types are castable. 2687 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2688 return Builder.CreateBitOrPointerCast(V, DstVTy); 2689 } 2690 // V cannot be directly casted to desired vector type. 2691 // May happen when V is a floating point vector but DstVTy is a vector of 2692 // pointers or vice-versa. Handle this using a two-step bitcast using an 2693 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2694 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2695 "Only one type should be a pointer type"); 2696 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2697 "Only one type should be a floating point type"); 2698 Type *IntTy = 2699 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2700 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2701 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2702 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2703 } 2704 2705 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2706 BasicBlock *Bypass) { 2707 Value *Count = getOrCreateTripCount(L); 2708 // Reuse existing vector loop preheader for TC checks. 2709 // Note that new preheader block is generated for vector loop. 2710 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2711 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2712 2713 // Generate code to check if the loop's trip count is less than VF * UF, or 2714 // equal to it in case a scalar epilogue is required; this implies that the 2715 // vector trip count is zero. This check also covers the case where adding one 2716 // to the backedge-taken count overflowed leading to an incorrect trip count 2717 // of zero. In this case we will also jump to the scalar loop. 2718 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2719 : ICmpInst::ICMP_ULT; 2720 2721 // If tail is to be folded, vector loop takes care of all iterations. 2722 Value *CheckMinIters = Builder.getFalse(); 2723 if (!Cost->foldTailByMasking()) 2724 CheckMinIters = Builder.CreateICmp( 2725 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2726 "min.iters.check"); 2727 2728 // Create new preheader for vector loop. 2729 LoopVectorPreHeader = 2730 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2731 "vector.ph"); 2732 2733 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2734 DT->getNode(Bypass)->getIDom()) && 2735 "TC check is expected to dominate Bypass"); 2736 2737 // Update dominator for Bypass & LoopExit. 2738 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2739 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2740 2741 ReplaceInstWithInst( 2742 TCCheckBlock->getTerminator(), 2743 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2744 LoopBypassBlocks.push_back(TCCheckBlock); 2745 } 2746 2747 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2748 // Reuse existing vector loop preheader for SCEV checks. 2749 // Note that new preheader block is generated for vector loop. 2750 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2751 2752 // Generate the code to check that the SCEV assumptions that we made. 2753 // We want the new basic block to start at the first instruction in a 2754 // sequence of instructions that form a check. 2755 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2756 "scev.check"); 2757 Value *SCEVCheck = Exp.expandCodeForPredicate( 2758 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2759 2760 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2761 if (C->isZero()) 2762 return; 2763 2764 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2765 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 2766 PGSOQueryType::IRPass)) && 2767 "Cannot SCEV check stride or overflow when optimizing for size"); 2768 2769 SCEVCheckBlock->setName("vector.scevcheck"); 2770 // Create new preheader for vector loop. 2771 LoopVectorPreHeader = 2772 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2773 nullptr, "vector.ph"); 2774 2775 // Update dominator only if this is first RT check. 2776 if (LoopBypassBlocks.empty()) { 2777 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2778 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2779 } 2780 2781 ReplaceInstWithInst( 2782 SCEVCheckBlock->getTerminator(), 2783 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2784 LoopBypassBlocks.push_back(SCEVCheckBlock); 2785 AddedSafetyChecks = true; 2786 } 2787 2788 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2789 // VPlan-native path does not do any analysis for runtime checks currently. 2790 if (EnableVPlanNativePath) 2791 return; 2792 2793 // Reuse existing vector loop preheader for runtime memory checks. 2794 // Note that new preheader block is generated for vector loop. 2795 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2796 2797 // Generate the code that checks in runtime if arrays overlap. We put the 2798 // checks into a separate block to make the more common case of few elements 2799 // faster. 2800 auto *LAI = Legal->getLAI(); 2801 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2802 if (!RtPtrChecking.Need) 2803 return; 2804 Instruction *FirstCheckInst; 2805 Instruction *MemRuntimeCheck; 2806 std::tie(FirstCheckInst, MemRuntimeCheck) = 2807 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2808 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2809 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2810 "claimed checks are required"); 2811 2812 if (MemCheckBlock->getParent()->hasOptSize() || 2813 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 2814 PGSOQueryType::IRPass)) { 2815 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2816 "Cannot emit memory checks when optimizing for size, unless forced " 2817 "to vectorize."); 2818 ORE->emit([&]() { 2819 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2820 L->getStartLoc(), L->getHeader()) 2821 << "Code-size may be reduced by not forcing " 2822 "vectorization, or by source-code modifications " 2823 "eliminating the need for runtime checks " 2824 "(e.g., adding 'restrict')."; 2825 }); 2826 } 2827 2828 MemCheckBlock->setName("vector.memcheck"); 2829 // Create new preheader for vector loop. 2830 LoopVectorPreHeader = 2831 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2832 "vector.ph"); 2833 2834 // Update dominator only if this is first RT check. 2835 if (LoopBypassBlocks.empty()) { 2836 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2837 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2838 } 2839 2840 ReplaceInstWithInst( 2841 MemCheckBlock->getTerminator(), 2842 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2843 LoopBypassBlocks.push_back(MemCheckBlock); 2844 AddedSafetyChecks = true; 2845 2846 // We currently don't use LoopVersioning for the actual loop cloning but we 2847 // still use it to add the noalias metadata. 2848 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2849 PSE.getSE()); 2850 LVer->prepareNoAliasMetadata(); 2851 } 2852 2853 Value *InnerLoopVectorizer::emitTransformedIndex( 2854 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2855 const InductionDescriptor &ID) const { 2856 2857 SCEVExpander Exp(*SE, DL, "induction"); 2858 auto Step = ID.getStep(); 2859 auto StartValue = ID.getStartValue(); 2860 assert(Index->getType() == Step->getType() && 2861 "Index type does not match StepValue type"); 2862 2863 // Note: the IR at this point is broken. We cannot use SE to create any new 2864 // SCEV and then expand it, hoping that SCEV's simplification will give us 2865 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2866 // lead to various SCEV crashes. So all we can do is to use builder and rely 2867 // on InstCombine for future simplifications. Here we handle some trivial 2868 // cases only. 2869 auto CreateAdd = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isZero()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isZero()) 2876 return X; 2877 return B.CreateAdd(X, Y); 2878 }; 2879 2880 auto CreateMul = [&B](Value *X, Value *Y) { 2881 assert(X->getType() == Y->getType() && "Types don't match!"); 2882 if (auto *CX = dyn_cast<ConstantInt>(X)) 2883 if (CX->isOne()) 2884 return Y; 2885 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2886 if (CY->isOne()) 2887 return X; 2888 return B.CreateMul(X, Y); 2889 }; 2890 2891 // Get a suitable insert point for SCEV expansion. For blocks in the vector 2892 // loop, choose the end of the vector loop header (=LoopVectorBody), because 2893 // the DomTree is not kept up-to-date for additional blocks generated in the 2894 // vector loop. By using the header as insertion point, we guarantee that the 2895 // expanded instructions dominate all their uses. 2896 auto GetInsertPoint = [this, &B]() { 2897 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 2898 if (InsertBB != LoopVectorBody && 2899 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 2900 return LoopVectorBody->getTerminator(); 2901 return &*B.GetInsertPoint(); 2902 }; 2903 switch (ID.getKind()) { 2904 case InductionDescriptor::IK_IntInduction: { 2905 assert(Index->getType() == StartValue->getType() && 2906 "Index type does not match StartValue type"); 2907 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2908 return B.CreateSub(StartValue, Index); 2909 auto *Offset = CreateMul( 2910 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 2911 return CreateAdd(StartValue, Offset); 2912 } 2913 case InductionDescriptor::IK_PtrInduction: { 2914 assert(isa<SCEVConstant>(Step) && 2915 "Expected constant step for pointer induction"); 2916 return B.CreateGEP( 2917 StartValue->getType()->getPointerElementType(), StartValue, 2918 CreateMul(Index, 2919 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 2920 } 2921 case InductionDescriptor::IK_FpInduction: { 2922 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2923 auto InductionBinOp = ID.getInductionBinOp(); 2924 assert(InductionBinOp && 2925 (InductionBinOp->getOpcode() == Instruction::FAdd || 2926 InductionBinOp->getOpcode() == Instruction::FSub) && 2927 "Original bin op should be defined for FP induction"); 2928 2929 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2930 2931 // Floating point operations had to be 'fast' to enable the induction. 2932 FastMathFlags Flags; 2933 Flags.setFast(); 2934 2935 Value *MulExp = B.CreateFMul(StepValue, Index); 2936 if (isa<Instruction>(MulExp)) 2937 // We have to check, the MulExp may be a constant. 2938 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2939 2940 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2941 "induction"); 2942 if (isa<Instruction>(BOp)) 2943 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2944 2945 return BOp; 2946 } 2947 case InductionDescriptor::IK_NoInduction: 2948 return nullptr; 2949 } 2950 llvm_unreachable("invalid enum"); 2951 } 2952 2953 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2954 /* 2955 In this function we generate a new loop. The new loop will contain 2956 the vectorized instructions while the old loop will continue to run the 2957 scalar remainder. 2958 2959 [ ] <-- loop iteration number check. 2960 / | 2961 / v 2962 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2963 | / | 2964 | / v 2965 || [ ] <-- vector pre header. 2966 |/ | 2967 | v 2968 | [ ] \ 2969 | [ ]_| <-- vector loop. 2970 | | 2971 | v 2972 | -[ ] <--- middle-block. 2973 | / | 2974 | / v 2975 -|- >[ ] <--- new preheader. 2976 | | 2977 | v 2978 | [ ] \ 2979 | [ ]_| <-- old scalar loop to handle remainder. 2980 \ | 2981 \ v 2982 >[ ] <-- exit block. 2983 ... 2984 */ 2985 2986 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2987 2988 // Some loops have a single integer induction variable, while other loops 2989 // don't. One example is c++ iterators that often have multiple pointer 2990 // induction variables. In the code below we also support a case where we 2991 // don't have a single induction variable. 2992 // 2993 // We try to obtain an induction variable from the original loop as hard 2994 // as possible. However if we don't find one that: 2995 // - is an integer 2996 // - counts from zero, stepping by one 2997 // - is the size of the widest induction variable type 2998 // then we create a new one. 2999 OldInduction = Legal->getPrimaryInduction(); 3000 Type *IdxTy = Legal->getWidestInductionType(); 3001 3002 // Split the single block loop into the two loop structure described above. 3003 LoopScalarBody = OrigLoop->getHeader(); 3004 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3005 LoopExitBlock = OrigLoop->getExitBlock(); 3006 assert(LoopExitBlock && "Must have an exit block"); 3007 assert(LoopVectorPreHeader && "Invalid loop structure"); 3008 3009 LoopMiddleBlock = 3010 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3011 LI, nullptr, "middle.block"); 3012 LoopScalarPreHeader = 3013 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3014 nullptr, "scalar.ph"); 3015 // We intentionally don't let SplitBlock to update LoopInfo since 3016 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3017 // LoopVectorBody is explicitly added to the correct place few lines later. 3018 LoopVectorBody = 3019 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3020 nullptr, nullptr, "vector.body"); 3021 3022 // Update dominator for loop exit. 3023 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3024 3025 // Create and register the new vector loop. 3026 Loop *Lp = LI->AllocateLoop(); 3027 Loop *ParentLoop = OrigLoop->getParentLoop(); 3028 3029 // Insert the new loop into the loop nest and register the new basic blocks 3030 // before calling any utilities such as SCEV that require valid LoopInfo. 3031 if (ParentLoop) { 3032 ParentLoop->addChildLoop(Lp); 3033 } else { 3034 LI->addTopLevelLoop(Lp); 3035 } 3036 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3037 3038 // Find the loop boundaries. 3039 Value *Count = getOrCreateTripCount(Lp); 3040 3041 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3042 3043 // Now, compare the new count to zero. If it is zero skip the vector loop and 3044 // jump to the scalar loop. This check also covers the case where the 3045 // backedge-taken count is uint##_max: adding one to it will overflow leading 3046 // to an incorrect trip count of zero. In this (rare) case we will also jump 3047 // to the scalar loop. 3048 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3049 3050 // Generate the code to check any assumptions that we've made for SCEV 3051 // expressions. 3052 emitSCEVChecks(Lp, LoopScalarPreHeader); 3053 3054 // Generate the code that checks in runtime if arrays overlap. We put the 3055 // checks into a separate block to make the more common case of few elements 3056 // faster. 3057 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3058 3059 // Generate the induction variable. 3060 // The loop step is equal to the vectorization factor (num of SIMD elements) 3061 // times the unroll factor (num of SIMD instructions). 3062 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3063 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3064 Induction = 3065 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3066 getDebugLocFromInstOrOperands(OldInduction)); 3067 3068 // We are going to resume the execution of the scalar loop. 3069 // Go over all of the induction variables that we found and fix the 3070 // PHIs that are left in the scalar version of the loop. 3071 // The starting values of PHI nodes depend on the counter of the last 3072 // iteration in the vectorized loop. 3073 // If we come from a bypass edge then we need to start from the original 3074 // start value. 3075 3076 // This variable saves the new starting index for the scalar loop. It is used 3077 // to test if there are any tail iterations left once the vector loop has 3078 // completed. 3079 for (auto &InductionEntry : Legal->getInductionVars()) { 3080 PHINode *OrigPhi = InductionEntry.first; 3081 InductionDescriptor II = InductionEntry.second; 3082 3083 // Create phi nodes to merge from the backedge-taken check block. 3084 PHINode *BCResumeVal = 3085 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3086 LoopScalarPreHeader->getTerminator()); 3087 // Copy original phi DL over to the new one. 3088 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3089 Value *&EndValue = IVEndValues[OrigPhi]; 3090 if (OrigPhi == OldInduction) { 3091 // We know what the end value is. 3092 EndValue = CountRoundDown; 3093 } else { 3094 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3095 Type *StepType = II.getStep()->getType(); 3096 Instruction::CastOps CastOp = 3097 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3098 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3099 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3100 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3101 EndValue->setName("ind.end"); 3102 } 3103 3104 // The new PHI merges the original incoming value, in case of a bypass, 3105 // or the value at the end of the vectorized loop. 3106 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3107 3108 // Fix the scalar body counter (PHI node). 3109 // The old induction's phi node in the scalar body needs the truncated 3110 // value. 3111 for (BasicBlock *BB : LoopBypassBlocks) 3112 BCResumeVal->addIncoming(II.getStartValue(), BB); 3113 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3114 } 3115 3116 // We need the OrigLoop (scalar loop part) latch terminator to help 3117 // produce correct debug info for the middle block BB instructions. 3118 // The legality check stage guarantees that the loop will have a single 3119 // latch. 3120 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3121 "Scalar loop latch terminator isn't a branch"); 3122 BranchInst *ScalarLatchBr = 3123 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3124 3125 // Add a check in the middle block to see if we have completed 3126 // all of the iterations in the first vector loop. 3127 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3128 // If tail is to be folded, we know we don't need to run the remainder. 3129 Value *CmpN = Builder.getTrue(); 3130 if (!Cost->foldTailByMasking()) { 3131 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3132 CountRoundDown, "cmp.n", 3133 LoopMiddleBlock->getTerminator()); 3134 3135 // Here we use the same DebugLoc as the scalar loop latch branch instead 3136 // of the corresponding compare because they may have ended up with 3137 // different line numbers and we want to avoid awkward line stepping while 3138 // debugging. Eg. if the compare has got a line number inside the loop. 3139 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3140 } 3141 3142 BranchInst *BrInst = 3143 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3144 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3145 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3146 3147 // Get ready to start creating new instructions into the vectorized body. 3148 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3149 "Inconsistent vector loop preheader"); 3150 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3151 3152 Optional<MDNode *> VectorizedLoopID = 3153 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3154 LLVMLoopVectorizeFollowupVectorized}); 3155 if (VectorizedLoopID.hasValue()) { 3156 Lp->setLoopID(VectorizedLoopID.getValue()); 3157 3158 // Do not setAlreadyVectorized if loop attributes have been defined 3159 // explicitly. 3160 return LoopVectorPreHeader; 3161 } 3162 3163 // Keep all loop hints from the original loop on the vector loop (we'll 3164 // replace the vectorizer-specific hints below). 3165 if (MDNode *LID = OrigLoop->getLoopID()) 3166 Lp->setLoopID(LID); 3167 3168 LoopVectorizeHints Hints(Lp, true, *ORE); 3169 Hints.setAlreadyVectorized(); 3170 3171 #ifdef EXPENSIVE_CHECKS 3172 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3173 LI->verify(*DT); 3174 #endif 3175 3176 return LoopVectorPreHeader; 3177 } 3178 3179 // Fix up external users of the induction variable. At this point, we are 3180 // in LCSSA form, with all external PHIs that use the IV having one input value, 3181 // coming from the remainder loop. We need those PHIs to also have a correct 3182 // value for the IV when arriving directly from the middle block. 3183 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3184 const InductionDescriptor &II, 3185 Value *CountRoundDown, Value *EndValue, 3186 BasicBlock *MiddleBlock) { 3187 // There are two kinds of external IV usages - those that use the value 3188 // computed in the last iteration (the PHI) and those that use the penultimate 3189 // value (the value that feeds into the phi from the loop latch). 3190 // We allow both, but they, obviously, have different values. 3191 3192 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3193 3194 DenseMap<Value *, Value *> MissingVals; 3195 3196 // An external user of the last iteration's value should see the value that 3197 // the remainder loop uses to initialize its own IV. 3198 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3199 for (User *U : PostInc->users()) { 3200 Instruction *UI = cast<Instruction>(U); 3201 if (!OrigLoop->contains(UI)) { 3202 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3203 MissingVals[UI] = EndValue; 3204 } 3205 } 3206 3207 // An external user of the penultimate value need to see EndValue - Step. 3208 // The simplest way to get this is to recompute it from the constituent SCEVs, 3209 // that is Start + (Step * (CRD - 1)). 3210 for (User *U : OrigPhi->users()) { 3211 auto *UI = cast<Instruction>(U); 3212 if (!OrigLoop->contains(UI)) { 3213 const DataLayout &DL = 3214 OrigLoop->getHeader()->getModule()->getDataLayout(); 3215 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3216 3217 IRBuilder<> B(MiddleBlock->getTerminator()); 3218 Value *CountMinusOne = B.CreateSub( 3219 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3220 Value *CMO = 3221 !II.getStep()->getType()->isIntegerTy() 3222 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3223 II.getStep()->getType()) 3224 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3225 CMO->setName("cast.cmo"); 3226 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3227 Escape->setName("ind.escape"); 3228 MissingVals[UI] = Escape; 3229 } 3230 } 3231 3232 for (auto &I : MissingVals) { 3233 PHINode *PHI = cast<PHINode>(I.first); 3234 // One corner case we have to handle is two IVs "chasing" each-other, 3235 // that is %IV2 = phi [...], [ %IV1, %latch ] 3236 // In this case, if IV1 has an external use, we need to avoid adding both 3237 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3238 // don't already have an incoming value for the middle block. 3239 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3240 PHI->addIncoming(I.second, MiddleBlock); 3241 } 3242 } 3243 3244 namespace { 3245 3246 struct CSEDenseMapInfo { 3247 static bool canHandle(const Instruction *I) { 3248 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3249 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3250 } 3251 3252 static inline Instruction *getEmptyKey() { 3253 return DenseMapInfo<Instruction *>::getEmptyKey(); 3254 } 3255 3256 static inline Instruction *getTombstoneKey() { 3257 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3258 } 3259 3260 static unsigned getHashValue(const Instruction *I) { 3261 assert(canHandle(I) && "Unknown instruction!"); 3262 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3263 I->value_op_end())); 3264 } 3265 3266 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3267 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3268 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3269 return LHS == RHS; 3270 return LHS->isIdenticalTo(RHS); 3271 } 3272 }; 3273 3274 } // end anonymous namespace 3275 3276 ///Perform cse of induction variable instructions. 3277 static void cse(BasicBlock *BB) { 3278 // Perform simple cse. 3279 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3280 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3281 Instruction *In = &*I++; 3282 3283 if (!CSEDenseMapInfo::canHandle(In)) 3284 continue; 3285 3286 // Check if we can replace this instruction with any of the 3287 // visited instructions. 3288 if (Instruction *V = CSEMap.lookup(In)) { 3289 In->replaceAllUsesWith(V); 3290 In->eraseFromParent(); 3291 continue; 3292 } 3293 3294 CSEMap[In] = In; 3295 } 3296 } 3297 3298 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3299 unsigned VF, 3300 bool &NeedToScalarize) { 3301 Function *F = CI->getCalledFunction(); 3302 Type *ScalarRetTy = CI->getType(); 3303 SmallVector<Type *, 4> Tys, ScalarTys; 3304 for (auto &ArgOp : CI->arg_operands()) 3305 ScalarTys.push_back(ArgOp->getType()); 3306 3307 // Estimate cost of scalarized vector call. The source operands are assumed 3308 // to be vectors, so we need to extract individual elements from there, 3309 // execute VF scalar calls, and then gather the result into the vector return 3310 // value. 3311 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3312 TTI::TCK_RecipThroughput); 3313 if (VF == 1) 3314 return ScalarCallCost; 3315 3316 // Compute corresponding vector type for return value and arguments. 3317 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3318 for (Type *ScalarTy : ScalarTys) 3319 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3320 3321 // Compute costs of unpacking argument values for the scalar calls and 3322 // packing the return values to a vector. 3323 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3324 3325 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3326 3327 // If we can't emit a vector call for this function, then the currently found 3328 // cost is the cost we need to return. 3329 NeedToScalarize = true; 3330 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3331 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3332 3333 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3334 return Cost; 3335 3336 // If the corresponding vector cost is cheaper, return its cost. 3337 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3338 TTI::TCK_RecipThroughput); 3339 if (VectorCallCost < Cost) { 3340 NeedToScalarize = false; 3341 return VectorCallCost; 3342 } 3343 return Cost; 3344 } 3345 3346 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3347 unsigned VF) { 3348 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3349 assert(ID && "Expected intrinsic call!"); 3350 3351 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3352 return TTI.getIntrinsicInstrCost(CostAttrs, 3353 TargetTransformInfo::TCK_RecipThroughput); 3354 } 3355 3356 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3357 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3358 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3359 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3360 } 3361 3362 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3363 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3364 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3365 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3366 } 3367 3368 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3369 // For every instruction `I` in MinBWs, truncate the operands, create a 3370 // truncated version of `I` and reextend its result. InstCombine runs 3371 // later and will remove any ext/trunc pairs. 3372 SmallPtrSet<Value *, 4> Erased; 3373 for (const auto &KV : Cost->getMinimalBitwidths()) { 3374 // If the value wasn't vectorized, we must maintain the original scalar 3375 // type. The absence of the value from VectorLoopValueMap indicates that it 3376 // wasn't vectorized. 3377 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3378 continue; 3379 for (unsigned Part = 0; Part < UF; ++Part) { 3380 Value *I = getOrCreateVectorValue(KV.first, Part); 3381 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3382 continue; 3383 Type *OriginalTy = I->getType(); 3384 Type *ScalarTruncatedTy = 3385 IntegerType::get(OriginalTy->getContext(), KV.second); 3386 auto *TruncatedTy = FixedVectorType::get( 3387 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3388 if (TruncatedTy == OriginalTy) 3389 continue; 3390 3391 IRBuilder<> B(cast<Instruction>(I)); 3392 auto ShrinkOperand = [&](Value *V) -> Value * { 3393 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3394 if (ZI->getSrcTy() == TruncatedTy) 3395 return ZI->getOperand(0); 3396 return B.CreateZExtOrTrunc(V, TruncatedTy); 3397 }; 3398 3399 // The actual instruction modification depends on the instruction type, 3400 // unfortunately. 3401 Value *NewI = nullptr; 3402 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3403 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3404 ShrinkOperand(BO->getOperand(1))); 3405 3406 // Any wrapping introduced by shrinking this operation shouldn't be 3407 // considered undefined behavior. So, we can't unconditionally copy 3408 // arithmetic wrapping flags to NewI. 3409 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3410 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3411 NewI = 3412 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3413 ShrinkOperand(CI->getOperand(1))); 3414 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3415 NewI = B.CreateSelect(SI->getCondition(), 3416 ShrinkOperand(SI->getTrueValue()), 3417 ShrinkOperand(SI->getFalseValue())); 3418 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3419 switch (CI->getOpcode()) { 3420 default: 3421 llvm_unreachable("Unhandled cast!"); 3422 case Instruction::Trunc: 3423 NewI = ShrinkOperand(CI->getOperand(0)); 3424 break; 3425 case Instruction::SExt: 3426 NewI = B.CreateSExtOrTrunc( 3427 CI->getOperand(0), 3428 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3429 break; 3430 case Instruction::ZExt: 3431 NewI = B.CreateZExtOrTrunc( 3432 CI->getOperand(0), 3433 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3434 break; 3435 } 3436 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3437 auto Elements0 = 3438 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3439 auto *O0 = B.CreateZExtOrTrunc( 3440 SI->getOperand(0), 3441 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3442 auto Elements1 = 3443 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3444 auto *O1 = B.CreateZExtOrTrunc( 3445 SI->getOperand(1), 3446 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3447 3448 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3449 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3450 // Don't do anything with the operands, just extend the result. 3451 continue; 3452 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3453 auto Elements = 3454 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3455 auto *O0 = B.CreateZExtOrTrunc( 3456 IE->getOperand(0), 3457 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3458 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3459 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3460 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3461 auto Elements = 3462 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3463 auto *O0 = B.CreateZExtOrTrunc( 3464 EE->getOperand(0), 3465 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3466 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3467 } else { 3468 // If we don't know what to do, be conservative and don't do anything. 3469 continue; 3470 } 3471 3472 // Lastly, extend the result. 3473 NewI->takeName(cast<Instruction>(I)); 3474 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3475 I->replaceAllUsesWith(Res); 3476 cast<Instruction>(I)->eraseFromParent(); 3477 Erased.insert(I); 3478 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3479 } 3480 } 3481 3482 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3483 for (const auto &KV : Cost->getMinimalBitwidths()) { 3484 // If the value wasn't vectorized, we must maintain the original scalar 3485 // type. The absence of the value from VectorLoopValueMap indicates that it 3486 // wasn't vectorized. 3487 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3488 continue; 3489 for (unsigned Part = 0; Part < UF; ++Part) { 3490 Value *I = getOrCreateVectorValue(KV.first, Part); 3491 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3492 if (Inst && Inst->use_empty()) { 3493 Value *NewI = Inst->getOperand(0); 3494 Inst->eraseFromParent(); 3495 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3496 } 3497 } 3498 } 3499 } 3500 3501 void InnerLoopVectorizer::fixVectorizedLoop() { 3502 // Insert truncates and extends for any truncated instructions as hints to 3503 // InstCombine. 3504 if (VF > 1) 3505 truncateToMinimalBitwidths(); 3506 3507 // Fix widened non-induction PHIs by setting up the PHI operands. 3508 if (OrigPHIsToFix.size()) { 3509 assert(EnableVPlanNativePath && 3510 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3511 fixNonInductionPHIs(); 3512 } 3513 3514 // At this point every instruction in the original loop is widened to a 3515 // vector form. Now we need to fix the recurrences in the loop. These PHI 3516 // nodes are currently empty because we did not want to introduce cycles. 3517 // This is the second stage of vectorizing recurrences. 3518 fixCrossIterationPHIs(); 3519 3520 // Forget the original basic block. 3521 PSE.getSE()->forgetLoop(OrigLoop); 3522 3523 // Fix-up external users of the induction variables. 3524 for (auto &Entry : Legal->getInductionVars()) 3525 fixupIVUsers(Entry.first, Entry.second, 3526 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3527 IVEndValues[Entry.first], LoopMiddleBlock); 3528 3529 fixLCSSAPHIs(); 3530 for (Instruction *PI : PredicatedInstructions) 3531 sinkScalarOperands(&*PI); 3532 3533 // Remove redundant induction instructions. 3534 cse(LoopVectorBody); 3535 3536 // Set/update profile weights for the vector and remainder loops as original 3537 // loop iterations are now distributed among them. Note that original loop 3538 // represented by LoopScalarBody becomes remainder loop after vectorization. 3539 // 3540 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3541 // end up getting slightly roughened result but that should be OK since 3542 // profile is not inherently precise anyway. Note also possible bypass of 3543 // vector code caused by legality checks is ignored, assigning all the weight 3544 // to the vector loop, optimistically. 3545 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3546 LI->getLoopFor(LoopVectorBody), 3547 LI->getLoopFor(LoopScalarBody), VF * UF); 3548 } 3549 3550 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3551 // In order to support recurrences we need to be able to vectorize Phi nodes. 3552 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3553 // stage #2: We now need to fix the recurrences by adding incoming edges to 3554 // the currently empty PHI nodes. At this point every instruction in the 3555 // original loop is widened to a vector form so we can use them to construct 3556 // the incoming edges. 3557 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3558 // Handle first-order recurrences and reductions that need to be fixed. 3559 if (Legal->isFirstOrderRecurrence(&Phi)) 3560 fixFirstOrderRecurrence(&Phi); 3561 else if (Legal->isReductionVariable(&Phi)) 3562 fixReduction(&Phi); 3563 } 3564 } 3565 3566 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3567 // This is the second phase of vectorizing first-order recurrences. An 3568 // overview of the transformation is described below. Suppose we have the 3569 // following loop. 3570 // 3571 // for (int i = 0; i < n; ++i) 3572 // b[i] = a[i] - a[i - 1]; 3573 // 3574 // There is a first-order recurrence on "a". For this loop, the shorthand 3575 // scalar IR looks like: 3576 // 3577 // scalar.ph: 3578 // s_init = a[-1] 3579 // br scalar.body 3580 // 3581 // scalar.body: 3582 // i = phi [0, scalar.ph], [i+1, scalar.body] 3583 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3584 // s2 = a[i] 3585 // b[i] = s2 - s1 3586 // br cond, scalar.body, ... 3587 // 3588 // In this example, s1 is a recurrence because it's value depends on the 3589 // previous iteration. In the first phase of vectorization, we created a 3590 // temporary value for s1. We now complete the vectorization and produce the 3591 // shorthand vector IR shown below (for VF = 4, UF = 1). 3592 // 3593 // vector.ph: 3594 // v_init = vector(..., ..., ..., a[-1]) 3595 // br vector.body 3596 // 3597 // vector.body 3598 // i = phi [0, vector.ph], [i+4, vector.body] 3599 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3600 // v2 = a[i, i+1, i+2, i+3]; 3601 // v3 = vector(v1(3), v2(0, 1, 2)) 3602 // b[i, i+1, i+2, i+3] = v2 - v3 3603 // br cond, vector.body, middle.block 3604 // 3605 // middle.block: 3606 // x = v2(3) 3607 // br scalar.ph 3608 // 3609 // scalar.ph: 3610 // s_init = phi [x, middle.block], [a[-1], otherwise] 3611 // br scalar.body 3612 // 3613 // After execution completes the vector loop, we extract the next value of 3614 // the recurrence (x) to use as the initial value in the scalar loop. 3615 3616 // Get the original loop preheader and single loop latch. 3617 auto *Preheader = OrigLoop->getLoopPreheader(); 3618 auto *Latch = OrigLoop->getLoopLatch(); 3619 3620 // Get the initial and previous values of the scalar recurrence. 3621 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3622 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3623 3624 // Create a vector from the initial value. 3625 auto *VectorInit = ScalarInit; 3626 if (VF > 1) { 3627 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3628 VectorInit = Builder.CreateInsertElement( 3629 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3630 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3631 } 3632 3633 // We constructed a temporary phi node in the first phase of vectorization. 3634 // This phi node will eventually be deleted. 3635 Builder.SetInsertPoint( 3636 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3637 3638 // Create a phi node for the new recurrence. The current value will either be 3639 // the initial value inserted into a vector or loop-varying vector value. 3640 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3641 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3642 3643 // Get the vectorized previous value of the last part UF - 1. It appears last 3644 // among all unrolled iterations, due to the order of their construction. 3645 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3646 3647 // Find and set the insertion point after the previous value if it is an 3648 // instruction. 3649 BasicBlock::iterator InsertPt; 3650 // Note that the previous value may have been constant-folded so it is not 3651 // guaranteed to be an instruction in the vector loop. 3652 // FIXME: Loop invariant values do not form recurrences. We should deal with 3653 // them earlier. 3654 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3655 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3656 else { 3657 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3658 if (isa<PHINode>(PreviousLastPart)) 3659 // If the previous value is a phi node, we should insert after all the phi 3660 // nodes in the block containing the PHI to avoid breaking basic block 3661 // verification. Note that the basic block may be different to 3662 // LoopVectorBody, in case we predicate the loop. 3663 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3664 else 3665 InsertPt = ++PreviousInst->getIterator(); 3666 } 3667 Builder.SetInsertPoint(&*InsertPt); 3668 3669 // We will construct a vector for the recurrence by combining the values for 3670 // the current and previous iterations. This is the required shuffle mask. 3671 SmallVector<int, 8> ShuffleMask(VF); 3672 ShuffleMask[0] = VF - 1; 3673 for (unsigned I = 1; I < VF; ++I) 3674 ShuffleMask[I] = I + VF - 1; 3675 3676 // The vector from which to take the initial value for the current iteration 3677 // (actual or unrolled). Initially, this is the vector phi node. 3678 Value *Incoming = VecPhi; 3679 3680 // Shuffle the current and previous vector and update the vector parts. 3681 for (unsigned Part = 0; Part < UF; ++Part) { 3682 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3683 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3684 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3685 ShuffleMask) 3686 : Incoming; 3687 PhiPart->replaceAllUsesWith(Shuffle); 3688 cast<Instruction>(PhiPart)->eraseFromParent(); 3689 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3690 Incoming = PreviousPart; 3691 } 3692 3693 // Fix the latch value of the new recurrence in the vector loop. 3694 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3695 3696 // Extract the last vector element in the middle block. This will be the 3697 // initial value for the recurrence when jumping to the scalar loop. 3698 auto *ExtractForScalar = Incoming; 3699 if (VF > 1) { 3700 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3701 ExtractForScalar = Builder.CreateExtractElement( 3702 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3703 } 3704 // Extract the second last element in the middle block if the 3705 // Phi is used outside the loop. We need to extract the phi itself 3706 // and not the last element (the phi update in the current iteration). This 3707 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3708 // when the scalar loop is not run at all. 3709 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3710 if (VF > 1) 3711 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3712 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3713 // When loop is unrolled without vectorizing, initialize 3714 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3715 // `Incoming`. This is analogous to the vectorized case above: extracting the 3716 // second last element when VF > 1. 3717 else if (UF > 1) 3718 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3719 3720 // Fix the initial value of the original recurrence in the scalar loop. 3721 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3722 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3723 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3724 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3725 Start->addIncoming(Incoming, BB); 3726 } 3727 3728 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3729 Phi->setName("scalar.recur"); 3730 3731 // Finally, fix users of the recurrence outside the loop. The users will need 3732 // either the last value of the scalar recurrence or the last value of the 3733 // vector recurrence we extracted in the middle block. Since the loop is in 3734 // LCSSA form, we just need to find all the phi nodes for the original scalar 3735 // recurrence in the exit block, and then add an edge for the middle block. 3736 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3737 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3738 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3739 } 3740 } 3741 } 3742 3743 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3744 Constant *Zero = Builder.getInt32(0); 3745 3746 // Get it's reduction variable descriptor. 3747 assert(Legal->isReductionVariable(Phi) && 3748 "Unable to find the reduction variable"); 3749 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3750 3751 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3752 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3753 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3754 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3755 RdxDesc.getMinMaxRecurrenceKind(); 3756 setDebugLocFromInst(Builder, ReductionStartValue); 3757 3758 // We need to generate a reduction vector from the incoming scalar. 3759 // To do so, we need to generate the 'identity' vector and override 3760 // one of the elements with the incoming scalar reduction. We need 3761 // to do it in the vector-loop preheader. 3762 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3763 3764 // This is the vector-clone of the value that leaves the loop. 3765 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3766 3767 // Find the reduction identity variable. Zero for addition, or, xor, 3768 // one for multiplication, -1 for And. 3769 Value *Identity; 3770 Value *VectorStart; 3771 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3772 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3773 // MinMax reduction have the start value as their identify. 3774 if (VF == 1) { 3775 VectorStart = Identity = ReductionStartValue; 3776 } else { 3777 VectorStart = Identity = 3778 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3779 } 3780 } else { 3781 // Handle other reduction kinds: 3782 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3783 RK, VecTy->getScalarType()); 3784 if (VF == 1) { 3785 Identity = Iden; 3786 // This vector is the Identity vector where the first element is the 3787 // incoming scalar reduction. 3788 VectorStart = ReductionStartValue; 3789 } else { 3790 Identity = ConstantVector::getSplat({VF, false}, Iden); 3791 3792 // This vector is the Identity vector where the first element is the 3793 // incoming scalar reduction. 3794 VectorStart = 3795 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3796 } 3797 } 3798 3799 // Wrap flags are in general invalid after vectorization, clear them. 3800 clearReductionWrapFlags(RdxDesc); 3801 3802 // Fix the vector-loop phi. 3803 3804 // Reductions do not have to start at zero. They can start with 3805 // any loop invariant values. 3806 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3807 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3808 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3811 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3812 // Make sure to add the reduction start value only to the 3813 // first unroll part. 3814 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3815 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3816 cast<PHINode>(VecRdxPhi) 3817 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3818 } 3819 3820 // Before each round, move the insertion point right between 3821 // the PHIs and the values we are going to write. 3822 // This allows us to write both PHINodes and the extractelement 3823 // instructions. 3824 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3825 3826 setDebugLocFromInst(Builder, LoopExitInst); 3827 3828 // If tail is folded by masking, the vector value to leave the loop should be 3829 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3830 // instead of the former. 3831 if (Cost->foldTailByMasking()) { 3832 for (unsigned Part = 0; Part < UF; ++Part) { 3833 Value *VecLoopExitInst = 3834 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3835 Value *Sel = nullptr; 3836 for (User *U : VecLoopExitInst->users()) { 3837 if (isa<SelectInst>(U)) { 3838 assert(!Sel && "Reduction exit feeding two selects"); 3839 Sel = U; 3840 } else 3841 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3842 } 3843 assert(Sel && "Reduction exit feeds no select"); 3844 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3845 } 3846 } 3847 3848 // If the vector reduction can be performed in a smaller type, we truncate 3849 // then extend the loop exit value to enable InstCombine to evaluate the 3850 // entire expression in the smaller type. 3851 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3852 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3853 Builder.SetInsertPoint( 3854 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3855 VectorParts RdxParts(UF); 3856 for (unsigned Part = 0; Part < UF; ++Part) { 3857 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3858 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3859 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3860 : Builder.CreateZExt(Trunc, VecTy); 3861 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3862 UI != RdxParts[Part]->user_end();) 3863 if (*UI != Trunc) { 3864 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3865 RdxParts[Part] = Extnd; 3866 } else { 3867 ++UI; 3868 } 3869 } 3870 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3871 for (unsigned Part = 0; Part < UF; ++Part) { 3872 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3873 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3874 } 3875 } 3876 3877 // Reduce all of the unrolled parts into a single vector. 3878 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3879 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3880 3881 // The middle block terminator has already been assigned a DebugLoc here (the 3882 // OrigLoop's single latch terminator). We want the whole middle block to 3883 // appear to execute on this line because: (a) it is all compiler generated, 3884 // (b) these instructions are always executed after evaluating the latch 3885 // conditional branch, and (c) other passes may add new predecessors which 3886 // terminate on this line. This is the easiest way to ensure we don't 3887 // accidentally cause an extra step back into the loop while debugging. 3888 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3889 for (unsigned Part = 1; Part < UF; ++Part) { 3890 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3891 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3892 // Floating point operations had to be 'fast' to enable the reduction. 3893 ReducedPartRdx = addFastMathFlag( 3894 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3895 ReducedPartRdx, "bin.rdx"), 3896 RdxDesc.getFastMathFlags()); 3897 else 3898 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3899 RdxPart); 3900 } 3901 3902 if (VF > 1) { 3903 bool NoNaN = Legal->hasFunNoNaNAttr(); 3904 ReducedPartRdx = 3905 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3906 // If the reduction can be performed in a smaller type, we need to extend 3907 // the reduction to the wider type before we branch to the original loop. 3908 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3909 ReducedPartRdx = 3910 RdxDesc.isSigned() 3911 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3912 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3913 } 3914 3915 // Create a phi node that merges control-flow from the backedge-taken check 3916 // block and the middle block. 3917 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3918 LoopScalarPreHeader->getTerminator()); 3919 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3920 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3921 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3922 3923 // Now, we need to fix the users of the reduction variable 3924 // inside and outside of the scalar remainder loop. 3925 // We know that the loop is in LCSSA form. We need to update the 3926 // PHI nodes in the exit blocks. 3927 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3928 // All PHINodes need to have a single entry edge, or two if 3929 // we already fixed them. 3930 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3931 3932 // We found a reduction value exit-PHI. Update it with the 3933 // incoming bypass edge. 3934 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3935 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3936 } // end of the LCSSA phi scan. 3937 3938 // Fix the scalar loop reduction variable with the incoming reduction sum 3939 // from the vector body and from the backedge value. 3940 int IncomingEdgeBlockIdx = 3941 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3942 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3943 // Pick the other block. 3944 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3945 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3946 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3947 } 3948 3949 void InnerLoopVectorizer::clearReductionWrapFlags( 3950 RecurrenceDescriptor &RdxDesc) { 3951 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3952 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3953 RK != RecurrenceDescriptor::RK_IntegerMult) 3954 return; 3955 3956 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3957 assert(LoopExitInstr && "null loop exit instruction"); 3958 SmallVector<Instruction *, 8> Worklist; 3959 SmallPtrSet<Instruction *, 8> Visited; 3960 Worklist.push_back(LoopExitInstr); 3961 Visited.insert(LoopExitInstr); 3962 3963 while (!Worklist.empty()) { 3964 Instruction *Cur = Worklist.pop_back_val(); 3965 if (isa<OverflowingBinaryOperator>(Cur)) 3966 for (unsigned Part = 0; Part < UF; ++Part) { 3967 Value *V = getOrCreateVectorValue(Cur, Part); 3968 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3969 } 3970 3971 for (User *U : Cur->users()) { 3972 Instruction *UI = cast<Instruction>(U); 3973 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3974 Visited.insert(UI).second) 3975 Worklist.push_back(UI); 3976 } 3977 } 3978 } 3979 3980 void InnerLoopVectorizer::fixLCSSAPHIs() { 3981 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3982 if (LCSSAPhi.getNumIncomingValues() == 1) { 3983 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3984 // Non-instruction incoming values will have only one value. 3985 unsigned LastLane = 0; 3986 if (isa<Instruction>(IncomingValue)) 3987 LastLane = Cost->isUniformAfterVectorization( 3988 cast<Instruction>(IncomingValue), VF) 3989 ? 0 3990 : VF - 1; 3991 // Can be a loop invariant incoming value or the last scalar value to be 3992 // extracted from the vectorized loop. 3993 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3994 Value *lastIncomingValue = 3995 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3996 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3997 } 3998 } 3999 } 4000 4001 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4002 // The basic block and loop containing the predicated instruction. 4003 auto *PredBB = PredInst->getParent(); 4004 auto *VectorLoop = LI->getLoopFor(PredBB); 4005 4006 // Initialize a worklist with the operands of the predicated instruction. 4007 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4008 4009 // Holds instructions that we need to analyze again. An instruction may be 4010 // reanalyzed if we don't yet know if we can sink it or not. 4011 SmallVector<Instruction *, 8> InstsToReanalyze; 4012 4013 // Returns true if a given use occurs in the predicated block. Phi nodes use 4014 // their operands in their corresponding predecessor blocks. 4015 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4016 auto *I = cast<Instruction>(U.getUser()); 4017 BasicBlock *BB = I->getParent(); 4018 if (auto *Phi = dyn_cast<PHINode>(I)) 4019 BB = Phi->getIncomingBlock( 4020 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4021 return BB == PredBB; 4022 }; 4023 4024 // Iteratively sink the scalarized operands of the predicated instruction 4025 // into the block we created for it. When an instruction is sunk, it's 4026 // operands are then added to the worklist. The algorithm ends after one pass 4027 // through the worklist doesn't sink a single instruction. 4028 bool Changed; 4029 do { 4030 // Add the instructions that need to be reanalyzed to the worklist, and 4031 // reset the changed indicator. 4032 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4033 InstsToReanalyze.clear(); 4034 Changed = false; 4035 4036 while (!Worklist.empty()) { 4037 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4038 4039 // We can't sink an instruction if it is a phi node, is already in the 4040 // predicated block, is not in the loop, or may have side effects. 4041 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4042 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4043 continue; 4044 4045 // It's legal to sink the instruction if all its uses occur in the 4046 // predicated block. Otherwise, there's nothing to do yet, and we may 4047 // need to reanalyze the instruction. 4048 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4049 InstsToReanalyze.push_back(I); 4050 continue; 4051 } 4052 4053 // Move the instruction to the beginning of the predicated block, and add 4054 // it's operands to the worklist. 4055 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4056 Worklist.insert(I->op_begin(), I->op_end()); 4057 4058 // The sinking may have enabled other instructions to be sunk, so we will 4059 // need to iterate. 4060 Changed = true; 4061 } 4062 } while (Changed); 4063 } 4064 4065 void InnerLoopVectorizer::fixNonInductionPHIs() { 4066 for (PHINode *OrigPhi : OrigPHIsToFix) { 4067 PHINode *NewPhi = 4068 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4069 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4070 4071 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4072 predecessors(OrigPhi->getParent())); 4073 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4074 predecessors(NewPhi->getParent())); 4075 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4076 "Scalar and Vector BB should have the same number of predecessors"); 4077 4078 // The insertion point in Builder may be invalidated by the time we get 4079 // here. Force the Builder insertion point to something valid so that we do 4080 // not run into issues during insertion point restore in 4081 // getOrCreateVectorValue calls below. 4082 Builder.SetInsertPoint(NewPhi); 4083 4084 // The predecessor order is preserved and we can rely on mapping between 4085 // scalar and vector block predecessors. 4086 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4087 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4088 4089 // When looking up the new scalar/vector values to fix up, use incoming 4090 // values from original phi. 4091 Value *ScIncV = 4092 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4093 4094 // Scalar incoming value may need a broadcast 4095 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4096 NewPhi->addIncoming(NewIncV, NewPredBB); 4097 } 4098 } 4099 } 4100 4101 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4102 unsigned UF, unsigned VF, 4103 bool IsPtrLoopInvariant, 4104 SmallBitVector &IsIndexLoopInvariant, 4105 VPTransformState &State) { 4106 // Construct a vector GEP by widening the operands of the scalar GEP as 4107 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4108 // results in a vector of pointers when at least one operand of the GEP 4109 // is vector-typed. Thus, to keep the representation compact, we only use 4110 // vector-typed operands for loop-varying values. 4111 4112 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4113 // If we are vectorizing, but the GEP has only loop-invariant operands, 4114 // the GEP we build (by only using vector-typed operands for 4115 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4116 // produce a vector of pointers, we need to either arbitrarily pick an 4117 // operand to broadcast, or broadcast a clone of the original GEP. 4118 // Here, we broadcast a clone of the original. 4119 // 4120 // TODO: If at some point we decide to scalarize instructions having 4121 // loop-invariant operands, this special case will no longer be 4122 // required. We would add the scalarization decision to 4123 // collectLoopScalars() and teach getVectorValue() to broadcast 4124 // the lane-zero scalar value. 4125 auto *Clone = Builder.Insert(GEP->clone()); 4126 for (unsigned Part = 0; Part < UF; ++Part) { 4127 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4128 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4129 addMetadata(EntryPart, GEP); 4130 } 4131 } else { 4132 // If the GEP has at least one loop-varying operand, we are sure to 4133 // produce a vector of pointers. But if we are only unrolling, we want 4134 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4135 // produce with the code below will be scalar (if VF == 1) or vector 4136 // (otherwise). Note that for the unroll-only case, we still maintain 4137 // values in the vector mapping with initVector, as we do for other 4138 // instructions. 4139 for (unsigned Part = 0; Part < UF; ++Part) { 4140 // The pointer operand of the new GEP. If it's loop-invariant, we 4141 // won't broadcast it. 4142 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4143 : State.get(Operands.getOperand(0), Part); 4144 4145 // Collect all the indices for the new GEP. If any index is 4146 // loop-invariant, we won't broadcast it. 4147 SmallVector<Value *, 4> Indices; 4148 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4149 VPValue *Operand = Operands.getOperand(I); 4150 if (IsIndexLoopInvariant[I - 1]) 4151 Indices.push_back(State.get(Operand, {0, 0})); 4152 else 4153 Indices.push_back(State.get(Operand, Part)); 4154 } 4155 4156 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4157 // but it should be a vector, otherwise. 4158 auto *NewGEP = 4159 GEP->isInBounds() 4160 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4161 Indices) 4162 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4163 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4164 "NewGEP is not a pointer vector"); 4165 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4166 addMetadata(NewGEP, GEP); 4167 } 4168 } 4169 } 4170 4171 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4172 unsigned VF) { 4173 PHINode *P = cast<PHINode>(PN); 4174 if (EnableVPlanNativePath) { 4175 // Currently we enter here in the VPlan-native path for non-induction 4176 // PHIs where all control flow is uniform. We simply widen these PHIs. 4177 // Create a vector phi with no operands - the vector phi operands will be 4178 // set at the end of vector code generation. 4179 Type *VecTy = 4180 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4181 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4182 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4183 OrigPHIsToFix.push_back(P); 4184 4185 return; 4186 } 4187 4188 assert(PN->getParent() == OrigLoop->getHeader() && 4189 "Non-header phis should have been handled elsewhere"); 4190 4191 // In order to support recurrences we need to be able to vectorize Phi nodes. 4192 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4193 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4194 // this value when we vectorize all of the instructions that use the PHI. 4195 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4196 for (unsigned Part = 0; Part < UF; ++Part) { 4197 // This is phase one of vectorizing PHIs. 4198 Type *VecTy = 4199 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4200 Value *EntryPart = PHINode::Create( 4201 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4202 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4203 } 4204 return; 4205 } 4206 4207 setDebugLocFromInst(Builder, P); 4208 4209 // This PHINode must be an induction variable. 4210 // Make sure that we know about it. 4211 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4212 4213 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4214 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4215 4216 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4217 // which can be found from the original scalar operations. 4218 switch (II.getKind()) { 4219 case InductionDescriptor::IK_NoInduction: 4220 llvm_unreachable("Unknown induction"); 4221 case InductionDescriptor::IK_IntInduction: 4222 case InductionDescriptor::IK_FpInduction: 4223 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4224 case InductionDescriptor::IK_PtrInduction: { 4225 // Handle the pointer induction variable case. 4226 assert(P->getType()->isPointerTy() && "Unexpected type."); 4227 4228 if (Cost->isScalarAfterVectorization(P, VF)) { 4229 // This is the normalized GEP that starts counting at zero. 4230 Value *PtrInd = 4231 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4232 // Determine the number of scalars we need to generate for each unroll 4233 // iteration. If the instruction is uniform, we only need to generate the 4234 // first lane. Otherwise, we generate all VF values. 4235 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4236 for (unsigned Part = 0; Part < UF; ++Part) { 4237 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4238 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4239 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4240 Value *SclrGep = 4241 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4242 SclrGep->setName("next.gep"); 4243 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4244 } 4245 } 4246 return; 4247 } 4248 assert(isa<SCEVConstant>(II.getStep()) && 4249 "Induction step not a SCEV constant!"); 4250 Type *PhiType = II.getStep()->getType(); 4251 4252 // Build a pointer phi 4253 Value *ScalarStartValue = II.getStartValue(); 4254 Type *ScStValueType = ScalarStartValue->getType(); 4255 PHINode *NewPointerPhi = 4256 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4257 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4258 4259 // A pointer induction, performed by using a gep 4260 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4261 Instruction *InductionLoc = LoopLatch->getTerminator(); 4262 const SCEV *ScalarStep = II.getStep(); 4263 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4264 Value *ScalarStepValue = 4265 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4266 Value *InductionGEP = GetElementPtrInst::Create( 4267 ScStValueType->getPointerElementType(), NewPointerPhi, 4268 Builder.CreateMul(ScalarStepValue, ConstantInt::get(PhiType, VF * UF)), 4269 "ptr.ind", InductionLoc); 4270 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4271 4272 // Create UF many actual address geps that use the pointer 4273 // phi as base and a vectorized version of the step value 4274 // (<step*0, ..., step*N>) as offset. 4275 for (unsigned Part = 0; Part < UF; ++Part) { 4276 SmallVector<Constant *, 8> Indices; 4277 // Create a vector of consecutive numbers from zero to VF. 4278 for (unsigned i = 0; i < VF; ++i) 4279 Indices.push_back(ConstantInt::get(PhiType, i + Part * VF)); 4280 Constant *StartOffset = ConstantVector::get(Indices); 4281 4282 Value *GEP = Builder.CreateGEP( 4283 ScStValueType->getPointerElementType(), NewPointerPhi, 4284 Builder.CreateMul(StartOffset, 4285 Builder.CreateVectorSplat(VF, ScalarStepValue), 4286 "vector.gep")); 4287 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4288 } 4289 } 4290 } 4291 } 4292 4293 /// A helper function for checking whether an integer division-related 4294 /// instruction may divide by zero (in which case it must be predicated if 4295 /// executed conditionally in the scalar code). 4296 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4297 /// Non-zero divisors that are non compile-time constants will not be 4298 /// converted into multiplication, so we will still end up scalarizing 4299 /// the division, but can do so w/o predication. 4300 static bool mayDivideByZero(Instruction &I) { 4301 assert((I.getOpcode() == Instruction::UDiv || 4302 I.getOpcode() == Instruction::SDiv || 4303 I.getOpcode() == Instruction::URem || 4304 I.getOpcode() == Instruction::SRem) && 4305 "Unexpected instruction"); 4306 Value *Divisor = I.getOperand(1); 4307 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4308 return !CInt || CInt->isZero(); 4309 } 4310 4311 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4312 VPTransformState &State) { 4313 switch (I.getOpcode()) { 4314 case Instruction::Call: 4315 case Instruction::Br: 4316 case Instruction::PHI: 4317 case Instruction::GetElementPtr: 4318 case Instruction::Select: 4319 llvm_unreachable("This instruction is handled by a different recipe."); 4320 case Instruction::UDiv: 4321 case Instruction::SDiv: 4322 case Instruction::SRem: 4323 case Instruction::URem: 4324 case Instruction::Add: 4325 case Instruction::FAdd: 4326 case Instruction::Sub: 4327 case Instruction::FSub: 4328 case Instruction::FNeg: 4329 case Instruction::Mul: 4330 case Instruction::FMul: 4331 case Instruction::FDiv: 4332 case Instruction::FRem: 4333 case Instruction::Shl: 4334 case Instruction::LShr: 4335 case Instruction::AShr: 4336 case Instruction::And: 4337 case Instruction::Or: 4338 case Instruction::Xor: { 4339 // Just widen unops and binops. 4340 setDebugLocFromInst(Builder, &I); 4341 4342 for (unsigned Part = 0; Part < UF; ++Part) { 4343 SmallVector<Value *, 2> Ops; 4344 for (VPValue *VPOp : User.operands()) 4345 Ops.push_back(State.get(VPOp, Part)); 4346 4347 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4348 4349 if (auto *VecOp = dyn_cast<Instruction>(V)) 4350 VecOp->copyIRFlags(&I); 4351 4352 // Use this vector value for all users of the original instruction. 4353 VectorLoopValueMap.setVectorValue(&I, Part, V); 4354 addMetadata(V, &I); 4355 } 4356 4357 break; 4358 } 4359 case Instruction::ICmp: 4360 case Instruction::FCmp: { 4361 // Widen compares. Generate vector compares. 4362 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4363 auto *Cmp = cast<CmpInst>(&I); 4364 setDebugLocFromInst(Builder, Cmp); 4365 for (unsigned Part = 0; Part < UF; ++Part) { 4366 Value *A = State.get(User.getOperand(0), Part); 4367 Value *B = State.get(User.getOperand(1), Part); 4368 Value *C = nullptr; 4369 if (FCmp) { 4370 // Propagate fast math flags. 4371 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4372 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4373 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4374 } else { 4375 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4376 } 4377 VectorLoopValueMap.setVectorValue(&I, Part, C); 4378 addMetadata(C, &I); 4379 } 4380 4381 break; 4382 } 4383 4384 case Instruction::ZExt: 4385 case Instruction::SExt: 4386 case Instruction::FPToUI: 4387 case Instruction::FPToSI: 4388 case Instruction::FPExt: 4389 case Instruction::PtrToInt: 4390 case Instruction::IntToPtr: 4391 case Instruction::SIToFP: 4392 case Instruction::UIToFP: 4393 case Instruction::Trunc: 4394 case Instruction::FPTrunc: 4395 case Instruction::BitCast: { 4396 auto *CI = cast<CastInst>(&I); 4397 setDebugLocFromInst(Builder, CI); 4398 4399 /// Vectorize casts. 4400 Type *DestTy = 4401 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4402 4403 for (unsigned Part = 0; Part < UF; ++Part) { 4404 Value *A = State.get(User.getOperand(0), Part); 4405 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4406 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4407 addMetadata(Cast, &I); 4408 } 4409 break; 4410 } 4411 default: 4412 // This instruction is not vectorized by simple widening. 4413 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4414 llvm_unreachable("Unhandled instruction!"); 4415 } // end of switch. 4416 } 4417 4418 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4419 VPTransformState &State) { 4420 assert(!isa<DbgInfoIntrinsic>(I) && 4421 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4422 setDebugLocFromInst(Builder, &I); 4423 4424 Module *M = I.getParent()->getParent()->getParent(); 4425 auto *CI = cast<CallInst>(&I); 4426 4427 SmallVector<Type *, 4> Tys; 4428 for (Value *ArgOperand : CI->arg_operands()) 4429 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4430 4431 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4432 4433 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4434 // version of the instruction. 4435 // Is it beneficial to perform intrinsic call compared to lib call? 4436 bool NeedToScalarize = false; 4437 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4438 bool UseVectorIntrinsic = 4439 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4440 assert((UseVectorIntrinsic || !NeedToScalarize) && 4441 "Instruction should be scalarized elsewhere."); 4442 4443 for (unsigned Part = 0; Part < UF; ++Part) { 4444 SmallVector<Value *, 4> Args; 4445 for (auto &I : enumerate(ArgOperands.operands())) { 4446 // Some intrinsics have a scalar argument - don't replace it with a 4447 // vector. 4448 Value *Arg; 4449 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4450 Arg = State.get(I.value(), Part); 4451 else 4452 Arg = State.get(I.value(), {0, 0}); 4453 Args.push_back(Arg); 4454 } 4455 4456 Function *VectorF; 4457 if (UseVectorIntrinsic) { 4458 // Use vector version of the intrinsic. 4459 Type *TysForDecl[] = {CI->getType()}; 4460 if (VF > 1) 4461 TysForDecl[0] = 4462 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4463 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4464 assert(VectorF && "Can't retrieve vector intrinsic."); 4465 } else { 4466 // Use vector version of the function call. 4467 const VFShape Shape = 4468 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4469 #ifndef NDEBUG 4470 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4471 "Can't create vector function."); 4472 #endif 4473 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4474 } 4475 SmallVector<OperandBundleDef, 1> OpBundles; 4476 CI->getOperandBundlesAsDefs(OpBundles); 4477 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4478 4479 if (isa<FPMathOperator>(V)) 4480 V->copyFastMathFlags(CI); 4481 4482 VectorLoopValueMap.setVectorValue(&I, Part, V); 4483 addMetadata(V, &I); 4484 } 4485 } 4486 4487 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4488 VPUser &Operands, 4489 bool InvariantCond, 4490 VPTransformState &State) { 4491 setDebugLocFromInst(Builder, &I); 4492 4493 // The condition can be loop invariant but still defined inside the 4494 // loop. This means that we can't just use the original 'cond' value. 4495 // We have to take the 'vectorized' value and pick the first lane. 4496 // Instcombine will make this a no-op. 4497 auto *InvarCond = 4498 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4499 4500 for (unsigned Part = 0; Part < UF; ++Part) { 4501 Value *Cond = 4502 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4503 Value *Op0 = State.get(Operands.getOperand(1), Part); 4504 Value *Op1 = State.get(Operands.getOperand(2), Part); 4505 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4506 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4507 addMetadata(Sel, &I); 4508 } 4509 } 4510 4511 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4512 // We should not collect Scalars more than once per VF. Right now, this 4513 // function is called from collectUniformsAndScalars(), which already does 4514 // this check. Collecting Scalars for VF=1 does not make any sense. 4515 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4516 "This function should not be visited twice for the same VF"); 4517 4518 SmallSetVector<Instruction *, 8> Worklist; 4519 4520 // These sets are used to seed the analysis with pointers used by memory 4521 // accesses that will remain scalar. 4522 SmallSetVector<Instruction *, 8> ScalarPtrs; 4523 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4524 auto *Latch = TheLoop->getLoopLatch(); 4525 4526 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4527 // The pointer operands of loads and stores will be scalar as long as the 4528 // memory access is not a gather or scatter operation. The value operand of a 4529 // store will remain scalar if the store is scalarized. 4530 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4531 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4532 assert(WideningDecision != CM_Unknown && 4533 "Widening decision should be ready at this moment"); 4534 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4535 if (Ptr == Store->getValueOperand()) 4536 return WideningDecision == CM_Scalarize; 4537 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4538 "Ptr is neither a value or pointer operand"); 4539 return WideningDecision != CM_GatherScatter; 4540 }; 4541 4542 // A helper that returns true if the given value is a bitcast or 4543 // getelementptr instruction contained in the loop. 4544 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4545 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4546 isa<GetElementPtrInst>(V)) && 4547 !TheLoop->isLoopInvariant(V); 4548 }; 4549 4550 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4551 if (!isa<PHINode>(Ptr) || 4552 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4553 return false; 4554 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4555 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4556 return false; 4557 return isScalarUse(MemAccess, Ptr); 4558 }; 4559 4560 // A helper that evaluates a memory access's use of a pointer. If the 4561 // pointer is actually the pointer induction of a loop, it is being 4562 // inserted into Worklist. If the use will be a scalar use, and the 4563 // pointer is only used by memory accesses, we place the pointer in 4564 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4565 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4566 if (isScalarPtrInduction(MemAccess, Ptr)) { 4567 Worklist.insert(cast<Instruction>(Ptr)); 4568 Instruction *Update = cast<Instruction>( 4569 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4570 Worklist.insert(Update); 4571 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4572 << "\n"); 4573 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4574 << "\n"); 4575 return; 4576 } 4577 // We only care about bitcast and getelementptr instructions contained in 4578 // the loop. 4579 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4580 return; 4581 4582 // If the pointer has already been identified as scalar (e.g., if it was 4583 // also identified as uniform), there's nothing to do. 4584 auto *I = cast<Instruction>(Ptr); 4585 if (Worklist.count(I)) 4586 return; 4587 4588 // If the use of the pointer will be a scalar use, and all users of the 4589 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4590 // place the pointer in PossibleNonScalarPtrs. 4591 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4592 return isa<LoadInst>(U) || isa<StoreInst>(U); 4593 })) 4594 ScalarPtrs.insert(I); 4595 else 4596 PossibleNonScalarPtrs.insert(I); 4597 }; 4598 4599 // We seed the scalars analysis with three classes of instructions: (1) 4600 // instructions marked uniform-after-vectorization and (2) bitcast, 4601 // getelementptr and (pointer) phi instructions used by memory accesses 4602 // requiring a scalar use. 4603 // 4604 // (1) Add to the worklist all instructions that have been identified as 4605 // uniform-after-vectorization. 4606 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4607 4608 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4609 // memory accesses requiring a scalar use. The pointer operands of loads and 4610 // stores will be scalar as long as the memory accesses is not a gather or 4611 // scatter operation. The value operand of a store will remain scalar if the 4612 // store is scalarized. 4613 for (auto *BB : TheLoop->blocks()) 4614 for (auto &I : *BB) { 4615 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4616 evaluatePtrUse(Load, Load->getPointerOperand()); 4617 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4618 evaluatePtrUse(Store, Store->getPointerOperand()); 4619 evaluatePtrUse(Store, Store->getValueOperand()); 4620 } 4621 } 4622 for (auto *I : ScalarPtrs) 4623 if (!PossibleNonScalarPtrs.count(I)) { 4624 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4625 Worklist.insert(I); 4626 } 4627 4628 // Insert the forced scalars. 4629 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4630 // induction variable when the PHI user is scalarized. 4631 auto ForcedScalar = ForcedScalars.find(VF); 4632 if (ForcedScalar != ForcedScalars.end()) 4633 for (auto *I : ForcedScalar->second) 4634 Worklist.insert(I); 4635 4636 // Expand the worklist by looking through any bitcasts and getelementptr 4637 // instructions we've already identified as scalar. This is similar to the 4638 // expansion step in collectLoopUniforms(); however, here we're only 4639 // expanding to include additional bitcasts and getelementptr instructions. 4640 unsigned Idx = 0; 4641 while (Idx != Worklist.size()) { 4642 Instruction *Dst = Worklist[Idx++]; 4643 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4644 continue; 4645 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4646 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4647 auto *J = cast<Instruction>(U); 4648 return !TheLoop->contains(J) || Worklist.count(J) || 4649 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4650 isScalarUse(J, Src)); 4651 })) { 4652 Worklist.insert(Src); 4653 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4654 } 4655 } 4656 4657 // An induction variable will remain scalar if all users of the induction 4658 // variable and induction variable update remain scalar. 4659 for (auto &Induction : Legal->getInductionVars()) { 4660 auto *Ind = Induction.first; 4661 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4662 4663 // If tail-folding is applied, the primary induction variable will be used 4664 // to feed a vector compare. 4665 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4666 continue; 4667 4668 // Determine if all users of the induction variable are scalar after 4669 // vectorization. 4670 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4671 auto *I = cast<Instruction>(U); 4672 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4673 }); 4674 if (!ScalarInd) 4675 continue; 4676 4677 // Determine if all users of the induction variable update instruction are 4678 // scalar after vectorization. 4679 auto ScalarIndUpdate = 4680 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4681 auto *I = cast<Instruction>(U); 4682 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4683 }); 4684 if (!ScalarIndUpdate) 4685 continue; 4686 4687 // The induction variable and its update instruction will remain scalar. 4688 Worklist.insert(Ind); 4689 Worklist.insert(IndUpdate); 4690 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4691 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4692 << "\n"); 4693 } 4694 4695 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4696 } 4697 4698 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4699 if (!blockNeedsPredication(I->getParent())) 4700 return false; 4701 switch(I->getOpcode()) { 4702 default: 4703 break; 4704 case Instruction::Load: 4705 case Instruction::Store: { 4706 if (!Legal->isMaskRequired(I)) 4707 return false; 4708 auto *Ptr = getLoadStorePointerOperand(I); 4709 auto *Ty = getMemInstValueType(I); 4710 // We have already decided how to vectorize this instruction, get that 4711 // result. 4712 if (VF > 1) { 4713 InstWidening WideningDecision = getWideningDecision(I, VF); 4714 assert(WideningDecision != CM_Unknown && 4715 "Widening decision should be ready at this moment"); 4716 return WideningDecision == CM_Scalarize; 4717 } 4718 const Align Alignment = getLoadStoreAlignment(I); 4719 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4720 isLegalMaskedGather(Ty, Alignment)) 4721 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4722 isLegalMaskedScatter(Ty, Alignment)); 4723 } 4724 case Instruction::UDiv: 4725 case Instruction::SDiv: 4726 case Instruction::SRem: 4727 case Instruction::URem: 4728 return mayDivideByZero(*I); 4729 } 4730 return false; 4731 } 4732 4733 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4734 unsigned VF) { 4735 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4736 assert(getWideningDecision(I, VF) == CM_Unknown && 4737 "Decision should not be set yet."); 4738 auto *Group = getInterleavedAccessGroup(I); 4739 assert(Group && "Must have a group."); 4740 4741 // If the instruction's allocated size doesn't equal it's type size, it 4742 // requires padding and will be scalarized. 4743 auto &DL = I->getModule()->getDataLayout(); 4744 auto *ScalarTy = getMemInstValueType(I); 4745 if (hasIrregularType(ScalarTy, DL, VF)) 4746 return false; 4747 4748 // Check if masking is required. 4749 // A Group may need masking for one of two reasons: it resides in a block that 4750 // needs predication, or it was decided to use masking to deal with gaps. 4751 bool PredicatedAccessRequiresMasking = 4752 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4753 bool AccessWithGapsRequiresMasking = 4754 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4755 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4756 return true; 4757 4758 // If masked interleaving is required, we expect that the user/target had 4759 // enabled it, because otherwise it either wouldn't have been created or 4760 // it should have been invalidated by the CostModel. 4761 assert(useMaskedInterleavedAccesses(TTI) && 4762 "Masked interleave-groups for predicated accesses are not enabled."); 4763 4764 auto *Ty = getMemInstValueType(I); 4765 const Align Alignment = getLoadStoreAlignment(I); 4766 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4767 : TTI.isLegalMaskedStore(Ty, Alignment); 4768 } 4769 4770 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4771 unsigned VF) { 4772 // Get and ensure we have a valid memory instruction. 4773 LoadInst *LI = dyn_cast<LoadInst>(I); 4774 StoreInst *SI = dyn_cast<StoreInst>(I); 4775 assert((LI || SI) && "Invalid memory instruction"); 4776 4777 auto *Ptr = getLoadStorePointerOperand(I); 4778 4779 // In order to be widened, the pointer should be consecutive, first of all. 4780 if (!Legal->isConsecutivePtr(Ptr)) 4781 return false; 4782 4783 // If the instruction is a store located in a predicated block, it will be 4784 // scalarized. 4785 if (isScalarWithPredication(I)) 4786 return false; 4787 4788 // If the instruction's allocated size doesn't equal it's type size, it 4789 // requires padding and will be scalarized. 4790 auto &DL = I->getModule()->getDataLayout(); 4791 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4792 if (hasIrregularType(ScalarTy, DL, VF)) 4793 return false; 4794 4795 return true; 4796 } 4797 4798 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4799 // We should not collect Uniforms more than once per VF. Right now, 4800 // this function is called from collectUniformsAndScalars(), which 4801 // already does this check. Collecting Uniforms for VF=1 does not make any 4802 // sense. 4803 4804 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4805 "This function should not be visited twice for the same VF"); 4806 4807 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4808 // not analyze again. Uniforms.count(VF) will return 1. 4809 Uniforms[VF].clear(); 4810 4811 // We now know that the loop is vectorizable! 4812 // Collect instructions inside the loop that will remain uniform after 4813 // vectorization. 4814 4815 // Global values, params and instructions outside of current loop are out of 4816 // scope. 4817 auto isOutOfScope = [&](Value *V) -> bool { 4818 Instruction *I = dyn_cast<Instruction>(V); 4819 return (!I || !TheLoop->contains(I)); 4820 }; 4821 4822 SetVector<Instruction *> Worklist; 4823 BasicBlock *Latch = TheLoop->getLoopLatch(); 4824 4825 // Instructions that are scalar with predication must not be considered 4826 // uniform after vectorization, because that would create an erroneous 4827 // replicating region where only a single instance out of VF should be formed. 4828 // TODO: optimize such seldom cases if found important, see PR40816. 4829 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4830 if (isScalarWithPredication(I, VF)) { 4831 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4832 << *I << "\n"); 4833 return; 4834 } 4835 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4836 Worklist.insert(I); 4837 }; 4838 4839 // Start with the conditional branch. If the branch condition is an 4840 // instruction contained in the loop that is only used by the branch, it is 4841 // uniform. 4842 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4843 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4844 addToWorklistIfAllowed(Cmp); 4845 4846 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4847 // are pointers that are treated like consecutive pointers during 4848 // vectorization. The pointer operands of interleaved accesses are an 4849 // example. 4850 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4851 4852 // Holds pointer operands of instructions that are possibly non-uniform. 4853 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4854 4855 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4856 InstWidening WideningDecision = getWideningDecision(I, VF); 4857 assert(WideningDecision != CM_Unknown && 4858 "Widening decision should be ready at this moment"); 4859 4860 return (WideningDecision == CM_Widen || 4861 WideningDecision == CM_Widen_Reverse || 4862 WideningDecision == CM_Interleave); 4863 }; 4864 // Iterate over the instructions in the loop, and collect all 4865 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4866 // that a consecutive-like pointer operand will be scalarized, we collect it 4867 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4868 // getelementptr instruction can be used by both vectorized and scalarized 4869 // memory instructions. For example, if a loop loads and stores from the same 4870 // location, but the store is conditional, the store will be scalarized, and 4871 // the getelementptr won't remain uniform. 4872 for (auto *BB : TheLoop->blocks()) 4873 for (auto &I : *BB) { 4874 // If there's no pointer operand, there's nothing to do. 4875 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4876 if (!Ptr) 4877 continue; 4878 4879 // True if all users of Ptr are memory accesses that have Ptr as their 4880 // pointer operand. 4881 auto UsersAreMemAccesses = 4882 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4883 return getLoadStorePointerOperand(U) == Ptr; 4884 }); 4885 4886 // Ensure the memory instruction will not be scalarized or used by 4887 // gather/scatter, making its pointer operand non-uniform. If the pointer 4888 // operand is used by any instruction other than a memory access, we 4889 // conservatively assume the pointer operand may be non-uniform. 4890 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4891 PossibleNonUniformPtrs.insert(Ptr); 4892 4893 // If the memory instruction will be vectorized and its pointer operand 4894 // is consecutive-like, or interleaving - the pointer operand should 4895 // remain uniform. 4896 else 4897 ConsecutiveLikePtrs.insert(Ptr); 4898 } 4899 4900 // Add to the Worklist all consecutive and consecutive-like pointers that 4901 // aren't also identified as possibly non-uniform. 4902 for (auto *V : ConsecutiveLikePtrs) 4903 if (!PossibleNonUniformPtrs.count(V)) 4904 addToWorklistIfAllowed(V); 4905 4906 // Expand Worklist in topological order: whenever a new instruction 4907 // is added , its users should be already inside Worklist. It ensures 4908 // a uniform instruction will only be used by uniform instructions. 4909 unsigned idx = 0; 4910 while (idx != Worklist.size()) { 4911 Instruction *I = Worklist[idx++]; 4912 4913 for (auto OV : I->operand_values()) { 4914 // isOutOfScope operands cannot be uniform instructions. 4915 if (isOutOfScope(OV)) 4916 continue; 4917 // First order recurrence Phi's should typically be considered 4918 // non-uniform. 4919 auto *OP = dyn_cast<PHINode>(OV); 4920 if (OP && Legal->isFirstOrderRecurrence(OP)) 4921 continue; 4922 // If all the users of the operand are uniform, then add the 4923 // operand into the uniform worklist. 4924 auto *OI = cast<Instruction>(OV); 4925 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4926 auto *J = cast<Instruction>(U); 4927 return Worklist.count(J) || 4928 (OI == getLoadStorePointerOperand(J) && 4929 isUniformDecision(J, VF)); 4930 })) 4931 addToWorklistIfAllowed(OI); 4932 } 4933 } 4934 4935 // Returns true if Ptr is the pointer operand of a memory access instruction 4936 // I, and I is known to not require scalarization. 4937 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4938 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4939 }; 4940 4941 // For an instruction to be added into Worklist above, all its users inside 4942 // the loop should also be in Worklist. However, this condition cannot be 4943 // true for phi nodes that form a cyclic dependence. We must process phi 4944 // nodes separately. An induction variable will remain uniform if all users 4945 // of the induction variable and induction variable update remain uniform. 4946 // The code below handles both pointer and non-pointer induction variables. 4947 for (auto &Induction : Legal->getInductionVars()) { 4948 auto *Ind = Induction.first; 4949 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4950 4951 // Determine if all users of the induction variable are uniform after 4952 // vectorization. 4953 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4954 auto *I = cast<Instruction>(U); 4955 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4956 isVectorizedMemAccessUse(I, Ind); 4957 }); 4958 if (!UniformInd) 4959 continue; 4960 4961 // Determine if all users of the induction variable update instruction are 4962 // uniform after vectorization. 4963 auto UniformIndUpdate = 4964 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4965 auto *I = cast<Instruction>(U); 4966 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4967 isVectorizedMemAccessUse(I, IndUpdate); 4968 }); 4969 if (!UniformIndUpdate) 4970 continue; 4971 4972 // The induction variable and its update instruction will remain uniform. 4973 addToWorklistIfAllowed(Ind); 4974 addToWorklistIfAllowed(IndUpdate); 4975 } 4976 4977 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4978 } 4979 4980 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4981 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4982 4983 if (Legal->getRuntimePointerChecking()->Need) { 4984 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4985 "runtime pointer checks needed. Enable vectorization of this " 4986 "loop with '#pragma clang loop vectorize(enable)' when " 4987 "compiling with -Os/-Oz", 4988 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4989 return true; 4990 } 4991 4992 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4993 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4994 "runtime SCEV checks needed. Enable vectorization of this " 4995 "loop with '#pragma clang loop vectorize(enable)' when " 4996 "compiling with -Os/-Oz", 4997 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4998 return true; 4999 } 5000 5001 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5002 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5003 reportVectorizationFailure("Runtime stride check for small trip count", 5004 "runtime stride == 1 checks needed. Enable vectorization of " 5005 "this loop without such check by compiling with -Os/-Oz", 5006 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5007 return true; 5008 } 5009 5010 return false; 5011 } 5012 5013 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5014 unsigned UserIC) { 5015 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5016 // TODO: It may by useful to do since it's still likely to be dynamically 5017 // uniform if the target can skip. 5018 reportVectorizationFailure( 5019 "Not inserting runtime ptr check for divergent target", 5020 "runtime pointer checks needed. Not enabled for divergent target", 5021 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5022 return None; 5023 } 5024 5025 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5026 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5027 if (TC == 1) { 5028 reportVectorizationFailure("Single iteration (non) loop", 5029 "loop trip count is one, irrelevant for vectorization", 5030 "SingleIterationLoop", ORE, TheLoop); 5031 return None; 5032 } 5033 5034 switch (ScalarEpilogueStatus) { 5035 case CM_ScalarEpilogueAllowed: 5036 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5037 case CM_ScalarEpilogueNotNeededUsePredicate: 5038 LLVM_DEBUG( 5039 dbgs() << "LV: vector predicate hint/switch found.\n" 5040 << "LV: Not allowing scalar epilogue, creating predicated " 5041 << "vector loop.\n"); 5042 break; 5043 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5044 // fallthrough as a special case of OptForSize 5045 case CM_ScalarEpilogueNotAllowedOptSize: 5046 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5047 LLVM_DEBUG( 5048 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5049 else 5050 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5051 << "count.\n"); 5052 5053 // Bail if runtime checks are required, which are not good when optimising 5054 // for size. 5055 if (runtimeChecksRequired()) 5056 return None; 5057 break; 5058 } 5059 5060 // Now try the tail folding 5061 5062 // Invalidate interleave groups that require an epilogue if we can't mask 5063 // the interleave-group. 5064 if (!useMaskedInterleavedAccesses(TTI)) { 5065 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5066 "No decisions should have been taken at this point"); 5067 // Note: There is no need to invalidate any cost modeling decisions here, as 5068 // non where taken so far. 5069 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5070 } 5071 5072 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5073 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5074 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5075 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5076 // Accept MaxVF if we do not have a tail. 5077 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5078 return MaxVF; 5079 } 5080 5081 // If we don't know the precise trip count, or if the trip count that we 5082 // found modulo the vectorization factor is not zero, try to fold the tail 5083 // by masking. 5084 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5085 if (Legal->prepareToFoldTailByMasking()) { 5086 FoldTailByMasking = true; 5087 return MaxVF; 5088 } 5089 5090 if (TC == 0) { 5091 reportVectorizationFailure( 5092 "Unable to calculate the loop count due to complex control flow", 5093 "unable to calculate the loop count due to complex control flow", 5094 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5095 return None; 5096 } 5097 5098 reportVectorizationFailure( 5099 "Cannot optimize for size and vectorize at the same time.", 5100 "cannot optimize for size and vectorize at the same time. " 5101 "Enable vectorization of this loop with '#pragma clang loop " 5102 "vectorize(enable)' when compiling with -Os/-Oz", 5103 "NoTailLoopWithOptForSize", ORE, TheLoop); 5104 return None; 5105 } 5106 5107 unsigned 5108 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5109 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5110 unsigned SmallestType, WidestType; 5111 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5112 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5113 5114 // Get the maximum safe dependence distance in bits computed by LAA. 5115 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5116 // the memory accesses that is most restrictive (involved in the smallest 5117 // dependence distance). 5118 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5119 5120 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5121 5122 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5123 // Note that both WidestRegister and WidestType may not be a powers of 2. 5124 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5125 5126 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5127 << " / " << WidestType << " bits.\n"); 5128 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5129 << WidestRegister << " bits.\n"); 5130 5131 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5132 " into one vector!"); 5133 if (MaxVectorSize == 0) { 5134 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5135 MaxVectorSize = 1; 5136 return MaxVectorSize; 5137 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5138 isPowerOf2_32(ConstTripCount)) { 5139 // We need to clamp the VF to be the ConstTripCount. There is no point in 5140 // choosing a higher viable VF as done in the loop below. 5141 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5142 << ConstTripCount << "\n"); 5143 MaxVectorSize = ConstTripCount; 5144 return MaxVectorSize; 5145 } 5146 5147 unsigned MaxVF = MaxVectorSize; 5148 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5149 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5150 // Collect all viable vectorization factors larger than the default MaxVF 5151 // (i.e. MaxVectorSize). 5152 SmallVector<unsigned, 8> VFs; 5153 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5154 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5155 VFs.push_back(VS); 5156 5157 // For each VF calculate its register usage. 5158 auto RUs = calculateRegisterUsage(VFs); 5159 5160 // Select the largest VF which doesn't require more registers than existing 5161 // ones. 5162 for (int i = RUs.size() - 1; i >= 0; --i) { 5163 bool Selected = true; 5164 for (auto& pair : RUs[i].MaxLocalUsers) { 5165 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5166 if (pair.second > TargetNumRegisters) 5167 Selected = false; 5168 } 5169 if (Selected) { 5170 MaxVF = VFs[i]; 5171 break; 5172 } 5173 } 5174 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5175 if (MaxVF < MinVF) { 5176 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5177 << ") with target's minimum: " << MinVF << '\n'); 5178 MaxVF = MinVF; 5179 } 5180 } 5181 } 5182 return MaxVF; 5183 } 5184 5185 VectorizationFactor 5186 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5187 float Cost = expectedCost(1).first; 5188 const float ScalarCost = Cost; 5189 unsigned Width = 1; 5190 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5191 5192 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5193 if (ForceVectorization && MaxVF > 1) { 5194 // Ignore scalar width, because the user explicitly wants vectorization. 5195 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5196 // evaluation. 5197 Cost = std::numeric_limits<float>::max(); 5198 } 5199 5200 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5201 // Notice that the vector loop needs to be executed less times, so 5202 // we need to divide the cost of the vector loops by the width of 5203 // the vector elements. 5204 VectorizationCostTy C = expectedCost(i); 5205 float VectorCost = C.first / (float)i; 5206 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5207 << " costs: " << (int)VectorCost << ".\n"); 5208 if (!C.second && !ForceVectorization) { 5209 LLVM_DEBUG( 5210 dbgs() << "LV: Not considering vector loop of width " << i 5211 << " because it will not generate any vector instructions.\n"); 5212 continue; 5213 } 5214 if (VectorCost < Cost) { 5215 Cost = VectorCost; 5216 Width = i; 5217 } 5218 } 5219 5220 if (!EnableCondStoresVectorization && NumPredStores) { 5221 reportVectorizationFailure("There are conditional stores.", 5222 "store that is conditionally executed prevents vectorization", 5223 "ConditionalStore", ORE, TheLoop); 5224 Width = 1; 5225 Cost = ScalarCost; 5226 } 5227 5228 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5229 << "LV: Vectorization seems to be not beneficial, " 5230 << "but was forced by a user.\n"); 5231 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5232 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5233 return Factor; 5234 } 5235 5236 std::pair<unsigned, unsigned> 5237 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5238 unsigned MinWidth = -1U; 5239 unsigned MaxWidth = 8; 5240 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5241 5242 // For each block. 5243 for (BasicBlock *BB : TheLoop->blocks()) { 5244 // For each instruction in the loop. 5245 for (Instruction &I : BB->instructionsWithoutDebug()) { 5246 Type *T = I.getType(); 5247 5248 // Skip ignored values. 5249 if (ValuesToIgnore.count(&I)) 5250 continue; 5251 5252 // Only examine Loads, Stores and PHINodes. 5253 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5254 continue; 5255 5256 // Examine PHI nodes that are reduction variables. Update the type to 5257 // account for the recurrence type. 5258 if (auto *PN = dyn_cast<PHINode>(&I)) { 5259 if (!Legal->isReductionVariable(PN)) 5260 continue; 5261 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5262 T = RdxDesc.getRecurrenceType(); 5263 } 5264 5265 // Examine the stored values. 5266 if (auto *ST = dyn_cast<StoreInst>(&I)) 5267 T = ST->getValueOperand()->getType(); 5268 5269 // Ignore loaded pointer types and stored pointer types that are not 5270 // vectorizable. 5271 // 5272 // FIXME: The check here attempts to predict whether a load or store will 5273 // be vectorized. We only know this for certain after a VF has 5274 // been selected. Here, we assume that if an access can be 5275 // vectorized, it will be. We should also look at extending this 5276 // optimization to non-pointer types. 5277 // 5278 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5279 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5280 continue; 5281 5282 MinWidth = std::min(MinWidth, 5283 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5284 MaxWidth = std::max(MaxWidth, 5285 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5286 } 5287 } 5288 5289 return {MinWidth, MaxWidth}; 5290 } 5291 5292 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5293 unsigned LoopCost) { 5294 // -- The interleave heuristics -- 5295 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5296 // There are many micro-architectural considerations that we can't predict 5297 // at this level. For example, frontend pressure (on decode or fetch) due to 5298 // code size, or the number and capabilities of the execution ports. 5299 // 5300 // We use the following heuristics to select the interleave count: 5301 // 1. If the code has reductions, then we interleave to break the cross 5302 // iteration dependency. 5303 // 2. If the loop is really small, then we interleave to reduce the loop 5304 // overhead. 5305 // 3. We don't interleave if we think that we will spill registers to memory 5306 // due to the increased register pressure. 5307 5308 if (!isScalarEpilogueAllowed()) 5309 return 1; 5310 5311 // We used the distance for the interleave count. 5312 if (Legal->getMaxSafeDepDistBytes() != -1U) 5313 return 1; 5314 5315 // Do not interleave loops with a relatively small known or estimated trip 5316 // count. 5317 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5318 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5319 return 1; 5320 5321 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5322 // We divide by these constants so assume that we have at least one 5323 // instruction that uses at least one register. 5324 for (auto& pair : R.MaxLocalUsers) { 5325 pair.second = std::max(pair.second, 1U); 5326 } 5327 5328 // We calculate the interleave count using the following formula. 5329 // Subtract the number of loop invariants from the number of available 5330 // registers. These registers are used by all of the interleaved instances. 5331 // Next, divide the remaining registers by the number of registers that is 5332 // required by the loop, in order to estimate how many parallel instances 5333 // fit without causing spills. All of this is rounded down if necessary to be 5334 // a power of two. We want power of two interleave count to simplify any 5335 // addressing operations or alignment considerations. 5336 // We also want power of two interleave counts to ensure that the induction 5337 // variable of the vector loop wraps to zero, when tail is folded by masking; 5338 // this currently happens when OptForSize, in which case IC is set to 1 above. 5339 unsigned IC = UINT_MAX; 5340 5341 for (auto& pair : R.MaxLocalUsers) { 5342 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5343 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5344 << " registers of " 5345 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5346 if (VF == 1) { 5347 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5348 TargetNumRegisters = ForceTargetNumScalarRegs; 5349 } else { 5350 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5351 TargetNumRegisters = ForceTargetNumVectorRegs; 5352 } 5353 unsigned MaxLocalUsers = pair.second; 5354 unsigned LoopInvariantRegs = 0; 5355 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5356 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5357 5358 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5359 // Don't count the induction variable as interleaved. 5360 if (EnableIndVarRegisterHeur) { 5361 TmpIC = 5362 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5363 std::max(1U, (MaxLocalUsers - 1))); 5364 } 5365 5366 IC = std::min(IC, TmpIC); 5367 } 5368 5369 // Clamp the interleave ranges to reasonable counts. 5370 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5371 5372 // Check if the user has overridden the max. 5373 if (VF == 1) { 5374 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5375 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5376 } else { 5377 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5378 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5379 } 5380 5381 // If trip count is known or estimated compile time constant, limit the 5382 // interleave count to be less than the trip count divided by VF. 5383 if (BestKnownTC) { 5384 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5385 } 5386 5387 // If we did not calculate the cost for VF (because the user selected the VF) 5388 // then we calculate the cost of VF here. 5389 if (LoopCost == 0) 5390 LoopCost = expectedCost(VF).first; 5391 5392 assert(LoopCost && "Non-zero loop cost expected"); 5393 5394 // Clamp the calculated IC to be between the 1 and the max interleave count 5395 // that the target and trip count allows. 5396 if (IC > MaxInterleaveCount) 5397 IC = MaxInterleaveCount; 5398 else if (IC < 1) 5399 IC = 1; 5400 5401 // Interleave if we vectorized this loop and there is a reduction that could 5402 // benefit from interleaving. 5403 if (VF > 1 && !Legal->getReductionVars().empty()) { 5404 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5405 return IC; 5406 } 5407 5408 // Note that if we've already vectorized the loop we will have done the 5409 // runtime check and so interleaving won't require further checks. 5410 bool InterleavingRequiresRuntimePointerCheck = 5411 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5412 5413 // We want to interleave small loops in order to reduce the loop overhead and 5414 // potentially expose ILP opportunities. 5415 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5416 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5417 // We assume that the cost overhead is 1 and we use the cost model 5418 // to estimate the cost of the loop and interleave until the cost of the 5419 // loop overhead is about 5% of the cost of the loop. 5420 unsigned SmallIC = 5421 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5422 5423 // Interleave until store/load ports (estimated by max interleave count) are 5424 // saturated. 5425 unsigned NumStores = Legal->getNumStores(); 5426 unsigned NumLoads = Legal->getNumLoads(); 5427 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5428 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5429 5430 // If we have a scalar reduction (vector reductions are already dealt with 5431 // by this point), we can increase the critical path length if the loop 5432 // we're interleaving is inside another loop. Limit, by default to 2, so the 5433 // critical path only gets increased by one reduction operation. 5434 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5435 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5436 SmallIC = std::min(SmallIC, F); 5437 StoresIC = std::min(StoresIC, F); 5438 LoadsIC = std::min(LoadsIC, F); 5439 } 5440 5441 if (EnableLoadStoreRuntimeInterleave && 5442 std::max(StoresIC, LoadsIC) > SmallIC) { 5443 LLVM_DEBUG( 5444 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5445 return std::max(StoresIC, LoadsIC); 5446 } 5447 5448 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5449 return SmallIC; 5450 } 5451 5452 // Interleave if this is a large loop (small loops are already dealt with by 5453 // this point) that could benefit from interleaving. 5454 bool HasReductions = !Legal->getReductionVars().empty(); 5455 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5456 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5457 return IC; 5458 } 5459 5460 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5461 return 1; 5462 } 5463 5464 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5465 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5466 // This function calculates the register usage by measuring the highest number 5467 // of values that are alive at a single location. Obviously, this is a very 5468 // rough estimation. We scan the loop in a topological order in order and 5469 // assign a number to each instruction. We use RPO to ensure that defs are 5470 // met before their users. We assume that each instruction that has in-loop 5471 // users starts an interval. We record every time that an in-loop value is 5472 // used, so we have a list of the first and last occurrences of each 5473 // instruction. Next, we transpose this data structure into a multi map that 5474 // holds the list of intervals that *end* at a specific location. This multi 5475 // map allows us to perform a linear search. We scan the instructions linearly 5476 // and record each time that a new interval starts, by placing it in a set. 5477 // If we find this value in the multi-map then we remove it from the set. 5478 // The max register usage is the maximum size of the set. 5479 // We also search for instructions that are defined outside the loop, but are 5480 // used inside the loop. We need this number separately from the max-interval 5481 // usage number because when we unroll, loop-invariant values do not take 5482 // more register. 5483 LoopBlocksDFS DFS(TheLoop); 5484 DFS.perform(LI); 5485 5486 RegisterUsage RU; 5487 5488 // Each 'key' in the map opens a new interval. The values 5489 // of the map are the index of the 'last seen' usage of the 5490 // instruction that is the key. 5491 using IntervalMap = DenseMap<Instruction *, unsigned>; 5492 5493 // Maps instruction to its index. 5494 SmallVector<Instruction *, 64> IdxToInstr; 5495 // Marks the end of each interval. 5496 IntervalMap EndPoint; 5497 // Saves the list of instruction indices that are used in the loop. 5498 SmallPtrSet<Instruction *, 8> Ends; 5499 // Saves the list of values that are used in the loop but are 5500 // defined outside the loop, such as arguments and constants. 5501 SmallPtrSet<Value *, 8> LoopInvariants; 5502 5503 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5504 for (Instruction &I : BB->instructionsWithoutDebug()) { 5505 IdxToInstr.push_back(&I); 5506 5507 // Save the end location of each USE. 5508 for (Value *U : I.operands()) { 5509 auto *Instr = dyn_cast<Instruction>(U); 5510 5511 // Ignore non-instruction values such as arguments, constants, etc. 5512 if (!Instr) 5513 continue; 5514 5515 // If this instruction is outside the loop then record it and continue. 5516 if (!TheLoop->contains(Instr)) { 5517 LoopInvariants.insert(Instr); 5518 continue; 5519 } 5520 5521 // Overwrite previous end points. 5522 EndPoint[Instr] = IdxToInstr.size(); 5523 Ends.insert(Instr); 5524 } 5525 } 5526 } 5527 5528 // Saves the list of intervals that end with the index in 'key'. 5529 using InstrList = SmallVector<Instruction *, 2>; 5530 DenseMap<unsigned, InstrList> TransposeEnds; 5531 5532 // Transpose the EndPoints to a list of values that end at each index. 5533 for (auto &Interval : EndPoint) 5534 TransposeEnds[Interval.second].push_back(Interval.first); 5535 5536 SmallPtrSet<Instruction *, 8> OpenIntervals; 5537 5538 // Get the size of the widest register. 5539 unsigned MaxSafeDepDist = -1U; 5540 if (Legal->getMaxSafeDepDistBytes() != -1U) 5541 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5542 unsigned WidestRegister = 5543 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5544 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5545 5546 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5547 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5548 5549 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5550 5551 // A lambda that gets the register usage for the given type and VF. 5552 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5553 if (Ty->isTokenTy()) 5554 return 0U; 5555 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5556 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5557 }; 5558 5559 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5560 Instruction *I = IdxToInstr[i]; 5561 5562 // Remove all of the instructions that end at this location. 5563 InstrList &List = TransposeEnds[i]; 5564 for (Instruction *ToRemove : List) 5565 OpenIntervals.erase(ToRemove); 5566 5567 // Ignore instructions that are never used within the loop. 5568 if (!Ends.count(I)) 5569 continue; 5570 5571 // Skip ignored values. 5572 if (ValuesToIgnore.count(I)) 5573 continue; 5574 5575 // For each VF find the maximum usage of registers. 5576 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5577 // Count the number of live intervals. 5578 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5579 5580 if (VFs[j] == 1) { 5581 for (auto Inst : OpenIntervals) { 5582 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5583 if (RegUsage.find(ClassID) == RegUsage.end()) 5584 RegUsage[ClassID] = 1; 5585 else 5586 RegUsage[ClassID] += 1; 5587 } 5588 } else { 5589 collectUniformsAndScalars(VFs[j]); 5590 for (auto Inst : OpenIntervals) { 5591 // Skip ignored values for VF > 1. 5592 if (VecValuesToIgnore.count(Inst)) 5593 continue; 5594 if (isScalarAfterVectorization(Inst, VFs[j])) { 5595 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5596 if (RegUsage.find(ClassID) == RegUsage.end()) 5597 RegUsage[ClassID] = 1; 5598 else 5599 RegUsage[ClassID] += 1; 5600 } else { 5601 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5602 if (RegUsage.find(ClassID) == RegUsage.end()) 5603 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5604 else 5605 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5606 } 5607 } 5608 } 5609 5610 for (auto& pair : RegUsage) { 5611 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5612 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5613 else 5614 MaxUsages[j][pair.first] = pair.second; 5615 } 5616 } 5617 5618 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5619 << OpenIntervals.size() << '\n'); 5620 5621 // Add the current instruction to the list of open intervals. 5622 OpenIntervals.insert(I); 5623 } 5624 5625 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5626 SmallMapVector<unsigned, unsigned, 4> Invariant; 5627 5628 for (auto Inst : LoopInvariants) { 5629 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5630 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5631 if (Invariant.find(ClassID) == Invariant.end()) 5632 Invariant[ClassID] = Usage; 5633 else 5634 Invariant[ClassID] += Usage; 5635 } 5636 5637 LLVM_DEBUG({ 5638 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5639 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5640 << " item\n"; 5641 for (const auto &pair : MaxUsages[i]) { 5642 dbgs() << "LV(REG): RegisterClass: " 5643 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5644 << " registers\n"; 5645 } 5646 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5647 << " item\n"; 5648 for (const auto &pair : Invariant) { 5649 dbgs() << "LV(REG): RegisterClass: " 5650 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5651 << " registers\n"; 5652 } 5653 }); 5654 5655 RU.LoopInvariantRegs = Invariant; 5656 RU.MaxLocalUsers = MaxUsages[i]; 5657 RUs[i] = RU; 5658 } 5659 5660 return RUs; 5661 } 5662 5663 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5664 // TODO: Cost model for emulated masked load/store is completely 5665 // broken. This hack guides the cost model to use an artificially 5666 // high enough value to practically disable vectorization with such 5667 // operations, except where previously deployed legality hack allowed 5668 // using very low cost values. This is to avoid regressions coming simply 5669 // from moving "masked load/store" check from legality to cost model. 5670 // Masked Load/Gather emulation was previously never allowed. 5671 // Limited number of Masked Store/Scatter emulation was allowed. 5672 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5673 return isa<LoadInst>(I) || 5674 (isa<StoreInst>(I) && 5675 NumPredStores > NumberOfStoresToPredicate); 5676 } 5677 5678 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5679 // If we aren't vectorizing the loop, or if we've already collected the 5680 // instructions to scalarize, there's nothing to do. Collection may already 5681 // have occurred if we have a user-selected VF and are now computing the 5682 // expected cost for interleaving. 5683 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5684 return; 5685 5686 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5687 // not profitable to scalarize any instructions, the presence of VF in the 5688 // map will indicate that we've analyzed it already. 5689 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5690 5691 // Find all the instructions that are scalar with predication in the loop and 5692 // determine if it would be better to not if-convert the blocks they are in. 5693 // If so, we also record the instructions to scalarize. 5694 for (BasicBlock *BB : TheLoop->blocks()) { 5695 if (!blockNeedsPredication(BB)) 5696 continue; 5697 for (Instruction &I : *BB) 5698 if (isScalarWithPredication(&I)) { 5699 ScalarCostsTy ScalarCosts; 5700 // Do not apply discount logic if hacked cost is needed 5701 // for emulated masked memrefs. 5702 if (!useEmulatedMaskMemRefHack(&I) && 5703 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5704 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5705 // Remember that BB will remain after vectorization. 5706 PredicatedBBsAfterVectorization.insert(BB); 5707 } 5708 } 5709 } 5710 5711 int LoopVectorizationCostModel::computePredInstDiscount( 5712 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5713 unsigned VF) { 5714 assert(!isUniformAfterVectorization(PredInst, VF) && 5715 "Instruction marked uniform-after-vectorization will be predicated"); 5716 5717 // Initialize the discount to zero, meaning that the scalar version and the 5718 // vector version cost the same. 5719 int Discount = 0; 5720 5721 // Holds instructions to analyze. The instructions we visit are mapped in 5722 // ScalarCosts. Those instructions are the ones that would be scalarized if 5723 // we find that the scalar version costs less. 5724 SmallVector<Instruction *, 8> Worklist; 5725 5726 // Returns true if the given instruction can be scalarized. 5727 auto canBeScalarized = [&](Instruction *I) -> bool { 5728 // We only attempt to scalarize instructions forming a single-use chain 5729 // from the original predicated block that would otherwise be vectorized. 5730 // Although not strictly necessary, we give up on instructions we know will 5731 // already be scalar to avoid traversing chains that are unlikely to be 5732 // beneficial. 5733 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5734 isScalarAfterVectorization(I, VF)) 5735 return false; 5736 5737 // If the instruction is scalar with predication, it will be analyzed 5738 // separately. We ignore it within the context of PredInst. 5739 if (isScalarWithPredication(I)) 5740 return false; 5741 5742 // If any of the instruction's operands are uniform after vectorization, 5743 // the instruction cannot be scalarized. This prevents, for example, a 5744 // masked load from being scalarized. 5745 // 5746 // We assume we will only emit a value for lane zero of an instruction 5747 // marked uniform after vectorization, rather than VF identical values. 5748 // Thus, if we scalarize an instruction that uses a uniform, we would 5749 // create uses of values corresponding to the lanes we aren't emitting code 5750 // for. This behavior can be changed by allowing getScalarValue to clone 5751 // the lane zero values for uniforms rather than asserting. 5752 for (Use &U : I->operands()) 5753 if (auto *J = dyn_cast<Instruction>(U.get())) 5754 if (isUniformAfterVectorization(J, VF)) 5755 return false; 5756 5757 // Otherwise, we can scalarize the instruction. 5758 return true; 5759 }; 5760 5761 // Compute the expected cost discount from scalarizing the entire expression 5762 // feeding the predicated instruction. We currently only consider expressions 5763 // that are single-use instruction chains. 5764 Worklist.push_back(PredInst); 5765 while (!Worklist.empty()) { 5766 Instruction *I = Worklist.pop_back_val(); 5767 5768 // If we've already analyzed the instruction, there's nothing to do. 5769 if (ScalarCosts.find(I) != ScalarCosts.end()) 5770 continue; 5771 5772 // Compute the cost of the vector instruction. Note that this cost already 5773 // includes the scalarization overhead of the predicated instruction. 5774 unsigned VectorCost = getInstructionCost(I, VF).first; 5775 5776 // Compute the cost of the scalarized instruction. This cost is the cost of 5777 // the instruction as if it wasn't if-converted and instead remained in the 5778 // predicated block. We will scale this cost by block probability after 5779 // computing the scalarization overhead. 5780 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5781 5782 // Compute the scalarization overhead of needed insertelement instructions 5783 // and phi nodes. 5784 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5785 ScalarCost += TTI.getScalarizationOverhead( 5786 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5787 APInt::getAllOnesValue(VF), true, false); 5788 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5789 TTI::TCK_RecipThroughput); 5790 } 5791 5792 // Compute the scalarization overhead of needed extractelement 5793 // instructions. For each of the instruction's operands, if the operand can 5794 // be scalarized, add it to the worklist; otherwise, account for the 5795 // overhead. 5796 for (Use &U : I->operands()) 5797 if (auto *J = dyn_cast<Instruction>(U.get())) { 5798 assert(VectorType::isValidElementType(J->getType()) && 5799 "Instruction has non-scalar type"); 5800 if (canBeScalarized(J)) 5801 Worklist.push_back(J); 5802 else if (needsExtract(J, VF)) 5803 ScalarCost += TTI.getScalarizationOverhead( 5804 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5805 APInt::getAllOnesValue(VF), false, true); 5806 } 5807 5808 // Scale the total scalar cost by block probability. 5809 ScalarCost /= getReciprocalPredBlockProb(); 5810 5811 // Compute the discount. A non-negative discount means the vector version 5812 // of the instruction costs more, and scalarizing would be beneficial. 5813 Discount += VectorCost - ScalarCost; 5814 ScalarCosts[I] = ScalarCost; 5815 } 5816 5817 return Discount; 5818 } 5819 5820 LoopVectorizationCostModel::VectorizationCostTy 5821 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5822 VectorizationCostTy Cost; 5823 5824 // For each block. 5825 for (BasicBlock *BB : TheLoop->blocks()) { 5826 VectorizationCostTy BlockCost; 5827 5828 // For each instruction in the old loop. 5829 for (Instruction &I : BB->instructionsWithoutDebug()) { 5830 // Skip ignored values. 5831 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5832 continue; 5833 5834 VectorizationCostTy C = getInstructionCost(&I, VF); 5835 5836 // Check if we should override the cost. 5837 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5838 C.first = ForceTargetInstructionCost; 5839 5840 BlockCost.first += C.first; 5841 BlockCost.second |= C.second; 5842 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5843 << " for VF " << VF << " For instruction: " << I 5844 << '\n'); 5845 } 5846 5847 // If we are vectorizing a predicated block, it will have been 5848 // if-converted. This means that the block's instructions (aside from 5849 // stores and instructions that may divide by zero) will now be 5850 // unconditionally executed. For the scalar case, we may not always execute 5851 // the predicated block. Thus, scale the block's cost by the probability of 5852 // executing it. 5853 if (VF == 1 && blockNeedsPredication(BB)) 5854 BlockCost.first /= getReciprocalPredBlockProb(); 5855 5856 Cost.first += BlockCost.first; 5857 Cost.second |= BlockCost.second; 5858 } 5859 5860 return Cost; 5861 } 5862 5863 /// Gets Address Access SCEV after verifying that the access pattern 5864 /// is loop invariant except the induction variable dependence. 5865 /// 5866 /// This SCEV can be sent to the Target in order to estimate the address 5867 /// calculation cost. 5868 static const SCEV *getAddressAccessSCEV( 5869 Value *Ptr, 5870 LoopVectorizationLegality *Legal, 5871 PredicatedScalarEvolution &PSE, 5872 const Loop *TheLoop) { 5873 5874 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5875 if (!Gep) 5876 return nullptr; 5877 5878 // We are looking for a gep with all loop invariant indices except for one 5879 // which should be an induction variable. 5880 auto SE = PSE.getSE(); 5881 unsigned NumOperands = Gep->getNumOperands(); 5882 for (unsigned i = 1; i < NumOperands; ++i) { 5883 Value *Opd = Gep->getOperand(i); 5884 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5885 !Legal->isInductionVariable(Opd)) 5886 return nullptr; 5887 } 5888 5889 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5890 return PSE.getSCEV(Ptr); 5891 } 5892 5893 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5894 return Legal->hasStride(I->getOperand(0)) || 5895 Legal->hasStride(I->getOperand(1)); 5896 } 5897 5898 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5899 unsigned VF) { 5900 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5901 Type *ValTy = getMemInstValueType(I); 5902 auto SE = PSE.getSE(); 5903 5904 unsigned AS = getLoadStoreAddressSpace(I); 5905 Value *Ptr = getLoadStorePointerOperand(I); 5906 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5907 5908 // Figure out whether the access is strided and get the stride value 5909 // if it's known in compile time 5910 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5911 5912 // Get the cost of the scalar memory instruction and address computation. 5913 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5914 5915 // Don't pass *I here, since it is scalar but will actually be part of a 5916 // vectorized loop where the user of it is a vectorized instruction. 5917 const Align Alignment = getLoadStoreAlignment(I); 5918 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5919 Alignment, AS, 5920 TTI::TCK_RecipThroughput); 5921 5922 // Get the overhead of the extractelement and insertelement instructions 5923 // we might create due to scalarization. 5924 Cost += getScalarizationOverhead(I, VF); 5925 5926 // If we have a predicated store, it may not be executed for each vector 5927 // lane. Scale the cost by the probability of executing the predicated 5928 // block. 5929 if (isPredicatedInst(I)) { 5930 Cost /= getReciprocalPredBlockProb(); 5931 5932 if (useEmulatedMaskMemRefHack(I)) 5933 // Artificially setting to a high enough value to practically disable 5934 // vectorization with such operations. 5935 Cost = 3000000; 5936 } 5937 5938 return Cost; 5939 } 5940 5941 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5942 unsigned VF) { 5943 Type *ValTy = getMemInstValueType(I); 5944 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5945 Value *Ptr = getLoadStorePointerOperand(I); 5946 unsigned AS = getLoadStoreAddressSpace(I); 5947 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5948 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5949 5950 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5951 "Stride should be 1 or -1 for consecutive memory access"); 5952 const Align Alignment = getLoadStoreAlignment(I); 5953 unsigned Cost = 0; 5954 if (Legal->isMaskRequired(I)) 5955 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5956 CostKind); 5957 else 5958 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5959 CostKind, I); 5960 5961 bool Reverse = ConsecutiveStride < 0; 5962 if (Reverse) 5963 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5964 return Cost; 5965 } 5966 5967 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5968 unsigned VF) { 5969 Type *ValTy = getMemInstValueType(I); 5970 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5971 const Align Alignment = getLoadStoreAlignment(I); 5972 unsigned AS = getLoadStoreAddressSpace(I); 5973 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5974 if (isa<LoadInst>(I)) { 5975 return TTI.getAddressComputationCost(ValTy) + 5976 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5977 CostKind) + 5978 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5979 } 5980 StoreInst *SI = cast<StoreInst>(I); 5981 5982 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5983 return TTI.getAddressComputationCost(ValTy) + 5984 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5985 CostKind) + 5986 (isLoopInvariantStoreValue 5987 ? 0 5988 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5989 VF - 1)); 5990 } 5991 5992 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5993 unsigned VF) { 5994 Type *ValTy = getMemInstValueType(I); 5995 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5996 const Align Alignment = getLoadStoreAlignment(I); 5997 const Value *Ptr = getLoadStorePointerOperand(I); 5998 5999 return TTI.getAddressComputationCost(VectorTy) + 6000 TTI.getGatherScatterOpCost( 6001 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6002 TargetTransformInfo::TCK_RecipThroughput, I); 6003 } 6004 6005 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6006 unsigned VF) { 6007 Type *ValTy = getMemInstValueType(I); 6008 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6009 unsigned AS = getLoadStoreAddressSpace(I); 6010 6011 auto Group = getInterleavedAccessGroup(I); 6012 assert(Group && "Fail to get an interleaved access group."); 6013 6014 unsigned InterleaveFactor = Group->getFactor(); 6015 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 6016 6017 // Holds the indices of existing members in an interleaved load group. 6018 // An interleaved store group doesn't need this as it doesn't allow gaps. 6019 SmallVector<unsigned, 4> Indices; 6020 if (isa<LoadInst>(I)) { 6021 for (unsigned i = 0; i < InterleaveFactor; i++) 6022 if (Group->getMember(i)) 6023 Indices.push_back(i); 6024 } 6025 6026 // Calculate the cost of the whole interleaved group. 6027 bool UseMaskForGaps = 6028 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6029 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6030 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6031 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6032 6033 if (Group->isReverse()) { 6034 // TODO: Add support for reversed masked interleaved access. 6035 assert(!Legal->isMaskRequired(I) && 6036 "Reverse masked interleaved access not supported."); 6037 Cost += Group->getNumMembers() * 6038 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6039 } 6040 return Cost; 6041 } 6042 6043 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6044 unsigned VF) { 6045 // Calculate scalar cost only. Vectorization cost should be ready at this 6046 // moment. 6047 if (VF == 1) { 6048 Type *ValTy = getMemInstValueType(I); 6049 const Align Alignment = getLoadStoreAlignment(I); 6050 unsigned AS = getLoadStoreAddressSpace(I); 6051 6052 return TTI.getAddressComputationCost(ValTy) + 6053 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6054 TTI::TCK_RecipThroughput, I); 6055 } 6056 return getWideningCost(I, VF); 6057 } 6058 6059 LoopVectorizationCostModel::VectorizationCostTy 6060 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6061 // If we know that this instruction will remain uniform, check the cost of 6062 // the scalar version. 6063 if (isUniformAfterVectorization(I, VF)) 6064 VF = 1; 6065 6066 if (VF > 1 && isProfitableToScalarize(I, VF)) 6067 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6068 6069 // Forced scalars do not have any scalarization overhead. 6070 auto ForcedScalar = ForcedScalars.find(VF); 6071 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6072 auto InstSet = ForcedScalar->second; 6073 if (InstSet.count(I)) 6074 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6075 } 6076 6077 Type *VectorTy; 6078 unsigned C = getInstructionCost(I, VF, VectorTy); 6079 6080 bool TypeNotScalarized = 6081 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6082 return VectorizationCostTy(C, TypeNotScalarized); 6083 } 6084 6085 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6086 unsigned VF) { 6087 6088 if (VF == 1) 6089 return 0; 6090 6091 unsigned Cost = 0; 6092 Type *RetTy = ToVectorTy(I->getType(), VF); 6093 if (!RetTy->isVoidTy() && 6094 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6095 Cost += TTI.getScalarizationOverhead( 6096 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6097 6098 // Some targets keep addresses scalar. 6099 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6100 return Cost; 6101 6102 // Some targets support efficient element stores. 6103 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6104 return Cost; 6105 6106 // Collect operands to consider. 6107 CallInst *CI = dyn_cast<CallInst>(I); 6108 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6109 6110 // Skip operands that do not require extraction/scalarization and do not incur 6111 // any overhead. 6112 return Cost + TTI.getOperandsScalarizationOverhead( 6113 filterExtractingOperands(Ops, VF), VF); 6114 } 6115 6116 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6117 if (VF == 1) 6118 return; 6119 NumPredStores = 0; 6120 for (BasicBlock *BB : TheLoop->blocks()) { 6121 // For each instruction in the old loop. 6122 for (Instruction &I : *BB) { 6123 Value *Ptr = getLoadStorePointerOperand(&I); 6124 if (!Ptr) 6125 continue; 6126 6127 // TODO: We should generate better code and update the cost model for 6128 // predicated uniform stores. Today they are treated as any other 6129 // predicated store (see added test cases in 6130 // invariant-store-vectorization.ll). 6131 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6132 NumPredStores++; 6133 6134 if (Legal->isUniform(Ptr) && 6135 // Conditional loads and stores should be scalarized and predicated. 6136 // isScalarWithPredication cannot be used here since masked 6137 // gather/scatters are not considered scalar with predication. 6138 !Legal->blockNeedsPredication(I.getParent())) { 6139 // TODO: Avoid replicating loads and stores instead of 6140 // relying on instcombine to remove them. 6141 // Load: Scalar load + broadcast 6142 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6143 unsigned Cost = getUniformMemOpCost(&I, VF); 6144 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6145 continue; 6146 } 6147 6148 // We assume that widening is the best solution when possible. 6149 if (memoryInstructionCanBeWidened(&I, VF)) { 6150 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6151 int ConsecutiveStride = 6152 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6153 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6154 "Expected consecutive stride."); 6155 InstWidening Decision = 6156 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6157 setWideningDecision(&I, VF, Decision, Cost); 6158 continue; 6159 } 6160 6161 // Choose between Interleaving, Gather/Scatter or Scalarization. 6162 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6163 unsigned NumAccesses = 1; 6164 if (isAccessInterleaved(&I)) { 6165 auto Group = getInterleavedAccessGroup(&I); 6166 assert(Group && "Fail to get an interleaved access group."); 6167 6168 // Make one decision for the whole group. 6169 if (getWideningDecision(&I, VF) != CM_Unknown) 6170 continue; 6171 6172 NumAccesses = Group->getNumMembers(); 6173 if (interleavedAccessCanBeWidened(&I, VF)) 6174 InterleaveCost = getInterleaveGroupCost(&I, VF); 6175 } 6176 6177 unsigned GatherScatterCost = 6178 isLegalGatherOrScatter(&I) 6179 ? getGatherScatterCost(&I, VF) * NumAccesses 6180 : std::numeric_limits<unsigned>::max(); 6181 6182 unsigned ScalarizationCost = 6183 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6184 6185 // Choose better solution for the current VF, 6186 // write down this decision and use it during vectorization. 6187 unsigned Cost; 6188 InstWidening Decision; 6189 if (InterleaveCost <= GatherScatterCost && 6190 InterleaveCost < ScalarizationCost) { 6191 Decision = CM_Interleave; 6192 Cost = InterleaveCost; 6193 } else if (GatherScatterCost < ScalarizationCost) { 6194 Decision = CM_GatherScatter; 6195 Cost = GatherScatterCost; 6196 } else { 6197 Decision = CM_Scalarize; 6198 Cost = ScalarizationCost; 6199 } 6200 // If the instructions belongs to an interleave group, the whole group 6201 // receives the same decision. The whole group receives the cost, but 6202 // the cost will actually be assigned to one instruction. 6203 if (auto Group = getInterleavedAccessGroup(&I)) 6204 setWideningDecision(Group, VF, Decision, Cost); 6205 else 6206 setWideningDecision(&I, VF, Decision, Cost); 6207 } 6208 } 6209 6210 // Make sure that any load of address and any other address computation 6211 // remains scalar unless there is gather/scatter support. This avoids 6212 // inevitable extracts into address registers, and also has the benefit of 6213 // activating LSR more, since that pass can't optimize vectorized 6214 // addresses. 6215 if (TTI.prefersVectorizedAddressing()) 6216 return; 6217 6218 // Start with all scalar pointer uses. 6219 SmallPtrSet<Instruction *, 8> AddrDefs; 6220 for (BasicBlock *BB : TheLoop->blocks()) 6221 for (Instruction &I : *BB) { 6222 Instruction *PtrDef = 6223 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6224 if (PtrDef && TheLoop->contains(PtrDef) && 6225 getWideningDecision(&I, VF) != CM_GatherScatter) 6226 AddrDefs.insert(PtrDef); 6227 } 6228 6229 // Add all instructions used to generate the addresses. 6230 SmallVector<Instruction *, 4> Worklist; 6231 for (auto *I : AddrDefs) 6232 Worklist.push_back(I); 6233 while (!Worklist.empty()) { 6234 Instruction *I = Worklist.pop_back_val(); 6235 for (auto &Op : I->operands()) 6236 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6237 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6238 AddrDefs.insert(InstOp).second) 6239 Worklist.push_back(InstOp); 6240 } 6241 6242 for (auto *I : AddrDefs) { 6243 if (isa<LoadInst>(I)) { 6244 // Setting the desired widening decision should ideally be handled in 6245 // by cost functions, but since this involves the task of finding out 6246 // if the loaded register is involved in an address computation, it is 6247 // instead changed here when we know this is the case. 6248 InstWidening Decision = getWideningDecision(I, VF); 6249 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6250 // Scalarize a widened load of address. 6251 setWideningDecision(I, VF, CM_Scalarize, 6252 (VF * getMemoryInstructionCost(I, 1))); 6253 else if (auto Group = getInterleavedAccessGroup(I)) { 6254 // Scalarize an interleave group of address loads. 6255 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6256 if (Instruction *Member = Group->getMember(I)) 6257 setWideningDecision(Member, VF, CM_Scalarize, 6258 (VF * getMemoryInstructionCost(Member, 1))); 6259 } 6260 } 6261 } else 6262 // Make sure I gets scalarized and a cost estimate without 6263 // scalarization overhead. 6264 ForcedScalars[VF].insert(I); 6265 } 6266 } 6267 6268 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6269 unsigned VF, 6270 Type *&VectorTy) { 6271 Type *RetTy = I->getType(); 6272 if (canTruncateToMinimalBitwidth(I, VF)) 6273 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6274 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6275 auto SE = PSE.getSE(); 6276 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6277 6278 // TODO: We need to estimate the cost of intrinsic calls. 6279 switch (I->getOpcode()) { 6280 case Instruction::GetElementPtr: 6281 // We mark this instruction as zero-cost because the cost of GEPs in 6282 // vectorized code depends on whether the corresponding memory instruction 6283 // is scalarized or not. Therefore, we handle GEPs with the memory 6284 // instruction cost. 6285 return 0; 6286 case Instruction::Br: { 6287 // In cases of scalarized and predicated instructions, there will be VF 6288 // predicated blocks in the vectorized loop. Each branch around these 6289 // blocks requires also an extract of its vector compare i1 element. 6290 bool ScalarPredicatedBB = false; 6291 BranchInst *BI = cast<BranchInst>(I); 6292 if (VF > 1 && BI->isConditional() && 6293 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6294 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6295 ScalarPredicatedBB = true; 6296 6297 if (ScalarPredicatedBB) { 6298 // Return cost for branches around scalarized and predicated blocks. 6299 auto *Vec_i1Ty = 6300 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6301 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6302 false, true) + 6303 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6304 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6305 // The back-edge branch will remain, as will all scalar branches. 6306 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6307 else 6308 // This branch will be eliminated by if-conversion. 6309 return 0; 6310 // Note: We currently assume zero cost for an unconditional branch inside 6311 // a predicated block since it will become a fall-through, although we 6312 // may decide in the future to call TTI for all branches. 6313 } 6314 case Instruction::PHI: { 6315 auto *Phi = cast<PHINode>(I); 6316 6317 // First-order recurrences are replaced by vector shuffles inside the loop. 6318 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6319 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6320 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6321 cast<VectorType>(VectorTy), VF - 1, 6322 FixedVectorType::get(RetTy, 1)); 6323 6324 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6325 // converted into select instructions. We require N - 1 selects per phi 6326 // node, where N is the number of incoming values. 6327 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6328 return (Phi->getNumIncomingValues() - 1) * 6329 TTI.getCmpSelInstrCost( 6330 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6331 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6332 CostKind); 6333 6334 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6335 } 6336 case Instruction::UDiv: 6337 case Instruction::SDiv: 6338 case Instruction::URem: 6339 case Instruction::SRem: 6340 // If we have a predicated instruction, it may not be executed for each 6341 // vector lane. Get the scalarization cost and scale this amount by the 6342 // probability of executing the predicated block. If the instruction is not 6343 // predicated, we fall through to the next case. 6344 if (VF > 1 && isScalarWithPredication(I)) { 6345 unsigned Cost = 0; 6346 6347 // These instructions have a non-void type, so account for the phi nodes 6348 // that we will create. This cost is likely to be zero. The phi node 6349 // cost, if any, should be scaled by the block probability because it 6350 // models a copy at the end of each predicated block. 6351 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6352 6353 // The cost of the non-predicated instruction. 6354 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6355 6356 // The cost of insertelement and extractelement instructions needed for 6357 // scalarization. 6358 Cost += getScalarizationOverhead(I, VF); 6359 6360 // Scale the cost by the probability of executing the predicated blocks. 6361 // This assumes the predicated block for each vector lane is equally 6362 // likely. 6363 return Cost / getReciprocalPredBlockProb(); 6364 } 6365 LLVM_FALLTHROUGH; 6366 case Instruction::Add: 6367 case Instruction::FAdd: 6368 case Instruction::Sub: 6369 case Instruction::FSub: 6370 case Instruction::Mul: 6371 case Instruction::FMul: 6372 case Instruction::FDiv: 6373 case Instruction::FRem: 6374 case Instruction::Shl: 6375 case Instruction::LShr: 6376 case Instruction::AShr: 6377 case Instruction::And: 6378 case Instruction::Or: 6379 case Instruction::Xor: { 6380 // Since we will replace the stride by 1 the multiplication should go away. 6381 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6382 return 0; 6383 // Certain instructions can be cheaper to vectorize if they have a constant 6384 // second vector operand. One example of this are shifts on x86. 6385 Value *Op2 = I->getOperand(1); 6386 TargetTransformInfo::OperandValueProperties Op2VP; 6387 TargetTransformInfo::OperandValueKind Op2VK = 6388 TTI.getOperandInfo(Op2, Op2VP); 6389 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6390 Op2VK = TargetTransformInfo::OK_UniformValue; 6391 6392 SmallVector<const Value *, 4> Operands(I->operand_values()); 6393 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6394 return N * TTI.getArithmeticInstrCost( 6395 I->getOpcode(), VectorTy, CostKind, 6396 TargetTransformInfo::OK_AnyValue, 6397 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6398 } 6399 case Instruction::FNeg: { 6400 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6401 return N * TTI.getArithmeticInstrCost( 6402 I->getOpcode(), VectorTy, CostKind, 6403 TargetTransformInfo::OK_AnyValue, 6404 TargetTransformInfo::OK_AnyValue, 6405 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6406 I->getOperand(0), I); 6407 } 6408 case Instruction::Select: { 6409 SelectInst *SI = cast<SelectInst>(I); 6410 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6411 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6412 Type *CondTy = SI->getCondition()->getType(); 6413 if (!ScalarCond) 6414 CondTy = FixedVectorType::get(CondTy, VF); 6415 6416 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6417 CostKind, I); 6418 } 6419 case Instruction::ICmp: 6420 case Instruction::FCmp: { 6421 Type *ValTy = I->getOperand(0)->getType(); 6422 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6423 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6424 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6425 VectorTy = ToVectorTy(ValTy, VF); 6426 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6427 I); 6428 } 6429 case Instruction::Store: 6430 case Instruction::Load: { 6431 unsigned Width = VF; 6432 if (Width > 1) { 6433 InstWidening Decision = getWideningDecision(I, Width); 6434 assert(Decision != CM_Unknown && 6435 "CM decision should be taken at this point"); 6436 if (Decision == CM_Scalarize) 6437 Width = 1; 6438 } 6439 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6440 return getMemoryInstructionCost(I, VF); 6441 } 6442 case Instruction::ZExt: 6443 case Instruction::SExt: 6444 case Instruction::FPToUI: 6445 case Instruction::FPToSI: 6446 case Instruction::FPExt: 6447 case Instruction::PtrToInt: 6448 case Instruction::IntToPtr: 6449 case Instruction::SIToFP: 6450 case Instruction::UIToFP: 6451 case Instruction::Trunc: 6452 case Instruction::FPTrunc: 6453 case Instruction::BitCast: { 6454 // We optimize the truncation of induction variables having constant 6455 // integer steps. The cost of these truncations is the same as the scalar 6456 // operation. 6457 if (isOptimizableIVTruncate(I, VF)) { 6458 auto *Trunc = cast<TruncInst>(I); 6459 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6460 Trunc->getSrcTy(), CostKind, Trunc); 6461 } 6462 6463 Type *SrcScalarTy = I->getOperand(0)->getType(); 6464 Type *SrcVecTy = 6465 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6466 if (canTruncateToMinimalBitwidth(I, VF)) { 6467 // This cast is going to be shrunk. This may remove the cast or it might 6468 // turn it into slightly different cast. For example, if MinBW == 16, 6469 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6470 // 6471 // Calculate the modified src and dest types. 6472 Type *MinVecTy = VectorTy; 6473 if (I->getOpcode() == Instruction::Trunc) { 6474 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6475 VectorTy = 6476 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6477 } else if (I->getOpcode() == Instruction::ZExt || 6478 I->getOpcode() == Instruction::SExt) { 6479 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6480 VectorTy = 6481 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6482 } 6483 } 6484 6485 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6486 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6487 CostKind, I); 6488 } 6489 case Instruction::Call: { 6490 bool NeedToScalarize; 6491 CallInst *CI = cast<CallInst>(I); 6492 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6493 if (getVectorIntrinsicIDForCall(CI, TLI)) 6494 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6495 return CallCost; 6496 } 6497 default: 6498 // The cost of executing VF copies of the scalar instruction. This opcode 6499 // is unknown. Assume that it is the same as 'mul'. 6500 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6501 CostKind) + 6502 getScalarizationOverhead(I, VF); 6503 } // end of switch. 6504 } 6505 6506 char LoopVectorize::ID = 0; 6507 6508 static const char lv_name[] = "Loop Vectorization"; 6509 6510 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6511 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6512 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6513 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6514 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6515 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6516 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6517 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6518 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6519 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6520 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6521 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6522 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6523 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6524 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6525 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6526 6527 namespace llvm { 6528 6529 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6530 6531 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6532 bool VectorizeOnlyWhenForced) { 6533 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6534 } 6535 6536 } // end namespace llvm 6537 6538 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6539 // Check if the pointer operand of a load or store instruction is 6540 // consecutive. 6541 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6542 return Legal->isConsecutivePtr(Ptr); 6543 return false; 6544 } 6545 6546 void LoopVectorizationCostModel::collectValuesToIgnore() { 6547 // Ignore ephemeral values. 6548 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6549 6550 // Ignore type-promoting instructions we identified during reduction 6551 // detection. 6552 for (auto &Reduction : Legal->getReductionVars()) { 6553 RecurrenceDescriptor &RedDes = Reduction.second; 6554 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6555 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6556 } 6557 // Ignore type-casting instructions we identified during induction 6558 // detection. 6559 for (auto &Induction : Legal->getInductionVars()) { 6560 InductionDescriptor &IndDes = Induction.second; 6561 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6562 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6563 } 6564 } 6565 6566 // TODO: we could return a pair of values that specify the max VF and 6567 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6568 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6569 // doesn't have a cost model that can choose which plan to execute if 6570 // more than one is generated. 6571 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6572 LoopVectorizationCostModel &CM) { 6573 unsigned WidestType; 6574 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6575 return WidestVectorRegBits / WidestType; 6576 } 6577 6578 VectorizationFactor 6579 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6580 unsigned VF = UserVF; 6581 // Outer loop handling: They may require CFG and instruction level 6582 // transformations before even evaluating whether vectorization is profitable. 6583 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6584 // the vectorization pipeline. 6585 if (!OrigLoop->empty()) { 6586 // If the user doesn't provide a vectorization factor, determine a 6587 // reasonable one. 6588 if (!UserVF) { 6589 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6590 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6591 6592 // Make sure we have a VF > 1 for stress testing. 6593 if (VPlanBuildStressTest && VF < 2) { 6594 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6595 << "overriding computed VF.\n"); 6596 VF = 4; 6597 } 6598 } 6599 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6600 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6601 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6602 << " to build VPlans.\n"); 6603 buildVPlans(VF, VF); 6604 6605 // For VPlan build stress testing, we bail out after VPlan construction. 6606 if (VPlanBuildStressTest) 6607 return VectorizationFactor::Disabled(); 6608 6609 return {VF, 0}; 6610 } 6611 6612 LLVM_DEBUG( 6613 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6614 "VPlan-native path.\n"); 6615 return VectorizationFactor::Disabled(); 6616 } 6617 6618 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6619 unsigned UserIC) { 6620 assert(OrigLoop->empty() && "Inner loop expected."); 6621 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6622 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6623 return None; 6624 6625 // Invalidate interleave groups if all blocks of loop will be predicated. 6626 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6627 !useMaskedInterleavedAccesses(*TTI)) { 6628 LLVM_DEBUG( 6629 dbgs() 6630 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6631 "which requires masked-interleaved support.\n"); 6632 if (CM.InterleaveInfo.invalidateGroups()) 6633 // Invalidating interleave groups also requires invalidating all decisions 6634 // based on them, which includes widening decisions and uniform and scalar 6635 // values. 6636 CM.invalidateCostModelingDecisions(); 6637 } 6638 6639 if (UserVF) { 6640 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6641 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6642 // Collect the instructions (and their associated costs) that will be more 6643 // profitable to scalarize. 6644 CM.selectUserVectorizationFactor(UserVF); 6645 buildVPlansWithVPRecipes(UserVF, UserVF); 6646 LLVM_DEBUG(printPlans(dbgs())); 6647 return {{UserVF, 0}}; 6648 } 6649 6650 unsigned MaxVF = MaybeMaxVF.getValue(); 6651 assert(MaxVF != 0 && "MaxVF is zero."); 6652 6653 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6654 // Collect Uniform and Scalar instructions after vectorization with VF. 6655 CM.collectUniformsAndScalars(VF); 6656 6657 // Collect the instructions (and their associated costs) that will be more 6658 // profitable to scalarize. 6659 if (VF > 1) 6660 CM.collectInstsToScalarize(VF); 6661 } 6662 6663 buildVPlansWithVPRecipes(1, MaxVF); 6664 LLVM_DEBUG(printPlans(dbgs())); 6665 if (MaxVF == 1) 6666 return VectorizationFactor::Disabled(); 6667 6668 // Select the optimal vectorization factor. 6669 return CM.selectVectorizationFactor(MaxVF); 6670 } 6671 6672 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6673 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6674 << '\n'); 6675 BestVF = VF; 6676 BestUF = UF; 6677 6678 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6679 return !Plan->hasVF(VF); 6680 }); 6681 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6682 } 6683 6684 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6685 DominatorTree *DT) { 6686 // Perform the actual loop transformation. 6687 6688 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6689 VPCallbackILV CallbackILV(ILV); 6690 6691 VPTransformState State{BestVF, BestUF, LI, 6692 DT, ILV.Builder, ILV.VectorLoopValueMap, 6693 &ILV, CallbackILV}; 6694 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6695 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6696 State.CanonicalIV = ILV.Induction; 6697 6698 //===------------------------------------------------===// 6699 // 6700 // Notice: any optimization or new instruction that go 6701 // into the code below should also be implemented in 6702 // the cost-model. 6703 // 6704 //===------------------------------------------------===// 6705 6706 // 2. Copy and widen instructions from the old loop into the new loop. 6707 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6708 VPlans.front()->execute(&State); 6709 6710 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6711 // predication, updating analyses. 6712 ILV.fixVectorizedLoop(); 6713 } 6714 6715 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6716 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6717 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6718 6719 // We create new control-flow for the vectorized loop, so the original 6720 // condition will be dead after vectorization if it's only used by the 6721 // branch. 6722 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6723 if (Cmp && Cmp->hasOneUse()) 6724 DeadInstructions.insert(Cmp); 6725 6726 // We create new "steps" for induction variable updates to which the original 6727 // induction variables map. An original update instruction will be dead if 6728 // all its users except the induction variable are dead. 6729 for (auto &Induction : Legal->getInductionVars()) { 6730 PHINode *Ind = Induction.first; 6731 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6732 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6733 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6734 })) 6735 DeadInstructions.insert(IndUpdate); 6736 6737 // We record as "Dead" also the type-casting instructions we had identified 6738 // during induction analysis. We don't need any handling for them in the 6739 // vectorized loop because we have proven that, under a proper runtime 6740 // test guarding the vectorized loop, the value of the phi, and the casted 6741 // value of the phi, are the same. The last instruction in this casting chain 6742 // will get its scalar/vector/widened def from the scalar/vector/widened def 6743 // of the respective phi node. Any other casts in the induction def-use chain 6744 // have no other uses outside the phi update chain, and will be ignored. 6745 InductionDescriptor &IndDes = Induction.second; 6746 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6747 DeadInstructions.insert(Casts.begin(), Casts.end()); 6748 } 6749 } 6750 6751 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6752 6753 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6754 6755 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6756 Instruction::BinaryOps BinOp) { 6757 // When unrolling and the VF is 1, we only need to add a simple scalar. 6758 Type *Ty = Val->getType(); 6759 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6760 6761 if (Ty->isFloatingPointTy()) { 6762 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6763 6764 // Floating point operations had to be 'fast' to enable the unrolling. 6765 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6766 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6767 } 6768 Constant *C = ConstantInt::get(Ty, StartIdx); 6769 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6770 } 6771 6772 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6773 SmallVector<Metadata *, 4> MDs; 6774 // Reserve first location for self reference to the LoopID metadata node. 6775 MDs.push_back(nullptr); 6776 bool IsUnrollMetadata = false; 6777 MDNode *LoopID = L->getLoopID(); 6778 if (LoopID) { 6779 // First find existing loop unrolling disable metadata. 6780 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6781 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6782 if (MD) { 6783 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6784 IsUnrollMetadata = 6785 S && S->getString().startswith("llvm.loop.unroll.disable"); 6786 } 6787 MDs.push_back(LoopID->getOperand(i)); 6788 } 6789 } 6790 6791 if (!IsUnrollMetadata) { 6792 // Add runtime unroll disable metadata. 6793 LLVMContext &Context = L->getHeader()->getContext(); 6794 SmallVector<Metadata *, 1> DisableOperands; 6795 DisableOperands.push_back( 6796 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6797 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6798 MDs.push_back(DisableNode); 6799 MDNode *NewLoopID = MDNode::get(Context, MDs); 6800 // Set operand 0 to refer to the loop id itself. 6801 NewLoopID->replaceOperandWith(0, NewLoopID); 6802 L->setLoopID(NewLoopID); 6803 } 6804 } 6805 6806 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6807 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6808 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6809 bool PredicateAtRangeStart = Predicate(Range.Start); 6810 6811 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6812 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6813 Range.End = TmpVF; 6814 break; 6815 } 6816 6817 return PredicateAtRangeStart; 6818 } 6819 6820 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6821 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6822 /// of VF's starting at a given VF and extending it as much as possible. Each 6823 /// vectorization decision can potentially shorten this sub-range during 6824 /// buildVPlan(). 6825 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6826 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6827 VFRange SubRange = {VF, MaxVF + 1}; 6828 VPlans.push_back(buildVPlan(SubRange)); 6829 VF = SubRange.End; 6830 } 6831 } 6832 6833 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6834 VPlanPtr &Plan) { 6835 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6836 6837 // Look for cached value. 6838 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6839 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6840 if (ECEntryIt != EdgeMaskCache.end()) 6841 return ECEntryIt->second; 6842 6843 VPValue *SrcMask = createBlockInMask(Src, Plan); 6844 6845 // The terminator has to be a branch inst! 6846 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6847 assert(BI && "Unexpected terminator found"); 6848 6849 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6850 return EdgeMaskCache[Edge] = SrcMask; 6851 6852 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6853 assert(EdgeMask && "No Edge Mask found for condition"); 6854 6855 if (BI->getSuccessor(0) != Dst) 6856 EdgeMask = Builder.createNot(EdgeMask); 6857 6858 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6859 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6860 6861 return EdgeMaskCache[Edge] = EdgeMask; 6862 } 6863 6864 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6865 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6866 6867 // Look for cached value. 6868 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6869 if (BCEntryIt != BlockMaskCache.end()) 6870 return BCEntryIt->second; 6871 6872 // All-one mask is modelled as no-mask following the convention for masked 6873 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6874 VPValue *BlockMask = nullptr; 6875 6876 if (OrigLoop->getHeader() == BB) { 6877 if (!CM.blockNeedsPredication(BB)) 6878 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6879 6880 // Introduce the early-exit compare IV <= BTC to form header block mask. 6881 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6882 // Start by constructing the desired canonical IV. 6883 VPValue *IV = nullptr; 6884 if (Legal->getPrimaryInduction()) 6885 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6886 else { 6887 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6888 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6889 IV = IVRecipe->getVPValue(); 6890 } 6891 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6892 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6893 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6894 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6895 else 6896 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6897 return BlockMaskCache[BB] = BlockMask; 6898 } 6899 6900 // This is the block mask. We OR all incoming edges. 6901 for (auto *Predecessor : predecessors(BB)) { 6902 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6903 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6904 return BlockMaskCache[BB] = EdgeMask; 6905 6906 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6907 BlockMask = EdgeMask; 6908 continue; 6909 } 6910 6911 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6912 } 6913 6914 return BlockMaskCache[BB] = BlockMask; 6915 } 6916 6917 VPWidenMemoryInstructionRecipe * 6918 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6919 VPlanPtr &Plan) { 6920 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6921 "Must be called with either a load or store"); 6922 6923 auto willWiden = [&](unsigned VF) -> bool { 6924 if (VF == 1) 6925 return false; 6926 LoopVectorizationCostModel::InstWidening Decision = 6927 CM.getWideningDecision(I, VF); 6928 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6929 "CM decision should be taken at this point."); 6930 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6931 return true; 6932 if (CM.isScalarAfterVectorization(I, VF) || 6933 CM.isProfitableToScalarize(I, VF)) 6934 return false; 6935 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6936 }; 6937 6938 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6939 return nullptr; 6940 6941 VPValue *Mask = nullptr; 6942 if (Legal->isMaskRequired(I)) 6943 Mask = createBlockInMask(I->getParent(), Plan); 6944 6945 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6946 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6947 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6948 6949 StoreInst *Store = cast<StoreInst>(I); 6950 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6951 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6952 } 6953 6954 VPWidenIntOrFpInductionRecipe * 6955 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6956 // Check if this is an integer or fp induction. If so, build the recipe that 6957 // produces its scalar and vector values. 6958 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6959 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6960 II.getKind() == InductionDescriptor::IK_FpInduction) 6961 return new VPWidenIntOrFpInductionRecipe(Phi); 6962 6963 return nullptr; 6964 } 6965 6966 VPWidenIntOrFpInductionRecipe * 6967 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6968 VFRange &Range) const { 6969 // Optimize the special case where the source is a constant integer 6970 // induction variable. Notice that we can only optimize the 'trunc' case 6971 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6972 // (c) other casts depend on pointer size. 6973 6974 // Determine whether \p K is a truncation based on an induction variable that 6975 // can be optimized. 6976 auto isOptimizableIVTruncate = 6977 [&](Instruction *K) -> std::function<bool(unsigned)> { 6978 return 6979 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6980 }; 6981 6982 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6983 isOptimizableIVTruncate(I), Range)) 6984 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6985 I); 6986 return nullptr; 6987 } 6988 6989 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6990 // We know that all PHIs in non-header blocks are converted into selects, so 6991 // we don't have to worry about the insertion order and we can just use the 6992 // builder. At this point we generate the predication tree. There may be 6993 // duplications since this is a simple recursive scan, but future 6994 // optimizations will clean it up. 6995 6996 SmallVector<VPValue *, 2> Operands; 6997 unsigned NumIncoming = Phi->getNumIncomingValues(); 6998 for (unsigned In = 0; In < NumIncoming; In++) { 6999 VPValue *EdgeMask = 7000 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7001 assert((EdgeMask || NumIncoming == 1) && 7002 "Multiple predecessors with one having a full mask"); 7003 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7004 if (EdgeMask) 7005 Operands.push_back(EdgeMask); 7006 } 7007 return new VPBlendRecipe(Phi, Operands); 7008 } 7009 7010 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7011 VPlan &Plan) const { 7012 7013 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7014 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 7015 Range); 7016 7017 if (IsPredicated) 7018 return nullptr; 7019 7020 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7021 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7022 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7023 return nullptr; 7024 7025 auto willWiden = [&](unsigned VF) -> bool { 7026 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7027 // The following case may be scalarized depending on the VF. 7028 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7029 // version of the instruction. 7030 // Is it beneficial to perform intrinsic call compared to lib call? 7031 bool NeedToScalarize = false; 7032 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7033 bool UseVectorIntrinsic = 7034 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7035 return UseVectorIntrinsic || !NeedToScalarize; 7036 }; 7037 7038 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7039 return nullptr; 7040 7041 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7042 } 7043 7044 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7045 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7046 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7047 // Instruction should be widened, unless it is scalar after vectorization, 7048 // scalarization is profitable or it is predicated. 7049 auto WillScalarize = [this, I](unsigned VF) -> bool { 7050 return CM.isScalarAfterVectorization(I, VF) || 7051 CM.isProfitableToScalarize(I, VF) || 7052 CM.isScalarWithPredication(I, VF); 7053 }; 7054 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7055 Range); 7056 } 7057 7058 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7059 auto IsVectorizableOpcode = [](unsigned Opcode) { 7060 switch (Opcode) { 7061 case Instruction::Add: 7062 case Instruction::And: 7063 case Instruction::AShr: 7064 case Instruction::BitCast: 7065 case Instruction::FAdd: 7066 case Instruction::FCmp: 7067 case Instruction::FDiv: 7068 case Instruction::FMul: 7069 case Instruction::FNeg: 7070 case Instruction::FPExt: 7071 case Instruction::FPToSI: 7072 case Instruction::FPToUI: 7073 case Instruction::FPTrunc: 7074 case Instruction::FRem: 7075 case Instruction::FSub: 7076 case Instruction::ICmp: 7077 case Instruction::IntToPtr: 7078 case Instruction::LShr: 7079 case Instruction::Mul: 7080 case Instruction::Or: 7081 case Instruction::PtrToInt: 7082 case Instruction::SDiv: 7083 case Instruction::Select: 7084 case Instruction::SExt: 7085 case Instruction::Shl: 7086 case Instruction::SIToFP: 7087 case Instruction::SRem: 7088 case Instruction::Sub: 7089 case Instruction::Trunc: 7090 case Instruction::UDiv: 7091 case Instruction::UIToFP: 7092 case Instruction::URem: 7093 case Instruction::Xor: 7094 case Instruction::ZExt: 7095 return true; 7096 } 7097 return false; 7098 }; 7099 7100 if (!IsVectorizableOpcode(I->getOpcode())) 7101 return nullptr; 7102 7103 // Success: widen this instruction. 7104 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7105 } 7106 7107 VPBasicBlock *VPRecipeBuilder::handleReplication( 7108 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7109 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7110 VPlanPtr &Plan) { 7111 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7112 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7113 Range); 7114 7115 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7116 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7117 7118 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7119 IsUniform, IsPredicated); 7120 setRecipe(I, Recipe); 7121 7122 // Find if I uses a predicated instruction. If so, it will use its scalar 7123 // value. Avoid hoisting the insert-element which packs the scalar value into 7124 // a vector value, as that happens iff all users use the vector value. 7125 for (auto &Op : I->operands()) 7126 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7127 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7128 PredInst2Recipe[PredInst]->setAlsoPack(false); 7129 7130 // Finalize the recipe for Instr, first if it is not predicated. 7131 if (!IsPredicated) { 7132 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7133 VPBB->appendRecipe(Recipe); 7134 return VPBB; 7135 } 7136 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7137 assert(VPBB->getSuccessors().empty() && 7138 "VPBB has successors when handling predicated replication."); 7139 // Record predicated instructions for above packing optimizations. 7140 PredInst2Recipe[I] = Recipe; 7141 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7142 VPBlockUtils::insertBlockAfter(Region, VPBB); 7143 auto *RegSucc = new VPBasicBlock(); 7144 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7145 return RegSucc; 7146 } 7147 7148 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7149 VPRecipeBase *PredRecipe, 7150 VPlanPtr &Plan) { 7151 // Instructions marked for predication are replicated and placed under an 7152 // if-then construct to prevent side-effects. 7153 7154 // Generate recipes to compute the block mask for this region. 7155 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7156 7157 // Build the triangular if-then region. 7158 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7159 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7160 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7161 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7162 auto *PHIRecipe = 7163 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7164 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7165 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7166 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7167 7168 // Note: first set Entry as region entry and then connect successors starting 7169 // from it in order, to propagate the "parent" of each VPBasicBlock. 7170 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7171 VPBlockUtils::connectBlocks(Pred, Exit); 7172 7173 return Region; 7174 } 7175 7176 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7177 VFRange &Range, 7178 VPlanPtr &Plan) { 7179 // First, check for specific widening recipes that deal with calls, memory 7180 // operations, inductions and Phi nodes. 7181 if (auto *CI = dyn_cast<CallInst>(Instr)) 7182 return tryToWidenCall(CI, Range, *Plan); 7183 7184 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7185 return tryToWidenMemory(Instr, Range, Plan); 7186 7187 VPRecipeBase *Recipe; 7188 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7189 if (Phi->getParent() != OrigLoop->getHeader()) 7190 return tryToBlend(Phi, Plan); 7191 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7192 return Recipe; 7193 return new VPWidenPHIRecipe(Phi); 7194 } 7195 7196 if (isa<TruncInst>(Instr) && 7197 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7198 return Recipe; 7199 7200 if (!shouldWiden(Instr, Range)) 7201 return nullptr; 7202 7203 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7204 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7205 OrigLoop); 7206 7207 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7208 bool InvariantCond = 7209 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7210 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7211 InvariantCond); 7212 } 7213 7214 return tryToWiden(Instr, *Plan); 7215 } 7216 7217 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7218 unsigned MaxVF) { 7219 assert(OrigLoop->empty() && "Inner loop expected."); 7220 7221 // Collect conditions feeding internal conditional branches; they need to be 7222 // represented in VPlan for it to model masking. 7223 SmallPtrSet<Value *, 1> NeedDef; 7224 7225 auto *Latch = OrigLoop->getLoopLatch(); 7226 for (BasicBlock *BB : OrigLoop->blocks()) { 7227 if (BB == Latch) 7228 continue; 7229 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7230 if (Branch && Branch->isConditional()) 7231 NeedDef.insert(Branch->getCondition()); 7232 } 7233 7234 // If the tail is to be folded by masking, the primary induction variable, if 7235 // exists needs to be represented in VPlan for it to model early-exit masking. 7236 // Also, both the Phi and the live-out instruction of each reduction are 7237 // required in order to introduce a select between them in VPlan. 7238 if (CM.foldTailByMasking()) { 7239 if (Legal->getPrimaryInduction()) 7240 NeedDef.insert(Legal->getPrimaryInduction()); 7241 for (auto &Reduction : Legal->getReductionVars()) { 7242 NeedDef.insert(Reduction.first); 7243 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7244 } 7245 } 7246 7247 // Collect instructions from the original loop that will become trivially dead 7248 // in the vectorized loop. We don't need to vectorize these instructions. For 7249 // example, original induction update instructions can become dead because we 7250 // separately emit induction "steps" when generating code for the new loop. 7251 // Similarly, we create a new latch condition when setting up the structure 7252 // of the new loop, so the old one can become dead. 7253 SmallPtrSet<Instruction *, 4> DeadInstructions; 7254 collectTriviallyDeadInstructions(DeadInstructions); 7255 7256 // Add assume instructions we need to drop to DeadInstructions, to prevent 7257 // them from being added to the VPlan. 7258 // TODO: We only need to drop assumes in blocks that get flattend. If the 7259 // control flow is preserved, we should keep them. 7260 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7261 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7262 7263 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7264 // Dead instructions do not need sinking. Remove them from SinkAfter. 7265 for (Instruction *I : DeadInstructions) 7266 SinkAfter.erase(I); 7267 7268 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7269 VFRange SubRange = {VF, MaxVF + 1}; 7270 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7271 DeadInstructions, SinkAfter)); 7272 VF = SubRange.End; 7273 } 7274 } 7275 7276 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7277 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7278 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7279 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7280 7281 // Hold a mapping from predicated instructions to their recipes, in order to 7282 // fix their AlsoPack behavior if a user is determined to replicate and use a 7283 // scalar instead of vector value. 7284 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7285 7286 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7287 7288 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7289 7290 // --------------------------------------------------------------------------- 7291 // Pre-construction: record ingredients whose recipes we'll need to further 7292 // process after constructing the initial VPlan. 7293 // --------------------------------------------------------------------------- 7294 7295 // Mark instructions we'll need to sink later and their targets as 7296 // ingredients whose recipe we'll need to record. 7297 for (auto &Entry : SinkAfter) { 7298 RecipeBuilder.recordRecipeOf(Entry.first); 7299 RecipeBuilder.recordRecipeOf(Entry.second); 7300 } 7301 7302 // For each interleave group which is relevant for this (possibly trimmed) 7303 // Range, add it to the set of groups to be later applied to the VPlan and add 7304 // placeholders for its members' Recipes which we'll be replacing with a 7305 // single VPInterleaveRecipe. 7306 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7307 auto applyIG = [IG, this](unsigned VF) -> bool { 7308 return (VF >= 2 && // Query is illegal for VF == 1 7309 CM.getWideningDecision(IG->getInsertPos(), VF) == 7310 LoopVectorizationCostModel::CM_Interleave); 7311 }; 7312 if (!getDecisionAndClampRange(applyIG, Range)) 7313 continue; 7314 InterleaveGroups.insert(IG); 7315 for (unsigned i = 0; i < IG->getFactor(); i++) 7316 if (Instruction *Member = IG->getMember(i)) 7317 RecipeBuilder.recordRecipeOf(Member); 7318 }; 7319 7320 // --------------------------------------------------------------------------- 7321 // Build initial VPlan: Scan the body of the loop in a topological order to 7322 // visit each basic block after having visited its predecessor basic blocks. 7323 // --------------------------------------------------------------------------- 7324 7325 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7326 auto Plan = std::make_unique<VPlan>(); 7327 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7328 Plan->setEntry(VPBB); 7329 7330 // Represent values that will have defs inside VPlan. 7331 for (Value *V : NeedDef) 7332 Plan->addVPValue(V); 7333 7334 // Scan the body of the loop in a topological order to visit each basic block 7335 // after having visited its predecessor basic blocks. 7336 LoopBlocksDFS DFS(OrigLoop); 7337 DFS.perform(LI); 7338 7339 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7340 // Relevant instructions from basic block BB will be grouped into VPRecipe 7341 // ingredients and fill a new VPBasicBlock. 7342 unsigned VPBBsForBB = 0; 7343 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7344 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7345 VPBB = FirstVPBBForBB; 7346 Builder.setInsertPoint(VPBB); 7347 7348 // Introduce each ingredient into VPlan. 7349 // TODO: Model and preserve debug instrinsics in VPlan. 7350 for (Instruction &I : BB->instructionsWithoutDebug()) { 7351 Instruction *Instr = &I; 7352 7353 // First filter out irrelevant instructions, to ensure no recipes are 7354 // built for them. 7355 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7356 continue; 7357 7358 if (auto Recipe = 7359 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7360 RecipeBuilder.setRecipe(Instr, Recipe); 7361 VPBB->appendRecipe(Recipe); 7362 continue; 7363 } 7364 7365 // Otherwise, if all widening options failed, Instruction is to be 7366 // replicated. This may create a successor for VPBB. 7367 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7368 Instr, Range, VPBB, PredInst2Recipe, Plan); 7369 if (NextVPBB != VPBB) { 7370 VPBB = NextVPBB; 7371 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7372 : ""); 7373 } 7374 } 7375 } 7376 7377 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7378 // may also be empty, such as the last one VPBB, reflecting original 7379 // basic-blocks with no recipes. 7380 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7381 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7382 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7383 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7384 delete PreEntry; 7385 7386 // --------------------------------------------------------------------------- 7387 // Transform initial VPlan: Apply previously taken decisions, in order, to 7388 // bring the VPlan to its final state. 7389 // --------------------------------------------------------------------------- 7390 7391 // Apply Sink-After legal constraints. 7392 for (auto &Entry : SinkAfter) { 7393 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7394 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7395 Sink->moveAfter(Target); 7396 } 7397 7398 // Interleave memory: for each Interleave Group we marked earlier as relevant 7399 // for this VPlan, replace the Recipes widening its memory instructions with a 7400 // single VPInterleaveRecipe at its insertion point. 7401 for (auto IG : InterleaveGroups) { 7402 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7403 RecipeBuilder.getRecipe(IG->getInsertPos())); 7404 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7405 ->insertBefore(Recipe); 7406 7407 for (unsigned i = 0; i < IG->getFactor(); ++i) 7408 if (Instruction *Member = IG->getMember(i)) { 7409 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7410 } 7411 } 7412 7413 // Finally, if tail is folded by masking, introduce selects between the phi 7414 // and the live-out instruction of each reduction, at the end of the latch. 7415 if (CM.foldTailByMasking()) { 7416 Builder.setInsertPoint(VPBB); 7417 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7418 for (auto &Reduction : Legal->getReductionVars()) { 7419 VPValue *Phi = Plan->getVPValue(Reduction.first); 7420 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7421 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7422 } 7423 } 7424 7425 std::string PlanName; 7426 raw_string_ostream RSO(PlanName); 7427 unsigned VF = Range.Start; 7428 Plan->addVF(VF); 7429 RSO << "Initial VPlan for VF={" << VF; 7430 for (VF *= 2; VF < Range.End; VF *= 2) { 7431 Plan->addVF(VF); 7432 RSO << "," << VF; 7433 } 7434 RSO << "},UF>=1"; 7435 RSO.flush(); 7436 Plan->setName(PlanName); 7437 7438 return Plan; 7439 } 7440 7441 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7442 // Outer loop handling: They may require CFG and instruction level 7443 // transformations before even evaluating whether vectorization is profitable. 7444 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7445 // the vectorization pipeline. 7446 assert(!OrigLoop->empty()); 7447 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7448 7449 // Create new empty VPlan 7450 auto Plan = std::make_unique<VPlan>(); 7451 7452 // Build hierarchical CFG 7453 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7454 HCFGBuilder.buildHierarchicalCFG(); 7455 7456 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7457 Plan->addVF(VF); 7458 7459 if (EnableVPlanPredication) { 7460 VPlanPredicator VPP(*Plan); 7461 VPP.predicate(); 7462 7463 // Avoid running transformation to recipes until masked code generation in 7464 // VPlan-native path is in place. 7465 return Plan; 7466 } 7467 7468 SmallPtrSet<Instruction *, 1> DeadInstructions; 7469 VPlanTransforms::VPInstructionsToVPRecipes( 7470 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7471 return Plan; 7472 } 7473 7474 Value* LoopVectorizationPlanner::VPCallbackILV:: 7475 getOrCreateVectorValues(Value *V, unsigned Part) { 7476 return ILV.getOrCreateVectorValue(V, Part); 7477 } 7478 7479 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7480 Value *V, const VPIteration &Instance) { 7481 return ILV.getOrCreateScalarValue(V, Instance); 7482 } 7483 7484 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7485 VPSlotTracker &SlotTracker) const { 7486 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7487 IG->getInsertPos()->printAsOperand(O, false); 7488 O << ", "; 7489 getAddr()->printAsOperand(O, SlotTracker); 7490 VPValue *Mask = getMask(); 7491 if (Mask) { 7492 O << ", "; 7493 Mask->printAsOperand(O, SlotTracker); 7494 } 7495 for (unsigned i = 0; i < IG->getFactor(); ++i) 7496 if (Instruction *I = IG->getMember(i)) 7497 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7498 } 7499 7500 void VPWidenCallRecipe::execute(VPTransformState &State) { 7501 State.ILV->widenCallInstruction(Ingredient, User, State); 7502 } 7503 7504 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7505 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7506 } 7507 7508 void VPWidenRecipe::execute(VPTransformState &State) { 7509 State.ILV->widenInstruction(Ingredient, User, State); 7510 } 7511 7512 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7513 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7514 IsIndexLoopInvariant, State); 7515 } 7516 7517 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7518 assert(!State.Instance && "Int or FP induction being replicated."); 7519 State.ILV->widenIntOrFpInduction(IV, Trunc); 7520 } 7521 7522 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7523 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7524 } 7525 7526 void VPBlendRecipe::execute(VPTransformState &State) { 7527 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7528 // We know that all PHIs in non-header blocks are converted into 7529 // selects, so we don't have to worry about the insertion order and we 7530 // can just use the builder. 7531 // At this point we generate the predication tree. There may be 7532 // duplications since this is a simple recursive scan, but future 7533 // optimizations will clean it up. 7534 7535 unsigned NumIncoming = getNumIncomingValues(); 7536 7537 // Generate a sequence of selects of the form: 7538 // SELECT(Mask3, In3, 7539 // SELECT(Mask2, In2, 7540 // SELECT(Mask1, In1, 7541 // In0))) 7542 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7543 // are essentially undef are taken from In0. 7544 InnerLoopVectorizer::VectorParts Entry(State.UF); 7545 for (unsigned In = 0; In < NumIncoming; ++In) { 7546 for (unsigned Part = 0; Part < State.UF; ++Part) { 7547 // We might have single edge PHIs (blocks) - use an identity 7548 // 'select' for the first PHI operand. 7549 Value *In0 = State.get(getIncomingValue(In), Part); 7550 if (In == 0) 7551 Entry[Part] = In0; // Initialize with the first incoming value. 7552 else { 7553 // Select between the current value and the previous incoming edge 7554 // based on the incoming mask. 7555 Value *Cond = State.get(getMask(In), Part); 7556 Entry[Part] = 7557 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7558 } 7559 } 7560 } 7561 for (unsigned Part = 0; Part < State.UF; ++Part) 7562 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7563 } 7564 7565 void VPInterleaveRecipe::execute(VPTransformState &State) { 7566 assert(!State.Instance && "Interleave group being replicated."); 7567 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7568 } 7569 7570 void VPReplicateRecipe::execute(VPTransformState &State) { 7571 if (State.Instance) { // Generate a single instance. 7572 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7573 IsPredicated, State); 7574 // Insert scalar instance packing it into a vector. 7575 if (AlsoPack && State.VF > 1) { 7576 // If we're constructing lane 0, initialize to start from undef. 7577 if (State.Instance->Lane == 0) { 7578 Value *Undef = UndefValue::get( 7579 FixedVectorType::get(Ingredient->getType(), State.VF)); 7580 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7581 } 7582 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7583 } 7584 return; 7585 } 7586 7587 // Generate scalar instances for all VF lanes of all UF parts, unless the 7588 // instruction is uniform inwhich case generate only the first lane for each 7589 // of the UF parts. 7590 unsigned EndLane = IsUniform ? 1 : State.VF; 7591 for (unsigned Part = 0; Part < State.UF; ++Part) 7592 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7593 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7594 IsPredicated, State); 7595 } 7596 7597 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7598 assert(State.Instance && "Branch on Mask works only on single instance."); 7599 7600 unsigned Part = State.Instance->Part; 7601 unsigned Lane = State.Instance->Lane; 7602 7603 Value *ConditionBit = nullptr; 7604 VPValue *BlockInMask = getMask(); 7605 if (BlockInMask) { 7606 ConditionBit = State.get(BlockInMask, Part); 7607 if (ConditionBit->getType()->isVectorTy()) 7608 ConditionBit = State.Builder.CreateExtractElement( 7609 ConditionBit, State.Builder.getInt32(Lane)); 7610 } else // Block in mask is all-one. 7611 ConditionBit = State.Builder.getTrue(); 7612 7613 // Replace the temporary unreachable terminator with a new conditional branch, 7614 // whose two destinations will be set later when they are created. 7615 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7616 assert(isa<UnreachableInst>(CurrentTerminator) && 7617 "Expected to replace unreachable terminator with conditional branch."); 7618 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7619 CondBr->setSuccessor(0, nullptr); 7620 ReplaceInstWithInst(CurrentTerminator, CondBr); 7621 } 7622 7623 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7624 assert(State.Instance && "Predicated instruction PHI works per instance."); 7625 Instruction *ScalarPredInst = cast<Instruction>( 7626 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7627 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7628 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7629 assert(PredicatingBB && "Predicated block has no single predecessor."); 7630 7631 // By current pack/unpack logic we need to generate only a single phi node: if 7632 // a vector value for the predicated instruction exists at this point it means 7633 // the instruction has vector users only, and a phi for the vector value is 7634 // needed. In this case the recipe of the predicated instruction is marked to 7635 // also do that packing, thereby "hoisting" the insert-element sequence. 7636 // Otherwise, a phi node for the scalar value is needed. 7637 unsigned Part = State.Instance->Part; 7638 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7639 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7640 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7641 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7642 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7643 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7644 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7645 } else { 7646 Type *PredInstType = PredInst->getType(); 7647 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7648 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7649 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7650 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7651 } 7652 } 7653 7654 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7655 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7656 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7657 getMask()); 7658 } 7659 7660 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7661 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7662 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7663 // for predication. 7664 static ScalarEpilogueLowering getScalarEpilogueLowering( 7665 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7666 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7667 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7668 LoopVectorizationLegality &LVL) { 7669 bool OptSize = 7670 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7671 PGSOQueryType::IRPass); 7672 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7673 // don't look at hints or options, and don't request a scalar epilogue. 7674 if (OptSize) 7675 return CM_ScalarEpilogueNotAllowedOptSize; 7676 7677 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7678 !PreferPredicateOverEpilog; 7679 7680 // 2) Next, if disabling predication is requested on the command line, honour 7681 // this and request a scalar epilogue. 7682 if (PredicateOptDisabled) 7683 return CM_ScalarEpilogueAllowed; 7684 7685 // 3) and 4) look if enabling predication is requested on the command line, 7686 // with a loop hint, or if the TTI hook indicates this is profitable, request 7687 // predication . 7688 if (PreferPredicateOverEpilog || 7689 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7690 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7691 LVL.getLAI()) && 7692 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7693 return CM_ScalarEpilogueNotNeededUsePredicate; 7694 7695 return CM_ScalarEpilogueAllowed; 7696 } 7697 7698 // Process the loop in the VPlan-native vectorization path. This path builds 7699 // VPlan upfront in the vectorization pipeline, which allows to apply 7700 // VPlan-to-VPlan transformations from the very beginning without modifying the 7701 // input LLVM IR. 7702 static bool processLoopInVPlanNativePath( 7703 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7704 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7705 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7706 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7707 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7708 7709 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7710 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7711 return false; 7712 } 7713 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7714 Function *F = L->getHeader()->getParent(); 7715 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7716 7717 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7718 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7719 7720 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7721 &Hints, IAI); 7722 // Use the planner for outer loop vectorization. 7723 // TODO: CM is not used at this point inside the planner. Turn CM into an 7724 // optional argument if we don't need it in the future. 7725 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7726 7727 // Get user vectorization factor. 7728 const unsigned UserVF = Hints.getWidth(); 7729 7730 // Plan how to best vectorize, return the best VF and its cost. 7731 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7732 7733 // If we are stress testing VPlan builds, do not attempt to generate vector 7734 // code. Masked vector code generation support will follow soon. 7735 // Also, do not attempt to vectorize if no vector code will be produced. 7736 if (VPlanBuildStressTest || EnableVPlanPredication || 7737 VectorizationFactor::Disabled() == VF) 7738 return false; 7739 7740 LVP.setBestPlan(VF.Width, 1); 7741 7742 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7743 &CM, BFI, PSI); 7744 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7745 << L->getHeader()->getParent()->getName() << "\"\n"); 7746 LVP.executePlan(LB, DT); 7747 7748 // Mark the loop as already vectorized to avoid vectorizing again. 7749 Hints.setAlreadyVectorized(); 7750 7751 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7752 return true; 7753 } 7754 7755 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7756 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7757 !EnableLoopInterleaving), 7758 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7759 !EnableLoopVectorization) {} 7760 7761 bool LoopVectorizePass::processLoop(Loop *L) { 7762 assert((EnableVPlanNativePath || L->empty()) && 7763 "VPlan-native path is not enabled. Only process inner loops."); 7764 7765 #ifndef NDEBUG 7766 const std::string DebugLocStr = getDebugLocString(L); 7767 #endif /* NDEBUG */ 7768 7769 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7770 << L->getHeader()->getParent()->getName() << "\" from " 7771 << DebugLocStr << "\n"); 7772 7773 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7774 7775 LLVM_DEBUG( 7776 dbgs() << "LV: Loop hints:" 7777 << " force=" 7778 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7779 ? "disabled" 7780 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7781 ? "enabled" 7782 : "?")) 7783 << " width=" << Hints.getWidth() 7784 << " unroll=" << Hints.getInterleave() << "\n"); 7785 7786 // Function containing loop 7787 Function *F = L->getHeader()->getParent(); 7788 7789 // Looking at the diagnostic output is the only way to determine if a loop 7790 // was vectorized (other than looking at the IR or machine code), so it 7791 // is important to generate an optimization remark for each loop. Most of 7792 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7793 // generated as OptimizationRemark and OptimizationRemarkMissed are 7794 // less verbose reporting vectorized loops and unvectorized loops that may 7795 // benefit from vectorization, respectively. 7796 7797 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7798 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7799 return false; 7800 } 7801 7802 PredicatedScalarEvolution PSE(*SE, *L); 7803 7804 // Check if it is legal to vectorize the loop. 7805 LoopVectorizationRequirements Requirements(*ORE); 7806 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7807 &Requirements, &Hints, DB, AC, BFI, PSI); 7808 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7809 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7810 Hints.emitRemarkWithHints(); 7811 return false; 7812 } 7813 7814 // Check the function attributes and profiles to find out if this function 7815 // should be optimized for size. 7816 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7817 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7818 7819 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7820 // here. They may require CFG and instruction level transformations before 7821 // even evaluating whether vectorization is profitable. Since we cannot modify 7822 // the incoming IR, we need to build VPlan upfront in the vectorization 7823 // pipeline. 7824 if (!L->empty()) 7825 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7826 ORE, BFI, PSI, Hints); 7827 7828 assert(L->empty() && "Inner loop expected."); 7829 7830 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7831 // count by optimizing for size, to minimize overheads. 7832 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7833 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7834 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7835 << "This loop is worth vectorizing only if no scalar " 7836 << "iteration overheads are incurred."); 7837 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7838 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7839 else { 7840 LLVM_DEBUG(dbgs() << "\n"); 7841 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7842 } 7843 } 7844 7845 // Check the function attributes to see if implicit floats are allowed. 7846 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7847 // an integer loop and the vector instructions selected are purely integer 7848 // vector instructions? 7849 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7850 reportVectorizationFailure( 7851 "Can't vectorize when the NoImplicitFloat attribute is used", 7852 "loop not vectorized due to NoImplicitFloat attribute", 7853 "NoImplicitFloat", ORE, L); 7854 Hints.emitRemarkWithHints(); 7855 return false; 7856 } 7857 7858 // Check if the target supports potentially unsafe FP vectorization. 7859 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7860 // for the target we're vectorizing for, to make sure none of the 7861 // additional fp-math flags can help. 7862 if (Hints.isPotentiallyUnsafe() && 7863 TTI->isFPVectorizationPotentiallyUnsafe()) { 7864 reportVectorizationFailure( 7865 "Potentially unsafe FP op prevents vectorization", 7866 "loop not vectorized due to unsafe FP support.", 7867 "UnsafeFP", ORE, L); 7868 Hints.emitRemarkWithHints(); 7869 return false; 7870 } 7871 7872 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7873 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7874 7875 // If an override option has been passed in for interleaved accesses, use it. 7876 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7877 UseInterleaved = EnableInterleavedMemAccesses; 7878 7879 // Analyze interleaved memory accesses. 7880 if (UseInterleaved) { 7881 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7882 } 7883 7884 // Use the cost model. 7885 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7886 F, &Hints, IAI); 7887 CM.collectValuesToIgnore(); 7888 7889 // Use the planner for vectorization. 7890 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7891 7892 // Get user vectorization factor and interleave count. 7893 unsigned UserVF = Hints.getWidth(); 7894 unsigned UserIC = Hints.getInterleave(); 7895 7896 // Plan how to best vectorize, return the best VF and its cost. 7897 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7898 7899 VectorizationFactor VF = VectorizationFactor::Disabled(); 7900 unsigned IC = 1; 7901 7902 if (MaybeVF) { 7903 VF = *MaybeVF; 7904 // Select the interleave count. 7905 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7906 } 7907 7908 // Identify the diagnostic messages that should be produced. 7909 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7910 bool VectorizeLoop = true, InterleaveLoop = true; 7911 if (Requirements.doesNotMeet(F, L, Hints)) { 7912 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7913 "requirements.\n"); 7914 Hints.emitRemarkWithHints(); 7915 return false; 7916 } 7917 7918 if (VF.Width == 1) { 7919 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7920 VecDiagMsg = std::make_pair( 7921 "VectorizationNotBeneficial", 7922 "the cost-model indicates that vectorization is not beneficial"); 7923 VectorizeLoop = false; 7924 } 7925 7926 if (!MaybeVF && UserIC > 1) { 7927 // Tell the user interleaving was avoided up-front, despite being explicitly 7928 // requested. 7929 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7930 "interleaving should be avoided up front\n"); 7931 IntDiagMsg = std::make_pair( 7932 "InterleavingAvoided", 7933 "Ignoring UserIC, because interleaving was avoided up front"); 7934 InterleaveLoop = false; 7935 } else if (IC == 1 && UserIC <= 1) { 7936 // Tell the user interleaving is not beneficial. 7937 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7938 IntDiagMsg = std::make_pair( 7939 "InterleavingNotBeneficial", 7940 "the cost-model indicates that interleaving is not beneficial"); 7941 InterleaveLoop = false; 7942 if (UserIC == 1) { 7943 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7944 IntDiagMsg.second += 7945 " and is explicitly disabled or interleave count is set to 1"; 7946 } 7947 } else if (IC > 1 && UserIC == 1) { 7948 // Tell the user interleaving is beneficial, but it explicitly disabled. 7949 LLVM_DEBUG( 7950 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7951 IntDiagMsg = std::make_pair( 7952 "InterleavingBeneficialButDisabled", 7953 "the cost-model indicates that interleaving is beneficial " 7954 "but is explicitly disabled or interleave count is set to 1"); 7955 InterleaveLoop = false; 7956 } 7957 7958 // Override IC if user provided an interleave count. 7959 IC = UserIC > 0 ? UserIC : IC; 7960 7961 // Emit diagnostic messages, if any. 7962 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7963 if (!VectorizeLoop && !InterleaveLoop) { 7964 // Do not vectorize or interleaving the loop. 7965 ORE->emit([&]() { 7966 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7967 L->getStartLoc(), L->getHeader()) 7968 << VecDiagMsg.second; 7969 }); 7970 ORE->emit([&]() { 7971 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7972 L->getStartLoc(), L->getHeader()) 7973 << IntDiagMsg.second; 7974 }); 7975 return false; 7976 } else if (!VectorizeLoop && InterleaveLoop) { 7977 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7978 ORE->emit([&]() { 7979 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7980 L->getStartLoc(), L->getHeader()) 7981 << VecDiagMsg.second; 7982 }); 7983 } else if (VectorizeLoop && !InterleaveLoop) { 7984 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7985 << ") in " << DebugLocStr << '\n'); 7986 ORE->emit([&]() { 7987 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7988 L->getStartLoc(), L->getHeader()) 7989 << IntDiagMsg.second; 7990 }); 7991 } else if (VectorizeLoop && InterleaveLoop) { 7992 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7993 << ") in " << DebugLocStr << '\n'); 7994 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7995 } 7996 7997 LVP.setBestPlan(VF.Width, IC); 7998 7999 using namespace ore; 8000 bool DisableRuntimeUnroll = false; 8001 MDNode *OrigLoopID = L->getLoopID(); 8002 8003 if (!VectorizeLoop) { 8004 assert(IC > 1 && "interleave count should not be 1 or 0"); 8005 // If we decided that it is not legal to vectorize the loop, then 8006 // interleave it. 8007 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8008 BFI, PSI); 8009 LVP.executePlan(Unroller, DT); 8010 8011 ORE->emit([&]() { 8012 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8013 L->getHeader()) 8014 << "interleaved loop (interleaved count: " 8015 << NV("InterleaveCount", IC) << ")"; 8016 }); 8017 } else { 8018 // If we decided that it is *legal* to vectorize the loop, then do it. 8019 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8020 &LVL, &CM, BFI, PSI); 8021 LVP.executePlan(LB, DT); 8022 ++LoopsVectorized; 8023 8024 // Add metadata to disable runtime unrolling a scalar loop when there are 8025 // no runtime checks about strides and memory. A scalar loop that is 8026 // rarely used is not worth unrolling. 8027 if (!LB.areSafetyChecksAdded()) 8028 DisableRuntimeUnroll = true; 8029 8030 // Report the vectorization decision. 8031 ORE->emit([&]() { 8032 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8033 L->getHeader()) 8034 << "vectorized loop (vectorization width: " 8035 << NV("VectorizationFactor", VF.Width) 8036 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8037 }); 8038 } 8039 8040 Optional<MDNode *> RemainderLoopID = 8041 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8042 LLVMLoopVectorizeFollowupEpilogue}); 8043 if (RemainderLoopID.hasValue()) { 8044 L->setLoopID(RemainderLoopID.getValue()); 8045 } else { 8046 if (DisableRuntimeUnroll) 8047 AddRuntimeUnrollDisableMetaData(L); 8048 8049 // Mark the loop as already vectorized to avoid vectorizing again. 8050 Hints.setAlreadyVectorized(); 8051 } 8052 8053 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8054 return true; 8055 } 8056 8057 LoopVectorizeResult LoopVectorizePass::runImpl( 8058 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8059 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8060 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8061 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8062 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8063 SE = &SE_; 8064 LI = &LI_; 8065 TTI = &TTI_; 8066 DT = &DT_; 8067 BFI = &BFI_; 8068 TLI = TLI_; 8069 AA = &AA_; 8070 AC = &AC_; 8071 GetLAA = &GetLAA_; 8072 DB = &DB_; 8073 ORE = &ORE_; 8074 PSI = PSI_; 8075 8076 // Don't attempt if 8077 // 1. the target claims to have no vector registers, and 8078 // 2. interleaving won't help ILP. 8079 // 8080 // The second condition is necessary because, even if the target has no 8081 // vector registers, loop vectorization may still enable scalar 8082 // interleaving. 8083 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8084 TTI->getMaxInterleaveFactor(1) < 2) 8085 return LoopVectorizeResult(false, false); 8086 8087 bool Changed = false, CFGChanged = false; 8088 8089 // The vectorizer requires loops to be in simplified form. 8090 // Since simplification may add new inner loops, it has to run before the 8091 // legality and profitability checks. This means running the loop vectorizer 8092 // will simplify all loops, regardless of whether anything end up being 8093 // vectorized. 8094 for (auto &L : *LI) 8095 Changed |= CFGChanged |= 8096 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8097 8098 // Build up a worklist of inner-loops to vectorize. This is necessary as 8099 // the act of vectorizing or partially unrolling a loop creates new loops 8100 // and can invalidate iterators across the loops. 8101 SmallVector<Loop *, 8> Worklist; 8102 8103 for (Loop *L : *LI) 8104 collectSupportedLoops(*L, LI, ORE, Worklist); 8105 8106 LoopsAnalyzed += Worklist.size(); 8107 8108 // Now walk the identified inner loops. 8109 while (!Worklist.empty()) { 8110 Loop *L = Worklist.pop_back_val(); 8111 8112 // For the inner loops we actually process, form LCSSA to simplify the 8113 // transform. 8114 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8115 8116 Changed |= CFGChanged |= processLoop(L); 8117 } 8118 8119 // Process each loop nest in the function. 8120 return LoopVectorizeResult(Changed, CFGChanged); 8121 } 8122 8123 PreservedAnalyses LoopVectorizePass::run(Function &F, 8124 FunctionAnalysisManager &AM) { 8125 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8126 auto &LI = AM.getResult<LoopAnalysis>(F); 8127 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8128 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8129 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8130 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8131 auto &AA = AM.getResult<AAManager>(F); 8132 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8133 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8134 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8135 MemorySSA *MSSA = EnableMSSALoopDependency 8136 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8137 : nullptr; 8138 8139 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8140 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8141 [&](Loop &L) -> const LoopAccessInfo & { 8142 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8143 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8144 }; 8145 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8146 ProfileSummaryInfo *PSI = 8147 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8148 LoopVectorizeResult Result = 8149 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8150 if (!Result.MadeAnyChange) 8151 return PreservedAnalyses::all(); 8152 PreservedAnalyses PA; 8153 8154 // We currently do not preserve loopinfo/dominator analyses with outer loop 8155 // vectorization. Until this is addressed, mark these analyses as preserved 8156 // only for non-VPlan-native path. 8157 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8158 if (!EnableVPlanNativePath) { 8159 PA.preserve<LoopAnalysis>(); 8160 PA.preserve<DominatorTreeAnalysis>(); 8161 } 8162 PA.preserve<BasicAA>(); 8163 PA.preserve<GlobalsAA>(); 8164 if (!Result.MadeCFGChange) 8165 PA.preserveSet<CFGAnalyses>(); 8166 return PA; 8167 } 8168