1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> ForceOrderedReductions( 330 "force-ordered-reductions", cl::init(false), cl::Hidden, 331 cl::desc("Enable the vectorisation of loops with in-order (strict) " 332 "FP reductions")); 333 334 static cl::opt<bool> PreferPredicatedReductionSelect( 335 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 336 cl::desc( 337 "Prefer predicating a reduction operation over an after loop select.")); 338 339 cl::opt<bool> EnableVPlanNativePath( 340 "enable-vplan-native-path", cl::init(false), cl::Hidden, 341 cl::desc("Enable VPlan-native vectorization path with " 342 "support for outer loop vectorization.")); 343 344 // FIXME: Remove this switch once we have divergence analysis. Currently we 345 // assume divergent non-backedge branches when this switch is true. 346 cl::opt<bool> EnableVPlanPredication( 347 "enable-vplan-predication", cl::init(false), cl::Hidden, 348 cl::desc("Enable VPlan-native vectorization path predicator with " 349 "support for outer loop vectorization.")); 350 351 // This flag enables the stress testing of the VPlan H-CFG construction in the 352 // VPlan-native vectorization path. It must be used in conjuction with 353 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 354 // verification of the H-CFGs built. 355 static cl::opt<bool> VPlanBuildStressTest( 356 "vplan-build-stress-test", cl::init(false), cl::Hidden, 357 cl::desc( 358 "Build VPlan for every supported loop nest in the function and bail " 359 "out right after the build (stress test the VPlan H-CFG construction " 360 "in the VPlan-native vectorization path).")); 361 362 cl::opt<bool> llvm::EnableLoopInterleaving( 363 "interleave-loops", cl::init(true), cl::Hidden, 364 cl::desc("Enable loop interleaving in Loop vectorization passes")); 365 cl::opt<bool> llvm::EnableLoopVectorization( 366 "vectorize-loops", cl::init(true), cl::Hidden, 367 cl::desc("Run the Loop vectorization passes")); 368 369 cl::opt<bool> PrintVPlansInDotFormat( 370 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 371 cl::desc("Use dot format instead of plain text when dumping VPlans")); 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 377 // Determine if an array of N elements of type Ty is "bitcast compatible" 378 // with a <N x Ty> vector. 379 // This is only true if there is no padding between the array elements. 380 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 381 } 382 383 /// A helper function that returns the reciprocal of the block probability of 384 /// predicated blocks. If we return X, we are assuming the predicated block 385 /// will execute once for every X iterations of the loop header. 386 /// 387 /// TODO: We should use actual block probability here, if available. Currently, 388 /// we always assume predicated blocks have a 50% chance of executing. 389 static unsigned getReciprocalPredBlockProb() { return 2; } 390 391 /// A helper function that returns an integer or floating-point constant with 392 /// value C. 393 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 394 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 395 : ConstantFP::get(Ty, C); 396 } 397 398 /// Returns "best known" trip count for the specified loop \p L as defined by 399 /// the following procedure: 400 /// 1) Returns exact trip count if it is known. 401 /// 2) Returns expected trip count according to profile data if any. 402 /// 3) Returns upper bound estimate if it is known. 403 /// 4) Returns None if all of the above failed. 404 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 405 // Check if exact trip count is known. 406 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 407 return ExpectedTC; 408 409 // Check if there is an expected trip count available from profile data. 410 if (LoopVectorizeWithBlockFrequency) 411 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 412 return EstimatedTC; 413 414 // Check if upper bound estimate is known. 415 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 416 return ExpectedTC; 417 418 return None; 419 } 420 421 // Forward declare GeneratedRTChecks. 422 class GeneratedRTChecks; 423 424 namespace llvm { 425 426 AnalysisKey ShouldRunExtraVectorPasses::Key; 427 428 /// InnerLoopVectorizer vectorizes loops which contain only one basic 429 /// block to a specified vectorization factor (VF). 430 /// This class performs the widening of scalars into vectors, or multiple 431 /// scalars. This class also implements the following features: 432 /// * It inserts an epilogue loop for handling loops that don't have iteration 433 /// counts that are known to be a multiple of the vectorization factor. 434 /// * It handles the code generation for reduction variables. 435 /// * Scalarization (implementation using scalars) of un-vectorizable 436 /// instructions. 437 /// InnerLoopVectorizer does not perform any vectorization-legality 438 /// checks, and relies on the caller to check for the different legality 439 /// aspects. The InnerLoopVectorizer relies on the 440 /// LoopVectorizationLegality class to provide information about the induction 441 /// and reduction variables that were found to a given vectorization factor. 442 class InnerLoopVectorizer { 443 public: 444 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 445 LoopInfo *LI, DominatorTree *DT, 446 const TargetLibraryInfo *TLI, 447 const TargetTransformInfo *TTI, AssumptionCache *AC, 448 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 449 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 450 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 451 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 452 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 453 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 454 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 455 PSI(PSI), RTChecks(RTChecks) { 456 // Query this against the original loop and save it here because the profile 457 // of the original loop header may change as the transformation happens. 458 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 459 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 460 } 461 462 virtual ~InnerLoopVectorizer() = default; 463 464 /// Create a new empty loop that will contain vectorized instructions later 465 /// on, while the old loop will be used as the scalar remainder. Control flow 466 /// is generated around the vectorized (and scalar epilogue) loops consisting 467 /// of various checks and bypasses. Return the pre-header block of the new 468 /// loop and the start value for the canonical induction, if it is != 0. The 469 /// latter is the case when vectorizing the epilogue loop. In the case of 470 /// epilogue vectorization, this function is overriden to handle the more 471 /// complex control flow around the loops. 472 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 473 474 /// Widen a single call instruction within the innermost loop. 475 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 476 VPTransformState &State); 477 478 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 479 void fixVectorizedLoop(VPTransformState &State); 480 481 // Return true if any runtime check is added. 482 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 483 484 /// A type for vectorized values in the new loop. Each value from the 485 /// original loop, when vectorized, is represented by UF vector values in the 486 /// new unrolled loop, where UF is the unroll factor. 487 using VectorParts = SmallVector<Value *, 2>; 488 489 /// Vectorize a single first-order recurrence or pointer induction PHINode in 490 /// a block. This method handles the induction variable canonicalization. It 491 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 492 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 493 VPTransformState &State); 494 495 /// A helper function to scalarize a single Instruction in the innermost loop. 496 /// Generates a sequence of scalar instances for each lane between \p MinLane 497 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 498 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 499 /// Instr's operands. 500 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 501 const VPIteration &Instance, bool IfPredicateInstr, 502 VPTransformState &State); 503 504 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 505 /// is provided, the integer induction variable will first be truncated to 506 /// the corresponding type. \p CanonicalIV is the scalar value generated for 507 /// the canonical induction variable. 508 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 509 VPTransformState &State, Value *CanonicalIV); 510 511 /// Construct the vector value of a scalarized value \p V one lane at a time. 512 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 513 VPTransformState &State); 514 515 /// Try to vectorize interleaved access group \p Group with the base address 516 /// given in \p Addr, optionally masking the vector operations if \p 517 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 518 /// values in the vectorized loop. 519 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 520 ArrayRef<VPValue *> VPDefs, 521 VPTransformState &State, VPValue *Addr, 522 ArrayRef<VPValue *> StoredValues, 523 VPValue *BlockInMask = nullptr); 524 525 /// Set the debug location in the builder \p Ptr using the debug location in 526 /// \p V. If \p Ptr is None then it uses the class member's Builder. 527 void setDebugLocFromInst(const Value *V, 528 Optional<IRBuilder<> *> CustomBuilder = None); 529 530 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 531 void fixNonInductionPHIs(VPTransformState &State); 532 533 /// Returns true if the reordering of FP operations is not allowed, but we are 534 /// able to vectorize with strict in-order reductions for the given RdxDesc. 535 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 536 537 /// Create a broadcast instruction. This method generates a broadcast 538 /// instruction (shuffle) for loop invariant values and for the induction 539 /// value. If this is the induction variable then we extend it to N, N+1, ... 540 /// this is needed because each iteration in the loop corresponds to a SIMD 541 /// element. 542 virtual Value *getBroadcastInstrs(Value *V); 543 544 /// Add metadata from one instruction to another. 545 /// 546 /// This includes both the original MDs from \p From and additional ones (\see 547 /// addNewMetadata). Use this for *newly created* instructions in the vector 548 /// loop. 549 void addMetadata(Instruction *To, Instruction *From); 550 551 /// Similar to the previous function but it adds the metadata to a 552 /// vector of instructions. 553 void addMetadata(ArrayRef<Value *> To, Instruction *From); 554 555 // Returns the resume value (bc.merge.rdx) for a reduction as 556 // generated by fixReduction. 557 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 558 559 protected: 560 friend class LoopVectorizationPlanner; 561 562 /// A small list of PHINodes. 563 using PhiVector = SmallVector<PHINode *, 4>; 564 565 /// A type for scalarized values in the new loop. Each value from the 566 /// original loop, when scalarized, is represented by UF x VF scalar values 567 /// in the new unrolled loop, where UF is the unroll factor and VF is the 568 /// vectorization factor. 569 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 570 571 /// Set up the values of the IVs correctly when exiting the vector loop. 572 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 573 Value *CountRoundDown, Value *EndValue, 574 BasicBlock *MiddleBlock); 575 576 /// Introduce a conditional branch (on true, condition to be set later) at the 577 /// end of the header=latch connecting it to itself (across the backedge) and 578 /// to the exit block of \p L. 579 void createHeaderBranch(Loop *L); 580 581 /// Handle all cross-iteration phis in the header. 582 void fixCrossIterationPHIs(VPTransformState &State); 583 584 /// Create the exit value of first order recurrences in the middle block and 585 /// update their users. 586 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 587 VPTransformState &State); 588 589 /// Create code for the loop exit value of the reduction. 590 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 591 592 /// Clear NSW/NUW flags from reduction instructions if necessary. 593 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 594 VPTransformState &State); 595 596 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 597 /// means we need to add the appropriate incoming value from the middle 598 /// block as exiting edges from the scalar epilogue loop (if present) are 599 /// already in place, and we exit the vector loop exclusively to the middle 600 /// block. 601 void fixLCSSAPHIs(VPTransformState &State); 602 603 /// Iteratively sink the scalarized operands of a predicated instruction into 604 /// the block that was created for it. 605 void sinkScalarOperands(Instruction *PredInst); 606 607 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 608 /// represented as. 609 void truncateToMinimalBitwidths(VPTransformState &State); 610 611 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 612 /// variable on which to base the steps, \p Step is the size of the step, and 613 /// \p EntryVal is the value from the original loop that maps to the steps. 614 /// Note that \p EntryVal doesn't have to be an induction variable - it 615 /// can also be a truncate instruction. 616 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 617 const InductionDescriptor &ID, VPValue *Def, 618 VPTransformState &State); 619 620 /// Create a vector induction phi node based on an existing scalar one. \p 621 /// EntryVal is the value from the original loop that maps to the vector phi 622 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 623 /// truncate instruction, instead of widening the original IV, we widen a 624 /// version of the IV truncated to \p EntryVal's type. 625 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 626 Value *Step, Value *Start, 627 Instruction *EntryVal, VPValue *Def, 628 VPTransformState &State); 629 630 /// Returns (and creates if needed) the original loop trip count. 631 Value *getOrCreateTripCount(Loop *NewLoop); 632 633 /// Returns (and creates if needed) the trip count of the widened loop. 634 Value *getOrCreateVectorTripCount(Loop *NewLoop); 635 636 /// Returns a bitcasted value to the requested vector type. 637 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 638 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 639 const DataLayout &DL); 640 641 /// Emit a bypass check to see if the vector trip count is zero, including if 642 /// it overflows. 643 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 644 645 /// Emit a bypass check to see if all of the SCEV assumptions we've 646 /// had to make are correct. Returns the block containing the checks or 647 /// nullptr if no checks have been added. 648 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 649 650 /// Emit bypass checks to check any memory assumptions we may have made. 651 /// Returns the block containing the checks or nullptr if no checks have been 652 /// added. 653 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Compute the transformed value of Index at offset StartValue using step 656 /// StepValue. 657 /// For integer induction, returns StartValue + Index * StepValue. 658 /// For pointer induction, returns StartValue[Index * StepValue]. 659 /// FIXME: The newly created binary instructions should contain nsw/nuw 660 /// flags, which can be found from the original scalar operations. 661 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 662 const DataLayout &DL, 663 const InductionDescriptor &ID, 664 BasicBlock *VectorHeader) const; 665 666 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 667 /// vector loop preheader, middle block and scalar preheader. Also 668 /// allocate a loop object for the new vector loop and return it. 669 Loop *createVectorLoopSkeleton(StringRef Prefix); 670 671 /// Create new phi nodes for the induction variables to resume iteration count 672 /// in the scalar epilogue, from where the vectorized loop left off. 673 /// In cases where the loop skeleton is more complicated (eg. epilogue 674 /// vectorization) and the resume values can come from an additional bypass 675 /// block, the \p AdditionalBypass pair provides information about the bypass 676 /// block and the end value on the edge from bypass to this loop. 677 void createInductionResumeValues( 678 Loop *L, 679 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 680 681 /// Complete the loop skeleton by adding debug MDs, creating appropriate 682 /// conditional branches in the middle block, preparing the builder and 683 /// running the verifier. Take in the vector loop \p L as argument, and return 684 /// the preheader of the completed vector loop. 685 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 686 687 /// Add additional metadata to \p To that was not present on \p Orig. 688 /// 689 /// Currently this is used to add the noalias annotations based on the 690 /// inserted memchecks. Use this for instructions that are *cloned* into the 691 /// vector loop. 692 void addNewMetadata(Instruction *To, const Instruction *Orig); 693 694 /// Collect poison-generating recipes that may generate a poison value that is 695 /// used after vectorization, even when their operands are not poison. Those 696 /// recipes meet the following conditions: 697 /// * Contribute to the address computation of a recipe generating a widen 698 /// memory load/store (VPWidenMemoryInstructionRecipe or 699 /// VPInterleaveRecipe). 700 /// * Such a widen memory load/store has at least one underlying Instruction 701 /// that is in a basic block that needs predication and after vectorization 702 /// the generated instruction won't be predicated. 703 void collectPoisonGeneratingRecipes(VPTransformState &State); 704 705 /// Allow subclasses to override and print debug traces before/after vplan 706 /// execution, when trace information is requested. 707 virtual void printDebugTracesAtStart(){}; 708 virtual void printDebugTracesAtEnd(){}; 709 710 /// The original loop. 711 Loop *OrigLoop; 712 713 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 714 /// dynamic knowledge to simplify SCEV expressions and converts them to a 715 /// more usable form. 716 PredicatedScalarEvolution &PSE; 717 718 /// Loop Info. 719 LoopInfo *LI; 720 721 /// Dominator Tree. 722 DominatorTree *DT; 723 724 /// Alias Analysis. 725 AAResults *AA; 726 727 /// Target Library Info. 728 const TargetLibraryInfo *TLI; 729 730 /// Target Transform Info. 731 const TargetTransformInfo *TTI; 732 733 /// Assumption Cache. 734 AssumptionCache *AC; 735 736 /// Interface to emit optimization remarks. 737 OptimizationRemarkEmitter *ORE; 738 739 /// LoopVersioning. It's only set up (non-null) if memchecks were 740 /// used. 741 /// 742 /// This is currently only used to add no-alias metadata based on the 743 /// memchecks. The actually versioning is performed manually. 744 std::unique_ptr<LoopVersioning> LVer; 745 746 /// The vectorization SIMD factor to use. Each vector will have this many 747 /// vector elements. 748 ElementCount VF; 749 750 /// The vectorization unroll factor to use. Each scalar is vectorized to this 751 /// many different vector instructions. 752 unsigned UF; 753 754 /// The builder that we use 755 IRBuilder<> Builder; 756 757 // --- Vectorization state --- 758 759 /// The vector-loop preheader. 760 BasicBlock *LoopVectorPreHeader; 761 762 /// The scalar-loop preheader. 763 BasicBlock *LoopScalarPreHeader; 764 765 /// Middle Block between the vector and the scalar. 766 BasicBlock *LoopMiddleBlock; 767 768 /// The unique ExitBlock of the scalar loop if one exists. Note that 769 /// there can be multiple exiting edges reaching this block. 770 BasicBlock *LoopExitBlock; 771 772 /// The vector loop body. 773 BasicBlock *LoopVectorBody; 774 775 /// The scalar loop body. 776 BasicBlock *LoopScalarBody; 777 778 /// A list of all bypass blocks. The first block is the entry of the loop. 779 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 780 781 /// Store instructions that were predicated. 782 SmallVector<Instruction *, 4> PredicatedInstructions; 783 784 /// Trip count of the original loop. 785 Value *TripCount = nullptr; 786 787 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 788 Value *VectorTripCount = nullptr; 789 790 /// The legality analysis. 791 LoopVectorizationLegality *Legal; 792 793 /// The profitablity analysis. 794 LoopVectorizationCostModel *Cost; 795 796 // Record whether runtime checks are added. 797 bool AddedSafetyChecks = false; 798 799 // Holds the end values for each induction variable. We save the end values 800 // so we can later fix-up the external users of the induction variables. 801 DenseMap<PHINode *, Value *> IVEndValues; 802 803 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 804 // fixed up at the end of vector code generation. 805 SmallVector<PHINode *, 8> OrigPHIsToFix; 806 807 /// BFI and PSI are used to check for profile guided size optimizations. 808 BlockFrequencyInfo *BFI; 809 ProfileSummaryInfo *PSI; 810 811 // Whether this loop should be optimized for size based on profile guided size 812 // optimizatios. 813 bool OptForSizeBasedOnProfile; 814 815 /// Structure to hold information about generated runtime checks, responsible 816 /// for cleaning the checks, if vectorization turns out unprofitable. 817 GeneratedRTChecks &RTChecks; 818 819 // Holds the resume values for reductions in the loops, used to set the 820 // correct start value of reduction PHIs when vectorizing the epilogue. 821 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 822 ReductionResumeValues; 823 }; 824 825 class InnerLoopUnroller : public InnerLoopVectorizer { 826 public: 827 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 828 LoopInfo *LI, DominatorTree *DT, 829 const TargetLibraryInfo *TLI, 830 const TargetTransformInfo *TTI, AssumptionCache *AC, 831 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 832 LoopVectorizationLegality *LVL, 833 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 834 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 835 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 836 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 837 BFI, PSI, Check) {} 838 839 private: 840 Value *getBroadcastInstrs(Value *V) override; 841 }; 842 843 /// Encapsulate information regarding vectorization of a loop and its epilogue. 844 /// This information is meant to be updated and used across two stages of 845 /// epilogue vectorization. 846 struct EpilogueLoopVectorizationInfo { 847 ElementCount MainLoopVF = ElementCount::getFixed(0); 848 unsigned MainLoopUF = 0; 849 ElementCount EpilogueVF = ElementCount::getFixed(0); 850 unsigned EpilogueUF = 0; 851 BasicBlock *MainLoopIterationCountCheck = nullptr; 852 BasicBlock *EpilogueIterationCountCheck = nullptr; 853 BasicBlock *SCEVSafetyCheck = nullptr; 854 BasicBlock *MemSafetyCheck = nullptr; 855 Value *TripCount = nullptr; 856 Value *VectorTripCount = nullptr; 857 858 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 859 ElementCount EVF, unsigned EUF) 860 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 861 assert(EUF == 1 && 862 "A high UF for the epilogue loop is likely not beneficial."); 863 } 864 }; 865 866 /// An extension of the inner loop vectorizer that creates a skeleton for a 867 /// vectorized loop that has its epilogue (residual) also vectorized. 868 /// The idea is to run the vplan on a given loop twice, firstly to setup the 869 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 870 /// from the first step and vectorize the epilogue. This is achieved by 871 /// deriving two concrete strategy classes from this base class and invoking 872 /// them in succession from the loop vectorizer planner. 873 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 874 public: 875 InnerLoopAndEpilogueVectorizer( 876 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 877 DominatorTree *DT, const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, AssumptionCache *AC, 879 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 880 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 881 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 882 GeneratedRTChecks &Checks) 883 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 884 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 885 Checks), 886 EPI(EPI) {} 887 888 // Override this function to handle the more complex control flow around the 889 // three loops. 890 std::pair<BasicBlock *, Value *> 891 createVectorizedLoopSkeleton() final override { 892 return createEpilogueVectorizedLoopSkeleton(); 893 } 894 895 /// The interface for creating a vectorized skeleton using one of two 896 /// different strategies, each corresponding to one execution of the vplan 897 /// as described above. 898 virtual std::pair<BasicBlock *, Value *> 899 createEpilogueVectorizedLoopSkeleton() = 0; 900 901 /// Holds and updates state information required to vectorize the main loop 902 /// and its epilogue in two separate passes. This setup helps us avoid 903 /// regenerating and recomputing runtime safety checks. It also helps us to 904 /// shorten the iteration-count-check path length for the cases where the 905 /// iteration count of the loop is so small that the main vector loop is 906 /// completely skipped. 907 EpilogueLoopVectorizationInfo &EPI; 908 }; 909 910 /// A specialized derived class of inner loop vectorizer that performs 911 /// vectorization of *main* loops in the process of vectorizing loops and their 912 /// epilogues. 913 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 914 public: 915 EpilogueVectorizerMainLoop( 916 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 917 DominatorTree *DT, const TargetLibraryInfo *TLI, 918 const TargetTransformInfo *TTI, AssumptionCache *AC, 919 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 920 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 921 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 922 GeneratedRTChecks &Check) 923 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 924 EPI, LVL, CM, BFI, PSI, Check) {} 925 /// Implements the interface for creating a vectorized skeleton using the 926 /// *main loop* strategy (ie the first pass of vplan execution). 927 std::pair<BasicBlock *, Value *> 928 createEpilogueVectorizedLoopSkeleton() final override; 929 930 protected: 931 /// Emits an iteration count bypass check once for the main loop (when \p 932 /// ForEpilogue is false) and once for the epilogue loop (when \p 933 /// ForEpilogue is true). 934 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 935 bool ForEpilogue); 936 void printDebugTracesAtStart() override; 937 void printDebugTracesAtEnd() override; 938 }; 939 940 // A specialized derived class of inner loop vectorizer that performs 941 // vectorization of *epilogue* loops in the process of vectorizing loops and 942 // their epilogues. 943 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 944 public: 945 EpilogueVectorizerEpilogueLoop( 946 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 947 DominatorTree *DT, const TargetLibraryInfo *TLI, 948 const TargetTransformInfo *TTI, AssumptionCache *AC, 949 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 950 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 951 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 952 GeneratedRTChecks &Checks) 953 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 954 EPI, LVL, CM, BFI, PSI, Checks) {} 955 /// Implements the interface for creating a vectorized skeleton using the 956 /// *epilogue loop* strategy (ie the second pass of vplan execution). 957 std::pair<BasicBlock *, Value *> 958 createEpilogueVectorizedLoopSkeleton() final override; 959 960 protected: 961 /// Emits an iteration count bypass check after the main vector loop has 962 /// finished to see if there are any iterations left to execute by either 963 /// the vector epilogue or the scalar epilogue. 964 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 965 BasicBlock *Bypass, 966 BasicBlock *Insert); 967 void printDebugTracesAtStart() override; 968 void printDebugTracesAtEnd() override; 969 }; 970 } // end namespace llvm 971 972 /// Look for a meaningful debug location on the instruction or it's 973 /// operands. 974 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 975 if (!I) 976 return I; 977 978 DebugLoc Empty; 979 if (I->getDebugLoc() != Empty) 980 return I; 981 982 for (Use &Op : I->operands()) { 983 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 984 if (OpInst->getDebugLoc() != Empty) 985 return OpInst; 986 } 987 988 return I; 989 } 990 991 void InnerLoopVectorizer::setDebugLocFromInst( 992 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 993 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 994 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 995 const DILocation *DIL = Inst->getDebugLoc(); 996 997 // When a FSDiscriminator is enabled, we don't need to add the multiply 998 // factors to the discriminators. 999 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1000 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1001 // FIXME: For scalable vectors, assume vscale=1. 1002 auto NewDIL = 1003 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1004 if (NewDIL) 1005 B->SetCurrentDebugLocation(NewDIL.getValue()); 1006 else 1007 LLVM_DEBUG(dbgs() 1008 << "Failed to create new discriminator: " 1009 << DIL->getFilename() << " Line: " << DIL->getLine()); 1010 } else 1011 B->SetCurrentDebugLocation(DIL); 1012 } else 1013 B->SetCurrentDebugLocation(DebugLoc()); 1014 } 1015 1016 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1017 /// is passed, the message relates to that particular instruction. 1018 #ifndef NDEBUG 1019 static void debugVectorizationMessage(const StringRef Prefix, 1020 const StringRef DebugMsg, 1021 Instruction *I) { 1022 dbgs() << "LV: " << Prefix << DebugMsg; 1023 if (I != nullptr) 1024 dbgs() << " " << *I; 1025 else 1026 dbgs() << '.'; 1027 dbgs() << '\n'; 1028 } 1029 #endif 1030 1031 /// Create an analysis remark that explains why vectorization failed 1032 /// 1033 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1034 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1035 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1036 /// the location of the remark. \return the remark object that can be 1037 /// streamed to. 1038 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1039 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1040 Value *CodeRegion = TheLoop->getHeader(); 1041 DebugLoc DL = TheLoop->getStartLoc(); 1042 1043 if (I) { 1044 CodeRegion = I->getParent(); 1045 // If there is no debug location attached to the instruction, revert back to 1046 // using the loop's. 1047 if (I->getDebugLoc()) 1048 DL = I->getDebugLoc(); 1049 } 1050 1051 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1052 } 1053 1054 namespace llvm { 1055 1056 /// Return a value for Step multiplied by VF. 1057 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1058 int64_t Step) { 1059 assert(Ty->isIntegerTy() && "Expected an integer step"); 1060 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1061 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1062 } 1063 1064 /// Return the runtime value for VF. 1065 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1066 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1067 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1068 } 1069 1070 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1071 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1072 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1073 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1074 return B.CreateUIToFP(RuntimeVF, FTy); 1075 } 1076 1077 void reportVectorizationFailure(const StringRef DebugMsg, 1078 const StringRef OREMsg, const StringRef ORETag, 1079 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1080 Instruction *I) { 1081 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1082 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1083 ORE->emit( 1084 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1085 << "loop not vectorized: " << OREMsg); 1086 } 1087 1088 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1089 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1090 Instruction *I) { 1091 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1092 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1093 ORE->emit( 1094 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1095 << Msg); 1096 } 1097 1098 } // end namespace llvm 1099 1100 #ifndef NDEBUG 1101 /// \return string containing a file name and a line # for the given loop. 1102 static std::string getDebugLocString(const Loop *L) { 1103 std::string Result; 1104 if (L) { 1105 raw_string_ostream OS(Result); 1106 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1107 LoopDbgLoc.print(OS); 1108 else 1109 // Just print the module name. 1110 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1111 OS.flush(); 1112 } 1113 return Result; 1114 } 1115 #endif 1116 1117 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1118 const Instruction *Orig) { 1119 // If the loop was versioned with memchecks, add the corresponding no-alias 1120 // metadata. 1121 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1122 LVer->annotateInstWithNoAlias(To, Orig); 1123 } 1124 1125 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1126 VPTransformState &State) { 1127 1128 // Collect recipes in the backward slice of `Root` that may generate a poison 1129 // value that is used after vectorization. 1130 SmallPtrSet<VPRecipeBase *, 16> Visited; 1131 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1132 SmallVector<VPRecipeBase *, 16> Worklist; 1133 Worklist.push_back(Root); 1134 1135 // Traverse the backward slice of Root through its use-def chain. 1136 while (!Worklist.empty()) { 1137 VPRecipeBase *CurRec = Worklist.back(); 1138 Worklist.pop_back(); 1139 1140 if (!Visited.insert(CurRec).second) 1141 continue; 1142 1143 // Prune search if we find another recipe generating a widen memory 1144 // instruction. Widen memory instructions involved in address computation 1145 // will lead to gather/scatter instructions, which don't need to be 1146 // handled. 1147 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1148 isa<VPInterleaveRecipe>(CurRec) || 1149 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1150 continue; 1151 1152 // This recipe contributes to the address computation of a widen 1153 // load/store. Collect recipe if its underlying instruction has 1154 // poison-generating flags. 1155 Instruction *Instr = CurRec->getUnderlyingInstr(); 1156 if (Instr && Instr->hasPoisonGeneratingFlags()) 1157 State.MayGeneratePoisonRecipes.insert(CurRec); 1158 1159 // Add new definitions to the worklist. 1160 for (VPValue *operand : CurRec->operands()) 1161 if (VPDef *OpDef = operand->getDef()) 1162 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1163 } 1164 }); 1165 1166 // Traverse all the recipes in the VPlan and collect the poison-generating 1167 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1168 // VPInterleaveRecipe. 1169 auto Iter = depth_first( 1170 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1171 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1172 for (VPRecipeBase &Recipe : *VPBB) { 1173 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1174 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1175 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1176 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1177 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1178 collectPoisonGeneratingInstrsInBackwardSlice( 1179 cast<VPRecipeBase>(AddrDef)); 1180 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1181 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1182 if (AddrDef) { 1183 // Check if any member of the interleave group needs predication. 1184 const InterleaveGroup<Instruction> *InterGroup = 1185 InterleaveRec->getInterleaveGroup(); 1186 bool NeedPredication = false; 1187 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1188 I < NumMembers; ++I) { 1189 Instruction *Member = InterGroup->getMember(I); 1190 if (Member) 1191 NeedPredication |= 1192 Legal->blockNeedsPredication(Member->getParent()); 1193 } 1194 1195 if (NeedPredication) 1196 collectPoisonGeneratingInstrsInBackwardSlice( 1197 cast<VPRecipeBase>(AddrDef)); 1198 } 1199 } 1200 } 1201 } 1202 } 1203 1204 void InnerLoopVectorizer::addMetadata(Instruction *To, 1205 Instruction *From) { 1206 propagateMetadata(To, From); 1207 addNewMetadata(To, From); 1208 } 1209 1210 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1211 Instruction *From) { 1212 for (Value *V : To) { 1213 if (Instruction *I = dyn_cast<Instruction>(V)) 1214 addMetadata(I, From); 1215 } 1216 } 1217 1218 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1219 const RecurrenceDescriptor &RdxDesc) { 1220 auto It = ReductionResumeValues.find(&RdxDesc); 1221 assert(It != ReductionResumeValues.end() && 1222 "Expected to find a resume value for the reduction."); 1223 return It->second; 1224 } 1225 1226 namespace llvm { 1227 1228 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1229 // lowered. 1230 enum ScalarEpilogueLowering { 1231 1232 // The default: allowing scalar epilogues. 1233 CM_ScalarEpilogueAllowed, 1234 1235 // Vectorization with OptForSize: don't allow epilogues. 1236 CM_ScalarEpilogueNotAllowedOptSize, 1237 1238 // A special case of vectorisation with OptForSize: loops with a very small 1239 // trip count are considered for vectorization under OptForSize, thereby 1240 // making sure the cost of their loop body is dominant, free of runtime 1241 // guards and scalar iteration overheads. 1242 CM_ScalarEpilogueNotAllowedLowTripLoop, 1243 1244 // Loop hint predicate indicating an epilogue is undesired. 1245 CM_ScalarEpilogueNotNeededUsePredicate, 1246 1247 // Directive indicating we must either tail fold or not vectorize 1248 CM_ScalarEpilogueNotAllowedUsePredicate 1249 }; 1250 1251 /// ElementCountComparator creates a total ordering for ElementCount 1252 /// for the purposes of using it in a set structure. 1253 struct ElementCountComparator { 1254 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1255 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1256 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1257 } 1258 }; 1259 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1260 1261 /// LoopVectorizationCostModel - estimates the expected speedups due to 1262 /// vectorization. 1263 /// In many cases vectorization is not profitable. This can happen because of 1264 /// a number of reasons. In this class we mainly attempt to predict the 1265 /// expected speedup/slowdowns due to the supported instruction set. We use the 1266 /// TargetTransformInfo to query the different backends for the cost of 1267 /// different operations. 1268 class LoopVectorizationCostModel { 1269 public: 1270 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1271 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1272 LoopVectorizationLegality *Legal, 1273 const TargetTransformInfo &TTI, 1274 const TargetLibraryInfo *TLI, DemandedBits *DB, 1275 AssumptionCache *AC, 1276 OptimizationRemarkEmitter *ORE, const Function *F, 1277 const LoopVectorizeHints *Hints, 1278 InterleavedAccessInfo &IAI) 1279 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1280 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1281 Hints(Hints), InterleaveInfo(IAI) {} 1282 1283 /// \return An upper bound for the vectorization factors (both fixed and 1284 /// scalable). If the factors are 0, vectorization and interleaving should be 1285 /// avoided up front. 1286 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1287 1288 /// \return True if runtime checks are required for vectorization, and false 1289 /// otherwise. 1290 bool runtimeChecksRequired(); 1291 1292 /// \return The most profitable vectorization factor and the cost of that VF. 1293 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1294 /// then this vectorization factor will be selected if vectorization is 1295 /// possible. 1296 VectorizationFactor 1297 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1298 1299 VectorizationFactor 1300 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1301 const LoopVectorizationPlanner &LVP); 1302 1303 /// Setup cost-based decisions for user vectorization factor. 1304 /// \return true if the UserVF is a feasible VF to be chosen. 1305 bool selectUserVectorizationFactor(ElementCount UserVF) { 1306 collectUniformsAndScalars(UserVF); 1307 collectInstsToScalarize(UserVF); 1308 return expectedCost(UserVF).first.isValid(); 1309 } 1310 1311 /// \return The size (in bits) of the smallest and widest types in the code 1312 /// that needs to be vectorized. We ignore values that remain scalar such as 1313 /// 64 bit loop indices. 1314 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1315 1316 /// \return The desired interleave count. 1317 /// If interleave count has been specified by metadata it will be returned. 1318 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1319 /// are the selected vectorization factor and the cost of the selected VF. 1320 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1321 1322 /// Memory access instruction may be vectorized in more than one way. 1323 /// Form of instruction after vectorization depends on cost. 1324 /// This function takes cost-based decisions for Load/Store instructions 1325 /// and collects them in a map. This decisions map is used for building 1326 /// the lists of loop-uniform and loop-scalar instructions. 1327 /// The calculated cost is saved with widening decision in order to 1328 /// avoid redundant calculations. 1329 void setCostBasedWideningDecision(ElementCount VF); 1330 1331 /// A struct that represents some properties of the register usage 1332 /// of a loop. 1333 struct RegisterUsage { 1334 /// Holds the number of loop invariant values that are used in the loop. 1335 /// The key is ClassID of target-provided register class. 1336 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1337 /// Holds the maximum number of concurrent live intervals in the loop. 1338 /// The key is ClassID of target-provided register class. 1339 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1340 }; 1341 1342 /// \return Returns information about the register usages of the loop for the 1343 /// given vectorization factors. 1344 SmallVector<RegisterUsage, 8> 1345 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1346 1347 /// Collect values we want to ignore in the cost model. 1348 void collectValuesToIgnore(); 1349 1350 /// Collect all element types in the loop for which widening is needed. 1351 void collectElementTypesForWidening(); 1352 1353 /// Split reductions into those that happen in the loop, and those that happen 1354 /// outside. In loop reductions are collected into InLoopReductionChains. 1355 void collectInLoopReductions(); 1356 1357 /// Returns true if we should use strict in-order reductions for the given 1358 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1359 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1360 /// of FP operations. 1361 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1362 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1363 } 1364 1365 /// \returns The smallest bitwidth each instruction can be represented with. 1366 /// The vector equivalents of these instructions should be truncated to this 1367 /// type. 1368 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1369 return MinBWs; 1370 } 1371 1372 /// \returns True if it is more profitable to scalarize instruction \p I for 1373 /// vectorization factor \p VF. 1374 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1375 assert(VF.isVector() && 1376 "Profitable to scalarize relevant only for VF > 1."); 1377 1378 // Cost model is not run in the VPlan-native path - return conservative 1379 // result until this changes. 1380 if (EnableVPlanNativePath) 1381 return false; 1382 1383 auto Scalars = InstsToScalarize.find(VF); 1384 assert(Scalars != InstsToScalarize.end() && 1385 "VF not yet analyzed for scalarization profitability"); 1386 return Scalars->second.find(I) != Scalars->second.end(); 1387 } 1388 1389 /// Returns true if \p I is known to be uniform after vectorization. 1390 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1391 if (VF.isScalar()) 1392 return true; 1393 1394 // Cost model is not run in the VPlan-native path - return conservative 1395 // result until this changes. 1396 if (EnableVPlanNativePath) 1397 return false; 1398 1399 auto UniformsPerVF = Uniforms.find(VF); 1400 assert(UniformsPerVF != Uniforms.end() && 1401 "VF not yet analyzed for uniformity"); 1402 return UniformsPerVF->second.count(I); 1403 } 1404 1405 /// Returns true if \p I is known to be scalar after vectorization. 1406 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1407 if (VF.isScalar()) 1408 return true; 1409 1410 // Cost model is not run in the VPlan-native path - return conservative 1411 // result until this changes. 1412 if (EnableVPlanNativePath) 1413 return false; 1414 1415 auto ScalarsPerVF = Scalars.find(VF); 1416 assert(ScalarsPerVF != Scalars.end() && 1417 "Scalar values are not calculated for VF"); 1418 return ScalarsPerVF->second.count(I); 1419 } 1420 1421 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1422 /// for vectorization factor \p VF. 1423 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1424 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1425 !isProfitableToScalarize(I, VF) && 1426 !isScalarAfterVectorization(I, VF); 1427 } 1428 1429 /// Decision that was taken during cost calculation for memory instruction. 1430 enum InstWidening { 1431 CM_Unknown, 1432 CM_Widen, // For consecutive accesses with stride +1. 1433 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1434 CM_Interleave, 1435 CM_GatherScatter, 1436 CM_Scalarize 1437 }; 1438 1439 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1440 /// instruction \p I and vector width \p VF. 1441 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1442 InstructionCost Cost) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1445 } 1446 1447 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1448 /// interleaving group \p Grp and vector width \p VF. 1449 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1450 ElementCount VF, InstWidening W, 1451 InstructionCost Cost) { 1452 assert(VF.isVector() && "Expected VF >=2"); 1453 /// Broadcast this decicion to all instructions inside the group. 1454 /// But the cost will be assigned to one instruction only. 1455 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1456 if (auto *I = Grp->getMember(i)) { 1457 if (Grp->getInsertPos() == I) 1458 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1459 else 1460 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1461 } 1462 } 1463 } 1464 1465 /// Return the cost model decision for the given instruction \p I and vector 1466 /// width \p VF. Return CM_Unknown if this instruction did not pass 1467 /// through the cost modeling. 1468 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1469 assert(VF.isVector() && "Expected VF to be a vector VF"); 1470 // Cost model is not run in the VPlan-native path - return conservative 1471 // result until this changes. 1472 if (EnableVPlanNativePath) 1473 return CM_GatherScatter; 1474 1475 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1476 auto Itr = WideningDecisions.find(InstOnVF); 1477 if (Itr == WideningDecisions.end()) 1478 return CM_Unknown; 1479 return Itr->second.first; 1480 } 1481 1482 /// Return the vectorization cost for the given instruction \p I and vector 1483 /// width \p VF. 1484 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1485 assert(VF.isVector() && "Expected VF >=2"); 1486 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1487 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1488 "The cost is not calculated"); 1489 return WideningDecisions[InstOnVF].second; 1490 } 1491 1492 /// Return True if instruction \p I is an optimizable truncate whose operand 1493 /// is an induction variable. Such a truncate will be removed by adding a new 1494 /// induction variable with the destination type. 1495 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1496 // If the instruction is not a truncate, return false. 1497 auto *Trunc = dyn_cast<TruncInst>(I); 1498 if (!Trunc) 1499 return false; 1500 1501 // Get the source and destination types of the truncate. 1502 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1503 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1504 1505 // If the truncate is free for the given types, return false. Replacing a 1506 // free truncate with an induction variable would add an induction variable 1507 // update instruction to each iteration of the loop. We exclude from this 1508 // check the primary induction variable since it will need an update 1509 // instruction regardless. 1510 Value *Op = Trunc->getOperand(0); 1511 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1512 return false; 1513 1514 // If the truncated value is not an induction variable, return false. 1515 return Legal->isInductionPhi(Op); 1516 } 1517 1518 /// Collects the instructions to scalarize for each predicated instruction in 1519 /// the loop. 1520 void collectInstsToScalarize(ElementCount VF); 1521 1522 /// Collect Uniform and Scalar values for the given \p VF. 1523 /// The sets depend on CM decision for Load/Store instructions 1524 /// that may be vectorized as interleave, gather-scatter or scalarized. 1525 void collectUniformsAndScalars(ElementCount VF) { 1526 // Do the analysis once. 1527 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1528 return; 1529 setCostBasedWideningDecision(VF); 1530 collectLoopUniforms(VF); 1531 collectLoopScalars(VF); 1532 } 1533 1534 /// Returns true if the target machine supports masked store operation 1535 /// for the given \p DataType and kind of access to \p Ptr. 1536 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1537 return Legal->isConsecutivePtr(DataType, Ptr) && 1538 TTI.isLegalMaskedStore(DataType, Alignment); 1539 } 1540 1541 /// Returns true if the target machine supports masked load operation 1542 /// for the given \p DataType and kind of access to \p Ptr. 1543 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1544 return Legal->isConsecutivePtr(DataType, Ptr) && 1545 TTI.isLegalMaskedLoad(DataType, Alignment); 1546 } 1547 1548 /// Returns true if the target machine can represent \p V as a masked gather 1549 /// or scatter operation. 1550 bool isLegalGatherOrScatter(Value *V, 1551 ElementCount VF = ElementCount::getFixed(1)) { 1552 bool LI = isa<LoadInst>(V); 1553 bool SI = isa<StoreInst>(V); 1554 if (!LI && !SI) 1555 return false; 1556 auto *Ty = getLoadStoreType(V); 1557 Align Align = getLoadStoreAlignment(V); 1558 if (VF.isVector()) 1559 Ty = VectorType::get(Ty, VF); 1560 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1561 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1562 } 1563 1564 /// Returns true if the target machine supports all of the reduction 1565 /// variables found for the given VF. 1566 bool canVectorizeReductions(ElementCount VF) const { 1567 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1568 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1569 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1570 })); 1571 } 1572 1573 /// Returns true if \p I is an instruction that will be scalarized with 1574 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1575 /// instructions include conditional stores and instructions that may divide 1576 /// by zero. 1577 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1578 1579 // Returns true if \p I is an instruction that will be predicated either 1580 // through scalar predication or masked load/store or masked gather/scatter. 1581 // \p VF is the vectorization factor that will be used to vectorize \p I. 1582 // Superset of instructions that return true for isScalarWithPredication. 1583 bool isPredicatedInst(Instruction *I, ElementCount VF, 1584 bool IsKnownUniform = false) { 1585 // When we know the load is uniform and the original scalar loop was not 1586 // predicated we don't need to mark it as a predicated instruction. Any 1587 // vectorised blocks created when tail-folding are something artificial we 1588 // have introduced and we know there is always at least one active lane. 1589 // That's why we call Legal->blockNeedsPredication here because it doesn't 1590 // query tail-folding. 1591 if (IsKnownUniform && isa<LoadInst>(I) && 1592 !Legal->blockNeedsPredication(I->getParent())) 1593 return false; 1594 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1595 return false; 1596 // Loads and stores that need some form of masked operation are predicated 1597 // instructions. 1598 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1599 return Legal->isMaskRequired(I); 1600 return isScalarWithPredication(I, VF); 1601 } 1602 1603 /// Returns true if \p I is a memory instruction with consecutive memory 1604 /// access that can be widened. 1605 bool 1606 memoryInstructionCanBeWidened(Instruction *I, 1607 ElementCount VF = ElementCount::getFixed(1)); 1608 1609 /// Returns true if \p I is a memory instruction in an interleaved-group 1610 /// of memory accesses that can be vectorized with wide vector loads/stores 1611 /// and shuffles. 1612 bool 1613 interleavedAccessCanBeWidened(Instruction *I, 1614 ElementCount VF = ElementCount::getFixed(1)); 1615 1616 /// Check if \p Instr belongs to any interleaved access group. 1617 bool isAccessInterleaved(Instruction *Instr) { 1618 return InterleaveInfo.isInterleaved(Instr); 1619 } 1620 1621 /// Get the interleaved access group that \p Instr belongs to. 1622 const InterleaveGroup<Instruction> * 1623 getInterleavedAccessGroup(Instruction *Instr) { 1624 return InterleaveInfo.getInterleaveGroup(Instr); 1625 } 1626 1627 /// Returns true if we're required to use a scalar epilogue for at least 1628 /// the final iteration of the original loop. 1629 bool requiresScalarEpilogue(ElementCount VF) const { 1630 if (!isScalarEpilogueAllowed()) 1631 return false; 1632 // If we might exit from anywhere but the latch, must run the exiting 1633 // iteration in scalar form. 1634 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1635 return true; 1636 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1637 } 1638 1639 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1640 /// loop hint annotation. 1641 bool isScalarEpilogueAllowed() const { 1642 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1643 } 1644 1645 /// Returns true if all loop blocks should be masked to fold tail loop. 1646 bool foldTailByMasking() const { return FoldTailByMasking; } 1647 1648 /// Returns true if the instructions in this block requires predication 1649 /// for any reason, e.g. because tail folding now requires a predicate 1650 /// or because the block in the original loop was predicated. 1651 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1652 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1653 } 1654 1655 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1656 /// nodes to the chain of instructions representing the reductions. Uses a 1657 /// MapVector to ensure deterministic iteration order. 1658 using ReductionChainMap = 1659 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1660 1661 /// Return the chain of instructions representing an inloop reduction. 1662 const ReductionChainMap &getInLoopReductionChains() const { 1663 return InLoopReductionChains; 1664 } 1665 1666 /// Returns true if the Phi is part of an inloop reduction. 1667 bool isInLoopReduction(PHINode *Phi) const { 1668 return InLoopReductionChains.count(Phi); 1669 } 1670 1671 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1672 /// with factor VF. Return the cost of the instruction, including 1673 /// scalarization overhead if it's needed. 1674 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1675 1676 /// Estimate cost of a call instruction CI if it were vectorized with factor 1677 /// VF. Return the cost of the instruction, including scalarization overhead 1678 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1679 /// scalarized - 1680 /// i.e. either vector version isn't available, or is too expensive. 1681 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1682 bool &NeedToScalarize) const; 1683 1684 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1685 /// that of B. 1686 bool isMoreProfitable(const VectorizationFactor &A, 1687 const VectorizationFactor &B) const; 1688 1689 /// Invalidates decisions already taken by the cost model. 1690 void invalidateCostModelingDecisions() { 1691 WideningDecisions.clear(); 1692 Uniforms.clear(); 1693 Scalars.clear(); 1694 } 1695 1696 private: 1697 unsigned NumPredStores = 0; 1698 1699 /// Convenience function that returns the value of vscale_range iff 1700 /// vscale_range.min == vscale_range.max or otherwise returns the value 1701 /// returned by the corresponding TLI method. 1702 Optional<unsigned> getVScaleForTuning() const; 1703 1704 /// \return An upper bound for the vectorization factors for both 1705 /// fixed and scalable vectorization, where the minimum-known number of 1706 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1707 /// disabled or unsupported, then the scalable part will be equal to 1708 /// ElementCount::getScalable(0). 1709 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1710 ElementCount UserVF, 1711 bool FoldTailByMasking); 1712 1713 /// \return the maximized element count based on the targets vector 1714 /// registers and the loop trip-count, but limited to a maximum safe VF. 1715 /// This is a helper function of computeFeasibleMaxVF. 1716 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1717 /// issue that occurred on one of the buildbots which cannot be reproduced 1718 /// without having access to the properietary compiler (see comments on 1719 /// D98509). The issue is currently under investigation and this workaround 1720 /// will be removed as soon as possible. 1721 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1722 unsigned SmallestType, 1723 unsigned WidestType, 1724 const ElementCount &MaxSafeVF, 1725 bool FoldTailByMasking); 1726 1727 /// \return the maximum legal scalable VF, based on the safe max number 1728 /// of elements. 1729 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1730 1731 /// The vectorization cost is a combination of the cost itself and a boolean 1732 /// indicating whether any of the contributing operations will actually 1733 /// operate on vector values after type legalization in the backend. If this 1734 /// latter value is false, then all operations will be scalarized (i.e. no 1735 /// vectorization has actually taken place). 1736 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1737 1738 /// Returns the expected execution cost. The unit of the cost does 1739 /// not matter because we use the 'cost' units to compare different 1740 /// vector widths. The cost that is returned is *not* normalized by 1741 /// the factor width. If \p Invalid is not nullptr, this function 1742 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1743 /// each instruction that has an Invalid cost for the given VF. 1744 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1745 VectorizationCostTy 1746 expectedCost(ElementCount VF, 1747 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1748 1749 /// Returns the execution time cost of an instruction for a given vector 1750 /// width. Vector width of one means scalar. 1751 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1752 1753 /// The cost-computation logic from getInstructionCost which provides 1754 /// the vector type as an output parameter. 1755 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1756 Type *&VectorTy); 1757 1758 /// Return the cost of instructions in an inloop reduction pattern, if I is 1759 /// part of that pattern. 1760 Optional<InstructionCost> 1761 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1762 TTI::TargetCostKind CostKind); 1763 1764 /// Calculate vectorization cost of memory instruction \p I. 1765 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for scalarized memory instruction. 1768 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1769 1770 /// The cost computation for interleaving group of memory instructions. 1771 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1772 1773 /// The cost computation for Gather/Scatter instruction. 1774 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1775 1776 /// The cost computation for widening instruction \p I with consecutive 1777 /// memory access. 1778 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1779 1780 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1781 /// Load: scalar load + broadcast. 1782 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1783 /// element) 1784 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1785 1786 /// Estimate the overhead of scalarizing an instruction. This is a 1787 /// convenience wrapper for the type-based getScalarizationOverhead API. 1788 InstructionCost getScalarizationOverhead(Instruction *I, 1789 ElementCount VF) const; 1790 1791 /// Returns whether the instruction is a load or store and will be a emitted 1792 /// as a vector operation. 1793 bool isConsecutiveLoadOrStore(Instruction *I); 1794 1795 /// Map of scalar integer values to the smallest bitwidth they can be legally 1796 /// represented as. The vector equivalents of these values should be truncated 1797 /// to this type. 1798 MapVector<Instruction *, uint64_t> MinBWs; 1799 1800 /// A type representing the costs for instructions if they were to be 1801 /// scalarized rather than vectorized. The entries are Instruction-Cost 1802 /// pairs. 1803 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1804 1805 /// A set containing all BasicBlocks that are known to present after 1806 /// vectorization as a predicated block. 1807 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1808 1809 /// Records whether it is allowed to have the original scalar loop execute at 1810 /// least once. This may be needed as a fallback loop in case runtime 1811 /// aliasing/dependence checks fail, or to handle the tail/remainder 1812 /// iterations when the trip count is unknown or doesn't divide by the VF, 1813 /// or as a peel-loop to handle gaps in interleave-groups. 1814 /// Under optsize and when the trip count is very small we don't allow any 1815 /// iterations to execute in the scalar loop. 1816 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1817 1818 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1819 bool FoldTailByMasking = false; 1820 1821 /// A map holding scalar costs for different vectorization factors. The 1822 /// presence of a cost for an instruction in the mapping indicates that the 1823 /// instruction will be scalarized when vectorizing with the associated 1824 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1825 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1826 1827 /// Holds the instructions known to be uniform after vectorization. 1828 /// The data is collected per VF. 1829 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1830 1831 /// Holds the instructions known to be scalar after vectorization. 1832 /// The data is collected per VF. 1833 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1834 1835 /// Holds the instructions (address computations) that are forced to be 1836 /// scalarized. 1837 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1838 1839 /// PHINodes of the reductions that should be expanded in-loop along with 1840 /// their associated chains of reduction operations, in program order from top 1841 /// (PHI) to bottom 1842 ReductionChainMap InLoopReductionChains; 1843 1844 /// A Map of inloop reduction operations and their immediate chain operand. 1845 /// FIXME: This can be removed once reductions can be costed correctly in 1846 /// vplan. This was added to allow quick lookup to the inloop operations, 1847 /// without having to loop through InLoopReductionChains. 1848 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1849 1850 /// Returns the expected difference in cost from scalarizing the expression 1851 /// feeding a predicated instruction \p PredInst. The instructions to 1852 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1853 /// non-negative return value implies the expression will be scalarized. 1854 /// Currently, only single-use chains are considered for scalarization. 1855 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1856 ElementCount VF); 1857 1858 /// Collect the instructions that are uniform after vectorization. An 1859 /// instruction is uniform if we represent it with a single scalar value in 1860 /// the vectorized loop corresponding to each vector iteration. Examples of 1861 /// uniform instructions include pointer operands of consecutive or 1862 /// interleaved memory accesses. Note that although uniformity implies an 1863 /// instruction will be scalar, the reverse is not true. In general, a 1864 /// scalarized instruction will be represented by VF scalar values in the 1865 /// vectorized loop, each corresponding to an iteration of the original 1866 /// scalar loop. 1867 void collectLoopUniforms(ElementCount VF); 1868 1869 /// Collect the instructions that are scalar after vectorization. An 1870 /// instruction is scalar if it is known to be uniform or will be scalarized 1871 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1872 /// to the list if they are used by a load/store instruction that is marked as 1873 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1874 /// VF values in the vectorized loop, each corresponding to an iteration of 1875 /// the original scalar loop. 1876 void collectLoopScalars(ElementCount VF); 1877 1878 /// Keeps cost model vectorization decision and cost for instructions. 1879 /// Right now it is used for memory instructions only. 1880 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1881 std::pair<InstWidening, InstructionCost>>; 1882 1883 DecisionList WideningDecisions; 1884 1885 /// Returns true if \p V is expected to be vectorized and it needs to be 1886 /// extracted. 1887 bool needsExtract(Value *V, ElementCount VF) const { 1888 Instruction *I = dyn_cast<Instruction>(V); 1889 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1890 TheLoop->isLoopInvariant(I)) 1891 return false; 1892 1893 // Assume we can vectorize V (and hence we need extraction) if the 1894 // scalars are not computed yet. This can happen, because it is called 1895 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1896 // the scalars are collected. That should be a safe assumption in most 1897 // cases, because we check if the operands have vectorizable types 1898 // beforehand in LoopVectorizationLegality. 1899 return Scalars.find(VF) == Scalars.end() || 1900 !isScalarAfterVectorization(I, VF); 1901 }; 1902 1903 /// Returns a range containing only operands needing to be extracted. 1904 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1905 ElementCount VF) const { 1906 return SmallVector<Value *, 4>(make_filter_range( 1907 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1908 } 1909 1910 /// Determines if we have the infrastructure to vectorize loop \p L and its 1911 /// epilogue, assuming the main loop is vectorized by \p VF. 1912 bool isCandidateForEpilogueVectorization(const Loop &L, 1913 const ElementCount VF) const; 1914 1915 /// Returns true if epilogue vectorization is considered profitable, and 1916 /// false otherwise. 1917 /// \p VF is the vectorization factor chosen for the original loop. 1918 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1919 1920 public: 1921 /// The loop that we evaluate. 1922 Loop *TheLoop; 1923 1924 /// Predicated scalar evolution analysis. 1925 PredicatedScalarEvolution &PSE; 1926 1927 /// Loop Info analysis. 1928 LoopInfo *LI; 1929 1930 /// Vectorization legality. 1931 LoopVectorizationLegality *Legal; 1932 1933 /// Vector target information. 1934 const TargetTransformInfo &TTI; 1935 1936 /// Target Library Info. 1937 const TargetLibraryInfo *TLI; 1938 1939 /// Demanded bits analysis. 1940 DemandedBits *DB; 1941 1942 /// Assumption cache. 1943 AssumptionCache *AC; 1944 1945 /// Interface to emit optimization remarks. 1946 OptimizationRemarkEmitter *ORE; 1947 1948 const Function *TheFunction; 1949 1950 /// Loop Vectorize Hint. 1951 const LoopVectorizeHints *Hints; 1952 1953 /// The interleave access information contains groups of interleaved accesses 1954 /// with the same stride and close to each other. 1955 InterleavedAccessInfo &InterleaveInfo; 1956 1957 /// Values to ignore in the cost model. 1958 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1959 1960 /// Values to ignore in the cost model when VF > 1. 1961 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1962 1963 /// All element types found in the loop. 1964 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1965 1966 /// Profitable vector factors. 1967 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1968 }; 1969 } // end namespace llvm 1970 1971 /// Helper struct to manage generating runtime checks for vectorization. 1972 /// 1973 /// The runtime checks are created up-front in temporary blocks to allow better 1974 /// estimating the cost and un-linked from the existing IR. After deciding to 1975 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1976 /// temporary blocks are completely removed. 1977 class GeneratedRTChecks { 1978 /// Basic block which contains the generated SCEV checks, if any. 1979 BasicBlock *SCEVCheckBlock = nullptr; 1980 1981 /// The value representing the result of the generated SCEV checks. If it is 1982 /// nullptr, either no SCEV checks have been generated or they have been used. 1983 Value *SCEVCheckCond = nullptr; 1984 1985 /// Basic block which contains the generated memory runtime checks, if any. 1986 BasicBlock *MemCheckBlock = nullptr; 1987 1988 /// The value representing the result of the generated memory runtime checks. 1989 /// If it is nullptr, either no memory runtime checks have been generated or 1990 /// they have been used. 1991 Value *MemRuntimeCheckCond = nullptr; 1992 1993 DominatorTree *DT; 1994 LoopInfo *LI; 1995 1996 SCEVExpander SCEVExp; 1997 SCEVExpander MemCheckExp; 1998 1999 public: 2000 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2001 const DataLayout &DL) 2002 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2003 MemCheckExp(SE, DL, "scev.check") {} 2004 2005 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2006 /// accurately estimate the cost of the runtime checks. The blocks are 2007 /// un-linked from the IR and is added back during vector code generation. If 2008 /// there is no vector code generation, the check blocks are removed 2009 /// completely. 2010 void Create(Loop *L, const LoopAccessInfo &LAI, 2011 const SCEVUnionPredicate &UnionPred) { 2012 2013 BasicBlock *LoopHeader = L->getHeader(); 2014 BasicBlock *Preheader = L->getLoopPreheader(); 2015 2016 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2017 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2018 // may be used by SCEVExpander. The blocks will be un-linked from their 2019 // predecessors and removed from LI & DT at the end of the function. 2020 if (!UnionPred.isAlwaysTrue()) { 2021 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2022 nullptr, "vector.scevcheck"); 2023 2024 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2025 &UnionPred, SCEVCheckBlock->getTerminator()); 2026 } 2027 2028 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2029 if (RtPtrChecking.Need) { 2030 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2031 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2032 "vector.memcheck"); 2033 2034 MemRuntimeCheckCond = 2035 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2036 RtPtrChecking.getChecks(), MemCheckExp); 2037 assert(MemRuntimeCheckCond && 2038 "no RT checks generated although RtPtrChecking " 2039 "claimed checks are required"); 2040 } 2041 2042 if (!MemCheckBlock && !SCEVCheckBlock) 2043 return; 2044 2045 // Unhook the temporary block with the checks, update various places 2046 // accordingly. 2047 if (SCEVCheckBlock) 2048 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2049 if (MemCheckBlock) 2050 MemCheckBlock->replaceAllUsesWith(Preheader); 2051 2052 if (SCEVCheckBlock) { 2053 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2054 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2055 Preheader->getTerminator()->eraseFromParent(); 2056 } 2057 if (MemCheckBlock) { 2058 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2059 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2060 Preheader->getTerminator()->eraseFromParent(); 2061 } 2062 2063 DT->changeImmediateDominator(LoopHeader, Preheader); 2064 if (MemCheckBlock) { 2065 DT->eraseNode(MemCheckBlock); 2066 LI->removeBlock(MemCheckBlock); 2067 } 2068 if (SCEVCheckBlock) { 2069 DT->eraseNode(SCEVCheckBlock); 2070 LI->removeBlock(SCEVCheckBlock); 2071 } 2072 } 2073 2074 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2075 /// unused. 2076 ~GeneratedRTChecks() { 2077 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2078 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2079 if (!SCEVCheckCond) 2080 SCEVCleaner.markResultUsed(); 2081 2082 if (!MemRuntimeCheckCond) 2083 MemCheckCleaner.markResultUsed(); 2084 2085 if (MemRuntimeCheckCond) { 2086 auto &SE = *MemCheckExp.getSE(); 2087 // Memory runtime check generation creates compares that use expanded 2088 // values. Remove them before running the SCEVExpanderCleaners. 2089 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2090 if (MemCheckExp.isInsertedInstruction(&I)) 2091 continue; 2092 SE.forgetValue(&I); 2093 I.eraseFromParent(); 2094 } 2095 } 2096 MemCheckCleaner.cleanup(); 2097 SCEVCleaner.cleanup(); 2098 2099 if (SCEVCheckCond) 2100 SCEVCheckBlock->eraseFromParent(); 2101 if (MemRuntimeCheckCond) 2102 MemCheckBlock->eraseFromParent(); 2103 } 2104 2105 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2106 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2107 /// depending on the generated condition. 2108 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2109 BasicBlock *LoopVectorPreHeader, 2110 BasicBlock *LoopExitBlock) { 2111 if (!SCEVCheckCond) 2112 return nullptr; 2113 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2114 if (C->isZero()) 2115 return nullptr; 2116 2117 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2118 2119 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2120 // Create new preheader for vector loop. 2121 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2122 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2123 2124 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2125 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2126 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2127 SCEVCheckBlock); 2128 2129 DT->addNewBlock(SCEVCheckBlock, Pred); 2130 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2131 2132 ReplaceInstWithInst( 2133 SCEVCheckBlock->getTerminator(), 2134 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2135 // Mark the check as used, to prevent it from being removed during cleanup. 2136 SCEVCheckCond = nullptr; 2137 return SCEVCheckBlock; 2138 } 2139 2140 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2141 /// the branches to branch to the vector preheader or \p Bypass, depending on 2142 /// the generated condition. 2143 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2144 BasicBlock *LoopVectorPreHeader) { 2145 // Check if we generated code that checks in runtime if arrays overlap. 2146 if (!MemRuntimeCheckCond) 2147 return nullptr; 2148 2149 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2150 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2151 MemCheckBlock); 2152 2153 DT->addNewBlock(MemCheckBlock, Pred); 2154 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2155 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2156 2157 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2158 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2159 2160 ReplaceInstWithInst( 2161 MemCheckBlock->getTerminator(), 2162 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2163 MemCheckBlock->getTerminator()->setDebugLoc( 2164 Pred->getTerminator()->getDebugLoc()); 2165 2166 // Mark the check as used, to prevent it from being removed during cleanup. 2167 MemRuntimeCheckCond = nullptr; 2168 return MemCheckBlock; 2169 } 2170 }; 2171 2172 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2173 // vectorization. The loop needs to be annotated with #pragma omp simd 2174 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2175 // vector length information is not provided, vectorization is not considered 2176 // explicit. Interleave hints are not allowed either. These limitations will be 2177 // relaxed in the future. 2178 // Please, note that we are currently forced to abuse the pragma 'clang 2179 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2180 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2181 // provides *explicit vectorization hints* (LV can bypass legal checks and 2182 // assume that vectorization is legal). However, both hints are implemented 2183 // using the same metadata (llvm.loop.vectorize, processed by 2184 // LoopVectorizeHints). This will be fixed in the future when the native IR 2185 // representation for pragma 'omp simd' is introduced. 2186 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2187 OptimizationRemarkEmitter *ORE) { 2188 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2189 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2190 2191 // Only outer loops with an explicit vectorization hint are supported. 2192 // Unannotated outer loops are ignored. 2193 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2194 return false; 2195 2196 Function *Fn = OuterLp->getHeader()->getParent(); 2197 if (!Hints.allowVectorization(Fn, OuterLp, 2198 true /*VectorizeOnlyWhenForced*/)) { 2199 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2200 return false; 2201 } 2202 2203 if (Hints.getInterleave() > 1) { 2204 // TODO: Interleave support is future work. 2205 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2206 "outer loops.\n"); 2207 Hints.emitRemarkWithHints(); 2208 return false; 2209 } 2210 2211 return true; 2212 } 2213 2214 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2215 OptimizationRemarkEmitter *ORE, 2216 SmallVectorImpl<Loop *> &V) { 2217 // Collect inner loops and outer loops without irreducible control flow. For 2218 // now, only collect outer loops that have explicit vectorization hints. If we 2219 // are stress testing the VPlan H-CFG construction, we collect the outermost 2220 // loop of every loop nest. 2221 if (L.isInnermost() || VPlanBuildStressTest || 2222 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2223 LoopBlocksRPO RPOT(&L); 2224 RPOT.perform(LI); 2225 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2226 V.push_back(&L); 2227 // TODO: Collect inner loops inside marked outer loops in case 2228 // vectorization fails for the outer loop. Do not invoke 2229 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2230 // already known to be reducible. We can use an inherited attribute for 2231 // that. 2232 return; 2233 } 2234 } 2235 for (Loop *InnerL : L) 2236 collectSupportedLoops(*InnerL, LI, ORE, V); 2237 } 2238 2239 namespace { 2240 2241 /// The LoopVectorize Pass. 2242 struct LoopVectorize : public FunctionPass { 2243 /// Pass identification, replacement for typeid 2244 static char ID; 2245 2246 LoopVectorizePass Impl; 2247 2248 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2249 bool VectorizeOnlyWhenForced = false) 2250 : FunctionPass(ID), 2251 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2252 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2253 } 2254 2255 bool runOnFunction(Function &F) override { 2256 if (skipFunction(F)) 2257 return false; 2258 2259 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2260 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2261 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2262 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2263 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2264 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2265 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2266 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2267 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2268 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2269 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2270 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2271 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2272 2273 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2274 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2275 2276 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2277 GetLAA, *ORE, PSI).MadeAnyChange; 2278 } 2279 2280 void getAnalysisUsage(AnalysisUsage &AU) const override { 2281 AU.addRequired<AssumptionCacheTracker>(); 2282 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2283 AU.addRequired<DominatorTreeWrapperPass>(); 2284 AU.addRequired<LoopInfoWrapperPass>(); 2285 AU.addRequired<ScalarEvolutionWrapperPass>(); 2286 AU.addRequired<TargetTransformInfoWrapperPass>(); 2287 AU.addRequired<AAResultsWrapperPass>(); 2288 AU.addRequired<LoopAccessLegacyAnalysis>(); 2289 AU.addRequired<DemandedBitsWrapperPass>(); 2290 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2291 AU.addRequired<InjectTLIMappingsLegacy>(); 2292 2293 // We currently do not preserve loopinfo/dominator analyses with outer loop 2294 // vectorization. Until this is addressed, mark these analyses as preserved 2295 // only for non-VPlan-native path. 2296 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2297 if (!EnableVPlanNativePath) { 2298 AU.addPreserved<LoopInfoWrapperPass>(); 2299 AU.addPreserved<DominatorTreeWrapperPass>(); 2300 } 2301 2302 AU.addPreserved<BasicAAWrapperPass>(); 2303 AU.addPreserved<GlobalsAAWrapperPass>(); 2304 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2305 } 2306 }; 2307 2308 } // end anonymous namespace 2309 2310 //===----------------------------------------------------------------------===// 2311 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2312 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2313 //===----------------------------------------------------------------------===// 2314 2315 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2316 // We need to place the broadcast of invariant variables outside the loop, 2317 // but only if it's proven safe to do so. Else, broadcast will be inside 2318 // vector loop body. 2319 Instruction *Instr = dyn_cast<Instruction>(V); 2320 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2321 (!Instr || 2322 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2323 // Place the code for broadcasting invariant variables in the new preheader. 2324 IRBuilder<>::InsertPointGuard Guard(Builder); 2325 if (SafeToHoist) 2326 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2327 2328 // Broadcast the scalar into all locations in the vector. 2329 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2330 2331 return Shuf; 2332 } 2333 2334 /// This function adds 2335 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2336 /// to each vector element of Val. The sequence starts at StartIndex. 2337 /// \p Opcode is relevant for FP induction variable. 2338 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2339 Instruction::BinaryOps BinOp, ElementCount VF, 2340 IRBuilder<> &Builder) { 2341 assert(VF.isVector() && "only vector VFs are supported"); 2342 2343 // Create and check the types. 2344 auto *ValVTy = cast<VectorType>(Val->getType()); 2345 ElementCount VLen = ValVTy->getElementCount(); 2346 2347 Type *STy = Val->getType()->getScalarType(); 2348 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2349 "Induction Step must be an integer or FP"); 2350 assert(Step->getType() == STy && "Step has wrong type"); 2351 2352 SmallVector<Constant *, 8> Indices; 2353 2354 // Create a vector of consecutive numbers from zero to VF. 2355 VectorType *InitVecValVTy = ValVTy; 2356 Type *InitVecValSTy = STy; 2357 if (STy->isFloatingPointTy()) { 2358 InitVecValSTy = 2359 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2360 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2361 } 2362 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2363 2364 // Splat the StartIdx 2365 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2366 2367 if (STy->isIntegerTy()) { 2368 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2369 Step = Builder.CreateVectorSplat(VLen, Step); 2370 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2371 // FIXME: The newly created binary instructions should contain nsw/nuw 2372 // flags, which can be found from the original scalar operations. 2373 Step = Builder.CreateMul(InitVec, Step); 2374 return Builder.CreateAdd(Val, Step, "induction"); 2375 } 2376 2377 // Floating point induction. 2378 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2379 "Binary Opcode should be specified for FP induction"); 2380 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2381 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2382 2383 Step = Builder.CreateVectorSplat(VLen, Step); 2384 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2385 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2386 } 2387 2388 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2389 const InductionDescriptor &II, Value *Step, Value *Start, 2390 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2391 IRBuilder<> &Builder = State.Builder; 2392 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2393 "Expected either an induction phi-node or a truncate of it!"); 2394 2395 // Construct the initial value of the vector IV in the vector loop preheader 2396 auto CurrIP = Builder.saveIP(); 2397 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2398 if (isa<TruncInst>(EntryVal)) { 2399 assert(Start->getType()->isIntegerTy() && 2400 "Truncation requires an integer type"); 2401 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2402 Step = Builder.CreateTrunc(Step, TruncType); 2403 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2404 } 2405 2406 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2407 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2408 Value *SteppedStart = getStepVector( 2409 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2410 2411 // We create vector phi nodes for both integer and floating-point induction 2412 // variables. Here, we determine the kind of arithmetic we will perform. 2413 Instruction::BinaryOps AddOp; 2414 Instruction::BinaryOps MulOp; 2415 if (Step->getType()->isIntegerTy()) { 2416 AddOp = Instruction::Add; 2417 MulOp = Instruction::Mul; 2418 } else { 2419 AddOp = II.getInductionOpcode(); 2420 MulOp = Instruction::FMul; 2421 } 2422 2423 // Multiply the vectorization factor by the step using integer or 2424 // floating-point arithmetic as appropriate. 2425 Type *StepType = Step->getType(); 2426 Value *RuntimeVF; 2427 if (Step->getType()->isFloatingPointTy()) 2428 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2429 else 2430 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2431 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2432 2433 // Create a vector splat to use in the induction update. 2434 // 2435 // FIXME: If the step is non-constant, we create the vector splat with 2436 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2437 // handle a constant vector splat. 2438 Value *SplatVF = isa<Constant>(Mul) 2439 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2440 : Builder.CreateVectorSplat(State.VF, Mul); 2441 Builder.restoreIP(CurrIP); 2442 2443 // We may need to add the step a number of times, depending on the unroll 2444 // factor. The last of those goes into the PHI. 2445 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2446 &*LoopVectorBody->getFirstInsertionPt()); 2447 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2448 Instruction *LastInduction = VecInd; 2449 for (unsigned Part = 0; Part < UF; ++Part) { 2450 State.set(Def, LastInduction, Part); 2451 2452 if (isa<TruncInst>(EntryVal)) 2453 addMetadata(LastInduction, EntryVal); 2454 2455 LastInduction = cast<Instruction>( 2456 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2457 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2458 } 2459 2460 // Move the last step to the end of the latch block. This ensures consistent 2461 // placement of all induction updates. 2462 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2463 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2464 LastInduction->moveBefore(Br); 2465 LastInduction->setName("vec.ind.next"); 2466 2467 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2468 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2469 } 2470 2471 void InnerLoopVectorizer::widenIntOrFpInduction( 2472 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2473 Value *CanonicalIV) { 2474 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2475 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2476 TruncInst *Trunc = Def->getTruncInst(); 2477 IRBuilder<> &Builder = State.Builder; 2478 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2479 assert(!State.VF.isZero() && "VF must be non-zero"); 2480 2481 // The value from the original loop to which we are mapping the new induction 2482 // variable. 2483 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2484 2485 auto &DL = EntryVal->getModule()->getDataLayout(); 2486 2487 // Generate code for the induction step. Note that induction steps are 2488 // required to be loop-invariant 2489 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2490 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2491 "Induction step should be loop invariant"); 2492 if (PSE.getSE()->isSCEVable(IV->getType())) { 2493 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2494 return Exp.expandCodeFor(Step, Step->getType(), 2495 State.CFG.VectorPreHeader->getTerminator()); 2496 } 2497 return cast<SCEVUnknown>(Step)->getValue(); 2498 }; 2499 2500 // The scalar value to broadcast. This is derived from the canonical 2501 // induction variable. If a truncation type is given, truncate the canonical 2502 // induction variable and step. Otherwise, derive these values from the 2503 // induction descriptor. 2504 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2505 Value *ScalarIV = CanonicalIV; 2506 Type *NeededType = IV->getType(); 2507 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2508 ScalarIV = 2509 NeededType->isIntegerTy() 2510 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2511 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2512 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2513 State.CFG.PrevBB); 2514 ScalarIV->setName("offset.idx"); 2515 } 2516 if (Trunc) { 2517 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2518 assert(Step->getType()->isIntegerTy() && 2519 "Truncation requires an integer step"); 2520 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2521 Step = Builder.CreateTrunc(Step, TruncType); 2522 } 2523 return ScalarIV; 2524 }; 2525 2526 // Fast-math-flags propagate from the original induction instruction. 2527 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2528 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2529 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2530 2531 // Now do the actual transformations, and start with creating the step value. 2532 Value *Step = CreateStepValue(ID.getStep()); 2533 if (State.VF.isScalar()) { 2534 Value *ScalarIV = CreateScalarIV(Step); 2535 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2536 Step->getType()->getScalarSizeInBits()); 2537 2538 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2539 if (IncOp == Instruction::BinaryOpsEnd) 2540 IncOp = Instruction::Add; 2541 for (unsigned Part = 0; Part < UF; ++Part) { 2542 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2543 Instruction::BinaryOps MulOp = Instruction::Mul; 2544 if (Step->getType()->isFloatingPointTy()) { 2545 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2546 MulOp = Instruction::FMul; 2547 } 2548 2549 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2550 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2551 State.set(Def, EntryPart, Part); 2552 if (Trunc) { 2553 assert(!Step->getType()->isFloatingPointTy() && 2554 "fp inductions shouldn't be truncated"); 2555 addMetadata(EntryPart, Trunc); 2556 } 2557 } 2558 return; 2559 } 2560 2561 // Create a new independent vector induction variable, if one is needed. 2562 if (Def->needsVectorIV()) 2563 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2564 2565 if (Def->needsScalarIV()) { 2566 // Create scalar steps that can be used by instructions we will later 2567 // scalarize. Note that the addition of the scalar steps will not increase 2568 // the number of instructions in the loop in the common case prior to 2569 // InstCombine. We will be trading one vector extract for each scalar step. 2570 Value *ScalarIV = CreateScalarIV(Step); 2571 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2572 } 2573 } 2574 2575 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2576 Instruction *EntryVal, 2577 const InductionDescriptor &ID, 2578 VPValue *Def, 2579 VPTransformState &State) { 2580 IRBuilder<> &Builder = State.Builder; 2581 // We shouldn't have to build scalar steps if we aren't vectorizing. 2582 assert(State.VF.isVector() && "VF should be greater than one"); 2583 // Get the value type and ensure it and the step have the same integer type. 2584 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2585 assert(ScalarIVTy == Step->getType() && 2586 "Val and Step should have the same type"); 2587 2588 // We build scalar steps for both integer and floating-point induction 2589 // variables. Here, we determine the kind of arithmetic we will perform. 2590 Instruction::BinaryOps AddOp; 2591 Instruction::BinaryOps MulOp; 2592 if (ScalarIVTy->isIntegerTy()) { 2593 AddOp = Instruction::Add; 2594 MulOp = Instruction::Mul; 2595 } else { 2596 AddOp = ID.getInductionOpcode(); 2597 MulOp = Instruction::FMul; 2598 } 2599 2600 // Determine the number of scalars we need to generate for each unroll 2601 // iteration. 2602 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2603 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2604 // Compute the scalar steps and save the results in State. 2605 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2606 ScalarIVTy->getScalarSizeInBits()); 2607 Type *VecIVTy = nullptr; 2608 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2609 if (!FirstLaneOnly && State.VF.isScalable()) { 2610 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2611 UnitStepVec = 2612 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2613 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2614 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2615 } 2616 2617 for (unsigned Part = 0; Part < State.UF; ++Part) { 2618 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2619 2620 if (!FirstLaneOnly && State.VF.isScalable()) { 2621 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2622 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2623 if (ScalarIVTy->isFloatingPointTy()) 2624 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2625 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2626 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2627 State.set(Def, Add, Part); 2628 // It's useful to record the lane values too for the known minimum number 2629 // of elements so we do those below. This improves the code quality when 2630 // trying to extract the first element, for example. 2631 } 2632 2633 if (ScalarIVTy->isFloatingPointTy()) 2634 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2635 2636 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2637 Value *StartIdx = Builder.CreateBinOp( 2638 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2639 // The step returned by `createStepForVF` is a runtime-evaluated value 2640 // when VF is scalable. Otherwise, it should be folded into a Constant. 2641 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2642 "Expected StartIdx to be folded to a constant when VF is not " 2643 "scalable"); 2644 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2645 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2646 State.set(Def, Add, VPIteration(Part, Lane)); 2647 } 2648 } 2649 } 2650 2651 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2652 const VPIteration &Instance, 2653 VPTransformState &State) { 2654 Value *ScalarInst = State.get(Def, Instance); 2655 Value *VectorValue = State.get(Def, Instance.Part); 2656 VectorValue = Builder.CreateInsertElement( 2657 VectorValue, ScalarInst, 2658 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2659 State.set(Def, VectorValue, Instance.Part); 2660 } 2661 2662 // Return whether we allow using masked interleave-groups (for dealing with 2663 // strided loads/stores that reside in predicated blocks, or for dealing 2664 // with gaps). 2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2666 // If an override option has been passed in for interleaved accesses, use it. 2667 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2668 return EnableMaskedInterleavedMemAccesses; 2669 2670 return TTI.enableMaskedInterleavedAccessVectorization(); 2671 } 2672 2673 // Try to vectorize the interleave group that \p Instr belongs to. 2674 // 2675 // E.g. Translate following interleaved load group (factor = 3): 2676 // for (i = 0; i < N; i+=3) { 2677 // R = Pic[i]; // Member of index 0 2678 // G = Pic[i+1]; // Member of index 1 2679 // B = Pic[i+2]; // Member of index 2 2680 // ... // do something to R, G, B 2681 // } 2682 // To: 2683 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2684 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2685 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2686 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2687 // 2688 // Or translate following interleaved store group (factor = 3): 2689 // for (i = 0; i < N; i+=3) { 2690 // ... do something to R, G, B 2691 // Pic[i] = R; // Member of index 0 2692 // Pic[i+1] = G; // Member of index 1 2693 // Pic[i+2] = B; // Member of index 2 2694 // } 2695 // To: 2696 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2697 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2698 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2699 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2700 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2701 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2702 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2703 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2704 VPValue *BlockInMask) { 2705 Instruction *Instr = Group->getInsertPos(); 2706 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2707 2708 // Prepare for the vector type of the interleaved load/store. 2709 Type *ScalarTy = getLoadStoreType(Instr); 2710 unsigned InterleaveFactor = Group->getFactor(); 2711 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2712 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2713 2714 // Prepare for the new pointers. 2715 SmallVector<Value *, 2> AddrParts; 2716 unsigned Index = Group->getIndex(Instr); 2717 2718 // TODO: extend the masked interleaved-group support to reversed access. 2719 assert((!BlockInMask || !Group->isReverse()) && 2720 "Reversed masked interleave-group not supported."); 2721 2722 // If the group is reverse, adjust the index to refer to the last vector lane 2723 // instead of the first. We adjust the index from the first vector lane, 2724 // rather than directly getting the pointer for lane VF - 1, because the 2725 // pointer operand of the interleaved access is supposed to be uniform. For 2726 // uniform instructions, we're only required to generate a value for the 2727 // first vector lane in each unroll iteration. 2728 if (Group->isReverse()) 2729 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2730 2731 for (unsigned Part = 0; Part < UF; Part++) { 2732 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2733 setDebugLocFromInst(AddrPart); 2734 2735 // Notice current instruction could be any index. Need to adjust the address 2736 // to the member of index 0. 2737 // 2738 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2739 // b = A[i]; // Member of index 0 2740 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2741 // 2742 // E.g. A[i+1] = a; // Member of index 1 2743 // A[i] = b; // Member of index 0 2744 // A[i+2] = c; // Member of index 2 (Current instruction) 2745 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2746 2747 bool InBounds = false; 2748 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2749 InBounds = gep->isInBounds(); 2750 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2751 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2752 2753 // Cast to the vector pointer type. 2754 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2755 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2756 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2757 } 2758 2759 setDebugLocFromInst(Instr); 2760 Value *PoisonVec = PoisonValue::get(VecTy); 2761 2762 Value *MaskForGaps = nullptr; 2763 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2764 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2765 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2766 } 2767 2768 // Vectorize the interleaved load group. 2769 if (isa<LoadInst>(Instr)) { 2770 // For each unroll part, create a wide load for the group. 2771 SmallVector<Value *, 2> NewLoads; 2772 for (unsigned Part = 0; Part < UF; Part++) { 2773 Instruction *NewLoad; 2774 if (BlockInMask || MaskForGaps) { 2775 assert(useMaskedInterleavedAccesses(*TTI) && 2776 "masked interleaved groups are not allowed."); 2777 Value *GroupMask = MaskForGaps; 2778 if (BlockInMask) { 2779 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2780 Value *ShuffledMask = Builder.CreateShuffleVector( 2781 BlockInMaskPart, 2782 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2783 "interleaved.mask"); 2784 GroupMask = MaskForGaps 2785 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2786 MaskForGaps) 2787 : ShuffledMask; 2788 } 2789 NewLoad = 2790 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2791 GroupMask, PoisonVec, "wide.masked.vec"); 2792 } 2793 else 2794 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2795 Group->getAlign(), "wide.vec"); 2796 Group->addMetadata(NewLoad); 2797 NewLoads.push_back(NewLoad); 2798 } 2799 2800 // For each member in the group, shuffle out the appropriate data from the 2801 // wide loads. 2802 unsigned J = 0; 2803 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2804 Instruction *Member = Group->getMember(I); 2805 2806 // Skip the gaps in the group. 2807 if (!Member) 2808 continue; 2809 2810 auto StrideMask = 2811 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2812 for (unsigned Part = 0; Part < UF; Part++) { 2813 Value *StridedVec = Builder.CreateShuffleVector( 2814 NewLoads[Part], StrideMask, "strided.vec"); 2815 2816 // If this member has different type, cast the result type. 2817 if (Member->getType() != ScalarTy) { 2818 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2819 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2820 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2821 } 2822 2823 if (Group->isReverse()) 2824 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2825 2826 State.set(VPDefs[J], StridedVec, Part); 2827 } 2828 ++J; 2829 } 2830 return; 2831 } 2832 2833 // The sub vector type for current instruction. 2834 auto *SubVT = VectorType::get(ScalarTy, VF); 2835 2836 // Vectorize the interleaved store group. 2837 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2838 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2839 "masked interleaved groups are not allowed."); 2840 assert((!MaskForGaps || !VF.isScalable()) && 2841 "masking gaps for scalable vectors is not yet supported."); 2842 for (unsigned Part = 0; Part < UF; Part++) { 2843 // Collect the stored vector from each member. 2844 SmallVector<Value *, 4> StoredVecs; 2845 for (unsigned i = 0; i < InterleaveFactor; i++) { 2846 assert((Group->getMember(i) || MaskForGaps) && 2847 "Fail to get a member from an interleaved store group"); 2848 Instruction *Member = Group->getMember(i); 2849 2850 // Skip the gaps in the group. 2851 if (!Member) { 2852 Value *Undef = PoisonValue::get(SubVT); 2853 StoredVecs.push_back(Undef); 2854 continue; 2855 } 2856 2857 Value *StoredVec = State.get(StoredValues[i], Part); 2858 2859 if (Group->isReverse()) 2860 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2861 2862 // If this member has different type, cast it to a unified type. 2863 2864 if (StoredVec->getType() != SubVT) 2865 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2866 2867 StoredVecs.push_back(StoredVec); 2868 } 2869 2870 // Concatenate all vectors into a wide vector. 2871 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2872 2873 // Interleave the elements in the wide vector. 2874 Value *IVec = Builder.CreateShuffleVector( 2875 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2876 "interleaved.vec"); 2877 2878 Instruction *NewStoreInstr; 2879 if (BlockInMask || MaskForGaps) { 2880 Value *GroupMask = MaskForGaps; 2881 if (BlockInMask) { 2882 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2883 Value *ShuffledMask = Builder.CreateShuffleVector( 2884 BlockInMaskPart, 2885 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2886 "interleaved.mask"); 2887 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2888 ShuffledMask, MaskForGaps) 2889 : ShuffledMask; 2890 } 2891 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2892 Group->getAlign(), GroupMask); 2893 } else 2894 NewStoreInstr = 2895 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2896 2897 Group->addMetadata(NewStoreInstr); 2898 } 2899 } 2900 2901 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2902 VPReplicateRecipe *RepRecipe, 2903 const VPIteration &Instance, 2904 bool IfPredicateInstr, 2905 VPTransformState &State) { 2906 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2907 2908 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2909 // the first lane and part. 2910 if (isa<NoAliasScopeDeclInst>(Instr)) 2911 if (!Instance.isFirstIteration()) 2912 return; 2913 2914 setDebugLocFromInst(Instr); 2915 2916 // Does this instruction return a value ? 2917 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2918 2919 Instruction *Cloned = Instr->clone(); 2920 if (!IsVoidRetTy) 2921 Cloned->setName(Instr->getName() + ".cloned"); 2922 2923 // If the scalarized instruction contributes to the address computation of a 2924 // widen masked load/store which was in a basic block that needed predication 2925 // and is not predicated after vectorization, we can't propagate 2926 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2927 // instruction could feed a poison value to the base address of the widen 2928 // load/store. 2929 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2930 Cloned->dropPoisonGeneratingFlags(); 2931 2932 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2933 Builder.GetInsertPoint()); 2934 // Replace the operands of the cloned instructions with their scalar 2935 // equivalents in the new loop. 2936 for (auto &I : enumerate(RepRecipe->operands())) { 2937 auto InputInstance = Instance; 2938 VPValue *Operand = I.value(); 2939 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2940 if (OperandR && OperandR->isUniform()) 2941 InputInstance.Lane = VPLane::getFirstLane(); 2942 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2943 } 2944 addNewMetadata(Cloned, Instr); 2945 2946 // Place the cloned scalar in the new loop. 2947 Builder.Insert(Cloned); 2948 2949 State.set(RepRecipe, Cloned, Instance); 2950 2951 // If we just cloned a new assumption, add it the assumption cache. 2952 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2953 AC->registerAssumption(II); 2954 2955 // End if-block. 2956 if (IfPredicateInstr) 2957 PredicatedInstructions.push_back(Cloned); 2958 } 2959 2960 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2961 BasicBlock *Header = L->getHeader(); 2962 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2963 2964 IRBuilder<> B(Header->getTerminator()); 2965 Instruction *OldInst = 2966 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2967 setDebugLocFromInst(OldInst, &B); 2968 2969 // Connect the header to the exit and header blocks and replace the old 2970 // terminator. 2971 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2972 2973 // Now we have two terminators. Remove the old one from the block. 2974 Header->getTerminator()->eraseFromParent(); 2975 } 2976 2977 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2978 if (TripCount) 2979 return TripCount; 2980 2981 assert(L && "Create Trip Count for null loop."); 2982 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2983 // Find the loop boundaries. 2984 ScalarEvolution *SE = PSE.getSE(); 2985 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2986 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2987 "Invalid loop count"); 2988 2989 Type *IdxTy = Legal->getWidestInductionType(); 2990 assert(IdxTy && "No type for induction"); 2991 2992 // The exit count might have the type of i64 while the phi is i32. This can 2993 // happen if we have an induction variable that is sign extended before the 2994 // compare. The only way that we get a backedge taken count is that the 2995 // induction variable was signed and as such will not overflow. In such a case 2996 // truncation is legal. 2997 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2998 IdxTy->getPrimitiveSizeInBits()) 2999 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3000 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3001 3002 // Get the total trip count from the count by adding 1. 3003 const SCEV *ExitCount = SE->getAddExpr( 3004 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3005 3006 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3007 3008 // Expand the trip count and place the new instructions in the preheader. 3009 // Notice that the pre-header does not change, only the loop body. 3010 SCEVExpander Exp(*SE, DL, "induction"); 3011 3012 // Count holds the overall loop count (N). 3013 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3014 L->getLoopPreheader()->getTerminator()); 3015 3016 if (TripCount->getType()->isPointerTy()) 3017 TripCount = 3018 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3019 L->getLoopPreheader()->getTerminator()); 3020 3021 return TripCount; 3022 } 3023 3024 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3025 if (VectorTripCount) 3026 return VectorTripCount; 3027 3028 Value *TC = getOrCreateTripCount(L); 3029 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3030 3031 Type *Ty = TC->getType(); 3032 // This is where we can make the step a runtime constant. 3033 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3034 3035 // If the tail is to be folded by masking, round the number of iterations N 3036 // up to a multiple of Step instead of rounding down. This is done by first 3037 // adding Step-1 and then rounding down. Note that it's ok if this addition 3038 // overflows: the vector induction variable will eventually wrap to zero given 3039 // that it starts at zero and its Step is a power of two; the loop will then 3040 // exit, with the last early-exit vector comparison also producing all-true. 3041 if (Cost->foldTailByMasking()) { 3042 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3043 "VF*UF must be a power of 2 when folding tail by masking"); 3044 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3045 TC = Builder.CreateAdd( 3046 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3047 } 3048 3049 // Now we need to generate the expression for the part of the loop that the 3050 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3051 // iterations are not required for correctness, or N - Step, otherwise. Step 3052 // is equal to the vectorization factor (number of SIMD elements) times the 3053 // unroll factor (number of SIMD instructions). 3054 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3055 3056 // There are cases where we *must* run at least one iteration in the remainder 3057 // loop. See the cost model for when this can happen. If the step evenly 3058 // divides the trip count, we set the remainder to be equal to the step. If 3059 // the step does not evenly divide the trip count, no adjustment is necessary 3060 // since there will already be scalar iterations. Note that the minimum 3061 // iterations check ensures that N >= Step. 3062 if (Cost->requiresScalarEpilogue(VF)) { 3063 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3064 R = Builder.CreateSelect(IsZero, Step, R); 3065 } 3066 3067 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3068 3069 return VectorTripCount; 3070 } 3071 3072 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3073 const DataLayout &DL) { 3074 // Verify that V is a vector type with same number of elements as DstVTy. 3075 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3076 unsigned VF = DstFVTy->getNumElements(); 3077 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3078 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3079 Type *SrcElemTy = SrcVecTy->getElementType(); 3080 Type *DstElemTy = DstFVTy->getElementType(); 3081 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3082 "Vector elements must have same size"); 3083 3084 // Do a direct cast if element types are castable. 3085 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3086 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3087 } 3088 // V cannot be directly casted to desired vector type. 3089 // May happen when V is a floating point vector but DstVTy is a vector of 3090 // pointers or vice-versa. Handle this using a two-step bitcast using an 3091 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3092 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3093 "Only one type should be a pointer type"); 3094 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3095 "Only one type should be a floating point type"); 3096 Type *IntTy = 3097 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3098 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3099 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3100 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3101 } 3102 3103 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3104 BasicBlock *Bypass) { 3105 Value *Count = getOrCreateTripCount(L); 3106 // Reuse existing vector loop preheader for TC checks. 3107 // Note that new preheader block is generated for vector loop. 3108 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3109 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3110 3111 // Generate code to check if the loop's trip count is less than VF * UF, or 3112 // equal to it in case a scalar epilogue is required; this implies that the 3113 // vector trip count is zero. This check also covers the case where adding one 3114 // to the backedge-taken count overflowed leading to an incorrect trip count 3115 // of zero. In this case we will also jump to the scalar loop. 3116 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3117 : ICmpInst::ICMP_ULT; 3118 3119 // If tail is to be folded, vector loop takes care of all iterations. 3120 Value *CheckMinIters = Builder.getFalse(); 3121 if (!Cost->foldTailByMasking()) { 3122 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3123 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3124 } 3125 // Create new preheader for vector loop. 3126 LoopVectorPreHeader = 3127 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3128 "vector.ph"); 3129 3130 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3131 DT->getNode(Bypass)->getIDom()) && 3132 "TC check is expected to dominate Bypass"); 3133 3134 // Update dominator for Bypass & LoopExit (if needed). 3135 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3136 if (!Cost->requiresScalarEpilogue(VF)) 3137 // If there is an epilogue which must run, there's no edge from the 3138 // middle block to exit blocks and thus no need to update the immediate 3139 // dominator of the exit blocks. 3140 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3141 3142 ReplaceInstWithInst( 3143 TCCheckBlock->getTerminator(), 3144 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3145 LoopBypassBlocks.push_back(TCCheckBlock); 3146 } 3147 3148 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3149 3150 BasicBlock *const SCEVCheckBlock = 3151 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3152 if (!SCEVCheckBlock) 3153 return nullptr; 3154 3155 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3156 (OptForSizeBasedOnProfile && 3157 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3158 "Cannot SCEV check stride or overflow when optimizing for size"); 3159 3160 3161 // Update dominator only if this is first RT check. 3162 if (LoopBypassBlocks.empty()) { 3163 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3164 if (!Cost->requiresScalarEpilogue(VF)) 3165 // If there is an epilogue which must run, there's no edge from the 3166 // middle block to exit blocks and thus no need to update the immediate 3167 // dominator of the exit blocks. 3168 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3169 } 3170 3171 LoopBypassBlocks.push_back(SCEVCheckBlock); 3172 AddedSafetyChecks = true; 3173 return SCEVCheckBlock; 3174 } 3175 3176 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3177 BasicBlock *Bypass) { 3178 // VPlan-native path does not do any analysis for runtime checks currently. 3179 if (EnableVPlanNativePath) 3180 return nullptr; 3181 3182 BasicBlock *const MemCheckBlock = 3183 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3184 3185 // Check if we generated code that checks in runtime if arrays overlap. We put 3186 // the checks into a separate block to make the more common case of few 3187 // elements faster. 3188 if (!MemCheckBlock) 3189 return nullptr; 3190 3191 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3192 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3193 "Cannot emit memory checks when optimizing for size, unless forced " 3194 "to vectorize."); 3195 ORE->emit([&]() { 3196 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3197 L->getStartLoc(), L->getHeader()) 3198 << "Code-size may be reduced by not forcing " 3199 "vectorization, or by source-code modifications " 3200 "eliminating the need for runtime checks " 3201 "(e.g., adding 'restrict')."; 3202 }); 3203 } 3204 3205 LoopBypassBlocks.push_back(MemCheckBlock); 3206 3207 AddedSafetyChecks = true; 3208 3209 // We currently don't use LoopVersioning for the actual loop cloning but we 3210 // still use it to add the noalias metadata. 3211 LVer = std::make_unique<LoopVersioning>( 3212 *Legal->getLAI(), 3213 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3214 DT, PSE.getSE()); 3215 LVer->prepareNoAliasMetadata(); 3216 return MemCheckBlock; 3217 } 3218 3219 Value *InnerLoopVectorizer::emitTransformedIndex( 3220 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3221 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3222 3223 SCEVExpander Exp(*SE, DL, "induction"); 3224 auto Step = ID.getStep(); 3225 auto StartValue = ID.getStartValue(); 3226 assert(Index->getType()->getScalarType() == Step->getType() && 3227 "Index scalar type does not match StepValue type"); 3228 3229 // Note: the IR at this point is broken. We cannot use SE to create any new 3230 // SCEV and then expand it, hoping that SCEV's simplification will give us 3231 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3232 // lead to various SCEV crashes. So all we can do is to use builder and rely 3233 // on InstCombine for future simplifications. Here we handle some trivial 3234 // cases only. 3235 auto CreateAdd = [&B](Value *X, Value *Y) { 3236 assert(X->getType() == Y->getType() && "Types don't match!"); 3237 if (auto *CX = dyn_cast<ConstantInt>(X)) 3238 if (CX->isZero()) 3239 return Y; 3240 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3241 if (CY->isZero()) 3242 return X; 3243 return B.CreateAdd(X, Y); 3244 }; 3245 3246 // We allow X to be a vector type, in which case Y will potentially be 3247 // splatted into a vector with the same element count. 3248 auto CreateMul = [&B](Value *X, Value *Y) { 3249 assert(X->getType()->getScalarType() == Y->getType() && 3250 "Types don't match!"); 3251 if (auto *CX = dyn_cast<ConstantInt>(X)) 3252 if (CX->isOne()) 3253 return Y; 3254 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3255 if (CY->isOne()) 3256 return X; 3257 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3258 if (XVTy && !isa<VectorType>(Y->getType())) 3259 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3260 return B.CreateMul(X, Y); 3261 }; 3262 3263 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3264 // loop, choose the end of the vector loop header (=VectorHeader), because 3265 // the DomTree is not kept up-to-date for additional blocks generated in the 3266 // vector loop. By using the header as insertion point, we guarantee that the 3267 // expanded instructions dominate all their uses. 3268 auto GetInsertPoint = [this, &B, VectorHeader]() { 3269 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3270 if (InsertBB != LoopVectorBody && 3271 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3272 return VectorHeader->getTerminator(); 3273 return &*B.GetInsertPoint(); 3274 }; 3275 3276 switch (ID.getKind()) { 3277 case InductionDescriptor::IK_IntInduction: { 3278 assert(!isa<VectorType>(Index->getType()) && 3279 "Vector indices not supported for integer inductions yet"); 3280 assert(Index->getType() == StartValue->getType() && 3281 "Index type does not match StartValue type"); 3282 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3283 return B.CreateSub(StartValue, Index); 3284 auto *Offset = CreateMul( 3285 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3286 return CreateAdd(StartValue, Offset); 3287 } 3288 case InductionDescriptor::IK_PtrInduction: { 3289 assert(isa<SCEVConstant>(Step) && 3290 "Expected constant step for pointer induction"); 3291 return B.CreateGEP( 3292 ID.getElementType(), StartValue, 3293 CreateMul(Index, 3294 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3295 GetInsertPoint()))); 3296 } 3297 case InductionDescriptor::IK_FpInduction: { 3298 assert(!isa<VectorType>(Index->getType()) && 3299 "Vector indices not supported for FP inductions yet"); 3300 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3301 auto InductionBinOp = ID.getInductionBinOp(); 3302 assert(InductionBinOp && 3303 (InductionBinOp->getOpcode() == Instruction::FAdd || 3304 InductionBinOp->getOpcode() == Instruction::FSub) && 3305 "Original bin op should be defined for FP induction"); 3306 3307 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3308 Value *MulExp = B.CreateFMul(StepValue, Index); 3309 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3310 "induction"); 3311 } 3312 case InductionDescriptor::IK_NoInduction: 3313 return nullptr; 3314 } 3315 llvm_unreachable("invalid enum"); 3316 } 3317 3318 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3319 LoopScalarBody = OrigLoop->getHeader(); 3320 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3321 assert(LoopVectorPreHeader && "Invalid loop structure"); 3322 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3323 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3324 "multiple exit loop without required epilogue?"); 3325 3326 LoopMiddleBlock = 3327 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3328 LI, nullptr, Twine(Prefix) + "middle.block"); 3329 LoopScalarPreHeader = 3330 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3331 nullptr, Twine(Prefix) + "scalar.ph"); 3332 3333 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3334 3335 // Set up the middle block terminator. Two cases: 3336 // 1) If we know that we must execute the scalar epilogue, emit an 3337 // unconditional branch. 3338 // 2) Otherwise, we must have a single unique exit block (due to how we 3339 // implement the multiple exit case). In this case, set up a conditonal 3340 // branch from the middle block to the loop scalar preheader, and the 3341 // exit block. completeLoopSkeleton will update the condition to use an 3342 // iteration check, if required to decide whether to execute the remainder. 3343 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3344 BranchInst::Create(LoopScalarPreHeader) : 3345 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3346 Builder.getTrue()); 3347 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3348 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3349 3350 // We intentionally don't let SplitBlock to update LoopInfo since 3351 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3352 // LoopVectorBody is explicitly added to the correct place few lines later. 3353 LoopVectorBody = 3354 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3355 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3356 3357 // Update dominator for loop exit. 3358 if (!Cost->requiresScalarEpilogue(VF)) 3359 // If there is an epilogue which must run, there's no edge from the 3360 // middle block to exit blocks and thus no need to update the immediate 3361 // dominator of the exit blocks. 3362 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3363 3364 // Create and register the new vector loop. 3365 Loop *Lp = LI->AllocateLoop(); 3366 Loop *ParentLoop = OrigLoop->getParentLoop(); 3367 3368 // Insert the new loop into the loop nest and register the new basic blocks 3369 // before calling any utilities such as SCEV that require valid LoopInfo. 3370 if (ParentLoop) { 3371 ParentLoop->addChildLoop(Lp); 3372 } else { 3373 LI->addTopLevelLoop(Lp); 3374 } 3375 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3376 return Lp; 3377 } 3378 3379 void InnerLoopVectorizer::createInductionResumeValues( 3380 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3381 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3382 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3383 "Inconsistent information about additional bypass."); 3384 3385 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3386 assert(VectorTripCount && L && "Expected valid arguments"); 3387 // We are going to resume the execution of the scalar loop. 3388 // Go over all of the induction variables that we found and fix the 3389 // PHIs that are left in the scalar version of the loop. 3390 // The starting values of PHI nodes depend on the counter of the last 3391 // iteration in the vectorized loop. 3392 // If we come from a bypass edge then we need to start from the original 3393 // start value. 3394 Instruction *OldInduction = Legal->getPrimaryInduction(); 3395 for (auto &InductionEntry : Legal->getInductionVars()) { 3396 PHINode *OrigPhi = InductionEntry.first; 3397 InductionDescriptor II = InductionEntry.second; 3398 3399 // Create phi nodes to merge from the backedge-taken check block. 3400 PHINode *BCResumeVal = 3401 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3402 LoopScalarPreHeader->getTerminator()); 3403 // Copy original phi DL over to the new one. 3404 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3405 Value *&EndValue = IVEndValues[OrigPhi]; 3406 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3407 if (OrigPhi == OldInduction) { 3408 // We know what the end value is. 3409 EndValue = VectorTripCount; 3410 } else { 3411 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3412 3413 // Fast-math-flags propagate from the original induction instruction. 3414 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3415 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3416 3417 Type *StepType = II.getStep()->getType(); 3418 Instruction::CastOps CastOp = 3419 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3420 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3421 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3422 EndValue = 3423 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3424 EndValue->setName("ind.end"); 3425 3426 // Compute the end value for the additional bypass (if applicable). 3427 if (AdditionalBypass.first) { 3428 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3429 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3430 StepType, true); 3431 CRD = 3432 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3433 EndValueFromAdditionalBypass = 3434 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3435 EndValueFromAdditionalBypass->setName("ind.end"); 3436 } 3437 } 3438 // The new PHI merges the original incoming value, in case of a bypass, 3439 // or the value at the end of the vectorized loop. 3440 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3441 3442 // Fix the scalar body counter (PHI node). 3443 // The old induction's phi node in the scalar body needs the truncated 3444 // value. 3445 for (BasicBlock *BB : LoopBypassBlocks) 3446 BCResumeVal->addIncoming(II.getStartValue(), BB); 3447 3448 if (AdditionalBypass.first) 3449 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3450 EndValueFromAdditionalBypass); 3451 3452 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3453 } 3454 } 3455 3456 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3457 MDNode *OrigLoopID) { 3458 assert(L && "Expected valid loop."); 3459 3460 // The trip counts should be cached by now. 3461 Value *Count = getOrCreateTripCount(L); 3462 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3463 3464 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3465 3466 // Add a check in the middle block to see if we have completed 3467 // all of the iterations in the first vector loop. Three cases: 3468 // 1) If we require a scalar epilogue, there is no conditional branch as 3469 // we unconditionally branch to the scalar preheader. Do nothing. 3470 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3471 // Thus if tail is to be folded, we know we don't need to run the 3472 // remainder and we can use the previous value for the condition (true). 3473 // 3) Otherwise, construct a runtime check. 3474 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3475 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3476 Count, VectorTripCount, "cmp.n", 3477 LoopMiddleBlock->getTerminator()); 3478 3479 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3480 // of the corresponding compare because they may have ended up with 3481 // different line numbers and we want to avoid awkward line stepping while 3482 // debugging. Eg. if the compare has got a line number inside the loop. 3483 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3484 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3485 } 3486 3487 // Get ready to start creating new instructions into the vectorized body. 3488 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3489 "Inconsistent vector loop preheader"); 3490 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3491 3492 #ifdef EXPENSIVE_CHECKS 3493 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3494 LI->verify(*DT); 3495 #endif 3496 3497 return LoopVectorPreHeader; 3498 } 3499 3500 std::pair<BasicBlock *, Value *> 3501 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3502 /* 3503 In this function we generate a new loop. The new loop will contain 3504 the vectorized instructions while the old loop will continue to run the 3505 scalar remainder. 3506 3507 [ ] <-- loop iteration number check. 3508 / | 3509 / v 3510 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3511 | / | 3512 | / v 3513 || [ ] <-- vector pre header. 3514 |/ | 3515 | v 3516 | [ ] \ 3517 | [ ]_| <-- vector loop. 3518 | | 3519 | v 3520 \ -[ ] <--- middle-block. 3521 \/ | 3522 /\ v 3523 | ->[ ] <--- new preheader. 3524 | | 3525 (opt) v <-- edge from middle to exit iff epilogue is not required. 3526 | [ ] \ 3527 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3528 \ | 3529 \ v 3530 >[ ] <-- exit block(s). 3531 ... 3532 */ 3533 3534 // Get the metadata of the original loop before it gets modified. 3535 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3536 3537 // Workaround! Compute the trip count of the original loop and cache it 3538 // before we start modifying the CFG. This code has a systemic problem 3539 // wherein it tries to run analysis over partially constructed IR; this is 3540 // wrong, and not simply for SCEV. The trip count of the original loop 3541 // simply happens to be prone to hitting this in practice. In theory, we 3542 // can hit the same issue for any SCEV, or ValueTracking query done during 3543 // mutation. See PR49900. 3544 getOrCreateTripCount(OrigLoop); 3545 3546 // Create an empty vector loop, and prepare basic blocks for the runtime 3547 // checks. 3548 Loop *Lp = createVectorLoopSkeleton(""); 3549 3550 // Now, compare the new count to zero. If it is zero skip the vector loop and 3551 // jump to the scalar loop. This check also covers the case where the 3552 // backedge-taken count is uint##_max: adding one to it will overflow leading 3553 // to an incorrect trip count of zero. In this (rare) case we will also jump 3554 // to the scalar loop. 3555 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3556 3557 // Generate the code to check any assumptions that we've made for SCEV 3558 // expressions. 3559 emitSCEVChecks(Lp, LoopScalarPreHeader); 3560 3561 // Generate the code that checks in runtime if arrays overlap. We put the 3562 // checks into a separate block to make the more common case of few elements 3563 // faster. 3564 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3565 3566 createHeaderBranch(Lp); 3567 3568 // Emit phis for the new starting index of the scalar loop. 3569 createInductionResumeValues(Lp); 3570 3571 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3572 } 3573 3574 // Fix up external users of the induction variable. At this point, we are 3575 // in LCSSA form, with all external PHIs that use the IV having one input value, 3576 // coming from the remainder loop. We need those PHIs to also have a correct 3577 // value for the IV when arriving directly from the middle block. 3578 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3579 const InductionDescriptor &II, 3580 Value *CountRoundDown, Value *EndValue, 3581 BasicBlock *MiddleBlock) { 3582 // There are two kinds of external IV usages - those that use the value 3583 // computed in the last iteration (the PHI) and those that use the penultimate 3584 // value (the value that feeds into the phi from the loop latch). 3585 // We allow both, but they, obviously, have different values. 3586 3587 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3588 3589 DenseMap<Value *, Value *> MissingVals; 3590 3591 // An external user of the last iteration's value should see the value that 3592 // the remainder loop uses to initialize its own IV. 3593 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3594 for (User *U : PostInc->users()) { 3595 Instruction *UI = cast<Instruction>(U); 3596 if (!OrigLoop->contains(UI)) { 3597 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3598 MissingVals[UI] = EndValue; 3599 } 3600 } 3601 3602 // An external user of the penultimate value need to see EndValue - Step. 3603 // The simplest way to get this is to recompute it from the constituent SCEVs, 3604 // that is Start + (Step * (CRD - 1)). 3605 for (User *U : OrigPhi->users()) { 3606 auto *UI = cast<Instruction>(U); 3607 if (!OrigLoop->contains(UI)) { 3608 const DataLayout &DL = 3609 OrigLoop->getHeader()->getModule()->getDataLayout(); 3610 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3611 3612 IRBuilder<> B(MiddleBlock->getTerminator()); 3613 3614 // Fast-math-flags propagate from the original induction instruction. 3615 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3616 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3617 3618 Value *CountMinusOne = B.CreateSub( 3619 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3620 Value *CMO = 3621 !II.getStep()->getType()->isIntegerTy() 3622 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3623 II.getStep()->getType()) 3624 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3625 CMO->setName("cast.cmo"); 3626 Value *Escape = 3627 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3628 Escape->setName("ind.escape"); 3629 MissingVals[UI] = Escape; 3630 } 3631 } 3632 3633 for (auto &I : MissingVals) { 3634 PHINode *PHI = cast<PHINode>(I.first); 3635 // One corner case we have to handle is two IVs "chasing" each-other, 3636 // that is %IV2 = phi [...], [ %IV1, %latch ] 3637 // In this case, if IV1 has an external use, we need to avoid adding both 3638 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3639 // don't already have an incoming value for the middle block. 3640 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3641 PHI->addIncoming(I.second, MiddleBlock); 3642 } 3643 } 3644 3645 namespace { 3646 3647 struct CSEDenseMapInfo { 3648 static bool canHandle(const Instruction *I) { 3649 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3650 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3651 } 3652 3653 static inline Instruction *getEmptyKey() { 3654 return DenseMapInfo<Instruction *>::getEmptyKey(); 3655 } 3656 3657 static inline Instruction *getTombstoneKey() { 3658 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3659 } 3660 3661 static unsigned getHashValue(const Instruction *I) { 3662 assert(canHandle(I) && "Unknown instruction!"); 3663 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3664 I->value_op_end())); 3665 } 3666 3667 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3668 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3669 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3670 return LHS == RHS; 3671 return LHS->isIdenticalTo(RHS); 3672 } 3673 }; 3674 3675 } // end anonymous namespace 3676 3677 ///Perform cse of induction variable instructions. 3678 static void cse(BasicBlock *BB) { 3679 // Perform simple cse. 3680 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3681 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3682 if (!CSEDenseMapInfo::canHandle(&In)) 3683 continue; 3684 3685 // Check if we can replace this instruction with any of the 3686 // visited instructions. 3687 if (Instruction *V = CSEMap.lookup(&In)) { 3688 In.replaceAllUsesWith(V); 3689 In.eraseFromParent(); 3690 continue; 3691 } 3692 3693 CSEMap[&In] = &In; 3694 } 3695 } 3696 3697 InstructionCost 3698 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3699 bool &NeedToScalarize) const { 3700 Function *F = CI->getCalledFunction(); 3701 Type *ScalarRetTy = CI->getType(); 3702 SmallVector<Type *, 4> Tys, ScalarTys; 3703 for (auto &ArgOp : CI->args()) 3704 ScalarTys.push_back(ArgOp->getType()); 3705 3706 // Estimate cost of scalarized vector call. The source operands are assumed 3707 // to be vectors, so we need to extract individual elements from there, 3708 // execute VF scalar calls, and then gather the result into the vector return 3709 // value. 3710 InstructionCost ScalarCallCost = 3711 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3712 if (VF.isScalar()) 3713 return ScalarCallCost; 3714 3715 // Compute corresponding vector type for return value and arguments. 3716 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3717 for (Type *ScalarTy : ScalarTys) 3718 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3719 3720 // Compute costs of unpacking argument values for the scalar calls and 3721 // packing the return values to a vector. 3722 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3723 3724 InstructionCost Cost = 3725 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3726 3727 // If we can't emit a vector call for this function, then the currently found 3728 // cost is the cost we need to return. 3729 NeedToScalarize = true; 3730 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3731 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3732 3733 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3734 return Cost; 3735 3736 // If the corresponding vector cost is cheaper, return its cost. 3737 InstructionCost VectorCallCost = 3738 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3739 if (VectorCallCost < Cost) { 3740 NeedToScalarize = false; 3741 Cost = VectorCallCost; 3742 } 3743 return Cost; 3744 } 3745 3746 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3747 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3748 return Elt; 3749 return VectorType::get(Elt, VF); 3750 } 3751 3752 InstructionCost 3753 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3754 ElementCount VF) const { 3755 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3756 assert(ID && "Expected intrinsic call!"); 3757 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3758 FastMathFlags FMF; 3759 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3760 FMF = FPMO->getFastMathFlags(); 3761 3762 SmallVector<const Value *> Arguments(CI->args()); 3763 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3764 SmallVector<Type *> ParamTys; 3765 std::transform(FTy->param_begin(), FTy->param_end(), 3766 std::back_inserter(ParamTys), 3767 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3768 3769 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3770 dyn_cast<IntrinsicInst>(CI)); 3771 return TTI.getIntrinsicInstrCost(CostAttrs, 3772 TargetTransformInfo::TCK_RecipThroughput); 3773 } 3774 3775 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3776 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3777 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3778 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3779 } 3780 3781 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3782 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3783 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3784 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3785 } 3786 3787 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3788 // For every instruction `I` in MinBWs, truncate the operands, create a 3789 // truncated version of `I` and reextend its result. InstCombine runs 3790 // later and will remove any ext/trunc pairs. 3791 SmallPtrSet<Value *, 4> Erased; 3792 for (const auto &KV : Cost->getMinimalBitwidths()) { 3793 // If the value wasn't vectorized, we must maintain the original scalar 3794 // type. The absence of the value from State indicates that it 3795 // wasn't vectorized. 3796 // FIXME: Should not rely on getVPValue at this point. 3797 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3798 if (!State.hasAnyVectorValue(Def)) 3799 continue; 3800 for (unsigned Part = 0; Part < UF; ++Part) { 3801 Value *I = State.get(Def, Part); 3802 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3803 continue; 3804 Type *OriginalTy = I->getType(); 3805 Type *ScalarTruncatedTy = 3806 IntegerType::get(OriginalTy->getContext(), KV.second); 3807 auto *TruncatedTy = VectorType::get( 3808 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3809 if (TruncatedTy == OriginalTy) 3810 continue; 3811 3812 IRBuilder<> B(cast<Instruction>(I)); 3813 auto ShrinkOperand = [&](Value *V) -> Value * { 3814 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3815 if (ZI->getSrcTy() == TruncatedTy) 3816 return ZI->getOperand(0); 3817 return B.CreateZExtOrTrunc(V, TruncatedTy); 3818 }; 3819 3820 // The actual instruction modification depends on the instruction type, 3821 // unfortunately. 3822 Value *NewI = nullptr; 3823 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3824 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3825 ShrinkOperand(BO->getOperand(1))); 3826 3827 // Any wrapping introduced by shrinking this operation shouldn't be 3828 // considered undefined behavior. So, we can't unconditionally copy 3829 // arithmetic wrapping flags to NewI. 3830 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3831 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3832 NewI = 3833 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3834 ShrinkOperand(CI->getOperand(1))); 3835 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3836 NewI = B.CreateSelect(SI->getCondition(), 3837 ShrinkOperand(SI->getTrueValue()), 3838 ShrinkOperand(SI->getFalseValue())); 3839 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3840 switch (CI->getOpcode()) { 3841 default: 3842 llvm_unreachable("Unhandled cast!"); 3843 case Instruction::Trunc: 3844 NewI = ShrinkOperand(CI->getOperand(0)); 3845 break; 3846 case Instruction::SExt: 3847 NewI = B.CreateSExtOrTrunc( 3848 CI->getOperand(0), 3849 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3850 break; 3851 case Instruction::ZExt: 3852 NewI = B.CreateZExtOrTrunc( 3853 CI->getOperand(0), 3854 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3855 break; 3856 } 3857 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3858 auto Elements0 = 3859 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3860 auto *O0 = B.CreateZExtOrTrunc( 3861 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3862 auto Elements1 = 3863 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3864 auto *O1 = B.CreateZExtOrTrunc( 3865 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3866 3867 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3868 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3869 // Don't do anything with the operands, just extend the result. 3870 continue; 3871 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3872 auto Elements = 3873 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3874 auto *O0 = B.CreateZExtOrTrunc( 3875 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3876 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3877 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3878 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3879 auto Elements = 3880 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3881 auto *O0 = B.CreateZExtOrTrunc( 3882 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3883 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3884 } else { 3885 // If we don't know what to do, be conservative and don't do anything. 3886 continue; 3887 } 3888 3889 // Lastly, extend the result. 3890 NewI->takeName(cast<Instruction>(I)); 3891 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3892 I->replaceAllUsesWith(Res); 3893 cast<Instruction>(I)->eraseFromParent(); 3894 Erased.insert(I); 3895 State.reset(Def, Res, Part); 3896 } 3897 } 3898 3899 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3900 for (const auto &KV : Cost->getMinimalBitwidths()) { 3901 // If the value wasn't vectorized, we must maintain the original scalar 3902 // type. The absence of the value from State indicates that it 3903 // wasn't vectorized. 3904 // FIXME: Should not rely on getVPValue at this point. 3905 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3906 if (!State.hasAnyVectorValue(Def)) 3907 continue; 3908 for (unsigned Part = 0; Part < UF; ++Part) { 3909 Value *I = State.get(Def, Part); 3910 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3911 if (Inst && Inst->use_empty()) { 3912 Value *NewI = Inst->getOperand(0); 3913 Inst->eraseFromParent(); 3914 State.reset(Def, NewI, Part); 3915 } 3916 } 3917 } 3918 } 3919 3920 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3921 // Insert truncates and extends for any truncated instructions as hints to 3922 // InstCombine. 3923 if (VF.isVector()) 3924 truncateToMinimalBitwidths(State); 3925 3926 // Fix widened non-induction PHIs by setting up the PHI operands. 3927 if (OrigPHIsToFix.size()) { 3928 assert(EnableVPlanNativePath && 3929 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3930 fixNonInductionPHIs(State); 3931 } 3932 3933 // At this point every instruction in the original loop is widened to a 3934 // vector form. Now we need to fix the recurrences in the loop. These PHI 3935 // nodes are currently empty because we did not want to introduce cycles. 3936 // This is the second stage of vectorizing recurrences. 3937 fixCrossIterationPHIs(State); 3938 3939 // Forget the original basic block. 3940 PSE.getSE()->forgetLoop(OrigLoop); 3941 3942 // If we inserted an edge from the middle block to the unique exit block, 3943 // update uses outside the loop (phis) to account for the newly inserted 3944 // edge. 3945 if (!Cost->requiresScalarEpilogue(VF)) { 3946 // Fix-up external users of the induction variables. 3947 for (auto &Entry : Legal->getInductionVars()) 3948 fixupIVUsers(Entry.first, Entry.second, 3949 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3950 IVEndValues[Entry.first], LoopMiddleBlock); 3951 3952 fixLCSSAPHIs(State); 3953 } 3954 3955 for (Instruction *PI : PredicatedInstructions) 3956 sinkScalarOperands(&*PI); 3957 3958 // Remove redundant induction instructions. 3959 cse(LoopVectorBody); 3960 3961 // Set/update profile weights for the vector and remainder loops as original 3962 // loop iterations are now distributed among them. Note that original loop 3963 // represented by LoopScalarBody becomes remainder loop after vectorization. 3964 // 3965 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3966 // end up getting slightly roughened result but that should be OK since 3967 // profile is not inherently precise anyway. Note also possible bypass of 3968 // vector code caused by legality checks is ignored, assigning all the weight 3969 // to the vector loop, optimistically. 3970 // 3971 // For scalable vectorization we can't know at compile time how many iterations 3972 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3973 // vscale of '1'. 3974 setProfileInfoAfterUnrolling( 3975 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3976 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3977 } 3978 3979 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3980 // In order to support recurrences we need to be able to vectorize Phi nodes. 3981 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3982 // stage #2: We now need to fix the recurrences by adding incoming edges to 3983 // the currently empty PHI nodes. At this point every instruction in the 3984 // original loop is widened to a vector form so we can use them to construct 3985 // the incoming edges. 3986 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3987 for (VPRecipeBase &R : Header->phis()) { 3988 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3989 fixReduction(ReductionPhi, State); 3990 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3991 fixFirstOrderRecurrence(FOR, State); 3992 } 3993 } 3994 3995 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3996 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3997 // This is the second phase of vectorizing first-order recurrences. An 3998 // overview of the transformation is described below. Suppose we have the 3999 // following loop. 4000 // 4001 // for (int i = 0; i < n; ++i) 4002 // b[i] = a[i] - a[i - 1]; 4003 // 4004 // There is a first-order recurrence on "a". For this loop, the shorthand 4005 // scalar IR looks like: 4006 // 4007 // scalar.ph: 4008 // s_init = a[-1] 4009 // br scalar.body 4010 // 4011 // scalar.body: 4012 // i = phi [0, scalar.ph], [i+1, scalar.body] 4013 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4014 // s2 = a[i] 4015 // b[i] = s2 - s1 4016 // br cond, scalar.body, ... 4017 // 4018 // In this example, s1 is a recurrence because it's value depends on the 4019 // previous iteration. In the first phase of vectorization, we created a 4020 // vector phi v1 for s1. We now complete the vectorization and produce the 4021 // shorthand vector IR shown below (for VF = 4, UF = 1). 4022 // 4023 // vector.ph: 4024 // v_init = vector(..., ..., ..., a[-1]) 4025 // br vector.body 4026 // 4027 // vector.body 4028 // i = phi [0, vector.ph], [i+4, vector.body] 4029 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4030 // v2 = a[i, i+1, i+2, i+3]; 4031 // v3 = vector(v1(3), v2(0, 1, 2)) 4032 // b[i, i+1, i+2, i+3] = v2 - v3 4033 // br cond, vector.body, middle.block 4034 // 4035 // middle.block: 4036 // x = v2(3) 4037 // br scalar.ph 4038 // 4039 // scalar.ph: 4040 // s_init = phi [x, middle.block], [a[-1], otherwise] 4041 // br scalar.body 4042 // 4043 // After execution completes the vector loop, we extract the next value of 4044 // the recurrence (x) to use as the initial value in the scalar loop. 4045 4046 // Extract the last vector element in the middle block. This will be the 4047 // initial value for the recurrence when jumping to the scalar loop. 4048 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4049 Value *Incoming = State.get(PreviousDef, UF - 1); 4050 auto *ExtractForScalar = Incoming; 4051 auto *IdxTy = Builder.getInt32Ty(); 4052 if (VF.isVector()) { 4053 auto *One = ConstantInt::get(IdxTy, 1); 4054 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4055 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4056 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4057 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4058 "vector.recur.extract"); 4059 } 4060 // Extract the second last element in the middle block if the 4061 // Phi is used outside the loop. We need to extract the phi itself 4062 // and not the last element (the phi update in the current iteration). This 4063 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4064 // when the scalar loop is not run at all. 4065 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4066 if (VF.isVector()) { 4067 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4068 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4069 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4070 Incoming, Idx, "vector.recur.extract.for.phi"); 4071 } else if (UF > 1) 4072 // When loop is unrolled without vectorizing, initialize 4073 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4074 // of `Incoming`. This is analogous to the vectorized case above: extracting 4075 // the second last element when VF > 1. 4076 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4077 4078 // Fix the initial value of the original recurrence in the scalar loop. 4079 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4080 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4081 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4082 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4083 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4084 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4085 Start->addIncoming(Incoming, BB); 4086 } 4087 4088 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4089 Phi->setName("scalar.recur"); 4090 4091 // Finally, fix users of the recurrence outside the loop. The users will need 4092 // either the last value of the scalar recurrence or the last value of the 4093 // vector recurrence we extracted in the middle block. Since the loop is in 4094 // LCSSA form, we just need to find all the phi nodes for the original scalar 4095 // recurrence in the exit block, and then add an edge for the middle block. 4096 // Note that LCSSA does not imply single entry when the original scalar loop 4097 // had multiple exiting edges (as we always run the last iteration in the 4098 // scalar epilogue); in that case, there is no edge from middle to exit and 4099 // and thus no phis which needed updated. 4100 if (!Cost->requiresScalarEpilogue(VF)) 4101 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4102 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4103 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4104 } 4105 4106 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4107 VPTransformState &State) { 4108 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4109 // Get it's reduction variable descriptor. 4110 assert(Legal->isReductionVariable(OrigPhi) && 4111 "Unable to find the reduction variable"); 4112 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4113 4114 RecurKind RK = RdxDesc.getRecurrenceKind(); 4115 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4116 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4117 setDebugLocFromInst(ReductionStartValue); 4118 4119 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4120 // This is the vector-clone of the value that leaves the loop. 4121 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4122 4123 // Wrap flags are in general invalid after vectorization, clear them. 4124 clearReductionWrapFlags(RdxDesc, State); 4125 4126 // Before each round, move the insertion point right between 4127 // the PHIs and the values we are going to write. 4128 // This allows us to write both PHINodes and the extractelement 4129 // instructions. 4130 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4131 4132 setDebugLocFromInst(LoopExitInst); 4133 4134 Type *PhiTy = OrigPhi->getType(); 4135 // If tail is folded by masking, the vector value to leave the loop should be 4136 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4137 // instead of the former. For an inloop reduction the reduction will already 4138 // be predicated, and does not need to be handled here. 4139 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4140 for (unsigned Part = 0; Part < UF; ++Part) { 4141 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4142 Value *Sel = nullptr; 4143 for (User *U : VecLoopExitInst->users()) { 4144 if (isa<SelectInst>(U)) { 4145 assert(!Sel && "Reduction exit feeding two selects"); 4146 Sel = U; 4147 } else 4148 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4149 } 4150 assert(Sel && "Reduction exit feeds no select"); 4151 State.reset(LoopExitInstDef, Sel, Part); 4152 4153 // If the target can create a predicated operator for the reduction at no 4154 // extra cost in the loop (for example a predicated vadd), it can be 4155 // cheaper for the select to remain in the loop than be sunk out of it, 4156 // and so use the select value for the phi instead of the old 4157 // LoopExitValue. 4158 if (PreferPredicatedReductionSelect || 4159 TTI->preferPredicatedReductionSelect( 4160 RdxDesc.getOpcode(), PhiTy, 4161 TargetTransformInfo::ReductionFlags())) { 4162 auto *VecRdxPhi = 4163 cast<PHINode>(State.get(PhiR, Part)); 4164 VecRdxPhi->setIncomingValueForBlock( 4165 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4166 } 4167 } 4168 } 4169 4170 // If the vector reduction can be performed in a smaller type, we truncate 4171 // then extend the loop exit value to enable InstCombine to evaluate the 4172 // entire expression in the smaller type. 4173 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4174 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4175 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4176 Builder.SetInsertPoint( 4177 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4178 VectorParts RdxParts(UF); 4179 for (unsigned Part = 0; Part < UF; ++Part) { 4180 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4181 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4182 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4183 : Builder.CreateZExt(Trunc, VecTy); 4184 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4185 if (U != Trunc) { 4186 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4187 RdxParts[Part] = Extnd; 4188 } 4189 } 4190 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4191 for (unsigned Part = 0; Part < UF; ++Part) { 4192 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4193 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4194 } 4195 } 4196 4197 // Reduce all of the unrolled parts into a single vector. 4198 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4199 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4200 4201 // The middle block terminator has already been assigned a DebugLoc here (the 4202 // OrigLoop's single latch terminator). We want the whole middle block to 4203 // appear to execute on this line because: (a) it is all compiler generated, 4204 // (b) these instructions are always executed after evaluating the latch 4205 // conditional branch, and (c) other passes may add new predecessors which 4206 // terminate on this line. This is the easiest way to ensure we don't 4207 // accidentally cause an extra step back into the loop while debugging. 4208 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4209 if (PhiR->isOrdered()) 4210 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4211 else { 4212 // Floating-point operations should have some FMF to enable the reduction. 4213 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4214 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4215 for (unsigned Part = 1; Part < UF; ++Part) { 4216 Value *RdxPart = State.get(LoopExitInstDef, Part); 4217 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4218 ReducedPartRdx = Builder.CreateBinOp( 4219 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4220 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4221 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4222 ReducedPartRdx, RdxPart); 4223 else 4224 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4225 } 4226 } 4227 4228 // Create the reduction after the loop. Note that inloop reductions create the 4229 // target reduction in the loop using a Reduction recipe. 4230 if (VF.isVector() && !PhiR->isInLoop()) { 4231 ReducedPartRdx = 4232 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4233 // If the reduction can be performed in a smaller type, we need to extend 4234 // the reduction to the wider type before we branch to the original loop. 4235 if (PhiTy != RdxDesc.getRecurrenceType()) 4236 ReducedPartRdx = RdxDesc.isSigned() 4237 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4238 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4239 } 4240 4241 PHINode *ResumePhi = 4242 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4243 4244 // Create a phi node that merges control-flow from the backedge-taken check 4245 // block and the middle block. 4246 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4247 LoopScalarPreHeader->getTerminator()); 4248 4249 // If we are fixing reductions in the epilogue loop then we should already 4250 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4251 // we carry over the incoming values correctly. 4252 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4253 if (Incoming == LoopMiddleBlock) 4254 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4255 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4256 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4257 Incoming); 4258 else 4259 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4260 } 4261 4262 // Set the resume value for this reduction 4263 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4264 4265 // Now, we need to fix the users of the reduction variable 4266 // inside and outside of the scalar remainder loop. 4267 4268 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4269 // in the exit blocks. See comment on analogous loop in 4270 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4271 if (!Cost->requiresScalarEpilogue(VF)) 4272 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4273 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4274 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4275 4276 // Fix the scalar loop reduction variable with the incoming reduction sum 4277 // from the vector body and from the backedge value. 4278 int IncomingEdgeBlockIdx = 4279 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4280 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4281 // Pick the other block. 4282 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4283 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4284 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4285 } 4286 4287 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4288 VPTransformState &State) { 4289 RecurKind RK = RdxDesc.getRecurrenceKind(); 4290 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4291 return; 4292 4293 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4294 assert(LoopExitInstr && "null loop exit instruction"); 4295 SmallVector<Instruction *, 8> Worklist; 4296 SmallPtrSet<Instruction *, 8> Visited; 4297 Worklist.push_back(LoopExitInstr); 4298 Visited.insert(LoopExitInstr); 4299 4300 while (!Worklist.empty()) { 4301 Instruction *Cur = Worklist.pop_back_val(); 4302 if (isa<OverflowingBinaryOperator>(Cur)) 4303 for (unsigned Part = 0; Part < UF; ++Part) { 4304 // FIXME: Should not rely on getVPValue at this point. 4305 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4306 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4307 } 4308 4309 for (User *U : Cur->users()) { 4310 Instruction *UI = cast<Instruction>(U); 4311 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4312 Visited.insert(UI).second) 4313 Worklist.push_back(UI); 4314 } 4315 } 4316 } 4317 4318 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4319 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4320 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4321 // Some phis were already hand updated by the reduction and recurrence 4322 // code above, leave them alone. 4323 continue; 4324 4325 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4326 // Non-instruction incoming values will have only one value. 4327 4328 VPLane Lane = VPLane::getFirstLane(); 4329 if (isa<Instruction>(IncomingValue) && 4330 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4331 VF)) 4332 Lane = VPLane::getLastLaneForVF(VF); 4333 4334 // Can be a loop invariant incoming value or the last scalar value to be 4335 // extracted from the vectorized loop. 4336 // FIXME: Should not rely on getVPValue at this point. 4337 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4338 Value *lastIncomingValue = 4339 OrigLoop->isLoopInvariant(IncomingValue) 4340 ? IncomingValue 4341 : State.get(State.Plan->getVPValue(IncomingValue, true), 4342 VPIteration(UF - 1, Lane)); 4343 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4344 } 4345 } 4346 4347 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4348 // The basic block and loop containing the predicated instruction. 4349 auto *PredBB = PredInst->getParent(); 4350 auto *VectorLoop = LI->getLoopFor(PredBB); 4351 4352 // Initialize a worklist with the operands of the predicated instruction. 4353 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4354 4355 // Holds instructions that we need to analyze again. An instruction may be 4356 // reanalyzed if we don't yet know if we can sink it or not. 4357 SmallVector<Instruction *, 8> InstsToReanalyze; 4358 4359 // Returns true if a given use occurs in the predicated block. Phi nodes use 4360 // their operands in their corresponding predecessor blocks. 4361 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4362 auto *I = cast<Instruction>(U.getUser()); 4363 BasicBlock *BB = I->getParent(); 4364 if (auto *Phi = dyn_cast<PHINode>(I)) 4365 BB = Phi->getIncomingBlock( 4366 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4367 return BB == PredBB; 4368 }; 4369 4370 // Iteratively sink the scalarized operands of the predicated instruction 4371 // into the block we created for it. When an instruction is sunk, it's 4372 // operands are then added to the worklist. The algorithm ends after one pass 4373 // through the worklist doesn't sink a single instruction. 4374 bool Changed; 4375 do { 4376 // Add the instructions that need to be reanalyzed to the worklist, and 4377 // reset the changed indicator. 4378 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4379 InstsToReanalyze.clear(); 4380 Changed = false; 4381 4382 while (!Worklist.empty()) { 4383 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4384 4385 // We can't sink an instruction if it is a phi node, is not in the loop, 4386 // or may have side effects. 4387 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4388 I->mayHaveSideEffects()) 4389 continue; 4390 4391 // If the instruction is already in PredBB, check if we can sink its 4392 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4393 // sinking the scalar instruction I, hence it appears in PredBB; but it 4394 // may have failed to sink I's operands (recursively), which we try 4395 // (again) here. 4396 if (I->getParent() == PredBB) { 4397 Worklist.insert(I->op_begin(), I->op_end()); 4398 continue; 4399 } 4400 4401 // It's legal to sink the instruction if all its uses occur in the 4402 // predicated block. Otherwise, there's nothing to do yet, and we may 4403 // need to reanalyze the instruction. 4404 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4405 InstsToReanalyze.push_back(I); 4406 continue; 4407 } 4408 4409 // Move the instruction to the beginning of the predicated block, and add 4410 // it's operands to the worklist. 4411 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4412 Worklist.insert(I->op_begin(), I->op_end()); 4413 4414 // The sinking may have enabled other instructions to be sunk, so we will 4415 // need to iterate. 4416 Changed = true; 4417 } 4418 } while (Changed); 4419 } 4420 4421 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4422 for (PHINode *OrigPhi : OrigPHIsToFix) { 4423 VPWidenPHIRecipe *VPPhi = 4424 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4425 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4426 // Make sure the builder has a valid insert point. 4427 Builder.SetInsertPoint(NewPhi); 4428 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4429 VPValue *Inc = VPPhi->getIncomingValue(i); 4430 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4431 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4432 } 4433 } 4434 } 4435 4436 bool InnerLoopVectorizer::useOrderedReductions( 4437 const RecurrenceDescriptor &RdxDesc) { 4438 return Cost->useOrderedReductions(RdxDesc); 4439 } 4440 4441 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4442 VPWidenPHIRecipe *PhiR, 4443 VPTransformState &State) { 4444 PHINode *P = cast<PHINode>(PN); 4445 if (EnableVPlanNativePath) { 4446 // Currently we enter here in the VPlan-native path for non-induction 4447 // PHIs where all control flow is uniform. We simply widen these PHIs. 4448 // Create a vector phi with no operands - the vector phi operands will be 4449 // set at the end of vector code generation. 4450 Type *VecTy = (State.VF.isScalar()) 4451 ? PN->getType() 4452 : VectorType::get(PN->getType(), State.VF); 4453 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4454 State.set(PhiR, VecPhi, 0); 4455 OrigPHIsToFix.push_back(P); 4456 4457 return; 4458 } 4459 4460 assert(PN->getParent() == OrigLoop->getHeader() && 4461 "Non-header phis should have been handled elsewhere"); 4462 4463 // In order to support recurrences we need to be able to vectorize Phi nodes. 4464 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4465 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4466 // this value when we vectorize all of the instructions that use the PHI. 4467 4468 assert(!Legal->isReductionVariable(P) && 4469 "reductions should be handled elsewhere"); 4470 4471 setDebugLocFromInst(P); 4472 4473 // This PHINode must be an induction variable. 4474 // Make sure that we know about it. 4475 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4476 4477 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4478 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4479 4480 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4481 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4482 4483 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4484 // which can be found from the original scalar operations. 4485 switch (II.getKind()) { 4486 case InductionDescriptor::IK_NoInduction: 4487 llvm_unreachable("Unknown induction"); 4488 case InductionDescriptor::IK_IntInduction: 4489 case InductionDescriptor::IK_FpInduction: 4490 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4491 case InductionDescriptor::IK_PtrInduction: { 4492 // Handle the pointer induction variable case. 4493 assert(P->getType()->isPointerTy() && "Unexpected type."); 4494 4495 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4496 // This is the normalized GEP that starts counting at zero. 4497 Value *PtrInd = 4498 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4499 // Determine the number of scalars we need to generate for each unroll 4500 // iteration. If the instruction is uniform, we only need to generate the 4501 // first lane. Otherwise, we generate all VF values. 4502 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4503 assert((IsUniform || !State.VF.isScalable()) && 4504 "Cannot scalarize a scalable VF"); 4505 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4506 4507 for (unsigned Part = 0; Part < UF; ++Part) { 4508 Value *PartStart = 4509 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4510 4511 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4512 Value *Idx = Builder.CreateAdd( 4513 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4514 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4515 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4516 DL, II, State.CFG.PrevBB); 4517 SclrGep->setName("next.gep"); 4518 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4519 } 4520 } 4521 return; 4522 } 4523 assert(isa<SCEVConstant>(II.getStep()) && 4524 "Induction step not a SCEV constant!"); 4525 Type *PhiType = II.getStep()->getType(); 4526 4527 // Build a pointer phi 4528 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4529 Type *ScStValueType = ScalarStartValue->getType(); 4530 PHINode *NewPointerPhi = 4531 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4532 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4533 4534 // A pointer induction, performed by using a gep 4535 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4536 Instruction *InductionLoc = LoopLatch->getTerminator(); 4537 const SCEV *ScalarStep = II.getStep(); 4538 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4539 Value *ScalarStepValue = 4540 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4541 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4542 Value *NumUnrolledElems = 4543 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4544 Value *InductionGEP = GetElementPtrInst::Create( 4545 II.getElementType(), NewPointerPhi, 4546 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4547 InductionLoc); 4548 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4549 4550 // Create UF many actual address geps that use the pointer 4551 // phi as base and a vectorized version of the step value 4552 // (<step*0, ..., step*N>) as offset. 4553 for (unsigned Part = 0; Part < State.UF; ++Part) { 4554 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4555 Value *StartOffsetScalar = 4556 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4557 Value *StartOffset = 4558 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4559 // Create a vector of consecutive numbers from zero to VF. 4560 StartOffset = 4561 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4562 4563 Value *GEP = Builder.CreateGEP( 4564 II.getElementType(), NewPointerPhi, 4565 Builder.CreateMul( 4566 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4567 "vector.gep")); 4568 State.set(PhiR, GEP, Part); 4569 } 4570 } 4571 } 4572 } 4573 4574 /// A helper function for checking whether an integer division-related 4575 /// instruction may divide by zero (in which case it must be predicated if 4576 /// executed conditionally in the scalar code). 4577 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4578 /// Non-zero divisors that are non compile-time constants will not be 4579 /// converted into multiplication, so we will still end up scalarizing 4580 /// the division, but can do so w/o predication. 4581 static bool mayDivideByZero(Instruction &I) { 4582 assert((I.getOpcode() == Instruction::UDiv || 4583 I.getOpcode() == Instruction::SDiv || 4584 I.getOpcode() == Instruction::URem || 4585 I.getOpcode() == Instruction::SRem) && 4586 "Unexpected instruction"); 4587 Value *Divisor = I.getOperand(1); 4588 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4589 return !CInt || CInt->isZero(); 4590 } 4591 4592 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4593 VPUser &ArgOperands, 4594 VPTransformState &State) { 4595 assert(!isa<DbgInfoIntrinsic>(I) && 4596 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4597 setDebugLocFromInst(&I); 4598 4599 Module *M = I.getParent()->getParent()->getParent(); 4600 auto *CI = cast<CallInst>(&I); 4601 4602 SmallVector<Type *, 4> Tys; 4603 for (Value *ArgOperand : CI->args()) 4604 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4605 4606 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4607 4608 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4609 // version of the instruction. 4610 // Is it beneficial to perform intrinsic call compared to lib call? 4611 bool NeedToScalarize = false; 4612 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4613 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4614 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4615 assert((UseVectorIntrinsic || !NeedToScalarize) && 4616 "Instruction should be scalarized elsewhere."); 4617 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4618 "Either the intrinsic cost or vector call cost must be valid"); 4619 4620 for (unsigned Part = 0; Part < UF; ++Part) { 4621 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4622 SmallVector<Value *, 4> Args; 4623 for (auto &I : enumerate(ArgOperands.operands())) { 4624 // Some intrinsics have a scalar argument - don't replace it with a 4625 // vector. 4626 Value *Arg; 4627 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4628 Arg = State.get(I.value(), Part); 4629 else { 4630 Arg = State.get(I.value(), VPIteration(0, 0)); 4631 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4632 TysForDecl.push_back(Arg->getType()); 4633 } 4634 Args.push_back(Arg); 4635 } 4636 4637 Function *VectorF; 4638 if (UseVectorIntrinsic) { 4639 // Use vector version of the intrinsic. 4640 if (VF.isVector()) 4641 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4642 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4643 assert(VectorF && "Can't retrieve vector intrinsic."); 4644 } else { 4645 // Use vector version of the function call. 4646 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4647 #ifndef NDEBUG 4648 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4649 "Can't create vector function."); 4650 #endif 4651 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4652 } 4653 SmallVector<OperandBundleDef, 1> OpBundles; 4654 CI->getOperandBundlesAsDefs(OpBundles); 4655 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4656 4657 if (isa<FPMathOperator>(V)) 4658 V->copyFastMathFlags(CI); 4659 4660 State.set(Def, V, Part); 4661 addMetadata(V, &I); 4662 } 4663 } 4664 4665 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4666 // We should not collect Scalars more than once per VF. Right now, this 4667 // function is called from collectUniformsAndScalars(), which already does 4668 // this check. Collecting Scalars for VF=1 does not make any sense. 4669 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4670 "This function should not be visited twice for the same VF"); 4671 4672 SmallSetVector<Instruction *, 8> Worklist; 4673 4674 // These sets are used to seed the analysis with pointers used by memory 4675 // accesses that will remain scalar. 4676 SmallSetVector<Instruction *, 8> ScalarPtrs; 4677 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4678 auto *Latch = TheLoop->getLoopLatch(); 4679 4680 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4681 // The pointer operands of loads and stores will be scalar as long as the 4682 // memory access is not a gather or scatter operation. The value operand of a 4683 // store will remain scalar if the store is scalarized. 4684 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4685 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4686 assert(WideningDecision != CM_Unknown && 4687 "Widening decision should be ready at this moment"); 4688 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4689 if (Ptr == Store->getValueOperand()) 4690 return WideningDecision == CM_Scalarize; 4691 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4692 "Ptr is neither a value or pointer operand"); 4693 return WideningDecision != CM_GatherScatter; 4694 }; 4695 4696 // A helper that returns true if the given value is a bitcast or 4697 // getelementptr instruction contained in the loop. 4698 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4699 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4700 isa<GetElementPtrInst>(V)) && 4701 !TheLoop->isLoopInvariant(V); 4702 }; 4703 4704 // A helper that evaluates a memory access's use of a pointer. If the use will 4705 // be a scalar use and the pointer is only used by memory accesses, we place 4706 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4707 // PossibleNonScalarPtrs. 4708 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4709 // We only care about bitcast and getelementptr instructions contained in 4710 // the loop. 4711 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4712 return; 4713 4714 // If the pointer has already been identified as scalar (e.g., if it was 4715 // also identified as uniform), there's nothing to do. 4716 auto *I = cast<Instruction>(Ptr); 4717 if (Worklist.count(I)) 4718 return; 4719 4720 // If the use of the pointer will be a scalar use, and all users of the 4721 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4722 // place the pointer in PossibleNonScalarPtrs. 4723 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4724 return isa<LoadInst>(U) || isa<StoreInst>(U); 4725 })) 4726 ScalarPtrs.insert(I); 4727 else 4728 PossibleNonScalarPtrs.insert(I); 4729 }; 4730 4731 // We seed the scalars analysis with three classes of instructions: (1) 4732 // instructions marked uniform-after-vectorization and (2) bitcast, 4733 // getelementptr and (pointer) phi instructions used by memory accesses 4734 // requiring a scalar use. 4735 // 4736 // (1) Add to the worklist all instructions that have been identified as 4737 // uniform-after-vectorization. 4738 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4739 4740 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4741 // memory accesses requiring a scalar use. The pointer operands of loads and 4742 // stores will be scalar as long as the memory accesses is not a gather or 4743 // scatter operation. The value operand of a store will remain scalar if the 4744 // store is scalarized. 4745 for (auto *BB : TheLoop->blocks()) 4746 for (auto &I : *BB) { 4747 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4748 evaluatePtrUse(Load, Load->getPointerOperand()); 4749 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4750 evaluatePtrUse(Store, Store->getPointerOperand()); 4751 evaluatePtrUse(Store, Store->getValueOperand()); 4752 } 4753 } 4754 for (auto *I : ScalarPtrs) 4755 if (!PossibleNonScalarPtrs.count(I)) { 4756 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4757 Worklist.insert(I); 4758 } 4759 4760 // Insert the forced scalars. 4761 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4762 // induction variable when the PHI user is scalarized. 4763 auto ForcedScalar = ForcedScalars.find(VF); 4764 if (ForcedScalar != ForcedScalars.end()) 4765 for (auto *I : ForcedScalar->second) 4766 Worklist.insert(I); 4767 4768 // Expand the worklist by looking through any bitcasts and getelementptr 4769 // instructions we've already identified as scalar. This is similar to the 4770 // expansion step in collectLoopUniforms(); however, here we're only 4771 // expanding to include additional bitcasts and getelementptr instructions. 4772 unsigned Idx = 0; 4773 while (Idx != Worklist.size()) { 4774 Instruction *Dst = Worklist[Idx++]; 4775 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4776 continue; 4777 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4778 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4779 auto *J = cast<Instruction>(U); 4780 return !TheLoop->contains(J) || Worklist.count(J) || 4781 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4782 isScalarUse(J, Src)); 4783 })) { 4784 Worklist.insert(Src); 4785 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4786 } 4787 } 4788 4789 // An induction variable will remain scalar if all users of the induction 4790 // variable and induction variable update remain scalar. 4791 for (auto &Induction : Legal->getInductionVars()) { 4792 auto *Ind = Induction.first; 4793 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4794 4795 // If tail-folding is applied, the primary induction variable will be used 4796 // to feed a vector compare. 4797 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4798 continue; 4799 4800 // Returns true if \p Indvar is a pointer induction that is used directly by 4801 // load/store instruction \p I. 4802 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4803 Instruction *I) { 4804 return Induction.second.getKind() == 4805 InductionDescriptor::IK_PtrInduction && 4806 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4807 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4808 }; 4809 4810 // Determine if all users of the induction variable are scalar after 4811 // vectorization. 4812 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4813 auto *I = cast<Instruction>(U); 4814 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4815 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4816 }); 4817 if (!ScalarInd) 4818 continue; 4819 4820 // Determine if all users of the induction variable update instruction are 4821 // scalar after vectorization. 4822 auto ScalarIndUpdate = 4823 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4824 auto *I = cast<Instruction>(U); 4825 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4826 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4827 }); 4828 if (!ScalarIndUpdate) 4829 continue; 4830 4831 // The induction variable and its update instruction will remain scalar. 4832 Worklist.insert(Ind); 4833 Worklist.insert(IndUpdate); 4834 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4835 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4836 << "\n"); 4837 } 4838 4839 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4840 } 4841 4842 bool LoopVectorizationCostModel::isScalarWithPredication( 4843 Instruction *I, ElementCount VF) const { 4844 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4845 return false; 4846 switch(I->getOpcode()) { 4847 default: 4848 break; 4849 case Instruction::Load: 4850 case Instruction::Store: { 4851 if (!Legal->isMaskRequired(I)) 4852 return false; 4853 auto *Ptr = getLoadStorePointerOperand(I); 4854 auto *Ty = getLoadStoreType(I); 4855 Type *VTy = Ty; 4856 if (VF.isVector()) 4857 VTy = VectorType::get(Ty, VF); 4858 const Align Alignment = getLoadStoreAlignment(I); 4859 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4860 TTI.isLegalMaskedGather(VTy, Alignment)) 4861 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4862 TTI.isLegalMaskedScatter(VTy, Alignment)); 4863 } 4864 case Instruction::UDiv: 4865 case Instruction::SDiv: 4866 case Instruction::SRem: 4867 case Instruction::URem: 4868 return mayDivideByZero(*I); 4869 } 4870 return false; 4871 } 4872 4873 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4874 Instruction *I, ElementCount VF) { 4875 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4876 assert(getWideningDecision(I, VF) == CM_Unknown && 4877 "Decision should not be set yet."); 4878 auto *Group = getInterleavedAccessGroup(I); 4879 assert(Group && "Must have a group."); 4880 4881 // If the instruction's allocated size doesn't equal it's type size, it 4882 // requires padding and will be scalarized. 4883 auto &DL = I->getModule()->getDataLayout(); 4884 auto *ScalarTy = getLoadStoreType(I); 4885 if (hasIrregularType(ScalarTy, DL)) 4886 return false; 4887 4888 // Check if masking is required. 4889 // A Group may need masking for one of two reasons: it resides in a block that 4890 // needs predication, or it was decided to use masking to deal with gaps 4891 // (either a gap at the end of a load-access that may result in a speculative 4892 // load, or any gaps in a store-access). 4893 bool PredicatedAccessRequiresMasking = 4894 blockNeedsPredicationForAnyReason(I->getParent()) && 4895 Legal->isMaskRequired(I); 4896 bool LoadAccessWithGapsRequiresEpilogMasking = 4897 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4898 !isScalarEpilogueAllowed(); 4899 bool StoreAccessWithGapsRequiresMasking = 4900 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4901 if (!PredicatedAccessRequiresMasking && 4902 !LoadAccessWithGapsRequiresEpilogMasking && 4903 !StoreAccessWithGapsRequiresMasking) 4904 return true; 4905 4906 // If masked interleaving is required, we expect that the user/target had 4907 // enabled it, because otherwise it either wouldn't have been created or 4908 // it should have been invalidated by the CostModel. 4909 assert(useMaskedInterleavedAccesses(TTI) && 4910 "Masked interleave-groups for predicated accesses are not enabled."); 4911 4912 if (Group->isReverse()) 4913 return false; 4914 4915 auto *Ty = getLoadStoreType(I); 4916 const Align Alignment = getLoadStoreAlignment(I); 4917 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4918 : TTI.isLegalMaskedStore(Ty, Alignment); 4919 } 4920 4921 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4922 Instruction *I, ElementCount VF) { 4923 // Get and ensure we have a valid memory instruction. 4924 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4925 4926 auto *Ptr = getLoadStorePointerOperand(I); 4927 auto *ScalarTy = getLoadStoreType(I); 4928 4929 // In order to be widened, the pointer should be consecutive, first of all. 4930 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4931 return false; 4932 4933 // If the instruction is a store located in a predicated block, it will be 4934 // scalarized. 4935 if (isScalarWithPredication(I, VF)) 4936 return false; 4937 4938 // If the instruction's allocated size doesn't equal it's type size, it 4939 // requires padding and will be scalarized. 4940 auto &DL = I->getModule()->getDataLayout(); 4941 if (hasIrregularType(ScalarTy, DL)) 4942 return false; 4943 4944 return true; 4945 } 4946 4947 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4948 // We should not collect Uniforms more than once per VF. Right now, 4949 // this function is called from collectUniformsAndScalars(), which 4950 // already does this check. Collecting Uniforms for VF=1 does not make any 4951 // sense. 4952 4953 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4954 "This function should not be visited twice for the same VF"); 4955 4956 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4957 // not analyze again. Uniforms.count(VF) will return 1. 4958 Uniforms[VF].clear(); 4959 4960 // We now know that the loop is vectorizable! 4961 // Collect instructions inside the loop that will remain uniform after 4962 // vectorization. 4963 4964 // Global values, params and instructions outside of current loop are out of 4965 // scope. 4966 auto isOutOfScope = [&](Value *V) -> bool { 4967 Instruction *I = dyn_cast<Instruction>(V); 4968 return (!I || !TheLoop->contains(I)); 4969 }; 4970 4971 // Worklist containing uniform instructions demanding lane 0. 4972 SetVector<Instruction *> Worklist; 4973 BasicBlock *Latch = TheLoop->getLoopLatch(); 4974 4975 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4976 // that are scalar with predication must not be considered uniform after 4977 // vectorization, because that would create an erroneous replicating region 4978 // where only a single instance out of VF should be formed. 4979 // TODO: optimize such seldom cases if found important, see PR40816. 4980 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4981 if (isOutOfScope(I)) { 4982 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4983 << *I << "\n"); 4984 return; 4985 } 4986 if (isScalarWithPredication(I, VF)) { 4987 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4988 << *I << "\n"); 4989 return; 4990 } 4991 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4992 Worklist.insert(I); 4993 }; 4994 4995 // Start with the conditional branch. If the branch condition is an 4996 // instruction contained in the loop that is only used by the branch, it is 4997 // uniform. 4998 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4999 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5000 addToWorklistIfAllowed(Cmp); 5001 5002 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5003 InstWidening WideningDecision = getWideningDecision(I, VF); 5004 assert(WideningDecision != CM_Unknown && 5005 "Widening decision should be ready at this moment"); 5006 5007 // A uniform memory op is itself uniform. We exclude uniform stores 5008 // here as they demand the last lane, not the first one. 5009 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5010 assert(WideningDecision == CM_Scalarize); 5011 return true; 5012 } 5013 5014 return (WideningDecision == CM_Widen || 5015 WideningDecision == CM_Widen_Reverse || 5016 WideningDecision == CM_Interleave); 5017 }; 5018 5019 5020 // Returns true if Ptr is the pointer operand of a memory access instruction 5021 // I, and I is known to not require scalarization. 5022 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5023 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5024 }; 5025 5026 // Holds a list of values which are known to have at least one uniform use. 5027 // Note that there may be other uses which aren't uniform. A "uniform use" 5028 // here is something which only demands lane 0 of the unrolled iterations; 5029 // it does not imply that all lanes produce the same value (e.g. this is not 5030 // the usual meaning of uniform) 5031 SetVector<Value *> HasUniformUse; 5032 5033 // Scan the loop for instructions which are either a) known to have only 5034 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5035 for (auto *BB : TheLoop->blocks()) 5036 for (auto &I : *BB) { 5037 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5038 switch (II->getIntrinsicID()) { 5039 case Intrinsic::sideeffect: 5040 case Intrinsic::experimental_noalias_scope_decl: 5041 case Intrinsic::assume: 5042 case Intrinsic::lifetime_start: 5043 case Intrinsic::lifetime_end: 5044 if (TheLoop->hasLoopInvariantOperands(&I)) 5045 addToWorklistIfAllowed(&I); 5046 break; 5047 default: 5048 break; 5049 } 5050 } 5051 5052 // ExtractValue instructions must be uniform, because the operands are 5053 // known to be loop-invariant. 5054 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5055 assert(isOutOfScope(EVI->getAggregateOperand()) && 5056 "Expected aggregate value to be loop invariant"); 5057 addToWorklistIfAllowed(EVI); 5058 continue; 5059 } 5060 5061 // If there's no pointer operand, there's nothing to do. 5062 auto *Ptr = getLoadStorePointerOperand(&I); 5063 if (!Ptr) 5064 continue; 5065 5066 // A uniform memory op is itself uniform. We exclude uniform stores 5067 // here as they demand the last lane, not the first one. 5068 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5069 addToWorklistIfAllowed(&I); 5070 5071 if (isUniformDecision(&I, VF)) { 5072 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5073 HasUniformUse.insert(Ptr); 5074 } 5075 } 5076 5077 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5078 // demanding) users. Since loops are assumed to be in LCSSA form, this 5079 // disallows uses outside the loop as well. 5080 for (auto *V : HasUniformUse) { 5081 if (isOutOfScope(V)) 5082 continue; 5083 auto *I = cast<Instruction>(V); 5084 auto UsersAreMemAccesses = 5085 llvm::all_of(I->users(), [&](User *U) -> bool { 5086 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5087 }); 5088 if (UsersAreMemAccesses) 5089 addToWorklistIfAllowed(I); 5090 } 5091 5092 // Expand Worklist in topological order: whenever a new instruction 5093 // is added , its users should be already inside Worklist. It ensures 5094 // a uniform instruction will only be used by uniform instructions. 5095 unsigned idx = 0; 5096 while (idx != Worklist.size()) { 5097 Instruction *I = Worklist[idx++]; 5098 5099 for (auto OV : I->operand_values()) { 5100 // isOutOfScope operands cannot be uniform instructions. 5101 if (isOutOfScope(OV)) 5102 continue; 5103 // First order recurrence Phi's should typically be considered 5104 // non-uniform. 5105 auto *OP = dyn_cast<PHINode>(OV); 5106 if (OP && Legal->isFirstOrderRecurrence(OP)) 5107 continue; 5108 // If all the users of the operand are uniform, then add the 5109 // operand into the uniform worklist. 5110 auto *OI = cast<Instruction>(OV); 5111 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5112 auto *J = cast<Instruction>(U); 5113 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5114 })) 5115 addToWorklistIfAllowed(OI); 5116 } 5117 } 5118 5119 // For an instruction to be added into Worklist above, all its users inside 5120 // the loop should also be in Worklist. However, this condition cannot be 5121 // true for phi nodes that form a cyclic dependence. We must process phi 5122 // nodes separately. An induction variable will remain uniform if all users 5123 // of the induction variable and induction variable update remain uniform. 5124 // The code below handles both pointer and non-pointer induction variables. 5125 for (auto &Induction : Legal->getInductionVars()) { 5126 auto *Ind = Induction.first; 5127 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5128 5129 // Determine if all users of the induction variable are uniform after 5130 // vectorization. 5131 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5132 auto *I = cast<Instruction>(U); 5133 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5134 isVectorizedMemAccessUse(I, Ind); 5135 }); 5136 if (!UniformInd) 5137 continue; 5138 5139 // Determine if all users of the induction variable update instruction are 5140 // uniform after vectorization. 5141 auto UniformIndUpdate = 5142 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5143 auto *I = cast<Instruction>(U); 5144 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5145 isVectorizedMemAccessUse(I, IndUpdate); 5146 }); 5147 if (!UniformIndUpdate) 5148 continue; 5149 5150 // The induction variable and its update instruction will remain uniform. 5151 addToWorklistIfAllowed(Ind); 5152 addToWorklistIfAllowed(IndUpdate); 5153 } 5154 5155 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5156 } 5157 5158 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5159 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5160 5161 if (Legal->getRuntimePointerChecking()->Need) { 5162 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5163 "runtime pointer checks needed. Enable vectorization of this " 5164 "loop with '#pragma clang loop vectorize(enable)' when " 5165 "compiling with -Os/-Oz", 5166 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5167 return true; 5168 } 5169 5170 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5171 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5172 "runtime SCEV checks needed. Enable vectorization of this " 5173 "loop with '#pragma clang loop vectorize(enable)' when " 5174 "compiling with -Os/-Oz", 5175 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5176 return true; 5177 } 5178 5179 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5180 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5181 reportVectorizationFailure("Runtime stride check for small trip count", 5182 "runtime stride == 1 checks needed. Enable vectorization of " 5183 "this loop without such check by compiling with -Os/-Oz", 5184 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5185 return true; 5186 } 5187 5188 return false; 5189 } 5190 5191 ElementCount 5192 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5193 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5194 return ElementCount::getScalable(0); 5195 5196 if (Hints->isScalableVectorizationDisabled()) { 5197 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5198 "ScalableVectorizationDisabled", ORE, TheLoop); 5199 return ElementCount::getScalable(0); 5200 } 5201 5202 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5203 5204 auto MaxScalableVF = ElementCount::getScalable( 5205 std::numeric_limits<ElementCount::ScalarTy>::max()); 5206 5207 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5208 // FIXME: While for scalable vectors this is currently sufficient, this should 5209 // be replaced by a more detailed mechanism that filters out specific VFs, 5210 // instead of invalidating vectorization for a whole set of VFs based on the 5211 // MaxVF. 5212 5213 // Disable scalable vectorization if the loop contains unsupported reductions. 5214 if (!canVectorizeReductions(MaxScalableVF)) { 5215 reportVectorizationInfo( 5216 "Scalable vectorization not supported for the reduction " 5217 "operations found in this loop.", 5218 "ScalableVFUnfeasible", ORE, TheLoop); 5219 return ElementCount::getScalable(0); 5220 } 5221 5222 // Disable scalable vectorization if the loop contains any instructions 5223 // with element types not supported for scalable vectors. 5224 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5225 return !Ty->isVoidTy() && 5226 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5227 })) { 5228 reportVectorizationInfo("Scalable vectorization is not supported " 5229 "for all element types found in this loop.", 5230 "ScalableVFUnfeasible", ORE, TheLoop); 5231 return ElementCount::getScalable(0); 5232 } 5233 5234 if (Legal->isSafeForAnyVectorWidth()) 5235 return MaxScalableVF; 5236 5237 // Limit MaxScalableVF by the maximum safe dependence distance. 5238 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5239 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5240 MaxVScale = 5241 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5242 MaxScalableVF = ElementCount::getScalable( 5243 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5244 if (!MaxScalableVF) 5245 reportVectorizationInfo( 5246 "Max legal vector width too small, scalable vectorization " 5247 "unfeasible.", 5248 "ScalableVFUnfeasible", ORE, TheLoop); 5249 5250 return MaxScalableVF; 5251 } 5252 5253 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5254 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5255 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5256 unsigned SmallestType, WidestType; 5257 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5258 5259 // Get the maximum safe dependence distance in bits computed by LAA. 5260 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5261 // the memory accesses that is most restrictive (involved in the smallest 5262 // dependence distance). 5263 unsigned MaxSafeElements = 5264 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5265 5266 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5267 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5268 5269 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5270 << ".\n"); 5271 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5272 << ".\n"); 5273 5274 // First analyze the UserVF, fall back if the UserVF should be ignored. 5275 if (UserVF) { 5276 auto MaxSafeUserVF = 5277 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5278 5279 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5280 // If `VF=vscale x N` is safe, then so is `VF=N` 5281 if (UserVF.isScalable()) 5282 return FixedScalableVFPair( 5283 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5284 else 5285 return UserVF; 5286 } 5287 5288 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5289 5290 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5291 // is better to ignore the hint and let the compiler choose a suitable VF. 5292 if (!UserVF.isScalable()) { 5293 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5294 << " is unsafe, clamping to max safe VF=" 5295 << MaxSafeFixedVF << ".\n"); 5296 ORE->emit([&]() { 5297 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5298 TheLoop->getStartLoc(), 5299 TheLoop->getHeader()) 5300 << "User-specified vectorization factor " 5301 << ore::NV("UserVectorizationFactor", UserVF) 5302 << " is unsafe, clamping to maximum safe vectorization factor " 5303 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5304 }); 5305 return MaxSafeFixedVF; 5306 } 5307 5308 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5309 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5310 << " is ignored because scalable vectors are not " 5311 "available.\n"); 5312 ORE->emit([&]() { 5313 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5314 TheLoop->getStartLoc(), 5315 TheLoop->getHeader()) 5316 << "User-specified vectorization factor " 5317 << ore::NV("UserVectorizationFactor", UserVF) 5318 << " is ignored because the target does not support scalable " 5319 "vectors. The compiler will pick a more suitable value."; 5320 }); 5321 } else { 5322 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5323 << " is unsafe. Ignoring scalable UserVF.\n"); 5324 ORE->emit([&]() { 5325 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5326 TheLoop->getStartLoc(), 5327 TheLoop->getHeader()) 5328 << "User-specified vectorization factor " 5329 << ore::NV("UserVectorizationFactor", UserVF) 5330 << " is unsafe. Ignoring the hint to let the compiler pick a " 5331 "more suitable value."; 5332 }); 5333 } 5334 } 5335 5336 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5337 << " / " << WidestType << " bits.\n"); 5338 5339 FixedScalableVFPair Result(ElementCount::getFixed(1), 5340 ElementCount::getScalable(0)); 5341 if (auto MaxVF = 5342 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5343 MaxSafeFixedVF, FoldTailByMasking)) 5344 Result.FixedVF = MaxVF; 5345 5346 if (auto MaxVF = 5347 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5348 MaxSafeScalableVF, FoldTailByMasking)) 5349 if (MaxVF.isScalable()) { 5350 Result.ScalableVF = MaxVF; 5351 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5352 << "\n"); 5353 } 5354 5355 return Result; 5356 } 5357 5358 FixedScalableVFPair 5359 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5360 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5361 // TODO: It may by useful to do since it's still likely to be dynamically 5362 // uniform if the target can skip. 5363 reportVectorizationFailure( 5364 "Not inserting runtime ptr check for divergent target", 5365 "runtime pointer checks needed. Not enabled for divergent target", 5366 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5367 return FixedScalableVFPair::getNone(); 5368 } 5369 5370 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5371 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5372 if (TC == 1) { 5373 reportVectorizationFailure("Single iteration (non) loop", 5374 "loop trip count is one, irrelevant for vectorization", 5375 "SingleIterationLoop", ORE, TheLoop); 5376 return FixedScalableVFPair::getNone(); 5377 } 5378 5379 switch (ScalarEpilogueStatus) { 5380 case CM_ScalarEpilogueAllowed: 5381 return computeFeasibleMaxVF(TC, UserVF, false); 5382 case CM_ScalarEpilogueNotAllowedUsePredicate: 5383 LLVM_FALLTHROUGH; 5384 case CM_ScalarEpilogueNotNeededUsePredicate: 5385 LLVM_DEBUG( 5386 dbgs() << "LV: vector predicate hint/switch found.\n" 5387 << "LV: Not allowing scalar epilogue, creating predicated " 5388 << "vector loop.\n"); 5389 break; 5390 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5391 // fallthrough as a special case of OptForSize 5392 case CM_ScalarEpilogueNotAllowedOptSize: 5393 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5394 LLVM_DEBUG( 5395 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5396 else 5397 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5398 << "count.\n"); 5399 5400 // Bail if runtime checks are required, which are not good when optimising 5401 // for size. 5402 if (runtimeChecksRequired()) 5403 return FixedScalableVFPair::getNone(); 5404 5405 break; 5406 } 5407 5408 // The only loops we can vectorize without a scalar epilogue, are loops with 5409 // a bottom-test and a single exiting block. We'd have to handle the fact 5410 // that not every instruction executes on the last iteration. This will 5411 // require a lane mask which varies through the vector loop body. (TODO) 5412 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5413 // If there was a tail-folding hint/switch, but we can't fold the tail by 5414 // masking, fallback to a vectorization with a scalar epilogue. 5415 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5416 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5417 "scalar epilogue instead.\n"); 5418 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5419 return computeFeasibleMaxVF(TC, UserVF, false); 5420 } 5421 return FixedScalableVFPair::getNone(); 5422 } 5423 5424 // Now try the tail folding 5425 5426 // Invalidate interleave groups that require an epilogue if we can't mask 5427 // the interleave-group. 5428 if (!useMaskedInterleavedAccesses(TTI)) { 5429 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5430 "No decisions should have been taken at this point"); 5431 // Note: There is no need to invalidate any cost modeling decisions here, as 5432 // non where taken so far. 5433 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5434 } 5435 5436 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5437 // Avoid tail folding if the trip count is known to be a multiple of any VF 5438 // we chose. 5439 // FIXME: The condition below pessimises the case for fixed-width vectors, 5440 // when scalable VFs are also candidates for vectorization. 5441 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5442 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5443 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5444 "MaxFixedVF must be a power of 2"); 5445 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5446 : MaxFixedVF.getFixedValue(); 5447 ScalarEvolution *SE = PSE.getSE(); 5448 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5449 const SCEV *ExitCount = SE->getAddExpr( 5450 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5451 const SCEV *Rem = SE->getURemExpr( 5452 SE->applyLoopGuards(ExitCount, TheLoop), 5453 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5454 if (Rem->isZero()) { 5455 // Accept MaxFixedVF if we do not have a tail. 5456 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5457 return MaxFactors; 5458 } 5459 } 5460 5461 // For scalable vectors don't use tail folding for low trip counts or 5462 // optimizing for code size. We only permit this if the user has explicitly 5463 // requested it. 5464 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5465 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5466 MaxFactors.ScalableVF.isVector()) 5467 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5468 5469 // If we don't know the precise trip count, or if the trip count that we 5470 // found modulo the vectorization factor is not zero, try to fold the tail 5471 // by masking. 5472 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5473 if (Legal->prepareToFoldTailByMasking()) { 5474 FoldTailByMasking = true; 5475 return MaxFactors; 5476 } 5477 5478 // If there was a tail-folding hint/switch, but we can't fold the tail by 5479 // masking, fallback to a vectorization with a scalar epilogue. 5480 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5481 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5482 "scalar epilogue instead.\n"); 5483 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5484 return MaxFactors; 5485 } 5486 5487 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5488 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5489 return FixedScalableVFPair::getNone(); 5490 } 5491 5492 if (TC == 0) { 5493 reportVectorizationFailure( 5494 "Unable to calculate the loop count due to complex control flow", 5495 "unable to calculate the loop count due to complex control flow", 5496 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5497 return FixedScalableVFPair::getNone(); 5498 } 5499 5500 reportVectorizationFailure( 5501 "Cannot optimize for size and vectorize at the same time.", 5502 "cannot optimize for size and vectorize at the same time. " 5503 "Enable vectorization of this loop with '#pragma clang loop " 5504 "vectorize(enable)' when compiling with -Os/-Oz", 5505 "NoTailLoopWithOptForSize", ORE, TheLoop); 5506 return FixedScalableVFPair::getNone(); 5507 } 5508 5509 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5510 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5511 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5512 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5513 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5514 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5515 : TargetTransformInfo::RGK_FixedWidthVector); 5516 5517 // Convenience function to return the minimum of two ElementCounts. 5518 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5519 assert((LHS.isScalable() == RHS.isScalable()) && 5520 "Scalable flags must match"); 5521 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5522 }; 5523 5524 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5525 // Note that both WidestRegister and WidestType may not be a powers of 2. 5526 auto MaxVectorElementCount = ElementCount::get( 5527 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5528 ComputeScalableMaxVF); 5529 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5530 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5531 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5532 5533 if (!MaxVectorElementCount) { 5534 LLVM_DEBUG(dbgs() << "LV: The target has no " 5535 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5536 << " vector registers.\n"); 5537 return ElementCount::getFixed(1); 5538 } 5539 5540 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5541 if (ConstTripCount && 5542 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5543 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5544 // If loop trip count (TC) is known at compile time there is no point in 5545 // choosing VF greater than TC (as done in the loop below). Select maximum 5546 // power of two which doesn't exceed TC. 5547 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5548 // when the TC is less than or equal to the known number of lanes. 5549 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5550 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5551 "exceeding the constant trip count: " 5552 << ClampedConstTripCount << "\n"); 5553 return ElementCount::getFixed(ClampedConstTripCount); 5554 } 5555 5556 ElementCount MaxVF = MaxVectorElementCount; 5557 if (TTI.shouldMaximizeVectorBandwidth() || 5558 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5559 auto MaxVectorElementCountMaxBW = ElementCount::get( 5560 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5561 ComputeScalableMaxVF); 5562 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5563 5564 // Collect all viable vectorization factors larger than the default MaxVF 5565 // (i.e. MaxVectorElementCount). 5566 SmallVector<ElementCount, 8> VFs; 5567 for (ElementCount VS = MaxVectorElementCount * 2; 5568 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5569 VFs.push_back(VS); 5570 5571 // For each VF calculate its register usage. 5572 auto RUs = calculateRegisterUsage(VFs); 5573 5574 // Select the largest VF which doesn't require more registers than existing 5575 // ones. 5576 for (int i = RUs.size() - 1; i >= 0; --i) { 5577 bool Selected = true; 5578 for (auto &pair : RUs[i].MaxLocalUsers) { 5579 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5580 if (pair.second > TargetNumRegisters) 5581 Selected = false; 5582 } 5583 if (Selected) { 5584 MaxVF = VFs[i]; 5585 break; 5586 } 5587 } 5588 if (ElementCount MinVF = 5589 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5590 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5591 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5592 << ") with target's minimum: " << MinVF << '\n'); 5593 MaxVF = MinVF; 5594 } 5595 } 5596 } 5597 return MaxVF; 5598 } 5599 5600 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5601 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5602 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5603 auto Min = Attr.getVScaleRangeMin(); 5604 auto Max = Attr.getVScaleRangeMax(); 5605 if (Max && Min == Max) 5606 return Max; 5607 } 5608 5609 return TTI.getVScaleForTuning(); 5610 } 5611 5612 bool LoopVectorizationCostModel::isMoreProfitable( 5613 const VectorizationFactor &A, const VectorizationFactor &B) const { 5614 InstructionCost CostA = A.Cost; 5615 InstructionCost CostB = B.Cost; 5616 5617 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5618 5619 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5620 MaxTripCount) { 5621 // If we are folding the tail and the trip count is a known (possibly small) 5622 // constant, the trip count will be rounded up to an integer number of 5623 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5624 // which we compare directly. When not folding the tail, the total cost will 5625 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5626 // approximated with the per-lane cost below instead of using the tripcount 5627 // as here. 5628 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5629 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5630 return RTCostA < RTCostB; 5631 } 5632 5633 // Improve estimate for the vector width if it is scalable. 5634 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5635 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5636 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5637 if (A.Width.isScalable()) 5638 EstimatedWidthA *= VScale.getValue(); 5639 if (B.Width.isScalable()) 5640 EstimatedWidthB *= VScale.getValue(); 5641 } 5642 5643 // Assume vscale may be larger than 1 (or the value being tuned for), 5644 // so that scalable vectorization is slightly favorable over fixed-width 5645 // vectorization. 5646 if (A.Width.isScalable() && !B.Width.isScalable()) 5647 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5648 5649 // To avoid the need for FP division: 5650 // (CostA / A.Width) < (CostB / B.Width) 5651 // <=> (CostA * B.Width) < (CostB * A.Width) 5652 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5653 } 5654 5655 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5656 const ElementCountSet &VFCandidates) { 5657 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5658 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5659 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5660 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5661 "Expected Scalar VF to be a candidate"); 5662 5663 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5664 VectorizationFactor ChosenFactor = ScalarCost; 5665 5666 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5667 if (ForceVectorization && VFCandidates.size() > 1) { 5668 // Ignore scalar width, because the user explicitly wants vectorization. 5669 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5670 // evaluation. 5671 ChosenFactor.Cost = InstructionCost::getMax(); 5672 } 5673 5674 SmallVector<InstructionVFPair> InvalidCosts; 5675 for (const auto &i : VFCandidates) { 5676 // The cost for scalar VF=1 is already calculated, so ignore it. 5677 if (i.isScalar()) 5678 continue; 5679 5680 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5681 VectorizationFactor Candidate(i, C.first); 5682 5683 #ifndef NDEBUG 5684 unsigned AssumedMinimumVscale = 1; 5685 if (Optional<unsigned> VScale = getVScaleForTuning()) 5686 AssumedMinimumVscale = VScale.getValue(); 5687 unsigned Width = 5688 Candidate.Width.isScalable() 5689 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5690 : Candidate.Width.getFixedValue(); 5691 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5692 << " costs: " << (Candidate.Cost / Width)); 5693 if (i.isScalable()) 5694 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5695 << AssumedMinimumVscale << ")"); 5696 LLVM_DEBUG(dbgs() << ".\n"); 5697 #endif 5698 5699 if (!C.second && !ForceVectorization) { 5700 LLVM_DEBUG( 5701 dbgs() << "LV: Not considering vector loop of width " << i 5702 << " because it will not generate any vector instructions.\n"); 5703 continue; 5704 } 5705 5706 // If profitable add it to ProfitableVF list. 5707 if (isMoreProfitable(Candidate, ScalarCost)) 5708 ProfitableVFs.push_back(Candidate); 5709 5710 if (isMoreProfitable(Candidate, ChosenFactor)) 5711 ChosenFactor = Candidate; 5712 } 5713 5714 // Emit a report of VFs with invalid costs in the loop. 5715 if (!InvalidCosts.empty()) { 5716 // Group the remarks per instruction, keeping the instruction order from 5717 // InvalidCosts. 5718 std::map<Instruction *, unsigned> Numbering; 5719 unsigned I = 0; 5720 for (auto &Pair : InvalidCosts) 5721 if (!Numbering.count(Pair.first)) 5722 Numbering[Pair.first] = I++; 5723 5724 // Sort the list, first on instruction(number) then on VF. 5725 llvm::sort(InvalidCosts, 5726 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5727 if (Numbering[A.first] != Numbering[B.first]) 5728 return Numbering[A.first] < Numbering[B.first]; 5729 ElementCountComparator ECC; 5730 return ECC(A.second, B.second); 5731 }); 5732 5733 // For a list of ordered instruction-vf pairs: 5734 // [(load, vf1), (load, vf2), (store, vf1)] 5735 // Group the instructions together to emit separate remarks for: 5736 // load (vf1, vf2) 5737 // store (vf1) 5738 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5739 auto Subset = ArrayRef<InstructionVFPair>(); 5740 do { 5741 if (Subset.empty()) 5742 Subset = Tail.take_front(1); 5743 5744 Instruction *I = Subset.front().first; 5745 5746 // If the next instruction is different, or if there are no other pairs, 5747 // emit a remark for the collated subset. e.g. 5748 // [(load, vf1), (load, vf2))] 5749 // to emit: 5750 // remark: invalid costs for 'load' at VF=(vf, vf2) 5751 if (Subset == Tail || Tail[Subset.size()].first != I) { 5752 std::string OutString; 5753 raw_string_ostream OS(OutString); 5754 assert(!Subset.empty() && "Unexpected empty range"); 5755 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5756 for (auto &Pair : Subset) 5757 OS << (Pair.second == Subset.front().second ? "" : ", ") 5758 << Pair.second; 5759 OS << "):"; 5760 if (auto *CI = dyn_cast<CallInst>(I)) 5761 OS << " call to " << CI->getCalledFunction()->getName(); 5762 else 5763 OS << " " << I->getOpcodeName(); 5764 OS.flush(); 5765 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5766 Tail = Tail.drop_front(Subset.size()); 5767 Subset = {}; 5768 } else 5769 // Grow the subset by one element 5770 Subset = Tail.take_front(Subset.size() + 1); 5771 } while (!Tail.empty()); 5772 } 5773 5774 if (!EnableCondStoresVectorization && NumPredStores) { 5775 reportVectorizationFailure("There are conditional stores.", 5776 "store that is conditionally executed prevents vectorization", 5777 "ConditionalStore", ORE, TheLoop); 5778 ChosenFactor = ScalarCost; 5779 } 5780 5781 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5782 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5783 << "LV: Vectorization seems to be not beneficial, " 5784 << "but was forced by a user.\n"); 5785 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5786 return ChosenFactor; 5787 } 5788 5789 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5790 const Loop &L, ElementCount VF) const { 5791 // Cross iteration phis such as reductions need special handling and are 5792 // currently unsupported. 5793 if (any_of(L.getHeader()->phis(), 5794 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5795 return false; 5796 5797 // Phis with uses outside of the loop require special handling and are 5798 // currently unsupported. 5799 for (auto &Entry : Legal->getInductionVars()) { 5800 // Look for uses of the value of the induction at the last iteration. 5801 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5802 for (User *U : PostInc->users()) 5803 if (!L.contains(cast<Instruction>(U))) 5804 return false; 5805 // Look for uses of penultimate value of the induction. 5806 for (User *U : Entry.first->users()) 5807 if (!L.contains(cast<Instruction>(U))) 5808 return false; 5809 } 5810 5811 // Induction variables that are widened require special handling that is 5812 // currently not supported. 5813 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5814 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5815 this->isProfitableToScalarize(Entry.first, VF)); 5816 })) 5817 return false; 5818 5819 // Epilogue vectorization code has not been auditted to ensure it handles 5820 // non-latch exits properly. It may be fine, but it needs auditted and 5821 // tested. 5822 if (L.getExitingBlock() != L.getLoopLatch()) 5823 return false; 5824 5825 return true; 5826 } 5827 5828 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5829 const ElementCount VF) const { 5830 // FIXME: We need a much better cost-model to take different parameters such 5831 // as register pressure, code size increase and cost of extra branches into 5832 // account. For now we apply a very crude heuristic and only consider loops 5833 // with vectorization factors larger than a certain value. 5834 // We also consider epilogue vectorization unprofitable for targets that don't 5835 // consider interleaving beneficial (eg. MVE). 5836 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5837 return false; 5838 // FIXME: We should consider changing the threshold for scalable 5839 // vectors to take VScaleForTuning into account. 5840 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5841 return true; 5842 return false; 5843 } 5844 5845 VectorizationFactor 5846 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5847 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5848 VectorizationFactor Result = VectorizationFactor::Disabled(); 5849 if (!EnableEpilogueVectorization) { 5850 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5851 return Result; 5852 } 5853 5854 if (!isScalarEpilogueAllowed()) { 5855 LLVM_DEBUG( 5856 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5857 "allowed.\n";); 5858 return Result; 5859 } 5860 5861 // Not really a cost consideration, but check for unsupported cases here to 5862 // simplify the logic. 5863 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5864 LLVM_DEBUG( 5865 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5866 "not a supported candidate.\n";); 5867 return Result; 5868 } 5869 5870 if (EpilogueVectorizationForceVF > 1) { 5871 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5872 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5873 if (LVP.hasPlanWithVF(ForcedEC)) 5874 return {ForcedEC, 0}; 5875 else { 5876 LLVM_DEBUG( 5877 dbgs() 5878 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5879 return Result; 5880 } 5881 } 5882 5883 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5884 TheLoop->getHeader()->getParent()->hasMinSize()) { 5885 LLVM_DEBUG( 5886 dbgs() 5887 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5888 return Result; 5889 } 5890 5891 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5892 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5893 "this loop\n"); 5894 return Result; 5895 } 5896 5897 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5898 // the main loop handles 8 lanes per iteration. We could still benefit from 5899 // vectorizing the epilogue loop with VF=4. 5900 ElementCount EstimatedRuntimeVF = MainLoopVF; 5901 if (MainLoopVF.isScalable()) { 5902 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5903 if (Optional<unsigned> VScale = getVScaleForTuning()) 5904 EstimatedRuntimeVF *= VScale.getValue(); 5905 } 5906 5907 for (auto &NextVF : ProfitableVFs) 5908 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5909 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5910 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5911 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5912 LVP.hasPlanWithVF(NextVF.Width)) 5913 Result = NextVF; 5914 5915 if (Result != VectorizationFactor::Disabled()) 5916 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5917 << Result.Width << "\n";); 5918 return Result; 5919 } 5920 5921 std::pair<unsigned, unsigned> 5922 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5923 unsigned MinWidth = -1U; 5924 unsigned MaxWidth = 8; 5925 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5926 // For in-loop reductions, no element types are added to ElementTypesInLoop 5927 // if there are no loads/stores in the loop. In this case, check through the 5928 // reduction variables to determine the maximum width. 5929 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5930 // Reset MaxWidth so that we can find the smallest type used by recurrences 5931 // in the loop. 5932 MaxWidth = -1U; 5933 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5934 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5935 // When finding the min width used by the recurrence we need to account 5936 // for casts on the input operands of the recurrence. 5937 MaxWidth = std::min<unsigned>( 5938 MaxWidth, std::min<unsigned>( 5939 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5940 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5941 } 5942 } else { 5943 for (Type *T : ElementTypesInLoop) { 5944 MinWidth = std::min<unsigned>( 5945 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5946 MaxWidth = std::max<unsigned>( 5947 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5948 } 5949 } 5950 return {MinWidth, MaxWidth}; 5951 } 5952 5953 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5954 ElementTypesInLoop.clear(); 5955 // For each block. 5956 for (BasicBlock *BB : TheLoop->blocks()) { 5957 // For each instruction in the loop. 5958 for (Instruction &I : BB->instructionsWithoutDebug()) { 5959 Type *T = I.getType(); 5960 5961 // Skip ignored values. 5962 if (ValuesToIgnore.count(&I)) 5963 continue; 5964 5965 // Only examine Loads, Stores and PHINodes. 5966 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5967 continue; 5968 5969 // Examine PHI nodes that are reduction variables. Update the type to 5970 // account for the recurrence type. 5971 if (auto *PN = dyn_cast<PHINode>(&I)) { 5972 if (!Legal->isReductionVariable(PN)) 5973 continue; 5974 const RecurrenceDescriptor &RdxDesc = 5975 Legal->getReductionVars().find(PN)->second; 5976 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5977 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5978 RdxDesc.getRecurrenceType(), 5979 TargetTransformInfo::ReductionFlags())) 5980 continue; 5981 T = RdxDesc.getRecurrenceType(); 5982 } 5983 5984 // Examine the stored values. 5985 if (auto *ST = dyn_cast<StoreInst>(&I)) 5986 T = ST->getValueOperand()->getType(); 5987 5988 assert(T->isSized() && 5989 "Expected the load/store/recurrence type to be sized"); 5990 5991 ElementTypesInLoop.insert(T); 5992 } 5993 } 5994 } 5995 5996 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5997 unsigned LoopCost) { 5998 // -- The interleave heuristics -- 5999 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6000 // There are many micro-architectural considerations that we can't predict 6001 // at this level. For example, frontend pressure (on decode or fetch) due to 6002 // code size, or the number and capabilities of the execution ports. 6003 // 6004 // We use the following heuristics to select the interleave count: 6005 // 1. If the code has reductions, then we interleave to break the cross 6006 // iteration dependency. 6007 // 2. If the loop is really small, then we interleave to reduce the loop 6008 // overhead. 6009 // 3. We don't interleave if we think that we will spill registers to memory 6010 // due to the increased register pressure. 6011 6012 if (!isScalarEpilogueAllowed()) 6013 return 1; 6014 6015 // We used the distance for the interleave count. 6016 if (Legal->getMaxSafeDepDistBytes() != -1U) 6017 return 1; 6018 6019 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6020 const bool HasReductions = !Legal->getReductionVars().empty(); 6021 // Do not interleave loops with a relatively small known or estimated trip 6022 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6023 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6024 // because with the above conditions interleaving can expose ILP and break 6025 // cross iteration dependences for reductions. 6026 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6027 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6028 return 1; 6029 6030 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6031 // We divide by these constants so assume that we have at least one 6032 // instruction that uses at least one register. 6033 for (auto& pair : R.MaxLocalUsers) { 6034 pair.second = std::max(pair.second, 1U); 6035 } 6036 6037 // We calculate the interleave count using the following formula. 6038 // Subtract the number of loop invariants from the number of available 6039 // registers. These registers are used by all of the interleaved instances. 6040 // Next, divide the remaining registers by the number of registers that is 6041 // required by the loop, in order to estimate how many parallel instances 6042 // fit without causing spills. All of this is rounded down if necessary to be 6043 // a power of two. We want power of two interleave count to simplify any 6044 // addressing operations or alignment considerations. 6045 // We also want power of two interleave counts to ensure that the induction 6046 // variable of the vector loop wraps to zero, when tail is folded by masking; 6047 // this currently happens when OptForSize, in which case IC is set to 1 above. 6048 unsigned IC = UINT_MAX; 6049 6050 for (auto& pair : R.MaxLocalUsers) { 6051 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6052 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6053 << " registers of " 6054 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6055 if (VF.isScalar()) { 6056 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6057 TargetNumRegisters = ForceTargetNumScalarRegs; 6058 } else { 6059 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6060 TargetNumRegisters = ForceTargetNumVectorRegs; 6061 } 6062 unsigned MaxLocalUsers = pair.second; 6063 unsigned LoopInvariantRegs = 0; 6064 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6065 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6066 6067 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6068 // Don't count the induction variable as interleaved. 6069 if (EnableIndVarRegisterHeur) { 6070 TmpIC = 6071 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6072 std::max(1U, (MaxLocalUsers - 1))); 6073 } 6074 6075 IC = std::min(IC, TmpIC); 6076 } 6077 6078 // Clamp the interleave ranges to reasonable counts. 6079 unsigned MaxInterleaveCount = 6080 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6081 6082 // Check if the user has overridden the max. 6083 if (VF.isScalar()) { 6084 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6085 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6086 } else { 6087 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6088 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6089 } 6090 6091 // If trip count is known or estimated compile time constant, limit the 6092 // interleave count to be less than the trip count divided by VF, provided it 6093 // is at least 1. 6094 // 6095 // For scalable vectors we can't know if interleaving is beneficial. It may 6096 // not be beneficial for small loops if none of the lanes in the second vector 6097 // iterations is enabled. However, for larger loops, there is likely to be a 6098 // similar benefit as for fixed-width vectors. For now, we choose to leave 6099 // the InterleaveCount as if vscale is '1', although if some information about 6100 // the vector is known (e.g. min vector size), we can make a better decision. 6101 if (BestKnownTC) { 6102 MaxInterleaveCount = 6103 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6104 // Make sure MaxInterleaveCount is greater than 0. 6105 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6106 } 6107 6108 assert(MaxInterleaveCount > 0 && 6109 "Maximum interleave count must be greater than 0"); 6110 6111 // Clamp the calculated IC to be between the 1 and the max interleave count 6112 // that the target and trip count allows. 6113 if (IC > MaxInterleaveCount) 6114 IC = MaxInterleaveCount; 6115 else 6116 // Make sure IC is greater than 0. 6117 IC = std::max(1u, IC); 6118 6119 assert(IC > 0 && "Interleave count must be greater than 0."); 6120 6121 // If we did not calculate the cost for VF (because the user selected the VF) 6122 // then we calculate the cost of VF here. 6123 if (LoopCost == 0) { 6124 InstructionCost C = expectedCost(VF).first; 6125 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6126 LoopCost = *C.getValue(); 6127 } 6128 6129 assert(LoopCost && "Non-zero loop cost expected"); 6130 6131 // Interleave if we vectorized this loop and there is a reduction that could 6132 // benefit from interleaving. 6133 if (VF.isVector() && HasReductions) { 6134 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6135 return IC; 6136 } 6137 6138 // Note that if we've already vectorized the loop we will have done the 6139 // runtime check and so interleaving won't require further checks. 6140 bool InterleavingRequiresRuntimePointerCheck = 6141 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6142 6143 // We want to interleave small loops in order to reduce the loop overhead and 6144 // potentially expose ILP opportunities. 6145 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6146 << "LV: IC is " << IC << '\n' 6147 << "LV: VF is " << VF << '\n'); 6148 const bool AggressivelyInterleaveReductions = 6149 TTI.enableAggressiveInterleaving(HasReductions); 6150 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6151 // We assume that the cost overhead is 1 and we use the cost model 6152 // to estimate the cost of the loop and interleave until the cost of the 6153 // loop overhead is about 5% of the cost of the loop. 6154 unsigned SmallIC = 6155 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6156 6157 // Interleave until store/load ports (estimated by max interleave count) are 6158 // saturated. 6159 unsigned NumStores = Legal->getNumStores(); 6160 unsigned NumLoads = Legal->getNumLoads(); 6161 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6162 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6163 6164 // There is little point in interleaving for reductions containing selects 6165 // and compares when VF=1 since it may just create more overhead than it's 6166 // worth for loops with small trip counts. This is because we still have to 6167 // do the final reduction after the loop. 6168 bool HasSelectCmpReductions = 6169 HasReductions && 6170 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6171 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6172 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6173 RdxDesc.getRecurrenceKind()); 6174 }); 6175 if (HasSelectCmpReductions) { 6176 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6177 return 1; 6178 } 6179 6180 // If we have a scalar reduction (vector reductions are already dealt with 6181 // by this point), we can increase the critical path length if the loop 6182 // we're interleaving is inside another loop. For tree-wise reductions 6183 // set the limit to 2, and for ordered reductions it's best to disable 6184 // interleaving entirely. 6185 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6186 bool HasOrderedReductions = 6187 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6188 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6189 return RdxDesc.isOrdered(); 6190 }); 6191 if (HasOrderedReductions) { 6192 LLVM_DEBUG( 6193 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6194 return 1; 6195 } 6196 6197 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6198 SmallIC = std::min(SmallIC, F); 6199 StoresIC = std::min(StoresIC, F); 6200 LoadsIC = std::min(LoadsIC, F); 6201 } 6202 6203 if (EnableLoadStoreRuntimeInterleave && 6204 std::max(StoresIC, LoadsIC) > SmallIC) { 6205 LLVM_DEBUG( 6206 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6207 return std::max(StoresIC, LoadsIC); 6208 } 6209 6210 // If there are scalar reductions and TTI has enabled aggressive 6211 // interleaving for reductions, we will interleave to expose ILP. 6212 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6213 AggressivelyInterleaveReductions) { 6214 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6215 // Interleave no less than SmallIC but not as aggressive as the normal IC 6216 // to satisfy the rare situation when resources are too limited. 6217 return std::max(IC / 2, SmallIC); 6218 } else { 6219 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6220 return SmallIC; 6221 } 6222 } 6223 6224 // Interleave if this is a large loop (small loops are already dealt with by 6225 // this point) that could benefit from interleaving. 6226 if (AggressivelyInterleaveReductions) { 6227 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6228 return IC; 6229 } 6230 6231 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6232 return 1; 6233 } 6234 6235 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6236 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6237 // This function calculates the register usage by measuring the highest number 6238 // of values that are alive at a single location. Obviously, this is a very 6239 // rough estimation. We scan the loop in a topological order in order and 6240 // assign a number to each instruction. We use RPO to ensure that defs are 6241 // met before their users. We assume that each instruction that has in-loop 6242 // users starts an interval. We record every time that an in-loop value is 6243 // used, so we have a list of the first and last occurrences of each 6244 // instruction. Next, we transpose this data structure into a multi map that 6245 // holds the list of intervals that *end* at a specific location. This multi 6246 // map allows us to perform a linear search. We scan the instructions linearly 6247 // and record each time that a new interval starts, by placing it in a set. 6248 // If we find this value in the multi-map then we remove it from the set. 6249 // The max register usage is the maximum size of the set. 6250 // We also search for instructions that are defined outside the loop, but are 6251 // used inside the loop. We need this number separately from the max-interval 6252 // usage number because when we unroll, loop-invariant values do not take 6253 // more register. 6254 LoopBlocksDFS DFS(TheLoop); 6255 DFS.perform(LI); 6256 6257 RegisterUsage RU; 6258 6259 // Each 'key' in the map opens a new interval. The values 6260 // of the map are the index of the 'last seen' usage of the 6261 // instruction that is the key. 6262 using IntervalMap = DenseMap<Instruction *, unsigned>; 6263 6264 // Maps instruction to its index. 6265 SmallVector<Instruction *, 64> IdxToInstr; 6266 // Marks the end of each interval. 6267 IntervalMap EndPoint; 6268 // Saves the list of instruction indices that are used in the loop. 6269 SmallPtrSet<Instruction *, 8> Ends; 6270 // Saves the list of values that are used in the loop but are 6271 // defined outside the loop, such as arguments and constants. 6272 SmallPtrSet<Value *, 8> LoopInvariants; 6273 6274 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6275 for (Instruction &I : BB->instructionsWithoutDebug()) { 6276 IdxToInstr.push_back(&I); 6277 6278 // Save the end location of each USE. 6279 for (Value *U : I.operands()) { 6280 auto *Instr = dyn_cast<Instruction>(U); 6281 6282 // Ignore non-instruction values such as arguments, constants, etc. 6283 if (!Instr) 6284 continue; 6285 6286 // If this instruction is outside the loop then record it and continue. 6287 if (!TheLoop->contains(Instr)) { 6288 LoopInvariants.insert(Instr); 6289 continue; 6290 } 6291 6292 // Overwrite previous end points. 6293 EndPoint[Instr] = IdxToInstr.size(); 6294 Ends.insert(Instr); 6295 } 6296 } 6297 } 6298 6299 // Saves the list of intervals that end with the index in 'key'. 6300 using InstrList = SmallVector<Instruction *, 2>; 6301 DenseMap<unsigned, InstrList> TransposeEnds; 6302 6303 // Transpose the EndPoints to a list of values that end at each index. 6304 for (auto &Interval : EndPoint) 6305 TransposeEnds[Interval.second].push_back(Interval.first); 6306 6307 SmallPtrSet<Instruction *, 8> OpenIntervals; 6308 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6309 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6310 6311 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6312 6313 // A lambda that gets the register usage for the given type and VF. 6314 const auto &TTICapture = TTI; 6315 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6316 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6317 return 0; 6318 InstructionCost::CostType RegUsage = 6319 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6320 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6321 "Nonsensical values for register usage."); 6322 return RegUsage; 6323 }; 6324 6325 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6326 Instruction *I = IdxToInstr[i]; 6327 6328 // Remove all of the instructions that end at this location. 6329 InstrList &List = TransposeEnds[i]; 6330 for (Instruction *ToRemove : List) 6331 OpenIntervals.erase(ToRemove); 6332 6333 // Ignore instructions that are never used within the loop. 6334 if (!Ends.count(I)) 6335 continue; 6336 6337 // Skip ignored values. 6338 if (ValuesToIgnore.count(I)) 6339 continue; 6340 6341 // For each VF find the maximum usage of registers. 6342 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6343 // Count the number of live intervals. 6344 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6345 6346 if (VFs[j].isScalar()) { 6347 for (auto Inst : OpenIntervals) { 6348 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6349 if (RegUsage.find(ClassID) == RegUsage.end()) 6350 RegUsage[ClassID] = 1; 6351 else 6352 RegUsage[ClassID] += 1; 6353 } 6354 } else { 6355 collectUniformsAndScalars(VFs[j]); 6356 for (auto Inst : OpenIntervals) { 6357 // Skip ignored values for VF > 1. 6358 if (VecValuesToIgnore.count(Inst)) 6359 continue; 6360 if (isScalarAfterVectorization(Inst, VFs[j])) { 6361 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6362 if (RegUsage.find(ClassID) == RegUsage.end()) 6363 RegUsage[ClassID] = 1; 6364 else 6365 RegUsage[ClassID] += 1; 6366 } else { 6367 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6368 if (RegUsage.find(ClassID) == RegUsage.end()) 6369 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6370 else 6371 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6372 } 6373 } 6374 } 6375 6376 for (auto& pair : RegUsage) { 6377 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6378 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6379 else 6380 MaxUsages[j][pair.first] = pair.second; 6381 } 6382 } 6383 6384 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6385 << OpenIntervals.size() << '\n'); 6386 6387 // Add the current instruction to the list of open intervals. 6388 OpenIntervals.insert(I); 6389 } 6390 6391 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6392 SmallMapVector<unsigned, unsigned, 4> Invariant; 6393 6394 for (auto Inst : LoopInvariants) { 6395 unsigned Usage = 6396 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6397 unsigned ClassID = 6398 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6399 if (Invariant.find(ClassID) == Invariant.end()) 6400 Invariant[ClassID] = Usage; 6401 else 6402 Invariant[ClassID] += Usage; 6403 } 6404 6405 LLVM_DEBUG({ 6406 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6407 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6408 << " item\n"; 6409 for (const auto &pair : MaxUsages[i]) { 6410 dbgs() << "LV(REG): RegisterClass: " 6411 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6412 << " registers\n"; 6413 } 6414 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6415 << " item\n"; 6416 for (const auto &pair : Invariant) { 6417 dbgs() << "LV(REG): RegisterClass: " 6418 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6419 << " registers\n"; 6420 } 6421 }); 6422 6423 RU.LoopInvariantRegs = Invariant; 6424 RU.MaxLocalUsers = MaxUsages[i]; 6425 RUs[i] = RU; 6426 } 6427 6428 return RUs; 6429 } 6430 6431 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6432 // If we aren't vectorizing the loop, or if we've already collected the 6433 // instructions to scalarize, there's nothing to do. Collection may already 6434 // have occurred if we have a user-selected VF and are now computing the 6435 // expected cost for interleaving. 6436 if (VF.isScalar() || VF.isZero() || 6437 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6438 return; 6439 6440 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6441 // not profitable to scalarize any instructions, the presence of VF in the 6442 // map will indicate that we've analyzed it already. 6443 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6444 6445 // Find all the instructions that are scalar with predication in the loop and 6446 // determine if it would be better to not if-convert the blocks they are in. 6447 // If so, we also record the instructions to scalarize. 6448 for (BasicBlock *BB : TheLoop->blocks()) { 6449 if (!blockNeedsPredicationForAnyReason(BB)) 6450 continue; 6451 for (Instruction &I : *BB) 6452 if (isScalarWithPredication(&I, VF)) { 6453 ScalarCostsTy ScalarCosts; 6454 // Do not apply discount if scalable, because that would lead to 6455 // invalid scalarization costs. 6456 if (!VF.isScalable() && 6457 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6458 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6459 // Remember that BB will remain after vectorization. 6460 PredicatedBBsAfterVectorization.insert(BB); 6461 } 6462 } 6463 } 6464 6465 int LoopVectorizationCostModel::computePredInstDiscount( 6466 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6467 assert(!isUniformAfterVectorization(PredInst, VF) && 6468 "Instruction marked uniform-after-vectorization will be predicated"); 6469 6470 // Initialize the discount to zero, meaning that the scalar version and the 6471 // vector version cost the same. 6472 InstructionCost Discount = 0; 6473 6474 // Holds instructions to analyze. The instructions we visit are mapped in 6475 // ScalarCosts. Those instructions are the ones that would be scalarized if 6476 // we find that the scalar version costs less. 6477 SmallVector<Instruction *, 8> Worklist; 6478 6479 // Returns true if the given instruction can be scalarized. 6480 auto canBeScalarized = [&](Instruction *I) -> bool { 6481 // We only attempt to scalarize instructions forming a single-use chain 6482 // from the original predicated block that would otherwise be vectorized. 6483 // Although not strictly necessary, we give up on instructions we know will 6484 // already be scalar to avoid traversing chains that are unlikely to be 6485 // beneficial. 6486 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6487 isScalarAfterVectorization(I, VF)) 6488 return false; 6489 6490 // If the instruction is scalar with predication, it will be analyzed 6491 // separately. We ignore it within the context of PredInst. 6492 if (isScalarWithPredication(I, VF)) 6493 return false; 6494 6495 // If any of the instruction's operands are uniform after vectorization, 6496 // the instruction cannot be scalarized. This prevents, for example, a 6497 // masked load from being scalarized. 6498 // 6499 // We assume we will only emit a value for lane zero of an instruction 6500 // marked uniform after vectorization, rather than VF identical values. 6501 // Thus, if we scalarize an instruction that uses a uniform, we would 6502 // create uses of values corresponding to the lanes we aren't emitting code 6503 // for. This behavior can be changed by allowing getScalarValue to clone 6504 // the lane zero values for uniforms rather than asserting. 6505 for (Use &U : I->operands()) 6506 if (auto *J = dyn_cast<Instruction>(U.get())) 6507 if (isUniformAfterVectorization(J, VF)) 6508 return false; 6509 6510 // Otherwise, we can scalarize the instruction. 6511 return true; 6512 }; 6513 6514 // Compute the expected cost discount from scalarizing the entire expression 6515 // feeding the predicated instruction. We currently only consider expressions 6516 // that are single-use instruction chains. 6517 Worklist.push_back(PredInst); 6518 while (!Worklist.empty()) { 6519 Instruction *I = Worklist.pop_back_val(); 6520 6521 // If we've already analyzed the instruction, there's nothing to do. 6522 if (ScalarCosts.find(I) != ScalarCosts.end()) 6523 continue; 6524 6525 // Compute the cost of the vector instruction. Note that this cost already 6526 // includes the scalarization overhead of the predicated instruction. 6527 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6528 6529 // Compute the cost of the scalarized instruction. This cost is the cost of 6530 // the instruction as if it wasn't if-converted and instead remained in the 6531 // predicated block. We will scale this cost by block probability after 6532 // computing the scalarization overhead. 6533 InstructionCost ScalarCost = 6534 VF.getFixedValue() * 6535 getInstructionCost(I, ElementCount::getFixed(1)).first; 6536 6537 // Compute the scalarization overhead of needed insertelement instructions 6538 // and phi nodes. 6539 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6540 ScalarCost += TTI.getScalarizationOverhead( 6541 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6542 APInt::getAllOnes(VF.getFixedValue()), true, false); 6543 ScalarCost += 6544 VF.getFixedValue() * 6545 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6546 } 6547 6548 // Compute the scalarization overhead of needed extractelement 6549 // instructions. For each of the instruction's operands, if the operand can 6550 // be scalarized, add it to the worklist; otherwise, account for the 6551 // overhead. 6552 for (Use &U : I->operands()) 6553 if (auto *J = dyn_cast<Instruction>(U.get())) { 6554 assert(VectorType::isValidElementType(J->getType()) && 6555 "Instruction has non-scalar type"); 6556 if (canBeScalarized(J)) 6557 Worklist.push_back(J); 6558 else if (needsExtract(J, VF)) { 6559 ScalarCost += TTI.getScalarizationOverhead( 6560 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6561 APInt::getAllOnes(VF.getFixedValue()), false, true); 6562 } 6563 } 6564 6565 // Scale the total scalar cost by block probability. 6566 ScalarCost /= getReciprocalPredBlockProb(); 6567 6568 // Compute the discount. A non-negative discount means the vector version 6569 // of the instruction costs more, and scalarizing would be beneficial. 6570 Discount += VectorCost - ScalarCost; 6571 ScalarCosts[I] = ScalarCost; 6572 } 6573 6574 return *Discount.getValue(); 6575 } 6576 6577 LoopVectorizationCostModel::VectorizationCostTy 6578 LoopVectorizationCostModel::expectedCost( 6579 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6580 VectorizationCostTy Cost; 6581 6582 // For each block. 6583 for (BasicBlock *BB : TheLoop->blocks()) { 6584 VectorizationCostTy BlockCost; 6585 6586 // For each instruction in the old loop. 6587 for (Instruction &I : BB->instructionsWithoutDebug()) { 6588 // Skip ignored values. 6589 if (ValuesToIgnore.count(&I) || 6590 (VF.isVector() && VecValuesToIgnore.count(&I))) 6591 continue; 6592 6593 VectorizationCostTy C = getInstructionCost(&I, VF); 6594 6595 // Check if we should override the cost. 6596 if (C.first.isValid() && 6597 ForceTargetInstructionCost.getNumOccurrences() > 0) 6598 C.first = InstructionCost(ForceTargetInstructionCost); 6599 6600 // Keep a list of instructions with invalid costs. 6601 if (Invalid && !C.first.isValid()) 6602 Invalid->emplace_back(&I, VF); 6603 6604 BlockCost.first += C.first; 6605 BlockCost.second |= C.second; 6606 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6607 << " for VF " << VF << " For instruction: " << I 6608 << '\n'); 6609 } 6610 6611 // If we are vectorizing a predicated block, it will have been 6612 // if-converted. This means that the block's instructions (aside from 6613 // stores and instructions that may divide by zero) will now be 6614 // unconditionally executed. For the scalar case, we may not always execute 6615 // the predicated block, if it is an if-else block. Thus, scale the block's 6616 // cost by the probability of executing it. blockNeedsPredication from 6617 // Legal is used so as to not include all blocks in tail folded loops. 6618 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6619 BlockCost.first /= getReciprocalPredBlockProb(); 6620 6621 Cost.first += BlockCost.first; 6622 Cost.second |= BlockCost.second; 6623 } 6624 6625 return Cost; 6626 } 6627 6628 /// Gets Address Access SCEV after verifying that the access pattern 6629 /// is loop invariant except the induction variable dependence. 6630 /// 6631 /// This SCEV can be sent to the Target in order to estimate the address 6632 /// calculation cost. 6633 static const SCEV *getAddressAccessSCEV( 6634 Value *Ptr, 6635 LoopVectorizationLegality *Legal, 6636 PredicatedScalarEvolution &PSE, 6637 const Loop *TheLoop) { 6638 6639 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6640 if (!Gep) 6641 return nullptr; 6642 6643 // We are looking for a gep with all loop invariant indices except for one 6644 // which should be an induction variable. 6645 auto SE = PSE.getSE(); 6646 unsigned NumOperands = Gep->getNumOperands(); 6647 for (unsigned i = 1; i < NumOperands; ++i) { 6648 Value *Opd = Gep->getOperand(i); 6649 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6650 !Legal->isInductionVariable(Opd)) 6651 return nullptr; 6652 } 6653 6654 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6655 return PSE.getSCEV(Ptr); 6656 } 6657 6658 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6659 return Legal->hasStride(I->getOperand(0)) || 6660 Legal->hasStride(I->getOperand(1)); 6661 } 6662 6663 InstructionCost 6664 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6665 ElementCount VF) { 6666 assert(VF.isVector() && 6667 "Scalarization cost of instruction implies vectorization."); 6668 if (VF.isScalable()) 6669 return InstructionCost::getInvalid(); 6670 6671 Type *ValTy = getLoadStoreType(I); 6672 auto SE = PSE.getSE(); 6673 6674 unsigned AS = getLoadStoreAddressSpace(I); 6675 Value *Ptr = getLoadStorePointerOperand(I); 6676 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6677 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6678 // that it is being called from this specific place. 6679 6680 // Figure out whether the access is strided and get the stride value 6681 // if it's known in compile time 6682 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6683 6684 // Get the cost of the scalar memory instruction and address computation. 6685 InstructionCost Cost = 6686 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6687 6688 // Don't pass *I here, since it is scalar but will actually be part of a 6689 // vectorized loop where the user of it is a vectorized instruction. 6690 const Align Alignment = getLoadStoreAlignment(I); 6691 Cost += VF.getKnownMinValue() * 6692 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6693 AS, TTI::TCK_RecipThroughput); 6694 6695 // Get the overhead of the extractelement and insertelement instructions 6696 // we might create due to scalarization. 6697 Cost += getScalarizationOverhead(I, VF); 6698 6699 // If we have a predicated load/store, it will need extra i1 extracts and 6700 // conditional branches, but may not be executed for each vector lane. Scale 6701 // the cost by the probability of executing the predicated block. 6702 if (isPredicatedInst(I, VF)) { 6703 Cost /= getReciprocalPredBlockProb(); 6704 6705 // Add the cost of an i1 extract and a branch 6706 auto *Vec_i1Ty = 6707 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6708 Cost += TTI.getScalarizationOverhead( 6709 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6710 /*Insert=*/false, /*Extract=*/true); 6711 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6712 } 6713 6714 return Cost; 6715 } 6716 6717 InstructionCost 6718 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6719 ElementCount VF) { 6720 Type *ValTy = getLoadStoreType(I); 6721 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6722 Value *Ptr = getLoadStorePointerOperand(I); 6723 unsigned AS = getLoadStoreAddressSpace(I); 6724 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6725 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6726 6727 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6728 "Stride should be 1 or -1 for consecutive memory access"); 6729 const Align Alignment = getLoadStoreAlignment(I); 6730 InstructionCost Cost = 0; 6731 if (Legal->isMaskRequired(I)) 6732 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6733 CostKind); 6734 else 6735 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6736 CostKind, I); 6737 6738 bool Reverse = ConsecutiveStride < 0; 6739 if (Reverse) 6740 Cost += 6741 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6742 return Cost; 6743 } 6744 6745 InstructionCost 6746 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6747 ElementCount VF) { 6748 assert(Legal->isUniformMemOp(*I)); 6749 6750 Type *ValTy = getLoadStoreType(I); 6751 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6752 const Align Alignment = getLoadStoreAlignment(I); 6753 unsigned AS = getLoadStoreAddressSpace(I); 6754 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6755 if (isa<LoadInst>(I)) { 6756 return TTI.getAddressComputationCost(ValTy) + 6757 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6758 CostKind) + 6759 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6760 } 6761 StoreInst *SI = cast<StoreInst>(I); 6762 6763 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6764 return TTI.getAddressComputationCost(ValTy) + 6765 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6766 CostKind) + 6767 (isLoopInvariantStoreValue 6768 ? 0 6769 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6770 VF.getKnownMinValue() - 1)); 6771 } 6772 6773 InstructionCost 6774 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6775 ElementCount VF) { 6776 Type *ValTy = getLoadStoreType(I); 6777 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6778 const Align Alignment = getLoadStoreAlignment(I); 6779 const Value *Ptr = getLoadStorePointerOperand(I); 6780 6781 return TTI.getAddressComputationCost(VectorTy) + 6782 TTI.getGatherScatterOpCost( 6783 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6784 TargetTransformInfo::TCK_RecipThroughput, I); 6785 } 6786 6787 InstructionCost 6788 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6789 ElementCount VF) { 6790 // TODO: Once we have support for interleaving with scalable vectors 6791 // we can calculate the cost properly here. 6792 if (VF.isScalable()) 6793 return InstructionCost::getInvalid(); 6794 6795 Type *ValTy = getLoadStoreType(I); 6796 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6797 unsigned AS = getLoadStoreAddressSpace(I); 6798 6799 auto Group = getInterleavedAccessGroup(I); 6800 assert(Group && "Fail to get an interleaved access group."); 6801 6802 unsigned InterleaveFactor = Group->getFactor(); 6803 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6804 6805 // Holds the indices of existing members in the interleaved group. 6806 SmallVector<unsigned, 4> Indices; 6807 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6808 if (Group->getMember(IF)) 6809 Indices.push_back(IF); 6810 6811 // Calculate the cost of the whole interleaved group. 6812 bool UseMaskForGaps = 6813 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6814 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6815 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6816 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6817 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6818 6819 if (Group->isReverse()) { 6820 // TODO: Add support for reversed masked interleaved access. 6821 assert(!Legal->isMaskRequired(I) && 6822 "Reverse masked interleaved access not supported."); 6823 Cost += 6824 Group->getNumMembers() * 6825 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6826 } 6827 return Cost; 6828 } 6829 6830 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6831 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6832 using namespace llvm::PatternMatch; 6833 // Early exit for no inloop reductions 6834 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6835 return None; 6836 auto *VectorTy = cast<VectorType>(Ty); 6837 6838 // We are looking for a pattern of, and finding the minimal acceptable cost: 6839 // reduce(mul(ext(A), ext(B))) or 6840 // reduce(mul(A, B)) or 6841 // reduce(ext(A)) or 6842 // reduce(A). 6843 // The basic idea is that we walk down the tree to do that, finding the root 6844 // reduction instruction in InLoopReductionImmediateChains. From there we find 6845 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6846 // of the components. If the reduction cost is lower then we return it for the 6847 // reduction instruction and 0 for the other instructions in the pattern. If 6848 // it is not we return an invalid cost specifying the orignal cost method 6849 // should be used. 6850 Instruction *RetI = I; 6851 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6852 if (!RetI->hasOneUser()) 6853 return None; 6854 RetI = RetI->user_back(); 6855 } 6856 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6857 RetI->user_back()->getOpcode() == Instruction::Add) { 6858 if (!RetI->hasOneUser()) 6859 return None; 6860 RetI = RetI->user_back(); 6861 } 6862 6863 // Test if the found instruction is a reduction, and if not return an invalid 6864 // cost specifying the parent to use the original cost modelling. 6865 if (!InLoopReductionImmediateChains.count(RetI)) 6866 return None; 6867 6868 // Find the reduction this chain is a part of and calculate the basic cost of 6869 // the reduction on its own. 6870 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6871 Instruction *ReductionPhi = LastChain; 6872 while (!isa<PHINode>(ReductionPhi)) 6873 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6874 6875 const RecurrenceDescriptor &RdxDesc = 6876 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6877 6878 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6879 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6880 6881 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6882 // normal fmul instruction to the cost of the fadd reduction. 6883 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6884 BaseCost += 6885 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6886 6887 // If we're using ordered reductions then we can just return the base cost 6888 // here, since getArithmeticReductionCost calculates the full ordered 6889 // reduction cost when FP reassociation is not allowed. 6890 if (useOrderedReductions(RdxDesc)) 6891 return BaseCost; 6892 6893 // Get the operand that was not the reduction chain and match it to one of the 6894 // patterns, returning the better cost if it is found. 6895 Instruction *RedOp = RetI->getOperand(1) == LastChain 6896 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6897 : dyn_cast<Instruction>(RetI->getOperand(1)); 6898 6899 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6900 6901 Instruction *Op0, *Op1; 6902 if (RedOp && 6903 match(RedOp, 6904 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6905 match(Op0, m_ZExtOrSExt(m_Value())) && 6906 Op0->getOpcode() == Op1->getOpcode() && 6907 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6908 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6909 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6910 6911 // Matched reduce(ext(mul(ext(A), ext(B))) 6912 // Note that the extend opcodes need to all match, or if A==B they will have 6913 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6914 // which is equally fine. 6915 bool IsUnsigned = isa<ZExtInst>(Op0); 6916 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6917 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6918 6919 InstructionCost ExtCost = 6920 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6921 TTI::CastContextHint::None, CostKind, Op0); 6922 InstructionCost MulCost = 6923 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6924 InstructionCost Ext2Cost = 6925 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6926 TTI::CastContextHint::None, CostKind, RedOp); 6927 6928 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6929 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6930 CostKind); 6931 6932 if (RedCost.isValid() && 6933 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6934 return I == RetI ? RedCost : 0; 6935 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6936 !TheLoop->isLoopInvariant(RedOp)) { 6937 // Matched reduce(ext(A)) 6938 bool IsUnsigned = isa<ZExtInst>(RedOp); 6939 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6940 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6941 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6942 CostKind); 6943 6944 InstructionCost ExtCost = 6945 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6946 TTI::CastContextHint::None, CostKind, RedOp); 6947 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6948 return I == RetI ? RedCost : 0; 6949 } else if (RedOp && 6950 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6951 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6952 Op0->getOpcode() == Op1->getOpcode() && 6953 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6954 bool IsUnsigned = isa<ZExtInst>(Op0); 6955 Type *Op0Ty = Op0->getOperand(0)->getType(); 6956 Type *Op1Ty = Op1->getOperand(0)->getType(); 6957 Type *LargestOpTy = 6958 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6959 : Op0Ty; 6960 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6961 6962 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6963 // different sizes. We take the largest type as the ext to reduce, and add 6964 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6965 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6966 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6967 TTI::CastContextHint::None, CostKind, Op0); 6968 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6969 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6970 TTI::CastContextHint::None, CostKind, Op1); 6971 InstructionCost MulCost = 6972 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6973 6974 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6975 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6976 CostKind); 6977 InstructionCost ExtraExtCost = 0; 6978 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6979 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6980 ExtraExtCost = TTI.getCastInstrCost( 6981 ExtraExtOp->getOpcode(), ExtType, 6982 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6983 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6984 } 6985 6986 if (RedCost.isValid() && 6987 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6988 return I == RetI ? RedCost : 0; 6989 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6990 // Matched reduce(mul()) 6991 InstructionCost MulCost = 6992 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6993 6994 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6995 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6996 CostKind); 6997 6998 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6999 return I == RetI ? RedCost : 0; 7000 } 7001 } 7002 7003 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7004 } 7005 7006 InstructionCost 7007 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7008 ElementCount VF) { 7009 // Calculate scalar cost only. Vectorization cost should be ready at this 7010 // moment. 7011 if (VF.isScalar()) { 7012 Type *ValTy = getLoadStoreType(I); 7013 const Align Alignment = getLoadStoreAlignment(I); 7014 unsigned AS = getLoadStoreAddressSpace(I); 7015 7016 return TTI.getAddressComputationCost(ValTy) + 7017 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7018 TTI::TCK_RecipThroughput, I); 7019 } 7020 return getWideningCost(I, VF); 7021 } 7022 7023 LoopVectorizationCostModel::VectorizationCostTy 7024 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7025 ElementCount VF) { 7026 // If we know that this instruction will remain uniform, check the cost of 7027 // the scalar version. 7028 if (isUniformAfterVectorization(I, VF)) 7029 VF = ElementCount::getFixed(1); 7030 7031 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7032 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7033 7034 // Forced scalars do not have any scalarization overhead. 7035 auto ForcedScalar = ForcedScalars.find(VF); 7036 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7037 auto InstSet = ForcedScalar->second; 7038 if (InstSet.count(I)) 7039 return VectorizationCostTy( 7040 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7041 VF.getKnownMinValue()), 7042 false); 7043 } 7044 7045 Type *VectorTy; 7046 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7047 7048 bool TypeNotScalarized = false; 7049 if (VF.isVector() && VectorTy->isVectorTy()) { 7050 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7051 if (NumParts) 7052 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7053 else 7054 C = InstructionCost::getInvalid(); 7055 } 7056 return VectorizationCostTy(C, TypeNotScalarized); 7057 } 7058 7059 InstructionCost 7060 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7061 ElementCount VF) const { 7062 7063 // There is no mechanism yet to create a scalable scalarization loop, 7064 // so this is currently Invalid. 7065 if (VF.isScalable()) 7066 return InstructionCost::getInvalid(); 7067 7068 if (VF.isScalar()) 7069 return 0; 7070 7071 InstructionCost Cost = 0; 7072 Type *RetTy = ToVectorTy(I->getType(), VF); 7073 if (!RetTy->isVoidTy() && 7074 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7075 Cost += TTI.getScalarizationOverhead( 7076 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7077 false); 7078 7079 // Some targets keep addresses scalar. 7080 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7081 return Cost; 7082 7083 // Some targets support efficient element stores. 7084 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7085 return Cost; 7086 7087 // Collect operands to consider. 7088 CallInst *CI = dyn_cast<CallInst>(I); 7089 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7090 7091 // Skip operands that do not require extraction/scalarization and do not incur 7092 // any overhead. 7093 SmallVector<Type *> Tys; 7094 for (auto *V : filterExtractingOperands(Ops, VF)) 7095 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7096 return Cost + TTI.getOperandsScalarizationOverhead( 7097 filterExtractingOperands(Ops, VF), Tys); 7098 } 7099 7100 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7101 if (VF.isScalar()) 7102 return; 7103 NumPredStores = 0; 7104 for (BasicBlock *BB : TheLoop->blocks()) { 7105 // For each instruction in the old loop. 7106 for (Instruction &I : *BB) { 7107 Value *Ptr = getLoadStorePointerOperand(&I); 7108 if (!Ptr) 7109 continue; 7110 7111 // TODO: We should generate better code and update the cost model for 7112 // predicated uniform stores. Today they are treated as any other 7113 // predicated store (see added test cases in 7114 // invariant-store-vectorization.ll). 7115 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7116 NumPredStores++; 7117 7118 if (Legal->isUniformMemOp(I)) { 7119 // TODO: Avoid replicating loads and stores instead of 7120 // relying on instcombine to remove them. 7121 // Load: Scalar load + broadcast 7122 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7123 InstructionCost Cost; 7124 if (isa<StoreInst>(&I) && VF.isScalable() && 7125 isLegalGatherOrScatter(&I, VF)) { 7126 Cost = getGatherScatterCost(&I, VF); 7127 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7128 } else { 7129 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7130 "Cannot yet scalarize uniform stores"); 7131 Cost = getUniformMemOpCost(&I, VF); 7132 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7133 } 7134 continue; 7135 } 7136 7137 // We assume that widening is the best solution when possible. 7138 if (memoryInstructionCanBeWidened(&I, VF)) { 7139 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7140 int ConsecutiveStride = Legal->isConsecutivePtr( 7141 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7142 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7143 "Expected consecutive stride."); 7144 InstWidening Decision = 7145 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7146 setWideningDecision(&I, VF, Decision, Cost); 7147 continue; 7148 } 7149 7150 // Choose between Interleaving, Gather/Scatter or Scalarization. 7151 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7152 unsigned NumAccesses = 1; 7153 if (isAccessInterleaved(&I)) { 7154 auto Group = getInterleavedAccessGroup(&I); 7155 assert(Group && "Fail to get an interleaved access group."); 7156 7157 // Make one decision for the whole group. 7158 if (getWideningDecision(&I, VF) != CM_Unknown) 7159 continue; 7160 7161 NumAccesses = Group->getNumMembers(); 7162 if (interleavedAccessCanBeWidened(&I, VF)) 7163 InterleaveCost = getInterleaveGroupCost(&I, VF); 7164 } 7165 7166 InstructionCost GatherScatterCost = 7167 isLegalGatherOrScatter(&I, VF) 7168 ? getGatherScatterCost(&I, VF) * NumAccesses 7169 : InstructionCost::getInvalid(); 7170 7171 InstructionCost ScalarizationCost = 7172 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7173 7174 // Choose better solution for the current VF, 7175 // write down this decision and use it during vectorization. 7176 InstructionCost Cost; 7177 InstWidening Decision; 7178 if (InterleaveCost <= GatherScatterCost && 7179 InterleaveCost < ScalarizationCost) { 7180 Decision = CM_Interleave; 7181 Cost = InterleaveCost; 7182 } else if (GatherScatterCost < ScalarizationCost) { 7183 Decision = CM_GatherScatter; 7184 Cost = GatherScatterCost; 7185 } else { 7186 Decision = CM_Scalarize; 7187 Cost = ScalarizationCost; 7188 } 7189 // If the instructions belongs to an interleave group, the whole group 7190 // receives the same decision. The whole group receives the cost, but 7191 // the cost will actually be assigned to one instruction. 7192 if (auto Group = getInterleavedAccessGroup(&I)) 7193 setWideningDecision(Group, VF, Decision, Cost); 7194 else 7195 setWideningDecision(&I, VF, Decision, Cost); 7196 } 7197 } 7198 7199 // Make sure that any load of address and any other address computation 7200 // remains scalar unless there is gather/scatter support. This avoids 7201 // inevitable extracts into address registers, and also has the benefit of 7202 // activating LSR more, since that pass can't optimize vectorized 7203 // addresses. 7204 if (TTI.prefersVectorizedAddressing()) 7205 return; 7206 7207 // Start with all scalar pointer uses. 7208 SmallPtrSet<Instruction *, 8> AddrDefs; 7209 for (BasicBlock *BB : TheLoop->blocks()) 7210 for (Instruction &I : *BB) { 7211 Instruction *PtrDef = 7212 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7213 if (PtrDef && TheLoop->contains(PtrDef) && 7214 getWideningDecision(&I, VF) != CM_GatherScatter) 7215 AddrDefs.insert(PtrDef); 7216 } 7217 7218 // Add all instructions used to generate the addresses. 7219 SmallVector<Instruction *, 4> Worklist; 7220 append_range(Worklist, AddrDefs); 7221 while (!Worklist.empty()) { 7222 Instruction *I = Worklist.pop_back_val(); 7223 for (auto &Op : I->operands()) 7224 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7225 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7226 AddrDefs.insert(InstOp).second) 7227 Worklist.push_back(InstOp); 7228 } 7229 7230 for (auto *I : AddrDefs) { 7231 if (isa<LoadInst>(I)) { 7232 // Setting the desired widening decision should ideally be handled in 7233 // by cost functions, but since this involves the task of finding out 7234 // if the loaded register is involved in an address computation, it is 7235 // instead changed here when we know this is the case. 7236 InstWidening Decision = getWideningDecision(I, VF); 7237 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7238 // Scalarize a widened load of address. 7239 setWideningDecision( 7240 I, VF, CM_Scalarize, 7241 (VF.getKnownMinValue() * 7242 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7243 else if (auto Group = getInterleavedAccessGroup(I)) { 7244 // Scalarize an interleave group of address loads. 7245 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7246 if (Instruction *Member = Group->getMember(I)) 7247 setWideningDecision( 7248 Member, VF, CM_Scalarize, 7249 (VF.getKnownMinValue() * 7250 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7251 } 7252 } 7253 } else 7254 // Make sure I gets scalarized and a cost estimate without 7255 // scalarization overhead. 7256 ForcedScalars[VF].insert(I); 7257 } 7258 } 7259 7260 InstructionCost 7261 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7262 Type *&VectorTy) { 7263 Type *RetTy = I->getType(); 7264 if (canTruncateToMinimalBitwidth(I, VF)) 7265 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7266 auto SE = PSE.getSE(); 7267 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7268 7269 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7270 ElementCount VF) -> bool { 7271 if (VF.isScalar()) 7272 return true; 7273 7274 auto Scalarized = InstsToScalarize.find(VF); 7275 assert(Scalarized != InstsToScalarize.end() && 7276 "VF not yet analyzed for scalarization profitability"); 7277 return !Scalarized->second.count(I) && 7278 llvm::all_of(I->users(), [&](User *U) { 7279 auto *UI = cast<Instruction>(U); 7280 return !Scalarized->second.count(UI); 7281 }); 7282 }; 7283 (void) hasSingleCopyAfterVectorization; 7284 7285 if (isScalarAfterVectorization(I, VF)) { 7286 // With the exception of GEPs and PHIs, after scalarization there should 7287 // only be one copy of the instruction generated in the loop. This is 7288 // because the VF is either 1, or any instructions that need scalarizing 7289 // have already been dealt with by the the time we get here. As a result, 7290 // it means we don't have to multiply the instruction cost by VF. 7291 assert(I->getOpcode() == Instruction::GetElementPtr || 7292 I->getOpcode() == Instruction::PHI || 7293 (I->getOpcode() == Instruction::BitCast && 7294 I->getType()->isPointerTy()) || 7295 hasSingleCopyAfterVectorization(I, VF)); 7296 VectorTy = RetTy; 7297 } else 7298 VectorTy = ToVectorTy(RetTy, VF); 7299 7300 // TODO: We need to estimate the cost of intrinsic calls. 7301 switch (I->getOpcode()) { 7302 case Instruction::GetElementPtr: 7303 // We mark this instruction as zero-cost because the cost of GEPs in 7304 // vectorized code depends on whether the corresponding memory instruction 7305 // is scalarized or not. Therefore, we handle GEPs with the memory 7306 // instruction cost. 7307 return 0; 7308 case Instruction::Br: { 7309 // In cases of scalarized and predicated instructions, there will be VF 7310 // predicated blocks in the vectorized loop. Each branch around these 7311 // blocks requires also an extract of its vector compare i1 element. 7312 bool ScalarPredicatedBB = false; 7313 BranchInst *BI = cast<BranchInst>(I); 7314 if (VF.isVector() && BI->isConditional() && 7315 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7316 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7317 ScalarPredicatedBB = true; 7318 7319 if (ScalarPredicatedBB) { 7320 // Not possible to scalarize scalable vector with predicated instructions. 7321 if (VF.isScalable()) 7322 return InstructionCost::getInvalid(); 7323 // Return cost for branches around scalarized and predicated blocks. 7324 auto *Vec_i1Ty = 7325 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7326 return ( 7327 TTI.getScalarizationOverhead( 7328 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7329 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7330 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7331 // The back-edge branch will remain, as will all scalar branches. 7332 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7333 else 7334 // This branch will be eliminated by if-conversion. 7335 return 0; 7336 // Note: We currently assume zero cost for an unconditional branch inside 7337 // a predicated block since it will become a fall-through, although we 7338 // may decide in the future to call TTI for all branches. 7339 } 7340 case Instruction::PHI: { 7341 auto *Phi = cast<PHINode>(I); 7342 7343 // First-order recurrences are replaced by vector shuffles inside the loop. 7344 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7345 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7346 return TTI.getShuffleCost( 7347 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7348 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7349 7350 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7351 // converted into select instructions. We require N - 1 selects per phi 7352 // node, where N is the number of incoming values. 7353 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7354 return (Phi->getNumIncomingValues() - 1) * 7355 TTI.getCmpSelInstrCost( 7356 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7357 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7358 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7359 7360 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7361 } 7362 case Instruction::UDiv: 7363 case Instruction::SDiv: 7364 case Instruction::URem: 7365 case Instruction::SRem: 7366 // If we have a predicated instruction, it may not be executed for each 7367 // vector lane. Get the scalarization cost and scale this amount by the 7368 // probability of executing the predicated block. If the instruction is not 7369 // predicated, we fall through to the next case. 7370 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7371 InstructionCost Cost = 0; 7372 7373 // These instructions have a non-void type, so account for the phi nodes 7374 // that we will create. This cost is likely to be zero. The phi node 7375 // cost, if any, should be scaled by the block probability because it 7376 // models a copy at the end of each predicated block. 7377 Cost += VF.getKnownMinValue() * 7378 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7379 7380 // The cost of the non-predicated instruction. 7381 Cost += VF.getKnownMinValue() * 7382 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7383 7384 // The cost of insertelement and extractelement instructions needed for 7385 // scalarization. 7386 Cost += getScalarizationOverhead(I, VF); 7387 7388 // Scale the cost by the probability of executing the predicated blocks. 7389 // This assumes the predicated block for each vector lane is equally 7390 // likely. 7391 return Cost / getReciprocalPredBlockProb(); 7392 } 7393 LLVM_FALLTHROUGH; 7394 case Instruction::Add: 7395 case Instruction::FAdd: 7396 case Instruction::Sub: 7397 case Instruction::FSub: 7398 case Instruction::Mul: 7399 case Instruction::FMul: 7400 case Instruction::FDiv: 7401 case Instruction::FRem: 7402 case Instruction::Shl: 7403 case Instruction::LShr: 7404 case Instruction::AShr: 7405 case Instruction::And: 7406 case Instruction::Or: 7407 case Instruction::Xor: { 7408 // Since we will replace the stride by 1 the multiplication should go away. 7409 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7410 return 0; 7411 7412 // Detect reduction patterns 7413 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7414 return *RedCost; 7415 7416 // Certain instructions can be cheaper to vectorize if they have a constant 7417 // second vector operand. One example of this are shifts on x86. 7418 Value *Op2 = I->getOperand(1); 7419 TargetTransformInfo::OperandValueProperties Op2VP; 7420 TargetTransformInfo::OperandValueKind Op2VK = 7421 TTI.getOperandInfo(Op2, Op2VP); 7422 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7423 Op2VK = TargetTransformInfo::OK_UniformValue; 7424 7425 SmallVector<const Value *, 4> Operands(I->operand_values()); 7426 return TTI.getArithmeticInstrCost( 7427 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7428 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7429 } 7430 case Instruction::FNeg: { 7431 return TTI.getArithmeticInstrCost( 7432 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7433 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7434 TargetTransformInfo::OP_None, I->getOperand(0), I); 7435 } 7436 case Instruction::Select: { 7437 SelectInst *SI = cast<SelectInst>(I); 7438 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7439 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7440 7441 const Value *Op0, *Op1; 7442 using namespace llvm::PatternMatch; 7443 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7444 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7445 // select x, y, false --> x & y 7446 // select x, true, y --> x | y 7447 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7448 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7449 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7450 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7451 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7452 Op1->getType()->getScalarSizeInBits() == 1); 7453 7454 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7455 return TTI.getArithmeticInstrCost( 7456 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7457 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7458 } 7459 7460 Type *CondTy = SI->getCondition()->getType(); 7461 if (!ScalarCond) 7462 CondTy = VectorType::get(CondTy, VF); 7463 7464 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7465 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7466 Pred = Cmp->getPredicate(); 7467 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7468 CostKind, I); 7469 } 7470 case Instruction::ICmp: 7471 case Instruction::FCmp: { 7472 Type *ValTy = I->getOperand(0)->getType(); 7473 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7474 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7475 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7476 VectorTy = ToVectorTy(ValTy, VF); 7477 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7478 cast<CmpInst>(I)->getPredicate(), CostKind, 7479 I); 7480 } 7481 case Instruction::Store: 7482 case Instruction::Load: { 7483 ElementCount Width = VF; 7484 if (Width.isVector()) { 7485 InstWidening Decision = getWideningDecision(I, Width); 7486 assert(Decision != CM_Unknown && 7487 "CM decision should be taken at this point"); 7488 if (Decision == CM_Scalarize) 7489 Width = ElementCount::getFixed(1); 7490 } 7491 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7492 return getMemoryInstructionCost(I, VF); 7493 } 7494 case Instruction::BitCast: 7495 if (I->getType()->isPointerTy()) 7496 return 0; 7497 LLVM_FALLTHROUGH; 7498 case Instruction::ZExt: 7499 case Instruction::SExt: 7500 case Instruction::FPToUI: 7501 case Instruction::FPToSI: 7502 case Instruction::FPExt: 7503 case Instruction::PtrToInt: 7504 case Instruction::IntToPtr: 7505 case Instruction::SIToFP: 7506 case Instruction::UIToFP: 7507 case Instruction::Trunc: 7508 case Instruction::FPTrunc: { 7509 // Computes the CastContextHint from a Load/Store instruction. 7510 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7511 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7512 "Expected a load or a store!"); 7513 7514 if (VF.isScalar() || !TheLoop->contains(I)) 7515 return TTI::CastContextHint::Normal; 7516 7517 switch (getWideningDecision(I, VF)) { 7518 case LoopVectorizationCostModel::CM_GatherScatter: 7519 return TTI::CastContextHint::GatherScatter; 7520 case LoopVectorizationCostModel::CM_Interleave: 7521 return TTI::CastContextHint::Interleave; 7522 case LoopVectorizationCostModel::CM_Scalarize: 7523 case LoopVectorizationCostModel::CM_Widen: 7524 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7525 : TTI::CastContextHint::Normal; 7526 case LoopVectorizationCostModel::CM_Widen_Reverse: 7527 return TTI::CastContextHint::Reversed; 7528 case LoopVectorizationCostModel::CM_Unknown: 7529 llvm_unreachable("Instr did not go through cost modelling?"); 7530 } 7531 7532 llvm_unreachable("Unhandled case!"); 7533 }; 7534 7535 unsigned Opcode = I->getOpcode(); 7536 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7537 // For Trunc, the context is the only user, which must be a StoreInst. 7538 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7539 if (I->hasOneUse()) 7540 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7541 CCH = ComputeCCH(Store); 7542 } 7543 // For Z/Sext, the context is the operand, which must be a LoadInst. 7544 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7545 Opcode == Instruction::FPExt) { 7546 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7547 CCH = ComputeCCH(Load); 7548 } 7549 7550 // We optimize the truncation of induction variables having constant 7551 // integer steps. The cost of these truncations is the same as the scalar 7552 // operation. 7553 if (isOptimizableIVTruncate(I, VF)) { 7554 auto *Trunc = cast<TruncInst>(I); 7555 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7556 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7557 } 7558 7559 // Detect reduction patterns 7560 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7561 return *RedCost; 7562 7563 Type *SrcScalarTy = I->getOperand(0)->getType(); 7564 Type *SrcVecTy = 7565 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7566 if (canTruncateToMinimalBitwidth(I, VF)) { 7567 // This cast is going to be shrunk. This may remove the cast or it might 7568 // turn it into slightly different cast. For example, if MinBW == 16, 7569 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7570 // 7571 // Calculate the modified src and dest types. 7572 Type *MinVecTy = VectorTy; 7573 if (Opcode == Instruction::Trunc) { 7574 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7575 VectorTy = 7576 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7577 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7578 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7579 VectorTy = 7580 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7581 } 7582 } 7583 7584 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7585 } 7586 case Instruction::Call: { 7587 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7588 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7589 return *RedCost; 7590 bool NeedToScalarize; 7591 CallInst *CI = cast<CallInst>(I); 7592 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7593 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7594 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7595 return std::min(CallCost, IntrinsicCost); 7596 } 7597 return CallCost; 7598 } 7599 case Instruction::ExtractValue: 7600 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7601 case Instruction::Alloca: 7602 // We cannot easily widen alloca to a scalable alloca, as 7603 // the result would need to be a vector of pointers. 7604 if (VF.isScalable()) 7605 return InstructionCost::getInvalid(); 7606 LLVM_FALLTHROUGH; 7607 default: 7608 // This opcode is unknown. Assume that it is the same as 'mul'. 7609 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7610 } // end of switch. 7611 } 7612 7613 char LoopVectorize::ID = 0; 7614 7615 static const char lv_name[] = "Loop Vectorization"; 7616 7617 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7618 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7619 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7620 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7621 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7622 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7623 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7624 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7625 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7626 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7627 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7628 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7629 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7630 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7631 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7632 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7633 7634 namespace llvm { 7635 7636 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7637 7638 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7639 bool VectorizeOnlyWhenForced) { 7640 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7641 } 7642 7643 } // end namespace llvm 7644 7645 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7646 // Check if the pointer operand of a load or store instruction is 7647 // consecutive. 7648 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7649 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7650 return false; 7651 } 7652 7653 void LoopVectorizationCostModel::collectValuesToIgnore() { 7654 // Ignore ephemeral values. 7655 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7656 7657 // Ignore type-promoting instructions we identified during reduction 7658 // detection. 7659 for (auto &Reduction : Legal->getReductionVars()) { 7660 const RecurrenceDescriptor &RedDes = Reduction.second; 7661 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7662 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7663 } 7664 // Ignore type-casting instructions we identified during induction 7665 // detection. 7666 for (auto &Induction : Legal->getInductionVars()) { 7667 const InductionDescriptor &IndDes = Induction.second; 7668 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7669 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7670 } 7671 } 7672 7673 void LoopVectorizationCostModel::collectInLoopReductions() { 7674 for (auto &Reduction : Legal->getReductionVars()) { 7675 PHINode *Phi = Reduction.first; 7676 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7677 7678 // We don't collect reductions that are type promoted (yet). 7679 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7680 continue; 7681 7682 // If the target would prefer this reduction to happen "in-loop", then we 7683 // want to record it as such. 7684 unsigned Opcode = RdxDesc.getOpcode(); 7685 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7686 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7687 TargetTransformInfo::ReductionFlags())) 7688 continue; 7689 7690 // Check that we can correctly put the reductions into the loop, by 7691 // finding the chain of operations that leads from the phi to the loop 7692 // exit value. 7693 SmallVector<Instruction *, 4> ReductionOperations = 7694 RdxDesc.getReductionOpChain(Phi, TheLoop); 7695 bool InLoop = !ReductionOperations.empty(); 7696 if (InLoop) { 7697 InLoopReductionChains[Phi] = ReductionOperations; 7698 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7699 Instruction *LastChain = Phi; 7700 for (auto *I : ReductionOperations) { 7701 InLoopReductionImmediateChains[I] = LastChain; 7702 LastChain = I; 7703 } 7704 } 7705 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7706 << " reduction for phi: " << *Phi << "\n"); 7707 } 7708 } 7709 7710 // TODO: we could return a pair of values that specify the max VF and 7711 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7712 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7713 // doesn't have a cost model that can choose which plan to execute if 7714 // more than one is generated. 7715 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7716 LoopVectorizationCostModel &CM) { 7717 unsigned WidestType; 7718 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7719 return WidestVectorRegBits / WidestType; 7720 } 7721 7722 VectorizationFactor 7723 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7724 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7725 ElementCount VF = UserVF; 7726 // Outer loop handling: They may require CFG and instruction level 7727 // transformations before even evaluating whether vectorization is profitable. 7728 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7729 // the vectorization pipeline. 7730 if (!OrigLoop->isInnermost()) { 7731 // If the user doesn't provide a vectorization factor, determine a 7732 // reasonable one. 7733 if (UserVF.isZero()) { 7734 VF = ElementCount::getFixed(determineVPlanVF( 7735 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7736 .getFixedSize(), 7737 CM)); 7738 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7739 7740 // Make sure we have a VF > 1 for stress testing. 7741 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7742 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7743 << "overriding computed VF.\n"); 7744 VF = ElementCount::getFixed(4); 7745 } 7746 } 7747 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7748 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7749 "VF needs to be a power of two"); 7750 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7751 << "VF " << VF << " to build VPlans.\n"); 7752 buildVPlans(VF, VF); 7753 7754 // For VPlan build stress testing, we bail out after VPlan construction. 7755 if (VPlanBuildStressTest) 7756 return VectorizationFactor::Disabled(); 7757 7758 return {VF, 0 /*Cost*/}; 7759 } 7760 7761 LLVM_DEBUG( 7762 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7763 "VPlan-native path.\n"); 7764 return VectorizationFactor::Disabled(); 7765 } 7766 7767 Optional<VectorizationFactor> 7768 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7769 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7770 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7771 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7772 return None; 7773 7774 // Invalidate interleave groups if all blocks of loop will be predicated. 7775 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7776 !useMaskedInterleavedAccesses(*TTI)) { 7777 LLVM_DEBUG( 7778 dbgs() 7779 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7780 "which requires masked-interleaved support.\n"); 7781 if (CM.InterleaveInfo.invalidateGroups()) 7782 // Invalidating interleave groups also requires invalidating all decisions 7783 // based on them, which includes widening decisions and uniform and scalar 7784 // values. 7785 CM.invalidateCostModelingDecisions(); 7786 } 7787 7788 ElementCount MaxUserVF = 7789 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7790 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7791 if (!UserVF.isZero() && UserVFIsLegal) { 7792 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7793 "VF needs to be a power of two"); 7794 // Collect the instructions (and their associated costs) that will be more 7795 // profitable to scalarize. 7796 if (CM.selectUserVectorizationFactor(UserVF)) { 7797 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7798 CM.collectInLoopReductions(); 7799 buildVPlansWithVPRecipes(UserVF, UserVF); 7800 LLVM_DEBUG(printPlans(dbgs())); 7801 return {{UserVF, 0}}; 7802 } else 7803 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7804 "InvalidCost", ORE, OrigLoop); 7805 } 7806 7807 // Populate the set of Vectorization Factor Candidates. 7808 ElementCountSet VFCandidates; 7809 for (auto VF = ElementCount::getFixed(1); 7810 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7811 VFCandidates.insert(VF); 7812 for (auto VF = ElementCount::getScalable(1); 7813 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7814 VFCandidates.insert(VF); 7815 7816 for (const auto &VF : VFCandidates) { 7817 // Collect Uniform and Scalar instructions after vectorization with VF. 7818 CM.collectUniformsAndScalars(VF); 7819 7820 // Collect the instructions (and their associated costs) that will be more 7821 // profitable to scalarize. 7822 if (VF.isVector()) 7823 CM.collectInstsToScalarize(VF); 7824 } 7825 7826 CM.collectInLoopReductions(); 7827 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7828 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7829 7830 LLVM_DEBUG(printPlans(dbgs())); 7831 if (!MaxFactors.hasVector()) 7832 return VectorizationFactor::Disabled(); 7833 7834 // Select the optimal vectorization factor. 7835 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7836 7837 // Check if it is profitable to vectorize with runtime checks. 7838 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7839 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7840 bool PragmaThresholdReached = 7841 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7842 bool ThresholdReached = 7843 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7844 if ((ThresholdReached && !Hints.allowReordering()) || 7845 PragmaThresholdReached) { 7846 ORE->emit([&]() { 7847 return OptimizationRemarkAnalysisAliasing( 7848 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7849 OrigLoop->getHeader()) 7850 << "loop not vectorized: cannot prove it is safe to reorder " 7851 "memory operations"; 7852 }); 7853 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7854 Hints.emitRemarkWithHints(); 7855 return VectorizationFactor::Disabled(); 7856 } 7857 } 7858 return SelectedVF; 7859 } 7860 7861 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7862 assert(count_if(VPlans, 7863 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7864 1 && 7865 "Best VF has not a single VPlan."); 7866 7867 for (const VPlanPtr &Plan : VPlans) { 7868 if (Plan->hasVF(VF)) 7869 return *Plan.get(); 7870 } 7871 llvm_unreachable("No plan found!"); 7872 } 7873 7874 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7875 SmallVector<Metadata *, 4> MDs; 7876 // Reserve first location for self reference to the LoopID metadata node. 7877 MDs.push_back(nullptr); 7878 bool IsUnrollMetadata = false; 7879 MDNode *LoopID = L->getLoopID(); 7880 if (LoopID) { 7881 // First find existing loop unrolling disable metadata. 7882 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7883 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7884 if (MD) { 7885 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7886 IsUnrollMetadata = 7887 S && S->getString().startswith("llvm.loop.unroll.disable"); 7888 } 7889 MDs.push_back(LoopID->getOperand(i)); 7890 } 7891 } 7892 7893 if (!IsUnrollMetadata) { 7894 // Add runtime unroll disable metadata. 7895 LLVMContext &Context = L->getHeader()->getContext(); 7896 SmallVector<Metadata *, 1> DisableOperands; 7897 DisableOperands.push_back( 7898 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7899 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7900 MDs.push_back(DisableNode); 7901 MDNode *NewLoopID = MDNode::get(Context, MDs); 7902 // Set operand 0 to refer to the loop id itself. 7903 NewLoopID->replaceOperandWith(0, NewLoopID); 7904 L->setLoopID(NewLoopID); 7905 } 7906 } 7907 7908 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7909 VPlan &BestVPlan, 7910 InnerLoopVectorizer &ILV, 7911 DominatorTree *DT) { 7912 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7913 << '\n'); 7914 7915 // Perform the actual loop transformation. 7916 7917 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7918 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7919 Value *CanonicalIVStartValue; 7920 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7921 ILV.createVectorizedLoopSkeleton(); 7922 ILV.collectPoisonGeneratingRecipes(State); 7923 7924 ILV.printDebugTracesAtStart(); 7925 7926 //===------------------------------------------------===// 7927 // 7928 // Notice: any optimization or new instruction that go 7929 // into the code below should also be implemented in 7930 // the cost-model. 7931 // 7932 //===------------------------------------------------===// 7933 7934 // 2. Copy and widen instructions from the old loop into the new loop. 7935 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7936 ILV.getOrCreateVectorTripCount(nullptr), 7937 CanonicalIVStartValue, State); 7938 BestVPlan.execute(&State); 7939 7940 // Keep all loop hints from the original loop on the vector loop (we'll 7941 // replace the vectorizer-specific hints below). 7942 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7943 7944 Optional<MDNode *> VectorizedLoopID = 7945 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7946 LLVMLoopVectorizeFollowupVectorized}); 7947 7948 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7949 if (VectorizedLoopID.hasValue()) 7950 L->setLoopID(VectorizedLoopID.getValue()); 7951 else { 7952 // Keep all loop hints from the original loop on the vector loop (we'll 7953 // replace the vectorizer-specific hints below). 7954 if (MDNode *LID = OrigLoop->getLoopID()) 7955 L->setLoopID(LID); 7956 7957 LoopVectorizeHints Hints(L, true, *ORE); 7958 Hints.setAlreadyVectorized(); 7959 } 7960 // Disable runtime unrolling when vectorizing the epilogue loop. 7961 if (CanonicalIVStartValue) 7962 AddRuntimeUnrollDisableMetaData(L); 7963 7964 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7965 // predication, updating analyses. 7966 ILV.fixVectorizedLoop(State); 7967 7968 ILV.printDebugTracesAtEnd(); 7969 } 7970 7971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7972 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7973 for (const auto &Plan : VPlans) 7974 if (PrintVPlansInDotFormat) 7975 Plan->printDOT(O); 7976 else 7977 Plan->print(O); 7978 } 7979 #endif 7980 7981 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7982 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7983 7984 // We create new control-flow for the vectorized loop, so the original exit 7985 // conditions will be dead after vectorization if it's only used by the 7986 // terminator 7987 SmallVector<BasicBlock*> ExitingBlocks; 7988 OrigLoop->getExitingBlocks(ExitingBlocks); 7989 for (auto *BB : ExitingBlocks) { 7990 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7991 if (!Cmp || !Cmp->hasOneUse()) 7992 continue; 7993 7994 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7995 if (!DeadInstructions.insert(Cmp).second) 7996 continue; 7997 7998 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7999 // TODO: can recurse through operands in general 8000 for (Value *Op : Cmp->operands()) { 8001 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8002 DeadInstructions.insert(cast<Instruction>(Op)); 8003 } 8004 } 8005 8006 // We create new "steps" for induction variable updates to which the original 8007 // induction variables map. An original update instruction will be dead if 8008 // all its users except the induction variable are dead. 8009 auto *Latch = OrigLoop->getLoopLatch(); 8010 for (auto &Induction : Legal->getInductionVars()) { 8011 PHINode *Ind = Induction.first; 8012 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8013 8014 // If the tail is to be folded by masking, the primary induction variable, 8015 // if exists, isn't dead: it will be used for masking. Don't kill it. 8016 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8017 continue; 8018 8019 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8020 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8021 })) 8022 DeadInstructions.insert(IndUpdate); 8023 } 8024 } 8025 8026 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8027 8028 //===--------------------------------------------------------------------===// 8029 // EpilogueVectorizerMainLoop 8030 //===--------------------------------------------------------------------===// 8031 8032 /// This function is partially responsible for generating the control flow 8033 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8034 std::pair<BasicBlock *, Value *> 8035 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8036 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8037 Loop *Lp = createVectorLoopSkeleton(""); 8038 8039 // Generate the code to check the minimum iteration count of the vector 8040 // epilogue (see below). 8041 EPI.EpilogueIterationCountCheck = 8042 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8043 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8044 8045 // Generate the code to check any assumptions that we've made for SCEV 8046 // expressions. 8047 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8048 8049 // Generate the code that checks at runtime if arrays overlap. We put the 8050 // checks into a separate block to make the more common case of few elements 8051 // faster. 8052 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8053 8054 // Generate the iteration count check for the main loop, *after* the check 8055 // for the epilogue loop, so that the path-length is shorter for the case 8056 // that goes directly through the vector epilogue. The longer-path length for 8057 // the main loop is compensated for, by the gain from vectorizing the larger 8058 // trip count. Note: the branch will get updated later on when we vectorize 8059 // the epilogue. 8060 EPI.MainLoopIterationCountCheck = 8061 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8062 8063 // Generate the induction variable. 8064 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8065 EPI.VectorTripCount = CountRoundDown; 8066 createHeaderBranch(Lp); 8067 8068 // Skip induction resume value creation here because they will be created in 8069 // the second pass. If we created them here, they wouldn't be used anyway, 8070 // because the vplan in the second pass still contains the inductions from the 8071 // original loop. 8072 8073 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8074 } 8075 8076 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8077 LLVM_DEBUG({ 8078 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8079 << "Main Loop VF:" << EPI.MainLoopVF 8080 << ", Main Loop UF:" << EPI.MainLoopUF 8081 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8082 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8083 }); 8084 } 8085 8086 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8087 DEBUG_WITH_TYPE(VerboseDebug, { 8088 dbgs() << "intermediate fn:\n" 8089 << *OrigLoop->getHeader()->getParent() << "\n"; 8090 }); 8091 } 8092 8093 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8094 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8095 assert(L && "Expected valid Loop."); 8096 assert(Bypass && "Expected valid bypass basic block."); 8097 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8098 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8099 Value *Count = getOrCreateTripCount(L); 8100 // Reuse existing vector loop preheader for TC checks. 8101 // Note that new preheader block is generated for vector loop. 8102 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8103 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8104 8105 // Generate code to check if the loop's trip count is less than VF * UF of the 8106 // main vector loop. 8107 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8108 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8109 8110 Value *CheckMinIters = Builder.CreateICmp( 8111 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8112 "min.iters.check"); 8113 8114 if (!ForEpilogue) 8115 TCCheckBlock->setName("vector.main.loop.iter.check"); 8116 8117 // Create new preheader for vector loop. 8118 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8119 DT, LI, nullptr, "vector.ph"); 8120 8121 if (ForEpilogue) { 8122 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8123 DT->getNode(Bypass)->getIDom()) && 8124 "TC check is expected to dominate Bypass"); 8125 8126 // Update dominator for Bypass & LoopExit. 8127 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8128 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8129 // For loops with multiple exits, there's no edge from the middle block 8130 // to exit blocks (as the epilogue must run) and thus no need to update 8131 // the immediate dominator of the exit blocks. 8132 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8133 8134 LoopBypassBlocks.push_back(TCCheckBlock); 8135 8136 // Save the trip count so we don't have to regenerate it in the 8137 // vec.epilog.iter.check. This is safe to do because the trip count 8138 // generated here dominates the vector epilog iter check. 8139 EPI.TripCount = Count; 8140 } 8141 8142 ReplaceInstWithInst( 8143 TCCheckBlock->getTerminator(), 8144 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8145 8146 return TCCheckBlock; 8147 } 8148 8149 //===--------------------------------------------------------------------===// 8150 // EpilogueVectorizerEpilogueLoop 8151 //===--------------------------------------------------------------------===// 8152 8153 /// This function is partially responsible for generating the control flow 8154 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8155 std::pair<BasicBlock *, Value *> 8156 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8157 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8158 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8159 8160 // Now, compare the remaining count and if there aren't enough iterations to 8161 // execute the vectorized epilogue skip to the scalar part. 8162 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8163 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8164 LoopVectorPreHeader = 8165 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8166 LI, nullptr, "vec.epilog.ph"); 8167 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8168 VecEpilogueIterationCountCheck); 8169 8170 // Adjust the control flow taking the state info from the main loop 8171 // vectorization into account. 8172 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8173 "expected this to be saved from the previous pass."); 8174 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8175 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8176 8177 DT->changeImmediateDominator(LoopVectorPreHeader, 8178 EPI.MainLoopIterationCountCheck); 8179 8180 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8181 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8182 8183 if (EPI.SCEVSafetyCheck) 8184 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8185 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8186 if (EPI.MemSafetyCheck) 8187 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8188 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8189 8190 DT->changeImmediateDominator( 8191 VecEpilogueIterationCountCheck, 8192 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8193 8194 DT->changeImmediateDominator(LoopScalarPreHeader, 8195 EPI.EpilogueIterationCountCheck); 8196 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8197 // If there is an epilogue which must run, there's no edge from the 8198 // middle block to exit blocks and thus no need to update the immediate 8199 // dominator of the exit blocks. 8200 DT->changeImmediateDominator(LoopExitBlock, 8201 EPI.EpilogueIterationCountCheck); 8202 8203 // Keep track of bypass blocks, as they feed start values to the induction 8204 // phis in the scalar loop preheader. 8205 if (EPI.SCEVSafetyCheck) 8206 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8207 if (EPI.MemSafetyCheck) 8208 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8209 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8210 8211 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8212 // merge control-flow from the latch block and the middle block. Update the 8213 // incoming values here and move the Phi into the preheader. 8214 SmallVector<PHINode *, 4> PhisInBlock; 8215 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8216 PhisInBlock.push_back(&Phi); 8217 8218 for (PHINode *Phi : PhisInBlock) { 8219 Phi->replaceIncomingBlockWith( 8220 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8221 VecEpilogueIterationCountCheck); 8222 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8223 if (EPI.SCEVSafetyCheck) 8224 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8225 if (EPI.MemSafetyCheck) 8226 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8227 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8228 } 8229 8230 // Generate a resume induction for the vector epilogue and put it in the 8231 // vector epilogue preheader 8232 Type *IdxTy = Legal->getWidestInductionType(); 8233 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8234 LoopVectorPreHeader->getFirstNonPHI()); 8235 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8236 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8237 EPI.MainLoopIterationCountCheck); 8238 8239 // Generate the induction variable. 8240 createHeaderBranch(Lp); 8241 8242 // Generate induction resume values. These variables save the new starting 8243 // indexes for the scalar loop. They are used to test if there are any tail 8244 // iterations left once the vector loop has completed. 8245 // Note that when the vectorized epilogue is skipped due to iteration count 8246 // check, then the resume value for the induction variable comes from 8247 // the trip count of the main vector loop, hence passing the AdditionalBypass 8248 // argument. 8249 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8250 EPI.VectorTripCount} /* AdditionalBypass */); 8251 8252 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8253 } 8254 8255 BasicBlock * 8256 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8257 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8258 8259 assert(EPI.TripCount && 8260 "Expected trip count to have been safed in the first pass."); 8261 assert( 8262 (!isa<Instruction>(EPI.TripCount) || 8263 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8264 "saved trip count does not dominate insertion point."); 8265 Value *TC = EPI.TripCount; 8266 IRBuilder<> Builder(Insert->getTerminator()); 8267 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8268 8269 // Generate code to check if the loop's trip count is less than VF * UF of the 8270 // vector epilogue loop. 8271 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8272 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8273 8274 Value *CheckMinIters = 8275 Builder.CreateICmp(P, Count, 8276 createStepForVF(Builder, Count->getType(), 8277 EPI.EpilogueVF, EPI.EpilogueUF), 8278 "min.epilog.iters.check"); 8279 8280 ReplaceInstWithInst( 8281 Insert->getTerminator(), 8282 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8283 8284 LoopBypassBlocks.push_back(Insert); 8285 return Insert; 8286 } 8287 8288 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8289 LLVM_DEBUG({ 8290 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8291 << "Epilogue Loop VF:" << EPI.EpilogueVF 8292 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8293 }); 8294 } 8295 8296 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8297 DEBUG_WITH_TYPE(VerboseDebug, { 8298 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8299 }); 8300 } 8301 8302 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8303 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8304 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8305 bool PredicateAtRangeStart = Predicate(Range.Start); 8306 8307 for (ElementCount TmpVF = Range.Start * 2; 8308 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8309 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8310 Range.End = TmpVF; 8311 break; 8312 } 8313 8314 return PredicateAtRangeStart; 8315 } 8316 8317 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8318 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8319 /// of VF's starting at a given VF and extending it as much as possible. Each 8320 /// vectorization decision can potentially shorten this sub-range during 8321 /// buildVPlan(). 8322 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8323 ElementCount MaxVF) { 8324 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8325 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8326 VFRange SubRange = {VF, MaxVFPlusOne}; 8327 VPlans.push_back(buildVPlan(SubRange)); 8328 VF = SubRange.End; 8329 } 8330 } 8331 8332 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8333 VPlanPtr &Plan) { 8334 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8335 8336 // Look for cached value. 8337 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8338 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8339 if (ECEntryIt != EdgeMaskCache.end()) 8340 return ECEntryIt->second; 8341 8342 VPValue *SrcMask = createBlockInMask(Src, Plan); 8343 8344 // The terminator has to be a branch inst! 8345 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8346 assert(BI && "Unexpected terminator found"); 8347 8348 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8349 return EdgeMaskCache[Edge] = SrcMask; 8350 8351 // If source is an exiting block, we know the exit edge is dynamically dead 8352 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8353 // adding uses of an otherwise potentially dead instruction. 8354 if (OrigLoop->isLoopExiting(Src)) 8355 return EdgeMaskCache[Edge] = SrcMask; 8356 8357 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8358 assert(EdgeMask && "No Edge Mask found for condition"); 8359 8360 if (BI->getSuccessor(0) != Dst) 8361 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8362 8363 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8364 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8365 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8366 // The select version does not introduce new UB if SrcMask is false and 8367 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8368 VPValue *False = Plan->getOrAddVPValue( 8369 ConstantInt::getFalse(BI->getCondition()->getType())); 8370 EdgeMask = 8371 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8372 } 8373 8374 return EdgeMaskCache[Edge] = EdgeMask; 8375 } 8376 8377 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8378 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8379 8380 // Look for cached value. 8381 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8382 if (BCEntryIt != BlockMaskCache.end()) 8383 return BCEntryIt->second; 8384 8385 // All-one mask is modelled as no-mask following the convention for masked 8386 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8387 VPValue *BlockMask = nullptr; 8388 8389 if (OrigLoop->getHeader() == BB) { 8390 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8391 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8392 8393 // Introduce the early-exit compare IV <= BTC to form header block mask. 8394 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8395 // constructing the desired canonical IV in the header block as its first 8396 // non-phi instructions. 8397 assert(CM.foldTailByMasking() && "must fold the tail"); 8398 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8399 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8400 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8401 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8402 8403 VPBuilder::InsertPointGuard Guard(Builder); 8404 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8405 if (CM.TTI.emitGetActiveLaneMask()) { 8406 VPValue *TC = Plan->getOrCreateTripCount(); 8407 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8408 } else { 8409 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8410 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8411 } 8412 return BlockMaskCache[BB] = BlockMask; 8413 } 8414 8415 // This is the block mask. We OR all incoming edges. 8416 for (auto *Predecessor : predecessors(BB)) { 8417 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8418 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8419 return BlockMaskCache[BB] = EdgeMask; 8420 8421 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8422 BlockMask = EdgeMask; 8423 continue; 8424 } 8425 8426 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8427 } 8428 8429 return BlockMaskCache[BB] = BlockMask; 8430 } 8431 8432 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8433 ArrayRef<VPValue *> Operands, 8434 VFRange &Range, 8435 VPlanPtr &Plan) { 8436 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8437 "Must be called with either a load or store"); 8438 8439 auto willWiden = [&](ElementCount VF) -> bool { 8440 if (VF.isScalar()) 8441 return false; 8442 LoopVectorizationCostModel::InstWidening Decision = 8443 CM.getWideningDecision(I, VF); 8444 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8445 "CM decision should be taken at this point."); 8446 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8447 return true; 8448 if (CM.isScalarAfterVectorization(I, VF) || 8449 CM.isProfitableToScalarize(I, VF)) 8450 return false; 8451 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8452 }; 8453 8454 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8455 return nullptr; 8456 8457 VPValue *Mask = nullptr; 8458 if (Legal->isMaskRequired(I)) 8459 Mask = createBlockInMask(I->getParent(), Plan); 8460 8461 // Determine if the pointer operand of the access is either consecutive or 8462 // reverse consecutive. 8463 LoopVectorizationCostModel::InstWidening Decision = 8464 CM.getWideningDecision(I, Range.Start); 8465 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8466 bool Consecutive = 8467 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8468 8469 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8470 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8471 Consecutive, Reverse); 8472 8473 StoreInst *Store = cast<StoreInst>(I); 8474 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8475 Mask, Consecutive, Reverse); 8476 } 8477 8478 static VPWidenIntOrFpInductionRecipe * 8479 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8480 VPValue *Start, const InductionDescriptor &IndDesc, 8481 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8482 VFRange &Range) { 8483 // Returns true if an instruction \p I should be scalarized instead of 8484 // vectorized for the chosen vectorization factor. 8485 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8486 return CM.isScalarAfterVectorization(I, VF) || 8487 CM.isProfitableToScalarize(I, VF); 8488 }; 8489 8490 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8491 [&](ElementCount VF) { 8492 // Returns true if we should generate a scalar version of \p IV. 8493 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8494 return true; 8495 auto isScalarInst = [&](User *U) -> bool { 8496 auto *I = cast<Instruction>(U); 8497 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8498 }; 8499 return any_of(PhiOrTrunc->users(), isScalarInst); 8500 }, 8501 Range); 8502 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8503 [&](ElementCount VF) { 8504 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8505 }, 8506 Range); 8507 assert(IndDesc.getStartValue() == 8508 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8509 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8510 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8511 NeedsScalarIV, !NeedsScalarIVOnly); 8512 } 8513 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8514 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8515 !NeedsScalarIVOnly); 8516 } 8517 8518 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8519 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8520 8521 // Check if this is an integer or fp induction. If so, build the recipe that 8522 // produces its scalar and vector values. 8523 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8524 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8525 Range); 8526 8527 return nullptr; 8528 } 8529 8530 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8531 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8532 VPlan &Plan) const { 8533 // Optimize the special case where the source is a constant integer 8534 // induction variable. Notice that we can only optimize the 'trunc' case 8535 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8536 // (c) other casts depend on pointer size. 8537 8538 // Determine whether \p K is a truncation based on an induction variable that 8539 // can be optimized. 8540 auto isOptimizableIVTruncate = 8541 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8542 return [=](ElementCount VF) -> bool { 8543 return CM.isOptimizableIVTruncate(K, VF); 8544 }; 8545 }; 8546 8547 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8548 isOptimizableIVTruncate(I), Range)) { 8549 8550 auto *Phi = cast<PHINode>(I->getOperand(0)); 8551 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8552 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8553 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8554 } 8555 return nullptr; 8556 } 8557 8558 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8559 ArrayRef<VPValue *> Operands, 8560 VPlanPtr &Plan) { 8561 // If all incoming values are equal, the incoming VPValue can be used directly 8562 // instead of creating a new VPBlendRecipe. 8563 VPValue *FirstIncoming = Operands[0]; 8564 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8565 return FirstIncoming == Inc; 8566 })) { 8567 return Operands[0]; 8568 } 8569 8570 // We know that all PHIs in non-header blocks are converted into selects, so 8571 // we don't have to worry about the insertion order and we can just use the 8572 // builder. At this point we generate the predication tree. There may be 8573 // duplications since this is a simple recursive scan, but future 8574 // optimizations will clean it up. 8575 SmallVector<VPValue *, 2> OperandsWithMask; 8576 unsigned NumIncoming = Phi->getNumIncomingValues(); 8577 8578 for (unsigned In = 0; In < NumIncoming; In++) { 8579 VPValue *EdgeMask = 8580 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8581 assert((EdgeMask || NumIncoming == 1) && 8582 "Multiple predecessors with one having a full mask"); 8583 OperandsWithMask.push_back(Operands[In]); 8584 if (EdgeMask) 8585 OperandsWithMask.push_back(EdgeMask); 8586 } 8587 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8588 } 8589 8590 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8591 ArrayRef<VPValue *> Operands, 8592 VFRange &Range) const { 8593 8594 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8595 [this, CI](ElementCount VF) { 8596 return CM.isScalarWithPredication(CI, VF); 8597 }, 8598 Range); 8599 8600 if (IsPredicated) 8601 return nullptr; 8602 8603 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8604 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8605 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8606 ID == Intrinsic::pseudoprobe || 8607 ID == Intrinsic::experimental_noalias_scope_decl)) 8608 return nullptr; 8609 8610 auto willWiden = [&](ElementCount VF) -> bool { 8611 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8612 // The following case may be scalarized depending on the VF. 8613 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8614 // version of the instruction. 8615 // Is it beneficial to perform intrinsic call compared to lib call? 8616 bool NeedToScalarize = false; 8617 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8618 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8619 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8620 return UseVectorIntrinsic || !NeedToScalarize; 8621 }; 8622 8623 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8624 return nullptr; 8625 8626 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8627 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8628 } 8629 8630 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8631 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8632 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8633 // Instruction should be widened, unless it is scalar after vectorization, 8634 // scalarization is profitable or it is predicated. 8635 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8636 return CM.isScalarAfterVectorization(I, VF) || 8637 CM.isProfitableToScalarize(I, VF) || 8638 CM.isScalarWithPredication(I, VF); 8639 }; 8640 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8641 Range); 8642 } 8643 8644 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8645 ArrayRef<VPValue *> Operands) const { 8646 auto IsVectorizableOpcode = [](unsigned Opcode) { 8647 switch (Opcode) { 8648 case Instruction::Add: 8649 case Instruction::And: 8650 case Instruction::AShr: 8651 case Instruction::BitCast: 8652 case Instruction::FAdd: 8653 case Instruction::FCmp: 8654 case Instruction::FDiv: 8655 case Instruction::FMul: 8656 case Instruction::FNeg: 8657 case Instruction::FPExt: 8658 case Instruction::FPToSI: 8659 case Instruction::FPToUI: 8660 case Instruction::FPTrunc: 8661 case Instruction::FRem: 8662 case Instruction::FSub: 8663 case Instruction::ICmp: 8664 case Instruction::IntToPtr: 8665 case Instruction::LShr: 8666 case Instruction::Mul: 8667 case Instruction::Or: 8668 case Instruction::PtrToInt: 8669 case Instruction::SDiv: 8670 case Instruction::Select: 8671 case Instruction::SExt: 8672 case Instruction::Shl: 8673 case Instruction::SIToFP: 8674 case Instruction::SRem: 8675 case Instruction::Sub: 8676 case Instruction::Trunc: 8677 case Instruction::UDiv: 8678 case Instruction::UIToFP: 8679 case Instruction::URem: 8680 case Instruction::Xor: 8681 case Instruction::ZExt: 8682 return true; 8683 } 8684 return false; 8685 }; 8686 8687 if (!IsVectorizableOpcode(I->getOpcode())) 8688 return nullptr; 8689 8690 // Success: widen this instruction. 8691 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8692 } 8693 8694 void VPRecipeBuilder::fixHeaderPhis() { 8695 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8696 for (VPHeaderPHIRecipe *R : PhisToFix) { 8697 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8698 VPRecipeBase *IncR = 8699 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8700 R->addOperand(IncR->getVPSingleValue()); 8701 } 8702 } 8703 8704 VPBasicBlock *VPRecipeBuilder::handleReplication( 8705 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8706 VPlanPtr &Plan) { 8707 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8708 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8709 Range); 8710 8711 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8712 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8713 Range); 8714 8715 // Even if the instruction is not marked as uniform, there are certain 8716 // intrinsic calls that can be effectively treated as such, so we check for 8717 // them here. Conservatively, we only do this for scalable vectors, since 8718 // for fixed-width VFs we can always fall back on full scalarization. 8719 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8720 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8721 case Intrinsic::assume: 8722 case Intrinsic::lifetime_start: 8723 case Intrinsic::lifetime_end: 8724 // For scalable vectors if one of the operands is variant then we still 8725 // want to mark as uniform, which will generate one instruction for just 8726 // the first lane of the vector. We can't scalarize the call in the same 8727 // way as for fixed-width vectors because we don't know how many lanes 8728 // there are. 8729 // 8730 // The reasons for doing it this way for scalable vectors are: 8731 // 1. For the assume intrinsic generating the instruction for the first 8732 // lane is still be better than not generating any at all. For 8733 // example, the input may be a splat across all lanes. 8734 // 2. For the lifetime start/end intrinsics the pointer operand only 8735 // does anything useful when the input comes from a stack object, 8736 // which suggests it should always be uniform. For non-stack objects 8737 // the effect is to poison the object, which still allows us to 8738 // remove the call. 8739 IsUniform = true; 8740 break; 8741 default: 8742 break; 8743 } 8744 } 8745 8746 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8747 IsUniform, IsPredicated); 8748 setRecipe(I, Recipe); 8749 Plan->addVPValue(I, Recipe); 8750 8751 // Find if I uses a predicated instruction. If so, it will use its scalar 8752 // value. Avoid hoisting the insert-element which packs the scalar value into 8753 // a vector value, as that happens iff all users use the vector value. 8754 for (VPValue *Op : Recipe->operands()) { 8755 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8756 if (!PredR) 8757 continue; 8758 auto *RepR = 8759 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8760 assert(RepR->isPredicated() && 8761 "expected Replicate recipe to be predicated"); 8762 RepR->setAlsoPack(false); 8763 } 8764 8765 // Finalize the recipe for Instr, first if it is not predicated. 8766 if (!IsPredicated) { 8767 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8768 VPBB->appendRecipe(Recipe); 8769 return VPBB; 8770 } 8771 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8772 8773 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8774 assert(SingleSucc && "VPBB must have a single successor when handling " 8775 "predicated replication."); 8776 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8777 // Record predicated instructions for above packing optimizations. 8778 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8779 VPBlockUtils::insertBlockAfter(Region, VPBB); 8780 auto *RegSucc = new VPBasicBlock(); 8781 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8782 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8783 return RegSucc; 8784 } 8785 8786 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8787 VPRecipeBase *PredRecipe, 8788 VPlanPtr &Plan) { 8789 // Instructions marked for predication are replicated and placed under an 8790 // if-then construct to prevent side-effects. 8791 8792 // Generate recipes to compute the block mask for this region. 8793 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8794 8795 // Build the triangular if-then region. 8796 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8797 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8798 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8799 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8800 auto *PHIRecipe = Instr->getType()->isVoidTy() 8801 ? nullptr 8802 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8803 if (PHIRecipe) { 8804 Plan->removeVPValueFor(Instr); 8805 Plan->addVPValue(Instr, PHIRecipe); 8806 } 8807 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8808 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8809 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8810 8811 // Note: first set Entry as region entry and then connect successors starting 8812 // from it in order, to propagate the "parent" of each VPBasicBlock. 8813 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8814 VPBlockUtils::connectBlocks(Pred, Exit); 8815 8816 return Region; 8817 } 8818 8819 VPRecipeOrVPValueTy 8820 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8821 ArrayRef<VPValue *> Operands, 8822 VFRange &Range, VPlanPtr &Plan) { 8823 // First, check for specific widening recipes that deal with calls, memory 8824 // operations, inductions and Phi nodes. 8825 if (auto *CI = dyn_cast<CallInst>(Instr)) 8826 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8827 8828 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8829 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8830 8831 VPRecipeBase *Recipe; 8832 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8833 if (Phi->getParent() != OrigLoop->getHeader()) 8834 return tryToBlend(Phi, Operands, Plan); 8835 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8836 return toVPRecipeResult(Recipe); 8837 8838 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8839 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8840 VPValue *StartV = Operands[0]; 8841 if (Legal->isReductionVariable(Phi)) { 8842 const RecurrenceDescriptor &RdxDesc = 8843 Legal->getReductionVars().find(Phi)->second; 8844 assert(RdxDesc.getRecurrenceStartValue() == 8845 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8846 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8847 CM.isInLoopReduction(Phi), 8848 CM.useOrderedReductions(RdxDesc)); 8849 } else { 8850 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8851 } 8852 8853 // Record the incoming value from the backedge, so we can add the incoming 8854 // value from the backedge after all recipes have been created. 8855 recordRecipeOf(cast<Instruction>( 8856 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8857 PhisToFix.push_back(PhiRecipe); 8858 } else { 8859 // TODO: record backedge value for remaining pointer induction phis. 8860 assert(Phi->getType()->isPointerTy() && 8861 "only pointer phis should be handled here"); 8862 assert(Legal->getInductionVars().count(Phi) && 8863 "Not an induction variable"); 8864 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8865 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8866 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8867 } 8868 8869 return toVPRecipeResult(PhiRecipe); 8870 } 8871 8872 if (isa<TruncInst>(Instr) && 8873 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8874 Range, *Plan))) 8875 return toVPRecipeResult(Recipe); 8876 8877 if (!shouldWiden(Instr, Range)) 8878 return nullptr; 8879 8880 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8881 return toVPRecipeResult(new VPWidenGEPRecipe( 8882 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8883 8884 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8885 bool InvariantCond = 8886 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8887 return toVPRecipeResult(new VPWidenSelectRecipe( 8888 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8889 } 8890 8891 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8892 } 8893 8894 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8895 ElementCount MaxVF) { 8896 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8897 8898 // Collect instructions from the original loop that will become trivially dead 8899 // in the vectorized loop. We don't need to vectorize these instructions. For 8900 // example, original induction update instructions can become dead because we 8901 // separately emit induction "steps" when generating code for the new loop. 8902 // Similarly, we create a new latch condition when setting up the structure 8903 // of the new loop, so the old one can become dead. 8904 SmallPtrSet<Instruction *, 4> DeadInstructions; 8905 collectTriviallyDeadInstructions(DeadInstructions); 8906 8907 // Add assume instructions we need to drop to DeadInstructions, to prevent 8908 // them from being added to the VPlan. 8909 // TODO: We only need to drop assumes in blocks that get flattend. If the 8910 // control flow is preserved, we should keep them. 8911 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8912 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8913 8914 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8915 // Dead instructions do not need sinking. Remove them from SinkAfter. 8916 for (Instruction *I : DeadInstructions) 8917 SinkAfter.erase(I); 8918 8919 // Cannot sink instructions after dead instructions (there won't be any 8920 // recipes for them). Instead, find the first non-dead previous instruction. 8921 for (auto &P : Legal->getSinkAfter()) { 8922 Instruction *SinkTarget = P.second; 8923 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8924 (void)FirstInst; 8925 while (DeadInstructions.contains(SinkTarget)) { 8926 assert( 8927 SinkTarget != FirstInst && 8928 "Must find a live instruction (at least the one feeding the " 8929 "first-order recurrence PHI) before reaching beginning of the block"); 8930 SinkTarget = SinkTarget->getPrevNode(); 8931 assert(SinkTarget != P.first && 8932 "sink source equals target, no sinking required"); 8933 } 8934 P.second = SinkTarget; 8935 } 8936 8937 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8938 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8939 VFRange SubRange = {VF, MaxVFPlusOne}; 8940 VPlans.push_back( 8941 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8942 VF = SubRange.End; 8943 } 8944 } 8945 8946 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8947 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8948 // BranchOnCount VPInstruction to the latch. 8949 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8950 bool HasNUW, bool IsVPlanNative) { 8951 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8952 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8953 8954 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8955 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8956 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8957 if (IsVPlanNative) 8958 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8959 Header->insert(CanonicalIVPHI, Header->begin()); 8960 8961 auto *CanonicalIVIncrement = 8962 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8963 : VPInstruction::CanonicalIVIncrement, 8964 {CanonicalIVPHI}, DL); 8965 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8966 8967 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8968 if (IsVPlanNative) { 8969 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8970 EB->setCondBit(nullptr); 8971 } 8972 EB->appendRecipe(CanonicalIVIncrement); 8973 8974 auto *BranchOnCount = 8975 new VPInstruction(VPInstruction::BranchOnCount, 8976 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8977 EB->appendRecipe(BranchOnCount); 8978 } 8979 8980 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8981 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8982 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8983 8984 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8985 8986 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8987 8988 // --------------------------------------------------------------------------- 8989 // Pre-construction: record ingredients whose recipes we'll need to further 8990 // process after constructing the initial VPlan. 8991 // --------------------------------------------------------------------------- 8992 8993 // Mark instructions we'll need to sink later and their targets as 8994 // ingredients whose recipe we'll need to record. 8995 for (auto &Entry : SinkAfter) { 8996 RecipeBuilder.recordRecipeOf(Entry.first); 8997 RecipeBuilder.recordRecipeOf(Entry.second); 8998 } 8999 for (auto &Reduction : CM.getInLoopReductionChains()) { 9000 PHINode *Phi = Reduction.first; 9001 RecurKind Kind = 9002 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9003 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9004 9005 RecipeBuilder.recordRecipeOf(Phi); 9006 for (auto &R : ReductionOperations) { 9007 RecipeBuilder.recordRecipeOf(R); 9008 // For min/max reducitons, where we have a pair of icmp/select, we also 9009 // need to record the ICmp recipe, so it can be removed later. 9010 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9011 "Only min/max recurrences allowed for inloop reductions"); 9012 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9013 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9014 } 9015 } 9016 9017 // For each interleave group which is relevant for this (possibly trimmed) 9018 // Range, add it to the set of groups to be later applied to the VPlan and add 9019 // placeholders for its members' Recipes which we'll be replacing with a 9020 // single VPInterleaveRecipe. 9021 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9022 auto applyIG = [IG, this](ElementCount VF) -> bool { 9023 return (VF.isVector() && // Query is illegal for VF == 1 9024 CM.getWideningDecision(IG->getInsertPos(), VF) == 9025 LoopVectorizationCostModel::CM_Interleave); 9026 }; 9027 if (!getDecisionAndClampRange(applyIG, Range)) 9028 continue; 9029 InterleaveGroups.insert(IG); 9030 for (unsigned i = 0; i < IG->getFactor(); i++) 9031 if (Instruction *Member = IG->getMember(i)) 9032 RecipeBuilder.recordRecipeOf(Member); 9033 }; 9034 9035 // --------------------------------------------------------------------------- 9036 // Build initial VPlan: Scan the body of the loop in a topological order to 9037 // visit each basic block after having visited its predecessor basic blocks. 9038 // --------------------------------------------------------------------------- 9039 9040 // Create initial VPlan skeleton, with separate header and latch blocks. 9041 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9042 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9043 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9044 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9045 auto Plan = std::make_unique<VPlan>(TopRegion); 9046 9047 Instruction *DLInst = 9048 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9049 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9050 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9051 !CM.foldTailByMasking(), false); 9052 9053 // Scan the body of the loop in a topological order to visit each basic block 9054 // after having visited its predecessor basic blocks. 9055 LoopBlocksDFS DFS(OrigLoop); 9056 DFS.perform(LI); 9057 9058 VPBasicBlock *VPBB = HeaderVPBB; 9059 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9060 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9061 // Relevant instructions from basic block BB will be grouped into VPRecipe 9062 // ingredients and fill a new VPBasicBlock. 9063 unsigned VPBBsForBB = 0; 9064 VPBB->setName(BB->getName()); 9065 Builder.setInsertPoint(VPBB); 9066 9067 // Introduce each ingredient into VPlan. 9068 // TODO: Model and preserve debug instrinsics in VPlan. 9069 for (Instruction &I : BB->instructionsWithoutDebug()) { 9070 Instruction *Instr = &I; 9071 9072 // First filter out irrelevant instructions, to ensure no recipes are 9073 // built for them. 9074 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9075 continue; 9076 9077 SmallVector<VPValue *, 4> Operands; 9078 auto *Phi = dyn_cast<PHINode>(Instr); 9079 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9080 Operands.push_back(Plan->getOrAddVPValue( 9081 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9082 } else { 9083 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9084 Operands = {OpRange.begin(), OpRange.end()}; 9085 } 9086 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9087 Instr, Operands, Range, Plan)) { 9088 // If Instr can be simplified to an existing VPValue, use it. 9089 if (RecipeOrValue.is<VPValue *>()) { 9090 auto *VPV = RecipeOrValue.get<VPValue *>(); 9091 Plan->addVPValue(Instr, VPV); 9092 // If the re-used value is a recipe, register the recipe for the 9093 // instruction, in case the recipe for Instr needs to be recorded. 9094 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9095 RecipeBuilder.setRecipe(Instr, R); 9096 continue; 9097 } 9098 // Otherwise, add the new recipe. 9099 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9100 for (auto *Def : Recipe->definedValues()) { 9101 auto *UV = Def->getUnderlyingValue(); 9102 Plan->addVPValue(UV, Def); 9103 } 9104 9105 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9106 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9107 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9108 // of the header block. That can happen for truncates of induction 9109 // variables. Those recipes are moved to the phi section of the header 9110 // block after applying SinkAfter, which relies on the original 9111 // position of the trunc. 9112 assert(isa<TruncInst>(Instr)); 9113 InductionsToMove.push_back( 9114 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9115 } 9116 RecipeBuilder.setRecipe(Instr, Recipe); 9117 VPBB->appendRecipe(Recipe); 9118 continue; 9119 } 9120 9121 // Otherwise, if all widening options failed, Instruction is to be 9122 // replicated. This may create a successor for VPBB. 9123 VPBasicBlock *NextVPBB = 9124 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9125 if (NextVPBB != VPBB) { 9126 VPBB = NextVPBB; 9127 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9128 : ""); 9129 } 9130 } 9131 9132 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9133 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9134 } 9135 9136 // Fold the last, empty block into its predecessor. 9137 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9138 assert(VPBB && "expected to fold last (empty) block"); 9139 // After here, VPBB should not be used. 9140 VPBB = nullptr; 9141 9142 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9143 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9144 "entry block must be set to a VPRegionBlock having a non-empty entry " 9145 "VPBasicBlock"); 9146 RecipeBuilder.fixHeaderPhis(); 9147 9148 // --------------------------------------------------------------------------- 9149 // Transform initial VPlan: Apply previously taken decisions, in order, to 9150 // bring the VPlan to its final state. 9151 // --------------------------------------------------------------------------- 9152 9153 // Apply Sink-After legal constraints. 9154 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9155 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9156 if (Region && Region->isReplicator()) { 9157 assert(Region->getNumSuccessors() == 1 && 9158 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9159 assert(R->getParent()->size() == 1 && 9160 "A recipe in an original replicator region must be the only " 9161 "recipe in its block"); 9162 return Region; 9163 } 9164 return nullptr; 9165 }; 9166 for (auto &Entry : SinkAfter) { 9167 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9168 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9169 9170 auto *TargetRegion = GetReplicateRegion(Target); 9171 auto *SinkRegion = GetReplicateRegion(Sink); 9172 if (!SinkRegion) { 9173 // If the sink source is not a replicate region, sink the recipe directly. 9174 if (TargetRegion) { 9175 // The target is in a replication region, make sure to move Sink to 9176 // the block after it, not into the replication region itself. 9177 VPBasicBlock *NextBlock = 9178 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9179 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9180 } else 9181 Sink->moveAfter(Target); 9182 continue; 9183 } 9184 9185 // The sink source is in a replicate region. Unhook the region from the CFG. 9186 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9187 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9188 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9189 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9190 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9191 9192 if (TargetRegion) { 9193 // The target recipe is also in a replicate region, move the sink region 9194 // after the target region. 9195 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9196 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9197 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9198 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9199 } else { 9200 // The sink source is in a replicate region, we need to move the whole 9201 // replicate region, which should only contain a single recipe in the 9202 // main block. 9203 auto *SplitBlock = 9204 Target->getParent()->splitAt(std::next(Target->getIterator())); 9205 9206 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9207 9208 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9209 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9210 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9211 } 9212 } 9213 9214 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9215 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9216 9217 // Now that sink-after is done, move induction recipes for optimized truncates 9218 // to the phi section of the header block. 9219 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9220 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9221 9222 // Adjust the recipes for any inloop reductions. 9223 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9224 RecipeBuilder, Range.Start); 9225 9226 // Introduce a recipe to combine the incoming and previous values of a 9227 // first-order recurrence. 9228 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9229 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9230 if (!RecurPhi) 9231 continue; 9232 9233 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9234 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9235 auto *Region = GetReplicateRegion(PrevRecipe); 9236 if (Region) 9237 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9238 if (Region || PrevRecipe->isPhi()) 9239 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9240 else 9241 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9242 9243 auto *RecurSplice = cast<VPInstruction>( 9244 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9245 {RecurPhi, RecurPhi->getBackedgeValue()})); 9246 9247 RecurPhi->replaceAllUsesWith(RecurSplice); 9248 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9249 // all users. 9250 RecurSplice->setOperand(0, RecurPhi); 9251 } 9252 9253 // Interleave memory: for each Interleave Group we marked earlier as relevant 9254 // for this VPlan, replace the Recipes widening its memory instructions with a 9255 // single VPInterleaveRecipe at its insertion point. 9256 for (auto IG : InterleaveGroups) { 9257 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9258 RecipeBuilder.getRecipe(IG->getInsertPos())); 9259 SmallVector<VPValue *, 4> StoredValues; 9260 for (unsigned i = 0; i < IG->getFactor(); ++i) 9261 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9262 auto *StoreR = 9263 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9264 StoredValues.push_back(StoreR->getStoredValue()); 9265 } 9266 9267 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9268 Recipe->getMask()); 9269 VPIG->insertBefore(Recipe); 9270 unsigned J = 0; 9271 for (unsigned i = 0; i < IG->getFactor(); ++i) 9272 if (Instruction *Member = IG->getMember(i)) { 9273 if (!Member->getType()->isVoidTy()) { 9274 VPValue *OriginalV = Plan->getVPValue(Member); 9275 Plan->removeVPValueFor(Member); 9276 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9277 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9278 J++; 9279 } 9280 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9281 } 9282 } 9283 9284 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9285 // in ways that accessing values using original IR values is incorrect. 9286 Plan->disableValue2VPValue(); 9287 9288 VPlanTransforms::sinkScalarOperands(*Plan); 9289 VPlanTransforms::mergeReplicateRegions(*Plan); 9290 9291 std::string PlanName; 9292 raw_string_ostream RSO(PlanName); 9293 ElementCount VF = Range.Start; 9294 Plan->addVF(VF); 9295 RSO << "Initial VPlan for VF={" << VF; 9296 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9297 Plan->addVF(VF); 9298 RSO << "," << VF; 9299 } 9300 RSO << "},UF>=1"; 9301 RSO.flush(); 9302 Plan->setName(PlanName); 9303 9304 // Fold Exit block into its predecessor if possible. 9305 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9306 // VPBasicBlock as exit. 9307 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9308 9309 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9310 return Plan; 9311 } 9312 9313 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9314 // Outer loop handling: They may require CFG and instruction level 9315 // transformations before even evaluating whether vectorization is profitable. 9316 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9317 // the vectorization pipeline. 9318 assert(!OrigLoop->isInnermost()); 9319 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9320 9321 // Create new empty VPlan 9322 auto Plan = std::make_unique<VPlan>(); 9323 9324 // Build hierarchical CFG 9325 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9326 HCFGBuilder.buildHierarchicalCFG(); 9327 9328 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9329 VF *= 2) 9330 Plan->addVF(VF); 9331 9332 if (EnableVPlanPredication) { 9333 VPlanPredicator VPP(*Plan); 9334 VPP.predicate(); 9335 9336 // Avoid running transformation to recipes until masked code generation in 9337 // VPlan-native path is in place. 9338 return Plan; 9339 } 9340 9341 SmallPtrSet<Instruction *, 1> DeadInstructions; 9342 VPlanTransforms::VPInstructionsToVPRecipes( 9343 OrigLoop, Plan, 9344 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9345 DeadInstructions, *PSE.getSE()); 9346 9347 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9348 true, true); 9349 return Plan; 9350 } 9351 9352 // Adjust the recipes for reductions. For in-loop reductions the chain of 9353 // instructions leading from the loop exit instr to the phi need to be converted 9354 // to reductions, with one operand being vector and the other being the scalar 9355 // reduction chain. For other reductions, a select is introduced between the phi 9356 // and live-out recipes when folding the tail. 9357 void LoopVectorizationPlanner::adjustRecipesForReductions( 9358 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9359 ElementCount MinVF) { 9360 for (auto &Reduction : CM.getInLoopReductionChains()) { 9361 PHINode *Phi = Reduction.first; 9362 const RecurrenceDescriptor &RdxDesc = 9363 Legal->getReductionVars().find(Phi)->second; 9364 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9365 9366 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9367 continue; 9368 9369 // ReductionOperations are orders top-down from the phi's use to the 9370 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9371 // which of the two operands will remain scalar and which will be reduced. 9372 // For minmax the chain will be the select instructions. 9373 Instruction *Chain = Phi; 9374 for (Instruction *R : ReductionOperations) { 9375 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9376 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9377 9378 VPValue *ChainOp = Plan->getVPValue(Chain); 9379 unsigned FirstOpId; 9380 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9381 "Only min/max recurrences allowed for inloop reductions"); 9382 // Recognize a call to the llvm.fmuladd intrinsic. 9383 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9384 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9385 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9386 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9387 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9388 "Expected to replace a VPWidenSelectSC"); 9389 FirstOpId = 1; 9390 } else { 9391 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9392 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9393 "Expected to replace a VPWidenSC"); 9394 FirstOpId = 0; 9395 } 9396 unsigned VecOpId = 9397 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9398 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9399 9400 auto *CondOp = CM.foldTailByMasking() 9401 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9402 : nullptr; 9403 9404 if (IsFMulAdd) { 9405 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9406 // need to create an fmul recipe to use as the vector operand for the 9407 // fadd reduction. 9408 VPInstruction *FMulRecipe = new VPInstruction( 9409 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9410 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9411 WidenRecipe->getParent()->insert(FMulRecipe, 9412 WidenRecipe->getIterator()); 9413 VecOp = FMulRecipe; 9414 } 9415 VPReductionRecipe *RedRecipe = 9416 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9417 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9418 Plan->removeVPValueFor(R); 9419 Plan->addVPValue(R, RedRecipe); 9420 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9421 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9422 WidenRecipe->eraseFromParent(); 9423 9424 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9425 VPRecipeBase *CompareRecipe = 9426 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9427 assert(isa<VPWidenRecipe>(CompareRecipe) && 9428 "Expected to replace a VPWidenSC"); 9429 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9430 "Expected no remaining users"); 9431 CompareRecipe->eraseFromParent(); 9432 } 9433 Chain = R; 9434 } 9435 } 9436 9437 // If tail is folded by masking, introduce selects between the phi 9438 // and the live-out instruction of each reduction, at the beginning of the 9439 // dedicated latch block. 9440 if (CM.foldTailByMasking()) { 9441 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9442 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9443 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9444 if (!PhiR || PhiR->isInLoop()) 9445 continue; 9446 VPValue *Cond = 9447 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9448 VPValue *Red = PhiR->getBackedgeValue(); 9449 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9450 "reduction recipe must be defined before latch"); 9451 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9452 } 9453 } 9454 } 9455 9456 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9457 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9458 VPSlotTracker &SlotTracker) const { 9459 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9460 IG->getInsertPos()->printAsOperand(O, false); 9461 O << ", "; 9462 getAddr()->printAsOperand(O, SlotTracker); 9463 VPValue *Mask = getMask(); 9464 if (Mask) { 9465 O << ", "; 9466 Mask->printAsOperand(O, SlotTracker); 9467 } 9468 9469 unsigned OpIdx = 0; 9470 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9471 if (!IG->getMember(i)) 9472 continue; 9473 if (getNumStoreOperands() > 0) { 9474 O << "\n" << Indent << " store "; 9475 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9476 O << " to index " << i; 9477 } else { 9478 O << "\n" << Indent << " "; 9479 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9480 O << " = load from index " << i; 9481 } 9482 ++OpIdx; 9483 } 9484 } 9485 #endif 9486 9487 void VPWidenCallRecipe::execute(VPTransformState &State) { 9488 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9489 *this, State); 9490 } 9491 9492 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9493 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9494 State.ILV->setDebugLocFromInst(&I); 9495 9496 // The condition can be loop invariant but still defined inside the 9497 // loop. This means that we can't just use the original 'cond' value. 9498 // We have to take the 'vectorized' value and pick the first lane. 9499 // Instcombine will make this a no-op. 9500 auto *InvarCond = 9501 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9502 9503 for (unsigned Part = 0; Part < State.UF; ++Part) { 9504 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9505 Value *Op0 = State.get(getOperand(1), Part); 9506 Value *Op1 = State.get(getOperand(2), Part); 9507 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9508 State.set(this, Sel, Part); 9509 State.ILV->addMetadata(Sel, &I); 9510 } 9511 } 9512 9513 void VPWidenRecipe::execute(VPTransformState &State) { 9514 auto &I = *cast<Instruction>(getUnderlyingValue()); 9515 auto &Builder = State.Builder; 9516 switch (I.getOpcode()) { 9517 case Instruction::Call: 9518 case Instruction::Br: 9519 case Instruction::PHI: 9520 case Instruction::GetElementPtr: 9521 case Instruction::Select: 9522 llvm_unreachable("This instruction is handled by a different recipe."); 9523 case Instruction::UDiv: 9524 case Instruction::SDiv: 9525 case Instruction::SRem: 9526 case Instruction::URem: 9527 case Instruction::Add: 9528 case Instruction::FAdd: 9529 case Instruction::Sub: 9530 case Instruction::FSub: 9531 case Instruction::FNeg: 9532 case Instruction::Mul: 9533 case Instruction::FMul: 9534 case Instruction::FDiv: 9535 case Instruction::FRem: 9536 case Instruction::Shl: 9537 case Instruction::LShr: 9538 case Instruction::AShr: 9539 case Instruction::And: 9540 case Instruction::Or: 9541 case Instruction::Xor: { 9542 // Just widen unops and binops. 9543 State.ILV->setDebugLocFromInst(&I); 9544 9545 for (unsigned Part = 0; Part < State.UF; ++Part) { 9546 SmallVector<Value *, 2> Ops; 9547 for (VPValue *VPOp : operands()) 9548 Ops.push_back(State.get(VPOp, Part)); 9549 9550 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9551 9552 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9553 VecOp->copyIRFlags(&I); 9554 9555 // If the instruction is vectorized and was in a basic block that needed 9556 // predication, we can't propagate poison-generating flags (nuw/nsw, 9557 // exact, etc.). The control flow has been linearized and the 9558 // instruction is no longer guarded by the predicate, which could make 9559 // the flag properties to no longer hold. 9560 if (State.MayGeneratePoisonRecipes.contains(this)) 9561 VecOp->dropPoisonGeneratingFlags(); 9562 } 9563 9564 // Use this vector value for all users of the original instruction. 9565 State.set(this, V, Part); 9566 State.ILV->addMetadata(V, &I); 9567 } 9568 9569 break; 9570 } 9571 case Instruction::ICmp: 9572 case Instruction::FCmp: { 9573 // Widen compares. Generate vector compares. 9574 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9575 auto *Cmp = cast<CmpInst>(&I); 9576 State.ILV->setDebugLocFromInst(Cmp); 9577 for (unsigned Part = 0; Part < State.UF; ++Part) { 9578 Value *A = State.get(getOperand(0), Part); 9579 Value *B = State.get(getOperand(1), Part); 9580 Value *C = nullptr; 9581 if (FCmp) { 9582 // Propagate fast math flags. 9583 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9584 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9585 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9586 } else { 9587 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9588 } 9589 State.set(this, C, Part); 9590 State.ILV->addMetadata(C, &I); 9591 } 9592 9593 break; 9594 } 9595 9596 case Instruction::ZExt: 9597 case Instruction::SExt: 9598 case Instruction::FPToUI: 9599 case Instruction::FPToSI: 9600 case Instruction::FPExt: 9601 case Instruction::PtrToInt: 9602 case Instruction::IntToPtr: 9603 case Instruction::SIToFP: 9604 case Instruction::UIToFP: 9605 case Instruction::Trunc: 9606 case Instruction::FPTrunc: 9607 case Instruction::BitCast: { 9608 auto *CI = cast<CastInst>(&I); 9609 State.ILV->setDebugLocFromInst(CI); 9610 9611 /// Vectorize casts. 9612 Type *DestTy = (State.VF.isScalar()) 9613 ? CI->getType() 9614 : VectorType::get(CI->getType(), State.VF); 9615 9616 for (unsigned Part = 0; Part < State.UF; ++Part) { 9617 Value *A = State.get(getOperand(0), Part); 9618 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9619 State.set(this, Cast, Part); 9620 State.ILV->addMetadata(Cast, &I); 9621 } 9622 break; 9623 } 9624 default: 9625 // This instruction is not vectorized by simple widening. 9626 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9627 llvm_unreachable("Unhandled instruction!"); 9628 } // end of switch. 9629 } 9630 9631 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9632 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9633 // Construct a vector GEP by widening the operands of the scalar GEP as 9634 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9635 // results in a vector of pointers when at least one operand of the GEP 9636 // is vector-typed. Thus, to keep the representation compact, we only use 9637 // vector-typed operands for loop-varying values. 9638 9639 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9640 // If we are vectorizing, but the GEP has only loop-invariant operands, 9641 // the GEP we build (by only using vector-typed operands for 9642 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9643 // produce a vector of pointers, we need to either arbitrarily pick an 9644 // operand to broadcast, or broadcast a clone of the original GEP. 9645 // Here, we broadcast a clone of the original. 9646 // 9647 // TODO: If at some point we decide to scalarize instructions having 9648 // loop-invariant operands, this special case will no longer be 9649 // required. We would add the scalarization decision to 9650 // collectLoopScalars() and teach getVectorValue() to broadcast 9651 // the lane-zero scalar value. 9652 auto *Clone = State.Builder.Insert(GEP->clone()); 9653 for (unsigned Part = 0; Part < State.UF; ++Part) { 9654 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9655 State.set(this, EntryPart, Part); 9656 State.ILV->addMetadata(EntryPart, GEP); 9657 } 9658 } else { 9659 // If the GEP has at least one loop-varying operand, we are sure to 9660 // produce a vector of pointers. But if we are only unrolling, we want 9661 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9662 // produce with the code below will be scalar (if VF == 1) or vector 9663 // (otherwise). Note that for the unroll-only case, we still maintain 9664 // values in the vector mapping with initVector, as we do for other 9665 // instructions. 9666 for (unsigned Part = 0; Part < State.UF; ++Part) { 9667 // The pointer operand of the new GEP. If it's loop-invariant, we 9668 // won't broadcast it. 9669 auto *Ptr = IsPtrLoopInvariant 9670 ? State.get(getOperand(0), VPIteration(0, 0)) 9671 : State.get(getOperand(0), Part); 9672 9673 // Collect all the indices for the new GEP. If any index is 9674 // loop-invariant, we won't broadcast it. 9675 SmallVector<Value *, 4> Indices; 9676 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9677 VPValue *Operand = getOperand(I); 9678 if (IsIndexLoopInvariant[I - 1]) 9679 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9680 else 9681 Indices.push_back(State.get(Operand, Part)); 9682 } 9683 9684 // If the GEP instruction is vectorized and was in a basic block that 9685 // needed predication, we can't propagate the poison-generating 'inbounds' 9686 // flag. The control flow has been linearized and the GEP is no longer 9687 // guarded by the predicate, which could make the 'inbounds' properties to 9688 // no longer hold. 9689 bool IsInBounds = 9690 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9691 9692 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9693 // but it should be a vector, otherwise. 9694 auto *NewGEP = IsInBounds 9695 ? State.Builder.CreateInBoundsGEP( 9696 GEP->getSourceElementType(), Ptr, Indices) 9697 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9698 Ptr, Indices); 9699 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9700 "NewGEP is not a pointer vector"); 9701 State.set(this, NewGEP, Part); 9702 State.ILV->addMetadata(NewGEP, GEP); 9703 } 9704 } 9705 } 9706 9707 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9708 assert(!State.Instance && "Int or FP induction being replicated."); 9709 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9710 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9711 } 9712 9713 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9714 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9715 State); 9716 } 9717 9718 void VPBlendRecipe::execute(VPTransformState &State) { 9719 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9720 // We know that all PHIs in non-header blocks are converted into 9721 // selects, so we don't have to worry about the insertion order and we 9722 // can just use the builder. 9723 // At this point we generate the predication tree. There may be 9724 // duplications since this is a simple recursive scan, but future 9725 // optimizations will clean it up. 9726 9727 unsigned NumIncoming = getNumIncomingValues(); 9728 9729 // Generate a sequence of selects of the form: 9730 // SELECT(Mask3, In3, 9731 // SELECT(Mask2, In2, 9732 // SELECT(Mask1, In1, 9733 // In0))) 9734 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9735 // are essentially undef are taken from In0. 9736 InnerLoopVectorizer::VectorParts Entry(State.UF); 9737 for (unsigned In = 0; In < NumIncoming; ++In) { 9738 for (unsigned Part = 0; Part < State.UF; ++Part) { 9739 // We might have single edge PHIs (blocks) - use an identity 9740 // 'select' for the first PHI operand. 9741 Value *In0 = State.get(getIncomingValue(In), Part); 9742 if (In == 0) 9743 Entry[Part] = In0; // Initialize with the first incoming value. 9744 else { 9745 // Select between the current value and the previous incoming edge 9746 // based on the incoming mask. 9747 Value *Cond = State.get(getMask(In), Part); 9748 Entry[Part] = 9749 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9750 } 9751 } 9752 } 9753 for (unsigned Part = 0; Part < State.UF; ++Part) 9754 State.set(this, Entry[Part], Part); 9755 } 9756 9757 void VPInterleaveRecipe::execute(VPTransformState &State) { 9758 assert(!State.Instance && "Interleave group being replicated."); 9759 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9760 getStoredValues(), getMask()); 9761 } 9762 9763 void VPReductionRecipe::execute(VPTransformState &State) { 9764 assert(!State.Instance && "Reduction being replicated."); 9765 Value *PrevInChain = State.get(getChainOp(), 0); 9766 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9767 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9768 // Propagate the fast-math flags carried by the underlying instruction. 9769 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9770 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9771 for (unsigned Part = 0; Part < State.UF; ++Part) { 9772 Value *NewVecOp = State.get(getVecOp(), Part); 9773 if (VPValue *Cond = getCondOp()) { 9774 Value *NewCond = State.get(Cond, Part); 9775 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9776 Value *Iden = RdxDesc->getRecurrenceIdentity( 9777 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9778 Value *IdenVec = 9779 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9780 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9781 NewVecOp = Select; 9782 } 9783 Value *NewRed; 9784 Value *NextInChain; 9785 if (IsOrdered) { 9786 if (State.VF.isVector()) 9787 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9788 PrevInChain); 9789 else 9790 NewRed = State.Builder.CreateBinOp( 9791 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9792 NewVecOp); 9793 PrevInChain = NewRed; 9794 } else { 9795 PrevInChain = State.get(getChainOp(), Part); 9796 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9797 } 9798 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9799 NextInChain = 9800 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9801 NewRed, PrevInChain); 9802 } else if (IsOrdered) 9803 NextInChain = NewRed; 9804 else 9805 NextInChain = State.Builder.CreateBinOp( 9806 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9807 PrevInChain); 9808 State.set(this, NextInChain, Part); 9809 } 9810 } 9811 9812 void VPReplicateRecipe::execute(VPTransformState &State) { 9813 if (State.Instance) { // Generate a single instance. 9814 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9815 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9816 IsPredicated, State); 9817 // Insert scalar instance packing it into a vector. 9818 if (AlsoPack && State.VF.isVector()) { 9819 // If we're constructing lane 0, initialize to start from poison. 9820 if (State.Instance->Lane.isFirstLane()) { 9821 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9822 Value *Poison = PoisonValue::get( 9823 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9824 State.set(this, Poison, State.Instance->Part); 9825 } 9826 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9827 } 9828 return; 9829 } 9830 9831 // Generate scalar instances for all VF lanes of all UF parts, unless the 9832 // instruction is uniform inwhich case generate only the first lane for each 9833 // of the UF parts. 9834 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9835 assert((!State.VF.isScalable() || IsUniform) && 9836 "Can't scalarize a scalable vector"); 9837 for (unsigned Part = 0; Part < State.UF; ++Part) 9838 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9839 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9840 VPIteration(Part, Lane), IsPredicated, 9841 State); 9842 } 9843 9844 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9845 assert(State.Instance && "Branch on Mask works only on single instance."); 9846 9847 unsigned Part = State.Instance->Part; 9848 unsigned Lane = State.Instance->Lane.getKnownLane(); 9849 9850 Value *ConditionBit = nullptr; 9851 VPValue *BlockInMask = getMask(); 9852 if (BlockInMask) { 9853 ConditionBit = State.get(BlockInMask, Part); 9854 if (ConditionBit->getType()->isVectorTy()) 9855 ConditionBit = State.Builder.CreateExtractElement( 9856 ConditionBit, State.Builder.getInt32(Lane)); 9857 } else // Block in mask is all-one. 9858 ConditionBit = State.Builder.getTrue(); 9859 9860 // Replace the temporary unreachable terminator with a new conditional branch, 9861 // whose two destinations will be set later when they are created. 9862 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9863 assert(isa<UnreachableInst>(CurrentTerminator) && 9864 "Expected to replace unreachable terminator with conditional branch."); 9865 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9866 CondBr->setSuccessor(0, nullptr); 9867 ReplaceInstWithInst(CurrentTerminator, CondBr); 9868 } 9869 9870 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9871 assert(State.Instance && "Predicated instruction PHI works per instance."); 9872 Instruction *ScalarPredInst = 9873 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9874 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9875 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9876 assert(PredicatingBB && "Predicated block has no single predecessor."); 9877 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9878 "operand must be VPReplicateRecipe"); 9879 9880 // By current pack/unpack logic we need to generate only a single phi node: if 9881 // a vector value for the predicated instruction exists at this point it means 9882 // the instruction has vector users only, and a phi for the vector value is 9883 // needed. In this case the recipe of the predicated instruction is marked to 9884 // also do that packing, thereby "hoisting" the insert-element sequence. 9885 // Otherwise, a phi node for the scalar value is needed. 9886 unsigned Part = State.Instance->Part; 9887 if (State.hasVectorValue(getOperand(0), Part)) { 9888 Value *VectorValue = State.get(getOperand(0), Part); 9889 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9890 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9891 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9892 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9893 if (State.hasVectorValue(this, Part)) 9894 State.reset(this, VPhi, Part); 9895 else 9896 State.set(this, VPhi, Part); 9897 // NOTE: Currently we need to update the value of the operand, so the next 9898 // predicated iteration inserts its generated value in the correct vector. 9899 State.reset(getOperand(0), VPhi, Part); 9900 } else { 9901 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9902 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9903 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9904 PredicatingBB); 9905 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9906 if (State.hasScalarValue(this, *State.Instance)) 9907 State.reset(this, Phi, *State.Instance); 9908 else 9909 State.set(this, Phi, *State.Instance); 9910 // NOTE: Currently we need to update the value of the operand, so the next 9911 // predicated iteration inserts its generated value in the correct vector. 9912 State.reset(getOperand(0), Phi, *State.Instance); 9913 } 9914 } 9915 9916 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9917 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9918 9919 // Attempt to issue a wide load. 9920 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9921 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9922 9923 assert((LI || SI) && "Invalid Load/Store instruction"); 9924 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9925 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9926 9927 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9928 9929 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9930 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9931 bool CreateGatherScatter = !Consecutive; 9932 9933 auto &Builder = State.Builder; 9934 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9935 bool isMaskRequired = getMask(); 9936 if (isMaskRequired) 9937 for (unsigned Part = 0; Part < State.UF; ++Part) 9938 BlockInMaskParts[Part] = State.get(getMask(), Part); 9939 9940 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9941 // Calculate the pointer for the specific unroll-part. 9942 GetElementPtrInst *PartPtr = nullptr; 9943 9944 bool InBounds = false; 9945 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9946 InBounds = gep->isInBounds(); 9947 if (Reverse) { 9948 // If the address is consecutive but reversed, then the 9949 // wide store needs to start at the last vector element. 9950 // RunTimeVF = VScale * VF.getKnownMinValue() 9951 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9952 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9953 // NumElt = -Part * RunTimeVF 9954 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9955 // LastLane = 1 - RunTimeVF 9956 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9957 PartPtr = 9958 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9959 PartPtr->setIsInBounds(InBounds); 9960 PartPtr = cast<GetElementPtrInst>( 9961 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9962 PartPtr->setIsInBounds(InBounds); 9963 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9964 BlockInMaskParts[Part] = 9965 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9966 } else { 9967 Value *Increment = 9968 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9969 PartPtr = cast<GetElementPtrInst>( 9970 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9971 PartPtr->setIsInBounds(InBounds); 9972 } 9973 9974 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9975 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9976 }; 9977 9978 // Handle Stores: 9979 if (SI) { 9980 State.ILV->setDebugLocFromInst(SI); 9981 9982 for (unsigned Part = 0; Part < State.UF; ++Part) { 9983 Instruction *NewSI = nullptr; 9984 Value *StoredVal = State.get(StoredValue, Part); 9985 if (CreateGatherScatter) { 9986 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9987 Value *VectorGep = State.get(getAddr(), Part); 9988 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9989 MaskPart); 9990 } else { 9991 if (Reverse) { 9992 // If we store to reverse consecutive memory locations, then we need 9993 // to reverse the order of elements in the stored value. 9994 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9995 // We don't want to update the value in the map as it might be used in 9996 // another expression. So don't call resetVectorValue(StoredVal). 9997 } 9998 auto *VecPtr = 9999 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10000 if (isMaskRequired) 10001 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10002 BlockInMaskParts[Part]); 10003 else 10004 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10005 } 10006 State.ILV->addMetadata(NewSI, SI); 10007 } 10008 return; 10009 } 10010 10011 // Handle loads. 10012 assert(LI && "Must have a load instruction"); 10013 State.ILV->setDebugLocFromInst(LI); 10014 for (unsigned Part = 0; Part < State.UF; ++Part) { 10015 Value *NewLI; 10016 if (CreateGatherScatter) { 10017 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10018 Value *VectorGep = State.get(getAddr(), Part); 10019 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10020 nullptr, "wide.masked.gather"); 10021 State.ILV->addMetadata(NewLI, LI); 10022 } else { 10023 auto *VecPtr = 10024 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10025 if (isMaskRequired) 10026 NewLI = Builder.CreateMaskedLoad( 10027 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10028 PoisonValue::get(DataTy), "wide.masked.load"); 10029 else 10030 NewLI = 10031 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10032 10033 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10034 State.ILV->addMetadata(NewLI, LI); 10035 if (Reverse) 10036 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10037 } 10038 10039 State.set(this, NewLI, Part); 10040 } 10041 } 10042 10043 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10044 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10045 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10046 // for predication. 10047 static ScalarEpilogueLowering getScalarEpilogueLowering( 10048 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10049 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10050 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10051 LoopVectorizationLegality &LVL) { 10052 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10053 // don't look at hints or options, and don't request a scalar epilogue. 10054 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10055 // LoopAccessInfo (due to code dependency and not being able to reliably get 10056 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10057 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10058 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10059 // back to the old way and vectorize with versioning when forced. See D81345.) 10060 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10061 PGSOQueryType::IRPass) && 10062 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10063 return CM_ScalarEpilogueNotAllowedOptSize; 10064 10065 // 2) If set, obey the directives 10066 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10067 switch (PreferPredicateOverEpilogue) { 10068 case PreferPredicateTy::ScalarEpilogue: 10069 return CM_ScalarEpilogueAllowed; 10070 case PreferPredicateTy::PredicateElseScalarEpilogue: 10071 return CM_ScalarEpilogueNotNeededUsePredicate; 10072 case PreferPredicateTy::PredicateOrDontVectorize: 10073 return CM_ScalarEpilogueNotAllowedUsePredicate; 10074 }; 10075 } 10076 10077 // 3) If set, obey the hints 10078 switch (Hints.getPredicate()) { 10079 case LoopVectorizeHints::FK_Enabled: 10080 return CM_ScalarEpilogueNotNeededUsePredicate; 10081 case LoopVectorizeHints::FK_Disabled: 10082 return CM_ScalarEpilogueAllowed; 10083 }; 10084 10085 // 4) if the TTI hook indicates this is profitable, request predication. 10086 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10087 LVL.getLAI())) 10088 return CM_ScalarEpilogueNotNeededUsePredicate; 10089 10090 return CM_ScalarEpilogueAllowed; 10091 } 10092 10093 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10094 // If Values have been set for this Def return the one relevant for \p Part. 10095 if (hasVectorValue(Def, Part)) 10096 return Data.PerPartOutput[Def][Part]; 10097 10098 if (!hasScalarValue(Def, {Part, 0})) { 10099 Value *IRV = Def->getLiveInIRValue(); 10100 Value *B = ILV->getBroadcastInstrs(IRV); 10101 set(Def, B, Part); 10102 return B; 10103 } 10104 10105 Value *ScalarValue = get(Def, {Part, 0}); 10106 // If we aren't vectorizing, we can just copy the scalar map values over 10107 // to the vector map. 10108 if (VF.isScalar()) { 10109 set(Def, ScalarValue, Part); 10110 return ScalarValue; 10111 } 10112 10113 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10114 bool IsUniform = RepR && RepR->isUniform(); 10115 10116 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10117 // Check if there is a scalar value for the selected lane. 10118 if (!hasScalarValue(Def, {Part, LastLane})) { 10119 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10120 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10121 "unexpected recipe found to be invariant"); 10122 IsUniform = true; 10123 LastLane = 0; 10124 } 10125 10126 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10127 // Set the insert point after the last scalarized instruction or after the 10128 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10129 // will directly follow the scalar definitions. 10130 auto OldIP = Builder.saveIP(); 10131 auto NewIP = 10132 isa<PHINode>(LastInst) 10133 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10134 : std::next(BasicBlock::iterator(LastInst)); 10135 Builder.SetInsertPoint(&*NewIP); 10136 10137 // However, if we are vectorizing, we need to construct the vector values. 10138 // If the value is known to be uniform after vectorization, we can just 10139 // broadcast the scalar value corresponding to lane zero for each unroll 10140 // iteration. Otherwise, we construct the vector values using 10141 // insertelement instructions. Since the resulting vectors are stored in 10142 // State, we will only generate the insertelements once. 10143 Value *VectorValue = nullptr; 10144 if (IsUniform) { 10145 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10146 set(Def, VectorValue, Part); 10147 } else { 10148 // Initialize packing with insertelements to start from undef. 10149 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10150 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10151 set(Def, Undef, Part); 10152 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10153 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10154 VectorValue = get(Def, Part); 10155 } 10156 Builder.restoreIP(OldIP); 10157 return VectorValue; 10158 } 10159 10160 // Process the loop in the VPlan-native vectorization path. This path builds 10161 // VPlan upfront in the vectorization pipeline, which allows to apply 10162 // VPlan-to-VPlan transformations from the very beginning without modifying the 10163 // input LLVM IR. 10164 static bool processLoopInVPlanNativePath( 10165 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10166 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10167 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10168 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10169 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10170 LoopVectorizationRequirements &Requirements) { 10171 10172 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10173 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10174 return false; 10175 } 10176 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10177 Function *F = L->getHeader()->getParent(); 10178 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10179 10180 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10181 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10182 10183 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10184 &Hints, IAI); 10185 // Use the planner for outer loop vectorization. 10186 // TODO: CM is not used at this point inside the planner. Turn CM into an 10187 // optional argument if we don't need it in the future. 10188 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10189 Requirements, ORE); 10190 10191 // Get user vectorization factor. 10192 ElementCount UserVF = Hints.getWidth(); 10193 10194 CM.collectElementTypesForWidening(); 10195 10196 // Plan how to best vectorize, return the best VF and its cost. 10197 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10198 10199 // If we are stress testing VPlan builds, do not attempt to generate vector 10200 // code. Masked vector code generation support will follow soon. 10201 // Also, do not attempt to vectorize if no vector code will be produced. 10202 if (VPlanBuildStressTest || EnableVPlanPredication || 10203 VectorizationFactor::Disabled() == VF) 10204 return false; 10205 10206 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10207 10208 { 10209 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10210 F->getParent()->getDataLayout()); 10211 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10212 &CM, BFI, PSI, Checks); 10213 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10214 << L->getHeader()->getParent()->getName() << "\"\n"); 10215 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10216 } 10217 10218 // Mark the loop as already vectorized to avoid vectorizing again. 10219 Hints.setAlreadyVectorized(); 10220 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10221 return true; 10222 } 10223 10224 // Emit a remark if there are stores to floats that required a floating point 10225 // extension. If the vectorized loop was generated with floating point there 10226 // will be a performance penalty from the conversion overhead and the change in 10227 // the vector width. 10228 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10229 SmallVector<Instruction *, 4> Worklist; 10230 for (BasicBlock *BB : L->getBlocks()) { 10231 for (Instruction &Inst : *BB) { 10232 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10233 if (S->getValueOperand()->getType()->isFloatTy()) 10234 Worklist.push_back(S); 10235 } 10236 } 10237 } 10238 10239 // Traverse the floating point stores upwards searching, for floating point 10240 // conversions. 10241 SmallPtrSet<const Instruction *, 4> Visited; 10242 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10243 while (!Worklist.empty()) { 10244 auto *I = Worklist.pop_back_val(); 10245 if (!L->contains(I)) 10246 continue; 10247 if (!Visited.insert(I).second) 10248 continue; 10249 10250 // Emit a remark if the floating point store required a floating 10251 // point conversion. 10252 // TODO: More work could be done to identify the root cause such as a 10253 // constant or a function return type and point the user to it. 10254 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10255 ORE->emit([&]() { 10256 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10257 I->getDebugLoc(), L->getHeader()) 10258 << "floating point conversion changes vector width. " 10259 << "Mixed floating point precision requires an up/down " 10260 << "cast that will negatively impact performance."; 10261 }); 10262 10263 for (Use &Op : I->operands()) 10264 if (auto *OpI = dyn_cast<Instruction>(Op)) 10265 Worklist.push_back(OpI); 10266 } 10267 } 10268 10269 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10270 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10271 !EnableLoopInterleaving), 10272 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10273 !EnableLoopVectorization) {} 10274 10275 bool LoopVectorizePass::processLoop(Loop *L) { 10276 assert((EnableVPlanNativePath || L->isInnermost()) && 10277 "VPlan-native path is not enabled. Only process inner loops."); 10278 10279 #ifndef NDEBUG 10280 const std::string DebugLocStr = getDebugLocString(L); 10281 #endif /* NDEBUG */ 10282 10283 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10284 << L->getHeader()->getParent()->getName() << "\" from " 10285 << DebugLocStr << "\n"); 10286 10287 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10288 10289 LLVM_DEBUG( 10290 dbgs() << "LV: Loop hints:" 10291 << " force=" 10292 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10293 ? "disabled" 10294 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10295 ? "enabled" 10296 : "?")) 10297 << " width=" << Hints.getWidth() 10298 << " interleave=" << Hints.getInterleave() << "\n"); 10299 10300 // Function containing loop 10301 Function *F = L->getHeader()->getParent(); 10302 10303 // Looking at the diagnostic output is the only way to determine if a loop 10304 // was vectorized (other than looking at the IR or machine code), so it 10305 // is important to generate an optimization remark for each loop. Most of 10306 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10307 // generated as OptimizationRemark and OptimizationRemarkMissed are 10308 // less verbose reporting vectorized loops and unvectorized loops that may 10309 // benefit from vectorization, respectively. 10310 10311 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10312 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10313 return false; 10314 } 10315 10316 PredicatedScalarEvolution PSE(*SE, *L); 10317 10318 // Check if it is legal to vectorize the loop. 10319 LoopVectorizationRequirements Requirements; 10320 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10321 &Requirements, &Hints, DB, AC, BFI, PSI); 10322 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10323 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10324 Hints.emitRemarkWithHints(); 10325 return false; 10326 } 10327 10328 // Check the function attributes and profiles to find out if this function 10329 // should be optimized for size. 10330 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10331 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10332 10333 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10334 // here. They may require CFG and instruction level transformations before 10335 // even evaluating whether vectorization is profitable. Since we cannot modify 10336 // the incoming IR, we need to build VPlan upfront in the vectorization 10337 // pipeline. 10338 if (!L->isInnermost()) 10339 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10340 ORE, BFI, PSI, Hints, Requirements); 10341 10342 assert(L->isInnermost() && "Inner loop expected."); 10343 10344 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10345 // count by optimizing for size, to minimize overheads. 10346 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10347 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10348 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10349 << "This loop is worth vectorizing only if no scalar " 10350 << "iteration overheads are incurred."); 10351 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10352 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10353 else { 10354 LLVM_DEBUG(dbgs() << "\n"); 10355 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10356 } 10357 } 10358 10359 // Check the function attributes to see if implicit floats are allowed. 10360 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10361 // an integer loop and the vector instructions selected are purely integer 10362 // vector instructions? 10363 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10364 reportVectorizationFailure( 10365 "Can't vectorize when the NoImplicitFloat attribute is used", 10366 "loop not vectorized due to NoImplicitFloat attribute", 10367 "NoImplicitFloat", ORE, L); 10368 Hints.emitRemarkWithHints(); 10369 return false; 10370 } 10371 10372 // Check if the target supports potentially unsafe FP vectorization. 10373 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10374 // for the target we're vectorizing for, to make sure none of the 10375 // additional fp-math flags can help. 10376 if (Hints.isPotentiallyUnsafe() && 10377 TTI->isFPVectorizationPotentiallyUnsafe()) { 10378 reportVectorizationFailure( 10379 "Potentially unsafe FP op prevents vectorization", 10380 "loop not vectorized due to unsafe FP support.", 10381 "UnsafeFP", ORE, L); 10382 Hints.emitRemarkWithHints(); 10383 return false; 10384 } 10385 10386 bool AllowOrderedReductions; 10387 // If the flag is set, use that instead and override the TTI behaviour. 10388 if (ForceOrderedReductions.getNumOccurrences() > 0) 10389 AllowOrderedReductions = ForceOrderedReductions; 10390 else 10391 AllowOrderedReductions = TTI->enableOrderedReductions(); 10392 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10393 ORE->emit([&]() { 10394 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10395 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10396 ExactFPMathInst->getDebugLoc(), 10397 ExactFPMathInst->getParent()) 10398 << "loop not vectorized: cannot prove it is safe to reorder " 10399 "floating-point operations"; 10400 }); 10401 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10402 "reorder floating-point operations\n"); 10403 Hints.emitRemarkWithHints(); 10404 return false; 10405 } 10406 10407 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10408 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10409 10410 // If an override option has been passed in for interleaved accesses, use it. 10411 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10412 UseInterleaved = EnableInterleavedMemAccesses; 10413 10414 // Analyze interleaved memory accesses. 10415 if (UseInterleaved) { 10416 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10417 } 10418 10419 // Use the cost model. 10420 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10421 F, &Hints, IAI); 10422 CM.collectValuesToIgnore(); 10423 CM.collectElementTypesForWidening(); 10424 10425 // Use the planner for vectorization. 10426 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10427 Requirements, ORE); 10428 10429 // Get user vectorization factor and interleave count. 10430 ElementCount UserVF = Hints.getWidth(); 10431 unsigned UserIC = Hints.getInterleave(); 10432 10433 // Plan how to best vectorize, return the best VF and its cost. 10434 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10435 10436 VectorizationFactor VF = VectorizationFactor::Disabled(); 10437 unsigned IC = 1; 10438 10439 if (MaybeVF) { 10440 VF = *MaybeVF; 10441 // Select the interleave count. 10442 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10443 } 10444 10445 // Identify the diagnostic messages that should be produced. 10446 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10447 bool VectorizeLoop = true, InterleaveLoop = true; 10448 if (VF.Width.isScalar()) { 10449 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10450 VecDiagMsg = std::make_pair( 10451 "VectorizationNotBeneficial", 10452 "the cost-model indicates that vectorization is not beneficial"); 10453 VectorizeLoop = false; 10454 } 10455 10456 if (!MaybeVF && UserIC > 1) { 10457 // Tell the user interleaving was avoided up-front, despite being explicitly 10458 // requested. 10459 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10460 "interleaving should be avoided up front\n"); 10461 IntDiagMsg = std::make_pair( 10462 "InterleavingAvoided", 10463 "Ignoring UserIC, because interleaving was avoided up front"); 10464 InterleaveLoop = false; 10465 } else if (IC == 1 && UserIC <= 1) { 10466 // Tell the user interleaving is not beneficial. 10467 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10468 IntDiagMsg = std::make_pair( 10469 "InterleavingNotBeneficial", 10470 "the cost-model indicates that interleaving is not beneficial"); 10471 InterleaveLoop = false; 10472 if (UserIC == 1) { 10473 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10474 IntDiagMsg.second += 10475 " and is explicitly disabled or interleave count is set to 1"; 10476 } 10477 } else if (IC > 1 && UserIC == 1) { 10478 // Tell the user interleaving is beneficial, but it explicitly disabled. 10479 LLVM_DEBUG( 10480 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10481 IntDiagMsg = std::make_pair( 10482 "InterleavingBeneficialButDisabled", 10483 "the cost-model indicates that interleaving is beneficial " 10484 "but is explicitly disabled or interleave count is set to 1"); 10485 InterleaveLoop = false; 10486 } 10487 10488 // Override IC if user provided an interleave count. 10489 IC = UserIC > 0 ? UserIC : IC; 10490 10491 // Emit diagnostic messages, if any. 10492 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10493 if (!VectorizeLoop && !InterleaveLoop) { 10494 // Do not vectorize or interleaving the loop. 10495 ORE->emit([&]() { 10496 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10497 L->getStartLoc(), L->getHeader()) 10498 << VecDiagMsg.second; 10499 }); 10500 ORE->emit([&]() { 10501 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10502 L->getStartLoc(), L->getHeader()) 10503 << IntDiagMsg.second; 10504 }); 10505 return false; 10506 } else if (!VectorizeLoop && InterleaveLoop) { 10507 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10508 ORE->emit([&]() { 10509 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10510 L->getStartLoc(), L->getHeader()) 10511 << VecDiagMsg.second; 10512 }); 10513 } else if (VectorizeLoop && !InterleaveLoop) { 10514 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10515 << ") in " << DebugLocStr << '\n'); 10516 ORE->emit([&]() { 10517 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10518 L->getStartLoc(), L->getHeader()) 10519 << IntDiagMsg.second; 10520 }); 10521 } else if (VectorizeLoop && InterleaveLoop) { 10522 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10523 << ") in " << DebugLocStr << '\n'); 10524 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10525 } 10526 10527 bool DisableRuntimeUnroll = false; 10528 MDNode *OrigLoopID = L->getLoopID(); 10529 { 10530 // Optimistically generate runtime checks. Drop them if they turn out to not 10531 // be profitable. Limit the scope of Checks, so the cleanup happens 10532 // immediately after vector codegeneration is done. 10533 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10534 F->getParent()->getDataLayout()); 10535 if (!VF.Width.isScalar() || IC > 1) 10536 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10537 10538 using namespace ore; 10539 if (!VectorizeLoop) { 10540 assert(IC > 1 && "interleave count should not be 1 or 0"); 10541 // If we decided that it is not legal to vectorize the loop, then 10542 // interleave it. 10543 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10544 &CM, BFI, PSI, Checks); 10545 10546 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10547 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10548 10549 ORE->emit([&]() { 10550 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10551 L->getHeader()) 10552 << "interleaved loop (interleaved count: " 10553 << NV("InterleaveCount", IC) << ")"; 10554 }); 10555 } else { 10556 // If we decided that it is *legal* to vectorize the loop, then do it. 10557 10558 // Consider vectorizing the epilogue too if it's profitable. 10559 VectorizationFactor EpilogueVF = 10560 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10561 if (EpilogueVF.Width.isVector()) { 10562 10563 // The first pass vectorizes the main loop and creates a scalar epilogue 10564 // to be vectorized by executing the plan (potentially with a different 10565 // factor) again shortly afterwards. 10566 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10567 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10568 EPI, &LVL, &CM, BFI, PSI, Checks); 10569 10570 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10571 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10572 DT); 10573 ++LoopsVectorized; 10574 10575 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10576 formLCSSARecursively(*L, *DT, LI, SE); 10577 10578 // Second pass vectorizes the epilogue and adjusts the control flow 10579 // edges from the first pass. 10580 EPI.MainLoopVF = EPI.EpilogueVF; 10581 EPI.MainLoopUF = EPI.EpilogueUF; 10582 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10583 ORE, EPI, &LVL, &CM, BFI, PSI, 10584 Checks); 10585 10586 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10587 10588 // Ensure that the start values for any VPReductionPHIRecipes are 10589 // updated before vectorising the epilogue loop. 10590 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10591 for (VPRecipeBase &R : Header->phis()) { 10592 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10593 if (auto *Resume = MainILV.getReductionResumeValue( 10594 ReductionPhi->getRecurrenceDescriptor())) { 10595 VPValue *StartVal = new VPValue(Resume); 10596 BestEpiPlan.addExternalDef(StartVal); 10597 ReductionPhi->setOperand(0, StartVal); 10598 } 10599 } 10600 } 10601 10602 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10603 DT); 10604 ++LoopsEpilogueVectorized; 10605 10606 if (!MainILV.areSafetyChecksAdded()) 10607 DisableRuntimeUnroll = true; 10608 } else { 10609 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10610 &LVL, &CM, BFI, PSI, Checks); 10611 10612 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10613 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10614 ++LoopsVectorized; 10615 10616 // Add metadata to disable runtime unrolling a scalar loop when there 10617 // are no runtime checks about strides and memory. A scalar loop that is 10618 // rarely used is not worth unrolling. 10619 if (!LB.areSafetyChecksAdded()) 10620 DisableRuntimeUnroll = true; 10621 } 10622 // Report the vectorization decision. 10623 ORE->emit([&]() { 10624 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10625 L->getHeader()) 10626 << "vectorized loop (vectorization width: " 10627 << NV("VectorizationFactor", VF.Width) 10628 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10629 }); 10630 } 10631 10632 if (ORE->allowExtraAnalysis(LV_NAME)) 10633 checkMixedPrecision(L, ORE); 10634 } 10635 10636 Optional<MDNode *> RemainderLoopID = 10637 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10638 LLVMLoopVectorizeFollowupEpilogue}); 10639 if (RemainderLoopID.hasValue()) { 10640 L->setLoopID(RemainderLoopID.getValue()); 10641 } else { 10642 if (DisableRuntimeUnroll) 10643 AddRuntimeUnrollDisableMetaData(L); 10644 10645 // Mark the loop as already vectorized to avoid vectorizing again. 10646 Hints.setAlreadyVectorized(); 10647 } 10648 10649 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10650 return true; 10651 } 10652 10653 LoopVectorizeResult LoopVectorizePass::runImpl( 10654 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10655 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10656 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10657 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10658 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10659 SE = &SE_; 10660 LI = &LI_; 10661 TTI = &TTI_; 10662 DT = &DT_; 10663 BFI = &BFI_; 10664 TLI = TLI_; 10665 AA = &AA_; 10666 AC = &AC_; 10667 GetLAA = &GetLAA_; 10668 DB = &DB_; 10669 ORE = &ORE_; 10670 PSI = PSI_; 10671 10672 // Don't attempt if 10673 // 1. the target claims to have no vector registers, and 10674 // 2. interleaving won't help ILP. 10675 // 10676 // The second condition is necessary because, even if the target has no 10677 // vector registers, loop vectorization may still enable scalar 10678 // interleaving. 10679 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10680 TTI->getMaxInterleaveFactor(1) < 2) 10681 return LoopVectorizeResult(false, false); 10682 10683 bool Changed = false, CFGChanged = false; 10684 10685 // The vectorizer requires loops to be in simplified form. 10686 // Since simplification may add new inner loops, it has to run before the 10687 // legality and profitability checks. This means running the loop vectorizer 10688 // will simplify all loops, regardless of whether anything end up being 10689 // vectorized. 10690 for (auto &L : *LI) 10691 Changed |= CFGChanged |= 10692 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10693 10694 // Build up a worklist of inner-loops to vectorize. This is necessary as 10695 // the act of vectorizing or partially unrolling a loop creates new loops 10696 // and can invalidate iterators across the loops. 10697 SmallVector<Loop *, 8> Worklist; 10698 10699 for (Loop *L : *LI) 10700 collectSupportedLoops(*L, LI, ORE, Worklist); 10701 10702 LoopsAnalyzed += Worklist.size(); 10703 10704 // Now walk the identified inner loops. 10705 while (!Worklist.empty()) { 10706 Loop *L = Worklist.pop_back_val(); 10707 10708 // For the inner loops we actually process, form LCSSA to simplify the 10709 // transform. 10710 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10711 10712 Changed |= CFGChanged |= processLoop(L); 10713 } 10714 10715 // Process each loop nest in the function. 10716 return LoopVectorizeResult(Changed, CFGChanged); 10717 } 10718 10719 PreservedAnalyses LoopVectorizePass::run(Function &F, 10720 FunctionAnalysisManager &AM) { 10721 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10722 auto &LI = AM.getResult<LoopAnalysis>(F); 10723 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10724 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10725 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10726 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10727 auto &AA = AM.getResult<AAManager>(F); 10728 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10729 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10730 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10731 10732 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10733 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10734 [&](Loop &L) -> const LoopAccessInfo & { 10735 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10736 TLI, TTI, nullptr, nullptr, nullptr}; 10737 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10738 }; 10739 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10740 ProfileSummaryInfo *PSI = 10741 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10742 LoopVectorizeResult Result = 10743 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10744 if (!Result.MadeAnyChange) 10745 return PreservedAnalyses::all(); 10746 PreservedAnalyses PA; 10747 10748 // We currently do not preserve loopinfo/dominator analyses with outer loop 10749 // vectorization. Until this is addressed, mark these analyses as preserved 10750 // only for non-VPlan-native path. 10751 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10752 if (!EnableVPlanNativePath) { 10753 PA.preserve<LoopAnalysis>(); 10754 PA.preserve<DominatorTreeAnalysis>(); 10755 } 10756 10757 if (Result.MadeCFGChange) { 10758 // Making CFG changes likely means a loop got vectorized. Indicate that 10759 // extra simplification passes should be run. 10760 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10761 // be run if runtime checks have been added. 10762 AM.getResult<ShouldRunExtraVectorPasses>(F); 10763 PA.preserve<ShouldRunExtraVectorPasses>(); 10764 } else { 10765 PA.preserveSet<CFGAnalyses>(); 10766 } 10767 return PA; 10768 } 10769 10770 void LoopVectorizePass::printPipeline( 10771 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10772 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10773 OS, MapClassName2PassName); 10774 10775 OS << "<"; 10776 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10777 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10778 OS << ">"; 10779 } 10780