1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 /// Create an analysis remark that explains why vectorization failed 217 /// 218 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 219 /// RemarkName is the identifier for the remark. If \p I is passed it is an 220 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 221 /// the location of the remark. \return the remark object that can be 222 /// streamed to. 223 static OptimizationRemarkAnalysis 224 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 225 Instruction *I = nullptr) { 226 Value *CodeRegion = TheLoop->getHeader(); 227 DebugLoc DL = TheLoop->getStartLoc(); 228 229 if (I) { 230 CodeRegion = I->getParent(); 231 // If there is no debug location attached to the instruction, revert back to 232 // using the loop's. 233 if (I->getDebugLoc()) 234 DL = I->getDebugLoc(); 235 } 236 237 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 238 R << "loop not vectorized: "; 239 return R; 240 } 241 242 namespace { 243 244 // Forward declarations. 245 class LoopVectorizeHints; 246 class LoopVectorizationLegality; 247 class LoopVectorizationCostModel; 248 class LoopVectorizationRequirements; 249 250 /// Returns true if the given loop body has a cycle, excluding the loop 251 /// itself. 252 static bool hasCyclesInLoopBody(const Loop &L) { 253 if (!L.empty()) 254 return true; 255 256 for (const auto &SCC : 257 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 258 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 259 if (SCC.size() > 1) { 260 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 261 DEBUG(L.dump()); 262 return true; 263 } 264 } 265 return false; 266 } 267 268 /// \brief This modifies LoopAccessReport to initialize message with 269 /// loop-vectorizer-specific part. 270 class VectorizationReport : public LoopAccessReport { 271 public: 272 VectorizationReport(Instruction *I = nullptr) 273 : LoopAccessReport("loop not vectorized: ", I) {} 274 275 /// \brief This allows promotion of the loop-access analysis report into the 276 /// loop-vectorizer report. It modifies the message to add the 277 /// loop-vectorizer-specific part of the message. 278 explicit VectorizationReport(const LoopAccessReport &R) 279 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 280 R.getInstr()) {} 281 }; 282 283 /// A helper function for converting Scalar types to vector types. 284 /// If the incoming type is void, we return void. If the VF is 1, we return 285 /// the scalar type. 286 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 287 if (Scalar->isVoidTy() || VF == 1) 288 return Scalar; 289 return VectorType::get(Scalar, VF); 290 } 291 292 /// A helper function that returns GEP instruction and knows to skip a 293 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 294 /// pointee types of the 'bitcast' have the same size. 295 /// For example: 296 /// bitcast double** %var to i64* - can be skipped 297 /// bitcast double** %var to i8* - can not 298 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 299 300 if (isa<GetElementPtrInst>(Ptr)) 301 return cast<GetElementPtrInst>(Ptr); 302 303 if (isa<BitCastInst>(Ptr) && 304 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 305 Type *BitcastTy = Ptr->getType(); 306 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 307 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 308 return nullptr; 309 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 310 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 311 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 312 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 313 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 314 } 315 return nullptr; 316 } 317 318 /// A helper function that returns the pointer operand of a load or store 319 /// instruction. 320 static Value *getPointerOperand(Value *I) { 321 if (auto *LI = dyn_cast<LoadInst>(I)) 322 return LI->getPointerOperand(); 323 if (auto *SI = dyn_cast<StoreInst>(I)) 324 return SI->getPointerOperand(); 325 return nullptr; 326 } 327 328 /// A helper function that returns true if the given type is irregular. The 329 /// type is irregular if its allocated size doesn't equal the store size of an 330 /// element of the corresponding vector type at the given vectorization factor. 331 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 332 333 // Determine if an array of VF elements of type Ty is "bitcast compatible" 334 // with a <VF x Ty> vector. 335 if (VF > 1) { 336 auto *VectorTy = VectorType::get(Ty, VF); 337 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 338 } 339 340 // If the vectorization factor is one, we just check if an array of type Ty 341 // requires padding between elements. 342 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 343 } 344 345 /// A helper function that returns the reciprocal of the block probability of 346 /// predicated blocks. If we return X, we are assuming the predicated block 347 /// will execute once for for every X iterations of the loop header. 348 /// 349 /// TODO: We should use actual block probability here, if available. Currently, 350 /// we always assume predicated blocks have a 50% chance of executing. 351 static unsigned getReciprocalPredBlockProb() { return 2; } 352 353 /// InnerLoopVectorizer vectorizes loops which contain only one basic 354 /// block to a specified vectorization factor (VF). 355 /// This class performs the widening of scalars into vectors, or multiple 356 /// scalars. This class also implements the following features: 357 /// * It inserts an epilogue loop for handling loops that don't have iteration 358 /// counts that are known to be a multiple of the vectorization factor. 359 /// * It handles the code generation for reduction variables. 360 /// * Scalarization (implementation using scalars) of un-vectorizable 361 /// instructions. 362 /// InnerLoopVectorizer does not perform any vectorization-legality 363 /// checks, and relies on the caller to check for the different legality 364 /// aspects. The InnerLoopVectorizer relies on the 365 /// LoopVectorizationLegality class to provide information about the induction 366 /// and reduction variables that were found to a given vectorization factor. 367 class InnerLoopVectorizer { 368 public: 369 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 370 LoopInfo *LI, DominatorTree *DT, 371 const TargetLibraryInfo *TLI, 372 const TargetTransformInfo *TTI, AssumptionCache *AC, 373 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 374 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 375 LoopVectorizationCostModel *CM) 376 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 377 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 378 Builder(PSE.getSE()->getContext()), Induction(nullptr), 379 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 380 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 381 AddedSafetyChecks(false) {} 382 383 // Perform the actual loop widening (vectorization). 384 void vectorize() { 385 // Create a new empty loop. Unlink the old loop and connect the new one. 386 createEmptyLoop(); 387 // Widen each instruction in the old loop to a new one in the new loop. 388 vectorizeLoop(); 389 } 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 virtual ~InnerLoopVectorizer() {} 395 396 protected: 397 /// A small list of PHINodes. 398 typedef SmallVector<PHINode *, 4> PhiVector; 399 400 /// A type for vectorized values in the new loop. Each value from the 401 /// original loop, when vectorized, is represented by UF vector values in the 402 /// new unrolled loop, where UF is the unroll factor. 403 typedef SmallVector<Value *, 2> VectorParts; 404 405 /// A type for scalarized values in the new loop. Each value from the 406 /// original loop, when scalarized, is represented by UF x VF scalar values 407 /// in the new unrolled loop, where UF is the unroll factor and VF is the 408 /// vectorization factor. 409 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 410 411 // When we if-convert we need to create edge masks. We have to cache values 412 // so that we don't end up with exponential recursion/IR. 413 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 414 EdgeMaskCache; 415 416 /// Create an empty loop, based on the loop ranges of the old loop. 417 void createEmptyLoop(); 418 419 /// Set up the values of the IVs correctly when exiting the vector loop. 420 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 421 Value *CountRoundDown, Value *EndValue, 422 BasicBlock *MiddleBlock); 423 424 /// Create a new induction variable inside L. 425 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 426 Value *Step, Instruction *DL); 427 /// Copy and widen the instructions from the old loop. 428 virtual void vectorizeLoop(); 429 430 /// Fix a first-order recurrence. This is the second phase of vectorizing 431 /// this phi node. 432 void fixFirstOrderRecurrence(PHINode *Phi); 433 434 /// \brief The Loop exit block may have single value PHI nodes where the 435 /// incoming value is 'Undef'. While vectorizing we only handled real values 436 /// that were defined inside the loop. Here we fix the 'undef case'. 437 /// See PR14725. 438 void fixLCSSAPHIs(); 439 440 /// Iteratively sink the scalarized operands of a predicated instruction into 441 /// the block that was created for it. 442 void sinkScalarOperands(Instruction *PredInst); 443 444 /// Predicate conditional instructions that require predication on their 445 /// respective conditions. 446 void predicateInstructions(); 447 448 /// Collect the instructions from the original loop that would be trivially 449 /// dead in the vectorized loop if generated. 450 void collectTriviallyDeadInstructions(); 451 452 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 453 /// represented as. 454 void truncateToMinimalBitwidths(); 455 456 /// A helper function that computes the predicate of the block BB, assuming 457 /// that the header block of the loop is set to True. It returns the *entry* 458 /// mask for the block BB. 459 VectorParts createBlockInMask(BasicBlock *BB); 460 /// A helper function that computes the predicate of the edge between SRC 461 /// and DST. 462 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 463 464 /// A helper function to vectorize a single BB within the innermost loop. 465 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 466 467 /// Vectorize a single PHINode in a block. This method handles the induction 468 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 469 /// arbitrary length vectors. 470 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 471 PhiVector *PV); 472 473 /// Insert the new loop to the loop hierarchy and pass manager 474 /// and update the analysis passes. 475 void updateAnalysis(); 476 477 /// This instruction is un-vectorizable. Implement it as a sequence 478 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 479 /// scalarized instruction behind an if block predicated on the control 480 /// dependence of the instruction. 481 virtual void scalarizeInstruction(Instruction *Instr, 482 bool IfPredicateInstr = false); 483 484 /// Vectorize Load and Store instructions, 485 virtual void vectorizeMemoryInstruction(Instruction *Instr); 486 487 /// Create a broadcast instruction. This method generates a broadcast 488 /// instruction (shuffle) for loop invariant values and for the induction 489 /// value. If this is the induction variable then we extend it to N, N+1, ... 490 /// this is needed because each iteration in the loop corresponds to a SIMD 491 /// element. 492 virtual Value *getBroadcastInstrs(Value *V); 493 494 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 495 /// to each vector element of Val. The sequence starts at StartIndex. 496 /// \p Opcode is relevant for FP induction variable. 497 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 498 Instruction::BinaryOps Opcode = 499 Instruction::BinaryOpsEnd); 500 501 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 502 /// variable on which to base the steps, \p Step is the size of the step, and 503 /// \p EntryVal is the value from the original loop that maps to the steps. 504 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 505 /// can be a truncate instruction). 506 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 507 508 /// Create a vector induction phi node based on an existing scalar one. This 509 /// currently only works for integer induction variables with a constant 510 /// step. \p EntryVal is the value from the original loop that maps to the 511 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 512 /// widening the original IV, we widen a version of the IV truncated to \p 513 /// EntryVal's type. 514 void createVectorIntInductionPHI(const InductionDescriptor &II, 515 Instruction *EntryVal); 516 517 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 518 /// induction variable will first be truncated to the corresponding type. 519 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 520 521 /// Returns true if we should generate a scalar version of \p IV. 522 bool needsScalarInduction(Instruction *IV) const; 523 524 /// Return a constant reference to the VectorParts corresponding to \p V from 525 /// the original loop. If the value has already been vectorized, the 526 /// corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// new vector values on-demand by inserting the scalar values into vectors 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into vectors. 532 const VectorParts &getVectorValue(Value *V); 533 534 /// Return a value in the new loop corresponding to \p V from the original 535 /// loop at unroll index \p Part and vector index \p Lane. If the value has 536 /// been vectorized but not scalarized, the necessary extractelement 537 /// instruction will be generated. 538 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 539 540 /// Try to vectorize the interleaved access group that \p Instr belongs to. 541 void vectorizeInterleaveGroup(Instruction *Instr); 542 543 /// Generate a shuffle sequence that will reverse the vector Vec. 544 virtual Value *reverseVector(Value *Vec); 545 546 /// Returns (and creates if needed) the original loop trip count. 547 Value *getOrCreateTripCount(Loop *NewLoop); 548 549 /// Returns (and creates if needed) the trip count of the widened loop. 550 Value *getOrCreateVectorTripCount(Loop *NewLoop); 551 552 /// Emit a bypass check to see if the trip count would overflow, or we 553 /// wouldn't have enough iterations to execute one vector loop. 554 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 555 /// Emit a bypass check to see if the vector trip count is nonzero. 556 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 557 /// Emit a bypass check to see if all of the SCEV assumptions we've 558 /// had to make are correct. 559 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 560 /// Emit bypass checks to check any memory assumptions we may have made. 561 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 562 563 /// Add additional metadata to \p To that was not present on \p Orig. 564 /// 565 /// Currently this is used to add the noalias annotations based on the 566 /// inserted memchecks. Use this for instructions that are *cloned* into the 567 /// vector loop. 568 void addNewMetadata(Instruction *To, const Instruction *Orig); 569 570 /// Add metadata from one instruction to another. 571 /// 572 /// This includes both the original MDs from \p From and additional ones (\see 573 /// addNewMetadata). Use this for *newly created* instructions in the vector 574 /// loop. 575 void addMetadata(Instruction *To, Instruction *From); 576 577 /// \brief Similar to the previous function but it adds the metadata to a 578 /// vector of instructions. 579 void addMetadata(ArrayRef<Value *> To, Instruction *From); 580 581 /// This is a helper class for maintaining vectorization state. It's used for 582 /// mapping values from the original loop to their corresponding values in 583 /// the new loop. Two mappings are maintained: one for vectorized values and 584 /// one for scalarized values. Vectorized values are represented with UF 585 /// vector values in the new loop, and scalarized values are represented with 586 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 587 /// vectorization factors, respectively. 588 /// 589 /// Entries can be added to either map with initVector and initScalar, which 590 /// initialize and return a constant reference to the new entry. If a 591 /// non-constant reference to a vector entry is required, getVector can be 592 /// used to retrieve a mutable entry. We currently directly modify the mapped 593 /// values during "fix-up" operations that occur once the first phase of 594 /// widening is complete. These operations include type truncation and the 595 /// second phase of recurrence widening. 596 /// 597 /// Otherwise, entries from either map should be accessed using the 598 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 599 /// getVectorValue and getScalarValue coordinate to generate a vector or 600 /// scalar value on-demand if one is not yet available. When vectorizing a 601 /// loop, we visit the definition of an instruction before its uses. When 602 /// visiting the definition, we either vectorize or scalarize the 603 /// instruction, creating an entry for it in the corresponding map. (In some 604 /// cases, such as induction variables, we will create both vector and scalar 605 /// entries.) Then, as we encounter uses of the definition, we derive values 606 /// for each scalar or vector use unless such a value is already available. 607 /// For example, if we scalarize a definition and one of its uses is vector, 608 /// we build the required vector on-demand with an insertelement sequence 609 /// when visiting the use. Otherwise, if the use is scalar, we can use the 610 /// existing scalar definition. 611 struct ValueMap { 612 613 /// Construct an empty map with the given unroll and vectorization factors. 614 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 615 : UF(UnrollFactor), VF(VecWidth) { 616 // The unroll and vectorization factors are only used in asserts builds 617 // to verify map entries are sized appropriately. 618 (void)UF; 619 (void)VF; 620 } 621 622 /// \return True if the map has a vector entry for \p Key. 623 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 624 625 /// \return True if the map has a scalar entry for \p Key. 626 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 627 628 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 629 /// constant reference to the new vector map entry. The given key should 630 /// not already be in the map, and the given VectorParts should be 631 /// correctly sized for the current unroll factor. 632 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 633 assert(!hasVector(Key) && "Vector entry already initialized"); 634 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 635 VectorMapStorage[Key] = Entry; 636 return VectorMapStorage[Key]; 637 } 638 639 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 640 /// constant reference to the new scalar map entry. The given key should 641 /// not already be in the map, and the given ScalarParts should be 642 /// correctly sized for the current unroll and vectorization factors. 643 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 644 assert(!hasScalar(Key) && "Scalar entry already initialized"); 645 assert(Entry.size() == UF && 646 all_of(make_range(Entry.begin(), Entry.end()), 647 [&](const SmallVectorImpl<Value *> &Values) -> bool { 648 return Values.size() == VF; 649 }) && 650 "ScalarParts has wrong dimensions"); 651 ScalarMapStorage[Key] = Entry; 652 return ScalarMapStorage[Key]; 653 } 654 655 /// \return A reference to the vector map entry corresponding to \p Key. 656 /// The key should already be in the map. This function should only be used 657 /// when it's necessary to update values that have already been vectorized. 658 /// This is the case for "fix-up" operations including type truncation and 659 /// the second phase of recurrence vectorization. If a non-const reference 660 /// isn't required, getVectorValue should be used instead. 661 VectorParts &getVector(Value *Key) { 662 assert(hasVector(Key) && "Vector entry not initialized"); 663 return VectorMapStorage.find(Key)->second; 664 } 665 666 /// Retrieve an entry from the vector or scalar maps. The preferred way to 667 /// access an existing mapped entry is with getVectorValue or 668 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 669 /// moved inside ValueMap, we have to declare them as friends. 670 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 671 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 672 unsigned Lane); 673 674 private: 675 /// The unroll factor. Each entry in the vector map contains UF vector 676 /// values. 677 unsigned UF; 678 679 /// The vectorization factor. Each entry in the scalar map contains UF x VF 680 /// scalar values. 681 unsigned VF; 682 683 /// The vector and scalar map storage. We use std::map and not DenseMap 684 /// because insertions to DenseMap invalidate its iterators. 685 std::map<Value *, VectorParts> VectorMapStorage; 686 std::map<Value *, ScalarParts> ScalarMapStorage; 687 }; 688 689 /// The original loop. 690 Loop *OrigLoop; 691 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 692 /// dynamic knowledge to simplify SCEV expressions and converts them to a 693 /// more usable form. 694 PredicatedScalarEvolution &PSE; 695 /// Loop Info. 696 LoopInfo *LI; 697 /// Dominator Tree. 698 DominatorTree *DT; 699 /// Alias Analysis. 700 AliasAnalysis *AA; 701 /// Target Library Info. 702 const TargetLibraryInfo *TLI; 703 /// Target Transform Info. 704 const TargetTransformInfo *TTI; 705 /// Assumption Cache. 706 AssumptionCache *AC; 707 /// Interface to emit optimization remarks. 708 OptimizationRemarkEmitter *ORE; 709 710 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 711 /// used. 712 /// 713 /// This is currently only used to add no-alias metadata based on the 714 /// memchecks. The actually versioning is performed manually. 715 std::unique_ptr<LoopVersioning> LVer; 716 717 /// The vectorization SIMD factor to use. Each vector will have this many 718 /// vector elements. 719 unsigned VF; 720 721 protected: 722 /// The vectorization unroll factor to use. Each scalar is vectorized to this 723 /// many different vector instructions. 724 unsigned UF; 725 726 /// The builder that we use 727 IRBuilder<> Builder; 728 729 // --- Vectorization state --- 730 731 /// The vector-loop preheader. 732 BasicBlock *LoopVectorPreHeader; 733 /// The scalar-loop preheader. 734 BasicBlock *LoopScalarPreHeader; 735 /// Middle Block between the vector and the scalar. 736 BasicBlock *LoopMiddleBlock; 737 /// The ExitBlock of the scalar loop. 738 BasicBlock *LoopExitBlock; 739 /// The vector loop body. 740 BasicBlock *LoopVectorBody; 741 /// The scalar loop body. 742 BasicBlock *LoopScalarBody; 743 /// A list of all bypass blocks. The first block is the entry of the loop. 744 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 745 746 /// The new Induction variable which was added to the new block. 747 PHINode *Induction; 748 /// The induction variable of the old basic block. 749 PHINode *OldInduction; 750 751 /// Maps values from the original loop to their corresponding values in the 752 /// vectorized loop. A key value can map to either vector values, scalar 753 /// values or both kinds of values, depending on whether the key was 754 /// vectorized and scalarized. 755 ValueMap VectorLoopValueMap; 756 757 /// Store instructions that should be predicated, as a pair 758 /// <StoreInst, Predicate> 759 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 760 EdgeMaskCache MaskCache; 761 /// Trip count of the original loop. 762 Value *TripCount; 763 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 764 Value *VectorTripCount; 765 766 /// The legality analysis. 767 LoopVectorizationLegality *Legal; 768 769 /// The profitablity analysis. 770 LoopVectorizationCostModel *Cost; 771 772 // Record whether runtime checks are added. 773 bool AddedSafetyChecks; 774 775 // Holds instructions from the original loop whose counterparts in the 776 // vectorized loop would be trivially dead if generated. For example, 777 // original induction update instructions can become dead because we 778 // separately emit induction "steps" when generating code for the new loop. 779 // Similarly, we create a new latch condition when setting up the structure 780 // of the new loop, so the old one can become dead. 781 SmallPtrSet<Instruction *, 4> DeadInstructions; 782 }; 783 784 class InnerLoopUnroller : public InnerLoopVectorizer { 785 public: 786 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 787 LoopInfo *LI, DominatorTree *DT, 788 const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 791 LoopVectorizationLegality *LVL, 792 LoopVectorizationCostModel *CM) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 794 UnrollFactor, LVL, CM) {} 795 796 private: 797 void scalarizeInstruction(Instruction *Instr, 798 bool IfPredicateInstr = false) override; 799 void vectorizeMemoryInstruction(Instruction *Instr) override; 800 Value *getBroadcastInstrs(Value *V) override; 801 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 802 Instruction::BinaryOps Opcode = 803 Instruction::BinaryOpsEnd) override; 804 Value *reverseVector(Value *Vec) override; 805 }; 806 807 /// \brief Look for a meaningful debug location on the instruction or it's 808 /// operands. 809 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 810 if (!I) 811 return I; 812 813 DebugLoc Empty; 814 if (I->getDebugLoc() != Empty) 815 return I; 816 817 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 818 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 819 if (OpInst->getDebugLoc() != Empty) 820 return OpInst; 821 } 822 823 return I; 824 } 825 826 /// \brief Set the debug location in the builder using the debug location in the 827 /// instruction. 828 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 829 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 830 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 831 else 832 B.SetCurrentDebugLocation(DebugLoc()); 833 } 834 835 #ifndef NDEBUG 836 /// \return string containing a file name and a line # for the given loop. 837 static std::string getDebugLocString(const Loop *L) { 838 std::string Result; 839 if (L) { 840 raw_string_ostream OS(Result); 841 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 842 LoopDbgLoc.print(OS); 843 else 844 // Just print the module name. 845 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 846 OS.flush(); 847 } 848 return Result; 849 } 850 #endif 851 852 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 853 const Instruction *Orig) { 854 // If the loop was versioned with memchecks, add the corresponding no-alias 855 // metadata. 856 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 857 LVer->annotateInstWithNoAlias(To, Orig); 858 } 859 860 void InnerLoopVectorizer::addMetadata(Instruction *To, 861 Instruction *From) { 862 propagateMetadata(To, From); 863 addNewMetadata(To, From); 864 } 865 866 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 867 Instruction *From) { 868 for (Value *V : To) { 869 if (Instruction *I = dyn_cast<Instruction>(V)) 870 addMetadata(I, From); 871 } 872 } 873 874 /// \brief The group of interleaved loads/stores sharing the same stride and 875 /// close to each other. 876 /// 877 /// Each member in this group has an index starting from 0, and the largest 878 /// index should be less than interleaved factor, which is equal to the absolute 879 /// value of the access's stride. 880 /// 881 /// E.g. An interleaved load group of factor 4: 882 /// for (unsigned i = 0; i < 1024; i+=4) { 883 /// a = A[i]; // Member of index 0 884 /// b = A[i+1]; // Member of index 1 885 /// d = A[i+3]; // Member of index 3 886 /// ... 887 /// } 888 /// 889 /// An interleaved store group of factor 4: 890 /// for (unsigned i = 0; i < 1024; i+=4) { 891 /// ... 892 /// A[i] = a; // Member of index 0 893 /// A[i+1] = b; // Member of index 1 894 /// A[i+2] = c; // Member of index 2 895 /// A[i+3] = d; // Member of index 3 896 /// } 897 /// 898 /// Note: the interleaved load group could have gaps (missing members), but 899 /// the interleaved store group doesn't allow gaps. 900 class InterleaveGroup { 901 public: 902 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 903 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 904 assert(Align && "The alignment should be non-zero"); 905 906 Factor = std::abs(Stride); 907 assert(Factor > 1 && "Invalid interleave factor"); 908 909 Reverse = Stride < 0; 910 Members[0] = Instr; 911 } 912 913 bool isReverse() const { return Reverse; } 914 unsigned getFactor() const { return Factor; } 915 unsigned getAlignment() const { return Align; } 916 unsigned getNumMembers() const { return Members.size(); } 917 918 /// \brief Try to insert a new member \p Instr with index \p Index and 919 /// alignment \p NewAlign. The index is related to the leader and it could be 920 /// negative if it is the new leader. 921 /// 922 /// \returns false if the instruction doesn't belong to the group. 923 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 924 assert(NewAlign && "The new member's alignment should be non-zero"); 925 926 int Key = Index + SmallestKey; 927 928 // Skip if there is already a member with the same index. 929 if (Members.count(Key)) 930 return false; 931 932 if (Key > LargestKey) { 933 // The largest index is always less than the interleave factor. 934 if (Index >= static_cast<int>(Factor)) 935 return false; 936 937 LargestKey = Key; 938 } else if (Key < SmallestKey) { 939 // The largest index is always less than the interleave factor. 940 if (LargestKey - Key >= static_cast<int>(Factor)) 941 return false; 942 943 SmallestKey = Key; 944 } 945 946 // It's always safe to select the minimum alignment. 947 Align = std::min(Align, NewAlign); 948 Members[Key] = Instr; 949 return true; 950 } 951 952 /// \brief Get the member with the given index \p Index 953 /// 954 /// \returns nullptr if contains no such member. 955 Instruction *getMember(unsigned Index) const { 956 int Key = SmallestKey + Index; 957 if (!Members.count(Key)) 958 return nullptr; 959 960 return Members.find(Key)->second; 961 } 962 963 /// \brief Get the index for the given member. Unlike the key in the member 964 /// map, the index starts from 0. 965 unsigned getIndex(Instruction *Instr) const { 966 for (auto I : Members) 967 if (I.second == Instr) 968 return I.first - SmallestKey; 969 970 llvm_unreachable("InterleaveGroup contains no such member"); 971 } 972 973 Instruction *getInsertPos() const { return InsertPos; } 974 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 975 976 private: 977 unsigned Factor; // Interleave Factor. 978 bool Reverse; 979 unsigned Align; 980 DenseMap<int, Instruction *> Members; 981 int SmallestKey; 982 int LargestKey; 983 984 // To avoid breaking dependences, vectorized instructions of an interleave 985 // group should be inserted at either the first load or the last store in 986 // program order. 987 // 988 // E.g. %even = load i32 // Insert Position 989 // %add = add i32 %even // Use of %even 990 // %odd = load i32 991 // 992 // store i32 %even 993 // %odd = add i32 // Def of %odd 994 // store i32 %odd // Insert Position 995 Instruction *InsertPos; 996 }; 997 998 /// \brief Drive the analysis of interleaved memory accesses in the loop. 999 /// 1000 /// Use this class to analyze interleaved accesses only when we can vectorize 1001 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1002 /// on interleaved accesses is unsafe. 1003 /// 1004 /// The analysis collects interleave groups and records the relationships 1005 /// between the member and the group in a map. 1006 class InterleavedAccessInfo { 1007 public: 1008 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1009 DominatorTree *DT, LoopInfo *LI) 1010 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1011 RequiresScalarEpilogue(false) {} 1012 1013 ~InterleavedAccessInfo() { 1014 SmallSet<InterleaveGroup *, 4> DelSet; 1015 // Avoid releasing a pointer twice. 1016 for (auto &I : InterleaveGroupMap) 1017 DelSet.insert(I.second); 1018 for (auto *Ptr : DelSet) 1019 delete Ptr; 1020 } 1021 1022 /// \brief Analyze the interleaved accesses and collect them in interleave 1023 /// groups. Substitute symbolic strides using \p Strides. 1024 void analyzeInterleaving(const ValueToValueMap &Strides); 1025 1026 /// \brief Check if \p Instr belongs to any interleave group. 1027 bool isInterleaved(Instruction *Instr) const { 1028 return InterleaveGroupMap.count(Instr); 1029 } 1030 1031 /// \brief Return the maximum interleave factor of all interleaved groups. 1032 unsigned getMaxInterleaveFactor() const { 1033 unsigned MaxFactor = 1; 1034 for (auto &Entry : InterleaveGroupMap) 1035 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1036 return MaxFactor; 1037 } 1038 1039 /// \brief Get the interleave group that \p Instr belongs to. 1040 /// 1041 /// \returns nullptr if doesn't have such group. 1042 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1043 if (InterleaveGroupMap.count(Instr)) 1044 return InterleaveGroupMap.find(Instr)->second; 1045 return nullptr; 1046 } 1047 1048 /// \brief Returns true if an interleaved group that may access memory 1049 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1050 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1051 1052 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1053 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1054 1055 private: 1056 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1057 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1058 /// The interleaved access analysis can also add new predicates (for example 1059 /// by versioning strides of pointers). 1060 PredicatedScalarEvolution &PSE; 1061 Loop *TheLoop; 1062 DominatorTree *DT; 1063 LoopInfo *LI; 1064 const LoopAccessInfo *LAI; 1065 1066 /// True if the loop may contain non-reversed interleaved groups with 1067 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1068 /// out-of-bounds by executing at least one scalar epilogue iteration. 1069 bool RequiresScalarEpilogue; 1070 1071 /// Holds the relationships between the members and the interleave group. 1072 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1073 1074 /// Holds dependences among the memory accesses in the loop. It maps a source 1075 /// access to a set of dependent sink accesses. 1076 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1077 1078 /// \brief The descriptor for a strided memory access. 1079 struct StrideDescriptor { 1080 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1081 unsigned Align) 1082 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1083 1084 StrideDescriptor() = default; 1085 1086 // The access's stride. It is negative for a reverse access. 1087 int64_t Stride = 0; 1088 const SCEV *Scev = nullptr; // The scalar expression of this access 1089 uint64_t Size = 0; // The size of the memory object. 1090 unsigned Align = 0; // The alignment of this access. 1091 }; 1092 1093 /// \brief A type for holding instructions and their stride descriptors. 1094 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1095 1096 /// \brief Create a new interleave group with the given instruction \p Instr, 1097 /// stride \p Stride and alignment \p Align. 1098 /// 1099 /// \returns the newly created interleave group. 1100 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1101 unsigned Align) { 1102 assert(!InterleaveGroupMap.count(Instr) && 1103 "Already in an interleaved access group"); 1104 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1105 return InterleaveGroupMap[Instr]; 1106 } 1107 1108 /// \brief Release the group and remove all the relationships. 1109 void releaseGroup(InterleaveGroup *Group) { 1110 for (unsigned i = 0; i < Group->getFactor(); i++) 1111 if (Instruction *Member = Group->getMember(i)) 1112 InterleaveGroupMap.erase(Member); 1113 1114 delete Group; 1115 } 1116 1117 /// \brief Collect all the accesses with a constant stride in program order. 1118 void collectConstStrideAccesses( 1119 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1120 const ValueToValueMap &Strides); 1121 1122 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1123 static bool isStrided(int Stride) { 1124 unsigned Factor = std::abs(Stride); 1125 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1126 } 1127 1128 /// \brief Returns true if \p BB is a predicated block. 1129 bool isPredicated(BasicBlock *BB) const { 1130 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1131 } 1132 1133 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1134 bool areDependencesValid() const { 1135 return LAI && LAI->getDepChecker().getDependences(); 1136 } 1137 1138 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1139 /// necessary, when constructing interleaved groups. 1140 /// 1141 /// \p A must precede \p B in program order. We return false if reordering is 1142 /// not necessary or is prevented because \p A and \p B may be dependent. 1143 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1144 StrideEntry *B) const { 1145 1146 // Code motion for interleaved accesses can potentially hoist strided loads 1147 // and sink strided stores. The code below checks the legality of the 1148 // following two conditions: 1149 // 1150 // 1. Potentially moving a strided load (B) before any store (A) that 1151 // precedes B, or 1152 // 1153 // 2. Potentially moving a strided store (A) after any load or store (B) 1154 // that A precedes. 1155 // 1156 // It's legal to reorder A and B if we know there isn't a dependence from A 1157 // to B. Note that this determination is conservative since some 1158 // dependences could potentially be reordered safely. 1159 1160 // A is potentially the source of a dependence. 1161 auto *Src = A->first; 1162 auto SrcDes = A->second; 1163 1164 // B is potentially the sink of a dependence. 1165 auto *Sink = B->first; 1166 auto SinkDes = B->second; 1167 1168 // Code motion for interleaved accesses can't violate WAR dependences. 1169 // Thus, reordering is legal if the source isn't a write. 1170 if (!Src->mayWriteToMemory()) 1171 return true; 1172 1173 // At least one of the accesses must be strided. 1174 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1175 return true; 1176 1177 // If dependence information is not available from LoopAccessInfo, 1178 // conservatively assume the instructions can't be reordered. 1179 if (!areDependencesValid()) 1180 return false; 1181 1182 // If we know there is a dependence from source to sink, assume the 1183 // instructions can't be reordered. Otherwise, reordering is legal. 1184 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1185 } 1186 1187 /// \brief Collect the dependences from LoopAccessInfo. 1188 /// 1189 /// We process the dependences once during the interleaved access analysis to 1190 /// enable constant-time dependence queries. 1191 void collectDependences() { 1192 if (!areDependencesValid()) 1193 return; 1194 auto *Deps = LAI->getDepChecker().getDependences(); 1195 for (auto Dep : *Deps) 1196 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1197 } 1198 }; 1199 1200 /// Utility class for getting and setting loop vectorizer hints in the form 1201 /// of loop metadata. 1202 /// This class keeps a number of loop annotations locally (as member variables) 1203 /// and can, upon request, write them back as metadata on the loop. It will 1204 /// initially scan the loop for existing metadata, and will update the local 1205 /// values based on information in the loop. 1206 /// We cannot write all values to metadata, as the mere presence of some info, 1207 /// for example 'force', means a decision has been made. So, we need to be 1208 /// careful NOT to add them if the user hasn't specifically asked so. 1209 class LoopVectorizeHints { 1210 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1211 1212 /// Hint - associates name and validation with the hint value. 1213 struct Hint { 1214 const char *Name; 1215 unsigned Value; // This may have to change for non-numeric values. 1216 HintKind Kind; 1217 1218 Hint(const char *Name, unsigned Value, HintKind Kind) 1219 : Name(Name), Value(Value), Kind(Kind) {} 1220 1221 bool validate(unsigned Val) { 1222 switch (Kind) { 1223 case HK_WIDTH: 1224 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1225 case HK_UNROLL: 1226 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1227 case HK_FORCE: 1228 return (Val <= 1); 1229 } 1230 return false; 1231 } 1232 }; 1233 1234 /// Vectorization width. 1235 Hint Width; 1236 /// Vectorization interleave factor. 1237 Hint Interleave; 1238 /// Vectorization forced 1239 Hint Force; 1240 1241 /// Return the loop metadata prefix. 1242 static StringRef Prefix() { return "llvm.loop."; } 1243 1244 /// True if there is any unsafe math in the loop. 1245 bool PotentiallyUnsafe; 1246 1247 public: 1248 enum ForceKind { 1249 FK_Undefined = -1, ///< Not selected. 1250 FK_Disabled = 0, ///< Forcing disabled. 1251 FK_Enabled = 1, ///< Forcing enabled. 1252 }; 1253 1254 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1255 OptimizationRemarkEmitter &ORE) 1256 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1257 HK_WIDTH), 1258 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1259 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1260 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1261 // Populate values with existing loop metadata. 1262 getHintsFromMetadata(); 1263 1264 // force-vector-interleave overrides DisableInterleaving. 1265 if (VectorizerParams::isInterleaveForced()) 1266 Interleave.Value = VectorizerParams::VectorizationInterleave; 1267 1268 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1269 << "LV: Interleaving disabled by the pass manager\n"); 1270 } 1271 1272 /// Mark the loop L as already vectorized by setting the width to 1. 1273 void setAlreadyVectorized() { 1274 Width.Value = Interleave.Value = 1; 1275 Hint Hints[] = {Width, Interleave}; 1276 writeHintsToMetadata(Hints); 1277 } 1278 1279 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1280 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1281 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1282 emitRemarkWithHints(); 1283 return false; 1284 } 1285 1286 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1287 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1288 emitRemarkWithHints(); 1289 return false; 1290 } 1291 1292 if (getWidth() == 1 && getInterleave() == 1) { 1293 // FIXME: Add a separate metadata to indicate when the loop has already 1294 // been vectorized instead of setting width and count to 1. 1295 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1296 // FIXME: Add interleave.disable metadata. This will allow 1297 // vectorize.disable to be used without disabling the pass and errors 1298 // to differentiate between disabled vectorization and a width of 1. 1299 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1300 "AllDisabled", L->getStartLoc(), 1301 L->getHeader()) 1302 << "loop not vectorized: vectorization and interleaving are " 1303 "explicitly disabled, or vectorize width and interleave " 1304 "count are both set to 1"); 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /// Dumps all the hint information. 1312 void emitRemarkWithHints() const { 1313 using namespace ore; 1314 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1315 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1316 TheLoop->getStartLoc(), 1317 TheLoop->getHeader()) 1318 << "loop not vectorized: vectorization is explicitly disabled"); 1319 else { 1320 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1321 TheLoop->getStartLoc(), TheLoop->getHeader()); 1322 R << "loop not vectorized: use -Rpass-analysis=loop-vectorize for more " 1323 "info"; 1324 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1325 R << " (Force=" << NV("Force", true); 1326 if (Width.Value != 0) 1327 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1328 if (Interleave.Value != 0) 1329 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1330 R << ")"; 1331 } 1332 ORE.emit(R); 1333 } 1334 } 1335 1336 unsigned getWidth() const { return Width.Value; } 1337 unsigned getInterleave() const { return Interleave.Value; } 1338 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1339 1340 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1341 /// pass name to force the frontend to print the diagnostic. 1342 const char *vectorizeAnalysisPassName() const { 1343 if (getWidth() == 1) 1344 return LV_NAME; 1345 if (getForce() == LoopVectorizeHints::FK_Disabled) 1346 return LV_NAME; 1347 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1348 return LV_NAME; 1349 return OptimizationRemarkAnalysis::AlwaysPrint; 1350 } 1351 1352 bool allowReordering() const { 1353 // When enabling loop hints are provided we allow the vectorizer to change 1354 // the order of operations that is given by the scalar loop. This is not 1355 // enabled by default because can be unsafe or inefficient. For example, 1356 // reordering floating-point operations will change the way round-off 1357 // error accumulates in the loop. 1358 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1359 } 1360 1361 bool isPotentiallyUnsafe() const { 1362 // Avoid FP vectorization if the target is unsure about proper support. 1363 // This may be related to the SIMD unit in the target not handling 1364 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1365 // Otherwise, a sequence of vectorized loops, even without reduction, 1366 // could lead to different end results on the destination vectors. 1367 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1368 } 1369 1370 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1371 1372 private: 1373 /// Find hints specified in the loop metadata and update local values. 1374 void getHintsFromMetadata() { 1375 MDNode *LoopID = TheLoop->getLoopID(); 1376 if (!LoopID) 1377 return; 1378 1379 // First operand should refer to the loop id itself. 1380 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1381 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1382 1383 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1384 const MDString *S = nullptr; 1385 SmallVector<Metadata *, 4> Args; 1386 1387 // The expected hint is either a MDString or a MDNode with the first 1388 // operand a MDString. 1389 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1390 if (!MD || MD->getNumOperands() == 0) 1391 continue; 1392 S = dyn_cast<MDString>(MD->getOperand(0)); 1393 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1394 Args.push_back(MD->getOperand(i)); 1395 } else { 1396 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1397 assert(Args.size() == 0 && "too many arguments for MDString"); 1398 } 1399 1400 if (!S) 1401 continue; 1402 1403 // Check if the hint starts with the loop metadata prefix. 1404 StringRef Name = S->getString(); 1405 if (Args.size() == 1) 1406 setHint(Name, Args[0]); 1407 } 1408 } 1409 1410 /// Checks string hint with one operand and set value if valid. 1411 void setHint(StringRef Name, Metadata *Arg) { 1412 if (!Name.startswith(Prefix())) 1413 return; 1414 Name = Name.substr(Prefix().size(), StringRef::npos); 1415 1416 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1417 if (!C) 1418 return; 1419 unsigned Val = C->getZExtValue(); 1420 1421 Hint *Hints[] = {&Width, &Interleave, &Force}; 1422 for (auto H : Hints) { 1423 if (Name == H->Name) { 1424 if (H->validate(Val)) 1425 H->Value = Val; 1426 else 1427 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1428 break; 1429 } 1430 } 1431 } 1432 1433 /// Create a new hint from name / value pair. 1434 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1435 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1436 Metadata *MDs[] = {MDString::get(Context, Name), 1437 ConstantAsMetadata::get( 1438 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1439 return MDNode::get(Context, MDs); 1440 } 1441 1442 /// Matches metadata with hint name. 1443 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1444 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1445 if (!Name) 1446 return false; 1447 1448 for (auto H : HintTypes) 1449 if (Name->getString().endswith(H.Name)) 1450 return true; 1451 return false; 1452 } 1453 1454 /// Sets current hints into loop metadata, keeping other values intact. 1455 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1456 if (HintTypes.size() == 0) 1457 return; 1458 1459 // Reserve the first element to LoopID (see below). 1460 SmallVector<Metadata *, 4> MDs(1); 1461 // If the loop already has metadata, then ignore the existing operands. 1462 MDNode *LoopID = TheLoop->getLoopID(); 1463 if (LoopID) { 1464 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1465 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1466 // If node in update list, ignore old value. 1467 if (!matchesHintMetadataName(Node, HintTypes)) 1468 MDs.push_back(Node); 1469 } 1470 } 1471 1472 // Now, add the missing hints. 1473 for (auto H : HintTypes) 1474 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1475 1476 // Replace current metadata node with new one. 1477 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1478 MDNode *NewLoopID = MDNode::get(Context, MDs); 1479 // Set operand 0 to refer to the loop id itself. 1480 NewLoopID->replaceOperandWith(0, NewLoopID); 1481 1482 TheLoop->setLoopID(NewLoopID); 1483 } 1484 1485 /// The loop these hints belong to. 1486 const Loop *TheLoop; 1487 1488 /// Interface to emit optimization remarks. 1489 OptimizationRemarkEmitter &ORE; 1490 }; 1491 1492 static void emitAnalysisDiag(const Loop *TheLoop, 1493 const LoopVectorizeHints &Hints, 1494 OptimizationRemarkEmitter &ORE, 1495 const LoopAccessReport &Message) { 1496 const char *Name = Hints.vectorizeAnalysisPassName(); 1497 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1498 } 1499 1500 static void emitMissedWarning(Function *F, Loop *L, 1501 const LoopVectorizeHints &LH, 1502 OptimizationRemarkEmitter *ORE) { 1503 LH.emitRemarkWithHints(); 1504 1505 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1506 if (LH.getWidth() != 1) 1507 emitLoopVectorizeWarning( 1508 F->getContext(), *F, L->getStartLoc(), 1509 "failed explicitly specified loop vectorization"); 1510 else if (LH.getInterleave() != 1) 1511 emitLoopInterleaveWarning( 1512 F->getContext(), *F, L->getStartLoc(), 1513 "failed explicitly specified loop interleaving"); 1514 } 1515 } 1516 1517 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1518 /// to what vectorization factor. 1519 /// This class does not look at the profitability of vectorization, only the 1520 /// legality. This class has two main kinds of checks: 1521 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1522 /// will change the order of memory accesses in a way that will change the 1523 /// correctness of the program. 1524 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1525 /// checks for a number of different conditions, such as the availability of a 1526 /// single induction variable, that all types are supported and vectorize-able, 1527 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1528 /// This class is also used by InnerLoopVectorizer for identifying 1529 /// induction variable and the different reduction variables. 1530 class LoopVectorizationLegality { 1531 public: 1532 LoopVectorizationLegality( 1533 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1534 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1535 const TargetTransformInfo *TTI, 1536 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1537 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1538 LoopVectorizeHints *H) 1539 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1540 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1541 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1542 Requirements(R), Hints(H) {} 1543 1544 /// ReductionList contains the reduction descriptors for all 1545 /// of the reductions that were found in the loop. 1546 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1547 1548 /// InductionList saves induction variables and maps them to the 1549 /// induction descriptor. 1550 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1551 1552 /// RecurrenceSet contains the phi nodes that are recurrences other than 1553 /// inductions and reductions. 1554 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1555 1556 /// Returns true if it is legal to vectorize this loop. 1557 /// This does not mean that it is profitable to vectorize this 1558 /// loop, only that it is legal to do so. 1559 bool canVectorize(); 1560 1561 /// Returns the Induction variable. 1562 PHINode *getInduction() { return Induction; } 1563 1564 /// Returns the reduction variables found in the loop. 1565 ReductionList *getReductionVars() { return &Reductions; } 1566 1567 /// Returns the induction variables found in the loop. 1568 InductionList *getInductionVars() { return &Inductions; } 1569 1570 /// Return the first-order recurrences found in the loop. 1571 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1572 1573 /// Returns the widest induction type. 1574 Type *getWidestInductionType() { return WidestIndTy; } 1575 1576 /// Returns True if V is an induction variable in this loop. 1577 bool isInductionVariable(const Value *V); 1578 1579 /// Returns True if PN is a reduction variable in this loop. 1580 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1581 1582 /// Returns True if Phi is a first-order recurrence in this loop. 1583 bool isFirstOrderRecurrence(const PHINode *Phi); 1584 1585 /// Return true if the block BB needs to be predicated in order for the loop 1586 /// to be vectorized. 1587 bool blockNeedsPredication(BasicBlock *BB); 1588 1589 /// Check if this pointer is consecutive when vectorizing. This happens 1590 /// when the last index of the GEP is the induction variable, or that the 1591 /// pointer itself is an induction variable. 1592 /// This check allows us to vectorize A[idx] into a wide load/store. 1593 /// Returns: 1594 /// 0 - Stride is unknown or non-consecutive. 1595 /// 1 - Address is consecutive. 1596 /// -1 - Address is consecutive, and decreasing. 1597 int isConsecutivePtr(Value *Ptr); 1598 1599 /// Returns true if the value V is uniform within the loop. 1600 bool isUniform(Value *V); 1601 1602 /// Returns true if \p I is known to be uniform after vectorization. 1603 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1604 1605 /// Returns true if \p I is known to be scalar after vectorization. 1606 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1607 1608 /// Returns the information that we collected about runtime memory check. 1609 const RuntimePointerChecking *getRuntimePointerChecking() const { 1610 return LAI->getRuntimePointerChecking(); 1611 } 1612 1613 const LoopAccessInfo *getLAI() const { return LAI; } 1614 1615 /// \brief Check if \p Instr belongs to any interleaved access group. 1616 bool isAccessInterleaved(Instruction *Instr) { 1617 return InterleaveInfo.isInterleaved(Instr); 1618 } 1619 1620 /// \brief Return the maximum interleave factor of all interleaved groups. 1621 unsigned getMaxInterleaveFactor() const { 1622 return InterleaveInfo.getMaxInterleaveFactor(); 1623 } 1624 1625 /// \brief Get the interleaved access group that \p Instr belongs to. 1626 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1627 return InterleaveInfo.getInterleaveGroup(Instr); 1628 } 1629 1630 /// \brief Returns true if an interleaved group requires a scalar iteration 1631 /// to handle accesses with gaps. 1632 bool requiresScalarEpilogue() const { 1633 return InterleaveInfo.requiresScalarEpilogue(); 1634 } 1635 1636 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1637 1638 bool hasStride(Value *V) { return LAI->hasStride(V); } 1639 1640 /// Returns true if the target machine supports masked store operation 1641 /// for the given \p DataType and kind of access to \p Ptr. 1642 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1643 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1644 } 1645 /// Returns true if the target machine supports masked load operation 1646 /// for the given \p DataType and kind of access to \p Ptr. 1647 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1648 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1649 } 1650 /// Returns true if the target machine supports masked scatter operation 1651 /// for the given \p DataType. 1652 bool isLegalMaskedScatter(Type *DataType) { 1653 return TTI->isLegalMaskedScatter(DataType); 1654 } 1655 /// Returns true if the target machine supports masked gather operation 1656 /// for the given \p DataType. 1657 bool isLegalMaskedGather(Type *DataType) { 1658 return TTI->isLegalMaskedGather(DataType); 1659 } 1660 /// Returns true if the target machine can represent \p V as a masked gather 1661 /// or scatter operation. 1662 bool isLegalGatherOrScatter(Value *V) { 1663 auto *LI = dyn_cast<LoadInst>(V); 1664 auto *SI = dyn_cast<StoreInst>(V); 1665 if (!LI && !SI) 1666 return false; 1667 auto *Ptr = getPointerOperand(V); 1668 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1669 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1670 } 1671 1672 /// Returns true if vector representation of the instruction \p I 1673 /// requires mask. 1674 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1675 unsigned getNumStores() const { return LAI->getNumStores(); } 1676 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1677 unsigned getNumPredStores() const { return NumPredStores; } 1678 1679 /// Returns true if \p I is an instruction that will be scalarized with 1680 /// predication. Such instructions include conditional stores and 1681 /// instructions that may divide by zero. 1682 bool isScalarWithPredication(Instruction *I); 1683 1684 /// Returns true if \p I is a memory instruction that has a consecutive or 1685 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1686 /// that are treated like consecutive pointers during vectorization. The 1687 /// pointer operands of interleaved accesses are an example. 1688 bool hasConsecutiveLikePtrOperand(Instruction *I); 1689 1690 /// Returns true if \p I is a memory instruction that must be scalarized 1691 /// during vectorization. 1692 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1693 1694 private: 1695 /// Check if a single basic block loop is vectorizable. 1696 /// At this point we know that this is a loop with a constant trip count 1697 /// and we only need to check individual instructions. 1698 bool canVectorizeInstrs(); 1699 1700 /// When we vectorize loops we may change the order in which 1701 /// we read and write from memory. This method checks if it is 1702 /// legal to vectorize the code, considering only memory constrains. 1703 /// Returns true if the loop is vectorizable 1704 bool canVectorizeMemory(); 1705 1706 /// Return true if we can vectorize this loop using the IF-conversion 1707 /// transformation. 1708 bool canVectorizeWithIfConvert(); 1709 1710 /// Collect the instructions that are uniform after vectorization. An 1711 /// instruction is uniform if we represent it with a single scalar value in 1712 /// the vectorized loop corresponding to each vector iteration. Examples of 1713 /// uniform instructions include pointer operands of consecutive or 1714 /// interleaved memory accesses. Note that although uniformity implies an 1715 /// instruction will be scalar, the reverse is not true. In general, a 1716 /// scalarized instruction will be represented by VF scalar values in the 1717 /// vectorized loop, each corresponding to an iteration of the original 1718 /// scalar loop. 1719 void collectLoopUniforms(); 1720 1721 /// Collect the instructions that are scalar after vectorization. An 1722 /// instruction is scalar if it is known to be uniform or will be scalarized 1723 /// during vectorization. Non-uniform scalarized instructions will be 1724 /// represented by VF values in the vectorized loop, each corresponding to an 1725 /// iteration of the original scalar loop. 1726 void collectLoopScalars(); 1727 1728 /// Return true if all of the instructions in the block can be speculatively 1729 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1730 /// and we know that we can read from them without segfault. 1731 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1732 1733 /// Updates the vectorization state by adding \p Phi to the inductions list. 1734 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1735 /// better choice for the main induction than the existing one. 1736 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1737 SmallPtrSetImpl<Value *> &AllowedExit); 1738 1739 /// Report an analysis message to assist the user in diagnosing loops that are 1740 /// not vectorized. These are handled as LoopAccessReport rather than 1741 /// VectorizationReport because the << operator of VectorizationReport returns 1742 /// LoopAccessReport. 1743 void emitAnalysis(const LoopAccessReport &Message) const { 1744 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1745 } 1746 1747 /// Create an analysis remark that explains why vectorization failed 1748 /// 1749 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1750 /// an instruction that prevents vectorization. Otherwise the loop is used 1751 /// for the location of the remark. \return the remark object that can be 1752 /// streamed to. 1753 OptimizationRemarkAnalysis 1754 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1755 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1756 RemarkName, TheLoop, I); 1757 } 1758 1759 /// \brief If an access has a symbolic strides, this maps the pointer value to 1760 /// the stride symbol. 1761 const ValueToValueMap *getSymbolicStrides() { 1762 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1763 // it's collected. This happens from canVectorizeWithIfConvert, when the 1764 // pointer is checked to reference consecutive elements suitable for a 1765 // masked access. 1766 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1767 } 1768 1769 unsigned NumPredStores; 1770 1771 /// The loop that we evaluate. 1772 Loop *TheLoop; 1773 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1774 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1775 /// of existing SCEV assumptions. The analysis will also add a minimal set 1776 /// of new predicates if this is required to enable vectorization and 1777 /// unrolling. 1778 PredicatedScalarEvolution &PSE; 1779 /// Target Library Info. 1780 TargetLibraryInfo *TLI; 1781 /// Target Transform Info 1782 const TargetTransformInfo *TTI; 1783 /// Dominator Tree. 1784 DominatorTree *DT; 1785 // LoopAccess analysis. 1786 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1787 // And the loop-accesses info corresponding to this loop. This pointer is 1788 // null until canVectorizeMemory sets it up. 1789 const LoopAccessInfo *LAI; 1790 /// Interface to emit optimization remarks. 1791 OptimizationRemarkEmitter *ORE; 1792 1793 /// The interleave access information contains groups of interleaved accesses 1794 /// with the same stride and close to each other. 1795 InterleavedAccessInfo InterleaveInfo; 1796 1797 // --- vectorization state --- // 1798 1799 /// Holds the integer induction variable. This is the counter of the 1800 /// loop. 1801 PHINode *Induction; 1802 /// Holds the reduction variables. 1803 ReductionList Reductions; 1804 /// Holds all of the induction variables that we found in the loop. 1805 /// Notice that inductions don't need to start at zero and that induction 1806 /// variables can be pointers. 1807 InductionList Inductions; 1808 /// Holds the phi nodes that are first-order recurrences. 1809 RecurrenceSet FirstOrderRecurrences; 1810 /// Holds the widest induction type encountered. 1811 Type *WidestIndTy; 1812 1813 /// Allowed outside users. This holds the induction and reduction 1814 /// vars which can be accessed from outside the loop. 1815 SmallPtrSet<Value *, 4> AllowedExit; 1816 1817 /// Holds the instructions known to be uniform after vectorization. 1818 SmallPtrSet<Instruction *, 4> Uniforms; 1819 1820 /// Holds the instructions known to be scalar after vectorization. 1821 SmallPtrSet<Instruction *, 4> Scalars; 1822 1823 /// Can we assume the absence of NaNs. 1824 bool HasFunNoNaNAttr; 1825 1826 /// Vectorization requirements that will go through late-evaluation. 1827 LoopVectorizationRequirements *Requirements; 1828 1829 /// Used to emit an analysis of any legality issues. 1830 LoopVectorizeHints *Hints; 1831 1832 /// While vectorizing these instructions we have to generate a 1833 /// call to the appropriate masked intrinsic 1834 SmallPtrSet<const Instruction *, 8> MaskedOp; 1835 }; 1836 1837 /// LoopVectorizationCostModel - estimates the expected speedups due to 1838 /// vectorization. 1839 /// In many cases vectorization is not profitable. This can happen because of 1840 /// a number of reasons. In this class we mainly attempt to predict the 1841 /// expected speedup/slowdowns due to the supported instruction set. We use the 1842 /// TargetTransformInfo to query the different backends for the cost of 1843 /// different operations. 1844 class LoopVectorizationCostModel { 1845 public: 1846 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1847 LoopInfo *LI, LoopVectorizationLegality *Legal, 1848 const TargetTransformInfo &TTI, 1849 const TargetLibraryInfo *TLI, DemandedBits *DB, 1850 AssumptionCache *AC, 1851 OptimizationRemarkEmitter *ORE, const Function *F, 1852 const LoopVectorizeHints *Hints) 1853 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1854 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1855 1856 /// Information about vectorization costs 1857 struct VectorizationFactor { 1858 unsigned Width; // Vector width with best cost 1859 unsigned Cost; // Cost of the loop with that width 1860 }; 1861 /// \return The most profitable vectorization factor and the cost of that VF. 1862 /// This method checks every power of two up to VF. If UserVF is not ZERO 1863 /// then this vectorization factor will be selected if vectorization is 1864 /// possible. 1865 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1866 1867 /// \return The size (in bits) of the smallest and widest types in the code 1868 /// that needs to be vectorized. We ignore values that remain scalar such as 1869 /// 64 bit loop indices. 1870 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1871 1872 /// \return The desired interleave count. 1873 /// If interleave count has been specified by metadata it will be returned. 1874 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1875 /// are the selected vectorization factor and the cost of the selected VF. 1876 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1877 unsigned LoopCost); 1878 1879 /// \return The most profitable unroll factor. 1880 /// This method finds the best unroll-factor based on register pressure and 1881 /// other parameters. VF and LoopCost are the selected vectorization factor 1882 /// and the cost of the selected VF. 1883 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1884 unsigned LoopCost); 1885 1886 /// \brief A struct that represents some properties of the register usage 1887 /// of a loop. 1888 struct RegisterUsage { 1889 /// Holds the number of loop invariant values that are used in the loop. 1890 unsigned LoopInvariantRegs; 1891 /// Holds the maximum number of concurrent live intervals in the loop. 1892 unsigned MaxLocalUsers; 1893 /// Holds the number of instructions in the loop. 1894 unsigned NumInstructions; 1895 }; 1896 1897 /// \return Returns information about the register usages of the loop for the 1898 /// given vectorization factors. 1899 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1900 1901 /// Collect values we want to ignore in the cost model. 1902 void collectValuesToIgnore(); 1903 1904 /// \returns The smallest bitwidth each instruction can be represented with. 1905 /// The vector equivalents of these instructions should be truncated to this 1906 /// type. 1907 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1908 return MinBWs; 1909 } 1910 1911 private: 1912 /// The vectorization cost is a combination of the cost itself and a boolean 1913 /// indicating whether any of the contributing operations will actually 1914 /// operate on 1915 /// vector values after type legalization in the backend. If this latter value 1916 /// is 1917 /// false, then all operations will be scalarized (i.e. no vectorization has 1918 /// actually taken place). 1919 typedef std::pair<unsigned, bool> VectorizationCostTy; 1920 1921 /// Returns the expected execution cost. The unit of the cost does 1922 /// not matter because we use the 'cost' units to compare different 1923 /// vector widths. The cost that is returned is *not* normalized by 1924 /// the factor width. 1925 VectorizationCostTy expectedCost(unsigned VF); 1926 1927 /// Returns the execution time cost of an instruction for a given vector 1928 /// width. Vector width of one means scalar. 1929 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1930 1931 /// The cost-computation logic from getInstructionCost which provides 1932 /// the vector type as an output parameter. 1933 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1934 1935 /// Returns whether the instruction is a load or store and will be a emitted 1936 /// as a vector operation. 1937 bool isConsecutiveLoadOrStore(Instruction *I); 1938 1939 /// Create an analysis remark that explains why vectorization failed 1940 /// 1941 /// \p RemarkName is the identifier for the remark. \return the remark object 1942 /// that can be streamed to. 1943 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1944 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1945 RemarkName, TheLoop); 1946 } 1947 1948 /// Map of scalar integer values to the smallest bitwidth they can be legally 1949 /// represented as. The vector equivalents of these values should be truncated 1950 /// to this type. 1951 MapVector<Instruction *, uint64_t> MinBWs; 1952 1953 public: 1954 /// The loop that we evaluate. 1955 Loop *TheLoop; 1956 /// Predicated scalar evolution analysis. 1957 PredicatedScalarEvolution &PSE; 1958 /// Loop Info analysis. 1959 LoopInfo *LI; 1960 /// Vectorization legality. 1961 LoopVectorizationLegality *Legal; 1962 /// Vector target information. 1963 const TargetTransformInfo &TTI; 1964 /// Target Library Info. 1965 const TargetLibraryInfo *TLI; 1966 /// Demanded bits analysis. 1967 DemandedBits *DB; 1968 /// Assumption cache. 1969 AssumptionCache *AC; 1970 /// Interface to emit optimization remarks. 1971 OptimizationRemarkEmitter *ORE; 1972 1973 const Function *TheFunction; 1974 /// Loop Vectorize Hint. 1975 const LoopVectorizeHints *Hints; 1976 /// Values to ignore in the cost model. 1977 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1978 /// Values to ignore in the cost model when VF > 1. 1979 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1980 }; 1981 1982 /// \brief This holds vectorization requirements that must be verified late in 1983 /// the process. The requirements are set by legalize and costmodel. Once 1984 /// vectorization has been determined to be possible and profitable the 1985 /// requirements can be verified by looking for metadata or compiler options. 1986 /// For example, some loops require FP commutativity which is only allowed if 1987 /// vectorization is explicitly specified or if the fast-math compiler option 1988 /// has been provided. 1989 /// Late evaluation of these requirements allows helpful diagnostics to be 1990 /// composed that tells the user what need to be done to vectorize the loop. For 1991 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1992 /// evaluation should be used only when diagnostics can generated that can be 1993 /// followed by a non-expert user. 1994 class LoopVectorizationRequirements { 1995 public: 1996 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 1997 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 1998 1999 void addUnsafeAlgebraInst(Instruction *I) { 2000 // First unsafe algebra instruction. 2001 if (!UnsafeAlgebraInst) 2002 UnsafeAlgebraInst = I; 2003 } 2004 2005 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2006 2007 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2008 const char *PassName = Hints.vectorizeAnalysisPassName(); 2009 bool Failed = false; 2010 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2011 ORE.emit( 2012 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2013 UnsafeAlgebraInst->getDebugLoc(), 2014 UnsafeAlgebraInst->getParent()) 2015 << "loop not vectorized: cannot prove it is safe to reorder " 2016 "floating-point operations"); 2017 Failed = true; 2018 } 2019 2020 // Test if runtime memcheck thresholds are exceeded. 2021 bool PragmaThresholdReached = 2022 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2023 bool ThresholdReached = 2024 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2025 if ((ThresholdReached && !Hints.allowReordering()) || 2026 PragmaThresholdReached) { 2027 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2028 L->getStartLoc(), 2029 L->getHeader()) 2030 << "loop not vectorized: cannot prove it is safe to reorder " 2031 "memory operations"); 2032 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2033 Failed = true; 2034 } 2035 2036 return Failed; 2037 } 2038 2039 private: 2040 unsigned NumRuntimePointerChecks; 2041 Instruction *UnsafeAlgebraInst; 2042 2043 /// Interface to emit optimization remarks. 2044 OptimizationRemarkEmitter &ORE; 2045 }; 2046 2047 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2048 if (L.empty()) { 2049 if (!hasCyclesInLoopBody(L)) 2050 V.push_back(&L); 2051 return; 2052 } 2053 for (Loop *InnerL : L) 2054 addAcyclicInnerLoop(*InnerL, V); 2055 } 2056 2057 /// The LoopVectorize Pass. 2058 struct LoopVectorize : public FunctionPass { 2059 /// Pass identification, replacement for typeid 2060 static char ID; 2061 2062 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2063 : FunctionPass(ID) { 2064 Impl.DisableUnrolling = NoUnrolling; 2065 Impl.AlwaysVectorize = AlwaysVectorize; 2066 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2067 } 2068 2069 LoopVectorizePass Impl; 2070 2071 bool runOnFunction(Function &F) override { 2072 if (skipFunction(F)) 2073 return false; 2074 2075 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2076 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2077 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2078 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2079 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2080 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2081 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2082 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2083 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2084 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2085 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2086 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2087 2088 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2089 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2090 2091 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2092 GetLAA, *ORE); 2093 } 2094 2095 void getAnalysisUsage(AnalysisUsage &AU) const override { 2096 AU.addRequired<AssumptionCacheTracker>(); 2097 AU.addRequiredID(LoopSimplifyID); 2098 AU.addRequiredID(LCSSAID); 2099 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2100 AU.addRequired<DominatorTreeWrapperPass>(); 2101 AU.addRequired<LoopInfoWrapperPass>(); 2102 AU.addRequired<ScalarEvolutionWrapperPass>(); 2103 AU.addRequired<TargetTransformInfoWrapperPass>(); 2104 AU.addRequired<AAResultsWrapperPass>(); 2105 AU.addRequired<LoopAccessLegacyAnalysis>(); 2106 AU.addRequired<DemandedBitsWrapperPass>(); 2107 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2108 AU.addPreserved<LoopInfoWrapperPass>(); 2109 AU.addPreserved<DominatorTreeWrapperPass>(); 2110 AU.addPreserved<BasicAAWrapperPass>(); 2111 AU.addPreserved<GlobalsAAWrapperPass>(); 2112 } 2113 }; 2114 2115 } // end anonymous namespace 2116 2117 //===----------------------------------------------------------------------===// 2118 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2119 // LoopVectorizationCostModel. 2120 //===----------------------------------------------------------------------===// 2121 2122 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2123 // We need to place the broadcast of invariant variables outside the loop. 2124 Instruction *Instr = dyn_cast<Instruction>(V); 2125 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2126 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2127 2128 // Place the code for broadcasting invariant variables in the new preheader. 2129 IRBuilder<>::InsertPointGuard Guard(Builder); 2130 if (Invariant) 2131 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2132 2133 // Broadcast the scalar into all locations in the vector. 2134 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2135 2136 return Shuf; 2137 } 2138 2139 void InnerLoopVectorizer::createVectorIntInductionPHI( 2140 const InductionDescriptor &II, Instruction *EntryVal) { 2141 Value *Start = II.getStartValue(); 2142 ConstantInt *Step = II.getConstIntStepValue(); 2143 assert(Step && "Can not widen an IV with a non-constant step"); 2144 2145 // Construct the initial value of the vector IV in the vector loop preheader 2146 auto CurrIP = Builder.saveIP(); 2147 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2148 if (isa<TruncInst>(EntryVal)) { 2149 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2150 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2151 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2152 } 2153 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2154 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2155 Builder.restoreIP(CurrIP); 2156 2157 Value *SplatVF = 2158 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2159 VF * Step->getSExtValue())); 2160 // We may need to add the step a number of times, depending on the unroll 2161 // factor. The last of those goes into the PHI. 2162 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2163 &*LoopVectorBody->getFirstInsertionPt()); 2164 Instruction *LastInduction = VecInd; 2165 VectorParts Entry(UF); 2166 for (unsigned Part = 0; Part < UF; ++Part) { 2167 Entry[Part] = LastInduction; 2168 LastInduction = cast<Instruction>( 2169 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2170 } 2171 VectorLoopValueMap.initVector(EntryVal, Entry); 2172 if (isa<TruncInst>(EntryVal)) 2173 addMetadata(Entry, EntryVal); 2174 2175 // Move the last step to the end of the latch block. This ensures consistent 2176 // placement of all induction updates. 2177 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2178 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2179 auto *ICmp = cast<Instruction>(Br->getCondition()); 2180 LastInduction->moveBefore(ICmp); 2181 LastInduction->setName("vec.ind.next"); 2182 2183 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2184 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2185 } 2186 2187 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2188 if (Legal->isScalarAfterVectorization(IV)) 2189 return true; 2190 auto isScalarInst = [&](User *U) -> bool { 2191 auto *I = cast<Instruction>(U); 2192 return (OrigLoop->contains(I) && Legal->isScalarAfterVectorization(I)); 2193 }; 2194 return any_of(IV->users(), isScalarInst); 2195 } 2196 2197 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2198 2199 auto II = Legal->getInductionVars()->find(IV); 2200 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2201 2202 auto ID = II->second; 2203 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2204 2205 // The scalar value to broadcast. This will be derived from the canonical 2206 // induction variable. 2207 Value *ScalarIV = nullptr; 2208 2209 // The step of the induction. 2210 Value *Step = nullptr; 2211 2212 // The value from the original loop to which we are mapping the new induction 2213 // variable. 2214 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2215 2216 // True if we have vectorized the induction variable. 2217 auto VectorizedIV = false; 2218 2219 // Determine if we want a scalar version of the induction variable. This is 2220 // true if the induction variable itself is not widened, or if it has at 2221 // least one user in the loop that is not widened. 2222 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2223 2224 // If the induction variable has a constant integer step value, go ahead and 2225 // get it now. 2226 if (ID.getConstIntStepValue()) 2227 Step = ID.getConstIntStepValue(); 2228 2229 // Try to create a new independent vector induction variable. If we can't 2230 // create the phi node, we will splat the scalar induction variable in each 2231 // loop iteration. 2232 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2233 !Legal->isScalarAfterVectorization(EntryVal)) { 2234 createVectorIntInductionPHI(ID, EntryVal); 2235 VectorizedIV = true; 2236 } 2237 2238 // If we haven't yet vectorized the induction variable, or if we will create 2239 // a scalar one, we need to define the scalar induction variable and step 2240 // values. If we were given a truncation type, truncate the canonical 2241 // induction variable and constant step. Otherwise, derive these values from 2242 // the induction descriptor. 2243 if (!VectorizedIV || NeedsScalarIV) { 2244 if (Trunc) { 2245 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2246 assert(Step && "Truncation requires constant integer step"); 2247 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2248 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2249 Step = ConstantInt::getSigned(TruncType, StepInt); 2250 } else { 2251 ScalarIV = Induction; 2252 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2253 if (IV != OldInduction) { 2254 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2255 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2256 ScalarIV->setName("offset.idx"); 2257 } 2258 if (!Step) { 2259 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2260 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2261 &*Builder.GetInsertPoint()); 2262 } 2263 } 2264 } 2265 2266 // If we haven't yet vectorized the induction variable, splat the scalar 2267 // induction variable, and build the necessary step vectors. 2268 if (!VectorizedIV) { 2269 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2270 VectorParts Entry(UF); 2271 for (unsigned Part = 0; Part < UF; ++Part) 2272 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2273 VectorLoopValueMap.initVector(EntryVal, Entry); 2274 if (Trunc) 2275 addMetadata(Entry, Trunc); 2276 } 2277 2278 // If an induction variable is only used for counting loop iterations or 2279 // calculating addresses, it doesn't need to be widened. Create scalar steps 2280 // that can be used by instructions we will later scalarize. Note that the 2281 // addition of the scalar steps will not increase the number of instructions 2282 // in the loop in the common case prior to InstCombine. We will be trading 2283 // one vector extract for each scalar step. 2284 if (NeedsScalarIV) 2285 buildScalarSteps(ScalarIV, Step, EntryVal); 2286 } 2287 2288 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2289 Instruction::BinaryOps BinOp) { 2290 // Create and check the types. 2291 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2292 int VLen = Val->getType()->getVectorNumElements(); 2293 2294 Type *STy = Val->getType()->getScalarType(); 2295 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2296 "Induction Step must be an integer or FP"); 2297 assert(Step->getType() == STy && "Step has wrong type"); 2298 2299 SmallVector<Constant *, 8> Indices; 2300 2301 if (STy->isIntegerTy()) { 2302 // Create a vector of consecutive numbers from zero to VF. 2303 for (int i = 0; i < VLen; ++i) 2304 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2305 2306 // Add the consecutive indices to the vector value. 2307 Constant *Cv = ConstantVector::get(Indices); 2308 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2309 Step = Builder.CreateVectorSplat(VLen, Step); 2310 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2311 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2312 // which can be found from the original scalar operations. 2313 Step = Builder.CreateMul(Cv, Step); 2314 return Builder.CreateAdd(Val, Step, "induction"); 2315 } 2316 2317 // Floating point induction. 2318 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2319 "Binary Opcode should be specified for FP induction"); 2320 // Create a vector of consecutive numbers from zero to VF. 2321 for (int i = 0; i < VLen; ++i) 2322 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2323 2324 // Add the consecutive indices to the vector value. 2325 Constant *Cv = ConstantVector::get(Indices); 2326 2327 Step = Builder.CreateVectorSplat(VLen, Step); 2328 2329 // Floating point operations had to be 'fast' to enable the induction. 2330 FastMathFlags Flags; 2331 Flags.setUnsafeAlgebra(); 2332 2333 Value *MulOp = Builder.CreateFMul(Cv, Step); 2334 if (isa<Instruction>(MulOp)) 2335 // Have to check, MulOp may be a constant 2336 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2337 2338 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2339 if (isa<Instruction>(BOp)) 2340 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2341 return BOp; 2342 } 2343 2344 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2345 Value *EntryVal) { 2346 2347 // We shouldn't have to build scalar steps if we aren't vectorizing. 2348 assert(VF > 1 && "VF should be greater than one"); 2349 2350 // Get the value type and ensure it and the step have the same integer type. 2351 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2352 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2353 "Val and Step should have the same integer type"); 2354 2355 // Determine the number of scalars we need to generate for each unroll 2356 // iteration. If EntryVal is uniform, we only need to generate the first 2357 // lane. Otherwise, we generate all VF values. 2358 unsigned Lanes = 2359 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2360 2361 // Compute the scalar steps and save the results in VectorLoopValueMap. 2362 ScalarParts Entry(UF); 2363 for (unsigned Part = 0; Part < UF; ++Part) { 2364 Entry[Part].resize(VF); 2365 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2366 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2367 auto *Mul = Builder.CreateMul(StartIdx, Step); 2368 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2369 Entry[Part][Lane] = Add; 2370 } 2371 } 2372 VectorLoopValueMap.initScalar(EntryVal, Entry); 2373 } 2374 2375 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2376 2377 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2378 ValueToValueMap(); 2379 2380 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2381 if (Stride == 1 || Stride == -1) 2382 return Stride; 2383 return 0; 2384 } 2385 2386 bool LoopVectorizationLegality::isUniform(Value *V) { 2387 return LAI->isUniform(V); 2388 } 2389 2390 const InnerLoopVectorizer::VectorParts & 2391 InnerLoopVectorizer::getVectorValue(Value *V) { 2392 assert(V != Induction && "The new induction variable should not be used."); 2393 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2394 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2395 2396 // If we have a stride that is replaced by one, do it here. 2397 if (Legal->hasStride(V)) 2398 V = ConstantInt::get(V->getType(), 1); 2399 2400 // If we have this scalar in the map, return it. 2401 if (VectorLoopValueMap.hasVector(V)) 2402 return VectorLoopValueMap.VectorMapStorage[V]; 2403 2404 // If the value has not been vectorized, check if it has been scalarized 2405 // instead. If it has been scalarized, and we actually need the value in 2406 // vector form, we will construct the vector values on demand. 2407 if (VectorLoopValueMap.hasScalar(V)) { 2408 2409 // Initialize a new vector map entry. 2410 VectorParts Entry(UF); 2411 2412 // If we've scalarized a value, that value should be an instruction. 2413 auto *I = cast<Instruction>(V); 2414 2415 // If we aren't vectorizing, we can just copy the scalar map values over to 2416 // the vector map. 2417 if (VF == 1) { 2418 for (unsigned Part = 0; Part < UF; ++Part) 2419 Entry[Part] = getScalarValue(V, Part, 0); 2420 return VectorLoopValueMap.initVector(V, Entry); 2421 } 2422 2423 // Get the last scalar instruction we generated for V. If the value is 2424 // known to be uniform after vectorization, this corresponds to lane zero 2425 // of the last unroll iteration. Otherwise, the last instruction is the one 2426 // we created for the last vector lane of the last unroll iteration. 2427 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2428 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2429 2430 // Set the insert point after the last scalarized instruction. This ensures 2431 // the insertelement sequence will directly follow the scalar definitions. 2432 auto OldIP = Builder.saveIP(); 2433 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2434 Builder.SetInsertPoint(&*NewIP); 2435 2436 // However, if we are vectorizing, we need to construct the vector values. 2437 // If the value is known to be uniform after vectorization, we can just 2438 // broadcast the scalar value corresponding to lane zero for each unroll 2439 // iteration. Otherwise, we construct the vector values using insertelement 2440 // instructions. Since the resulting vectors are stored in 2441 // VectorLoopValueMap, we will only generate the insertelements once. 2442 for (unsigned Part = 0; Part < UF; ++Part) { 2443 Value *VectorValue = nullptr; 2444 if (Legal->isUniformAfterVectorization(I)) { 2445 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2446 } else { 2447 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2448 for (unsigned Lane = 0; Lane < VF; ++Lane) 2449 VectorValue = Builder.CreateInsertElement( 2450 VectorValue, getScalarValue(V, Part, Lane), 2451 Builder.getInt32(Lane)); 2452 } 2453 Entry[Part] = VectorValue; 2454 } 2455 Builder.restoreIP(OldIP); 2456 return VectorLoopValueMap.initVector(V, Entry); 2457 } 2458 2459 // If this scalar is unknown, assume that it is a constant or that it is 2460 // loop invariant. Broadcast V and save the value for future uses. 2461 Value *B = getBroadcastInstrs(V); 2462 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2463 } 2464 2465 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2466 unsigned Lane) { 2467 2468 // If the value is not an instruction contained in the loop, it should 2469 // already be scalar. 2470 if (OrigLoop->isLoopInvariant(V)) 2471 return V; 2472 2473 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2474 : true && "Uniform values only have lane zero"); 2475 2476 // If the value from the original loop has not been vectorized, it is 2477 // represented by UF x VF scalar values in the new loop. Return the requested 2478 // scalar value. 2479 if (VectorLoopValueMap.hasScalar(V)) 2480 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2481 2482 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2483 // for the given unroll part. If this entry is not a vector type (i.e., the 2484 // vectorization factor is one), there is no need to generate an 2485 // extractelement instruction. 2486 auto *U = getVectorValue(V)[Part]; 2487 if (!U->getType()->isVectorTy()) { 2488 assert(VF == 1 && "Value not scalarized has non-vector type"); 2489 return U; 2490 } 2491 2492 // Otherwise, the value from the original loop has been vectorized and is 2493 // represented by UF vector values. Extract and return the requested scalar 2494 // value from the appropriate vector lane. 2495 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2496 } 2497 2498 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2499 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2500 SmallVector<Constant *, 8> ShuffleMask; 2501 for (unsigned i = 0; i < VF; ++i) 2502 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2503 2504 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2505 ConstantVector::get(ShuffleMask), 2506 "reverse"); 2507 } 2508 2509 // Get a mask to interleave \p NumVec vectors into a wide vector. 2510 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2511 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2512 // <0, 4, 1, 5, 2, 6, 3, 7> 2513 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2514 unsigned NumVec) { 2515 SmallVector<Constant *, 16> Mask; 2516 for (unsigned i = 0; i < VF; i++) 2517 for (unsigned j = 0; j < NumVec; j++) 2518 Mask.push_back(Builder.getInt32(j * VF + i)); 2519 2520 return ConstantVector::get(Mask); 2521 } 2522 2523 // Get the strided mask starting from index \p Start. 2524 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2525 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2526 unsigned Stride, unsigned VF) { 2527 SmallVector<Constant *, 16> Mask; 2528 for (unsigned i = 0; i < VF; i++) 2529 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2530 2531 return ConstantVector::get(Mask); 2532 } 2533 2534 // Get a mask of two parts: The first part consists of sequential integers 2535 // starting from 0, The second part consists of UNDEFs. 2536 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2537 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2538 unsigned NumUndef) { 2539 SmallVector<Constant *, 16> Mask; 2540 for (unsigned i = 0; i < NumInt; i++) 2541 Mask.push_back(Builder.getInt32(i)); 2542 2543 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2544 for (unsigned i = 0; i < NumUndef; i++) 2545 Mask.push_back(Undef); 2546 2547 return ConstantVector::get(Mask); 2548 } 2549 2550 // Concatenate two vectors with the same element type. The 2nd vector should 2551 // not have more elements than the 1st vector. If the 2nd vector has less 2552 // elements, extend it with UNDEFs. 2553 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2554 Value *V2) { 2555 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2556 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2557 assert(VecTy1 && VecTy2 && 2558 VecTy1->getScalarType() == VecTy2->getScalarType() && 2559 "Expect two vectors with the same element type"); 2560 2561 unsigned NumElts1 = VecTy1->getNumElements(); 2562 unsigned NumElts2 = VecTy2->getNumElements(); 2563 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2564 2565 if (NumElts1 > NumElts2) { 2566 // Extend with UNDEFs. 2567 Constant *ExtMask = 2568 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2569 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2570 } 2571 2572 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2573 return Builder.CreateShuffleVector(V1, V2, Mask); 2574 } 2575 2576 // Concatenate vectors in the given list. All vectors have the same type. 2577 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2578 ArrayRef<Value *> InputList) { 2579 unsigned NumVec = InputList.size(); 2580 assert(NumVec > 1 && "Should be at least two vectors"); 2581 2582 SmallVector<Value *, 8> ResList; 2583 ResList.append(InputList.begin(), InputList.end()); 2584 do { 2585 SmallVector<Value *, 8> TmpList; 2586 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2587 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2588 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2589 "Only the last vector may have a different type"); 2590 2591 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2592 } 2593 2594 // Push the last vector if the total number of vectors is odd. 2595 if (NumVec % 2 != 0) 2596 TmpList.push_back(ResList[NumVec - 1]); 2597 2598 ResList = TmpList; 2599 NumVec = ResList.size(); 2600 } while (NumVec > 1); 2601 2602 return ResList[0]; 2603 } 2604 2605 // Try to vectorize the interleave group that \p Instr belongs to. 2606 // 2607 // E.g. Translate following interleaved load group (factor = 3): 2608 // for (i = 0; i < N; i+=3) { 2609 // R = Pic[i]; // Member of index 0 2610 // G = Pic[i+1]; // Member of index 1 2611 // B = Pic[i+2]; // Member of index 2 2612 // ... // do something to R, G, B 2613 // } 2614 // To: 2615 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2616 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2617 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2618 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2619 // 2620 // Or translate following interleaved store group (factor = 3): 2621 // for (i = 0; i < N; i+=3) { 2622 // ... do something to R, G, B 2623 // Pic[i] = R; // Member of index 0 2624 // Pic[i+1] = G; // Member of index 1 2625 // Pic[i+2] = B; // Member of index 2 2626 // } 2627 // To: 2628 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2629 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2630 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2631 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2632 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2633 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2634 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2635 assert(Group && "Fail to get an interleaved access group."); 2636 2637 // Skip if current instruction is not the insert position. 2638 if (Instr != Group->getInsertPos()) 2639 return; 2640 2641 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2642 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2643 Value *Ptr = getPointerOperand(Instr); 2644 2645 // Prepare for the vector type of the interleaved load/store. 2646 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2647 unsigned InterleaveFactor = Group->getFactor(); 2648 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2649 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2650 2651 // Prepare for the new pointers. 2652 setDebugLocFromInst(Builder, Ptr); 2653 SmallVector<Value *, 2> NewPtrs; 2654 unsigned Index = Group->getIndex(Instr); 2655 2656 // If the group is reverse, adjust the index to refer to the last vector lane 2657 // instead of the first. We adjust the index from the first vector lane, 2658 // rather than directly getting the pointer for lane VF - 1, because the 2659 // pointer operand of the interleaved access is supposed to be uniform. For 2660 // uniform instructions, we're only required to generate a value for the 2661 // first vector lane in each unroll iteration. 2662 if (Group->isReverse()) 2663 Index += (VF - 1) * Group->getFactor(); 2664 2665 for (unsigned Part = 0; Part < UF; Part++) { 2666 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2667 2668 // Notice current instruction could be any index. Need to adjust the address 2669 // to the member of index 0. 2670 // 2671 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2672 // b = A[i]; // Member of index 0 2673 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2674 // 2675 // E.g. A[i+1] = a; // Member of index 1 2676 // A[i] = b; // Member of index 0 2677 // A[i+2] = c; // Member of index 2 (Current instruction) 2678 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2679 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2680 2681 // Cast to the vector pointer type. 2682 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2683 } 2684 2685 setDebugLocFromInst(Builder, Instr); 2686 Value *UndefVec = UndefValue::get(VecTy); 2687 2688 // Vectorize the interleaved load group. 2689 if (LI) { 2690 2691 // For each unroll part, create a wide load for the group. 2692 SmallVector<Value *, 2> NewLoads; 2693 for (unsigned Part = 0; Part < UF; Part++) { 2694 auto *NewLoad = Builder.CreateAlignedLoad( 2695 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2696 addMetadata(NewLoad, Instr); 2697 NewLoads.push_back(NewLoad); 2698 } 2699 2700 // For each member in the group, shuffle out the appropriate data from the 2701 // wide loads. 2702 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2703 Instruction *Member = Group->getMember(I); 2704 2705 // Skip the gaps in the group. 2706 if (!Member) 2707 continue; 2708 2709 VectorParts Entry(UF); 2710 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2711 for (unsigned Part = 0; Part < UF; Part++) { 2712 Value *StridedVec = Builder.CreateShuffleVector( 2713 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2714 2715 // If this member has different type, cast the result type. 2716 if (Member->getType() != ScalarTy) { 2717 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2718 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2719 } 2720 2721 Entry[Part] = 2722 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2723 } 2724 VectorLoopValueMap.initVector(Member, Entry); 2725 } 2726 return; 2727 } 2728 2729 // The sub vector type for current instruction. 2730 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2731 2732 // Vectorize the interleaved store group. 2733 for (unsigned Part = 0; Part < UF; Part++) { 2734 // Collect the stored vector from each member. 2735 SmallVector<Value *, 4> StoredVecs; 2736 for (unsigned i = 0; i < InterleaveFactor; i++) { 2737 // Interleaved store group doesn't allow a gap, so each index has a member 2738 Instruction *Member = Group->getMember(i); 2739 assert(Member && "Fail to get a member from an interleaved store group"); 2740 2741 Value *StoredVec = 2742 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2743 if (Group->isReverse()) 2744 StoredVec = reverseVector(StoredVec); 2745 2746 // If this member has different type, cast it to an unified type. 2747 if (StoredVec->getType() != SubVT) 2748 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2749 2750 StoredVecs.push_back(StoredVec); 2751 } 2752 2753 // Concatenate all vectors into a wide vector. 2754 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2755 2756 // Interleave the elements in the wide vector. 2757 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2758 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2759 "interleaved.vec"); 2760 2761 Instruction *NewStoreInstr = 2762 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2763 addMetadata(NewStoreInstr, Instr); 2764 } 2765 } 2766 2767 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2768 // Attempt to issue a wide load. 2769 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2770 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2771 2772 assert((LI || SI) && "Invalid Load/Store instruction"); 2773 2774 // Try to vectorize the interleave group if this access is interleaved. 2775 if (Legal->isAccessInterleaved(Instr)) 2776 return vectorizeInterleaveGroup(Instr); 2777 2778 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2779 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2780 Value *Ptr = getPointerOperand(Instr); 2781 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2782 // An alignment of 0 means target abi alignment. We need to use the scalar's 2783 // target abi alignment in such a case. 2784 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2785 if (!Alignment) 2786 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2787 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2788 2789 // Scalarize the memory instruction if necessary. 2790 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2791 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2792 2793 // Determine if the pointer operand of the access is either consecutive or 2794 // reverse consecutive. 2795 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2796 bool Reverse = ConsecutiveStride < 0; 2797 2798 // Determine if either a gather or scatter operation is legal. 2799 bool CreateGatherScatter = 2800 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2801 2802 VectorParts VectorGep; 2803 2804 // Handle consecutive loads/stores. 2805 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2806 if (ConsecutiveStride) { 2807 if (Gep) { 2808 unsigned NumOperands = Gep->getNumOperands(); 2809 #ifndef NDEBUG 2810 // The original GEP that identified as a consecutive memory access 2811 // should have only one loop-variant operand. 2812 unsigned NumOfLoopVariantOps = 0; 2813 for (unsigned i = 0; i < NumOperands; ++i) 2814 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2815 OrigLoop)) 2816 NumOfLoopVariantOps++; 2817 assert(NumOfLoopVariantOps == 1 && 2818 "Consecutive GEP should have only one loop-variant operand"); 2819 #endif 2820 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2821 Gep2->setName("gep.indvar"); 2822 2823 // A new GEP is created for a 0-lane value of the first unroll iteration. 2824 // The GEPs for the rest of the unroll iterations are computed below as an 2825 // offset from this GEP. 2826 for (unsigned i = 0; i < NumOperands; ++i) 2827 // We can apply getScalarValue() for all GEP indices. It returns an 2828 // original value for loop-invariant operand and 0-lane for consecutive 2829 // operand. 2830 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2831 0, /* First unroll iteration */ 2832 0 /* 0-lane of the vector */ )); 2833 setDebugLocFromInst(Builder, Gep); 2834 Ptr = Builder.Insert(Gep2); 2835 2836 } else { // No GEP 2837 setDebugLocFromInst(Builder, Ptr); 2838 Ptr = getScalarValue(Ptr, 0, 0); 2839 } 2840 } else { 2841 // At this point we should vector version of GEP for Gather or Scatter 2842 assert(CreateGatherScatter && "The instruction should be scalarized"); 2843 if (Gep) { 2844 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2845 // and each index that's defined inside the loop, even if it is 2846 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2847 // scalar. 2848 SmallVector<VectorParts, 4> OpsV; 2849 for (Value *Op : Gep->operands()) { 2850 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2851 if (SrcInst && OrigLoop->contains(SrcInst)) 2852 OpsV.push_back(getVectorValue(Op)); 2853 else 2854 OpsV.push_back(VectorParts(UF, Op)); 2855 } 2856 for (unsigned Part = 0; Part < UF; ++Part) { 2857 SmallVector<Value *, 4> Ops; 2858 Value *GEPBasePtr = OpsV[0][Part]; 2859 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2860 Ops.push_back(OpsV[i][Part]); 2861 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2862 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2863 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2864 2865 NewGep = 2866 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2867 VectorGep.push_back(NewGep); 2868 } 2869 } else 2870 VectorGep = getVectorValue(Ptr); 2871 } 2872 2873 VectorParts Mask = createBlockInMask(Instr->getParent()); 2874 // Handle Stores: 2875 if (SI) { 2876 assert(!Legal->isUniform(SI->getPointerOperand()) && 2877 "We do not allow storing to uniform addresses"); 2878 setDebugLocFromInst(Builder, SI); 2879 // We don't want to update the value in the map as it might be used in 2880 // another expression. So don't use a reference type for "StoredVal". 2881 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2882 2883 for (unsigned Part = 0; Part < UF; ++Part) { 2884 Instruction *NewSI = nullptr; 2885 if (CreateGatherScatter) { 2886 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2887 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2888 Alignment, MaskPart); 2889 } else { 2890 // Calculate the pointer for the specific unroll-part. 2891 Value *PartPtr = 2892 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2893 2894 if (Reverse) { 2895 // If we store to reverse consecutive memory locations, then we need 2896 // to reverse the order of elements in the stored value. 2897 StoredVal[Part] = reverseVector(StoredVal[Part]); 2898 // If the address is consecutive but reversed, then the 2899 // wide store needs to start at the last vector element. 2900 PartPtr = 2901 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2902 PartPtr = 2903 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2904 Mask[Part] = reverseVector(Mask[Part]); 2905 } 2906 2907 Value *VecPtr = 2908 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2909 2910 if (Legal->isMaskRequired(SI)) 2911 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2912 Mask[Part]); 2913 else 2914 NewSI = 2915 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2916 } 2917 addMetadata(NewSI, SI); 2918 } 2919 return; 2920 } 2921 2922 // Handle loads. 2923 assert(LI && "Must have a load instruction"); 2924 setDebugLocFromInst(Builder, LI); 2925 VectorParts Entry(UF); 2926 for (unsigned Part = 0; Part < UF; ++Part) { 2927 Instruction *NewLI; 2928 if (CreateGatherScatter) { 2929 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2930 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2931 0, "wide.masked.gather"); 2932 Entry[Part] = NewLI; 2933 } else { 2934 // Calculate the pointer for the specific unroll-part. 2935 Value *PartPtr = 2936 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2937 2938 if (Reverse) { 2939 // If the address is consecutive but reversed, then the 2940 // wide load needs to start at the last vector element. 2941 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2942 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2943 Mask[Part] = reverseVector(Mask[Part]); 2944 } 2945 2946 Value *VecPtr = 2947 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2948 if (Legal->isMaskRequired(LI)) 2949 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2950 UndefValue::get(DataTy), 2951 "wide.masked.load"); 2952 else 2953 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2954 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2955 } 2956 addMetadata(NewLI, LI); 2957 } 2958 VectorLoopValueMap.initVector(Instr, Entry); 2959 } 2960 2961 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2962 bool IfPredicateInstr) { 2963 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2964 DEBUG(dbgs() << "LV: Scalarizing" 2965 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 2966 << '\n'); 2967 // Holds vector parameters or scalars, in case of uniform vals. 2968 SmallVector<VectorParts, 4> Params; 2969 2970 setDebugLocFromInst(Builder, Instr); 2971 2972 // Does this instruction return a value ? 2973 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2974 2975 // Initialize a new scalar map entry. 2976 ScalarParts Entry(UF); 2977 2978 VectorParts Cond; 2979 if (IfPredicateInstr) 2980 Cond = createBlockInMask(Instr->getParent()); 2981 2982 // Determine the number of scalars we need to generate for each unroll 2983 // iteration. If the instruction is uniform, we only need to generate the 2984 // first lane. Otherwise, we generate all VF values. 2985 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 2986 2987 // For each vector unroll 'part': 2988 for (unsigned Part = 0; Part < UF; ++Part) { 2989 Entry[Part].resize(VF); 2990 // For each scalar that we create: 2991 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2992 2993 // Start if-block. 2994 Value *Cmp = nullptr; 2995 if (IfPredicateInstr) { 2996 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 2997 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2998 ConstantInt::get(Cmp->getType(), 1)); 2999 } 3000 3001 Instruction *Cloned = Instr->clone(); 3002 if (!IsVoidRetTy) 3003 Cloned->setName(Instr->getName() + ".cloned"); 3004 3005 // Replace the operands of the cloned instructions with their scalar 3006 // equivalents in the new loop. 3007 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3008 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3009 Cloned->setOperand(op, NewOp); 3010 } 3011 addNewMetadata(Cloned, Instr); 3012 3013 // Place the cloned scalar in the new loop. 3014 Builder.Insert(Cloned); 3015 3016 // Add the cloned scalar to the scalar map entry. 3017 Entry[Part][Lane] = Cloned; 3018 3019 // If we just cloned a new assumption, add it the assumption cache. 3020 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3021 if (II->getIntrinsicID() == Intrinsic::assume) 3022 AC->registerAssumption(II); 3023 3024 // End if-block. 3025 if (IfPredicateInstr) 3026 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3027 } 3028 } 3029 VectorLoopValueMap.initScalar(Instr, Entry); 3030 } 3031 3032 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3033 Value *End, Value *Step, 3034 Instruction *DL) { 3035 BasicBlock *Header = L->getHeader(); 3036 BasicBlock *Latch = L->getLoopLatch(); 3037 // As we're just creating this loop, it's possible no latch exists 3038 // yet. If so, use the header as this will be a single block loop. 3039 if (!Latch) 3040 Latch = Header; 3041 3042 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3043 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 3044 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3045 3046 Builder.SetInsertPoint(Latch->getTerminator()); 3047 3048 // Create i+1 and fill the PHINode. 3049 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3050 Induction->addIncoming(Start, L->getLoopPreheader()); 3051 Induction->addIncoming(Next, Latch); 3052 // Create the compare. 3053 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3054 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3055 3056 // Now we have two terminators. Remove the old one from the block. 3057 Latch->getTerminator()->eraseFromParent(); 3058 3059 return Induction; 3060 } 3061 3062 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3063 if (TripCount) 3064 return TripCount; 3065 3066 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3067 // Find the loop boundaries. 3068 ScalarEvolution *SE = PSE.getSE(); 3069 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3070 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3071 "Invalid loop count"); 3072 3073 Type *IdxTy = Legal->getWidestInductionType(); 3074 3075 // The exit count might have the type of i64 while the phi is i32. This can 3076 // happen if we have an induction variable that is sign extended before the 3077 // compare. The only way that we get a backedge taken count is that the 3078 // induction variable was signed and as such will not overflow. In such a case 3079 // truncation is legal. 3080 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3081 IdxTy->getPrimitiveSizeInBits()) 3082 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3083 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3084 3085 // Get the total trip count from the count by adding 1. 3086 const SCEV *ExitCount = SE->getAddExpr( 3087 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3088 3089 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3090 3091 // Expand the trip count and place the new instructions in the preheader. 3092 // Notice that the pre-header does not change, only the loop body. 3093 SCEVExpander Exp(*SE, DL, "induction"); 3094 3095 // Count holds the overall loop count (N). 3096 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3097 L->getLoopPreheader()->getTerminator()); 3098 3099 if (TripCount->getType()->isPointerTy()) 3100 TripCount = 3101 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3102 L->getLoopPreheader()->getTerminator()); 3103 3104 return TripCount; 3105 } 3106 3107 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3108 if (VectorTripCount) 3109 return VectorTripCount; 3110 3111 Value *TC = getOrCreateTripCount(L); 3112 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3113 3114 // Now we need to generate the expression for the part of the loop that the 3115 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3116 // iterations are not required for correctness, or N - Step, otherwise. Step 3117 // is equal to the vectorization factor (number of SIMD elements) times the 3118 // unroll factor (number of SIMD instructions). 3119 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3120 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3121 3122 // If there is a non-reversed interleaved group that may speculatively access 3123 // memory out-of-bounds, we need to ensure that there will be at least one 3124 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3125 // the trip count, we set the remainder to be equal to the step. If the step 3126 // does not evenly divide the trip count, no adjustment is necessary since 3127 // there will already be scalar iterations. Note that the minimum iterations 3128 // check ensures that N >= Step. 3129 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3130 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3131 R = Builder.CreateSelect(IsZero, Step, R); 3132 } 3133 3134 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3135 3136 return VectorTripCount; 3137 } 3138 3139 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3140 BasicBlock *Bypass) { 3141 Value *Count = getOrCreateTripCount(L); 3142 BasicBlock *BB = L->getLoopPreheader(); 3143 IRBuilder<> Builder(BB->getTerminator()); 3144 3145 // Generate code to check that the loop's trip count that we computed by 3146 // adding one to the backedge-taken count will not overflow. 3147 Value *CheckMinIters = Builder.CreateICmpULT( 3148 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3149 3150 BasicBlock *NewBB = 3151 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3152 // Update dominator tree immediately if the generated block is a 3153 // LoopBypassBlock because SCEV expansions to generate loop bypass 3154 // checks may query it before the current function is finished. 3155 DT->addNewBlock(NewBB, BB); 3156 if (L->getParentLoop()) 3157 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3158 ReplaceInstWithInst(BB->getTerminator(), 3159 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3160 LoopBypassBlocks.push_back(BB); 3161 } 3162 3163 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3164 BasicBlock *Bypass) { 3165 Value *TC = getOrCreateVectorTripCount(L); 3166 BasicBlock *BB = L->getLoopPreheader(); 3167 IRBuilder<> Builder(BB->getTerminator()); 3168 3169 // Now, compare the new count to zero. If it is zero skip the vector loop and 3170 // jump to the scalar loop. 3171 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3172 "cmp.zero"); 3173 3174 // Generate code to check that the loop's trip count that we computed by 3175 // adding one to the backedge-taken count will not overflow. 3176 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3177 // Update dominator tree immediately if the generated block is a 3178 // LoopBypassBlock because SCEV expansions to generate loop bypass 3179 // checks may query it before the current function is finished. 3180 DT->addNewBlock(NewBB, BB); 3181 if (L->getParentLoop()) 3182 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3183 ReplaceInstWithInst(BB->getTerminator(), 3184 BranchInst::Create(Bypass, NewBB, Cmp)); 3185 LoopBypassBlocks.push_back(BB); 3186 } 3187 3188 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3189 BasicBlock *BB = L->getLoopPreheader(); 3190 3191 // Generate the code to check that the SCEV assumptions that we made. 3192 // We want the new basic block to start at the first instruction in a 3193 // sequence of instructions that form a check. 3194 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3195 "scev.check"); 3196 Value *SCEVCheck = 3197 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3198 3199 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3200 if (C->isZero()) 3201 return; 3202 3203 // Create a new block containing the stride check. 3204 BB->setName("vector.scevcheck"); 3205 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3206 // Update dominator tree immediately if the generated block is a 3207 // LoopBypassBlock because SCEV expansions to generate loop bypass 3208 // checks may query it before the current function is finished. 3209 DT->addNewBlock(NewBB, BB); 3210 if (L->getParentLoop()) 3211 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3212 ReplaceInstWithInst(BB->getTerminator(), 3213 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3214 LoopBypassBlocks.push_back(BB); 3215 AddedSafetyChecks = true; 3216 } 3217 3218 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3219 BasicBlock *BB = L->getLoopPreheader(); 3220 3221 // Generate the code that checks in runtime if arrays overlap. We put the 3222 // checks into a separate block to make the more common case of few elements 3223 // faster. 3224 Instruction *FirstCheckInst; 3225 Instruction *MemRuntimeCheck; 3226 std::tie(FirstCheckInst, MemRuntimeCheck) = 3227 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3228 if (!MemRuntimeCheck) 3229 return; 3230 3231 // Create a new block containing the memory check. 3232 BB->setName("vector.memcheck"); 3233 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3234 // Update dominator tree immediately if the generated block is a 3235 // LoopBypassBlock because SCEV expansions to generate loop bypass 3236 // checks may query it before the current function is finished. 3237 DT->addNewBlock(NewBB, BB); 3238 if (L->getParentLoop()) 3239 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3240 ReplaceInstWithInst(BB->getTerminator(), 3241 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3242 LoopBypassBlocks.push_back(BB); 3243 AddedSafetyChecks = true; 3244 3245 // We currently don't use LoopVersioning for the actual loop cloning but we 3246 // still use it to add the noalias metadata. 3247 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3248 PSE.getSE()); 3249 LVer->prepareNoAliasMetadata(); 3250 } 3251 3252 void InnerLoopVectorizer::createEmptyLoop() { 3253 /* 3254 In this function we generate a new loop. The new loop will contain 3255 the vectorized instructions while the old loop will continue to run the 3256 scalar remainder. 3257 3258 [ ] <-- loop iteration number check. 3259 / | 3260 / v 3261 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3262 | / | 3263 | / v 3264 || [ ] <-- vector pre header. 3265 |/ | 3266 | v 3267 | [ ] \ 3268 | [ ]_| <-- vector loop. 3269 | | 3270 | v 3271 | -[ ] <--- middle-block. 3272 | / | 3273 | / v 3274 -|- >[ ] <--- new preheader. 3275 | | 3276 | v 3277 | [ ] \ 3278 | [ ]_| <-- old scalar loop to handle remainder. 3279 \ | 3280 \ v 3281 >[ ] <-- exit block. 3282 ... 3283 */ 3284 3285 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3286 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3287 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3288 assert(VectorPH && "Invalid loop structure"); 3289 assert(ExitBlock && "Must have an exit block"); 3290 3291 // Some loops have a single integer induction variable, while other loops 3292 // don't. One example is c++ iterators that often have multiple pointer 3293 // induction variables. In the code below we also support a case where we 3294 // don't have a single induction variable. 3295 // 3296 // We try to obtain an induction variable from the original loop as hard 3297 // as possible. However if we don't find one that: 3298 // - is an integer 3299 // - counts from zero, stepping by one 3300 // - is the size of the widest induction variable type 3301 // then we create a new one. 3302 OldInduction = Legal->getInduction(); 3303 Type *IdxTy = Legal->getWidestInductionType(); 3304 3305 // Split the single block loop into the two loop structure described above. 3306 BasicBlock *VecBody = 3307 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3308 BasicBlock *MiddleBlock = 3309 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3310 BasicBlock *ScalarPH = 3311 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3312 3313 // Create and register the new vector loop. 3314 Loop *Lp = new Loop(); 3315 Loop *ParentLoop = OrigLoop->getParentLoop(); 3316 3317 // Insert the new loop into the loop nest and register the new basic blocks 3318 // before calling any utilities such as SCEV that require valid LoopInfo. 3319 if (ParentLoop) { 3320 ParentLoop->addChildLoop(Lp); 3321 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3322 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3323 } else { 3324 LI->addTopLevelLoop(Lp); 3325 } 3326 Lp->addBasicBlockToLoop(VecBody, *LI); 3327 3328 // Find the loop boundaries. 3329 Value *Count = getOrCreateTripCount(Lp); 3330 3331 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3332 3333 // We need to test whether the backedge-taken count is uint##_max. Adding one 3334 // to it will cause overflow and an incorrect loop trip count in the vector 3335 // body. In case of overflow we want to directly jump to the scalar remainder 3336 // loop. 3337 emitMinimumIterationCountCheck(Lp, ScalarPH); 3338 // Now, compare the new count to zero. If it is zero skip the vector loop and 3339 // jump to the scalar loop. 3340 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3341 // Generate the code to check any assumptions that we've made for SCEV 3342 // expressions. 3343 emitSCEVChecks(Lp, ScalarPH); 3344 3345 // Generate the code that checks in runtime if arrays overlap. We put the 3346 // checks into a separate block to make the more common case of few elements 3347 // faster. 3348 emitMemRuntimeChecks(Lp, ScalarPH); 3349 3350 // Generate the induction variable. 3351 // The loop step is equal to the vectorization factor (num of SIMD elements) 3352 // times the unroll factor (num of SIMD instructions). 3353 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3354 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3355 Induction = 3356 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3357 getDebugLocFromInstOrOperands(OldInduction)); 3358 3359 // We are going to resume the execution of the scalar loop. 3360 // Go over all of the induction variables that we found and fix the 3361 // PHIs that are left in the scalar version of the loop. 3362 // The starting values of PHI nodes depend on the counter of the last 3363 // iteration in the vectorized loop. 3364 // If we come from a bypass edge then we need to start from the original 3365 // start value. 3366 3367 // This variable saves the new starting index for the scalar loop. It is used 3368 // to test if there are any tail iterations left once the vector loop has 3369 // completed. 3370 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3371 for (auto &InductionEntry : *List) { 3372 PHINode *OrigPhi = InductionEntry.first; 3373 InductionDescriptor II = InductionEntry.second; 3374 3375 // Create phi nodes to merge from the backedge-taken check block. 3376 PHINode *BCResumeVal = PHINode::Create( 3377 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3378 Value *EndValue; 3379 if (OrigPhi == OldInduction) { 3380 // We know what the end value is. 3381 EndValue = CountRoundDown; 3382 } else { 3383 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3384 Type *StepType = II.getStep()->getType(); 3385 Instruction::CastOps CastOp = 3386 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3387 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3388 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3389 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3390 EndValue->setName("ind.end"); 3391 } 3392 3393 // The new PHI merges the original incoming value, in case of a bypass, 3394 // or the value at the end of the vectorized loop. 3395 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3396 3397 // Fix up external users of the induction variable. 3398 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3399 3400 // Fix the scalar body counter (PHI node). 3401 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3402 3403 // The old induction's phi node in the scalar body needs the truncated 3404 // value. 3405 for (BasicBlock *BB : LoopBypassBlocks) 3406 BCResumeVal->addIncoming(II.getStartValue(), BB); 3407 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3408 } 3409 3410 // Add a check in the middle block to see if we have completed 3411 // all of the iterations in the first vector loop. 3412 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3413 Value *CmpN = 3414 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3415 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3416 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3417 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3418 3419 // Get ready to start creating new instructions into the vectorized body. 3420 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3421 3422 // Save the state. 3423 LoopVectorPreHeader = Lp->getLoopPreheader(); 3424 LoopScalarPreHeader = ScalarPH; 3425 LoopMiddleBlock = MiddleBlock; 3426 LoopExitBlock = ExitBlock; 3427 LoopVectorBody = VecBody; 3428 LoopScalarBody = OldBasicBlock; 3429 3430 // Keep all loop hints from the original loop on the vector loop (we'll 3431 // replace the vectorizer-specific hints below). 3432 if (MDNode *LID = OrigLoop->getLoopID()) 3433 Lp->setLoopID(LID); 3434 3435 LoopVectorizeHints Hints(Lp, true, *ORE); 3436 Hints.setAlreadyVectorized(); 3437 } 3438 3439 // Fix up external users of the induction variable. At this point, we are 3440 // in LCSSA form, with all external PHIs that use the IV having one input value, 3441 // coming from the remainder loop. We need those PHIs to also have a correct 3442 // value for the IV when arriving directly from the middle block. 3443 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3444 const InductionDescriptor &II, 3445 Value *CountRoundDown, Value *EndValue, 3446 BasicBlock *MiddleBlock) { 3447 // There are two kinds of external IV usages - those that use the value 3448 // computed in the last iteration (the PHI) and those that use the penultimate 3449 // value (the value that feeds into the phi from the loop latch). 3450 // We allow both, but they, obviously, have different values. 3451 3452 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3453 3454 DenseMap<Value *, Value *> MissingVals; 3455 3456 // An external user of the last iteration's value should see the value that 3457 // the remainder loop uses to initialize its own IV. 3458 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3459 for (User *U : PostInc->users()) { 3460 Instruction *UI = cast<Instruction>(U); 3461 if (!OrigLoop->contains(UI)) { 3462 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3463 MissingVals[UI] = EndValue; 3464 } 3465 } 3466 3467 // An external user of the penultimate value need to see EndValue - Step. 3468 // The simplest way to get this is to recompute it from the constituent SCEVs, 3469 // that is Start + (Step * (CRD - 1)). 3470 for (User *U : OrigPhi->users()) { 3471 auto *UI = cast<Instruction>(U); 3472 if (!OrigLoop->contains(UI)) { 3473 const DataLayout &DL = 3474 OrigLoop->getHeader()->getModule()->getDataLayout(); 3475 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3476 3477 IRBuilder<> B(MiddleBlock->getTerminator()); 3478 Value *CountMinusOne = B.CreateSub( 3479 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3480 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3481 "cast.cmo"); 3482 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3483 Escape->setName("ind.escape"); 3484 MissingVals[UI] = Escape; 3485 } 3486 } 3487 3488 for (auto &I : MissingVals) { 3489 PHINode *PHI = cast<PHINode>(I.first); 3490 // One corner case we have to handle is two IVs "chasing" each-other, 3491 // that is %IV2 = phi [...], [ %IV1, %latch ] 3492 // In this case, if IV1 has an external use, we need to avoid adding both 3493 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3494 // don't already have an incoming value for the middle block. 3495 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3496 PHI->addIncoming(I.second, MiddleBlock); 3497 } 3498 } 3499 3500 namespace { 3501 struct CSEDenseMapInfo { 3502 static bool canHandle(Instruction *I) { 3503 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3504 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3505 } 3506 static inline Instruction *getEmptyKey() { 3507 return DenseMapInfo<Instruction *>::getEmptyKey(); 3508 } 3509 static inline Instruction *getTombstoneKey() { 3510 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3511 } 3512 static unsigned getHashValue(Instruction *I) { 3513 assert(canHandle(I) && "Unknown instruction!"); 3514 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3515 I->value_op_end())); 3516 } 3517 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3518 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3519 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3520 return LHS == RHS; 3521 return LHS->isIdenticalTo(RHS); 3522 } 3523 }; 3524 } 3525 3526 ///\brief Perform cse of induction variable instructions. 3527 static void cse(BasicBlock *BB) { 3528 // Perform simple cse. 3529 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3530 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3531 Instruction *In = &*I++; 3532 3533 if (!CSEDenseMapInfo::canHandle(In)) 3534 continue; 3535 3536 // Check if we can replace this instruction with any of the 3537 // visited instructions. 3538 if (Instruction *V = CSEMap.lookup(In)) { 3539 In->replaceAllUsesWith(V); 3540 In->eraseFromParent(); 3541 continue; 3542 } 3543 3544 CSEMap[In] = In; 3545 } 3546 } 3547 3548 /// \brief Adds a 'fast' flag to floating point operations. 3549 static Value *addFastMathFlag(Value *V) { 3550 if (isa<FPMathOperator>(V)) { 3551 FastMathFlags Flags; 3552 Flags.setUnsafeAlgebra(); 3553 cast<Instruction>(V)->setFastMathFlags(Flags); 3554 } 3555 return V; 3556 } 3557 3558 /// \brief Estimate the overhead of scalarizing a value based on its type. 3559 /// Insert and Extract are set if the result needs to be inserted and/or 3560 /// extracted from vectors. 3561 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3562 const TargetTransformInfo &TTI) { 3563 if (Ty->isVoidTy()) 3564 return 0; 3565 3566 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3567 unsigned Cost = 0; 3568 3569 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3570 if (Extract) 3571 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3572 if (Insert) 3573 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3574 } 3575 3576 return Cost; 3577 } 3578 3579 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3580 /// types of its operands and return value. 3581 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3582 Type *RetTy, 3583 const TargetTransformInfo &TTI) { 3584 unsigned ScalarizationCost = 3585 getScalarizationOverhead(RetTy, true, false, TTI); 3586 3587 for (Type *Ty : OpTys) 3588 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3589 3590 return ScalarizationCost; 3591 } 3592 3593 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3594 /// convenience wrapper for the type-based getScalarizationOverhead API. 3595 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3596 const TargetTransformInfo &TTI) { 3597 if (VF == 1) 3598 return 0; 3599 3600 Type *RetTy = ToVectorTy(I->getType(), VF); 3601 3602 SmallVector<Type *, 4> OpTys; 3603 unsigned OperandsNum = I->getNumOperands(); 3604 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3605 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3606 3607 return getScalarizationOverhead(OpTys, RetTy, TTI); 3608 } 3609 3610 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3611 // Return the cost of the instruction, including scalarization overhead if it's 3612 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3613 // i.e. either vector version isn't available, or is too expensive. 3614 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3615 const TargetTransformInfo &TTI, 3616 const TargetLibraryInfo *TLI, 3617 bool &NeedToScalarize) { 3618 Function *F = CI->getCalledFunction(); 3619 StringRef FnName = CI->getCalledFunction()->getName(); 3620 Type *ScalarRetTy = CI->getType(); 3621 SmallVector<Type *, 4> Tys, ScalarTys; 3622 for (auto &ArgOp : CI->arg_operands()) 3623 ScalarTys.push_back(ArgOp->getType()); 3624 3625 // Estimate cost of scalarized vector call. The source operands are assumed 3626 // to be vectors, so we need to extract individual elements from there, 3627 // execute VF scalar calls, and then gather the result into the vector return 3628 // value. 3629 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3630 if (VF == 1) 3631 return ScalarCallCost; 3632 3633 // Compute corresponding vector type for return value and arguments. 3634 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3635 for (Type *ScalarTy : ScalarTys) 3636 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3637 3638 // Compute costs of unpacking argument values for the scalar calls and 3639 // packing the return values to a vector. 3640 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI); 3641 3642 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3643 3644 // If we can't emit a vector call for this function, then the currently found 3645 // cost is the cost we need to return. 3646 NeedToScalarize = true; 3647 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3648 return Cost; 3649 3650 // If the corresponding vector cost is cheaper, return its cost. 3651 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3652 if (VectorCallCost < Cost) { 3653 NeedToScalarize = false; 3654 return VectorCallCost; 3655 } 3656 return Cost; 3657 } 3658 3659 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3660 // factor VF. Return the cost of the instruction, including scalarization 3661 // overhead if it's needed. 3662 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3663 const TargetTransformInfo &TTI, 3664 const TargetLibraryInfo *TLI) { 3665 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3666 assert(ID && "Expected intrinsic call!"); 3667 3668 Type *RetTy = ToVectorTy(CI->getType(), VF); 3669 SmallVector<Type *, 4> Tys; 3670 for (Value *ArgOperand : CI->arg_operands()) 3671 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3672 3673 FastMathFlags FMF; 3674 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3675 FMF = FPMO->getFastMathFlags(); 3676 3677 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3678 } 3679 3680 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3681 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3682 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3683 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3684 } 3685 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3686 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3687 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3688 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3689 } 3690 3691 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3692 // For every instruction `I` in MinBWs, truncate the operands, create a 3693 // truncated version of `I` and reextend its result. InstCombine runs 3694 // later and will remove any ext/trunc pairs. 3695 // 3696 SmallPtrSet<Value *, 4> Erased; 3697 for (const auto &KV : Cost->getMinimalBitwidths()) { 3698 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3699 for (Value *&I : Parts) { 3700 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3701 continue; 3702 Type *OriginalTy = I->getType(); 3703 Type *ScalarTruncatedTy = 3704 IntegerType::get(OriginalTy->getContext(), KV.second); 3705 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3706 OriginalTy->getVectorNumElements()); 3707 if (TruncatedTy == OriginalTy) 3708 continue; 3709 3710 IRBuilder<> B(cast<Instruction>(I)); 3711 auto ShrinkOperand = [&](Value *V) -> Value * { 3712 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3713 if (ZI->getSrcTy() == TruncatedTy) 3714 return ZI->getOperand(0); 3715 return B.CreateZExtOrTrunc(V, TruncatedTy); 3716 }; 3717 3718 // The actual instruction modification depends on the instruction type, 3719 // unfortunately. 3720 Value *NewI = nullptr; 3721 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3722 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3723 ShrinkOperand(BO->getOperand(1))); 3724 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3725 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3726 NewI = 3727 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3728 ShrinkOperand(CI->getOperand(1))); 3729 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3730 NewI = B.CreateSelect(SI->getCondition(), 3731 ShrinkOperand(SI->getTrueValue()), 3732 ShrinkOperand(SI->getFalseValue())); 3733 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3734 switch (CI->getOpcode()) { 3735 default: 3736 llvm_unreachable("Unhandled cast!"); 3737 case Instruction::Trunc: 3738 NewI = ShrinkOperand(CI->getOperand(0)); 3739 break; 3740 case Instruction::SExt: 3741 NewI = B.CreateSExtOrTrunc( 3742 CI->getOperand(0), 3743 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3744 break; 3745 case Instruction::ZExt: 3746 NewI = B.CreateZExtOrTrunc( 3747 CI->getOperand(0), 3748 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3749 break; 3750 } 3751 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3752 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3753 auto *O0 = B.CreateZExtOrTrunc( 3754 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3755 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3756 auto *O1 = B.CreateZExtOrTrunc( 3757 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3758 3759 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3760 } else if (isa<LoadInst>(I)) { 3761 // Don't do anything with the operands, just extend the result. 3762 continue; 3763 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3764 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3765 auto *O0 = B.CreateZExtOrTrunc( 3766 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3767 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3768 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3769 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3770 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3771 auto *O0 = B.CreateZExtOrTrunc( 3772 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3773 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3774 } else { 3775 llvm_unreachable("Unhandled instruction type!"); 3776 } 3777 3778 // Lastly, extend the result. 3779 NewI->takeName(cast<Instruction>(I)); 3780 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3781 I->replaceAllUsesWith(Res); 3782 cast<Instruction>(I)->eraseFromParent(); 3783 Erased.insert(I); 3784 I = Res; 3785 } 3786 } 3787 3788 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3789 for (const auto &KV : Cost->getMinimalBitwidths()) { 3790 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3791 for (Value *&I : Parts) { 3792 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3793 if (Inst && Inst->use_empty()) { 3794 Value *NewI = Inst->getOperand(0); 3795 Inst->eraseFromParent(); 3796 I = NewI; 3797 } 3798 } 3799 } 3800 } 3801 3802 void InnerLoopVectorizer::vectorizeLoop() { 3803 //===------------------------------------------------===// 3804 // 3805 // Notice: any optimization or new instruction that go 3806 // into the code below should be also be implemented in 3807 // the cost-model. 3808 // 3809 //===------------------------------------------------===// 3810 Constant *Zero = Builder.getInt32(0); 3811 3812 // In order to support recurrences we need to be able to vectorize Phi nodes. 3813 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3814 // we create a new vector PHI node with no incoming edges. We use this value 3815 // when we vectorize all of the instructions that use the PHI. Next, after 3816 // all of the instructions in the block are complete we add the new incoming 3817 // edges to the PHI. At this point all of the instructions in the basic block 3818 // are vectorized, so we can use them to construct the PHI. 3819 PhiVector PHIsToFix; 3820 3821 // Collect instructions from the original loop that will become trivially 3822 // dead in the vectorized loop. We don't need to vectorize these 3823 // instructions. 3824 collectTriviallyDeadInstructions(); 3825 3826 // Scan the loop in a topological order to ensure that defs are vectorized 3827 // before users. 3828 LoopBlocksDFS DFS(OrigLoop); 3829 DFS.perform(LI); 3830 3831 // Vectorize all of the blocks in the original loop. 3832 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3833 vectorizeBlockInLoop(BB, &PHIsToFix); 3834 3835 // Insert truncates and extends for any truncated instructions as hints to 3836 // InstCombine. 3837 if (VF > 1) 3838 truncateToMinimalBitwidths(); 3839 3840 // At this point every instruction in the original loop is widened to a 3841 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3842 // nodes are currently empty because we did not want to introduce cycles. 3843 // This is the second stage of vectorizing recurrences. 3844 for (PHINode *Phi : PHIsToFix) { 3845 assert(Phi && "Unable to recover vectorized PHI"); 3846 3847 // Handle first-order recurrences that need to be fixed. 3848 if (Legal->isFirstOrderRecurrence(Phi)) { 3849 fixFirstOrderRecurrence(Phi); 3850 continue; 3851 } 3852 3853 // If the phi node is not a first-order recurrence, it must be a reduction. 3854 // Get it's reduction variable descriptor. 3855 assert(Legal->isReductionVariable(Phi) && 3856 "Unable to find the reduction variable"); 3857 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3858 3859 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3860 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3861 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3862 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3863 RdxDesc.getMinMaxRecurrenceKind(); 3864 setDebugLocFromInst(Builder, ReductionStartValue); 3865 3866 // We need to generate a reduction vector from the incoming scalar. 3867 // To do so, we need to generate the 'identity' vector and override 3868 // one of the elements with the incoming scalar reduction. We need 3869 // to do it in the vector-loop preheader. 3870 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3871 3872 // This is the vector-clone of the value that leaves the loop. 3873 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3874 Type *VecTy = VectorExit[0]->getType(); 3875 3876 // Find the reduction identity variable. Zero for addition, or, xor, 3877 // one for multiplication, -1 for And. 3878 Value *Identity; 3879 Value *VectorStart; 3880 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3881 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3882 // MinMax reduction have the start value as their identify. 3883 if (VF == 1) { 3884 VectorStart = Identity = ReductionStartValue; 3885 } else { 3886 VectorStart = Identity = 3887 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3888 } 3889 } else { 3890 // Handle other reduction kinds: 3891 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3892 RK, VecTy->getScalarType()); 3893 if (VF == 1) { 3894 Identity = Iden; 3895 // This vector is the Identity vector where the first element is the 3896 // incoming scalar reduction. 3897 VectorStart = ReductionStartValue; 3898 } else { 3899 Identity = ConstantVector::getSplat(VF, Iden); 3900 3901 // This vector is the Identity vector where the first element is the 3902 // incoming scalar reduction. 3903 VectorStart = 3904 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3905 } 3906 } 3907 3908 // Fix the vector-loop phi. 3909 3910 // Reductions do not have to start at zero. They can start with 3911 // any loop invariant values. 3912 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3913 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3914 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3915 const VectorParts &Val = getVectorValue(LoopVal); 3916 for (unsigned part = 0; part < UF; ++part) { 3917 // Make sure to add the reduction stat value only to the 3918 // first unroll part. 3919 Value *StartVal = (part == 0) ? VectorStart : Identity; 3920 cast<PHINode>(VecRdxPhi[part]) 3921 ->addIncoming(StartVal, LoopVectorPreHeader); 3922 cast<PHINode>(VecRdxPhi[part]) 3923 ->addIncoming(Val[part], LoopVectorBody); 3924 } 3925 3926 // Before each round, move the insertion point right between 3927 // the PHIs and the values we are going to write. 3928 // This allows us to write both PHINodes and the extractelement 3929 // instructions. 3930 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3931 3932 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3933 setDebugLocFromInst(Builder, LoopExitInst); 3934 3935 // If the vector reduction can be performed in a smaller type, we truncate 3936 // then extend the loop exit value to enable InstCombine to evaluate the 3937 // entire expression in the smaller type. 3938 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3939 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3940 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3941 for (unsigned part = 0; part < UF; ++part) { 3942 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3943 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3944 : Builder.CreateZExt(Trunc, VecTy); 3945 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3946 UI != RdxParts[part]->user_end();) 3947 if (*UI != Trunc) { 3948 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3949 RdxParts[part] = Extnd; 3950 } else { 3951 ++UI; 3952 } 3953 } 3954 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3955 for (unsigned part = 0; part < UF; ++part) 3956 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3957 } 3958 3959 // Reduce all of the unrolled parts into a single vector. 3960 Value *ReducedPartRdx = RdxParts[0]; 3961 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3962 setDebugLocFromInst(Builder, ReducedPartRdx); 3963 for (unsigned part = 1; part < UF; ++part) { 3964 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3965 // Floating point operations had to be 'fast' to enable the reduction. 3966 ReducedPartRdx = addFastMathFlag( 3967 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3968 ReducedPartRdx, "bin.rdx")); 3969 else 3970 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3971 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3972 } 3973 3974 if (VF > 1) { 3975 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3976 // and vector ops, reducing the set of values being computed by half each 3977 // round. 3978 assert(isPowerOf2_32(VF) && 3979 "Reduction emission only supported for pow2 vectors!"); 3980 Value *TmpVec = ReducedPartRdx; 3981 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3982 for (unsigned i = VF; i != 1; i >>= 1) { 3983 // Move the upper half of the vector to the lower half. 3984 for (unsigned j = 0; j != i / 2; ++j) 3985 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3986 3987 // Fill the rest of the mask with undef. 3988 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3989 UndefValue::get(Builder.getInt32Ty())); 3990 3991 Value *Shuf = Builder.CreateShuffleVector( 3992 TmpVec, UndefValue::get(TmpVec->getType()), 3993 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3994 3995 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3996 // Floating point operations had to be 'fast' to enable the reduction. 3997 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3998 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3999 else 4000 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4001 TmpVec, Shuf); 4002 } 4003 4004 // The result is in the first element of the vector. 4005 ReducedPartRdx = 4006 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4007 4008 // If the reduction can be performed in a smaller type, we need to extend 4009 // the reduction to the wider type before we branch to the original loop. 4010 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4011 ReducedPartRdx = 4012 RdxDesc.isSigned() 4013 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4014 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4015 } 4016 4017 // Create a phi node that merges control-flow from the backedge-taken check 4018 // block and the middle block. 4019 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4020 LoopScalarPreHeader->getTerminator()); 4021 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4022 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4023 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4024 4025 // Now, we need to fix the users of the reduction variable 4026 // inside and outside of the scalar remainder loop. 4027 // We know that the loop is in LCSSA form. We need to update the 4028 // PHI nodes in the exit blocks. 4029 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4030 LEE = LoopExitBlock->end(); 4031 LEI != LEE; ++LEI) { 4032 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4033 if (!LCSSAPhi) 4034 break; 4035 4036 // All PHINodes need to have a single entry edge, or two if 4037 // we already fixed them. 4038 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4039 4040 // We found our reduction value exit-PHI. Update it with the 4041 // incoming bypass edge. 4042 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 4043 // Add an edge coming from the bypass. 4044 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4045 break; 4046 } 4047 } // end of the LCSSA phi scan. 4048 4049 // Fix the scalar loop reduction variable with the incoming reduction sum 4050 // from the vector body and from the backedge value. 4051 int IncomingEdgeBlockIdx = 4052 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4053 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4054 // Pick the other block. 4055 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4056 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4057 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4058 } // end of for each Phi in PHIsToFix. 4059 4060 fixLCSSAPHIs(); 4061 4062 // Make sure DomTree is updated. 4063 updateAnalysis(); 4064 4065 predicateInstructions(); 4066 4067 // Remove redundant induction instructions. 4068 cse(LoopVectorBody); 4069 } 4070 4071 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4072 4073 // This is the second phase of vectorizing first-order recurrences. An 4074 // overview of the transformation is described below. Suppose we have the 4075 // following loop. 4076 // 4077 // for (int i = 0; i < n; ++i) 4078 // b[i] = a[i] - a[i - 1]; 4079 // 4080 // There is a first-order recurrence on "a". For this loop, the shorthand 4081 // scalar IR looks like: 4082 // 4083 // scalar.ph: 4084 // s_init = a[-1] 4085 // br scalar.body 4086 // 4087 // scalar.body: 4088 // i = phi [0, scalar.ph], [i+1, scalar.body] 4089 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4090 // s2 = a[i] 4091 // b[i] = s2 - s1 4092 // br cond, scalar.body, ... 4093 // 4094 // In this example, s1 is a recurrence because it's value depends on the 4095 // previous iteration. In the first phase of vectorization, we created a 4096 // temporary value for s1. We now complete the vectorization and produce the 4097 // shorthand vector IR shown below (for VF = 4, UF = 1). 4098 // 4099 // vector.ph: 4100 // v_init = vector(..., ..., ..., a[-1]) 4101 // br vector.body 4102 // 4103 // vector.body 4104 // i = phi [0, vector.ph], [i+4, vector.body] 4105 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4106 // v2 = a[i, i+1, i+2, i+3]; 4107 // v3 = vector(v1(3), v2(0, 1, 2)) 4108 // b[i, i+1, i+2, i+3] = v2 - v3 4109 // br cond, vector.body, middle.block 4110 // 4111 // middle.block: 4112 // x = v2(3) 4113 // br scalar.ph 4114 // 4115 // scalar.ph: 4116 // s_init = phi [x, middle.block], [a[-1], otherwise] 4117 // br scalar.body 4118 // 4119 // After execution completes the vector loop, we extract the next value of 4120 // the recurrence (x) to use as the initial value in the scalar loop. 4121 4122 // Get the original loop preheader and single loop latch. 4123 auto *Preheader = OrigLoop->getLoopPreheader(); 4124 auto *Latch = OrigLoop->getLoopLatch(); 4125 4126 // Get the initial and previous values of the scalar recurrence. 4127 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4128 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4129 4130 // Create a vector from the initial value. 4131 auto *VectorInit = ScalarInit; 4132 if (VF > 1) { 4133 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4134 VectorInit = Builder.CreateInsertElement( 4135 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4136 Builder.getInt32(VF - 1), "vector.recur.init"); 4137 } 4138 4139 // We constructed a temporary phi node in the first phase of vectorization. 4140 // This phi node will eventually be deleted. 4141 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4142 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4143 4144 // Create a phi node for the new recurrence. The current value will either be 4145 // the initial value inserted into a vector or loop-varying vector value. 4146 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4147 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4148 4149 // Get the vectorized previous value. We ensured the previous values was an 4150 // instruction when detecting the recurrence. 4151 auto &PreviousParts = getVectorValue(Previous); 4152 4153 // Set the insertion point to be after this instruction. We ensured the 4154 // previous value dominated all uses of the phi when detecting the 4155 // recurrence. 4156 Builder.SetInsertPoint( 4157 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4158 4159 // We will construct a vector for the recurrence by combining the values for 4160 // the current and previous iterations. This is the required shuffle mask. 4161 SmallVector<Constant *, 8> ShuffleMask(VF); 4162 ShuffleMask[0] = Builder.getInt32(VF - 1); 4163 for (unsigned I = 1; I < VF; ++I) 4164 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4165 4166 // The vector from which to take the initial value for the current iteration 4167 // (actual or unrolled). Initially, this is the vector phi node. 4168 Value *Incoming = VecPhi; 4169 4170 // Shuffle the current and previous vector and update the vector parts. 4171 for (unsigned Part = 0; Part < UF; ++Part) { 4172 auto *Shuffle = 4173 VF > 1 4174 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4175 ConstantVector::get(ShuffleMask)) 4176 : Incoming; 4177 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4178 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4179 PhiParts[Part] = Shuffle; 4180 Incoming = PreviousParts[Part]; 4181 } 4182 4183 // Fix the latch value of the new recurrence in the vector loop. 4184 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4185 4186 // Extract the last vector element in the middle block. This will be the 4187 // initial value for the recurrence when jumping to the scalar loop. 4188 auto *Extract = Incoming; 4189 if (VF > 1) { 4190 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4191 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4192 "vector.recur.extract"); 4193 } 4194 4195 // Fix the initial value of the original recurrence in the scalar loop. 4196 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4197 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4198 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4199 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4200 Start->addIncoming(Incoming, BB); 4201 } 4202 4203 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4204 Phi->setName("scalar.recur"); 4205 4206 // Finally, fix users of the recurrence outside the loop. The users will need 4207 // either the last value of the scalar recurrence or the last value of the 4208 // vector recurrence we extracted in the middle block. Since the loop is in 4209 // LCSSA form, we just need to find the phi node for the original scalar 4210 // recurrence in the exit block, and then add an edge for the middle block. 4211 for (auto &I : *LoopExitBlock) { 4212 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4213 if (!LCSSAPhi) 4214 break; 4215 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4216 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4217 break; 4218 } 4219 } 4220 } 4221 4222 void InnerLoopVectorizer::fixLCSSAPHIs() { 4223 for (Instruction &LEI : *LoopExitBlock) { 4224 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4225 if (!LCSSAPhi) 4226 break; 4227 if (LCSSAPhi->getNumIncomingValues() == 1) 4228 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4229 LoopMiddleBlock); 4230 } 4231 } 4232 4233 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4234 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4235 4236 // We create new control-flow for the vectorized loop, so the original 4237 // condition will be dead after vectorization if it's only used by the 4238 // branch. 4239 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4240 if (Cmp && Cmp->hasOneUse()) 4241 DeadInstructions.insert(Cmp); 4242 4243 // We create new "steps" for induction variable updates to which the original 4244 // induction variables map. An original update instruction will be dead if 4245 // all its users except the induction variable are dead. 4246 for (auto &Induction : *Legal->getInductionVars()) { 4247 PHINode *Ind = Induction.first; 4248 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4249 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4250 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4251 })) 4252 DeadInstructions.insert(IndUpdate); 4253 } 4254 } 4255 4256 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4257 4258 // The basic block and loop containing the predicated instruction. 4259 auto *PredBB = PredInst->getParent(); 4260 auto *VectorLoop = LI->getLoopFor(PredBB); 4261 4262 // Initialize a worklist with the operands of the predicated instruction. 4263 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4264 4265 // Holds instructions that we need to analyze again. An instruction may be 4266 // reanalyzed if we don't yet know if we can sink it or not. 4267 SmallVector<Instruction *, 8> InstsToReanalyze; 4268 4269 // Returns true if a given use occurs in the predicated block. Phi nodes use 4270 // their operands in their corresponding predecessor blocks. 4271 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4272 auto *I = cast<Instruction>(U.getUser()); 4273 BasicBlock *BB = I->getParent(); 4274 if (auto *Phi = dyn_cast<PHINode>(I)) 4275 BB = Phi->getIncomingBlock( 4276 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4277 return BB == PredBB; 4278 }; 4279 4280 // Iteratively sink the scalarized operands of the predicated instruction 4281 // into the block we created for it. When an instruction is sunk, it's 4282 // operands are then added to the worklist. The algorithm ends after one pass 4283 // through the worklist doesn't sink a single instruction. 4284 bool Changed; 4285 do { 4286 4287 // Add the instructions that need to be reanalyzed to the worklist, and 4288 // reset the changed indicator. 4289 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4290 InstsToReanalyze.clear(); 4291 Changed = false; 4292 4293 while (!Worklist.empty()) { 4294 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4295 4296 // We can't sink an instruction if it is a phi node, is already in the 4297 // predicated block, is not in the loop, or may have side effects. 4298 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4299 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4300 continue; 4301 4302 // It's legal to sink the instruction if all its uses occur in the 4303 // predicated block. Otherwise, there's nothing to do yet, and we may 4304 // need to reanalyze the instruction. 4305 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4306 InstsToReanalyze.push_back(I); 4307 continue; 4308 } 4309 4310 // Move the instruction to the beginning of the predicated block, and add 4311 // it's operands to the worklist. 4312 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4313 Worklist.insert(I->op_begin(), I->op_end()); 4314 4315 // The sinking may have enabled other instructions to be sunk, so we will 4316 // need to iterate. 4317 Changed = true; 4318 } 4319 } while (Changed); 4320 } 4321 4322 void InnerLoopVectorizer::predicateInstructions() { 4323 4324 // For each instruction I marked for predication on value C, split I into its 4325 // own basic block to form an if-then construct over C. Since I may be fed by 4326 // an extractelement instruction or other scalar operand, we try to 4327 // iteratively sink its scalar operands into the predicated block. If I feeds 4328 // an insertelement instruction, we try to move this instruction into the 4329 // predicated block as well. For non-void types, a phi node will be created 4330 // for the resulting value (either vector or scalar). 4331 // 4332 // So for some predicated instruction, e.g. the conditional sdiv in: 4333 // 4334 // for.body: 4335 // ... 4336 // %add = add nsw i32 %mul, %0 4337 // %cmp5 = icmp sgt i32 %2, 7 4338 // br i1 %cmp5, label %if.then, label %if.end 4339 // 4340 // if.then: 4341 // %div = sdiv i32 %0, %1 4342 // br label %if.end 4343 // 4344 // if.end: 4345 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4346 // 4347 // the sdiv at this point is scalarized and if-converted using a select. 4348 // The inactive elements in the vector are not used, but the predicated 4349 // instruction is still executed for all vector elements, essentially: 4350 // 4351 // vector.body: 4352 // ... 4353 // %17 = add nsw <2 x i32> %16, %wide.load 4354 // %29 = extractelement <2 x i32> %wide.load, i32 0 4355 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4356 // %31 = sdiv i32 %29, %30 4357 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4358 // %35 = extractelement <2 x i32> %wide.load, i32 1 4359 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4360 // %37 = sdiv i32 %35, %36 4361 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4362 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4363 // 4364 // Predication will now re-introduce the original control flow to avoid false 4365 // side-effects by the sdiv instructions on the inactive elements, yielding 4366 // (after cleanup): 4367 // 4368 // vector.body: 4369 // ... 4370 // %5 = add nsw <2 x i32> %4, %wide.load 4371 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4372 // %9 = extractelement <2 x i1> %8, i32 0 4373 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4374 // 4375 // pred.sdiv.if: 4376 // %10 = extractelement <2 x i32> %wide.load, i32 0 4377 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4378 // %12 = sdiv i32 %10, %11 4379 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4380 // br label %pred.sdiv.continue 4381 // 4382 // pred.sdiv.continue: 4383 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4384 // %15 = extractelement <2 x i1> %8, i32 1 4385 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4386 // 4387 // pred.sdiv.if54: 4388 // %16 = extractelement <2 x i32> %wide.load, i32 1 4389 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4390 // %18 = sdiv i32 %16, %17 4391 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4392 // br label %pred.sdiv.continue55 4393 // 4394 // pred.sdiv.continue55: 4395 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4396 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4397 4398 for (auto KV : PredicatedInstructions) { 4399 BasicBlock::iterator I(KV.first); 4400 BasicBlock *Head = I->getParent(); 4401 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4402 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4403 /*BranchWeights=*/nullptr, DT, LI); 4404 I->moveBefore(T); 4405 sinkScalarOperands(&*I); 4406 4407 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4408 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4409 4410 // If the instruction is non-void create a Phi node at reconvergence point. 4411 if (!I->getType()->isVoidTy()) { 4412 Value *IncomingTrue = nullptr; 4413 Value *IncomingFalse = nullptr; 4414 4415 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4416 // If the predicated instruction is feeding an insert-element, move it 4417 // into the Then block; Phi node will be created for the vector. 4418 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4419 IEI->moveBefore(T); 4420 IncomingTrue = IEI; // the new vector with the inserted element. 4421 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4422 } else { 4423 // Phi node will be created for the scalar predicated instruction. 4424 IncomingTrue = &*I; 4425 IncomingFalse = UndefValue::get(I->getType()); 4426 } 4427 4428 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4429 assert(PostDom && "Then block has multiple successors"); 4430 PHINode *Phi = 4431 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4432 IncomingTrue->replaceAllUsesWith(Phi); 4433 Phi->addIncoming(IncomingFalse, Head); 4434 Phi->addIncoming(IncomingTrue, I->getParent()); 4435 } 4436 } 4437 4438 DEBUG(DT->verifyDomTree()); 4439 } 4440 4441 InnerLoopVectorizer::VectorParts 4442 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4443 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4444 4445 // Look for cached value. 4446 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4447 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4448 if (ECEntryIt != MaskCache.end()) 4449 return ECEntryIt->second; 4450 4451 VectorParts SrcMask = createBlockInMask(Src); 4452 4453 // The terminator has to be a branch inst! 4454 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4455 assert(BI && "Unexpected terminator found"); 4456 4457 if (BI->isConditional()) { 4458 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4459 4460 if (BI->getSuccessor(0) != Dst) 4461 for (unsigned part = 0; part < UF; ++part) 4462 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4463 4464 for (unsigned part = 0; part < UF; ++part) 4465 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4466 4467 MaskCache[Edge] = EdgeMask; 4468 return EdgeMask; 4469 } 4470 4471 MaskCache[Edge] = SrcMask; 4472 return SrcMask; 4473 } 4474 4475 InnerLoopVectorizer::VectorParts 4476 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4477 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4478 4479 // Loop incoming mask is all-one. 4480 if (OrigLoop->getHeader() == BB) { 4481 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4482 return getVectorValue(C); 4483 } 4484 4485 // This is the block mask. We OR all incoming edges, and with zero. 4486 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4487 VectorParts BlockMask = getVectorValue(Zero); 4488 4489 // For each pred: 4490 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4491 VectorParts EM = createEdgeMask(*it, BB); 4492 for (unsigned part = 0; part < UF; ++part) 4493 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4494 } 4495 4496 return BlockMask; 4497 } 4498 4499 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4500 unsigned VF, PhiVector *PV) { 4501 PHINode *P = cast<PHINode>(PN); 4502 // Handle recurrences. 4503 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4504 VectorParts Entry(UF); 4505 for (unsigned part = 0; part < UF; ++part) { 4506 // This is phase one of vectorizing PHIs. 4507 Type *VecTy = 4508 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4509 Entry[part] = PHINode::Create( 4510 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4511 } 4512 VectorLoopValueMap.initVector(P, Entry); 4513 PV->push_back(P); 4514 return; 4515 } 4516 4517 setDebugLocFromInst(Builder, P); 4518 // Check for PHI nodes that are lowered to vector selects. 4519 if (P->getParent() != OrigLoop->getHeader()) { 4520 // We know that all PHIs in non-header blocks are converted into 4521 // selects, so we don't have to worry about the insertion order and we 4522 // can just use the builder. 4523 // At this point we generate the predication tree. There may be 4524 // duplications since this is a simple recursive scan, but future 4525 // optimizations will clean it up. 4526 4527 unsigned NumIncoming = P->getNumIncomingValues(); 4528 4529 // Generate a sequence of selects of the form: 4530 // SELECT(Mask3, In3, 4531 // SELECT(Mask2, In2, 4532 // ( ...))) 4533 VectorParts Entry(UF); 4534 for (unsigned In = 0; In < NumIncoming; In++) { 4535 VectorParts Cond = 4536 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4537 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4538 4539 for (unsigned part = 0; part < UF; ++part) { 4540 // We might have single edge PHIs (blocks) - use an identity 4541 // 'select' for the first PHI operand. 4542 if (In == 0) 4543 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4544 else 4545 // Select between the current value and the previous incoming edge 4546 // based on the incoming mask. 4547 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4548 "predphi"); 4549 } 4550 } 4551 VectorLoopValueMap.initVector(P, Entry); 4552 return; 4553 } 4554 4555 // This PHINode must be an induction variable. 4556 // Make sure that we know about it. 4557 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4558 4559 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4560 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4561 4562 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4563 // which can be found from the original scalar operations. 4564 switch (II.getKind()) { 4565 case InductionDescriptor::IK_NoInduction: 4566 llvm_unreachable("Unknown induction"); 4567 case InductionDescriptor::IK_IntInduction: 4568 return widenIntInduction(P); 4569 case InductionDescriptor::IK_PtrInduction: { 4570 // Handle the pointer induction variable case. 4571 assert(P->getType()->isPointerTy() && "Unexpected type."); 4572 // This is the normalized GEP that starts counting at zero. 4573 Value *PtrInd = Induction; 4574 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4575 // Determine the number of scalars we need to generate for each unroll 4576 // iteration. If the instruction is uniform, we only need to generate the 4577 // first lane. Otherwise, we generate all VF values. 4578 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4579 // These are the scalar results. Notice that we don't generate vector GEPs 4580 // because scalar GEPs result in better code. 4581 ScalarParts Entry(UF); 4582 for (unsigned Part = 0; Part < UF; ++Part) { 4583 Entry[Part].resize(VF); 4584 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4585 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4586 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4587 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4588 SclrGep->setName("next.gep"); 4589 Entry[Part][Lane] = SclrGep; 4590 } 4591 } 4592 VectorLoopValueMap.initScalar(P, Entry); 4593 return; 4594 } 4595 case InductionDescriptor::IK_FpInduction: { 4596 assert(P->getType() == II.getStartValue()->getType() && 4597 "Types must match"); 4598 // Handle other induction variables that are now based on the 4599 // canonical one. 4600 assert(P != OldInduction && "Primary induction can be integer only"); 4601 4602 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4603 V = II.transform(Builder, V, PSE.getSE(), DL); 4604 V->setName("fp.offset.idx"); 4605 4606 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4607 4608 Value *Broadcasted = getBroadcastInstrs(V); 4609 // After broadcasting the induction variable we need to make the vector 4610 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4611 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4612 VectorParts Entry(UF); 4613 for (unsigned part = 0; part < UF; ++part) 4614 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4615 II.getInductionOpcode()); 4616 VectorLoopValueMap.initVector(P, Entry); 4617 return; 4618 } 4619 } 4620 } 4621 4622 /// A helper function for checking whether an integer division-related 4623 /// instruction may divide by zero (in which case it must be predicated if 4624 /// executed conditionally in the scalar code). 4625 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4626 /// Non-zero divisors that are non compile-time constants will not be 4627 /// converted into multiplication, so we will still end up scalarizing 4628 /// the division, but can do so w/o predication. 4629 static bool mayDivideByZero(Instruction &I) { 4630 assert((I.getOpcode() == Instruction::UDiv || 4631 I.getOpcode() == Instruction::SDiv || 4632 I.getOpcode() == Instruction::URem || 4633 I.getOpcode() == Instruction::SRem) && 4634 "Unexpected instruction"); 4635 Value *Divisor = I.getOperand(1); 4636 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4637 return !CInt || CInt->isZero(); 4638 } 4639 4640 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4641 // For each instruction in the old loop. 4642 for (Instruction &I : *BB) { 4643 4644 // If the instruction will become trivially dead when vectorized, we don't 4645 // need to generate it. 4646 if (DeadInstructions.count(&I)) 4647 continue; 4648 4649 // Scalarize instructions that should remain scalar after vectorization. 4650 if (!(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4651 isa<DbgInfoIntrinsic>(&I)) && 4652 Legal->isScalarAfterVectorization(&I)) { 4653 scalarizeInstruction(&I); 4654 continue; 4655 } 4656 4657 switch (I.getOpcode()) { 4658 case Instruction::Br: 4659 // Nothing to do for PHIs and BR, since we already took care of the 4660 // loop control flow instructions. 4661 continue; 4662 case Instruction::PHI: { 4663 // Vectorize PHINodes. 4664 widenPHIInstruction(&I, UF, VF, PV); 4665 continue; 4666 } // End of PHI. 4667 4668 case Instruction::UDiv: 4669 case Instruction::SDiv: 4670 case Instruction::SRem: 4671 case Instruction::URem: 4672 // Scalarize with predication if this instruction may divide by zero and 4673 // block execution is conditional, otherwise fallthrough. 4674 if (Legal->isScalarWithPredication(&I)) { 4675 scalarizeInstruction(&I, true); 4676 continue; 4677 } 4678 case Instruction::Add: 4679 case Instruction::FAdd: 4680 case Instruction::Sub: 4681 case Instruction::FSub: 4682 case Instruction::Mul: 4683 case Instruction::FMul: 4684 case Instruction::FDiv: 4685 case Instruction::FRem: 4686 case Instruction::Shl: 4687 case Instruction::LShr: 4688 case Instruction::AShr: 4689 case Instruction::And: 4690 case Instruction::Or: 4691 case Instruction::Xor: { 4692 // Just widen binops. 4693 auto *BinOp = cast<BinaryOperator>(&I); 4694 setDebugLocFromInst(Builder, BinOp); 4695 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4696 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4697 4698 // Use this vector value for all users of the original instruction. 4699 VectorParts Entry(UF); 4700 for (unsigned Part = 0; Part < UF; ++Part) { 4701 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4702 4703 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4704 VecOp->copyIRFlags(BinOp); 4705 4706 Entry[Part] = V; 4707 } 4708 4709 VectorLoopValueMap.initVector(&I, Entry); 4710 addMetadata(Entry, BinOp); 4711 break; 4712 } 4713 case Instruction::Select: { 4714 // Widen selects. 4715 // If the selector is loop invariant we can create a select 4716 // instruction with a scalar condition. Otherwise, use vector-select. 4717 auto *SE = PSE.getSE(); 4718 bool InvariantCond = 4719 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4720 setDebugLocFromInst(Builder, &I); 4721 4722 // The condition can be loop invariant but still defined inside the 4723 // loop. This means that we can't just use the original 'cond' value. 4724 // We have to take the 'vectorized' value and pick the first lane. 4725 // Instcombine will make this a no-op. 4726 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4727 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4728 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4729 4730 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4731 4732 VectorParts Entry(UF); 4733 for (unsigned Part = 0; Part < UF; ++Part) { 4734 Entry[Part] = Builder.CreateSelect( 4735 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4736 } 4737 4738 VectorLoopValueMap.initVector(&I, Entry); 4739 addMetadata(Entry, &I); 4740 break; 4741 } 4742 4743 case Instruction::ICmp: 4744 case Instruction::FCmp: { 4745 // Widen compares. Generate vector compares. 4746 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4747 auto *Cmp = dyn_cast<CmpInst>(&I); 4748 setDebugLocFromInst(Builder, Cmp); 4749 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4750 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4751 VectorParts Entry(UF); 4752 for (unsigned Part = 0; Part < UF; ++Part) { 4753 Value *C = nullptr; 4754 if (FCmp) { 4755 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4756 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4757 } else { 4758 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4759 } 4760 Entry[Part] = C; 4761 } 4762 4763 VectorLoopValueMap.initVector(&I, Entry); 4764 addMetadata(Entry, &I); 4765 break; 4766 } 4767 4768 case Instruction::Store: 4769 case Instruction::Load: 4770 vectorizeMemoryInstruction(&I); 4771 break; 4772 case Instruction::ZExt: 4773 case Instruction::SExt: 4774 case Instruction::FPToUI: 4775 case Instruction::FPToSI: 4776 case Instruction::FPExt: 4777 case Instruction::PtrToInt: 4778 case Instruction::IntToPtr: 4779 case Instruction::SIToFP: 4780 case Instruction::UIToFP: 4781 case Instruction::Trunc: 4782 case Instruction::FPTrunc: 4783 case Instruction::BitCast: { 4784 auto *CI = dyn_cast<CastInst>(&I); 4785 setDebugLocFromInst(Builder, CI); 4786 4787 // Optimize the special case where the source is a constant integer 4788 // induction variable. Notice that we can only optimize the 'trunc' case 4789 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4790 // (c) other casts depend on pointer size. 4791 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4792 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4793 ID.getConstIntStepValue()) { 4794 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4795 break; 4796 } 4797 4798 /// Vectorize casts. 4799 Type *DestTy = 4800 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4801 4802 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4803 VectorParts Entry(UF); 4804 for (unsigned Part = 0; Part < UF; ++Part) 4805 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4806 VectorLoopValueMap.initVector(&I, Entry); 4807 addMetadata(Entry, &I); 4808 break; 4809 } 4810 4811 case Instruction::Call: { 4812 // Ignore dbg intrinsics. 4813 if (isa<DbgInfoIntrinsic>(I)) 4814 break; 4815 setDebugLocFromInst(Builder, &I); 4816 4817 Module *M = BB->getParent()->getParent(); 4818 auto *CI = cast<CallInst>(&I); 4819 4820 StringRef FnName = CI->getCalledFunction()->getName(); 4821 Function *F = CI->getCalledFunction(); 4822 Type *RetTy = ToVectorTy(CI->getType(), VF); 4823 SmallVector<Type *, 4> Tys; 4824 for (Value *ArgOperand : CI->arg_operands()) 4825 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4826 4827 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4828 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4829 ID == Intrinsic::lifetime_start)) { 4830 scalarizeInstruction(&I); 4831 break; 4832 } 4833 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4834 // version of the instruction. 4835 // Is it beneficial to perform intrinsic call compared to lib call? 4836 bool NeedToScalarize; 4837 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4838 bool UseVectorIntrinsic = 4839 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4840 if (!UseVectorIntrinsic && NeedToScalarize) { 4841 scalarizeInstruction(&I); 4842 break; 4843 } 4844 4845 VectorParts Entry(UF); 4846 for (unsigned Part = 0; Part < UF; ++Part) { 4847 SmallVector<Value *, 4> Args; 4848 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4849 Value *Arg = CI->getArgOperand(i); 4850 // Some intrinsics have a scalar argument - don't replace it with a 4851 // vector. 4852 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4853 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4854 Arg = VectorArg[Part]; 4855 } 4856 Args.push_back(Arg); 4857 } 4858 4859 Function *VectorF; 4860 if (UseVectorIntrinsic) { 4861 // Use vector version of the intrinsic. 4862 Type *TysForDecl[] = {CI->getType()}; 4863 if (VF > 1) 4864 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4865 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4866 } else { 4867 // Use vector version of the library call. 4868 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4869 assert(!VFnName.empty() && "Vector function name is empty."); 4870 VectorF = M->getFunction(VFnName); 4871 if (!VectorF) { 4872 // Generate a declaration 4873 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4874 VectorF = 4875 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4876 VectorF->copyAttributesFrom(F); 4877 } 4878 } 4879 assert(VectorF && "Can't create vector function."); 4880 4881 SmallVector<OperandBundleDef, 1> OpBundles; 4882 CI->getOperandBundlesAsDefs(OpBundles); 4883 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4884 4885 if (isa<FPMathOperator>(V)) 4886 V->copyFastMathFlags(CI); 4887 4888 Entry[Part] = V; 4889 } 4890 4891 VectorLoopValueMap.initVector(&I, Entry); 4892 addMetadata(Entry, &I); 4893 break; 4894 } 4895 4896 default: 4897 // All other instructions are unsupported. Scalarize them. 4898 scalarizeInstruction(&I); 4899 break; 4900 } // end of switch. 4901 } // end of for_each instr. 4902 } 4903 4904 void InnerLoopVectorizer::updateAnalysis() { 4905 // Forget the original basic block. 4906 PSE.getSE()->forgetLoop(OrigLoop); 4907 4908 // Update the dominator tree information. 4909 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4910 "Entry does not dominate exit."); 4911 4912 // We don't predicate stores by this point, so the vector body should be a 4913 // single loop. 4914 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4915 4916 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4917 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4918 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4919 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4920 4921 DEBUG(DT->verifyDomTree()); 4922 } 4923 4924 /// \brief Check whether it is safe to if-convert this phi node. 4925 /// 4926 /// Phi nodes with constant expressions that can trap are not safe to if 4927 /// convert. 4928 static bool canIfConvertPHINodes(BasicBlock *BB) { 4929 for (Instruction &I : *BB) { 4930 auto *Phi = dyn_cast<PHINode>(&I); 4931 if (!Phi) 4932 return true; 4933 for (Value *V : Phi->incoming_values()) 4934 if (auto *C = dyn_cast<Constant>(V)) 4935 if (C->canTrap()) 4936 return false; 4937 } 4938 return true; 4939 } 4940 4941 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4942 if (!EnableIfConversion) { 4943 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4944 << "if-conversion is disabled"); 4945 return false; 4946 } 4947 4948 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4949 4950 // A list of pointers that we can safely read and write to. 4951 SmallPtrSet<Value *, 8> SafePointes; 4952 4953 // Collect safe addresses. 4954 for (BasicBlock *BB : TheLoop->blocks()) { 4955 if (blockNeedsPredication(BB)) 4956 continue; 4957 4958 for (Instruction &I : *BB) 4959 if (auto *Ptr = getPointerOperand(&I)) 4960 SafePointes.insert(Ptr); 4961 } 4962 4963 // Collect the blocks that need predication. 4964 BasicBlock *Header = TheLoop->getHeader(); 4965 for (BasicBlock *BB : TheLoop->blocks()) { 4966 // We don't support switch statements inside loops. 4967 if (!isa<BranchInst>(BB->getTerminator())) { 4968 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4969 << "loop contains a switch statement"); 4970 return false; 4971 } 4972 4973 // We must be able to predicate all blocks that need to be predicated. 4974 if (blockNeedsPredication(BB)) { 4975 if (!blockCanBePredicated(BB, SafePointes)) { 4976 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4977 << "control flow cannot be substituted for a select"); 4978 return false; 4979 } 4980 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4981 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4982 << "control flow cannot be substituted for a select"); 4983 return false; 4984 } 4985 } 4986 4987 // We can if-convert this loop. 4988 return true; 4989 } 4990 4991 bool LoopVectorizationLegality::canVectorize() { 4992 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4993 // be canonicalized. 4994 if (!TheLoop->getLoopPreheader()) { 4995 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4996 << "loop control flow is not understood by vectorizer"); 4997 return false; 4998 } 4999 5000 // FIXME: The code is currently dead, since the loop gets sent to 5001 // LoopVectorizationLegality is already an innermost loop. 5002 // 5003 // We can only vectorize innermost loops. 5004 if (!TheLoop->empty()) { 5005 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5006 << "loop is not the innermost loop"); 5007 return false; 5008 } 5009 5010 // We must have a single backedge. 5011 if (TheLoop->getNumBackEdges() != 1) { 5012 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5013 << "loop control flow is not understood by vectorizer"); 5014 return false; 5015 } 5016 5017 // We must have a single exiting block. 5018 if (!TheLoop->getExitingBlock()) { 5019 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5020 << "loop control flow is not understood by vectorizer"); 5021 return false; 5022 } 5023 5024 // We only handle bottom-tested loops, i.e. loop in which the condition is 5025 // checked at the end of each iteration. With that we can assume that all 5026 // instructions in the loop are executed the same number of times. 5027 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5028 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5029 << "loop control flow is not understood by vectorizer"); 5030 return false; 5031 } 5032 5033 // We need to have a loop header. 5034 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5035 << '\n'); 5036 5037 // Check if we can if-convert non-single-bb loops. 5038 unsigned NumBlocks = TheLoop->getNumBlocks(); 5039 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5040 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5041 return false; 5042 } 5043 5044 // ScalarEvolution needs to be able to find the exit count. 5045 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5046 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5047 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5048 << "could not determine number of loop iterations"); 5049 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5050 return false; 5051 } 5052 5053 // Check if we can vectorize the instructions and CFG in this loop. 5054 if (!canVectorizeInstrs()) { 5055 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5056 return false; 5057 } 5058 5059 // Go over each instruction and look at memory deps. 5060 if (!canVectorizeMemory()) { 5061 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5062 return false; 5063 } 5064 5065 DEBUG(dbgs() << "LV: We can vectorize this loop" 5066 << (LAI->getRuntimePointerChecking()->Need 5067 ? " (with a runtime bound check)" 5068 : "") 5069 << "!\n"); 5070 5071 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5072 5073 // If an override option has been passed in for interleaved accesses, use it. 5074 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5075 UseInterleaved = EnableInterleavedMemAccesses; 5076 5077 // Analyze interleaved memory accesses. 5078 if (UseInterleaved) 5079 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5080 5081 // Collect all instructions that are known to be uniform after vectorization. 5082 collectLoopUniforms(); 5083 5084 // Collect all instructions that are known to be scalar after vectorization. 5085 collectLoopScalars(); 5086 5087 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5088 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5089 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5090 5091 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5092 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5093 << "Too many SCEV assumptions need to be made and checked " 5094 << "at runtime"); 5095 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5096 return false; 5097 } 5098 5099 // Okay! We can vectorize. At this point we don't have any other mem analysis 5100 // which may limit our maximum vectorization factor, so just return true with 5101 // no restrictions. 5102 return true; 5103 } 5104 5105 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5106 if (Ty->isPointerTy()) 5107 return DL.getIntPtrType(Ty); 5108 5109 // It is possible that char's or short's overflow when we ask for the loop's 5110 // trip count, work around this by changing the type size. 5111 if (Ty->getScalarSizeInBits() < 32) 5112 return Type::getInt32Ty(Ty->getContext()); 5113 5114 return Ty; 5115 } 5116 5117 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5118 Ty0 = convertPointerToIntegerType(DL, Ty0); 5119 Ty1 = convertPointerToIntegerType(DL, Ty1); 5120 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5121 return Ty0; 5122 return Ty1; 5123 } 5124 5125 /// \brief Check that the instruction has outside loop users and is not an 5126 /// identified reduction variable. 5127 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5128 SmallPtrSetImpl<Value *> &AllowedExit) { 5129 // Reduction and Induction instructions are allowed to have exit users. All 5130 // other instructions must not have external users. 5131 if (!AllowedExit.count(Inst)) 5132 // Check that all of the users of the loop are inside the BB. 5133 for (User *U : Inst->users()) { 5134 Instruction *UI = cast<Instruction>(U); 5135 // This user may be a reduction exit value. 5136 if (!TheLoop->contains(UI)) { 5137 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5138 return true; 5139 } 5140 } 5141 return false; 5142 } 5143 5144 void LoopVectorizationLegality::addInductionPhi( 5145 PHINode *Phi, const InductionDescriptor &ID, 5146 SmallPtrSetImpl<Value *> &AllowedExit) { 5147 Inductions[Phi] = ID; 5148 Type *PhiTy = Phi->getType(); 5149 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5150 5151 // Get the widest type. 5152 if (!PhiTy->isFloatingPointTy()) { 5153 if (!WidestIndTy) 5154 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5155 else 5156 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5157 } 5158 5159 // Int inductions are special because we only allow one IV. 5160 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5161 ID.getConstIntStepValue() && 5162 ID.getConstIntStepValue()->isOne() && 5163 isa<Constant>(ID.getStartValue()) && 5164 cast<Constant>(ID.getStartValue())->isNullValue()) { 5165 5166 // Use the phi node with the widest type as induction. Use the last 5167 // one if there are multiple (no good reason for doing this other 5168 // than it is expedient). We've checked that it begins at zero and 5169 // steps by one, so this is a canonical induction variable. 5170 if (!Induction || PhiTy == WidestIndTy) 5171 Induction = Phi; 5172 } 5173 5174 // Both the PHI node itself, and the "post-increment" value feeding 5175 // back into the PHI node may have external users. 5176 AllowedExit.insert(Phi); 5177 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5178 5179 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5180 return; 5181 } 5182 5183 bool LoopVectorizationLegality::canVectorizeInstrs() { 5184 BasicBlock *Header = TheLoop->getHeader(); 5185 5186 // Look for the attribute signaling the absence of NaNs. 5187 Function &F = *Header->getParent(); 5188 HasFunNoNaNAttr = 5189 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5190 5191 // For each block in the loop. 5192 for (BasicBlock *BB : TheLoop->blocks()) { 5193 // Scan the instructions in the block and look for hazards. 5194 for (Instruction &I : *BB) { 5195 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5196 Type *PhiTy = Phi->getType(); 5197 // Check that this PHI type is allowed. 5198 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5199 !PhiTy->isPointerTy()) { 5200 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5201 << "loop control flow is not understood by vectorizer"); 5202 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5203 return false; 5204 } 5205 5206 // If this PHINode is not in the header block, then we know that we 5207 // can convert it to select during if-conversion. No need to check if 5208 // the PHIs in this block are induction or reduction variables. 5209 if (BB != Header) { 5210 // Check that this instruction has no outside users or is an 5211 // identified reduction value with an outside user. 5212 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5213 continue; 5214 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5215 << "value could not be identified as " 5216 "an induction or reduction variable"); 5217 return false; 5218 } 5219 5220 // We only allow if-converted PHIs with exactly two incoming values. 5221 if (Phi->getNumIncomingValues() != 2) { 5222 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5223 << "control flow not understood by vectorizer"); 5224 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5225 return false; 5226 } 5227 5228 RecurrenceDescriptor RedDes; 5229 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5230 if (RedDes.hasUnsafeAlgebra()) 5231 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5232 AllowedExit.insert(RedDes.getLoopExitInstr()); 5233 Reductions[Phi] = RedDes; 5234 continue; 5235 } 5236 5237 InductionDescriptor ID; 5238 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5239 addInductionPhi(Phi, ID, AllowedExit); 5240 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5241 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5242 continue; 5243 } 5244 5245 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5246 FirstOrderRecurrences.insert(Phi); 5247 continue; 5248 } 5249 5250 // As a last resort, coerce the PHI to a AddRec expression 5251 // and re-try classifying it a an induction PHI. 5252 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5253 addInductionPhi(Phi, ID, AllowedExit); 5254 continue; 5255 } 5256 5257 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5258 << "value that could not be identified as " 5259 "reduction is used outside the loop"); 5260 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5261 return false; 5262 } // end of PHI handling 5263 5264 // We handle calls that: 5265 // * Are debug info intrinsics. 5266 // * Have a mapping to an IR intrinsic. 5267 // * Have a vector version available. 5268 auto *CI = dyn_cast<CallInst>(&I); 5269 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5270 !isa<DbgInfoIntrinsic>(CI) && 5271 !(CI->getCalledFunction() && TLI && 5272 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5273 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5274 << "call instruction cannot be vectorized"); 5275 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5276 return false; 5277 } 5278 5279 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5280 // second argument is the same (i.e. loop invariant) 5281 if (CI && hasVectorInstrinsicScalarOpd( 5282 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5283 auto *SE = PSE.getSE(); 5284 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5285 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5286 << "intrinsic instruction cannot be vectorized"); 5287 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5288 return false; 5289 } 5290 } 5291 5292 // Check that the instruction return type is vectorizable. 5293 // Also, we can't vectorize extractelement instructions. 5294 if ((!VectorType::isValidElementType(I.getType()) && 5295 !I.getType()->isVoidTy()) || 5296 isa<ExtractElementInst>(I)) { 5297 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5298 << "instruction return type cannot be vectorized"); 5299 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5300 return false; 5301 } 5302 5303 // Check that the stored type is vectorizable. 5304 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5305 Type *T = ST->getValueOperand()->getType(); 5306 if (!VectorType::isValidElementType(T)) { 5307 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5308 << "store instruction cannot be vectorized"); 5309 return false; 5310 } 5311 5312 // FP instructions can allow unsafe algebra, thus vectorizable by 5313 // non-IEEE-754 compliant SIMD units. 5314 // This applies to floating-point math operations and calls, not memory 5315 // operations, shuffles, or casts, as they don't change precision or 5316 // semantics. 5317 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5318 !I.hasUnsafeAlgebra()) { 5319 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5320 Hints->setPotentiallyUnsafe(); 5321 } 5322 5323 // Reduction instructions are allowed to have exit users. 5324 // All other instructions must not have external users. 5325 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5326 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5327 << "value cannot be used outside the loop"); 5328 return false; 5329 } 5330 5331 } // next instr. 5332 } 5333 5334 if (!Induction) { 5335 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5336 if (Inductions.empty()) { 5337 ORE->emit(createMissedAnalysis("NoInductionVariable") 5338 << "loop induction variable could not be identified"); 5339 return false; 5340 } 5341 } 5342 5343 // Now we know the widest induction type, check if our found induction 5344 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5345 // will create another. 5346 if (Induction && WidestIndTy != Induction->getType()) 5347 Induction = nullptr; 5348 5349 return true; 5350 } 5351 5352 void LoopVectorizationLegality::collectLoopScalars() { 5353 5354 // If an instruction is uniform after vectorization, it will remain scalar. 5355 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5356 5357 // Collect the getelementptr instructions that will not be vectorized. A 5358 // getelementptr instruction is only vectorized if it is used for a legal 5359 // gather or scatter operation. 5360 for (auto *BB : TheLoop->blocks()) 5361 for (auto &I : *BB) { 5362 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5363 Scalars.insert(GEP); 5364 continue; 5365 } 5366 auto *Ptr = getPointerOperand(&I); 5367 if (!Ptr) 5368 continue; 5369 auto *GEP = getGEPInstruction(Ptr); 5370 if (GEP && isLegalGatherOrScatter(&I)) 5371 Scalars.erase(GEP); 5372 } 5373 5374 // An induction variable will remain scalar if all users of the induction 5375 // variable and induction variable update remain scalar. 5376 auto *Latch = TheLoop->getLoopLatch(); 5377 for (auto &Induction : *getInductionVars()) { 5378 auto *Ind = Induction.first; 5379 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5380 5381 // Determine if all users of the induction variable are scalar after 5382 // vectorization. 5383 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5384 auto *I = cast<Instruction>(U); 5385 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5386 }); 5387 if (!ScalarInd) 5388 continue; 5389 5390 // Determine if all users of the induction variable update instruction are 5391 // scalar after vectorization. 5392 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5393 auto *I = cast<Instruction>(U); 5394 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5395 }); 5396 if (!ScalarIndUpdate) 5397 continue; 5398 5399 // The induction variable and its update instruction will remain scalar. 5400 Scalars.insert(Ind); 5401 Scalars.insert(IndUpdate); 5402 } 5403 } 5404 5405 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5406 if (isAccessInterleaved(I)) 5407 return true; 5408 if (auto *Ptr = getPointerOperand(I)) 5409 return isConsecutivePtr(Ptr); 5410 return false; 5411 } 5412 5413 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5414 if (!blockNeedsPredication(I->getParent())) 5415 return false; 5416 switch(I->getOpcode()) { 5417 default: 5418 break; 5419 case Instruction::Store: 5420 return !isMaskRequired(I); 5421 case Instruction::UDiv: 5422 case Instruction::SDiv: 5423 case Instruction::SRem: 5424 case Instruction::URem: 5425 return mayDivideByZero(*I); 5426 } 5427 return false; 5428 } 5429 5430 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5431 Instruction *I, unsigned VF) { 5432 5433 // If the memory instruction is in an interleaved group, it will be 5434 // vectorized and its pointer will remain uniform. 5435 if (isAccessInterleaved(I)) 5436 return false; 5437 5438 // Get and ensure we have a valid memory instruction. 5439 LoadInst *LI = dyn_cast<LoadInst>(I); 5440 StoreInst *SI = dyn_cast<StoreInst>(I); 5441 assert((LI || SI) && "Invalid memory instruction"); 5442 5443 // If the pointer operand is uniform (loop invariant), the memory instruction 5444 // will be scalarized. 5445 auto *Ptr = getPointerOperand(I); 5446 if (LI && isUniform(Ptr)) 5447 return true; 5448 5449 // If the pointer operand is non-consecutive and neither a gather nor a 5450 // scatter operation is legal, the memory instruction will be scalarized. 5451 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5452 return true; 5453 5454 // If the instruction is a store located in a predicated block, it will be 5455 // scalarized. 5456 if (isScalarWithPredication(I)) 5457 return true; 5458 5459 // If the instruction's allocated size doesn't equal it's type size, it 5460 // requires padding and will be scalarized. 5461 auto &DL = I->getModule()->getDataLayout(); 5462 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5463 if (hasIrregularType(ScalarTy, DL, VF)) 5464 return true; 5465 5466 // Otherwise, the memory instruction should be vectorized if the rest of the 5467 // loop is. 5468 return false; 5469 } 5470 5471 void LoopVectorizationLegality::collectLoopUniforms() { 5472 // We now know that the loop is vectorizable! 5473 // Collect instructions inside the loop that will remain uniform after 5474 // vectorization. 5475 5476 // Global values, params and instructions outside of current loop are out of 5477 // scope. 5478 auto isOutOfScope = [&](Value *V) -> bool { 5479 Instruction *I = dyn_cast<Instruction>(V); 5480 return (!I || !TheLoop->contains(I)); 5481 }; 5482 5483 SetVector<Instruction *> Worklist; 5484 BasicBlock *Latch = TheLoop->getLoopLatch(); 5485 5486 // Start with the conditional branch. If the branch condition is an 5487 // instruction contained in the loop that is only used by the branch, it is 5488 // uniform. 5489 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5490 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5491 Worklist.insert(Cmp); 5492 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5493 } 5494 5495 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5496 // are pointers that are treated like consecutive pointers during 5497 // vectorization. The pointer operands of interleaved accesses are an 5498 // example. 5499 SmallPtrSet<Instruction *, 8> ConsecutiveLikePtrs; 5500 5501 // Holds pointer operands of instructions that are possibly non-uniform. 5502 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5503 5504 // Iterate over the instructions in the loop, and collect all 5505 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5506 // that a consecutive-like pointer operand will be scalarized, we collect it 5507 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5508 // getelementptr instruction can be used by both vectorized and scalarized 5509 // memory instructions. For example, if a loop loads and stores from the same 5510 // location, but the store is conditional, the store will be scalarized, and 5511 // the getelementptr won't remain uniform. 5512 for (auto *BB : TheLoop->blocks()) 5513 for (auto &I : *BB) { 5514 5515 // If there's no pointer operand, there's nothing to do. 5516 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5517 if (!Ptr) 5518 continue; 5519 5520 // True if all users of Ptr are memory accesses that have Ptr as their 5521 // pointer operand. 5522 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5523 return getPointerOperand(U) == Ptr; 5524 }); 5525 5526 // Ensure the memory instruction will not be scalarized, making its 5527 // pointer operand non-uniform. If the pointer operand is used by some 5528 // instruction other than a memory access, we're not going to check if 5529 // that other instruction may be scalarized here. Thus, conservatively 5530 // assume the pointer operand may be non-uniform. 5531 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5532 PossibleNonUniformPtrs.insert(Ptr); 5533 5534 // If the memory instruction will be vectorized and its pointer operand 5535 // is consecutive-like, the pointer operand should remain uniform. 5536 else if (hasConsecutiveLikePtrOperand(&I)) 5537 ConsecutiveLikePtrs.insert(Ptr); 5538 } 5539 5540 // Add to the Worklist all consecutive and consecutive-like pointers that 5541 // aren't also identified as possibly non-uniform. 5542 for (auto *V : ConsecutiveLikePtrs) 5543 if (!PossibleNonUniformPtrs.count(V)) { 5544 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5545 Worklist.insert(V); 5546 } 5547 5548 // Expand Worklist in topological order: whenever a new instruction 5549 // is added , its users should be either already inside Worklist, or 5550 // out of scope. It ensures a uniform instruction will only be used 5551 // by uniform instructions or out of scope instructions. 5552 unsigned idx = 0; 5553 while (idx != Worklist.size()) { 5554 Instruction *I = Worklist[idx++]; 5555 5556 for (auto OV : I->operand_values()) { 5557 if (isOutOfScope(OV)) 5558 continue; 5559 auto *OI = cast<Instruction>(OV); 5560 if (all_of(OI->users(), [&](User *U) -> bool { 5561 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5562 })) { 5563 Worklist.insert(OI); 5564 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5565 } 5566 } 5567 } 5568 5569 // Returns true if Ptr is the pointer operand of a memory access instruction 5570 // I, and I is known to not require scalarization. 5571 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5572 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5573 }; 5574 5575 // For an instruction to be added into Worklist above, all its users inside 5576 // the loop should also be in Worklist. However, this condition cannot be 5577 // true for phi nodes that form a cyclic dependence. We must process phi 5578 // nodes separately. An induction variable will remain uniform if all users 5579 // of the induction variable and induction variable update remain uniform. 5580 // The code below handles both pointer and non-pointer induction variables. 5581 for (auto &Induction : Inductions) { 5582 auto *Ind = Induction.first; 5583 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5584 5585 // Determine if all users of the induction variable are uniform after 5586 // vectorization. 5587 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5588 auto *I = cast<Instruction>(U); 5589 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5590 isVectorizedMemAccessUse(I, Ind); 5591 }); 5592 if (!UniformInd) 5593 continue; 5594 5595 // Determine if all users of the induction variable update instruction are 5596 // uniform after vectorization. 5597 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5598 auto *I = cast<Instruction>(U); 5599 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5600 isVectorizedMemAccessUse(I, IndUpdate); 5601 }); 5602 if (!UniformIndUpdate) 5603 continue; 5604 5605 // The induction variable and its update instruction will remain uniform. 5606 Worklist.insert(Ind); 5607 Worklist.insert(IndUpdate); 5608 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5609 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5610 } 5611 5612 Uniforms.insert(Worklist.begin(), Worklist.end()); 5613 } 5614 5615 bool LoopVectorizationLegality::canVectorizeMemory() { 5616 LAI = &(*GetLAA)(*TheLoop); 5617 InterleaveInfo.setLAI(LAI); 5618 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5619 if (LAR) { 5620 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5621 "loop not vectorized: ", *LAR); 5622 ORE->emit(VR); 5623 } 5624 if (!LAI->canVectorizeMemory()) 5625 return false; 5626 5627 if (LAI->hasStoreToLoopInvariantAddress()) { 5628 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5629 << "write to a loop invariant address could not be vectorized"); 5630 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5631 return false; 5632 } 5633 5634 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5635 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5636 5637 return true; 5638 } 5639 5640 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5641 Value *In0 = const_cast<Value *>(V); 5642 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5643 if (!PN) 5644 return false; 5645 5646 return Inductions.count(PN); 5647 } 5648 5649 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5650 return FirstOrderRecurrences.count(Phi); 5651 } 5652 5653 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5654 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5655 } 5656 5657 bool LoopVectorizationLegality::blockCanBePredicated( 5658 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5659 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5660 5661 for (Instruction &I : *BB) { 5662 // Check that we don't have a constant expression that can trap as operand. 5663 for (Value *Operand : I.operands()) { 5664 if (auto *C = dyn_cast<Constant>(Operand)) 5665 if (C->canTrap()) 5666 return false; 5667 } 5668 // We might be able to hoist the load. 5669 if (I.mayReadFromMemory()) { 5670 auto *LI = dyn_cast<LoadInst>(&I); 5671 if (!LI) 5672 return false; 5673 if (!SafePtrs.count(LI->getPointerOperand())) { 5674 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5675 isLegalMaskedGather(LI->getType())) { 5676 MaskedOp.insert(LI); 5677 continue; 5678 } 5679 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5680 if (IsAnnotatedParallel) 5681 continue; 5682 return false; 5683 } 5684 } 5685 5686 if (I.mayWriteToMemory()) { 5687 auto *SI = dyn_cast<StoreInst>(&I); 5688 // We only support predication of stores in basic blocks with one 5689 // predecessor. 5690 if (!SI) 5691 return false; 5692 5693 // Build a masked store if it is legal for the target. 5694 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5695 SI->getPointerOperand()) || 5696 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5697 MaskedOp.insert(SI); 5698 continue; 5699 } 5700 5701 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5702 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5703 5704 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5705 !isSinglePredecessor) 5706 return false; 5707 } 5708 if (I.mayThrow()) 5709 return false; 5710 } 5711 5712 return true; 5713 } 5714 5715 void InterleavedAccessInfo::collectConstStrideAccesses( 5716 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5717 const ValueToValueMap &Strides) { 5718 5719 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5720 5721 // Since it's desired that the load/store instructions be maintained in 5722 // "program order" for the interleaved access analysis, we have to visit the 5723 // blocks in the loop in reverse postorder (i.e., in a topological order). 5724 // Such an ordering will ensure that any load/store that may be executed 5725 // before a second load/store will precede the second load/store in 5726 // AccessStrideInfo. 5727 LoopBlocksDFS DFS(TheLoop); 5728 DFS.perform(LI); 5729 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5730 for (auto &I : *BB) { 5731 auto *LI = dyn_cast<LoadInst>(&I); 5732 auto *SI = dyn_cast<StoreInst>(&I); 5733 if (!LI && !SI) 5734 continue; 5735 5736 Value *Ptr = getPointerOperand(&I); 5737 // We don't check wrapping here because we don't know yet if Ptr will be 5738 // part of a full group or a group with gaps. Checking wrapping for all 5739 // pointers (even those that end up in groups with no gaps) will be overly 5740 // conservative. For full groups, wrapping should be ok since if we would 5741 // wrap around the address space we would do a memory access at nullptr 5742 // even without the transformation. The wrapping checks are therefore 5743 // deferred until after we've formed the interleaved groups. 5744 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5745 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5746 5747 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5748 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5749 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5750 5751 // An alignment of 0 means target ABI alignment. 5752 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5753 if (!Align) 5754 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5755 5756 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5757 } 5758 } 5759 5760 // Analyze interleaved accesses and collect them into interleaved load and 5761 // store groups. 5762 // 5763 // When generating code for an interleaved load group, we effectively hoist all 5764 // loads in the group to the location of the first load in program order. When 5765 // generating code for an interleaved store group, we sink all stores to the 5766 // location of the last store. This code motion can change the order of load 5767 // and store instructions and may break dependences. 5768 // 5769 // The code generation strategy mentioned above ensures that we won't violate 5770 // any write-after-read (WAR) dependences. 5771 // 5772 // E.g., for the WAR dependence: a = A[i]; // (1) 5773 // A[i] = b; // (2) 5774 // 5775 // The store group of (2) is always inserted at or below (2), and the load 5776 // group of (1) is always inserted at or above (1). Thus, the instructions will 5777 // never be reordered. All other dependences are checked to ensure the 5778 // correctness of the instruction reordering. 5779 // 5780 // The algorithm visits all memory accesses in the loop in bottom-up program 5781 // order. Program order is established by traversing the blocks in the loop in 5782 // reverse postorder when collecting the accesses. 5783 // 5784 // We visit the memory accesses in bottom-up order because it can simplify the 5785 // construction of store groups in the presence of write-after-write (WAW) 5786 // dependences. 5787 // 5788 // E.g., for the WAW dependence: A[i] = a; // (1) 5789 // A[i] = b; // (2) 5790 // A[i + 1] = c; // (3) 5791 // 5792 // We will first create a store group with (3) and (2). (1) can't be added to 5793 // this group because it and (2) are dependent. However, (1) can be grouped 5794 // with other accesses that may precede it in program order. Note that a 5795 // bottom-up order does not imply that WAW dependences should not be checked. 5796 void InterleavedAccessInfo::analyzeInterleaving( 5797 const ValueToValueMap &Strides) { 5798 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5799 5800 // Holds all accesses with a constant stride. 5801 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5802 collectConstStrideAccesses(AccessStrideInfo, Strides); 5803 5804 if (AccessStrideInfo.empty()) 5805 return; 5806 5807 // Collect the dependences in the loop. 5808 collectDependences(); 5809 5810 // Holds all interleaved store groups temporarily. 5811 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5812 // Holds all interleaved load groups temporarily. 5813 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5814 5815 // Search in bottom-up program order for pairs of accesses (A and B) that can 5816 // form interleaved load or store groups. In the algorithm below, access A 5817 // precedes access B in program order. We initialize a group for B in the 5818 // outer loop of the algorithm, and then in the inner loop, we attempt to 5819 // insert each A into B's group if: 5820 // 5821 // 1. A and B have the same stride, 5822 // 2. A and B have the same memory object size, and 5823 // 3. A belongs in B's group according to its distance from B. 5824 // 5825 // Special care is taken to ensure group formation will not break any 5826 // dependences. 5827 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5828 BI != E; ++BI) { 5829 Instruction *B = BI->first; 5830 StrideDescriptor DesB = BI->second; 5831 5832 // Initialize a group for B if it has an allowable stride. Even if we don't 5833 // create a group for B, we continue with the bottom-up algorithm to ensure 5834 // we don't break any of B's dependences. 5835 InterleaveGroup *Group = nullptr; 5836 if (isStrided(DesB.Stride)) { 5837 Group = getInterleaveGroup(B); 5838 if (!Group) { 5839 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5840 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5841 } 5842 if (B->mayWriteToMemory()) 5843 StoreGroups.insert(Group); 5844 else 5845 LoadGroups.insert(Group); 5846 } 5847 5848 for (auto AI = std::next(BI); AI != E; ++AI) { 5849 Instruction *A = AI->first; 5850 StrideDescriptor DesA = AI->second; 5851 5852 // Our code motion strategy implies that we can't have dependences 5853 // between accesses in an interleaved group and other accesses located 5854 // between the first and last member of the group. Note that this also 5855 // means that a group can't have more than one member at a given offset. 5856 // The accesses in a group can have dependences with other accesses, but 5857 // we must ensure we don't extend the boundaries of the group such that 5858 // we encompass those dependent accesses. 5859 // 5860 // For example, assume we have the sequence of accesses shown below in a 5861 // stride-2 loop: 5862 // 5863 // (1, 2) is a group | A[i] = a; // (1) 5864 // | A[i-1] = b; // (2) | 5865 // A[i-3] = c; // (3) 5866 // A[i] = d; // (4) | (2, 4) is not a group 5867 // 5868 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5869 // but not with (4). If we did, the dependent access (3) would be within 5870 // the boundaries of the (2, 4) group. 5871 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5872 5873 // If a dependence exists and A is already in a group, we know that A 5874 // must be a store since A precedes B and WAR dependences are allowed. 5875 // Thus, A would be sunk below B. We release A's group to prevent this 5876 // illegal code motion. A will then be free to form another group with 5877 // instructions that precede it. 5878 if (isInterleaved(A)) { 5879 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5880 StoreGroups.remove(StoreGroup); 5881 releaseGroup(StoreGroup); 5882 } 5883 5884 // If a dependence exists and A is not already in a group (or it was 5885 // and we just released it), B might be hoisted above A (if B is a 5886 // load) or another store might be sunk below A (if B is a store). In 5887 // either case, we can't add additional instructions to B's group. B 5888 // will only form a group with instructions that it precedes. 5889 break; 5890 } 5891 5892 // At this point, we've checked for illegal code motion. If either A or B 5893 // isn't strided, there's nothing left to do. 5894 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5895 continue; 5896 5897 // Ignore A if it's already in a group or isn't the same kind of memory 5898 // operation as B. 5899 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5900 continue; 5901 5902 // Check rules 1 and 2. Ignore A if its stride or size is different from 5903 // that of B. 5904 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5905 continue; 5906 5907 // Calculate the distance from A to B. 5908 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5909 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5910 if (!DistToB) 5911 continue; 5912 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5913 5914 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5915 // size. 5916 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5917 continue; 5918 5919 // Ignore A if either A or B is in a predicated block. Although we 5920 // currently prevent group formation for predicated accesses, we may be 5921 // able to relax this limitation in the future once we handle more 5922 // complicated blocks. 5923 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5924 continue; 5925 5926 // The index of A is the index of B plus A's distance to B in multiples 5927 // of the size. 5928 int IndexA = 5929 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5930 5931 // Try to insert A into B's group. 5932 if (Group->insertMember(A, IndexA, DesA.Align)) { 5933 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5934 << " into the interleave group with" << *B << '\n'); 5935 InterleaveGroupMap[A] = Group; 5936 5937 // Set the first load in program order as the insert position. 5938 if (A->mayReadFromMemory()) 5939 Group->setInsertPos(A); 5940 } 5941 } // Iteration over A accesses. 5942 } // Iteration over B accesses. 5943 5944 // Remove interleaved store groups with gaps. 5945 for (InterleaveGroup *Group : StoreGroups) 5946 if (Group->getNumMembers() != Group->getFactor()) 5947 releaseGroup(Group); 5948 5949 // Remove interleaved groups with gaps (currently only loads) whose memory 5950 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5951 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5952 // not check wrapping (see documentation there). 5953 // FORNOW we use Assume=false; 5954 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5955 // of runtime SCEV assumptions checks (thereby potentially failing to 5956 // vectorize altogether). 5957 // Additional optional optimizations: 5958 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5959 // wrap then we can deduce that all pointers in the group don't wrap. 5960 // This means that we can forcefully peel the loop in order to only have to 5961 // check the first pointer for no-wrap. When we'll change to use Assume=true 5962 // we'll only need at most one runtime check per interleaved group. 5963 // 5964 for (InterleaveGroup *Group : LoadGroups) { 5965 5966 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5967 // load would wrap around the address space we would do a memory access at 5968 // nullptr even without the transformation. 5969 if (Group->getNumMembers() == Group->getFactor()) 5970 continue; 5971 5972 // Case 2: If first and last members of the group don't wrap this implies 5973 // that all the pointers in the group don't wrap. 5974 // So we check only group member 0 (which is always guaranteed to exist), 5975 // and group member Factor - 1; If the latter doesn't exist we rely on 5976 // peeling (if it is a non-reveresed accsess -- see Case 3). 5977 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 5978 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5979 /*ShouldCheckWrap=*/true)) { 5980 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5981 "first group member potentially pointer-wrapping.\n"); 5982 releaseGroup(Group); 5983 continue; 5984 } 5985 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 5986 if (LastMember) { 5987 Value *LastMemberPtr = getPointerOperand(LastMember); 5988 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 5989 /*ShouldCheckWrap=*/true)) { 5990 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 5991 "last group member potentially pointer-wrapping.\n"); 5992 releaseGroup(Group); 5993 } 5994 } 5995 else { 5996 // Case 3: A non-reversed interleaved load group with gaps: We need 5997 // to execute at least one scalar epilogue iteration. This will ensure 5998 // we don't speculatively access memory out-of-bounds. We only need 5999 // to look for a member at index factor - 1, since every group must have 6000 // a member at index zero. 6001 if (Group->isReverse()) { 6002 releaseGroup(Group); 6003 continue; 6004 } 6005 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6006 RequiresScalarEpilogue = true; 6007 } 6008 } 6009 } 6010 6011 LoopVectorizationCostModel::VectorizationFactor 6012 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 6013 // Width 1 means no vectorize 6014 VectorizationFactor Factor = {1U, 0U}; 6015 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 6016 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6017 << "runtime pointer checks needed. Enable vectorization of this " 6018 "loop with '#pragma clang loop vectorize(enable)' when " 6019 "compiling with -Os/-Oz"); 6020 DEBUG(dbgs() 6021 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6022 return Factor; 6023 } 6024 6025 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6026 ORE->emit(createMissedAnalysis("ConditionalStore") 6027 << "store that is conditionally executed prevents vectorization"); 6028 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6029 return Factor; 6030 } 6031 6032 // Find the trip count. 6033 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6034 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6035 6036 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6037 unsigned SmallestType, WidestType; 6038 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6039 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6040 unsigned MaxSafeDepDist = -1U; 6041 6042 // Get the maximum safe dependence distance in bits computed by LAA. If the 6043 // loop contains any interleaved accesses, we divide the dependence distance 6044 // by the maximum interleave factor of all interleaved groups. Note that 6045 // although the division ensures correctness, this is a fairly conservative 6046 // computation because the maximum distance computed by LAA may not involve 6047 // any of the interleaved accesses. 6048 if (Legal->getMaxSafeDepDistBytes() != -1U) 6049 MaxSafeDepDist = 6050 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6051 6052 WidestRegister = 6053 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6054 unsigned MaxVectorSize = WidestRegister / WidestType; 6055 6056 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6057 << WidestType << " bits.\n"); 6058 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6059 << " bits.\n"); 6060 6061 if (MaxVectorSize == 0) { 6062 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6063 MaxVectorSize = 1; 6064 } 6065 6066 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6067 " into one vector!"); 6068 6069 unsigned VF = MaxVectorSize; 6070 if (MaximizeBandwidth && !OptForSize) { 6071 // Collect all viable vectorization factors. 6072 SmallVector<unsigned, 8> VFs; 6073 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6074 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6075 VFs.push_back(VS); 6076 6077 // For each VF calculate its register usage. 6078 auto RUs = calculateRegisterUsage(VFs); 6079 6080 // Select the largest VF which doesn't require more registers than existing 6081 // ones. 6082 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6083 for (int i = RUs.size() - 1; i >= 0; --i) { 6084 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6085 VF = VFs[i]; 6086 break; 6087 } 6088 } 6089 } 6090 6091 // If we optimize the program for size, avoid creating the tail loop. 6092 if (OptForSize) { 6093 // If we are unable to calculate the trip count then don't try to vectorize. 6094 if (TC < 2) { 6095 ORE->emit( 6096 createMissedAnalysis("UnknownLoopCountComplexCFG") 6097 << "unable to calculate the loop count due to complex control flow"); 6098 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6099 return Factor; 6100 } 6101 6102 // Find the maximum SIMD width that can fit within the trip count. 6103 VF = TC % MaxVectorSize; 6104 6105 if (VF == 0) 6106 VF = MaxVectorSize; 6107 else { 6108 // If the trip count that we found modulo the vectorization factor is not 6109 // zero then we require a tail. 6110 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6111 << "cannot optimize for size and vectorize at the " 6112 "same time. Enable vectorization of this loop " 6113 "with '#pragma clang loop vectorize(enable)' " 6114 "when compiling with -Os/-Oz"); 6115 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6116 return Factor; 6117 } 6118 } 6119 6120 int UserVF = Hints->getWidth(); 6121 if (UserVF != 0) { 6122 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6123 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6124 6125 Factor.Width = UserVF; 6126 return Factor; 6127 } 6128 6129 float Cost = expectedCost(1).first; 6130 #ifndef NDEBUG 6131 const float ScalarCost = Cost; 6132 #endif /* NDEBUG */ 6133 unsigned Width = 1; 6134 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6135 6136 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6137 // Ignore scalar width, because the user explicitly wants vectorization. 6138 if (ForceVectorization && VF > 1) { 6139 Width = 2; 6140 Cost = expectedCost(Width).first / (float)Width; 6141 } 6142 6143 for (unsigned i = 2; i <= VF; i *= 2) { 6144 // Notice that the vector loop needs to be executed less times, so 6145 // we need to divide the cost of the vector loops by the width of 6146 // the vector elements. 6147 VectorizationCostTy C = expectedCost(i); 6148 float VectorCost = C.first / (float)i; 6149 DEBUG(dbgs() << "LV: Vector loop of width " << i 6150 << " costs: " << (int)VectorCost << ".\n"); 6151 if (!C.second && !ForceVectorization) { 6152 DEBUG( 6153 dbgs() << "LV: Not considering vector loop of width " << i 6154 << " because it will not generate any vector instructions.\n"); 6155 continue; 6156 } 6157 if (VectorCost < Cost) { 6158 Cost = VectorCost; 6159 Width = i; 6160 } 6161 } 6162 6163 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6164 << "LV: Vectorization seems to be not beneficial, " 6165 << "but was forced by a user.\n"); 6166 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6167 Factor.Width = Width; 6168 Factor.Cost = Width * Cost; 6169 return Factor; 6170 } 6171 6172 std::pair<unsigned, unsigned> 6173 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6174 unsigned MinWidth = -1U; 6175 unsigned MaxWidth = 8; 6176 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6177 6178 // For each block. 6179 for (BasicBlock *BB : TheLoop->blocks()) { 6180 // For each instruction in the loop. 6181 for (Instruction &I : *BB) { 6182 Type *T = I.getType(); 6183 6184 // Skip ignored values. 6185 if (ValuesToIgnore.count(&I)) 6186 continue; 6187 6188 // Only examine Loads, Stores and PHINodes. 6189 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6190 continue; 6191 6192 // Examine PHI nodes that are reduction variables. Update the type to 6193 // account for the recurrence type. 6194 if (auto *PN = dyn_cast<PHINode>(&I)) { 6195 if (!Legal->isReductionVariable(PN)) 6196 continue; 6197 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6198 T = RdxDesc.getRecurrenceType(); 6199 } 6200 6201 // Examine the stored values. 6202 if (auto *ST = dyn_cast<StoreInst>(&I)) 6203 T = ST->getValueOperand()->getType(); 6204 6205 // Ignore loaded pointer types and stored pointer types that are not 6206 // consecutive. However, we do want to take consecutive stores/loads of 6207 // pointer vectors into account. 6208 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6209 continue; 6210 6211 MinWidth = std::min(MinWidth, 6212 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6213 MaxWidth = std::max(MaxWidth, 6214 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6215 } 6216 } 6217 6218 return {MinWidth, MaxWidth}; 6219 } 6220 6221 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6222 unsigned VF, 6223 unsigned LoopCost) { 6224 6225 // -- The interleave heuristics -- 6226 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6227 // There are many micro-architectural considerations that we can't predict 6228 // at this level. For example, frontend pressure (on decode or fetch) due to 6229 // code size, or the number and capabilities of the execution ports. 6230 // 6231 // We use the following heuristics to select the interleave count: 6232 // 1. If the code has reductions, then we interleave to break the cross 6233 // iteration dependency. 6234 // 2. If the loop is really small, then we interleave to reduce the loop 6235 // overhead. 6236 // 3. We don't interleave if we think that we will spill registers to memory 6237 // due to the increased register pressure. 6238 6239 // When we optimize for size, we don't interleave. 6240 if (OptForSize) 6241 return 1; 6242 6243 // We used the distance for the interleave count. 6244 if (Legal->getMaxSafeDepDistBytes() != -1U) 6245 return 1; 6246 6247 // Do not interleave loops with a relatively small trip count. 6248 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6249 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6250 return 1; 6251 6252 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6253 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6254 << " registers\n"); 6255 6256 if (VF == 1) { 6257 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6258 TargetNumRegisters = ForceTargetNumScalarRegs; 6259 } else { 6260 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6261 TargetNumRegisters = ForceTargetNumVectorRegs; 6262 } 6263 6264 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6265 // We divide by these constants so assume that we have at least one 6266 // instruction that uses at least one register. 6267 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6268 R.NumInstructions = std::max(R.NumInstructions, 1U); 6269 6270 // We calculate the interleave count using the following formula. 6271 // Subtract the number of loop invariants from the number of available 6272 // registers. These registers are used by all of the interleaved instances. 6273 // Next, divide the remaining registers by the number of registers that is 6274 // required by the loop, in order to estimate how many parallel instances 6275 // fit without causing spills. All of this is rounded down if necessary to be 6276 // a power of two. We want power of two interleave count to simplify any 6277 // addressing operations or alignment considerations. 6278 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6279 R.MaxLocalUsers); 6280 6281 // Don't count the induction variable as interleaved. 6282 if (EnableIndVarRegisterHeur) 6283 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6284 std::max(1U, (R.MaxLocalUsers - 1))); 6285 6286 // Clamp the interleave ranges to reasonable counts. 6287 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6288 6289 // Check if the user has overridden the max. 6290 if (VF == 1) { 6291 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6292 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6293 } else { 6294 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6295 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6296 } 6297 6298 // If we did not calculate the cost for VF (because the user selected the VF) 6299 // then we calculate the cost of VF here. 6300 if (LoopCost == 0) 6301 LoopCost = expectedCost(VF).first; 6302 6303 // Clamp the calculated IC to be between the 1 and the max interleave count 6304 // that the target allows. 6305 if (IC > MaxInterleaveCount) 6306 IC = MaxInterleaveCount; 6307 else if (IC < 1) 6308 IC = 1; 6309 6310 // Interleave if we vectorized this loop and there is a reduction that could 6311 // benefit from interleaving. 6312 if (VF > 1 && Legal->getReductionVars()->size()) { 6313 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6314 return IC; 6315 } 6316 6317 // Note that if we've already vectorized the loop we will have done the 6318 // runtime check and so interleaving won't require further checks. 6319 bool InterleavingRequiresRuntimePointerCheck = 6320 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6321 6322 // We want to interleave small loops in order to reduce the loop overhead and 6323 // potentially expose ILP opportunities. 6324 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6325 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6326 // We assume that the cost overhead is 1 and we use the cost model 6327 // to estimate the cost of the loop and interleave until the cost of the 6328 // loop overhead is about 5% of the cost of the loop. 6329 unsigned SmallIC = 6330 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6331 6332 // Interleave until store/load ports (estimated by max interleave count) are 6333 // saturated. 6334 unsigned NumStores = Legal->getNumStores(); 6335 unsigned NumLoads = Legal->getNumLoads(); 6336 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6337 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6338 6339 // If we have a scalar reduction (vector reductions are already dealt with 6340 // by this point), we can increase the critical path length if the loop 6341 // we're interleaving is inside another loop. Limit, by default to 2, so the 6342 // critical path only gets increased by one reduction operation. 6343 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6344 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6345 SmallIC = std::min(SmallIC, F); 6346 StoresIC = std::min(StoresIC, F); 6347 LoadsIC = std::min(LoadsIC, F); 6348 } 6349 6350 if (EnableLoadStoreRuntimeInterleave && 6351 std::max(StoresIC, LoadsIC) > SmallIC) { 6352 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6353 return std::max(StoresIC, LoadsIC); 6354 } 6355 6356 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6357 return SmallIC; 6358 } 6359 6360 // Interleave if this is a large loop (small loops are already dealt with by 6361 // this point) that could benefit from interleaving. 6362 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6363 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6364 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6365 return IC; 6366 } 6367 6368 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6369 return 1; 6370 } 6371 6372 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6373 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6374 // This function calculates the register usage by measuring the highest number 6375 // of values that are alive at a single location. Obviously, this is a very 6376 // rough estimation. We scan the loop in a topological order in order and 6377 // assign a number to each instruction. We use RPO to ensure that defs are 6378 // met before their users. We assume that each instruction that has in-loop 6379 // users starts an interval. We record every time that an in-loop value is 6380 // used, so we have a list of the first and last occurrences of each 6381 // instruction. Next, we transpose this data structure into a multi map that 6382 // holds the list of intervals that *end* at a specific location. This multi 6383 // map allows us to perform a linear search. We scan the instructions linearly 6384 // and record each time that a new interval starts, by placing it in a set. 6385 // If we find this value in the multi-map then we remove it from the set. 6386 // The max register usage is the maximum size of the set. 6387 // We also search for instructions that are defined outside the loop, but are 6388 // used inside the loop. We need this number separately from the max-interval 6389 // usage number because when we unroll, loop-invariant values do not take 6390 // more register. 6391 LoopBlocksDFS DFS(TheLoop); 6392 DFS.perform(LI); 6393 6394 RegisterUsage RU; 6395 RU.NumInstructions = 0; 6396 6397 // Each 'key' in the map opens a new interval. The values 6398 // of the map are the index of the 'last seen' usage of the 6399 // instruction that is the key. 6400 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6401 // Maps instruction to its index. 6402 DenseMap<unsigned, Instruction *> IdxToInstr; 6403 // Marks the end of each interval. 6404 IntervalMap EndPoint; 6405 // Saves the list of instruction indices that are used in the loop. 6406 SmallSet<Instruction *, 8> Ends; 6407 // Saves the list of values that are used in the loop but are 6408 // defined outside the loop, such as arguments and constants. 6409 SmallPtrSet<Value *, 8> LoopInvariants; 6410 6411 unsigned Index = 0; 6412 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6413 RU.NumInstructions += BB->size(); 6414 for (Instruction &I : *BB) { 6415 IdxToInstr[Index++] = &I; 6416 6417 // Save the end location of each USE. 6418 for (Value *U : I.operands()) { 6419 auto *Instr = dyn_cast<Instruction>(U); 6420 6421 // Ignore non-instruction values such as arguments, constants, etc. 6422 if (!Instr) 6423 continue; 6424 6425 // If this instruction is outside the loop then record it and continue. 6426 if (!TheLoop->contains(Instr)) { 6427 LoopInvariants.insert(Instr); 6428 continue; 6429 } 6430 6431 // Overwrite previous end points. 6432 EndPoint[Instr] = Index; 6433 Ends.insert(Instr); 6434 } 6435 } 6436 } 6437 6438 // Saves the list of intervals that end with the index in 'key'. 6439 typedef SmallVector<Instruction *, 2> InstrList; 6440 DenseMap<unsigned, InstrList> TransposeEnds; 6441 6442 // Transpose the EndPoints to a list of values that end at each index. 6443 for (auto &Interval : EndPoint) 6444 TransposeEnds[Interval.second].push_back(Interval.first); 6445 6446 SmallSet<Instruction *, 8> OpenIntervals; 6447 6448 // Get the size of the widest register. 6449 unsigned MaxSafeDepDist = -1U; 6450 if (Legal->getMaxSafeDepDistBytes() != -1U) 6451 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6452 unsigned WidestRegister = 6453 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6454 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6455 6456 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6457 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6458 6459 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6460 6461 // A lambda that gets the register usage for the given type and VF. 6462 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6463 if (Ty->isTokenTy()) 6464 return 0U; 6465 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6466 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6467 }; 6468 6469 for (unsigned int i = 0; i < Index; ++i) { 6470 Instruction *I = IdxToInstr[i]; 6471 // Ignore instructions that are never used within the loop. 6472 if (!Ends.count(I)) 6473 continue; 6474 6475 // Remove all of the instructions that end at this location. 6476 InstrList &List = TransposeEnds[i]; 6477 for (Instruction *ToRemove : List) 6478 OpenIntervals.erase(ToRemove); 6479 6480 // Skip ignored values. 6481 if (ValuesToIgnore.count(I)) 6482 continue; 6483 6484 // For each VF find the maximum usage of registers. 6485 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6486 if (VFs[j] == 1) { 6487 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6488 continue; 6489 } 6490 6491 // Count the number of live intervals. 6492 unsigned RegUsage = 0; 6493 for (auto Inst : OpenIntervals) { 6494 // Skip ignored values for VF > 1. 6495 if (VecValuesToIgnore.count(Inst)) 6496 continue; 6497 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6498 } 6499 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6500 } 6501 6502 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6503 << OpenIntervals.size() << '\n'); 6504 6505 // Add the current instruction to the list of open intervals. 6506 OpenIntervals.insert(I); 6507 } 6508 6509 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6510 unsigned Invariant = 0; 6511 if (VFs[i] == 1) 6512 Invariant = LoopInvariants.size(); 6513 else { 6514 for (auto Inst : LoopInvariants) 6515 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6516 } 6517 6518 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6519 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6520 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6521 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6522 6523 RU.LoopInvariantRegs = Invariant; 6524 RU.MaxLocalUsers = MaxUsages[i]; 6525 RUs[i] = RU; 6526 } 6527 6528 return RUs; 6529 } 6530 6531 LoopVectorizationCostModel::VectorizationCostTy 6532 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6533 VectorizationCostTy Cost; 6534 6535 // For each block. 6536 for (BasicBlock *BB : TheLoop->blocks()) { 6537 VectorizationCostTy BlockCost; 6538 6539 // For each instruction in the old loop. 6540 for (Instruction &I : *BB) { 6541 // Skip dbg intrinsics. 6542 if (isa<DbgInfoIntrinsic>(I)) 6543 continue; 6544 6545 // Skip ignored values. 6546 if (ValuesToIgnore.count(&I)) 6547 continue; 6548 6549 VectorizationCostTy C = getInstructionCost(&I, VF); 6550 6551 // Check if we should override the cost. 6552 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6553 C.first = ForceTargetInstructionCost; 6554 6555 BlockCost.first += C.first; 6556 BlockCost.second |= C.second; 6557 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6558 << VF << " For instruction: " << I << '\n'); 6559 } 6560 6561 // If we are vectorizing a predicated block, it will have been 6562 // if-converted. This means that the block's instructions (aside from 6563 // stores and instructions that may divide by zero) will now be 6564 // unconditionally executed. For the scalar case, we may not always execute 6565 // the predicated block. Thus, scale the block's cost by the probability of 6566 // executing it. 6567 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6568 BlockCost.first /= getReciprocalPredBlockProb(); 6569 6570 Cost.first += BlockCost.first; 6571 Cost.second |= BlockCost.second; 6572 } 6573 6574 return Cost; 6575 } 6576 6577 /// \brief Check whether the address computation for a non-consecutive memory 6578 /// access looks like an unlikely candidate for being merged into the indexing 6579 /// mode. 6580 /// 6581 /// We look for a GEP which has one index that is an induction variable and all 6582 /// other indices are loop invariant. If the stride of this access is also 6583 /// within a small bound we decide that this address computation can likely be 6584 /// merged into the addressing mode. 6585 /// In all other cases, we identify the address computation as complex. 6586 static bool isLikelyComplexAddressComputation(Value *Ptr, 6587 LoopVectorizationLegality *Legal, 6588 ScalarEvolution *SE, 6589 const Loop *TheLoop) { 6590 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6591 if (!Gep) 6592 return true; 6593 6594 // We are looking for a gep with all loop invariant indices except for one 6595 // which should be an induction variable. 6596 unsigned NumOperands = Gep->getNumOperands(); 6597 for (unsigned i = 1; i < NumOperands; ++i) { 6598 Value *Opd = Gep->getOperand(i); 6599 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6600 !Legal->isInductionVariable(Opd)) 6601 return true; 6602 } 6603 6604 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6605 // can likely be merged into the address computation. 6606 unsigned MaxMergeDistance = 64; 6607 6608 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6609 if (!AddRec) 6610 return true; 6611 6612 // Check the step is constant. 6613 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6614 // Calculate the pointer stride and check if it is consecutive. 6615 const auto *C = dyn_cast<SCEVConstant>(Step); 6616 if (!C) 6617 return true; 6618 6619 const APInt &APStepVal = C->getAPInt(); 6620 6621 // Huge step value - give up. 6622 if (APStepVal.getBitWidth() > 64) 6623 return true; 6624 6625 int64_t StepVal = APStepVal.getSExtValue(); 6626 6627 return StepVal > MaxMergeDistance; 6628 } 6629 6630 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6631 return Legal->hasStride(I->getOperand(0)) || 6632 Legal->hasStride(I->getOperand(1)); 6633 } 6634 6635 LoopVectorizationCostModel::VectorizationCostTy 6636 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6637 // If we know that this instruction will remain uniform, check the cost of 6638 // the scalar version. 6639 if (Legal->isUniformAfterVectorization(I)) 6640 VF = 1; 6641 6642 Type *VectorTy; 6643 unsigned C = getInstructionCost(I, VF, VectorTy); 6644 6645 bool TypeNotScalarized = 6646 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6647 return VectorizationCostTy(C, TypeNotScalarized); 6648 } 6649 6650 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6651 unsigned VF, 6652 Type *&VectorTy) { 6653 Type *RetTy = I->getType(); 6654 if (VF > 1 && MinBWs.count(I)) 6655 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6656 VectorTy = ToVectorTy(RetTy, VF); 6657 auto SE = PSE.getSE(); 6658 6659 // TODO: We need to estimate the cost of intrinsic calls. 6660 switch (I->getOpcode()) { 6661 case Instruction::GetElementPtr: 6662 // We mark this instruction as zero-cost because the cost of GEPs in 6663 // vectorized code depends on whether the corresponding memory instruction 6664 // is scalarized or not. Therefore, we handle GEPs with the memory 6665 // instruction cost. 6666 return 0; 6667 case Instruction::Br: { 6668 return TTI.getCFInstrCost(I->getOpcode()); 6669 } 6670 case Instruction::PHI: { 6671 auto *Phi = cast<PHINode>(I); 6672 6673 // First-order recurrences are replaced by vector shuffles inside the loop. 6674 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6675 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6676 VectorTy, VF - 1, VectorTy); 6677 6678 // TODO: IF-converted IFs become selects. 6679 return 0; 6680 } 6681 case Instruction::UDiv: 6682 case Instruction::SDiv: 6683 case Instruction::URem: 6684 case Instruction::SRem: 6685 // If we have a predicated instruction, it may not be executed for each 6686 // vector lane. Get the scalarization cost and scale this amount by the 6687 // probability of executing the predicated block. If the instruction is not 6688 // predicated, we fall through to the next case. 6689 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6690 unsigned Cost = 0; 6691 6692 // These instructions have a non-void type, so account for the phi nodes 6693 // that we will create. This cost is likely to be zero. The phi node 6694 // cost, if any, should be scaled by the block probability because it 6695 // models a copy at the end of each predicated block. 6696 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6697 6698 // The cost of the non-predicated instruction. 6699 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6700 6701 // The cost of insertelement and extractelement instructions needed for 6702 // scalarization. 6703 Cost += getScalarizationOverhead(I, VF, TTI); 6704 6705 // Scale the cost by the probability of executing the predicated blocks. 6706 // This assumes the predicated block for each vector lane is equally 6707 // likely. 6708 return Cost / getReciprocalPredBlockProb(); 6709 } 6710 case Instruction::Add: 6711 case Instruction::FAdd: 6712 case Instruction::Sub: 6713 case Instruction::FSub: 6714 case Instruction::Mul: 6715 case Instruction::FMul: 6716 case Instruction::FDiv: 6717 case Instruction::FRem: 6718 case Instruction::Shl: 6719 case Instruction::LShr: 6720 case Instruction::AShr: 6721 case Instruction::And: 6722 case Instruction::Or: 6723 case Instruction::Xor: { 6724 // Since we will replace the stride by 1 the multiplication should go away. 6725 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6726 return 0; 6727 // Certain instructions can be cheaper to vectorize if they have a constant 6728 // second vector operand. One example of this are shifts on x86. 6729 TargetTransformInfo::OperandValueKind Op1VK = 6730 TargetTransformInfo::OK_AnyValue; 6731 TargetTransformInfo::OperandValueKind Op2VK = 6732 TargetTransformInfo::OK_AnyValue; 6733 TargetTransformInfo::OperandValueProperties Op1VP = 6734 TargetTransformInfo::OP_None; 6735 TargetTransformInfo::OperandValueProperties Op2VP = 6736 TargetTransformInfo::OP_None; 6737 Value *Op2 = I->getOperand(1); 6738 6739 // Check for a splat or for a non uniform vector of constants. 6740 if (isa<ConstantInt>(Op2)) { 6741 ConstantInt *CInt = cast<ConstantInt>(Op2); 6742 if (CInt && CInt->getValue().isPowerOf2()) 6743 Op2VP = TargetTransformInfo::OP_PowerOf2; 6744 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6745 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6746 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6747 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6748 if (SplatValue) { 6749 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6750 if (CInt && CInt->getValue().isPowerOf2()) 6751 Op2VP = TargetTransformInfo::OP_PowerOf2; 6752 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6753 } 6754 } else if (Legal->isUniform(Op2)) { 6755 Op2VK = TargetTransformInfo::OK_UniformValue; 6756 } 6757 6758 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6759 Op1VP, Op2VP); 6760 } 6761 case Instruction::Select: { 6762 SelectInst *SI = cast<SelectInst>(I); 6763 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6764 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6765 Type *CondTy = SI->getCondition()->getType(); 6766 if (!ScalarCond) 6767 CondTy = VectorType::get(CondTy, VF); 6768 6769 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6770 } 6771 case Instruction::ICmp: 6772 case Instruction::FCmp: { 6773 Type *ValTy = I->getOperand(0)->getType(); 6774 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6775 auto It = MinBWs.find(Op0AsInstruction); 6776 if (VF > 1 && It != MinBWs.end()) 6777 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6778 VectorTy = ToVectorTy(ValTy, VF); 6779 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6780 } 6781 case Instruction::Store: 6782 case Instruction::Load: { 6783 StoreInst *SI = dyn_cast<StoreInst>(I); 6784 LoadInst *LI = dyn_cast<LoadInst>(I); 6785 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6786 VectorTy = ToVectorTy(ValTy, VF); 6787 6788 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6789 unsigned AS = 6790 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6791 Value *Ptr = getPointerOperand(I); 6792 // We add the cost of address computation here instead of with the gep 6793 // instruction because only here we know whether the operation is 6794 // scalarized. 6795 if (VF == 1) 6796 return TTI.getAddressComputationCost(VectorTy) + 6797 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6798 6799 if (LI && Legal->isUniform(Ptr)) { 6800 // Scalar load + broadcast 6801 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6802 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6803 Alignment, AS); 6804 return Cost + 6805 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6806 } 6807 6808 // For an interleaved access, calculate the total cost of the whole 6809 // interleave group. 6810 if (Legal->isAccessInterleaved(I)) { 6811 auto Group = Legal->getInterleavedAccessGroup(I); 6812 assert(Group && "Fail to get an interleaved access group."); 6813 6814 // Only calculate the cost once at the insert position. 6815 if (Group->getInsertPos() != I) 6816 return 0; 6817 6818 unsigned InterleaveFactor = Group->getFactor(); 6819 Type *WideVecTy = 6820 VectorType::get(VectorTy->getVectorElementType(), 6821 VectorTy->getVectorNumElements() * InterleaveFactor); 6822 6823 // Holds the indices of existing members in an interleaved load group. 6824 // An interleaved store group doesn't need this as it doesn't allow gaps. 6825 SmallVector<unsigned, 4> Indices; 6826 if (LI) { 6827 for (unsigned i = 0; i < InterleaveFactor; i++) 6828 if (Group->getMember(i)) 6829 Indices.push_back(i); 6830 } 6831 6832 // Calculate the cost of the whole interleaved group. 6833 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6834 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6835 Group->getAlignment(), AS); 6836 6837 if (Group->isReverse()) 6838 Cost += 6839 Group->getNumMembers() * 6840 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6841 6842 // FIXME: The interleaved load group with a huge gap could be even more 6843 // expensive than scalar operations. Then we could ignore such group and 6844 // use scalar operations instead. 6845 return Cost; 6846 } 6847 6848 // Check if the memory instruction will be scalarized. 6849 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 6850 unsigned Cost = 0; 6851 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6852 6853 // True if the memory instruction's address computation is complex. 6854 bool IsComplexComputation = 6855 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6856 6857 // Get the cost of the scalar memory instruction and address computation. 6858 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6859 Cost += VF * 6860 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6861 Alignment, AS); 6862 6863 // Get the overhead of the extractelement and insertelement instructions 6864 // we might create due to scalarization. 6865 Cost += getScalarizationOverhead(I, VF, TTI); 6866 6867 // If we have a predicated store, it may not be executed for each vector 6868 // lane. Scale the cost by the probability of executing the predicated 6869 // block. 6870 if (Legal->isScalarWithPredication(I)) 6871 Cost /= getReciprocalPredBlockProb(); 6872 6873 return Cost; 6874 } 6875 6876 // Determine if the pointer operand of the access is either consecutive or 6877 // reverse consecutive. 6878 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6879 bool Reverse = ConsecutiveStride < 0; 6880 6881 // Determine if either a gather or scatter operation is legal. 6882 bool UseGatherOrScatter = 6883 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 6884 6885 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6886 if (UseGatherOrScatter) { 6887 assert(ConsecutiveStride == 0 && 6888 "Gather/Scatter are not used for consecutive stride"); 6889 return Cost + 6890 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6891 Legal->isMaskRequired(I), Alignment); 6892 } 6893 // Wide load/stores. 6894 if (Legal->isMaskRequired(I)) 6895 Cost += 6896 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6897 else 6898 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6899 6900 if (Reverse) 6901 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6902 return Cost; 6903 } 6904 case Instruction::ZExt: 6905 case Instruction::SExt: 6906 case Instruction::FPToUI: 6907 case Instruction::FPToSI: 6908 case Instruction::FPExt: 6909 case Instruction::PtrToInt: 6910 case Instruction::IntToPtr: 6911 case Instruction::SIToFP: 6912 case Instruction::UIToFP: 6913 case Instruction::Trunc: 6914 case Instruction::FPTrunc: 6915 case Instruction::BitCast: { 6916 // We optimize the truncation of induction variable. 6917 // The cost of these is the same as the scalar operation. 6918 if (I->getOpcode() == Instruction::Trunc && 6919 Legal->isInductionVariable(I->getOperand(0))) 6920 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6921 I->getOperand(0)->getType()); 6922 6923 Type *SrcScalarTy = I->getOperand(0)->getType(); 6924 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6925 if (VF > 1 && MinBWs.count(I)) { 6926 // This cast is going to be shrunk. This may remove the cast or it might 6927 // turn it into slightly different cast. For example, if MinBW == 16, 6928 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6929 // 6930 // Calculate the modified src and dest types. 6931 Type *MinVecTy = VectorTy; 6932 if (I->getOpcode() == Instruction::Trunc) { 6933 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6934 VectorTy = 6935 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6936 } else if (I->getOpcode() == Instruction::ZExt || 6937 I->getOpcode() == Instruction::SExt) { 6938 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6939 VectorTy = 6940 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6941 } 6942 } 6943 6944 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6945 } 6946 case Instruction::Call: { 6947 bool NeedToScalarize; 6948 CallInst *CI = cast<CallInst>(I); 6949 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6950 if (getVectorIntrinsicIDForCall(CI, TLI)) 6951 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6952 return CallCost; 6953 } 6954 default: 6955 // The cost of executing VF copies of the scalar instruction. This opcode 6956 // is unknown. Assume that it is the same as 'mul'. 6957 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6958 getScalarizationOverhead(I, VF, TTI); 6959 } // end of switch. 6960 } 6961 6962 char LoopVectorize::ID = 0; 6963 static const char lv_name[] = "Loop Vectorization"; 6964 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6965 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6966 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6967 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6968 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6969 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6970 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6971 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6972 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6973 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6974 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6975 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6976 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6977 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6978 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6979 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6980 6981 namespace llvm { 6982 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6983 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6984 } 6985 } 6986 6987 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6988 6989 // Check if the pointer operand of a load or store instruction is 6990 // consecutive. 6991 if (auto *Ptr = getPointerOperand(Inst)) 6992 return Legal->isConsecutivePtr(Ptr); 6993 return false; 6994 } 6995 6996 void LoopVectorizationCostModel::collectValuesToIgnore() { 6997 // Ignore ephemeral values. 6998 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6999 7000 // Ignore type-promoting instructions we identified during reduction 7001 // detection. 7002 for (auto &Reduction : *Legal->getReductionVars()) { 7003 RecurrenceDescriptor &RedDes = Reduction.second; 7004 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7005 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7006 } 7007 7008 // Insert values known to be scalar into VecValuesToIgnore. 7009 for (auto *BB : TheLoop->getBlocks()) 7010 for (auto &I : *BB) 7011 if (Legal->isScalarAfterVectorization(&I)) 7012 VecValuesToIgnore.insert(&I); 7013 } 7014 7015 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7016 bool IfPredicateInstr) { 7017 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7018 // Holds vector parameters or scalars, in case of uniform vals. 7019 SmallVector<VectorParts, 4> Params; 7020 7021 setDebugLocFromInst(Builder, Instr); 7022 7023 // Does this instruction return a value ? 7024 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7025 7026 // Initialize a new scalar map entry. 7027 ScalarParts Entry(UF); 7028 7029 VectorParts Cond; 7030 if (IfPredicateInstr) 7031 Cond = createBlockInMask(Instr->getParent()); 7032 7033 // For each vector unroll 'part': 7034 for (unsigned Part = 0; Part < UF; ++Part) { 7035 Entry[Part].resize(1); 7036 // For each scalar that we create: 7037 7038 // Start an "if (pred) a[i] = ..." block. 7039 Value *Cmp = nullptr; 7040 if (IfPredicateInstr) { 7041 if (Cond[Part]->getType()->isVectorTy()) 7042 Cond[Part] = 7043 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7044 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7045 ConstantInt::get(Cond[Part]->getType(), 1)); 7046 } 7047 7048 Instruction *Cloned = Instr->clone(); 7049 if (!IsVoidRetTy) 7050 Cloned->setName(Instr->getName() + ".cloned"); 7051 7052 // Replace the operands of the cloned instructions with their scalar 7053 // equivalents in the new loop. 7054 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7055 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7056 Cloned->setOperand(op, NewOp); 7057 } 7058 7059 // Place the cloned scalar in the new loop. 7060 Builder.Insert(Cloned); 7061 7062 // Add the cloned scalar to the scalar map entry. 7063 Entry[Part][0] = Cloned; 7064 7065 // If we just cloned a new assumption, add it the assumption cache. 7066 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7067 if (II->getIntrinsicID() == Intrinsic::assume) 7068 AC->registerAssumption(II); 7069 7070 // End if-block. 7071 if (IfPredicateInstr) 7072 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7073 } 7074 VectorLoopValueMap.initScalar(Instr, Entry); 7075 } 7076 7077 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7078 auto *SI = dyn_cast<StoreInst>(Instr); 7079 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7080 7081 return scalarizeInstruction(Instr, IfPredicateInstr); 7082 } 7083 7084 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7085 7086 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7087 7088 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7089 Instruction::BinaryOps BinOp) { 7090 // When unrolling and the VF is 1, we only need to add a simple scalar. 7091 Type *Ty = Val->getType(); 7092 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7093 7094 if (Ty->isFloatingPointTy()) { 7095 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7096 7097 // Floating point operations had to be 'fast' to enable the unrolling. 7098 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7099 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7100 } 7101 Constant *C = ConstantInt::get(Ty, StartIdx); 7102 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7103 } 7104 7105 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7106 SmallVector<Metadata *, 4> MDs; 7107 // Reserve first location for self reference to the LoopID metadata node. 7108 MDs.push_back(nullptr); 7109 bool IsUnrollMetadata = false; 7110 MDNode *LoopID = L->getLoopID(); 7111 if (LoopID) { 7112 // First find existing loop unrolling disable metadata. 7113 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7114 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7115 if (MD) { 7116 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7117 IsUnrollMetadata = 7118 S && S->getString().startswith("llvm.loop.unroll.disable"); 7119 } 7120 MDs.push_back(LoopID->getOperand(i)); 7121 } 7122 } 7123 7124 if (!IsUnrollMetadata) { 7125 // Add runtime unroll disable metadata. 7126 LLVMContext &Context = L->getHeader()->getContext(); 7127 SmallVector<Metadata *, 1> DisableOperands; 7128 DisableOperands.push_back( 7129 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7130 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7131 MDs.push_back(DisableNode); 7132 MDNode *NewLoopID = MDNode::get(Context, MDs); 7133 // Set operand 0 to refer to the loop id itself. 7134 NewLoopID->replaceOperandWith(0, NewLoopID); 7135 L->setLoopID(NewLoopID); 7136 } 7137 } 7138 7139 bool LoopVectorizePass::processLoop(Loop *L) { 7140 assert(L->empty() && "Only process inner loops."); 7141 7142 #ifndef NDEBUG 7143 const std::string DebugLocStr = getDebugLocString(L); 7144 #endif /* NDEBUG */ 7145 7146 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7147 << L->getHeader()->getParent()->getName() << "\" from " 7148 << DebugLocStr << "\n"); 7149 7150 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7151 7152 DEBUG(dbgs() << "LV: Loop hints:" 7153 << " force=" 7154 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7155 ? "disabled" 7156 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7157 ? "enabled" 7158 : "?")) 7159 << " width=" << Hints.getWidth() 7160 << " unroll=" << Hints.getInterleave() << "\n"); 7161 7162 // Function containing loop 7163 Function *F = L->getHeader()->getParent(); 7164 7165 // Looking at the diagnostic output is the only way to determine if a loop 7166 // was vectorized (other than looking at the IR or machine code), so it 7167 // is important to generate an optimization remark for each loop. Most of 7168 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7169 // generated as OptimizationRemark and OptimizationRemarkMissed are 7170 // less verbose reporting vectorized loops and unvectorized loops that may 7171 // benefit from vectorization, respectively. 7172 7173 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7174 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7175 return false; 7176 } 7177 7178 // Check the loop for a trip count threshold: 7179 // do not vectorize loops with a tiny trip count. 7180 const unsigned TC = SE->getSmallConstantTripCount(L); 7181 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 7182 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7183 << "This loop is not worth vectorizing."); 7184 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7185 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7186 else { 7187 DEBUG(dbgs() << "\n"); 7188 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7189 "NotBeneficial", L) 7190 << "vectorization is not beneficial " 7191 "and is not explicitly forced"); 7192 return false; 7193 } 7194 } 7195 7196 PredicatedScalarEvolution PSE(*SE, *L); 7197 7198 // Check if it is legal to vectorize the loop. 7199 LoopVectorizationRequirements Requirements(*ORE); 7200 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7201 &Requirements, &Hints); 7202 if (!LVL.canVectorize()) { 7203 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7204 emitMissedWarning(F, L, Hints, ORE); 7205 return false; 7206 } 7207 7208 // Use the cost model. 7209 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7210 &Hints); 7211 CM.collectValuesToIgnore(); 7212 7213 // Check the function attributes to find out if this function should be 7214 // optimized for size. 7215 bool OptForSize = 7216 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7217 7218 // Compute the weighted frequency of this loop being executed and see if it 7219 // is less than 20% of the function entry baseline frequency. Note that we 7220 // always have a canonical loop here because we think we *can* vectorize. 7221 // FIXME: This is hidden behind a flag due to pervasive problems with 7222 // exactly what block frequency models. 7223 if (LoopVectorizeWithBlockFrequency) { 7224 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7225 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7226 LoopEntryFreq < ColdEntryFreq) 7227 OptForSize = true; 7228 } 7229 7230 // Check the function attributes to see if implicit floats are allowed. 7231 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7232 // an integer loop and the vector instructions selected are purely integer 7233 // vector instructions? 7234 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7235 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7236 "attribute is used.\n"); 7237 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7238 "NoImplicitFloat", L) 7239 << "loop not vectorized due to NoImplicitFloat attribute"); 7240 emitMissedWarning(F, L, Hints, ORE); 7241 return false; 7242 } 7243 7244 // Check if the target supports potentially unsafe FP vectorization. 7245 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7246 // for the target we're vectorizing for, to make sure none of the 7247 // additional fp-math flags can help. 7248 if (Hints.isPotentiallyUnsafe() && 7249 TTI->isFPVectorizationPotentiallyUnsafe()) { 7250 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7251 ORE->emit( 7252 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7253 << "loop not vectorized due to unsafe FP support."); 7254 emitMissedWarning(F, L, Hints, ORE); 7255 return false; 7256 } 7257 7258 // Select the optimal vectorization factor. 7259 const LoopVectorizationCostModel::VectorizationFactor VF = 7260 CM.selectVectorizationFactor(OptForSize); 7261 7262 // Select the interleave count. 7263 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7264 7265 // Get user interleave count. 7266 unsigned UserIC = Hints.getInterleave(); 7267 7268 // Identify the diagnostic messages that should be produced. 7269 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7270 bool VectorizeLoop = true, InterleaveLoop = true; 7271 if (Requirements.doesNotMeet(F, L, Hints)) { 7272 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7273 "requirements.\n"); 7274 emitMissedWarning(F, L, Hints, ORE); 7275 return false; 7276 } 7277 7278 if (VF.Width == 1) { 7279 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7280 VecDiagMsg = std::make_pair( 7281 "VectorizationNotBeneficial", 7282 "the cost-model indicates that vectorization is not beneficial"); 7283 VectorizeLoop = false; 7284 } 7285 7286 if (IC == 1 && UserIC <= 1) { 7287 // Tell the user interleaving is not beneficial. 7288 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7289 IntDiagMsg = std::make_pair( 7290 "InterleavingNotBeneficial", 7291 "the cost-model indicates that interleaving is not beneficial"); 7292 InterleaveLoop = false; 7293 if (UserIC == 1) { 7294 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7295 IntDiagMsg.second += 7296 " and is explicitly disabled or interleave count is set to 1"; 7297 } 7298 } else if (IC > 1 && UserIC == 1) { 7299 // Tell the user interleaving is beneficial, but it explicitly disabled. 7300 DEBUG(dbgs() 7301 << "LV: Interleaving is beneficial but is explicitly disabled."); 7302 IntDiagMsg = std::make_pair( 7303 "InterleavingBeneficialButDisabled", 7304 "the cost-model indicates that interleaving is beneficial " 7305 "but is explicitly disabled or interleave count is set to 1"); 7306 InterleaveLoop = false; 7307 } 7308 7309 // Override IC if user provided an interleave count. 7310 IC = UserIC > 0 ? UserIC : IC; 7311 7312 // Emit diagnostic messages, if any. 7313 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7314 if (!VectorizeLoop && !InterleaveLoop) { 7315 // Do not vectorize or interleaving the loop. 7316 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7317 L->getStartLoc(), L->getHeader()) 7318 << VecDiagMsg.second); 7319 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7320 L->getStartLoc(), L->getHeader()) 7321 << IntDiagMsg.second); 7322 return false; 7323 } else if (!VectorizeLoop && InterleaveLoop) { 7324 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7325 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7326 L->getStartLoc(), L->getHeader()) 7327 << VecDiagMsg.second); 7328 } else if (VectorizeLoop && !InterleaveLoop) { 7329 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7330 << DebugLocStr << '\n'); 7331 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7332 L->getStartLoc(), L->getHeader()) 7333 << IntDiagMsg.second); 7334 } else if (VectorizeLoop && InterleaveLoop) { 7335 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7336 << DebugLocStr << '\n'); 7337 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7338 } 7339 7340 using namespace ore; 7341 if (!VectorizeLoop) { 7342 assert(IC > 1 && "interleave count should not be 1 or 0"); 7343 // If we decided that it is not legal to vectorize the loop, then 7344 // interleave it. 7345 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7346 &CM); 7347 Unroller.vectorize(); 7348 7349 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7350 L->getHeader()) 7351 << "interleaved loop (interleaved count: " 7352 << NV("InterleaveCount", IC) << ")"); 7353 } else { 7354 // If we decided that it is *legal* to vectorize the loop, then do it. 7355 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7356 &LVL, &CM); 7357 LB.vectorize(); 7358 ++LoopsVectorized; 7359 7360 // Add metadata to disable runtime unrolling a scalar loop when there are 7361 // no runtime checks about strides and memory. A scalar loop that is 7362 // rarely used is not worth unrolling. 7363 if (!LB.areSafetyChecksAdded()) 7364 AddRuntimeUnrollDisableMetaData(L); 7365 7366 // Report the vectorization decision. 7367 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7368 L->getHeader()) 7369 << "vectorized loop (vectorization width: " 7370 << NV("VectorizationFactor", VF.Width) 7371 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7372 } 7373 7374 // Mark the loop as already vectorized to avoid vectorizing again. 7375 Hints.setAlreadyVectorized(); 7376 7377 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7378 return true; 7379 } 7380 7381 bool LoopVectorizePass::runImpl( 7382 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7383 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7384 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7385 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7386 OptimizationRemarkEmitter &ORE_) { 7387 7388 SE = &SE_; 7389 LI = &LI_; 7390 TTI = &TTI_; 7391 DT = &DT_; 7392 BFI = &BFI_; 7393 TLI = TLI_; 7394 AA = &AA_; 7395 AC = &AC_; 7396 GetLAA = &GetLAA_; 7397 DB = &DB_; 7398 ORE = &ORE_; 7399 7400 // Compute some weights outside of the loop over the loops. Compute this 7401 // using a BranchProbability to re-use its scaling math. 7402 const BranchProbability ColdProb(1, 5); // 20% 7403 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7404 7405 // Don't attempt if 7406 // 1. the target claims to have no vector registers, and 7407 // 2. interleaving won't help ILP. 7408 // 7409 // The second condition is necessary because, even if the target has no 7410 // vector registers, loop vectorization may still enable scalar 7411 // interleaving. 7412 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7413 return false; 7414 7415 // Build up a worklist of inner-loops to vectorize. This is necessary as 7416 // the act of vectorizing or partially unrolling a loop creates new loops 7417 // and can invalidate iterators across the loops. 7418 SmallVector<Loop *, 8> Worklist; 7419 7420 for (Loop *L : *LI) 7421 addAcyclicInnerLoop(*L, Worklist); 7422 7423 LoopsAnalyzed += Worklist.size(); 7424 7425 // Now walk the identified inner loops. 7426 bool Changed = false; 7427 while (!Worklist.empty()) 7428 Changed |= processLoop(Worklist.pop_back_val()); 7429 7430 // Process each loop nest in the function. 7431 return Changed; 7432 7433 } 7434 7435 7436 PreservedAnalyses LoopVectorizePass::run(Function &F, 7437 FunctionAnalysisManager &AM) { 7438 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7439 auto &LI = AM.getResult<LoopAnalysis>(F); 7440 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7441 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7442 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7443 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7444 auto &AA = AM.getResult<AAManager>(F); 7445 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7446 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7447 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7448 7449 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7450 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7451 [&](Loop &L) -> const LoopAccessInfo & { 7452 return LAM.getResult<LoopAccessAnalysis>(L); 7453 }; 7454 bool Changed = 7455 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7456 if (!Changed) 7457 return PreservedAnalyses::all(); 7458 PreservedAnalyses PA; 7459 PA.preserve<LoopAnalysis>(); 7460 PA.preserve<DominatorTreeAnalysis>(); 7461 PA.preserve<BasicAA>(); 7462 PA.preserve<GlobalsAA>(); 7463 return PA; 7464 } 7465