1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 cl::opt<bool> EnableStrictReductions( 335 "enable-strict-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns the type of loaded or stored value. 379 static Type *getMemInstValueType(Value *I) { 380 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 381 "Expected Load or Store instruction"); 382 if (auto *LI = dyn_cast<LoadInst>(I)) 383 return LI->getType(); 384 return cast<StoreInst>(I)->getValueOperand()->getType(); 385 } 386 387 /// A helper function that returns true if the given type is irregular. The 388 /// type is irregular if its allocated size doesn't equal the store size of an 389 /// element of the corresponding vector type. 390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 391 // Determine if an array of N elements of type Ty is "bitcast compatible" 392 // with a <N x Ty> vector. 393 // This is only true if there is no padding between the array elements. 394 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 395 } 396 397 /// A helper function that returns the reciprocal of the block probability of 398 /// predicated blocks. If we return X, we are assuming the predicated block 399 /// will execute once for every X iterations of the loop header. 400 /// 401 /// TODO: We should use actual block probability here, if available. Currently, 402 /// we always assume predicated blocks have a 50% chance of executing. 403 static unsigned getReciprocalPredBlockProb() { return 2; } 404 405 /// A helper function that returns an integer or floating-point constant with 406 /// value C. 407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 408 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 409 : ConstantFP::get(Ty, C); 410 } 411 412 /// Returns "best known" trip count for the specified loop \p L as defined by 413 /// the following procedure: 414 /// 1) Returns exact trip count if it is known. 415 /// 2) Returns expected trip count according to profile data if any. 416 /// 3) Returns upper bound estimate if it is known. 417 /// 4) Returns None if all of the above failed. 418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 419 // Check if exact trip count is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 421 return ExpectedTC; 422 423 // Check if there is an expected trip count available from profile data. 424 if (LoopVectorizeWithBlockFrequency) 425 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 426 return EstimatedTC; 427 428 // Check if upper bound estimate is known. 429 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 430 return ExpectedTC; 431 432 return None; 433 } 434 435 // Forward declare GeneratedRTChecks. 436 class GeneratedRTChecks; 437 438 namespace llvm { 439 440 /// InnerLoopVectorizer vectorizes loops which contain only one basic 441 /// block to a specified vectorization factor (VF). 442 /// This class performs the widening of scalars into vectors, or multiple 443 /// scalars. This class also implements the following features: 444 /// * It inserts an epilogue loop for handling loops that don't have iteration 445 /// counts that are known to be a multiple of the vectorization factor. 446 /// * It handles the code generation for reduction variables. 447 /// * Scalarization (implementation using scalars) of un-vectorizable 448 /// instructions. 449 /// InnerLoopVectorizer does not perform any vectorization-legality 450 /// checks, and relies on the caller to check for the different legality 451 /// aspects. The InnerLoopVectorizer relies on the 452 /// LoopVectorizationLegality class to provide information about the induction 453 /// and reduction variables that were found to a given vectorization factor. 454 class InnerLoopVectorizer { 455 public: 456 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 457 LoopInfo *LI, DominatorTree *DT, 458 const TargetLibraryInfo *TLI, 459 const TargetTransformInfo *TTI, AssumptionCache *AC, 460 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 461 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 462 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 463 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 464 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 465 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 466 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 467 PSI(PSI), RTChecks(RTChecks) { 468 // Query this against the original loop and save it here because the profile 469 // of the original loop header may change as the transformation happens. 470 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 471 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 472 } 473 474 virtual ~InnerLoopVectorizer() = default; 475 476 /// Create a new empty loop that will contain vectorized instructions later 477 /// on, while the old loop will be used as the scalar remainder. Control flow 478 /// is generated around the vectorized (and scalar epilogue) loops consisting 479 /// of various checks and bypasses. Return the pre-header block of the new 480 /// loop. 481 /// In the case of epilogue vectorization, this function is overriden to 482 /// handle the more complex control flow around the loops. 483 virtual BasicBlock *createVectorizedLoopSkeleton(); 484 485 /// Widen a single instruction within the innermost loop. 486 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 487 VPTransformState &State); 488 489 /// Widen a single call instruction within the innermost loop. 490 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 491 VPTransformState &State); 492 493 /// Widen a single select instruction within the innermost loop. 494 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 495 bool InvariantCond, VPTransformState &State); 496 497 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 498 void fixVectorizedLoop(VPTransformState &State); 499 500 // Return true if any runtime check is added. 501 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 502 503 /// A type for vectorized values in the new loop. Each value from the 504 /// original loop, when vectorized, is represented by UF vector values in the 505 /// new unrolled loop, where UF is the unroll factor. 506 using VectorParts = SmallVector<Value *, 2>; 507 508 /// Vectorize a single GetElementPtrInst based on information gathered and 509 /// decisions taken during planning. 510 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 511 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 512 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 513 514 /// Vectorize a single PHINode in a block. This method handles the induction 515 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 516 /// arbitrary length vectors. 517 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 518 VPWidenPHIRecipe *PhiR, VPTransformState &State); 519 520 /// A helper function to scalarize a single Instruction in the innermost loop. 521 /// Generates a sequence of scalar instances for each lane between \p MinLane 522 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 523 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 524 /// Instr's operands. 525 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 526 const VPIteration &Instance, bool IfPredicateInstr, 527 VPTransformState &State); 528 529 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 530 /// is provided, the integer induction variable will first be truncated to 531 /// the corresponding type. 532 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 533 VPValue *Def, VPValue *CastDef, 534 VPTransformState &State); 535 536 /// Construct the vector value of a scalarized value \p V one lane at a time. 537 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 538 VPTransformState &State); 539 540 /// Try to vectorize interleaved access group \p Group with the base address 541 /// given in \p Addr, optionally masking the vector operations if \p 542 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 543 /// values in the vectorized loop. 544 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 545 ArrayRef<VPValue *> VPDefs, 546 VPTransformState &State, VPValue *Addr, 547 ArrayRef<VPValue *> StoredValues, 548 VPValue *BlockInMask = nullptr); 549 550 /// Vectorize Load and Store instructions with the base address given in \p 551 /// Addr, optionally masking the vector operations if \p BlockInMask is 552 /// non-null. Use \p State to translate given VPValues to IR values in the 553 /// vectorized loop. 554 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 555 VPValue *Def, VPValue *Addr, 556 VPValue *StoredValue, VPValue *BlockInMask); 557 558 /// Set the debug location in the builder using the debug location in 559 /// the instruction. 560 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 561 562 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 563 void fixNonInductionPHIs(VPTransformState &State); 564 565 /// Create a broadcast instruction. This method generates a broadcast 566 /// instruction (shuffle) for loop invariant values and for the induction 567 /// value. If this is the induction variable then we extend it to N, N+1, ... 568 /// this is needed because each iteration in the loop corresponds to a SIMD 569 /// element. 570 virtual Value *getBroadcastInstrs(Value *V); 571 572 protected: 573 friend class LoopVectorizationPlanner; 574 575 /// A small list of PHINodes. 576 using PhiVector = SmallVector<PHINode *, 4>; 577 578 /// A type for scalarized values in the new loop. Each value from the 579 /// original loop, when scalarized, is represented by UF x VF scalar values 580 /// in the new unrolled loop, where UF is the unroll factor and VF is the 581 /// vectorization factor. 582 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 583 584 /// Set up the values of the IVs correctly when exiting the vector loop. 585 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 586 Value *CountRoundDown, Value *EndValue, 587 BasicBlock *MiddleBlock); 588 589 /// Create a new induction variable inside L. 590 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 591 Value *Step, Instruction *DL); 592 593 /// Handle all cross-iteration phis in the header. 594 void fixCrossIterationPHIs(VPTransformState &State); 595 596 /// Fix a first-order recurrence. This is the second phase of vectorizing 597 /// this phi node. 598 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 599 600 /// Fix a reduction cross-iteration phi. This is the second phase of 601 /// vectorizing this phi node. 602 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 603 604 /// Clear NSW/NUW flags from reduction instructions if necessary. 605 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 606 VPTransformState &State); 607 608 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 609 /// means we need to add the appropriate incoming value from the middle 610 /// block as exiting edges from the scalar epilogue loop (if present) are 611 /// already in place, and we exit the vector loop exclusively to the middle 612 /// block. 613 void fixLCSSAPHIs(VPTransformState &State); 614 615 /// Iteratively sink the scalarized operands of a predicated instruction into 616 /// the block that was created for it. 617 void sinkScalarOperands(Instruction *PredInst); 618 619 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 620 /// represented as. 621 void truncateToMinimalBitwidths(VPTransformState &State); 622 623 /// This function adds 624 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 625 /// to each vector element of Val. The sequence starts at StartIndex. 626 /// \p Opcode is relevant for FP induction variable. 627 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 628 Instruction::BinaryOps Opcode = 629 Instruction::BinaryOpsEnd); 630 631 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 632 /// variable on which to base the steps, \p Step is the size of the step, and 633 /// \p EntryVal is the value from the original loop that maps to the steps. 634 /// Note that \p EntryVal doesn't have to be an induction variable - it 635 /// can also be a truncate instruction. 636 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 637 const InductionDescriptor &ID, VPValue *Def, 638 VPValue *CastDef, VPTransformState &State); 639 640 /// Create a vector induction phi node based on an existing scalar one. \p 641 /// EntryVal is the value from the original loop that maps to the vector phi 642 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 643 /// truncate instruction, instead of widening the original IV, we widen a 644 /// version of the IV truncated to \p EntryVal's type. 645 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 646 Value *Step, Value *Start, 647 Instruction *EntryVal, VPValue *Def, 648 VPValue *CastDef, 649 VPTransformState &State); 650 651 /// Returns true if an instruction \p I should be scalarized instead of 652 /// vectorized for the chosen vectorization factor. 653 bool shouldScalarizeInstruction(Instruction *I) const; 654 655 /// Returns true if we should generate a scalar version of \p IV. 656 bool needsScalarInduction(Instruction *IV) const; 657 658 /// If there is a cast involved in the induction variable \p ID, which should 659 /// be ignored in the vectorized loop body, this function records the 660 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 661 /// cast. We had already proved that the casted Phi is equal to the uncasted 662 /// Phi in the vectorized loop (under a runtime guard), and therefore 663 /// there is no need to vectorize the cast - the same value can be used in the 664 /// vector loop for both the Phi and the cast. 665 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 666 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 667 /// 668 /// \p EntryVal is the value from the original loop that maps to the vector 669 /// phi node and is used to distinguish what is the IV currently being 670 /// processed - original one (if \p EntryVal is a phi corresponding to the 671 /// original IV) or the "newly-created" one based on the proof mentioned above 672 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 673 /// latter case \p EntryVal is a TruncInst and we must not record anything for 674 /// that IV, but it's error-prone to expect callers of this routine to care 675 /// about that, hence this explicit parameter. 676 void recordVectorLoopValueForInductionCast( 677 const InductionDescriptor &ID, const Instruction *EntryVal, 678 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 679 unsigned Part, unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. Returns the block containing the checks or 701 /// nullptr if no checks have been added. 702 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Emit bypass checks to check any memory assumptions we may have made. 705 /// Returns the block containing the checks or nullptr if no checks have been 706 /// added. 707 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 708 709 /// Compute the transformed value of Index at offset StartValue using step 710 /// StepValue. 711 /// For integer induction, returns StartValue + Index * StepValue. 712 /// For pointer induction, returns StartValue[Index * StepValue]. 713 /// FIXME: The newly created binary instructions should contain nsw/nuw 714 /// flags, which can be found from the original scalar operations. 715 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 716 const DataLayout &DL, 717 const InductionDescriptor &ID) const; 718 719 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 720 /// vector loop preheader, middle block and scalar preheader. Also 721 /// allocate a loop object for the new vector loop and return it. 722 Loop *createVectorLoopSkeleton(StringRef Prefix); 723 724 /// Create new phi nodes for the induction variables to resume iteration count 725 /// in the scalar epilogue, from where the vectorized loop left off (given by 726 /// \p VectorTripCount). 727 /// In cases where the loop skeleton is more complicated (eg. epilogue 728 /// vectorization) and the resume values can come from an additional bypass 729 /// block, the \p AdditionalBypass pair provides information about the bypass 730 /// block and the end value on the edge from bypass to this loop. 731 void createInductionResumeValues( 732 Loop *L, Value *VectorTripCount, 733 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 734 735 /// Complete the loop skeleton by adding debug MDs, creating appropriate 736 /// conditional branches in the middle block, preparing the builder and 737 /// running the verifier. Take in the vector loop \p L as argument, and return 738 /// the preheader of the completed vector loop. 739 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 740 741 /// Add additional metadata to \p To that was not present on \p Orig. 742 /// 743 /// Currently this is used to add the noalias annotations based on the 744 /// inserted memchecks. Use this for instructions that are *cloned* into the 745 /// vector loop. 746 void addNewMetadata(Instruction *To, const Instruction *Orig); 747 748 /// Add metadata from one instruction to another. 749 /// 750 /// This includes both the original MDs from \p From and additional ones (\see 751 /// addNewMetadata). Use this for *newly created* instructions in the vector 752 /// loop. 753 void addMetadata(Instruction *To, Instruction *From); 754 755 /// Similar to the previous function but it adds the metadata to a 756 /// vector of instructions. 757 void addMetadata(ArrayRef<Value *> To, Instruction *From); 758 759 /// Allow subclasses to override and print debug traces before/after vplan 760 /// execution, when trace information is requested. 761 virtual void printDebugTracesAtStart(){}; 762 virtual void printDebugTracesAtEnd(){}; 763 764 /// The original loop. 765 Loop *OrigLoop; 766 767 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 768 /// dynamic knowledge to simplify SCEV expressions and converts them to a 769 /// more usable form. 770 PredicatedScalarEvolution &PSE; 771 772 /// Loop Info. 773 LoopInfo *LI; 774 775 /// Dominator Tree. 776 DominatorTree *DT; 777 778 /// Alias Analysis. 779 AAResults *AA; 780 781 /// Target Library Info. 782 const TargetLibraryInfo *TLI; 783 784 /// Target Transform Info. 785 const TargetTransformInfo *TTI; 786 787 /// Assumption Cache. 788 AssumptionCache *AC; 789 790 /// Interface to emit optimization remarks. 791 OptimizationRemarkEmitter *ORE; 792 793 /// LoopVersioning. It's only set up (non-null) if memchecks were 794 /// used. 795 /// 796 /// This is currently only used to add no-alias metadata based on the 797 /// memchecks. The actually versioning is performed manually. 798 std::unique_ptr<LoopVersioning> LVer; 799 800 /// The vectorization SIMD factor to use. Each vector will have this many 801 /// vector elements. 802 ElementCount VF; 803 804 /// The vectorization unroll factor to use. Each scalar is vectorized to this 805 /// many different vector instructions. 806 unsigned UF; 807 808 /// The builder that we use 809 IRBuilder<> Builder; 810 811 // --- Vectorization state --- 812 813 /// The vector-loop preheader. 814 BasicBlock *LoopVectorPreHeader; 815 816 /// The scalar-loop preheader. 817 BasicBlock *LoopScalarPreHeader; 818 819 /// Middle Block between the vector and the scalar. 820 BasicBlock *LoopMiddleBlock; 821 822 /// The (unique) ExitBlock of the scalar loop. Note that 823 /// there can be multiple exiting edges reaching this block. 824 BasicBlock *LoopExitBlock; 825 826 /// The vector loop body. 827 BasicBlock *LoopVectorBody; 828 829 /// The scalar loop body. 830 BasicBlock *LoopScalarBody; 831 832 /// A list of all bypass blocks. The first block is the entry of the loop. 833 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 834 835 /// The new Induction variable which was added to the new block. 836 PHINode *Induction = nullptr; 837 838 /// The induction variable of the old basic block. 839 PHINode *OldInduction = nullptr; 840 841 /// Store instructions that were predicated. 842 SmallVector<Instruction *, 4> PredicatedInstructions; 843 844 /// Trip count of the original loop. 845 Value *TripCount = nullptr; 846 847 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 848 Value *VectorTripCount = nullptr; 849 850 /// The legality analysis. 851 LoopVectorizationLegality *Legal; 852 853 /// The profitablity analysis. 854 LoopVectorizationCostModel *Cost; 855 856 // Record whether runtime checks are added. 857 bool AddedSafetyChecks = false; 858 859 // Holds the end values for each induction variable. We save the end values 860 // so we can later fix-up the external users of the induction variables. 861 DenseMap<PHINode *, Value *> IVEndValues; 862 863 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 864 // fixed up at the end of vector code generation. 865 SmallVector<PHINode *, 8> OrigPHIsToFix; 866 867 /// BFI and PSI are used to check for profile guided size optimizations. 868 BlockFrequencyInfo *BFI; 869 ProfileSummaryInfo *PSI; 870 871 // Whether this loop should be optimized for size based on profile guided size 872 // optimizatios. 873 bool OptForSizeBasedOnProfile; 874 875 /// Structure to hold information about generated runtime checks, responsible 876 /// for cleaning the checks, if vectorization turns out unprofitable. 877 GeneratedRTChecks &RTChecks; 878 }; 879 880 class InnerLoopUnroller : public InnerLoopVectorizer { 881 public: 882 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 883 LoopInfo *LI, DominatorTree *DT, 884 const TargetLibraryInfo *TLI, 885 const TargetTransformInfo *TTI, AssumptionCache *AC, 886 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 887 LoopVectorizationLegality *LVL, 888 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 889 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 890 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 891 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 892 BFI, PSI, Check) {} 893 894 private: 895 Value *getBroadcastInstrs(Value *V) override; 896 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 897 Instruction::BinaryOps Opcode = 898 Instruction::BinaryOpsEnd) override; 899 Value *reverseVector(Value *Vec) override; 900 }; 901 902 /// Encapsulate information regarding vectorization of a loop and its epilogue. 903 /// This information is meant to be updated and used across two stages of 904 /// epilogue vectorization. 905 struct EpilogueLoopVectorizationInfo { 906 ElementCount MainLoopVF = ElementCount::getFixed(0); 907 unsigned MainLoopUF = 0; 908 ElementCount EpilogueVF = ElementCount::getFixed(0); 909 unsigned EpilogueUF = 0; 910 BasicBlock *MainLoopIterationCountCheck = nullptr; 911 BasicBlock *EpilogueIterationCountCheck = nullptr; 912 BasicBlock *SCEVSafetyCheck = nullptr; 913 BasicBlock *MemSafetyCheck = nullptr; 914 Value *TripCount = nullptr; 915 Value *VectorTripCount = nullptr; 916 917 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 918 unsigned EUF) 919 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 920 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 921 assert(EUF == 1 && 922 "A high UF for the epilogue loop is likely not beneficial."); 923 } 924 }; 925 926 /// An extension of the inner loop vectorizer that creates a skeleton for a 927 /// vectorized loop that has its epilogue (residual) also vectorized. 928 /// The idea is to run the vplan on a given loop twice, firstly to setup the 929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 930 /// from the first step and vectorize the epilogue. This is achieved by 931 /// deriving two concrete strategy classes from this base class and invoking 932 /// them in succession from the loop vectorizer planner. 933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 934 public: 935 InnerLoopAndEpilogueVectorizer( 936 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 937 DominatorTree *DT, const TargetLibraryInfo *TLI, 938 const TargetTransformInfo *TTI, AssumptionCache *AC, 939 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 940 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 941 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 942 GeneratedRTChecks &Checks) 943 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 944 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 945 Checks), 946 EPI(EPI) {} 947 948 // Override this function to handle the more complex control flow around the 949 // three loops. 950 BasicBlock *createVectorizedLoopSkeleton() final override { 951 return createEpilogueVectorizedLoopSkeleton(); 952 } 953 954 /// The interface for creating a vectorized skeleton using one of two 955 /// different strategies, each corresponding to one execution of the vplan 956 /// as described above. 957 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 958 959 /// Holds and updates state information required to vectorize the main loop 960 /// and its epilogue in two separate passes. This setup helps us avoid 961 /// regenerating and recomputing runtime safety checks. It also helps us to 962 /// shorten the iteration-count-check path length for the cases where the 963 /// iteration count of the loop is so small that the main vector loop is 964 /// completely skipped. 965 EpilogueLoopVectorizationInfo &EPI; 966 }; 967 968 /// A specialized derived class of inner loop vectorizer that performs 969 /// vectorization of *main* loops in the process of vectorizing loops and their 970 /// epilogues. 971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 972 public: 973 EpilogueVectorizerMainLoop( 974 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 975 DominatorTree *DT, const TargetLibraryInfo *TLI, 976 const TargetTransformInfo *TTI, AssumptionCache *AC, 977 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 978 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 979 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 980 GeneratedRTChecks &Check) 981 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 982 EPI, LVL, CM, BFI, PSI, Check) {} 983 /// Implements the interface for creating a vectorized skeleton using the 984 /// *main loop* strategy (ie the first pass of vplan execution). 985 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 986 987 protected: 988 /// Emits an iteration count bypass check once for the main loop (when \p 989 /// ForEpilogue is false) and once for the epilogue loop (when \p 990 /// ForEpilogue is true). 991 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 992 bool ForEpilogue); 993 void printDebugTracesAtStart() override; 994 void printDebugTracesAtEnd() override; 995 }; 996 997 // A specialized derived class of inner loop vectorizer that performs 998 // vectorization of *epilogue* loops in the process of vectorizing loops and 999 // their epilogues. 1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1001 public: 1002 EpilogueVectorizerEpilogueLoop( 1003 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1004 DominatorTree *DT, const TargetLibraryInfo *TLI, 1005 const TargetTransformInfo *TTI, AssumptionCache *AC, 1006 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1007 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1008 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1009 GeneratedRTChecks &Checks) 1010 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1011 EPI, LVL, CM, BFI, PSI, Checks) {} 1012 /// Implements the interface for creating a vectorized skeleton using the 1013 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1014 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1015 1016 protected: 1017 /// Emits an iteration count bypass check after the main vector loop has 1018 /// finished to see if there are any iterations left to execute by either 1019 /// the vector epilogue or the scalar epilogue. 1020 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1021 BasicBlock *Bypass, 1022 BasicBlock *Insert); 1023 void printDebugTracesAtStart() override; 1024 void printDebugTracesAtEnd() override; 1025 }; 1026 } // end namespace llvm 1027 1028 /// Look for a meaningful debug location on the instruction or it's 1029 /// operands. 1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1031 if (!I) 1032 return I; 1033 1034 DebugLoc Empty; 1035 if (I->getDebugLoc() != Empty) 1036 return I; 1037 1038 for (Use &Op : I->operands()) { 1039 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1040 if (OpInst->getDebugLoc() != Empty) 1041 return OpInst; 1042 } 1043 1044 return I; 1045 } 1046 1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1048 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1049 const DILocation *DIL = Inst->getDebugLoc(); 1050 1051 // When a FSDiscriminator is enabled, we don't need to add the multiply 1052 // factors to the discriminators. 1053 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1054 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1055 // FIXME: For scalable vectors, assume vscale=1. 1056 auto NewDIL = 1057 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1058 if (NewDIL) 1059 B.SetCurrentDebugLocation(NewDIL.getValue()); 1060 else 1061 LLVM_DEBUG(dbgs() 1062 << "Failed to create new discriminator: " 1063 << DIL->getFilename() << " Line: " << DIL->getLine()); 1064 } else 1065 B.SetCurrentDebugLocation(DIL); 1066 } else 1067 B.SetCurrentDebugLocation(DebugLoc()); 1068 } 1069 1070 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1071 /// is passed, the message relates to that particular instruction. 1072 #ifndef NDEBUG 1073 static void debugVectorizationMessage(const StringRef Prefix, 1074 const StringRef DebugMsg, 1075 Instruction *I) { 1076 dbgs() << "LV: " << Prefix << DebugMsg; 1077 if (I != nullptr) 1078 dbgs() << " " << *I; 1079 else 1080 dbgs() << '.'; 1081 dbgs() << '\n'; 1082 } 1083 #endif 1084 1085 /// Create an analysis remark that explains why vectorization failed 1086 /// 1087 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1088 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1089 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1090 /// the location of the remark. \return the remark object that can be 1091 /// streamed to. 1092 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1093 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1094 Value *CodeRegion = TheLoop->getHeader(); 1095 DebugLoc DL = TheLoop->getStartLoc(); 1096 1097 if (I) { 1098 CodeRegion = I->getParent(); 1099 // If there is no debug location attached to the instruction, revert back to 1100 // using the loop's. 1101 if (I->getDebugLoc()) 1102 DL = I->getDebugLoc(); 1103 } 1104 1105 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1106 } 1107 1108 /// Return a value for Step multiplied by VF. 1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1110 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1111 Constant *StepVal = ConstantInt::get( 1112 Step->getType(), 1113 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1114 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1115 } 1116 1117 namespace llvm { 1118 1119 /// Return the runtime value for VF. 1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1121 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1122 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1123 } 1124 1125 void reportVectorizationFailure(const StringRef DebugMsg, 1126 const StringRef OREMsg, const StringRef ORETag, 1127 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1128 Instruction *I) { 1129 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1130 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1131 ORE->emit( 1132 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1133 << "loop not vectorized: " << OREMsg); 1134 } 1135 1136 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1137 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1138 Instruction *I) { 1139 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1140 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1141 ORE->emit( 1142 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1143 << Msg); 1144 } 1145 1146 } // end namespace llvm 1147 1148 #ifndef NDEBUG 1149 /// \return string containing a file name and a line # for the given loop. 1150 static std::string getDebugLocString(const Loop *L) { 1151 std::string Result; 1152 if (L) { 1153 raw_string_ostream OS(Result); 1154 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1155 LoopDbgLoc.print(OS); 1156 else 1157 // Just print the module name. 1158 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1159 OS.flush(); 1160 } 1161 return Result; 1162 } 1163 #endif 1164 1165 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1166 const Instruction *Orig) { 1167 // If the loop was versioned with memchecks, add the corresponding no-alias 1168 // metadata. 1169 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1170 LVer->annotateInstWithNoAlias(To, Orig); 1171 } 1172 1173 void InnerLoopVectorizer::addMetadata(Instruction *To, 1174 Instruction *From) { 1175 propagateMetadata(To, From); 1176 addNewMetadata(To, From); 1177 } 1178 1179 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1180 Instruction *From) { 1181 for (Value *V : To) { 1182 if (Instruction *I = dyn_cast<Instruction>(V)) 1183 addMetadata(I, From); 1184 } 1185 } 1186 1187 namespace llvm { 1188 1189 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1190 // lowered. 1191 enum ScalarEpilogueLowering { 1192 1193 // The default: allowing scalar epilogues. 1194 CM_ScalarEpilogueAllowed, 1195 1196 // Vectorization with OptForSize: don't allow epilogues. 1197 CM_ScalarEpilogueNotAllowedOptSize, 1198 1199 // A special case of vectorisation with OptForSize: loops with a very small 1200 // trip count are considered for vectorization under OptForSize, thereby 1201 // making sure the cost of their loop body is dominant, free of runtime 1202 // guards and scalar iteration overheads. 1203 CM_ScalarEpilogueNotAllowedLowTripLoop, 1204 1205 // Loop hint predicate indicating an epilogue is undesired. 1206 CM_ScalarEpilogueNotNeededUsePredicate, 1207 1208 // Directive indicating we must either tail fold or not vectorize 1209 CM_ScalarEpilogueNotAllowedUsePredicate 1210 }; 1211 1212 /// LoopVectorizationCostModel - estimates the expected speedups due to 1213 /// vectorization. 1214 /// In many cases vectorization is not profitable. This can happen because of 1215 /// a number of reasons. In this class we mainly attempt to predict the 1216 /// expected speedup/slowdowns due to the supported instruction set. We use the 1217 /// TargetTransformInfo to query the different backends for the cost of 1218 /// different operations. 1219 class LoopVectorizationCostModel { 1220 public: 1221 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1222 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1223 LoopVectorizationLegality *Legal, 1224 const TargetTransformInfo &TTI, 1225 const TargetLibraryInfo *TLI, DemandedBits *DB, 1226 AssumptionCache *AC, 1227 OptimizationRemarkEmitter *ORE, const Function *F, 1228 const LoopVectorizeHints *Hints, 1229 InterleavedAccessInfo &IAI) 1230 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1231 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1232 Hints(Hints), InterleaveInfo(IAI) {} 1233 1234 /// \return An upper bound for the vectorization factors (both fixed and 1235 /// scalable). If the factors are 0, vectorization and interleaving should be 1236 /// avoided up front. 1237 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1238 1239 /// \return True if runtime checks are required for vectorization, and false 1240 /// otherwise. 1241 bool runtimeChecksRequired(); 1242 1243 /// \return The most profitable vectorization factor and the cost of that VF. 1244 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1245 /// then this vectorization factor will be selected if vectorization is 1246 /// possible. 1247 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1248 VectorizationFactor 1249 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1250 const LoopVectorizationPlanner &LVP); 1251 1252 /// Setup cost-based decisions for user vectorization factor. 1253 void selectUserVectorizationFactor(ElementCount UserVF) { 1254 collectUniformsAndScalars(UserVF); 1255 collectInstsToScalarize(UserVF); 1256 } 1257 1258 /// \return The size (in bits) of the smallest and widest types in the code 1259 /// that needs to be vectorized. We ignore values that remain scalar such as 1260 /// 64 bit loop indices. 1261 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1262 1263 /// \return The desired interleave count. 1264 /// If interleave count has been specified by metadata it will be returned. 1265 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1266 /// are the selected vectorization factor and the cost of the selected VF. 1267 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1268 1269 /// Memory access instruction may be vectorized in more than one way. 1270 /// Form of instruction after vectorization depends on cost. 1271 /// This function takes cost-based decisions for Load/Store instructions 1272 /// and collects them in a map. This decisions map is used for building 1273 /// the lists of loop-uniform and loop-scalar instructions. 1274 /// The calculated cost is saved with widening decision in order to 1275 /// avoid redundant calculations. 1276 void setCostBasedWideningDecision(ElementCount VF); 1277 1278 /// A struct that represents some properties of the register usage 1279 /// of a loop. 1280 struct RegisterUsage { 1281 /// Holds the number of loop invariant values that are used in the loop. 1282 /// The key is ClassID of target-provided register class. 1283 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1284 /// Holds the maximum number of concurrent live intervals in the loop. 1285 /// The key is ClassID of target-provided register class. 1286 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1287 }; 1288 1289 /// \return Returns information about the register usages of the loop for the 1290 /// given vectorization factors. 1291 SmallVector<RegisterUsage, 8> 1292 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1293 1294 /// Collect values we want to ignore in the cost model. 1295 void collectValuesToIgnore(); 1296 1297 /// Split reductions into those that happen in the loop, and those that happen 1298 /// outside. In loop reductions are collected into InLoopReductionChains. 1299 void collectInLoopReductions(); 1300 1301 /// \returns The smallest bitwidth each instruction can be represented with. 1302 /// The vector equivalents of these instructions should be truncated to this 1303 /// type. 1304 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1305 return MinBWs; 1306 } 1307 1308 /// \returns True if it is more profitable to scalarize instruction \p I for 1309 /// vectorization factor \p VF. 1310 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1311 assert(VF.isVector() && 1312 "Profitable to scalarize relevant only for VF > 1."); 1313 1314 // Cost model is not run in the VPlan-native path - return conservative 1315 // result until this changes. 1316 if (EnableVPlanNativePath) 1317 return false; 1318 1319 auto Scalars = InstsToScalarize.find(VF); 1320 assert(Scalars != InstsToScalarize.end() && 1321 "VF not yet analyzed for scalarization profitability"); 1322 return Scalars->second.find(I) != Scalars->second.end(); 1323 } 1324 1325 /// Returns true if \p I is known to be uniform after vectorization. 1326 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1327 if (VF.isScalar()) 1328 return true; 1329 1330 // Cost model is not run in the VPlan-native path - return conservative 1331 // result until this changes. 1332 if (EnableVPlanNativePath) 1333 return false; 1334 1335 auto UniformsPerVF = Uniforms.find(VF); 1336 assert(UniformsPerVF != Uniforms.end() && 1337 "VF not yet analyzed for uniformity"); 1338 return UniformsPerVF->second.count(I); 1339 } 1340 1341 /// Returns true if \p I is known to be scalar after vectorization. 1342 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1343 if (VF.isScalar()) 1344 return true; 1345 1346 // Cost model is not run in the VPlan-native path - return conservative 1347 // result until this changes. 1348 if (EnableVPlanNativePath) 1349 return false; 1350 1351 auto ScalarsPerVF = Scalars.find(VF); 1352 assert(ScalarsPerVF != Scalars.end() && 1353 "Scalar values are not calculated for VF"); 1354 return ScalarsPerVF->second.count(I); 1355 } 1356 1357 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1358 /// for vectorization factor \p VF. 1359 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1360 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1361 !isProfitableToScalarize(I, VF) && 1362 !isScalarAfterVectorization(I, VF); 1363 } 1364 1365 /// Decision that was taken during cost calculation for memory instruction. 1366 enum InstWidening { 1367 CM_Unknown, 1368 CM_Widen, // For consecutive accesses with stride +1. 1369 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1370 CM_Interleave, 1371 CM_GatherScatter, 1372 CM_Scalarize 1373 }; 1374 1375 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1376 /// instruction \p I and vector width \p VF. 1377 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1378 InstructionCost Cost) { 1379 assert(VF.isVector() && "Expected VF >=2"); 1380 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1381 } 1382 1383 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1384 /// interleaving group \p Grp and vector width \p VF. 1385 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1386 ElementCount VF, InstWidening W, 1387 InstructionCost Cost) { 1388 assert(VF.isVector() && "Expected VF >=2"); 1389 /// Broadcast this decicion to all instructions inside the group. 1390 /// But the cost will be assigned to one instruction only. 1391 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1392 if (auto *I = Grp->getMember(i)) { 1393 if (Grp->getInsertPos() == I) 1394 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1395 else 1396 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1397 } 1398 } 1399 } 1400 1401 /// Return the cost model decision for the given instruction \p I and vector 1402 /// width \p VF. Return CM_Unknown if this instruction did not pass 1403 /// through the cost modeling. 1404 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1405 assert(VF.isVector() && "Expected VF to be a vector VF"); 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return CM_GatherScatter; 1410 1411 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1412 auto Itr = WideningDecisions.find(InstOnVF); 1413 if (Itr == WideningDecisions.end()) 1414 return CM_Unknown; 1415 return Itr->second.first; 1416 } 1417 1418 /// Return the vectorization cost for the given instruction \p I and vector 1419 /// width \p VF. 1420 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1421 assert(VF.isVector() && "Expected VF >=2"); 1422 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1423 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1424 "The cost is not calculated"); 1425 return WideningDecisions[InstOnVF].second; 1426 } 1427 1428 /// Return True if instruction \p I is an optimizable truncate whose operand 1429 /// is an induction variable. Such a truncate will be removed by adding a new 1430 /// induction variable with the destination type. 1431 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1432 // If the instruction is not a truncate, return false. 1433 auto *Trunc = dyn_cast<TruncInst>(I); 1434 if (!Trunc) 1435 return false; 1436 1437 // Get the source and destination types of the truncate. 1438 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1439 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1440 1441 // If the truncate is free for the given types, return false. Replacing a 1442 // free truncate with an induction variable would add an induction variable 1443 // update instruction to each iteration of the loop. We exclude from this 1444 // check the primary induction variable since it will need an update 1445 // instruction regardless. 1446 Value *Op = Trunc->getOperand(0); 1447 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1448 return false; 1449 1450 // If the truncated value is not an induction variable, return false. 1451 return Legal->isInductionPhi(Op); 1452 } 1453 1454 /// Collects the instructions to scalarize for each predicated instruction in 1455 /// the loop. 1456 void collectInstsToScalarize(ElementCount VF); 1457 1458 /// Collect Uniform and Scalar values for the given \p VF. 1459 /// The sets depend on CM decision for Load/Store instructions 1460 /// that may be vectorized as interleave, gather-scatter or scalarized. 1461 void collectUniformsAndScalars(ElementCount VF) { 1462 // Do the analysis once. 1463 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1464 return; 1465 setCostBasedWideningDecision(VF); 1466 collectLoopUniforms(VF); 1467 collectLoopScalars(VF); 1468 } 1469 1470 /// Returns true if the target machine supports masked store operation 1471 /// for the given \p DataType and kind of access to \p Ptr. 1472 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1473 return Legal->isConsecutivePtr(Ptr) && 1474 TTI.isLegalMaskedStore(DataType, Alignment); 1475 } 1476 1477 /// Returns true if the target machine supports masked load operation 1478 /// for the given \p DataType and kind of access to \p Ptr. 1479 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1480 return Legal->isConsecutivePtr(Ptr) && 1481 TTI.isLegalMaskedLoad(DataType, Alignment); 1482 } 1483 1484 /// Returns true if the target machine supports masked scatter operation 1485 /// for the given \p DataType. 1486 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const { 1487 return TTI.isLegalMaskedScatter(DataType, Alignment); 1488 } 1489 1490 /// Returns true if the target machine supports masked gather operation 1491 /// for the given \p DataType. 1492 bool isLegalMaskedGather(Type *DataType, Align Alignment) const { 1493 return TTI.isLegalMaskedGather(DataType, Alignment); 1494 } 1495 1496 /// Returns true if the target machine can represent \p V as a masked gather 1497 /// or scatter operation. 1498 bool isLegalGatherOrScatter(Value *V) { 1499 bool LI = isa<LoadInst>(V); 1500 bool SI = isa<StoreInst>(V); 1501 if (!LI && !SI) 1502 return false; 1503 auto *Ty = getMemInstValueType(V); 1504 Align Align = getLoadStoreAlignment(V); 1505 return (LI && isLegalMaskedGather(Ty, Align)) || 1506 (SI && isLegalMaskedScatter(Ty, Align)); 1507 } 1508 1509 /// Returns true if the target machine supports all of the reduction 1510 /// variables found for the given VF. 1511 bool canVectorizeReductions(ElementCount VF) { 1512 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1513 RecurrenceDescriptor RdxDesc = Reduction.second; 1514 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1515 })); 1516 } 1517 1518 /// Returns true if \p I is an instruction that will be scalarized with 1519 /// predication. Such instructions include conditional stores and 1520 /// instructions that may divide by zero. 1521 /// If a non-zero VF has been calculated, we check if I will be scalarized 1522 /// predication for that VF. 1523 bool isScalarWithPredication(Instruction *I) const; 1524 1525 // Returns true if \p I is an instruction that will be predicated either 1526 // through scalar predication or masked load/store or masked gather/scatter. 1527 // Superset of instructions that return true for isScalarWithPredication. 1528 bool isPredicatedInst(Instruction *I) { 1529 if (!blockNeedsPredication(I->getParent())) 1530 return false; 1531 // Loads and stores that need some form of masked operation are predicated 1532 // instructions. 1533 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1534 return Legal->isMaskRequired(I); 1535 return isScalarWithPredication(I); 1536 } 1537 1538 /// Returns true if \p I is a memory instruction with consecutive memory 1539 /// access that can be widened. 1540 bool 1541 memoryInstructionCanBeWidened(Instruction *I, 1542 ElementCount VF = ElementCount::getFixed(1)); 1543 1544 /// Returns true if \p I is a memory instruction in an interleaved-group 1545 /// of memory accesses that can be vectorized with wide vector loads/stores 1546 /// and shuffles. 1547 bool 1548 interleavedAccessCanBeWidened(Instruction *I, 1549 ElementCount VF = ElementCount::getFixed(1)); 1550 1551 /// Check if \p Instr belongs to any interleaved access group. 1552 bool isAccessInterleaved(Instruction *Instr) { 1553 return InterleaveInfo.isInterleaved(Instr); 1554 } 1555 1556 /// Get the interleaved access group that \p Instr belongs to. 1557 const InterleaveGroup<Instruction> * 1558 getInterleavedAccessGroup(Instruction *Instr) { 1559 return InterleaveInfo.getInterleaveGroup(Instr); 1560 } 1561 1562 /// Returns true if we're required to use a scalar epilogue for at least 1563 /// the final iteration of the original loop. 1564 bool requiresScalarEpilogue() const { 1565 if (!isScalarEpilogueAllowed()) 1566 return false; 1567 // If we might exit from anywhere but the latch, must run the exiting 1568 // iteration in scalar form. 1569 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1570 return true; 1571 return InterleaveInfo.requiresScalarEpilogue(); 1572 } 1573 1574 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1575 /// loop hint annotation. 1576 bool isScalarEpilogueAllowed() const { 1577 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1578 } 1579 1580 /// Returns true if all loop blocks should be masked to fold tail loop. 1581 bool foldTailByMasking() const { return FoldTailByMasking; } 1582 1583 bool blockNeedsPredication(BasicBlock *BB) const { 1584 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1585 } 1586 1587 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1588 /// nodes to the chain of instructions representing the reductions. Uses a 1589 /// MapVector to ensure deterministic iteration order. 1590 using ReductionChainMap = 1591 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1592 1593 /// Return the chain of instructions representing an inloop reduction. 1594 const ReductionChainMap &getInLoopReductionChains() const { 1595 return InLoopReductionChains; 1596 } 1597 1598 /// Returns true if the Phi is part of an inloop reduction. 1599 bool isInLoopReduction(PHINode *Phi) const { 1600 return InLoopReductionChains.count(Phi); 1601 } 1602 1603 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1604 /// with factor VF. Return the cost of the instruction, including 1605 /// scalarization overhead if it's needed. 1606 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1607 1608 /// Estimate cost of a call instruction CI if it were vectorized with factor 1609 /// VF. Return the cost of the instruction, including scalarization overhead 1610 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1611 /// scalarized - 1612 /// i.e. either vector version isn't available, or is too expensive. 1613 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1614 bool &NeedToScalarize) const; 1615 1616 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1617 /// that of B. 1618 bool isMoreProfitable(const VectorizationFactor &A, 1619 const VectorizationFactor &B) const; 1620 1621 /// Invalidates decisions already taken by the cost model. 1622 void invalidateCostModelingDecisions() { 1623 WideningDecisions.clear(); 1624 Uniforms.clear(); 1625 Scalars.clear(); 1626 } 1627 1628 private: 1629 unsigned NumPredStores = 0; 1630 1631 /// \return An upper bound for the vectorization factors for both 1632 /// fixed and scalable vectorization, where the minimum-known number of 1633 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1634 /// disabled or unsupported, then the scalable part will be equal to 1635 /// ElementCount::getScalable(0). 1636 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1637 ElementCount UserVF); 1638 1639 /// \return the maximized element count based on the targets vector 1640 /// registers and the loop trip-count, but limited to a maximum safe VF. 1641 /// This is a helper function of computeFeasibleMaxVF. 1642 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1643 /// issue that occurred on one of the buildbots which cannot be reproduced 1644 /// without having access to the properietary compiler (see comments on 1645 /// D98509). The issue is currently under investigation and this workaround 1646 /// will be removed as soon as possible. 1647 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1648 unsigned SmallestType, 1649 unsigned WidestType, 1650 const ElementCount &MaxSafeVF); 1651 1652 /// \return the maximum legal scalable VF, based on the safe max number 1653 /// of elements. 1654 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1655 1656 /// The vectorization cost is a combination of the cost itself and a boolean 1657 /// indicating whether any of the contributing operations will actually 1658 /// operate on 1659 /// vector values after type legalization in the backend. If this latter value 1660 /// is 1661 /// false, then all operations will be scalarized (i.e. no vectorization has 1662 /// actually taken place). 1663 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1664 1665 /// Returns the expected execution cost. The unit of the cost does 1666 /// not matter because we use the 'cost' units to compare different 1667 /// vector widths. The cost that is returned is *not* normalized by 1668 /// the factor width. 1669 VectorizationCostTy expectedCost(ElementCount VF); 1670 1671 /// Returns the execution time cost of an instruction for a given vector 1672 /// width. Vector width of one means scalar. 1673 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1674 1675 /// The cost-computation logic from getInstructionCost which provides 1676 /// the vector type as an output parameter. 1677 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1678 Type *&VectorTy); 1679 1680 /// Return the cost of instructions in an inloop reduction pattern, if I is 1681 /// part of that pattern. 1682 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1683 Type *VectorTy, 1684 TTI::TargetCostKind CostKind); 1685 1686 /// Calculate vectorization cost of memory instruction \p I. 1687 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1688 1689 /// The cost computation for scalarized memory instruction. 1690 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1691 1692 /// The cost computation for interleaving group of memory instructions. 1693 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for Gather/Scatter instruction. 1696 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for widening instruction \p I with consecutive 1699 /// memory access. 1700 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1703 /// Load: scalar load + broadcast. 1704 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1705 /// element) 1706 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1707 1708 /// Estimate the overhead of scalarizing an instruction. This is a 1709 /// convenience wrapper for the type-based getScalarizationOverhead API. 1710 InstructionCost getScalarizationOverhead(Instruction *I, 1711 ElementCount VF) const; 1712 1713 /// Returns whether the instruction is a load or store and will be a emitted 1714 /// as a vector operation. 1715 bool isConsecutiveLoadOrStore(Instruction *I); 1716 1717 /// Returns true if an artificially high cost for emulated masked memrefs 1718 /// should be used. 1719 bool useEmulatedMaskMemRefHack(Instruction *I); 1720 1721 /// Map of scalar integer values to the smallest bitwidth they can be legally 1722 /// represented as. The vector equivalents of these values should be truncated 1723 /// to this type. 1724 MapVector<Instruction *, uint64_t> MinBWs; 1725 1726 /// A type representing the costs for instructions if they were to be 1727 /// scalarized rather than vectorized. The entries are Instruction-Cost 1728 /// pairs. 1729 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1730 1731 /// A set containing all BasicBlocks that are known to present after 1732 /// vectorization as a predicated block. 1733 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1734 1735 /// Records whether it is allowed to have the original scalar loop execute at 1736 /// least once. This may be needed as a fallback loop in case runtime 1737 /// aliasing/dependence checks fail, or to handle the tail/remainder 1738 /// iterations when the trip count is unknown or doesn't divide by the VF, 1739 /// or as a peel-loop to handle gaps in interleave-groups. 1740 /// Under optsize and when the trip count is very small we don't allow any 1741 /// iterations to execute in the scalar loop. 1742 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1743 1744 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1745 bool FoldTailByMasking = false; 1746 1747 /// A map holding scalar costs for different vectorization factors. The 1748 /// presence of a cost for an instruction in the mapping indicates that the 1749 /// instruction will be scalarized when vectorizing with the associated 1750 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1751 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1752 1753 /// Holds the instructions known to be uniform after vectorization. 1754 /// The data is collected per VF. 1755 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1756 1757 /// Holds the instructions known to be scalar after vectorization. 1758 /// The data is collected per VF. 1759 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1760 1761 /// Holds the instructions (address computations) that are forced to be 1762 /// scalarized. 1763 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1764 1765 /// PHINodes of the reductions that should be expanded in-loop along with 1766 /// their associated chains of reduction operations, in program order from top 1767 /// (PHI) to bottom 1768 ReductionChainMap InLoopReductionChains; 1769 1770 /// A Map of inloop reduction operations and their immediate chain operand. 1771 /// FIXME: This can be removed once reductions can be costed correctly in 1772 /// vplan. This was added to allow quick lookup to the inloop operations, 1773 /// without having to loop through InLoopReductionChains. 1774 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1775 1776 /// Returns the expected difference in cost from scalarizing the expression 1777 /// feeding a predicated instruction \p PredInst. The instructions to 1778 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1779 /// non-negative return value implies the expression will be scalarized. 1780 /// Currently, only single-use chains are considered for scalarization. 1781 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1782 ElementCount VF); 1783 1784 /// Collect the instructions that are uniform after vectorization. An 1785 /// instruction is uniform if we represent it with a single scalar value in 1786 /// the vectorized loop corresponding to each vector iteration. Examples of 1787 /// uniform instructions include pointer operands of consecutive or 1788 /// interleaved memory accesses. Note that although uniformity implies an 1789 /// instruction will be scalar, the reverse is not true. In general, a 1790 /// scalarized instruction will be represented by VF scalar values in the 1791 /// vectorized loop, each corresponding to an iteration of the original 1792 /// scalar loop. 1793 void collectLoopUniforms(ElementCount VF); 1794 1795 /// Collect the instructions that are scalar after vectorization. An 1796 /// instruction is scalar if it is known to be uniform or will be scalarized 1797 /// during vectorization. Non-uniform scalarized instructions will be 1798 /// represented by VF values in the vectorized loop, each corresponding to an 1799 /// iteration of the original scalar loop. 1800 void collectLoopScalars(ElementCount VF); 1801 1802 /// Keeps cost model vectorization decision and cost for instructions. 1803 /// Right now it is used for memory instructions only. 1804 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1805 std::pair<InstWidening, InstructionCost>>; 1806 1807 DecisionList WideningDecisions; 1808 1809 /// Returns true if \p V is expected to be vectorized and it needs to be 1810 /// extracted. 1811 bool needsExtract(Value *V, ElementCount VF) const { 1812 Instruction *I = dyn_cast<Instruction>(V); 1813 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1814 TheLoop->isLoopInvariant(I)) 1815 return false; 1816 1817 // Assume we can vectorize V (and hence we need extraction) if the 1818 // scalars are not computed yet. This can happen, because it is called 1819 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1820 // the scalars are collected. That should be a safe assumption in most 1821 // cases, because we check if the operands have vectorizable types 1822 // beforehand in LoopVectorizationLegality. 1823 return Scalars.find(VF) == Scalars.end() || 1824 !isScalarAfterVectorization(I, VF); 1825 }; 1826 1827 /// Returns a range containing only operands needing to be extracted. 1828 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1829 ElementCount VF) const { 1830 return SmallVector<Value *, 4>(make_filter_range( 1831 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1832 } 1833 1834 /// Determines if we have the infrastructure to vectorize loop \p L and its 1835 /// epilogue, assuming the main loop is vectorized by \p VF. 1836 bool isCandidateForEpilogueVectorization(const Loop &L, 1837 const ElementCount VF) const; 1838 1839 /// Returns true if epilogue vectorization is considered profitable, and 1840 /// false otherwise. 1841 /// \p VF is the vectorization factor chosen for the original loop. 1842 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1843 1844 public: 1845 /// The loop that we evaluate. 1846 Loop *TheLoop; 1847 1848 /// Predicated scalar evolution analysis. 1849 PredicatedScalarEvolution &PSE; 1850 1851 /// Loop Info analysis. 1852 LoopInfo *LI; 1853 1854 /// Vectorization legality. 1855 LoopVectorizationLegality *Legal; 1856 1857 /// Vector target information. 1858 const TargetTransformInfo &TTI; 1859 1860 /// Target Library Info. 1861 const TargetLibraryInfo *TLI; 1862 1863 /// Demanded bits analysis. 1864 DemandedBits *DB; 1865 1866 /// Assumption cache. 1867 AssumptionCache *AC; 1868 1869 /// Interface to emit optimization remarks. 1870 OptimizationRemarkEmitter *ORE; 1871 1872 const Function *TheFunction; 1873 1874 /// Loop Vectorize Hint. 1875 const LoopVectorizeHints *Hints; 1876 1877 /// The interleave access information contains groups of interleaved accesses 1878 /// with the same stride and close to each other. 1879 InterleavedAccessInfo &InterleaveInfo; 1880 1881 /// Values to ignore in the cost model. 1882 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1883 1884 /// Values to ignore in the cost model when VF > 1. 1885 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1886 1887 /// Profitable vector factors. 1888 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1889 }; 1890 } // end namespace llvm 1891 1892 /// Helper struct to manage generating runtime checks for vectorization. 1893 /// 1894 /// The runtime checks are created up-front in temporary blocks to allow better 1895 /// estimating the cost and un-linked from the existing IR. After deciding to 1896 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1897 /// temporary blocks are completely removed. 1898 class GeneratedRTChecks { 1899 /// Basic block which contains the generated SCEV checks, if any. 1900 BasicBlock *SCEVCheckBlock = nullptr; 1901 1902 /// The value representing the result of the generated SCEV checks. If it is 1903 /// nullptr, either no SCEV checks have been generated or they have been used. 1904 Value *SCEVCheckCond = nullptr; 1905 1906 /// Basic block which contains the generated memory runtime checks, if any. 1907 BasicBlock *MemCheckBlock = nullptr; 1908 1909 /// The value representing the result of the generated memory runtime checks. 1910 /// If it is nullptr, either no memory runtime checks have been generated or 1911 /// they have been used. 1912 Instruction *MemRuntimeCheckCond = nullptr; 1913 1914 DominatorTree *DT; 1915 LoopInfo *LI; 1916 1917 SCEVExpander SCEVExp; 1918 SCEVExpander MemCheckExp; 1919 1920 public: 1921 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1922 const DataLayout &DL) 1923 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1924 MemCheckExp(SE, DL, "scev.check") {} 1925 1926 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1927 /// accurately estimate the cost of the runtime checks. The blocks are 1928 /// un-linked from the IR and is added back during vector code generation. If 1929 /// there is no vector code generation, the check blocks are removed 1930 /// completely. 1931 void Create(Loop *L, const LoopAccessInfo &LAI, 1932 const SCEVUnionPredicate &UnionPred) { 1933 1934 BasicBlock *LoopHeader = L->getHeader(); 1935 BasicBlock *Preheader = L->getLoopPreheader(); 1936 1937 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1938 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1939 // may be used by SCEVExpander. The blocks will be un-linked from their 1940 // predecessors and removed from LI & DT at the end of the function. 1941 if (!UnionPred.isAlwaysTrue()) { 1942 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1943 nullptr, "vector.scevcheck"); 1944 1945 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1946 &UnionPred, SCEVCheckBlock->getTerminator()); 1947 } 1948 1949 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1950 if (RtPtrChecking.Need) { 1951 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1952 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1953 "vector.memcheck"); 1954 1955 std::tie(std::ignore, MemRuntimeCheckCond) = 1956 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1957 RtPtrChecking.getChecks(), MemCheckExp); 1958 assert(MemRuntimeCheckCond && 1959 "no RT checks generated although RtPtrChecking " 1960 "claimed checks are required"); 1961 } 1962 1963 if (!MemCheckBlock && !SCEVCheckBlock) 1964 return; 1965 1966 // Unhook the temporary block with the checks, update various places 1967 // accordingly. 1968 if (SCEVCheckBlock) 1969 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1970 if (MemCheckBlock) 1971 MemCheckBlock->replaceAllUsesWith(Preheader); 1972 1973 if (SCEVCheckBlock) { 1974 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1975 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1976 Preheader->getTerminator()->eraseFromParent(); 1977 } 1978 if (MemCheckBlock) { 1979 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1980 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1981 Preheader->getTerminator()->eraseFromParent(); 1982 } 1983 1984 DT->changeImmediateDominator(LoopHeader, Preheader); 1985 if (MemCheckBlock) { 1986 DT->eraseNode(MemCheckBlock); 1987 LI->removeBlock(MemCheckBlock); 1988 } 1989 if (SCEVCheckBlock) { 1990 DT->eraseNode(SCEVCheckBlock); 1991 LI->removeBlock(SCEVCheckBlock); 1992 } 1993 } 1994 1995 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1996 /// unused. 1997 ~GeneratedRTChecks() { 1998 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1999 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2000 if (!SCEVCheckCond) 2001 SCEVCleaner.markResultUsed(); 2002 2003 if (!MemRuntimeCheckCond) 2004 MemCheckCleaner.markResultUsed(); 2005 2006 if (MemRuntimeCheckCond) { 2007 auto &SE = *MemCheckExp.getSE(); 2008 // Memory runtime check generation creates compares that use expanded 2009 // values. Remove them before running the SCEVExpanderCleaners. 2010 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2011 if (MemCheckExp.isInsertedInstruction(&I)) 2012 continue; 2013 SE.forgetValue(&I); 2014 SE.eraseValueFromMap(&I); 2015 I.eraseFromParent(); 2016 } 2017 } 2018 MemCheckCleaner.cleanup(); 2019 SCEVCleaner.cleanup(); 2020 2021 if (SCEVCheckCond) 2022 SCEVCheckBlock->eraseFromParent(); 2023 if (MemRuntimeCheckCond) 2024 MemCheckBlock->eraseFromParent(); 2025 } 2026 2027 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2028 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2029 /// depending on the generated condition. 2030 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2031 BasicBlock *LoopVectorPreHeader, 2032 BasicBlock *LoopExitBlock) { 2033 if (!SCEVCheckCond) 2034 return nullptr; 2035 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2036 if (C->isZero()) 2037 return nullptr; 2038 2039 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2040 2041 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2042 // Create new preheader for vector loop. 2043 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2044 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2045 2046 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2047 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2048 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2049 SCEVCheckBlock); 2050 2051 DT->addNewBlock(SCEVCheckBlock, Pred); 2052 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2053 2054 ReplaceInstWithInst( 2055 SCEVCheckBlock->getTerminator(), 2056 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2057 // Mark the check as used, to prevent it from being removed during cleanup. 2058 SCEVCheckCond = nullptr; 2059 return SCEVCheckBlock; 2060 } 2061 2062 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2063 /// the branches to branch to the vector preheader or \p Bypass, depending on 2064 /// the generated condition. 2065 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2066 BasicBlock *LoopVectorPreHeader) { 2067 // Check if we generated code that checks in runtime if arrays overlap. 2068 if (!MemRuntimeCheckCond) 2069 return nullptr; 2070 2071 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2072 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2073 MemCheckBlock); 2074 2075 DT->addNewBlock(MemCheckBlock, Pred); 2076 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2077 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2078 2079 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2080 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2081 2082 ReplaceInstWithInst( 2083 MemCheckBlock->getTerminator(), 2084 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2085 MemCheckBlock->getTerminator()->setDebugLoc( 2086 Pred->getTerminator()->getDebugLoc()); 2087 2088 // Mark the check as used, to prevent it from being removed during cleanup. 2089 MemRuntimeCheckCond = nullptr; 2090 return MemCheckBlock; 2091 } 2092 }; 2093 2094 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2095 // vectorization. The loop needs to be annotated with #pragma omp simd 2096 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2097 // vector length information is not provided, vectorization is not considered 2098 // explicit. Interleave hints are not allowed either. These limitations will be 2099 // relaxed in the future. 2100 // Please, note that we are currently forced to abuse the pragma 'clang 2101 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2102 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2103 // provides *explicit vectorization hints* (LV can bypass legal checks and 2104 // assume that vectorization is legal). However, both hints are implemented 2105 // using the same metadata (llvm.loop.vectorize, processed by 2106 // LoopVectorizeHints). This will be fixed in the future when the native IR 2107 // representation for pragma 'omp simd' is introduced. 2108 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2109 OptimizationRemarkEmitter *ORE) { 2110 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2111 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2112 2113 // Only outer loops with an explicit vectorization hint are supported. 2114 // Unannotated outer loops are ignored. 2115 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2116 return false; 2117 2118 Function *Fn = OuterLp->getHeader()->getParent(); 2119 if (!Hints.allowVectorization(Fn, OuterLp, 2120 true /*VectorizeOnlyWhenForced*/)) { 2121 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2122 return false; 2123 } 2124 2125 if (Hints.getInterleave() > 1) { 2126 // TODO: Interleave support is future work. 2127 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2128 "outer loops.\n"); 2129 Hints.emitRemarkWithHints(); 2130 return false; 2131 } 2132 2133 return true; 2134 } 2135 2136 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2137 OptimizationRemarkEmitter *ORE, 2138 SmallVectorImpl<Loop *> &V) { 2139 // Collect inner loops and outer loops without irreducible control flow. For 2140 // now, only collect outer loops that have explicit vectorization hints. If we 2141 // are stress testing the VPlan H-CFG construction, we collect the outermost 2142 // loop of every loop nest. 2143 if (L.isInnermost() || VPlanBuildStressTest || 2144 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2145 LoopBlocksRPO RPOT(&L); 2146 RPOT.perform(LI); 2147 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2148 V.push_back(&L); 2149 // TODO: Collect inner loops inside marked outer loops in case 2150 // vectorization fails for the outer loop. Do not invoke 2151 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2152 // already known to be reducible. We can use an inherited attribute for 2153 // that. 2154 return; 2155 } 2156 } 2157 for (Loop *InnerL : L) 2158 collectSupportedLoops(*InnerL, LI, ORE, V); 2159 } 2160 2161 namespace { 2162 2163 /// The LoopVectorize Pass. 2164 struct LoopVectorize : public FunctionPass { 2165 /// Pass identification, replacement for typeid 2166 static char ID; 2167 2168 LoopVectorizePass Impl; 2169 2170 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2171 bool VectorizeOnlyWhenForced = false) 2172 : FunctionPass(ID), 2173 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2174 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2175 } 2176 2177 bool runOnFunction(Function &F) override { 2178 if (skipFunction(F)) 2179 return false; 2180 2181 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2182 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2183 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2184 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2185 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2186 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2187 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2188 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2189 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2190 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2191 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2192 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2193 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2194 2195 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2196 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2197 2198 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2199 GetLAA, *ORE, PSI).MadeAnyChange; 2200 } 2201 2202 void getAnalysisUsage(AnalysisUsage &AU) const override { 2203 AU.addRequired<AssumptionCacheTracker>(); 2204 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2205 AU.addRequired<DominatorTreeWrapperPass>(); 2206 AU.addRequired<LoopInfoWrapperPass>(); 2207 AU.addRequired<ScalarEvolutionWrapperPass>(); 2208 AU.addRequired<TargetTransformInfoWrapperPass>(); 2209 AU.addRequired<AAResultsWrapperPass>(); 2210 AU.addRequired<LoopAccessLegacyAnalysis>(); 2211 AU.addRequired<DemandedBitsWrapperPass>(); 2212 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2213 AU.addRequired<InjectTLIMappingsLegacy>(); 2214 2215 // We currently do not preserve loopinfo/dominator analyses with outer loop 2216 // vectorization. Until this is addressed, mark these analyses as preserved 2217 // only for non-VPlan-native path. 2218 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2219 if (!EnableVPlanNativePath) { 2220 AU.addPreserved<LoopInfoWrapperPass>(); 2221 AU.addPreserved<DominatorTreeWrapperPass>(); 2222 } 2223 2224 AU.addPreserved<BasicAAWrapperPass>(); 2225 AU.addPreserved<GlobalsAAWrapperPass>(); 2226 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2227 } 2228 }; 2229 2230 } // end anonymous namespace 2231 2232 //===----------------------------------------------------------------------===// 2233 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2234 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2235 //===----------------------------------------------------------------------===// 2236 2237 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2238 // We need to place the broadcast of invariant variables outside the loop, 2239 // but only if it's proven safe to do so. Else, broadcast will be inside 2240 // vector loop body. 2241 Instruction *Instr = dyn_cast<Instruction>(V); 2242 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2243 (!Instr || 2244 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2245 // Place the code for broadcasting invariant variables in the new preheader. 2246 IRBuilder<>::InsertPointGuard Guard(Builder); 2247 if (SafeToHoist) 2248 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2249 2250 // Broadcast the scalar into all locations in the vector. 2251 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2252 2253 return Shuf; 2254 } 2255 2256 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2257 const InductionDescriptor &II, Value *Step, Value *Start, 2258 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2259 VPTransformState &State) { 2260 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2261 "Expected either an induction phi-node or a truncate of it!"); 2262 2263 // Construct the initial value of the vector IV in the vector loop preheader 2264 auto CurrIP = Builder.saveIP(); 2265 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2266 if (isa<TruncInst>(EntryVal)) { 2267 assert(Start->getType()->isIntegerTy() && 2268 "Truncation requires an integer type"); 2269 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2270 Step = Builder.CreateTrunc(Step, TruncType); 2271 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2272 } 2273 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2274 Value *SteppedStart = 2275 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2276 2277 // We create vector phi nodes for both integer and floating-point induction 2278 // variables. Here, we determine the kind of arithmetic we will perform. 2279 Instruction::BinaryOps AddOp; 2280 Instruction::BinaryOps MulOp; 2281 if (Step->getType()->isIntegerTy()) { 2282 AddOp = Instruction::Add; 2283 MulOp = Instruction::Mul; 2284 } else { 2285 AddOp = II.getInductionOpcode(); 2286 MulOp = Instruction::FMul; 2287 } 2288 2289 // Multiply the vectorization factor by the step using integer or 2290 // floating-point arithmetic as appropriate. 2291 Type *StepType = Step->getType(); 2292 if (Step->getType()->isFloatingPointTy()) 2293 StepType = IntegerType::get(StepType->getContext(), 2294 StepType->getScalarSizeInBits()); 2295 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2296 if (Step->getType()->isFloatingPointTy()) 2297 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2298 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2299 2300 // Create a vector splat to use in the induction update. 2301 // 2302 // FIXME: If the step is non-constant, we create the vector splat with 2303 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2304 // handle a constant vector splat. 2305 Value *SplatVF = isa<Constant>(Mul) 2306 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2307 : Builder.CreateVectorSplat(VF, Mul); 2308 Builder.restoreIP(CurrIP); 2309 2310 // We may need to add the step a number of times, depending on the unroll 2311 // factor. The last of those goes into the PHI. 2312 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2313 &*LoopVectorBody->getFirstInsertionPt()); 2314 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2315 Instruction *LastInduction = VecInd; 2316 for (unsigned Part = 0; Part < UF; ++Part) { 2317 State.set(Def, LastInduction, Part); 2318 2319 if (isa<TruncInst>(EntryVal)) 2320 addMetadata(LastInduction, EntryVal); 2321 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2322 State, Part); 2323 2324 LastInduction = cast<Instruction>( 2325 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2326 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2327 } 2328 2329 // Move the last step to the end of the latch block. This ensures consistent 2330 // placement of all induction updates. 2331 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2332 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2333 auto *ICmp = cast<Instruction>(Br->getCondition()); 2334 LastInduction->moveBefore(ICmp); 2335 LastInduction->setName("vec.ind.next"); 2336 2337 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2338 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2339 } 2340 2341 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2342 return Cost->isScalarAfterVectorization(I, VF) || 2343 Cost->isProfitableToScalarize(I, VF); 2344 } 2345 2346 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2347 if (shouldScalarizeInstruction(IV)) 2348 return true; 2349 auto isScalarInst = [&](User *U) -> bool { 2350 auto *I = cast<Instruction>(U); 2351 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2352 }; 2353 return llvm::any_of(IV->users(), isScalarInst); 2354 } 2355 2356 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2357 const InductionDescriptor &ID, const Instruction *EntryVal, 2358 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2359 unsigned Part, unsigned Lane) { 2360 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2361 "Expected either an induction phi-node or a truncate of it!"); 2362 2363 // This induction variable is not the phi from the original loop but the 2364 // newly-created IV based on the proof that casted Phi is equal to the 2365 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2366 // re-uses the same InductionDescriptor that original IV uses but we don't 2367 // have to do any recording in this case - that is done when original IV is 2368 // processed. 2369 if (isa<TruncInst>(EntryVal)) 2370 return; 2371 2372 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2373 if (Casts.empty()) 2374 return; 2375 // Only the first Cast instruction in the Casts vector is of interest. 2376 // The rest of the Casts (if exist) have no uses outside the 2377 // induction update chain itself. 2378 if (Lane < UINT_MAX) 2379 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2380 else 2381 State.set(CastDef, VectorLoopVal, Part); 2382 } 2383 2384 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2385 TruncInst *Trunc, VPValue *Def, 2386 VPValue *CastDef, 2387 VPTransformState &State) { 2388 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2389 "Primary induction variable must have an integer type"); 2390 2391 auto II = Legal->getInductionVars().find(IV); 2392 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2393 2394 auto ID = II->second; 2395 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2396 2397 // The value from the original loop to which we are mapping the new induction 2398 // variable. 2399 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2400 2401 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2402 2403 // Generate code for the induction step. Note that induction steps are 2404 // required to be loop-invariant 2405 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2406 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2407 "Induction step should be loop invariant"); 2408 if (PSE.getSE()->isSCEVable(IV->getType())) { 2409 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2410 return Exp.expandCodeFor(Step, Step->getType(), 2411 LoopVectorPreHeader->getTerminator()); 2412 } 2413 return cast<SCEVUnknown>(Step)->getValue(); 2414 }; 2415 2416 // The scalar value to broadcast. This is derived from the canonical 2417 // induction variable. If a truncation type is given, truncate the canonical 2418 // induction variable and step. Otherwise, derive these values from the 2419 // induction descriptor. 2420 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2421 Value *ScalarIV = Induction; 2422 if (IV != OldInduction) { 2423 ScalarIV = IV->getType()->isIntegerTy() 2424 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2425 : Builder.CreateCast(Instruction::SIToFP, Induction, 2426 IV->getType()); 2427 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2428 ScalarIV->setName("offset.idx"); 2429 } 2430 if (Trunc) { 2431 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2432 assert(Step->getType()->isIntegerTy() && 2433 "Truncation requires an integer step"); 2434 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2435 Step = Builder.CreateTrunc(Step, TruncType); 2436 } 2437 return ScalarIV; 2438 }; 2439 2440 // Create the vector values from the scalar IV, in the absence of creating a 2441 // vector IV. 2442 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2443 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2444 for (unsigned Part = 0; Part < UF; ++Part) { 2445 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2446 Value *EntryPart = 2447 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2448 ID.getInductionOpcode()); 2449 State.set(Def, EntryPart, Part); 2450 if (Trunc) 2451 addMetadata(EntryPart, Trunc); 2452 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2453 State, Part); 2454 } 2455 }; 2456 2457 // Fast-math-flags propagate from the original induction instruction. 2458 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2459 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2460 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2461 2462 // Now do the actual transformations, and start with creating the step value. 2463 Value *Step = CreateStepValue(ID.getStep()); 2464 if (VF.isZero() || VF.isScalar()) { 2465 Value *ScalarIV = CreateScalarIV(Step); 2466 CreateSplatIV(ScalarIV, Step); 2467 return; 2468 } 2469 2470 // Determine if we want a scalar version of the induction variable. This is 2471 // true if the induction variable itself is not widened, or if it has at 2472 // least one user in the loop that is not widened. 2473 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2474 if (!NeedsScalarIV) { 2475 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2476 State); 2477 return; 2478 } 2479 2480 // Try to create a new independent vector induction variable. If we can't 2481 // create the phi node, we will splat the scalar induction variable in each 2482 // loop iteration. 2483 if (!shouldScalarizeInstruction(EntryVal)) { 2484 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2485 State); 2486 Value *ScalarIV = CreateScalarIV(Step); 2487 // Create scalar steps that can be used by instructions we will later 2488 // scalarize. Note that the addition of the scalar steps will not increase 2489 // the number of instructions in the loop in the common case prior to 2490 // InstCombine. We will be trading one vector extract for each scalar step. 2491 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2492 return; 2493 } 2494 2495 // All IV users are scalar instructions, so only emit a scalar IV, not a 2496 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2497 // predicate used by the masked loads/stores. 2498 Value *ScalarIV = CreateScalarIV(Step); 2499 if (!Cost->isScalarEpilogueAllowed()) 2500 CreateSplatIV(ScalarIV, Step); 2501 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2502 } 2503 2504 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2505 Instruction::BinaryOps BinOp) { 2506 // Create and check the types. 2507 auto *ValVTy = cast<VectorType>(Val->getType()); 2508 ElementCount VLen = ValVTy->getElementCount(); 2509 2510 Type *STy = Val->getType()->getScalarType(); 2511 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2512 "Induction Step must be an integer or FP"); 2513 assert(Step->getType() == STy && "Step has wrong type"); 2514 2515 SmallVector<Constant *, 8> Indices; 2516 2517 // Create a vector of consecutive numbers from zero to VF. 2518 VectorType *InitVecValVTy = ValVTy; 2519 Type *InitVecValSTy = STy; 2520 if (STy->isFloatingPointTy()) { 2521 InitVecValSTy = 2522 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2523 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2524 } 2525 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2526 2527 // Add on StartIdx 2528 Value *StartIdxSplat = Builder.CreateVectorSplat( 2529 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2530 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2531 2532 if (STy->isIntegerTy()) { 2533 Step = Builder.CreateVectorSplat(VLen, Step); 2534 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2535 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2536 // which can be found from the original scalar operations. 2537 Step = Builder.CreateMul(InitVec, Step); 2538 return Builder.CreateAdd(Val, Step, "induction"); 2539 } 2540 2541 // Floating point induction. 2542 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2543 "Binary Opcode should be specified for FP induction"); 2544 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2545 Step = Builder.CreateVectorSplat(VLen, Step); 2546 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2547 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2548 } 2549 2550 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2551 Instruction *EntryVal, 2552 const InductionDescriptor &ID, 2553 VPValue *Def, VPValue *CastDef, 2554 VPTransformState &State) { 2555 // We shouldn't have to build scalar steps if we aren't vectorizing. 2556 assert(VF.isVector() && "VF should be greater than one"); 2557 // Get the value type and ensure it and the step have the same integer type. 2558 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2559 assert(ScalarIVTy == Step->getType() && 2560 "Val and Step should have the same type"); 2561 2562 // We build scalar steps for both integer and floating-point induction 2563 // variables. Here, we determine the kind of arithmetic we will perform. 2564 Instruction::BinaryOps AddOp; 2565 Instruction::BinaryOps MulOp; 2566 if (ScalarIVTy->isIntegerTy()) { 2567 AddOp = Instruction::Add; 2568 MulOp = Instruction::Mul; 2569 } else { 2570 AddOp = ID.getInductionOpcode(); 2571 MulOp = Instruction::FMul; 2572 } 2573 2574 // Determine the number of scalars we need to generate for each unroll 2575 // iteration. If EntryVal is uniform, we only need to generate the first 2576 // lane. Otherwise, we generate all VF values. 2577 bool IsUniform = 2578 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2579 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2580 // Compute the scalar steps and save the results in State. 2581 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2582 ScalarIVTy->getScalarSizeInBits()); 2583 Type *VecIVTy = nullptr; 2584 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2585 if (!IsUniform && VF.isScalable()) { 2586 VecIVTy = VectorType::get(ScalarIVTy, VF); 2587 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2588 SplatStep = Builder.CreateVectorSplat(VF, Step); 2589 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2590 } 2591 2592 for (unsigned Part = 0; Part < UF; ++Part) { 2593 Value *StartIdx0 = 2594 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2595 2596 if (!IsUniform && VF.isScalable()) { 2597 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2598 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2599 if (ScalarIVTy->isFloatingPointTy()) 2600 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2601 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2602 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2603 State.set(Def, Add, Part); 2604 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2605 Part); 2606 // It's useful to record the lane values too for the known minimum number 2607 // of elements so we do those below. This improves the code quality when 2608 // trying to extract the first element, for example. 2609 } 2610 2611 if (ScalarIVTy->isFloatingPointTy()) 2612 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2613 2614 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2615 Value *StartIdx = Builder.CreateBinOp( 2616 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2617 // The step returned by `createStepForVF` is a runtime-evaluated value 2618 // when VF is scalable. Otherwise, it should be folded into a Constant. 2619 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2620 "Expected StartIdx to be folded to a constant when VF is not " 2621 "scalable"); 2622 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2623 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2624 State.set(Def, Add, VPIteration(Part, Lane)); 2625 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2626 Part, Lane); 2627 } 2628 } 2629 } 2630 2631 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2632 const VPIteration &Instance, 2633 VPTransformState &State) { 2634 Value *ScalarInst = State.get(Def, Instance); 2635 Value *VectorValue = State.get(Def, Instance.Part); 2636 VectorValue = Builder.CreateInsertElement( 2637 VectorValue, ScalarInst, 2638 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2639 State.set(Def, VectorValue, Instance.Part); 2640 } 2641 2642 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2643 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2644 return Builder.CreateVectorReverse(Vec, "reverse"); 2645 } 2646 2647 // Return whether we allow using masked interleave-groups (for dealing with 2648 // strided loads/stores that reside in predicated blocks, or for dealing 2649 // with gaps). 2650 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2651 // If an override option has been passed in for interleaved accesses, use it. 2652 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2653 return EnableMaskedInterleavedMemAccesses; 2654 2655 return TTI.enableMaskedInterleavedAccessVectorization(); 2656 } 2657 2658 // Try to vectorize the interleave group that \p Instr belongs to. 2659 // 2660 // E.g. Translate following interleaved load group (factor = 3): 2661 // for (i = 0; i < N; i+=3) { 2662 // R = Pic[i]; // Member of index 0 2663 // G = Pic[i+1]; // Member of index 1 2664 // B = Pic[i+2]; // Member of index 2 2665 // ... // do something to R, G, B 2666 // } 2667 // To: 2668 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2669 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2670 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2671 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2672 // 2673 // Or translate following interleaved store group (factor = 3): 2674 // for (i = 0; i < N; i+=3) { 2675 // ... do something to R, G, B 2676 // Pic[i] = R; // Member of index 0 2677 // Pic[i+1] = G; // Member of index 1 2678 // Pic[i+2] = B; // Member of index 2 2679 // } 2680 // To: 2681 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2682 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2683 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2684 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2685 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2686 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2687 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2688 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2689 VPValue *BlockInMask) { 2690 Instruction *Instr = Group->getInsertPos(); 2691 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2692 2693 // Prepare for the vector type of the interleaved load/store. 2694 Type *ScalarTy = getMemInstValueType(Instr); 2695 unsigned InterleaveFactor = Group->getFactor(); 2696 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2697 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2698 2699 // Prepare for the new pointers. 2700 SmallVector<Value *, 2> AddrParts; 2701 unsigned Index = Group->getIndex(Instr); 2702 2703 // TODO: extend the masked interleaved-group support to reversed access. 2704 assert((!BlockInMask || !Group->isReverse()) && 2705 "Reversed masked interleave-group not supported."); 2706 2707 // If the group is reverse, adjust the index to refer to the last vector lane 2708 // instead of the first. We adjust the index from the first vector lane, 2709 // rather than directly getting the pointer for lane VF - 1, because the 2710 // pointer operand of the interleaved access is supposed to be uniform. For 2711 // uniform instructions, we're only required to generate a value for the 2712 // first vector lane in each unroll iteration. 2713 if (Group->isReverse()) 2714 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2715 2716 for (unsigned Part = 0; Part < UF; Part++) { 2717 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2718 setDebugLocFromInst(Builder, AddrPart); 2719 2720 // Notice current instruction could be any index. Need to adjust the address 2721 // to the member of index 0. 2722 // 2723 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2724 // b = A[i]; // Member of index 0 2725 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2726 // 2727 // E.g. A[i+1] = a; // Member of index 1 2728 // A[i] = b; // Member of index 0 2729 // A[i+2] = c; // Member of index 2 (Current instruction) 2730 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2731 2732 bool InBounds = false; 2733 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2734 InBounds = gep->isInBounds(); 2735 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2736 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2737 2738 // Cast to the vector pointer type. 2739 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2740 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2741 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2742 } 2743 2744 setDebugLocFromInst(Builder, Instr); 2745 Value *PoisonVec = PoisonValue::get(VecTy); 2746 2747 Value *MaskForGaps = nullptr; 2748 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2749 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2750 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2751 } 2752 2753 // Vectorize the interleaved load group. 2754 if (isa<LoadInst>(Instr)) { 2755 // For each unroll part, create a wide load for the group. 2756 SmallVector<Value *, 2> NewLoads; 2757 for (unsigned Part = 0; Part < UF; Part++) { 2758 Instruction *NewLoad; 2759 if (BlockInMask || MaskForGaps) { 2760 assert(useMaskedInterleavedAccesses(*TTI) && 2761 "masked interleaved groups are not allowed."); 2762 Value *GroupMask = MaskForGaps; 2763 if (BlockInMask) { 2764 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2765 Value *ShuffledMask = Builder.CreateShuffleVector( 2766 BlockInMaskPart, 2767 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2768 "interleaved.mask"); 2769 GroupMask = MaskForGaps 2770 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2771 MaskForGaps) 2772 : ShuffledMask; 2773 } 2774 NewLoad = 2775 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2776 GroupMask, PoisonVec, "wide.masked.vec"); 2777 } 2778 else 2779 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2780 Group->getAlign(), "wide.vec"); 2781 Group->addMetadata(NewLoad); 2782 NewLoads.push_back(NewLoad); 2783 } 2784 2785 // For each member in the group, shuffle out the appropriate data from the 2786 // wide loads. 2787 unsigned J = 0; 2788 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2789 Instruction *Member = Group->getMember(I); 2790 2791 // Skip the gaps in the group. 2792 if (!Member) 2793 continue; 2794 2795 auto StrideMask = 2796 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2797 for (unsigned Part = 0; Part < UF; Part++) { 2798 Value *StridedVec = Builder.CreateShuffleVector( 2799 NewLoads[Part], StrideMask, "strided.vec"); 2800 2801 // If this member has different type, cast the result type. 2802 if (Member->getType() != ScalarTy) { 2803 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2804 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2805 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2806 } 2807 2808 if (Group->isReverse()) 2809 StridedVec = reverseVector(StridedVec); 2810 2811 State.set(VPDefs[J], StridedVec, Part); 2812 } 2813 ++J; 2814 } 2815 return; 2816 } 2817 2818 // The sub vector type for current instruction. 2819 auto *SubVT = VectorType::get(ScalarTy, VF); 2820 2821 // Vectorize the interleaved store group. 2822 for (unsigned Part = 0; Part < UF; Part++) { 2823 // Collect the stored vector from each member. 2824 SmallVector<Value *, 4> StoredVecs; 2825 for (unsigned i = 0; i < InterleaveFactor; i++) { 2826 // Interleaved store group doesn't allow a gap, so each index has a member 2827 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2828 2829 Value *StoredVec = State.get(StoredValues[i], Part); 2830 2831 if (Group->isReverse()) 2832 StoredVec = reverseVector(StoredVec); 2833 2834 // If this member has different type, cast it to a unified type. 2835 2836 if (StoredVec->getType() != SubVT) 2837 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2838 2839 StoredVecs.push_back(StoredVec); 2840 } 2841 2842 // Concatenate all vectors into a wide vector. 2843 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2844 2845 // Interleave the elements in the wide vector. 2846 Value *IVec = Builder.CreateShuffleVector( 2847 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2848 "interleaved.vec"); 2849 2850 Instruction *NewStoreInstr; 2851 if (BlockInMask) { 2852 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2853 Value *ShuffledMask = Builder.CreateShuffleVector( 2854 BlockInMaskPart, 2855 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2856 "interleaved.mask"); 2857 NewStoreInstr = Builder.CreateMaskedStore( 2858 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2859 } 2860 else 2861 NewStoreInstr = 2862 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2863 2864 Group->addMetadata(NewStoreInstr); 2865 } 2866 } 2867 2868 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2869 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2870 VPValue *StoredValue, VPValue *BlockInMask) { 2871 // Attempt to issue a wide load. 2872 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2873 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2874 2875 assert((LI || SI) && "Invalid Load/Store instruction"); 2876 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2877 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2878 2879 LoopVectorizationCostModel::InstWidening Decision = 2880 Cost->getWideningDecision(Instr, VF); 2881 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2882 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2883 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2884 "CM decision is not to widen the memory instruction"); 2885 2886 Type *ScalarDataTy = getMemInstValueType(Instr); 2887 2888 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2889 const Align Alignment = getLoadStoreAlignment(Instr); 2890 2891 // Determine if the pointer operand of the access is either consecutive or 2892 // reverse consecutive. 2893 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2894 bool ConsecutiveStride = 2895 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2896 bool CreateGatherScatter = 2897 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2898 2899 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2900 // gather/scatter. Otherwise Decision should have been to Scalarize. 2901 assert((ConsecutiveStride || CreateGatherScatter) && 2902 "The instruction should be scalarized"); 2903 (void)ConsecutiveStride; 2904 2905 VectorParts BlockInMaskParts(UF); 2906 bool isMaskRequired = BlockInMask; 2907 if (isMaskRequired) 2908 for (unsigned Part = 0; Part < UF; ++Part) 2909 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2910 2911 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2912 // Calculate the pointer for the specific unroll-part. 2913 GetElementPtrInst *PartPtr = nullptr; 2914 2915 bool InBounds = false; 2916 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2917 InBounds = gep->isInBounds(); 2918 if (Reverse) { 2919 // If the address is consecutive but reversed, then the 2920 // wide store needs to start at the last vector element. 2921 // RunTimeVF = VScale * VF.getKnownMinValue() 2922 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2923 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2924 // NumElt = -Part * RunTimeVF 2925 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2926 // LastLane = 1 - RunTimeVF 2927 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2928 PartPtr = 2929 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2930 PartPtr->setIsInBounds(InBounds); 2931 PartPtr = cast<GetElementPtrInst>( 2932 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2933 PartPtr->setIsInBounds(InBounds); 2934 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2935 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2936 } else { 2937 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2938 PartPtr = cast<GetElementPtrInst>( 2939 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2940 PartPtr->setIsInBounds(InBounds); 2941 } 2942 2943 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2944 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2945 }; 2946 2947 // Handle Stores: 2948 if (SI) { 2949 setDebugLocFromInst(Builder, SI); 2950 2951 for (unsigned Part = 0; Part < UF; ++Part) { 2952 Instruction *NewSI = nullptr; 2953 Value *StoredVal = State.get(StoredValue, Part); 2954 if (CreateGatherScatter) { 2955 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2956 Value *VectorGep = State.get(Addr, Part); 2957 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2958 MaskPart); 2959 } else { 2960 if (Reverse) { 2961 // If we store to reverse consecutive memory locations, then we need 2962 // to reverse the order of elements in the stored value. 2963 StoredVal = reverseVector(StoredVal); 2964 // We don't want to update the value in the map as it might be used in 2965 // another expression. So don't call resetVectorValue(StoredVal). 2966 } 2967 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2968 if (isMaskRequired) 2969 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2970 BlockInMaskParts[Part]); 2971 else 2972 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2973 } 2974 addMetadata(NewSI, SI); 2975 } 2976 return; 2977 } 2978 2979 // Handle loads. 2980 assert(LI && "Must have a load instruction"); 2981 setDebugLocFromInst(Builder, LI); 2982 for (unsigned Part = 0; Part < UF; ++Part) { 2983 Value *NewLI; 2984 if (CreateGatherScatter) { 2985 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2986 Value *VectorGep = State.get(Addr, Part); 2987 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2988 nullptr, "wide.masked.gather"); 2989 addMetadata(NewLI, LI); 2990 } else { 2991 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2992 if (isMaskRequired) 2993 NewLI = Builder.CreateMaskedLoad( 2994 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2995 "wide.masked.load"); 2996 else 2997 NewLI = 2998 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2999 3000 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3001 addMetadata(NewLI, LI); 3002 if (Reverse) 3003 NewLI = reverseVector(NewLI); 3004 } 3005 3006 State.set(Def, NewLI, Part); 3007 } 3008 } 3009 3010 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3011 VPUser &User, 3012 const VPIteration &Instance, 3013 bool IfPredicateInstr, 3014 VPTransformState &State) { 3015 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3016 3017 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3018 // the first lane and part. 3019 if (isa<NoAliasScopeDeclInst>(Instr)) 3020 if (!Instance.isFirstIteration()) 3021 return; 3022 3023 setDebugLocFromInst(Builder, Instr); 3024 3025 // Does this instruction return a value ? 3026 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3027 3028 Instruction *Cloned = Instr->clone(); 3029 if (!IsVoidRetTy) 3030 Cloned->setName(Instr->getName() + ".cloned"); 3031 3032 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3033 Builder.GetInsertPoint()); 3034 // Replace the operands of the cloned instructions with their scalar 3035 // equivalents in the new loop. 3036 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3037 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3038 auto InputInstance = Instance; 3039 if (!Operand || !OrigLoop->contains(Operand) || 3040 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3041 InputInstance.Lane = VPLane::getFirstLane(); 3042 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3043 Cloned->setOperand(op, NewOp); 3044 } 3045 addNewMetadata(Cloned, Instr); 3046 3047 // Place the cloned scalar in the new loop. 3048 Builder.Insert(Cloned); 3049 3050 State.set(Def, Cloned, Instance); 3051 3052 // If we just cloned a new assumption, add it the assumption cache. 3053 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3054 AC->registerAssumption(II); 3055 3056 // End if-block. 3057 if (IfPredicateInstr) 3058 PredicatedInstructions.push_back(Cloned); 3059 } 3060 3061 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3062 Value *End, Value *Step, 3063 Instruction *DL) { 3064 BasicBlock *Header = L->getHeader(); 3065 BasicBlock *Latch = L->getLoopLatch(); 3066 // As we're just creating this loop, it's possible no latch exists 3067 // yet. If so, use the header as this will be a single block loop. 3068 if (!Latch) 3069 Latch = Header; 3070 3071 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3072 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3073 setDebugLocFromInst(Builder, OldInst); 3074 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3075 3076 Builder.SetInsertPoint(Latch->getTerminator()); 3077 setDebugLocFromInst(Builder, OldInst); 3078 3079 // Create i+1 and fill the PHINode. 3080 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3081 Induction->addIncoming(Start, L->getLoopPreheader()); 3082 Induction->addIncoming(Next, Latch); 3083 // Create the compare. 3084 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3085 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3086 3087 // Now we have two terminators. Remove the old one from the block. 3088 Latch->getTerminator()->eraseFromParent(); 3089 3090 return Induction; 3091 } 3092 3093 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3094 if (TripCount) 3095 return TripCount; 3096 3097 assert(L && "Create Trip Count for null loop."); 3098 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3099 // Find the loop boundaries. 3100 ScalarEvolution *SE = PSE.getSE(); 3101 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3102 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3103 "Invalid loop count"); 3104 3105 Type *IdxTy = Legal->getWidestInductionType(); 3106 assert(IdxTy && "No type for induction"); 3107 3108 // The exit count might have the type of i64 while the phi is i32. This can 3109 // happen if we have an induction variable that is sign extended before the 3110 // compare. The only way that we get a backedge taken count is that the 3111 // induction variable was signed and as such will not overflow. In such a case 3112 // truncation is legal. 3113 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3114 IdxTy->getPrimitiveSizeInBits()) 3115 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3116 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3117 3118 // Get the total trip count from the count by adding 1. 3119 const SCEV *ExitCount = SE->getAddExpr( 3120 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3121 3122 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3123 3124 // Expand the trip count and place the new instructions in the preheader. 3125 // Notice that the pre-header does not change, only the loop body. 3126 SCEVExpander Exp(*SE, DL, "induction"); 3127 3128 // Count holds the overall loop count (N). 3129 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3130 L->getLoopPreheader()->getTerminator()); 3131 3132 if (TripCount->getType()->isPointerTy()) 3133 TripCount = 3134 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3135 L->getLoopPreheader()->getTerminator()); 3136 3137 return TripCount; 3138 } 3139 3140 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3141 if (VectorTripCount) 3142 return VectorTripCount; 3143 3144 Value *TC = getOrCreateTripCount(L); 3145 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3146 3147 Type *Ty = TC->getType(); 3148 // This is where we can make the step a runtime constant. 3149 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3150 3151 // If the tail is to be folded by masking, round the number of iterations N 3152 // up to a multiple of Step instead of rounding down. This is done by first 3153 // adding Step-1 and then rounding down. Note that it's ok if this addition 3154 // overflows: the vector induction variable will eventually wrap to zero given 3155 // that it starts at zero and its Step is a power of two; the loop will then 3156 // exit, with the last early-exit vector comparison also producing all-true. 3157 if (Cost->foldTailByMasking()) { 3158 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3159 "VF*UF must be a power of 2 when folding tail by masking"); 3160 assert(!VF.isScalable() && 3161 "Tail folding not yet supported for scalable vectors"); 3162 TC = Builder.CreateAdd( 3163 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3164 } 3165 3166 // Now we need to generate the expression for the part of the loop that the 3167 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3168 // iterations are not required for correctness, or N - Step, otherwise. Step 3169 // is equal to the vectorization factor (number of SIMD elements) times the 3170 // unroll factor (number of SIMD instructions). 3171 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3172 3173 // There are two cases where we need to ensure (at least) the last iteration 3174 // runs in the scalar remainder loop. Thus, if the step evenly divides 3175 // the trip count, we set the remainder to be equal to the step. If the step 3176 // does not evenly divide the trip count, no adjustment is necessary since 3177 // there will already be scalar iterations. Note that the minimum iterations 3178 // check ensures that N >= Step. The cases are: 3179 // 1) If there is a non-reversed interleaved group that may speculatively 3180 // access memory out-of-bounds. 3181 // 2) If any instruction may follow a conditionally taken exit. That is, if 3182 // the loop contains multiple exiting blocks, or a single exiting block 3183 // which is not the latch. 3184 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3185 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3186 R = Builder.CreateSelect(IsZero, Step, R); 3187 } 3188 3189 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3190 3191 return VectorTripCount; 3192 } 3193 3194 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3195 const DataLayout &DL) { 3196 // Verify that V is a vector type with same number of elements as DstVTy. 3197 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3198 unsigned VF = DstFVTy->getNumElements(); 3199 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3200 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3201 Type *SrcElemTy = SrcVecTy->getElementType(); 3202 Type *DstElemTy = DstFVTy->getElementType(); 3203 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3204 "Vector elements must have same size"); 3205 3206 // Do a direct cast if element types are castable. 3207 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3208 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3209 } 3210 // V cannot be directly casted to desired vector type. 3211 // May happen when V is a floating point vector but DstVTy is a vector of 3212 // pointers or vice-versa. Handle this using a two-step bitcast using an 3213 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3214 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3215 "Only one type should be a pointer type"); 3216 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3217 "Only one type should be a floating point type"); 3218 Type *IntTy = 3219 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3220 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3221 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3222 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3223 } 3224 3225 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3226 BasicBlock *Bypass) { 3227 Value *Count = getOrCreateTripCount(L); 3228 // Reuse existing vector loop preheader for TC checks. 3229 // Note that new preheader block is generated for vector loop. 3230 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3231 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3232 3233 // Generate code to check if the loop's trip count is less than VF * UF, or 3234 // equal to it in case a scalar epilogue is required; this implies that the 3235 // vector trip count is zero. This check also covers the case where adding one 3236 // to the backedge-taken count overflowed leading to an incorrect trip count 3237 // of zero. In this case we will also jump to the scalar loop. 3238 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3239 : ICmpInst::ICMP_ULT; 3240 3241 // If tail is to be folded, vector loop takes care of all iterations. 3242 Value *CheckMinIters = Builder.getFalse(); 3243 if (!Cost->foldTailByMasking()) { 3244 Value *Step = 3245 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3246 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3247 } 3248 // Create new preheader for vector loop. 3249 LoopVectorPreHeader = 3250 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3251 "vector.ph"); 3252 3253 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3254 DT->getNode(Bypass)->getIDom()) && 3255 "TC check is expected to dominate Bypass"); 3256 3257 // Update dominator for Bypass & LoopExit. 3258 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3259 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3260 3261 ReplaceInstWithInst( 3262 TCCheckBlock->getTerminator(), 3263 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3264 LoopBypassBlocks.push_back(TCCheckBlock); 3265 } 3266 3267 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3268 3269 BasicBlock *const SCEVCheckBlock = 3270 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3271 if (!SCEVCheckBlock) 3272 return nullptr; 3273 3274 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3275 (OptForSizeBasedOnProfile && 3276 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3277 "Cannot SCEV check stride or overflow when optimizing for size"); 3278 3279 3280 // Update dominator only if this is first RT check. 3281 if (LoopBypassBlocks.empty()) { 3282 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3283 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3284 } 3285 3286 LoopBypassBlocks.push_back(SCEVCheckBlock); 3287 AddedSafetyChecks = true; 3288 return SCEVCheckBlock; 3289 } 3290 3291 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3292 BasicBlock *Bypass) { 3293 // VPlan-native path does not do any analysis for runtime checks currently. 3294 if (EnableVPlanNativePath) 3295 return nullptr; 3296 3297 BasicBlock *const MemCheckBlock = 3298 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3299 3300 // Check if we generated code that checks in runtime if arrays overlap. We put 3301 // the checks into a separate block to make the more common case of few 3302 // elements faster. 3303 if (!MemCheckBlock) 3304 return nullptr; 3305 3306 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3307 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3308 "Cannot emit memory checks when optimizing for size, unless forced " 3309 "to vectorize."); 3310 ORE->emit([&]() { 3311 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3312 L->getStartLoc(), L->getHeader()) 3313 << "Code-size may be reduced by not forcing " 3314 "vectorization, or by source-code modifications " 3315 "eliminating the need for runtime checks " 3316 "(e.g., adding 'restrict')."; 3317 }); 3318 } 3319 3320 LoopBypassBlocks.push_back(MemCheckBlock); 3321 3322 AddedSafetyChecks = true; 3323 3324 // We currently don't use LoopVersioning for the actual loop cloning but we 3325 // still use it to add the noalias metadata. 3326 LVer = std::make_unique<LoopVersioning>( 3327 *Legal->getLAI(), 3328 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3329 DT, PSE.getSE()); 3330 LVer->prepareNoAliasMetadata(); 3331 return MemCheckBlock; 3332 } 3333 3334 Value *InnerLoopVectorizer::emitTransformedIndex( 3335 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3336 const InductionDescriptor &ID) const { 3337 3338 SCEVExpander Exp(*SE, DL, "induction"); 3339 auto Step = ID.getStep(); 3340 auto StartValue = ID.getStartValue(); 3341 assert(Index->getType()->getScalarType() == Step->getType() && 3342 "Index scalar type does not match StepValue type"); 3343 3344 // Note: the IR at this point is broken. We cannot use SE to create any new 3345 // SCEV and then expand it, hoping that SCEV's simplification will give us 3346 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3347 // lead to various SCEV crashes. So all we can do is to use builder and rely 3348 // on InstCombine for future simplifications. Here we handle some trivial 3349 // cases only. 3350 auto CreateAdd = [&B](Value *X, Value *Y) { 3351 assert(X->getType() == Y->getType() && "Types don't match!"); 3352 if (auto *CX = dyn_cast<ConstantInt>(X)) 3353 if (CX->isZero()) 3354 return Y; 3355 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3356 if (CY->isZero()) 3357 return X; 3358 return B.CreateAdd(X, Y); 3359 }; 3360 3361 // We allow X to be a vector type, in which case Y will potentially be 3362 // splatted into a vector with the same element count. 3363 auto CreateMul = [&B](Value *X, Value *Y) { 3364 assert(X->getType()->getScalarType() == Y->getType() && 3365 "Types don't match!"); 3366 if (auto *CX = dyn_cast<ConstantInt>(X)) 3367 if (CX->isOne()) 3368 return Y; 3369 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3370 if (CY->isOne()) 3371 return X; 3372 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3373 if (XVTy && !isa<VectorType>(Y->getType())) 3374 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3375 return B.CreateMul(X, Y); 3376 }; 3377 3378 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3379 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3380 // the DomTree is not kept up-to-date for additional blocks generated in the 3381 // vector loop. By using the header as insertion point, we guarantee that the 3382 // expanded instructions dominate all their uses. 3383 auto GetInsertPoint = [this, &B]() { 3384 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3385 if (InsertBB != LoopVectorBody && 3386 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3387 return LoopVectorBody->getTerminator(); 3388 return &*B.GetInsertPoint(); 3389 }; 3390 3391 switch (ID.getKind()) { 3392 case InductionDescriptor::IK_IntInduction: { 3393 assert(!isa<VectorType>(Index->getType()) && 3394 "Vector indices not supported for integer inductions yet"); 3395 assert(Index->getType() == StartValue->getType() && 3396 "Index type does not match StartValue type"); 3397 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3398 return B.CreateSub(StartValue, Index); 3399 auto *Offset = CreateMul( 3400 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3401 return CreateAdd(StartValue, Offset); 3402 } 3403 case InductionDescriptor::IK_PtrInduction: { 3404 assert(isa<SCEVConstant>(Step) && 3405 "Expected constant step for pointer induction"); 3406 return B.CreateGEP( 3407 StartValue->getType()->getPointerElementType(), StartValue, 3408 CreateMul(Index, 3409 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3410 GetInsertPoint()))); 3411 } 3412 case InductionDescriptor::IK_FpInduction: { 3413 assert(!isa<VectorType>(Index->getType()) && 3414 "Vector indices not supported for FP inductions yet"); 3415 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3416 auto InductionBinOp = ID.getInductionBinOp(); 3417 assert(InductionBinOp && 3418 (InductionBinOp->getOpcode() == Instruction::FAdd || 3419 InductionBinOp->getOpcode() == Instruction::FSub) && 3420 "Original bin op should be defined for FP induction"); 3421 3422 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3423 Value *MulExp = B.CreateFMul(StepValue, Index); 3424 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3425 "induction"); 3426 } 3427 case InductionDescriptor::IK_NoInduction: 3428 return nullptr; 3429 } 3430 llvm_unreachable("invalid enum"); 3431 } 3432 3433 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3434 LoopScalarBody = OrigLoop->getHeader(); 3435 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3436 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3437 assert(LoopExitBlock && "Must have an exit block"); 3438 assert(LoopVectorPreHeader && "Invalid loop structure"); 3439 3440 LoopMiddleBlock = 3441 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3442 LI, nullptr, Twine(Prefix) + "middle.block"); 3443 LoopScalarPreHeader = 3444 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3445 nullptr, Twine(Prefix) + "scalar.ph"); 3446 3447 // Set up branch from middle block to the exit and scalar preheader blocks. 3448 // completeLoopSkeleton will update the condition to use an iteration check, 3449 // if required to decide whether to execute the remainder. 3450 BranchInst *BrInst = 3451 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3452 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3453 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3454 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3455 3456 // We intentionally don't let SplitBlock to update LoopInfo since 3457 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3458 // LoopVectorBody is explicitly added to the correct place few lines later. 3459 LoopVectorBody = 3460 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3461 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3462 3463 // Update dominator for loop exit. 3464 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3465 3466 // Create and register the new vector loop. 3467 Loop *Lp = LI->AllocateLoop(); 3468 Loop *ParentLoop = OrigLoop->getParentLoop(); 3469 3470 // Insert the new loop into the loop nest and register the new basic blocks 3471 // before calling any utilities such as SCEV that require valid LoopInfo. 3472 if (ParentLoop) { 3473 ParentLoop->addChildLoop(Lp); 3474 } else { 3475 LI->addTopLevelLoop(Lp); 3476 } 3477 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3478 return Lp; 3479 } 3480 3481 void InnerLoopVectorizer::createInductionResumeValues( 3482 Loop *L, Value *VectorTripCount, 3483 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3484 assert(VectorTripCount && L && "Expected valid arguments"); 3485 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3486 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3487 "Inconsistent information about additional bypass."); 3488 // We are going to resume the execution of the scalar loop. 3489 // Go over all of the induction variables that we found and fix the 3490 // PHIs that are left in the scalar version of the loop. 3491 // The starting values of PHI nodes depend on the counter of the last 3492 // iteration in the vectorized loop. 3493 // If we come from a bypass edge then we need to start from the original 3494 // start value. 3495 for (auto &InductionEntry : Legal->getInductionVars()) { 3496 PHINode *OrigPhi = InductionEntry.first; 3497 InductionDescriptor II = InductionEntry.second; 3498 3499 // Create phi nodes to merge from the backedge-taken check block. 3500 PHINode *BCResumeVal = 3501 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3502 LoopScalarPreHeader->getTerminator()); 3503 // Copy original phi DL over to the new one. 3504 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3505 Value *&EndValue = IVEndValues[OrigPhi]; 3506 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3507 if (OrigPhi == OldInduction) { 3508 // We know what the end value is. 3509 EndValue = VectorTripCount; 3510 } else { 3511 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3512 3513 // Fast-math-flags propagate from the original induction instruction. 3514 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3515 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3516 3517 Type *StepType = II.getStep()->getType(); 3518 Instruction::CastOps CastOp = 3519 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3520 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3521 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3522 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3523 EndValue->setName("ind.end"); 3524 3525 // Compute the end value for the additional bypass (if applicable). 3526 if (AdditionalBypass.first) { 3527 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3528 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3529 StepType, true); 3530 CRD = 3531 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3532 EndValueFromAdditionalBypass = 3533 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3534 EndValueFromAdditionalBypass->setName("ind.end"); 3535 } 3536 } 3537 // The new PHI merges the original incoming value, in case of a bypass, 3538 // or the value at the end of the vectorized loop. 3539 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3540 3541 // Fix the scalar body counter (PHI node). 3542 // The old induction's phi node in the scalar body needs the truncated 3543 // value. 3544 for (BasicBlock *BB : LoopBypassBlocks) 3545 BCResumeVal->addIncoming(II.getStartValue(), BB); 3546 3547 if (AdditionalBypass.first) 3548 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3549 EndValueFromAdditionalBypass); 3550 3551 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3552 } 3553 } 3554 3555 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3556 MDNode *OrigLoopID) { 3557 assert(L && "Expected valid loop."); 3558 3559 // The trip counts should be cached by now. 3560 Value *Count = getOrCreateTripCount(L); 3561 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3562 3563 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3564 3565 // Add a check in the middle block to see if we have completed 3566 // all of the iterations in the first vector loop. 3567 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3568 // If tail is to be folded, we know we don't need to run the remainder. 3569 if (!Cost->foldTailByMasking()) { 3570 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3571 Count, VectorTripCount, "cmp.n", 3572 LoopMiddleBlock->getTerminator()); 3573 3574 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3575 // of the corresponding compare because they may have ended up with 3576 // different line numbers and we want to avoid awkward line stepping while 3577 // debugging. Eg. if the compare has got a line number inside the loop. 3578 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3579 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3580 } 3581 3582 // Get ready to start creating new instructions into the vectorized body. 3583 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3584 "Inconsistent vector loop preheader"); 3585 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3586 3587 Optional<MDNode *> VectorizedLoopID = 3588 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3589 LLVMLoopVectorizeFollowupVectorized}); 3590 if (VectorizedLoopID.hasValue()) { 3591 L->setLoopID(VectorizedLoopID.getValue()); 3592 3593 // Do not setAlreadyVectorized if loop attributes have been defined 3594 // explicitly. 3595 return LoopVectorPreHeader; 3596 } 3597 3598 // Keep all loop hints from the original loop on the vector loop (we'll 3599 // replace the vectorizer-specific hints below). 3600 if (MDNode *LID = OrigLoop->getLoopID()) 3601 L->setLoopID(LID); 3602 3603 LoopVectorizeHints Hints(L, true, *ORE); 3604 Hints.setAlreadyVectorized(); 3605 3606 #ifdef EXPENSIVE_CHECKS 3607 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3608 LI->verify(*DT); 3609 #endif 3610 3611 return LoopVectorPreHeader; 3612 } 3613 3614 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3615 /* 3616 In this function we generate a new loop. The new loop will contain 3617 the vectorized instructions while the old loop will continue to run the 3618 scalar remainder. 3619 3620 [ ] <-- loop iteration number check. 3621 / | 3622 / v 3623 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3624 | / | 3625 | / v 3626 || [ ] <-- vector pre header. 3627 |/ | 3628 | v 3629 | [ ] \ 3630 | [ ]_| <-- vector loop. 3631 | | 3632 | v 3633 | -[ ] <--- middle-block. 3634 | / | 3635 | / v 3636 -|- >[ ] <--- new preheader. 3637 | | 3638 | v 3639 | [ ] \ 3640 | [ ]_| <-- old scalar loop to handle remainder. 3641 \ | 3642 \ v 3643 >[ ] <-- exit block. 3644 ... 3645 */ 3646 3647 // Get the metadata of the original loop before it gets modified. 3648 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3649 3650 // Workaround! Compute the trip count of the original loop and cache it 3651 // before we start modifying the CFG. This code has a systemic problem 3652 // wherein it tries to run analysis over partially constructed IR; this is 3653 // wrong, and not simply for SCEV. The trip count of the original loop 3654 // simply happens to be prone to hitting this in practice. In theory, we 3655 // can hit the same issue for any SCEV, or ValueTracking query done during 3656 // mutation. See PR49900. 3657 getOrCreateTripCount(OrigLoop); 3658 3659 // Create an empty vector loop, and prepare basic blocks for the runtime 3660 // checks. 3661 Loop *Lp = createVectorLoopSkeleton(""); 3662 3663 // Now, compare the new count to zero. If it is zero skip the vector loop and 3664 // jump to the scalar loop. This check also covers the case where the 3665 // backedge-taken count is uint##_max: adding one to it will overflow leading 3666 // to an incorrect trip count of zero. In this (rare) case we will also jump 3667 // to the scalar loop. 3668 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3669 3670 // Generate the code to check any assumptions that we've made for SCEV 3671 // expressions. 3672 emitSCEVChecks(Lp, LoopScalarPreHeader); 3673 3674 // Generate the code that checks in runtime if arrays overlap. We put the 3675 // checks into a separate block to make the more common case of few elements 3676 // faster. 3677 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3678 3679 // Some loops have a single integer induction variable, while other loops 3680 // don't. One example is c++ iterators that often have multiple pointer 3681 // induction variables. In the code below we also support a case where we 3682 // don't have a single induction variable. 3683 // 3684 // We try to obtain an induction variable from the original loop as hard 3685 // as possible. However if we don't find one that: 3686 // - is an integer 3687 // - counts from zero, stepping by one 3688 // - is the size of the widest induction variable type 3689 // then we create a new one. 3690 OldInduction = Legal->getPrimaryInduction(); 3691 Type *IdxTy = Legal->getWidestInductionType(); 3692 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3693 // The loop step is equal to the vectorization factor (num of SIMD elements) 3694 // times the unroll factor (num of SIMD instructions). 3695 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3696 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3697 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3698 Induction = 3699 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3700 getDebugLocFromInstOrOperands(OldInduction)); 3701 3702 // Emit phis for the new starting index of the scalar loop. 3703 createInductionResumeValues(Lp, CountRoundDown); 3704 3705 return completeLoopSkeleton(Lp, OrigLoopID); 3706 } 3707 3708 // Fix up external users of the induction variable. At this point, we are 3709 // in LCSSA form, with all external PHIs that use the IV having one input value, 3710 // coming from the remainder loop. We need those PHIs to also have a correct 3711 // value for the IV when arriving directly from the middle block. 3712 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3713 const InductionDescriptor &II, 3714 Value *CountRoundDown, Value *EndValue, 3715 BasicBlock *MiddleBlock) { 3716 // There are two kinds of external IV usages - those that use the value 3717 // computed in the last iteration (the PHI) and those that use the penultimate 3718 // value (the value that feeds into the phi from the loop latch). 3719 // We allow both, but they, obviously, have different values. 3720 3721 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3722 3723 DenseMap<Value *, Value *> MissingVals; 3724 3725 // An external user of the last iteration's value should see the value that 3726 // the remainder loop uses to initialize its own IV. 3727 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3728 for (User *U : PostInc->users()) { 3729 Instruction *UI = cast<Instruction>(U); 3730 if (!OrigLoop->contains(UI)) { 3731 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3732 MissingVals[UI] = EndValue; 3733 } 3734 } 3735 3736 // An external user of the penultimate value need to see EndValue - Step. 3737 // The simplest way to get this is to recompute it from the constituent SCEVs, 3738 // that is Start + (Step * (CRD - 1)). 3739 for (User *U : OrigPhi->users()) { 3740 auto *UI = cast<Instruction>(U); 3741 if (!OrigLoop->contains(UI)) { 3742 const DataLayout &DL = 3743 OrigLoop->getHeader()->getModule()->getDataLayout(); 3744 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3745 3746 IRBuilder<> B(MiddleBlock->getTerminator()); 3747 3748 // Fast-math-flags propagate from the original induction instruction. 3749 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3750 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3751 3752 Value *CountMinusOne = B.CreateSub( 3753 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3754 Value *CMO = 3755 !II.getStep()->getType()->isIntegerTy() 3756 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3757 II.getStep()->getType()) 3758 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3759 CMO->setName("cast.cmo"); 3760 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3761 Escape->setName("ind.escape"); 3762 MissingVals[UI] = Escape; 3763 } 3764 } 3765 3766 for (auto &I : MissingVals) { 3767 PHINode *PHI = cast<PHINode>(I.first); 3768 // One corner case we have to handle is two IVs "chasing" each-other, 3769 // that is %IV2 = phi [...], [ %IV1, %latch ] 3770 // In this case, if IV1 has an external use, we need to avoid adding both 3771 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3772 // don't already have an incoming value for the middle block. 3773 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3774 PHI->addIncoming(I.second, MiddleBlock); 3775 } 3776 } 3777 3778 namespace { 3779 3780 struct CSEDenseMapInfo { 3781 static bool canHandle(const Instruction *I) { 3782 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3783 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3784 } 3785 3786 static inline Instruction *getEmptyKey() { 3787 return DenseMapInfo<Instruction *>::getEmptyKey(); 3788 } 3789 3790 static inline Instruction *getTombstoneKey() { 3791 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3792 } 3793 3794 static unsigned getHashValue(const Instruction *I) { 3795 assert(canHandle(I) && "Unknown instruction!"); 3796 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3797 I->value_op_end())); 3798 } 3799 3800 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3801 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3802 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3803 return LHS == RHS; 3804 return LHS->isIdenticalTo(RHS); 3805 } 3806 }; 3807 3808 } // end anonymous namespace 3809 3810 ///Perform cse of induction variable instructions. 3811 static void cse(BasicBlock *BB) { 3812 // Perform simple cse. 3813 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3814 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3815 Instruction *In = &*I++; 3816 3817 if (!CSEDenseMapInfo::canHandle(In)) 3818 continue; 3819 3820 // Check if we can replace this instruction with any of the 3821 // visited instructions. 3822 if (Instruction *V = CSEMap.lookup(In)) { 3823 In->replaceAllUsesWith(V); 3824 In->eraseFromParent(); 3825 continue; 3826 } 3827 3828 CSEMap[In] = In; 3829 } 3830 } 3831 3832 InstructionCost 3833 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3834 bool &NeedToScalarize) const { 3835 Function *F = CI->getCalledFunction(); 3836 Type *ScalarRetTy = CI->getType(); 3837 SmallVector<Type *, 4> Tys, ScalarTys; 3838 for (auto &ArgOp : CI->arg_operands()) 3839 ScalarTys.push_back(ArgOp->getType()); 3840 3841 // Estimate cost of scalarized vector call. The source operands are assumed 3842 // to be vectors, so we need to extract individual elements from there, 3843 // execute VF scalar calls, and then gather the result into the vector return 3844 // value. 3845 InstructionCost ScalarCallCost = 3846 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3847 if (VF.isScalar()) 3848 return ScalarCallCost; 3849 3850 // Compute corresponding vector type for return value and arguments. 3851 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3852 for (Type *ScalarTy : ScalarTys) 3853 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3854 3855 // Compute costs of unpacking argument values for the scalar calls and 3856 // packing the return values to a vector. 3857 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3858 3859 InstructionCost Cost = 3860 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3861 3862 // If we can't emit a vector call for this function, then the currently found 3863 // cost is the cost we need to return. 3864 NeedToScalarize = true; 3865 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3866 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3867 3868 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3869 return Cost; 3870 3871 // If the corresponding vector cost is cheaper, return its cost. 3872 InstructionCost VectorCallCost = 3873 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3874 if (VectorCallCost < Cost) { 3875 NeedToScalarize = false; 3876 Cost = VectorCallCost; 3877 } 3878 return Cost; 3879 } 3880 3881 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3882 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3883 return Elt; 3884 return VectorType::get(Elt, VF); 3885 } 3886 3887 InstructionCost 3888 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3889 ElementCount VF) const { 3890 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3891 assert(ID && "Expected intrinsic call!"); 3892 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3893 FastMathFlags FMF; 3894 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3895 FMF = FPMO->getFastMathFlags(); 3896 3897 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3898 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3899 SmallVector<Type *> ParamTys; 3900 std::transform(FTy->param_begin(), FTy->param_end(), 3901 std::back_inserter(ParamTys), 3902 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3903 3904 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3905 dyn_cast<IntrinsicInst>(CI)); 3906 return TTI.getIntrinsicInstrCost(CostAttrs, 3907 TargetTransformInfo::TCK_RecipThroughput); 3908 } 3909 3910 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3911 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3912 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3913 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3914 } 3915 3916 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3917 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3918 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3919 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3920 } 3921 3922 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3923 // For every instruction `I` in MinBWs, truncate the operands, create a 3924 // truncated version of `I` and reextend its result. InstCombine runs 3925 // later and will remove any ext/trunc pairs. 3926 SmallPtrSet<Value *, 4> Erased; 3927 for (const auto &KV : Cost->getMinimalBitwidths()) { 3928 // If the value wasn't vectorized, we must maintain the original scalar 3929 // type. The absence of the value from State indicates that it 3930 // wasn't vectorized. 3931 VPValue *Def = State.Plan->getVPValue(KV.first); 3932 if (!State.hasAnyVectorValue(Def)) 3933 continue; 3934 for (unsigned Part = 0; Part < UF; ++Part) { 3935 Value *I = State.get(Def, Part); 3936 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3937 continue; 3938 Type *OriginalTy = I->getType(); 3939 Type *ScalarTruncatedTy = 3940 IntegerType::get(OriginalTy->getContext(), KV.second); 3941 auto *TruncatedTy = FixedVectorType::get( 3942 ScalarTruncatedTy, 3943 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3944 if (TruncatedTy == OriginalTy) 3945 continue; 3946 3947 IRBuilder<> B(cast<Instruction>(I)); 3948 auto ShrinkOperand = [&](Value *V) -> Value * { 3949 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3950 if (ZI->getSrcTy() == TruncatedTy) 3951 return ZI->getOperand(0); 3952 return B.CreateZExtOrTrunc(V, TruncatedTy); 3953 }; 3954 3955 // The actual instruction modification depends on the instruction type, 3956 // unfortunately. 3957 Value *NewI = nullptr; 3958 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3959 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3960 ShrinkOperand(BO->getOperand(1))); 3961 3962 // Any wrapping introduced by shrinking this operation shouldn't be 3963 // considered undefined behavior. So, we can't unconditionally copy 3964 // arithmetic wrapping flags to NewI. 3965 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3966 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3967 NewI = 3968 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3969 ShrinkOperand(CI->getOperand(1))); 3970 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3971 NewI = B.CreateSelect(SI->getCondition(), 3972 ShrinkOperand(SI->getTrueValue()), 3973 ShrinkOperand(SI->getFalseValue())); 3974 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3975 switch (CI->getOpcode()) { 3976 default: 3977 llvm_unreachable("Unhandled cast!"); 3978 case Instruction::Trunc: 3979 NewI = ShrinkOperand(CI->getOperand(0)); 3980 break; 3981 case Instruction::SExt: 3982 NewI = B.CreateSExtOrTrunc( 3983 CI->getOperand(0), 3984 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3985 break; 3986 case Instruction::ZExt: 3987 NewI = B.CreateZExtOrTrunc( 3988 CI->getOperand(0), 3989 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3990 break; 3991 } 3992 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3993 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3994 ->getNumElements(); 3995 auto *O0 = B.CreateZExtOrTrunc( 3996 SI->getOperand(0), 3997 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3998 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3999 ->getNumElements(); 4000 auto *O1 = B.CreateZExtOrTrunc( 4001 SI->getOperand(1), 4002 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4003 4004 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4005 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4006 // Don't do anything with the operands, just extend the result. 4007 continue; 4008 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4009 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4010 ->getNumElements(); 4011 auto *O0 = B.CreateZExtOrTrunc( 4012 IE->getOperand(0), 4013 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4014 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4015 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4016 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4017 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4018 ->getNumElements(); 4019 auto *O0 = B.CreateZExtOrTrunc( 4020 EE->getOperand(0), 4021 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4022 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4023 } else { 4024 // If we don't know what to do, be conservative and don't do anything. 4025 continue; 4026 } 4027 4028 // Lastly, extend the result. 4029 NewI->takeName(cast<Instruction>(I)); 4030 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4031 I->replaceAllUsesWith(Res); 4032 cast<Instruction>(I)->eraseFromParent(); 4033 Erased.insert(I); 4034 State.reset(Def, Res, Part); 4035 } 4036 } 4037 4038 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4039 for (const auto &KV : Cost->getMinimalBitwidths()) { 4040 // If the value wasn't vectorized, we must maintain the original scalar 4041 // type. The absence of the value from State indicates that it 4042 // wasn't vectorized. 4043 VPValue *Def = State.Plan->getVPValue(KV.first); 4044 if (!State.hasAnyVectorValue(Def)) 4045 continue; 4046 for (unsigned Part = 0; Part < UF; ++Part) { 4047 Value *I = State.get(Def, Part); 4048 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4049 if (Inst && Inst->use_empty()) { 4050 Value *NewI = Inst->getOperand(0); 4051 Inst->eraseFromParent(); 4052 State.reset(Def, NewI, Part); 4053 } 4054 } 4055 } 4056 } 4057 4058 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4059 // Insert truncates and extends for any truncated instructions as hints to 4060 // InstCombine. 4061 if (VF.isVector()) 4062 truncateToMinimalBitwidths(State); 4063 4064 // Fix widened non-induction PHIs by setting up the PHI operands. 4065 if (OrigPHIsToFix.size()) { 4066 assert(EnableVPlanNativePath && 4067 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4068 fixNonInductionPHIs(State); 4069 } 4070 4071 // At this point every instruction in the original loop is widened to a 4072 // vector form. Now we need to fix the recurrences in the loop. These PHI 4073 // nodes are currently empty because we did not want to introduce cycles. 4074 // This is the second stage of vectorizing recurrences. 4075 fixCrossIterationPHIs(State); 4076 4077 // Forget the original basic block. 4078 PSE.getSE()->forgetLoop(OrigLoop); 4079 4080 // Fix-up external users of the induction variables. 4081 for (auto &Entry : Legal->getInductionVars()) 4082 fixupIVUsers(Entry.first, Entry.second, 4083 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4084 IVEndValues[Entry.first], LoopMiddleBlock); 4085 4086 fixLCSSAPHIs(State); 4087 for (Instruction *PI : PredicatedInstructions) 4088 sinkScalarOperands(&*PI); 4089 4090 // Remove redundant induction instructions. 4091 cse(LoopVectorBody); 4092 4093 // Set/update profile weights for the vector and remainder loops as original 4094 // loop iterations are now distributed among them. Note that original loop 4095 // represented by LoopScalarBody becomes remainder loop after vectorization. 4096 // 4097 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4098 // end up getting slightly roughened result but that should be OK since 4099 // profile is not inherently precise anyway. Note also possible bypass of 4100 // vector code caused by legality checks is ignored, assigning all the weight 4101 // to the vector loop, optimistically. 4102 // 4103 // For scalable vectorization we can't know at compile time how many iterations 4104 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4105 // vscale of '1'. 4106 setProfileInfoAfterUnrolling( 4107 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4108 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4109 } 4110 4111 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4112 // In order to support recurrences we need to be able to vectorize Phi nodes. 4113 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4114 // stage #2: We now need to fix the recurrences by adding incoming edges to 4115 // the currently empty PHI nodes. At this point every instruction in the 4116 // original loop is widened to a vector form so we can use them to construct 4117 // the incoming edges. 4118 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4119 for (VPRecipeBase &R : Header->phis()) { 4120 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4121 if (!PhiR) 4122 continue; 4123 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4124 if (PhiR->getRecurrenceDescriptor()) { 4125 fixReduction(PhiR, State); 4126 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4127 fixFirstOrderRecurrence(OrigPhi, State); 4128 } 4129 } 4130 4131 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4132 VPTransformState &State) { 4133 // This is the second phase of vectorizing first-order recurrences. An 4134 // overview of the transformation is described below. Suppose we have the 4135 // following loop. 4136 // 4137 // for (int i = 0; i < n; ++i) 4138 // b[i] = a[i] - a[i - 1]; 4139 // 4140 // There is a first-order recurrence on "a". For this loop, the shorthand 4141 // scalar IR looks like: 4142 // 4143 // scalar.ph: 4144 // s_init = a[-1] 4145 // br scalar.body 4146 // 4147 // scalar.body: 4148 // i = phi [0, scalar.ph], [i+1, scalar.body] 4149 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4150 // s2 = a[i] 4151 // b[i] = s2 - s1 4152 // br cond, scalar.body, ... 4153 // 4154 // In this example, s1 is a recurrence because it's value depends on the 4155 // previous iteration. In the first phase of vectorization, we created a 4156 // temporary value for s1. We now complete the vectorization and produce the 4157 // shorthand vector IR shown below (for VF = 4, UF = 1). 4158 // 4159 // vector.ph: 4160 // v_init = vector(..., ..., ..., a[-1]) 4161 // br vector.body 4162 // 4163 // vector.body 4164 // i = phi [0, vector.ph], [i+4, vector.body] 4165 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4166 // v2 = a[i, i+1, i+2, i+3]; 4167 // v3 = vector(v1(3), v2(0, 1, 2)) 4168 // b[i, i+1, i+2, i+3] = v2 - v3 4169 // br cond, vector.body, middle.block 4170 // 4171 // middle.block: 4172 // x = v2(3) 4173 // br scalar.ph 4174 // 4175 // scalar.ph: 4176 // s_init = phi [x, middle.block], [a[-1], otherwise] 4177 // br scalar.body 4178 // 4179 // After execution completes the vector loop, we extract the next value of 4180 // the recurrence (x) to use as the initial value in the scalar loop. 4181 4182 // Get the original loop preheader and single loop latch. 4183 auto *Preheader = OrigLoop->getLoopPreheader(); 4184 auto *Latch = OrigLoop->getLoopLatch(); 4185 4186 // Get the initial and previous values of the scalar recurrence. 4187 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4188 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4189 4190 auto *IdxTy = Builder.getInt32Ty(); 4191 auto *One = ConstantInt::get(IdxTy, 1); 4192 4193 // Create a vector from the initial value. 4194 auto *VectorInit = ScalarInit; 4195 if (VF.isVector()) { 4196 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4197 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4198 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4199 VectorInit = Builder.CreateInsertElement( 4200 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4201 VectorInit, LastIdx, "vector.recur.init"); 4202 } 4203 4204 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4205 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4206 // We constructed a temporary phi node in the first phase of vectorization. 4207 // This phi node will eventually be deleted. 4208 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4209 4210 // Create a phi node for the new recurrence. The current value will either be 4211 // the initial value inserted into a vector or loop-varying vector value. 4212 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4213 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4214 4215 // Get the vectorized previous value of the last part UF - 1. It appears last 4216 // among all unrolled iterations, due to the order of their construction. 4217 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4218 4219 // Find and set the insertion point after the previous value if it is an 4220 // instruction. 4221 BasicBlock::iterator InsertPt; 4222 // Note that the previous value may have been constant-folded so it is not 4223 // guaranteed to be an instruction in the vector loop. 4224 // FIXME: Loop invariant values do not form recurrences. We should deal with 4225 // them earlier. 4226 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4227 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4228 else { 4229 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4230 if (isa<PHINode>(PreviousLastPart)) 4231 // If the previous value is a phi node, we should insert after all the phi 4232 // nodes in the block containing the PHI to avoid breaking basic block 4233 // verification. Note that the basic block may be different to 4234 // LoopVectorBody, in case we predicate the loop. 4235 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4236 else 4237 InsertPt = ++PreviousInst->getIterator(); 4238 } 4239 Builder.SetInsertPoint(&*InsertPt); 4240 4241 // The vector from which to take the initial value for the current iteration 4242 // (actual or unrolled). Initially, this is the vector phi node. 4243 Value *Incoming = VecPhi; 4244 4245 // Shuffle the current and previous vector and update the vector parts. 4246 for (unsigned Part = 0; Part < UF; ++Part) { 4247 Value *PreviousPart = State.get(PreviousDef, Part); 4248 Value *PhiPart = State.get(PhiDef, Part); 4249 auto *Shuffle = VF.isVector() 4250 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4251 : Incoming; 4252 PhiPart->replaceAllUsesWith(Shuffle); 4253 cast<Instruction>(PhiPart)->eraseFromParent(); 4254 State.reset(PhiDef, Shuffle, Part); 4255 Incoming = PreviousPart; 4256 } 4257 4258 // Fix the latch value of the new recurrence in the vector loop. 4259 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4260 4261 // Extract the last vector element in the middle block. This will be the 4262 // initial value for the recurrence when jumping to the scalar loop. 4263 auto *ExtractForScalar = Incoming; 4264 if (VF.isVector()) { 4265 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4266 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4267 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4268 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4269 "vector.recur.extract"); 4270 } 4271 // Extract the second last element in the middle block if the 4272 // Phi is used outside the loop. We need to extract the phi itself 4273 // and not the last element (the phi update in the current iteration). This 4274 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4275 // when the scalar loop is not run at all. 4276 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4277 if (VF.isVector()) { 4278 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4279 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4280 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4281 Incoming, Idx, "vector.recur.extract.for.phi"); 4282 } else if (UF > 1) 4283 // When loop is unrolled without vectorizing, initialize 4284 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4285 // of `Incoming`. This is analogous to the vectorized case above: extracting 4286 // the second last element when VF > 1. 4287 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4288 4289 // Fix the initial value of the original recurrence in the scalar loop. 4290 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4291 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4292 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4293 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4294 Start->addIncoming(Incoming, BB); 4295 } 4296 4297 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4298 Phi->setName("scalar.recur"); 4299 4300 // Finally, fix users of the recurrence outside the loop. The users will need 4301 // either the last value of the scalar recurrence or the last value of the 4302 // vector recurrence we extracted in the middle block. Since the loop is in 4303 // LCSSA form, we just need to find all the phi nodes for the original scalar 4304 // recurrence in the exit block, and then add an edge for the middle block. 4305 // Note that LCSSA does not imply single entry when the original scalar loop 4306 // had multiple exiting edges (as we always run the last iteration in the 4307 // scalar epilogue); in that case, the exiting path through middle will be 4308 // dynamically dead and the value picked for the phi doesn't matter. 4309 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4310 if (any_of(LCSSAPhi.incoming_values(), 4311 [Phi](Value *V) { return V == Phi; })) 4312 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4313 } 4314 4315 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4316 return EnableStrictReductions && RdxDesc.isOrdered(); 4317 } 4318 4319 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4320 VPTransformState &State) { 4321 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4322 // Get it's reduction variable descriptor. 4323 assert(Legal->isReductionVariable(OrigPhi) && 4324 "Unable to find the reduction variable"); 4325 RecurrenceDescriptor RdxDesc = *PhiR->getRecurrenceDescriptor(); 4326 4327 RecurKind RK = RdxDesc.getRecurrenceKind(); 4328 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4329 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4330 setDebugLocFromInst(Builder, ReductionStartValue); 4331 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4332 4333 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4334 // This is the vector-clone of the value that leaves the loop. 4335 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4336 4337 // Wrap flags are in general invalid after vectorization, clear them. 4338 clearReductionWrapFlags(RdxDesc, State); 4339 4340 // Fix the vector-loop phi. 4341 4342 // Reductions do not have to start at zero. They can start with 4343 // any loop invariant values. 4344 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4345 4346 bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi && 4347 useOrderedReductions(RdxDesc); 4348 4349 for (unsigned Part = 0; Part < UF; ++Part) { 4350 if (IsOrdered && Part > 0) 4351 break; 4352 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4353 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4354 if (IsOrdered) 4355 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4356 4357 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4358 } 4359 4360 // Before each round, move the insertion point right between 4361 // the PHIs and the values we are going to write. 4362 // This allows us to write both PHINodes and the extractelement 4363 // instructions. 4364 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4365 4366 setDebugLocFromInst(Builder, LoopExitInst); 4367 4368 Type *PhiTy = OrigPhi->getType(); 4369 // If tail is folded by masking, the vector value to leave the loop should be 4370 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4371 // instead of the former. For an inloop reduction the reduction will already 4372 // be predicated, and does not need to be handled here. 4373 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4374 for (unsigned Part = 0; Part < UF; ++Part) { 4375 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4376 Value *Sel = nullptr; 4377 for (User *U : VecLoopExitInst->users()) { 4378 if (isa<SelectInst>(U)) { 4379 assert(!Sel && "Reduction exit feeding two selects"); 4380 Sel = U; 4381 } else 4382 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4383 } 4384 assert(Sel && "Reduction exit feeds no select"); 4385 State.reset(LoopExitInstDef, Sel, Part); 4386 4387 // If the target can create a predicated operator for the reduction at no 4388 // extra cost in the loop (for example a predicated vadd), it can be 4389 // cheaper for the select to remain in the loop than be sunk out of it, 4390 // and so use the select value for the phi instead of the old 4391 // LoopExitValue. 4392 if (PreferPredicatedReductionSelect || 4393 TTI->preferPredicatedReductionSelect( 4394 RdxDesc.getOpcode(), PhiTy, 4395 TargetTransformInfo::ReductionFlags())) { 4396 auto *VecRdxPhi = 4397 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4398 VecRdxPhi->setIncomingValueForBlock( 4399 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4400 } 4401 } 4402 } 4403 4404 // If the vector reduction can be performed in a smaller type, we truncate 4405 // then extend the loop exit value to enable InstCombine to evaluate the 4406 // entire expression in the smaller type. 4407 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4408 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4409 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4410 Builder.SetInsertPoint( 4411 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4412 VectorParts RdxParts(UF); 4413 for (unsigned Part = 0; Part < UF; ++Part) { 4414 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4415 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4416 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4417 : Builder.CreateZExt(Trunc, VecTy); 4418 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4419 UI != RdxParts[Part]->user_end();) 4420 if (*UI != Trunc) { 4421 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4422 RdxParts[Part] = Extnd; 4423 } else { 4424 ++UI; 4425 } 4426 } 4427 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4428 for (unsigned Part = 0; Part < UF; ++Part) { 4429 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4430 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4431 } 4432 } 4433 4434 // Reduce all of the unrolled parts into a single vector. 4435 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4436 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4437 4438 // The middle block terminator has already been assigned a DebugLoc here (the 4439 // OrigLoop's single latch terminator). We want the whole middle block to 4440 // appear to execute on this line because: (a) it is all compiler generated, 4441 // (b) these instructions are always executed after evaluating the latch 4442 // conditional branch, and (c) other passes may add new predecessors which 4443 // terminate on this line. This is the easiest way to ensure we don't 4444 // accidentally cause an extra step back into the loop while debugging. 4445 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4446 if (IsOrdered) 4447 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4448 else { 4449 // Floating-point operations should have some FMF to enable the reduction. 4450 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4451 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4452 for (unsigned Part = 1; Part < UF; ++Part) { 4453 Value *RdxPart = State.get(LoopExitInstDef, Part); 4454 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4455 ReducedPartRdx = Builder.CreateBinOp( 4456 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4457 } else { 4458 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4459 } 4460 } 4461 } 4462 4463 // Create the reduction after the loop. Note that inloop reductions create the 4464 // target reduction in the loop using a Reduction recipe. 4465 if (VF.isVector() && !IsInLoopReductionPhi) { 4466 ReducedPartRdx = 4467 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4468 // If the reduction can be performed in a smaller type, we need to extend 4469 // the reduction to the wider type before we branch to the original loop. 4470 if (PhiTy != RdxDesc.getRecurrenceType()) 4471 ReducedPartRdx = RdxDesc.isSigned() 4472 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4473 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4474 } 4475 4476 // Create a phi node that merges control-flow from the backedge-taken check 4477 // block and the middle block. 4478 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4479 LoopScalarPreHeader->getTerminator()); 4480 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4481 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4482 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4483 4484 // Now, we need to fix the users of the reduction variable 4485 // inside and outside of the scalar remainder loop. 4486 4487 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4488 // in the exit blocks. See comment on analogous loop in 4489 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4490 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4491 if (any_of(LCSSAPhi.incoming_values(), 4492 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4493 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4494 4495 // Fix the scalar loop reduction variable with the incoming reduction sum 4496 // from the vector body and from the backedge value. 4497 int IncomingEdgeBlockIdx = 4498 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4499 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4500 // Pick the other block. 4501 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4502 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4503 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4504 } 4505 4506 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4507 VPTransformState &State) { 4508 RecurKind RK = RdxDesc.getRecurrenceKind(); 4509 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4510 return; 4511 4512 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4513 assert(LoopExitInstr && "null loop exit instruction"); 4514 SmallVector<Instruction *, 8> Worklist; 4515 SmallPtrSet<Instruction *, 8> Visited; 4516 Worklist.push_back(LoopExitInstr); 4517 Visited.insert(LoopExitInstr); 4518 4519 while (!Worklist.empty()) { 4520 Instruction *Cur = Worklist.pop_back_val(); 4521 if (isa<OverflowingBinaryOperator>(Cur)) 4522 for (unsigned Part = 0; Part < UF; ++Part) { 4523 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4524 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4525 } 4526 4527 for (User *U : Cur->users()) { 4528 Instruction *UI = cast<Instruction>(U); 4529 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4530 Visited.insert(UI).second) 4531 Worklist.push_back(UI); 4532 } 4533 } 4534 } 4535 4536 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4537 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4538 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4539 // Some phis were already hand updated by the reduction and recurrence 4540 // code above, leave them alone. 4541 continue; 4542 4543 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4544 // Non-instruction incoming values will have only one value. 4545 4546 VPLane Lane = VPLane::getFirstLane(); 4547 if (isa<Instruction>(IncomingValue) && 4548 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4549 VF)) 4550 Lane = VPLane::getLastLaneForVF(VF); 4551 4552 // Can be a loop invariant incoming value or the last scalar value to be 4553 // extracted from the vectorized loop. 4554 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4555 Value *lastIncomingValue = 4556 OrigLoop->isLoopInvariant(IncomingValue) 4557 ? IncomingValue 4558 : State.get(State.Plan->getVPValue(IncomingValue), 4559 VPIteration(UF - 1, Lane)); 4560 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4561 } 4562 } 4563 4564 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4565 // The basic block and loop containing the predicated instruction. 4566 auto *PredBB = PredInst->getParent(); 4567 auto *VectorLoop = LI->getLoopFor(PredBB); 4568 4569 // Initialize a worklist with the operands of the predicated instruction. 4570 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4571 4572 // Holds instructions that we need to analyze again. An instruction may be 4573 // reanalyzed if we don't yet know if we can sink it or not. 4574 SmallVector<Instruction *, 8> InstsToReanalyze; 4575 4576 // Returns true if a given use occurs in the predicated block. Phi nodes use 4577 // their operands in their corresponding predecessor blocks. 4578 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4579 auto *I = cast<Instruction>(U.getUser()); 4580 BasicBlock *BB = I->getParent(); 4581 if (auto *Phi = dyn_cast<PHINode>(I)) 4582 BB = Phi->getIncomingBlock( 4583 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4584 return BB == PredBB; 4585 }; 4586 4587 // Iteratively sink the scalarized operands of the predicated instruction 4588 // into the block we created for it. When an instruction is sunk, it's 4589 // operands are then added to the worklist. The algorithm ends after one pass 4590 // through the worklist doesn't sink a single instruction. 4591 bool Changed; 4592 do { 4593 // Add the instructions that need to be reanalyzed to the worklist, and 4594 // reset the changed indicator. 4595 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4596 InstsToReanalyze.clear(); 4597 Changed = false; 4598 4599 while (!Worklist.empty()) { 4600 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4601 4602 // We can't sink an instruction if it is a phi node, is already in the 4603 // predicated block, is not in the loop, or may have side effects. 4604 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4605 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4606 continue; 4607 4608 // It's legal to sink the instruction if all its uses occur in the 4609 // predicated block. Otherwise, there's nothing to do yet, and we may 4610 // need to reanalyze the instruction. 4611 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4612 InstsToReanalyze.push_back(I); 4613 continue; 4614 } 4615 4616 // Move the instruction to the beginning of the predicated block, and add 4617 // it's operands to the worklist. 4618 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4619 Worklist.insert(I->op_begin(), I->op_end()); 4620 4621 // The sinking may have enabled other instructions to be sunk, so we will 4622 // need to iterate. 4623 Changed = true; 4624 } 4625 } while (Changed); 4626 } 4627 4628 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4629 for (PHINode *OrigPhi : OrigPHIsToFix) { 4630 VPWidenPHIRecipe *VPPhi = 4631 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4632 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4633 // Make sure the builder has a valid insert point. 4634 Builder.SetInsertPoint(NewPhi); 4635 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4636 VPValue *Inc = VPPhi->getIncomingValue(i); 4637 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4638 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4639 } 4640 } 4641 } 4642 4643 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4644 VPUser &Operands, unsigned UF, 4645 ElementCount VF, bool IsPtrLoopInvariant, 4646 SmallBitVector &IsIndexLoopInvariant, 4647 VPTransformState &State) { 4648 // Construct a vector GEP by widening the operands of the scalar GEP as 4649 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4650 // results in a vector of pointers when at least one operand of the GEP 4651 // is vector-typed. Thus, to keep the representation compact, we only use 4652 // vector-typed operands for loop-varying values. 4653 4654 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4655 // If we are vectorizing, but the GEP has only loop-invariant operands, 4656 // the GEP we build (by only using vector-typed operands for 4657 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4658 // produce a vector of pointers, we need to either arbitrarily pick an 4659 // operand to broadcast, or broadcast a clone of the original GEP. 4660 // Here, we broadcast a clone of the original. 4661 // 4662 // TODO: If at some point we decide to scalarize instructions having 4663 // loop-invariant operands, this special case will no longer be 4664 // required. We would add the scalarization decision to 4665 // collectLoopScalars() and teach getVectorValue() to broadcast 4666 // the lane-zero scalar value. 4667 auto *Clone = Builder.Insert(GEP->clone()); 4668 for (unsigned Part = 0; Part < UF; ++Part) { 4669 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4670 State.set(VPDef, EntryPart, Part); 4671 addMetadata(EntryPart, GEP); 4672 } 4673 } else { 4674 // If the GEP has at least one loop-varying operand, we are sure to 4675 // produce a vector of pointers. But if we are only unrolling, we want 4676 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4677 // produce with the code below will be scalar (if VF == 1) or vector 4678 // (otherwise). Note that for the unroll-only case, we still maintain 4679 // values in the vector mapping with initVector, as we do for other 4680 // instructions. 4681 for (unsigned Part = 0; Part < UF; ++Part) { 4682 // The pointer operand of the new GEP. If it's loop-invariant, we 4683 // won't broadcast it. 4684 auto *Ptr = IsPtrLoopInvariant 4685 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4686 : State.get(Operands.getOperand(0), Part); 4687 4688 // Collect all the indices for the new GEP. If any index is 4689 // loop-invariant, we won't broadcast it. 4690 SmallVector<Value *, 4> Indices; 4691 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4692 VPValue *Operand = Operands.getOperand(I); 4693 if (IsIndexLoopInvariant[I - 1]) 4694 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4695 else 4696 Indices.push_back(State.get(Operand, Part)); 4697 } 4698 4699 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4700 // but it should be a vector, otherwise. 4701 auto *NewGEP = 4702 GEP->isInBounds() 4703 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4704 Indices) 4705 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4706 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4707 "NewGEP is not a pointer vector"); 4708 State.set(VPDef, NewGEP, Part); 4709 addMetadata(NewGEP, GEP); 4710 } 4711 } 4712 } 4713 4714 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4715 RecurrenceDescriptor *RdxDesc, 4716 VPWidenPHIRecipe *PhiR, 4717 VPTransformState &State) { 4718 PHINode *P = cast<PHINode>(PN); 4719 if (EnableVPlanNativePath) { 4720 // Currently we enter here in the VPlan-native path for non-induction 4721 // PHIs where all control flow is uniform. We simply widen these PHIs. 4722 // Create a vector phi with no operands - the vector phi operands will be 4723 // set at the end of vector code generation. 4724 Type *VecTy = (State.VF.isScalar()) 4725 ? PN->getType() 4726 : VectorType::get(PN->getType(), State.VF); 4727 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4728 State.set(PhiR, VecPhi, 0); 4729 OrigPHIsToFix.push_back(P); 4730 4731 return; 4732 } 4733 4734 assert(PN->getParent() == OrigLoop->getHeader() && 4735 "Non-header phis should have been handled elsewhere"); 4736 4737 VPValue *StartVPV = PhiR->getStartValue(); 4738 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4739 // In order to support recurrences we need to be able to vectorize Phi nodes. 4740 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4741 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4742 // this value when we vectorize all of the instructions that use the PHI. 4743 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4744 Value *Iden = nullptr; 4745 bool ScalarPHI = 4746 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4747 Type *VecTy = 4748 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4749 4750 if (RdxDesc) { 4751 assert(Legal->isReductionVariable(P) && StartV && 4752 "RdxDesc should only be set for reduction variables; in that case " 4753 "a StartV is also required"); 4754 RecurKind RK = RdxDesc->getRecurrenceKind(); 4755 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4756 // MinMax reduction have the start value as their identify. 4757 if (ScalarPHI) { 4758 Iden = StartV; 4759 } else { 4760 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4761 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4762 StartV = Iden = 4763 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4764 } 4765 } else { 4766 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4767 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4768 Iden = IdenC; 4769 4770 if (!ScalarPHI) { 4771 Iden = ConstantVector::getSplat(State.VF, IdenC); 4772 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4773 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4774 Constant *Zero = Builder.getInt32(0); 4775 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4776 } 4777 } 4778 } 4779 4780 bool IsOrdered = State.VF.isVector() && 4781 Cost->isInLoopReduction(cast<PHINode>(PN)) && 4782 useOrderedReductions(*RdxDesc); 4783 4784 for (unsigned Part = 0; Part < State.UF; ++Part) { 4785 // This is phase one of vectorizing PHIs. 4786 if (Part > 0 && IsOrdered) 4787 return; 4788 Value *EntryPart = PHINode::Create( 4789 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4790 State.set(PhiR, EntryPart, Part); 4791 if (StartV) { 4792 // Make sure to add the reduction start value only to the 4793 // first unroll part. 4794 Value *StartVal = (Part == 0) ? StartV : Iden; 4795 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4796 } 4797 } 4798 return; 4799 } 4800 4801 assert(!Legal->isReductionVariable(P) && 4802 "reductions should be handled above"); 4803 4804 setDebugLocFromInst(Builder, P); 4805 4806 // This PHINode must be an induction variable. 4807 // Make sure that we know about it. 4808 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4809 4810 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4811 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4812 4813 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4814 // which can be found from the original scalar operations. 4815 switch (II.getKind()) { 4816 case InductionDescriptor::IK_NoInduction: 4817 llvm_unreachable("Unknown induction"); 4818 case InductionDescriptor::IK_IntInduction: 4819 case InductionDescriptor::IK_FpInduction: 4820 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4821 case InductionDescriptor::IK_PtrInduction: { 4822 // Handle the pointer induction variable case. 4823 assert(P->getType()->isPointerTy() && "Unexpected type."); 4824 4825 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4826 // This is the normalized GEP that starts counting at zero. 4827 Value *PtrInd = 4828 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4829 // Determine the number of scalars we need to generate for each unroll 4830 // iteration. If the instruction is uniform, we only need to generate the 4831 // first lane. Otherwise, we generate all VF values. 4832 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4833 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4834 4835 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4836 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4837 if (NeedsVectorIndex) { 4838 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4839 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4840 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4841 } 4842 4843 for (unsigned Part = 0; Part < UF; ++Part) { 4844 Value *PartStart = createStepForVF( 4845 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4846 4847 if (NeedsVectorIndex) { 4848 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4849 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4850 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4851 Value *SclrGep = 4852 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4853 SclrGep->setName("next.gep"); 4854 State.set(PhiR, SclrGep, Part); 4855 // We've cached the whole vector, which means we can support the 4856 // extraction of any lane. 4857 continue; 4858 } 4859 4860 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4861 Value *Idx = Builder.CreateAdd( 4862 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4863 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4864 Value *SclrGep = 4865 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4866 SclrGep->setName("next.gep"); 4867 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4868 } 4869 } 4870 return; 4871 } 4872 assert(isa<SCEVConstant>(II.getStep()) && 4873 "Induction step not a SCEV constant!"); 4874 Type *PhiType = II.getStep()->getType(); 4875 4876 // Build a pointer phi 4877 Value *ScalarStartValue = II.getStartValue(); 4878 Type *ScStValueType = ScalarStartValue->getType(); 4879 PHINode *NewPointerPhi = 4880 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4881 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4882 4883 // A pointer induction, performed by using a gep 4884 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4885 Instruction *InductionLoc = LoopLatch->getTerminator(); 4886 const SCEV *ScalarStep = II.getStep(); 4887 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4888 Value *ScalarStepValue = 4889 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4890 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4891 Value *NumUnrolledElems = 4892 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4893 Value *InductionGEP = GetElementPtrInst::Create( 4894 ScStValueType->getPointerElementType(), NewPointerPhi, 4895 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4896 InductionLoc); 4897 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4898 4899 // Create UF many actual address geps that use the pointer 4900 // phi as base and a vectorized version of the step value 4901 // (<step*0, ..., step*N>) as offset. 4902 for (unsigned Part = 0; Part < State.UF; ++Part) { 4903 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4904 Value *StartOffsetScalar = 4905 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4906 Value *StartOffset = 4907 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4908 // Create a vector of consecutive numbers from zero to VF. 4909 StartOffset = 4910 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4911 4912 Value *GEP = Builder.CreateGEP( 4913 ScStValueType->getPointerElementType(), NewPointerPhi, 4914 Builder.CreateMul( 4915 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4916 "vector.gep")); 4917 State.set(PhiR, GEP, Part); 4918 } 4919 } 4920 } 4921 } 4922 4923 /// A helper function for checking whether an integer division-related 4924 /// instruction may divide by zero (in which case it must be predicated if 4925 /// executed conditionally in the scalar code). 4926 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4927 /// Non-zero divisors that are non compile-time constants will not be 4928 /// converted into multiplication, so we will still end up scalarizing 4929 /// the division, but can do so w/o predication. 4930 static bool mayDivideByZero(Instruction &I) { 4931 assert((I.getOpcode() == Instruction::UDiv || 4932 I.getOpcode() == Instruction::SDiv || 4933 I.getOpcode() == Instruction::URem || 4934 I.getOpcode() == Instruction::SRem) && 4935 "Unexpected instruction"); 4936 Value *Divisor = I.getOperand(1); 4937 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4938 return !CInt || CInt->isZero(); 4939 } 4940 4941 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4942 VPUser &User, 4943 VPTransformState &State) { 4944 switch (I.getOpcode()) { 4945 case Instruction::Call: 4946 case Instruction::Br: 4947 case Instruction::PHI: 4948 case Instruction::GetElementPtr: 4949 case Instruction::Select: 4950 llvm_unreachable("This instruction is handled by a different recipe."); 4951 case Instruction::UDiv: 4952 case Instruction::SDiv: 4953 case Instruction::SRem: 4954 case Instruction::URem: 4955 case Instruction::Add: 4956 case Instruction::FAdd: 4957 case Instruction::Sub: 4958 case Instruction::FSub: 4959 case Instruction::FNeg: 4960 case Instruction::Mul: 4961 case Instruction::FMul: 4962 case Instruction::FDiv: 4963 case Instruction::FRem: 4964 case Instruction::Shl: 4965 case Instruction::LShr: 4966 case Instruction::AShr: 4967 case Instruction::And: 4968 case Instruction::Or: 4969 case Instruction::Xor: { 4970 // Just widen unops and binops. 4971 setDebugLocFromInst(Builder, &I); 4972 4973 for (unsigned Part = 0; Part < UF; ++Part) { 4974 SmallVector<Value *, 2> Ops; 4975 for (VPValue *VPOp : User.operands()) 4976 Ops.push_back(State.get(VPOp, Part)); 4977 4978 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4979 4980 if (auto *VecOp = dyn_cast<Instruction>(V)) 4981 VecOp->copyIRFlags(&I); 4982 4983 // Use this vector value for all users of the original instruction. 4984 State.set(Def, V, Part); 4985 addMetadata(V, &I); 4986 } 4987 4988 break; 4989 } 4990 case Instruction::ICmp: 4991 case Instruction::FCmp: { 4992 // Widen compares. Generate vector compares. 4993 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4994 auto *Cmp = cast<CmpInst>(&I); 4995 setDebugLocFromInst(Builder, Cmp); 4996 for (unsigned Part = 0; Part < UF; ++Part) { 4997 Value *A = State.get(User.getOperand(0), Part); 4998 Value *B = State.get(User.getOperand(1), Part); 4999 Value *C = nullptr; 5000 if (FCmp) { 5001 // Propagate fast math flags. 5002 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5003 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5004 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5005 } else { 5006 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5007 } 5008 State.set(Def, C, Part); 5009 addMetadata(C, &I); 5010 } 5011 5012 break; 5013 } 5014 5015 case Instruction::ZExt: 5016 case Instruction::SExt: 5017 case Instruction::FPToUI: 5018 case Instruction::FPToSI: 5019 case Instruction::FPExt: 5020 case Instruction::PtrToInt: 5021 case Instruction::IntToPtr: 5022 case Instruction::SIToFP: 5023 case Instruction::UIToFP: 5024 case Instruction::Trunc: 5025 case Instruction::FPTrunc: 5026 case Instruction::BitCast: { 5027 auto *CI = cast<CastInst>(&I); 5028 setDebugLocFromInst(Builder, CI); 5029 5030 /// Vectorize casts. 5031 Type *DestTy = 5032 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5033 5034 for (unsigned Part = 0; Part < UF; ++Part) { 5035 Value *A = State.get(User.getOperand(0), Part); 5036 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5037 State.set(Def, Cast, Part); 5038 addMetadata(Cast, &I); 5039 } 5040 break; 5041 } 5042 default: 5043 // This instruction is not vectorized by simple widening. 5044 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5045 llvm_unreachable("Unhandled instruction!"); 5046 } // end of switch. 5047 } 5048 5049 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5050 VPUser &ArgOperands, 5051 VPTransformState &State) { 5052 assert(!isa<DbgInfoIntrinsic>(I) && 5053 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5054 setDebugLocFromInst(Builder, &I); 5055 5056 Module *M = I.getParent()->getParent()->getParent(); 5057 auto *CI = cast<CallInst>(&I); 5058 5059 SmallVector<Type *, 4> Tys; 5060 for (Value *ArgOperand : CI->arg_operands()) 5061 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5062 5063 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5064 5065 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5066 // version of the instruction. 5067 // Is it beneficial to perform intrinsic call compared to lib call? 5068 bool NeedToScalarize = false; 5069 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5070 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5071 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5072 assert((UseVectorIntrinsic || !NeedToScalarize) && 5073 "Instruction should be scalarized elsewhere."); 5074 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5075 "Either the intrinsic cost or vector call cost must be valid"); 5076 5077 for (unsigned Part = 0; Part < UF; ++Part) { 5078 SmallVector<Value *, 4> Args; 5079 for (auto &I : enumerate(ArgOperands.operands())) { 5080 // Some intrinsics have a scalar argument - don't replace it with a 5081 // vector. 5082 Value *Arg; 5083 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5084 Arg = State.get(I.value(), Part); 5085 else 5086 Arg = State.get(I.value(), VPIteration(0, 0)); 5087 Args.push_back(Arg); 5088 } 5089 5090 Function *VectorF; 5091 if (UseVectorIntrinsic) { 5092 // Use vector version of the intrinsic. 5093 Type *TysForDecl[] = {CI->getType()}; 5094 if (VF.isVector()) 5095 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5096 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5097 assert(VectorF && "Can't retrieve vector intrinsic."); 5098 } else { 5099 // Use vector version of the function call. 5100 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5101 #ifndef NDEBUG 5102 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5103 "Can't create vector function."); 5104 #endif 5105 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5106 } 5107 SmallVector<OperandBundleDef, 1> OpBundles; 5108 CI->getOperandBundlesAsDefs(OpBundles); 5109 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5110 5111 if (isa<FPMathOperator>(V)) 5112 V->copyFastMathFlags(CI); 5113 5114 State.set(Def, V, Part); 5115 addMetadata(V, &I); 5116 } 5117 } 5118 5119 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5120 VPUser &Operands, 5121 bool InvariantCond, 5122 VPTransformState &State) { 5123 setDebugLocFromInst(Builder, &I); 5124 5125 // The condition can be loop invariant but still defined inside the 5126 // loop. This means that we can't just use the original 'cond' value. 5127 // We have to take the 'vectorized' value and pick the first lane. 5128 // Instcombine will make this a no-op. 5129 auto *InvarCond = InvariantCond 5130 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5131 : nullptr; 5132 5133 for (unsigned Part = 0; Part < UF; ++Part) { 5134 Value *Cond = 5135 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5136 Value *Op0 = State.get(Operands.getOperand(1), Part); 5137 Value *Op1 = State.get(Operands.getOperand(2), Part); 5138 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5139 State.set(VPDef, Sel, Part); 5140 addMetadata(Sel, &I); 5141 } 5142 } 5143 5144 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5145 // We should not collect Scalars more than once per VF. Right now, this 5146 // function is called from collectUniformsAndScalars(), which already does 5147 // this check. Collecting Scalars for VF=1 does not make any sense. 5148 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5149 "This function should not be visited twice for the same VF"); 5150 5151 SmallSetVector<Instruction *, 8> Worklist; 5152 5153 // These sets are used to seed the analysis with pointers used by memory 5154 // accesses that will remain scalar. 5155 SmallSetVector<Instruction *, 8> ScalarPtrs; 5156 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5157 auto *Latch = TheLoop->getLoopLatch(); 5158 5159 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5160 // The pointer operands of loads and stores will be scalar as long as the 5161 // memory access is not a gather or scatter operation. The value operand of a 5162 // store will remain scalar if the store is scalarized. 5163 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5164 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5165 assert(WideningDecision != CM_Unknown && 5166 "Widening decision should be ready at this moment"); 5167 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5168 if (Ptr == Store->getValueOperand()) 5169 return WideningDecision == CM_Scalarize; 5170 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5171 "Ptr is neither a value or pointer operand"); 5172 return WideningDecision != CM_GatherScatter; 5173 }; 5174 5175 // A helper that returns true if the given value is a bitcast or 5176 // getelementptr instruction contained in the loop. 5177 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5178 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5179 isa<GetElementPtrInst>(V)) && 5180 !TheLoop->isLoopInvariant(V); 5181 }; 5182 5183 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5184 if (!isa<PHINode>(Ptr) || 5185 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5186 return false; 5187 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5188 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5189 return false; 5190 return isScalarUse(MemAccess, Ptr); 5191 }; 5192 5193 // A helper that evaluates a memory access's use of a pointer. If the 5194 // pointer is actually the pointer induction of a loop, it is being 5195 // inserted into Worklist. If the use will be a scalar use, and the 5196 // pointer is only used by memory accesses, we place the pointer in 5197 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5198 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5199 if (isScalarPtrInduction(MemAccess, Ptr)) { 5200 Worklist.insert(cast<Instruction>(Ptr)); 5201 Instruction *Update = cast<Instruction>( 5202 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5203 Worklist.insert(Update); 5204 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5205 << "\n"); 5206 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5207 << "\n"); 5208 return; 5209 } 5210 // We only care about bitcast and getelementptr instructions contained in 5211 // the loop. 5212 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5213 return; 5214 5215 // If the pointer has already been identified as scalar (e.g., if it was 5216 // also identified as uniform), there's nothing to do. 5217 auto *I = cast<Instruction>(Ptr); 5218 if (Worklist.count(I)) 5219 return; 5220 5221 // If the use of the pointer will be a scalar use, and all users of the 5222 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5223 // place the pointer in PossibleNonScalarPtrs. 5224 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5225 return isa<LoadInst>(U) || isa<StoreInst>(U); 5226 })) 5227 ScalarPtrs.insert(I); 5228 else 5229 PossibleNonScalarPtrs.insert(I); 5230 }; 5231 5232 // We seed the scalars analysis with three classes of instructions: (1) 5233 // instructions marked uniform-after-vectorization and (2) bitcast, 5234 // getelementptr and (pointer) phi instructions used by memory accesses 5235 // requiring a scalar use. 5236 // 5237 // (1) Add to the worklist all instructions that have been identified as 5238 // uniform-after-vectorization. 5239 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5240 5241 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5242 // memory accesses requiring a scalar use. The pointer operands of loads and 5243 // stores will be scalar as long as the memory accesses is not a gather or 5244 // scatter operation. The value operand of a store will remain scalar if the 5245 // store is scalarized. 5246 for (auto *BB : TheLoop->blocks()) 5247 for (auto &I : *BB) { 5248 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5249 evaluatePtrUse(Load, Load->getPointerOperand()); 5250 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5251 evaluatePtrUse(Store, Store->getPointerOperand()); 5252 evaluatePtrUse(Store, Store->getValueOperand()); 5253 } 5254 } 5255 for (auto *I : ScalarPtrs) 5256 if (!PossibleNonScalarPtrs.count(I)) { 5257 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5258 Worklist.insert(I); 5259 } 5260 5261 // Insert the forced scalars. 5262 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5263 // induction variable when the PHI user is scalarized. 5264 auto ForcedScalar = ForcedScalars.find(VF); 5265 if (ForcedScalar != ForcedScalars.end()) 5266 for (auto *I : ForcedScalar->second) 5267 Worklist.insert(I); 5268 5269 // Expand the worklist by looking through any bitcasts and getelementptr 5270 // instructions we've already identified as scalar. This is similar to the 5271 // expansion step in collectLoopUniforms(); however, here we're only 5272 // expanding to include additional bitcasts and getelementptr instructions. 5273 unsigned Idx = 0; 5274 while (Idx != Worklist.size()) { 5275 Instruction *Dst = Worklist[Idx++]; 5276 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5277 continue; 5278 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5279 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5280 auto *J = cast<Instruction>(U); 5281 return !TheLoop->contains(J) || Worklist.count(J) || 5282 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5283 isScalarUse(J, Src)); 5284 })) { 5285 Worklist.insert(Src); 5286 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5287 } 5288 } 5289 5290 // An induction variable will remain scalar if all users of the induction 5291 // variable and induction variable update remain scalar. 5292 for (auto &Induction : Legal->getInductionVars()) { 5293 auto *Ind = Induction.first; 5294 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5295 5296 // If tail-folding is applied, the primary induction variable will be used 5297 // to feed a vector compare. 5298 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5299 continue; 5300 5301 // Determine if all users of the induction variable are scalar after 5302 // vectorization. 5303 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5304 auto *I = cast<Instruction>(U); 5305 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5306 }); 5307 if (!ScalarInd) 5308 continue; 5309 5310 // Determine if all users of the induction variable update instruction are 5311 // scalar after vectorization. 5312 auto ScalarIndUpdate = 5313 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5314 auto *I = cast<Instruction>(U); 5315 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5316 }); 5317 if (!ScalarIndUpdate) 5318 continue; 5319 5320 // The induction variable and its update instruction will remain scalar. 5321 Worklist.insert(Ind); 5322 Worklist.insert(IndUpdate); 5323 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5324 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5325 << "\n"); 5326 } 5327 5328 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5329 } 5330 5331 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5332 if (!blockNeedsPredication(I->getParent())) 5333 return false; 5334 switch(I->getOpcode()) { 5335 default: 5336 break; 5337 case Instruction::Load: 5338 case Instruction::Store: { 5339 if (!Legal->isMaskRequired(I)) 5340 return false; 5341 auto *Ptr = getLoadStorePointerOperand(I); 5342 auto *Ty = getMemInstValueType(I); 5343 const Align Alignment = getLoadStoreAlignment(I); 5344 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5345 isLegalMaskedGather(Ty, Alignment)) 5346 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5347 isLegalMaskedScatter(Ty, Alignment)); 5348 } 5349 case Instruction::UDiv: 5350 case Instruction::SDiv: 5351 case Instruction::SRem: 5352 case Instruction::URem: 5353 return mayDivideByZero(*I); 5354 } 5355 return false; 5356 } 5357 5358 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5359 Instruction *I, ElementCount VF) { 5360 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5361 assert(getWideningDecision(I, VF) == CM_Unknown && 5362 "Decision should not be set yet."); 5363 auto *Group = getInterleavedAccessGroup(I); 5364 assert(Group && "Must have a group."); 5365 5366 // If the instruction's allocated size doesn't equal it's type size, it 5367 // requires padding and will be scalarized. 5368 auto &DL = I->getModule()->getDataLayout(); 5369 auto *ScalarTy = getMemInstValueType(I); 5370 if (hasIrregularType(ScalarTy, DL)) 5371 return false; 5372 5373 // Check if masking is required. 5374 // A Group may need masking for one of two reasons: it resides in a block that 5375 // needs predication, or it was decided to use masking to deal with gaps. 5376 bool PredicatedAccessRequiresMasking = 5377 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5378 bool AccessWithGapsRequiresMasking = 5379 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5380 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5381 return true; 5382 5383 // If masked interleaving is required, we expect that the user/target had 5384 // enabled it, because otherwise it either wouldn't have been created or 5385 // it should have been invalidated by the CostModel. 5386 assert(useMaskedInterleavedAccesses(TTI) && 5387 "Masked interleave-groups for predicated accesses are not enabled."); 5388 5389 auto *Ty = getMemInstValueType(I); 5390 const Align Alignment = getLoadStoreAlignment(I); 5391 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5392 : TTI.isLegalMaskedStore(Ty, Alignment); 5393 } 5394 5395 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5396 Instruction *I, ElementCount VF) { 5397 // Get and ensure we have a valid memory instruction. 5398 LoadInst *LI = dyn_cast<LoadInst>(I); 5399 StoreInst *SI = dyn_cast<StoreInst>(I); 5400 assert((LI || SI) && "Invalid memory instruction"); 5401 5402 auto *Ptr = getLoadStorePointerOperand(I); 5403 5404 // In order to be widened, the pointer should be consecutive, first of all. 5405 if (!Legal->isConsecutivePtr(Ptr)) 5406 return false; 5407 5408 // If the instruction is a store located in a predicated block, it will be 5409 // scalarized. 5410 if (isScalarWithPredication(I)) 5411 return false; 5412 5413 // If the instruction's allocated size doesn't equal it's type size, it 5414 // requires padding and will be scalarized. 5415 auto &DL = I->getModule()->getDataLayout(); 5416 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5417 if (hasIrregularType(ScalarTy, DL)) 5418 return false; 5419 5420 return true; 5421 } 5422 5423 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5424 // We should not collect Uniforms more than once per VF. Right now, 5425 // this function is called from collectUniformsAndScalars(), which 5426 // already does this check. Collecting Uniforms for VF=1 does not make any 5427 // sense. 5428 5429 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5430 "This function should not be visited twice for the same VF"); 5431 5432 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5433 // not analyze again. Uniforms.count(VF) will return 1. 5434 Uniforms[VF].clear(); 5435 5436 // We now know that the loop is vectorizable! 5437 // Collect instructions inside the loop that will remain uniform after 5438 // vectorization. 5439 5440 // Global values, params and instructions outside of current loop are out of 5441 // scope. 5442 auto isOutOfScope = [&](Value *V) -> bool { 5443 Instruction *I = dyn_cast<Instruction>(V); 5444 return (!I || !TheLoop->contains(I)); 5445 }; 5446 5447 SetVector<Instruction *> Worklist; 5448 BasicBlock *Latch = TheLoop->getLoopLatch(); 5449 5450 // Instructions that are scalar with predication must not be considered 5451 // uniform after vectorization, because that would create an erroneous 5452 // replicating region where only a single instance out of VF should be formed. 5453 // TODO: optimize such seldom cases if found important, see PR40816. 5454 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5455 if (isOutOfScope(I)) { 5456 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5457 << *I << "\n"); 5458 return; 5459 } 5460 if (isScalarWithPredication(I)) { 5461 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5462 << *I << "\n"); 5463 return; 5464 } 5465 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5466 Worklist.insert(I); 5467 }; 5468 5469 // Start with the conditional branch. If the branch condition is an 5470 // instruction contained in the loop that is only used by the branch, it is 5471 // uniform. 5472 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5473 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5474 addToWorklistIfAllowed(Cmp); 5475 5476 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5477 InstWidening WideningDecision = getWideningDecision(I, VF); 5478 assert(WideningDecision != CM_Unknown && 5479 "Widening decision should be ready at this moment"); 5480 5481 // A uniform memory op is itself uniform. We exclude uniform stores 5482 // here as they demand the last lane, not the first one. 5483 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5484 assert(WideningDecision == CM_Scalarize); 5485 return true; 5486 } 5487 5488 return (WideningDecision == CM_Widen || 5489 WideningDecision == CM_Widen_Reverse || 5490 WideningDecision == CM_Interleave); 5491 }; 5492 5493 5494 // Returns true if Ptr is the pointer operand of a memory access instruction 5495 // I, and I is known to not require scalarization. 5496 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5497 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5498 }; 5499 5500 // Holds a list of values which are known to have at least one uniform use. 5501 // Note that there may be other uses which aren't uniform. A "uniform use" 5502 // here is something which only demands lane 0 of the unrolled iterations; 5503 // it does not imply that all lanes produce the same value (e.g. this is not 5504 // the usual meaning of uniform) 5505 SetVector<Value *> HasUniformUse; 5506 5507 // Scan the loop for instructions which are either a) known to have only 5508 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5509 for (auto *BB : TheLoop->blocks()) 5510 for (auto &I : *BB) { 5511 // If there's no pointer operand, there's nothing to do. 5512 auto *Ptr = getLoadStorePointerOperand(&I); 5513 if (!Ptr) 5514 continue; 5515 5516 // A uniform memory op is itself uniform. We exclude uniform stores 5517 // here as they demand the last lane, not the first one. 5518 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5519 addToWorklistIfAllowed(&I); 5520 5521 if (isUniformDecision(&I, VF)) { 5522 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5523 HasUniformUse.insert(Ptr); 5524 } 5525 } 5526 5527 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5528 // demanding) users. Since loops are assumed to be in LCSSA form, this 5529 // disallows uses outside the loop as well. 5530 for (auto *V : HasUniformUse) { 5531 if (isOutOfScope(V)) 5532 continue; 5533 auto *I = cast<Instruction>(V); 5534 auto UsersAreMemAccesses = 5535 llvm::all_of(I->users(), [&](User *U) -> bool { 5536 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5537 }); 5538 if (UsersAreMemAccesses) 5539 addToWorklistIfAllowed(I); 5540 } 5541 5542 // Expand Worklist in topological order: whenever a new instruction 5543 // is added , its users should be already inside Worklist. It ensures 5544 // a uniform instruction will only be used by uniform instructions. 5545 unsigned idx = 0; 5546 while (idx != Worklist.size()) { 5547 Instruction *I = Worklist[idx++]; 5548 5549 for (auto OV : I->operand_values()) { 5550 // isOutOfScope operands cannot be uniform instructions. 5551 if (isOutOfScope(OV)) 5552 continue; 5553 // First order recurrence Phi's should typically be considered 5554 // non-uniform. 5555 auto *OP = dyn_cast<PHINode>(OV); 5556 if (OP && Legal->isFirstOrderRecurrence(OP)) 5557 continue; 5558 // If all the users of the operand are uniform, then add the 5559 // operand into the uniform worklist. 5560 auto *OI = cast<Instruction>(OV); 5561 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5562 auto *J = cast<Instruction>(U); 5563 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5564 })) 5565 addToWorklistIfAllowed(OI); 5566 } 5567 } 5568 5569 // For an instruction to be added into Worklist above, all its users inside 5570 // the loop should also be in Worklist. However, this condition cannot be 5571 // true for phi nodes that form a cyclic dependence. We must process phi 5572 // nodes separately. An induction variable will remain uniform if all users 5573 // of the induction variable and induction variable update remain uniform. 5574 // The code below handles both pointer and non-pointer induction variables. 5575 for (auto &Induction : Legal->getInductionVars()) { 5576 auto *Ind = Induction.first; 5577 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5578 5579 // Determine if all users of the induction variable are uniform after 5580 // vectorization. 5581 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5582 auto *I = cast<Instruction>(U); 5583 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5584 isVectorizedMemAccessUse(I, Ind); 5585 }); 5586 if (!UniformInd) 5587 continue; 5588 5589 // Determine if all users of the induction variable update instruction are 5590 // uniform after vectorization. 5591 auto UniformIndUpdate = 5592 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5593 auto *I = cast<Instruction>(U); 5594 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5595 isVectorizedMemAccessUse(I, IndUpdate); 5596 }); 5597 if (!UniformIndUpdate) 5598 continue; 5599 5600 // The induction variable and its update instruction will remain uniform. 5601 addToWorklistIfAllowed(Ind); 5602 addToWorklistIfAllowed(IndUpdate); 5603 } 5604 5605 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5606 } 5607 5608 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5609 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5610 5611 if (Legal->getRuntimePointerChecking()->Need) { 5612 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5613 "runtime pointer checks needed. Enable vectorization of this " 5614 "loop with '#pragma clang loop vectorize(enable)' when " 5615 "compiling with -Os/-Oz", 5616 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5617 return true; 5618 } 5619 5620 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5621 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5622 "runtime SCEV checks needed. Enable vectorization of this " 5623 "loop with '#pragma clang loop vectorize(enable)' when " 5624 "compiling with -Os/-Oz", 5625 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5626 return true; 5627 } 5628 5629 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5630 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5631 reportVectorizationFailure("Runtime stride check for small trip count", 5632 "runtime stride == 1 checks needed. Enable vectorization of " 5633 "this loop without such check by compiling with -Os/-Oz", 5634 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5635 return true; 5636 } 5637 5638 return false; 5639 } 5640 5641 ElementCount 5642 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5643 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5644 reportVectorizationInfo( 5645 "Disabling scalable vectorization, because target does not " 5646 "support scalable vectors.", 5647 "ScalableVectorsUnsupported", ORE, TheLoop); 5648 return ElementCount::getScalable(0); 5649 } 5650 5651 if (Hints->isScalableVectorizationDisabled()) { 5652 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5653 "ScalableVectorizationDisabled", ORE, TheLoop); 5654 return ElementCount::getScalable(0); 5655 } 5656 5657 auto MaxScalableVF = ElementCount::getScalable( 5658 std::numeric_limits<ElementCount::ScalarTy>::max()); 5659 5660 // Disable scalable vectorization if the loop contains unsupported reductions. 5661 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5662 // FIXME: While for scalable vectors this is currently sufficient, this should 5663 // be replaced by a more detailed mechanism that filters out specific VFs, 5664 // instead of invalidating vectorization for a whole set of VFs based on the 5665 // MaxVF. 5666 if (!canVectorizeReductions(MaxScalableVF)) { 5667 reportVectorizationInfo( 5668 "Scalable vectorization not supported for the reduction " 5669 "operations found in this loop.", 5670 "ScalableVFUnfeasible", ORE, TheLoop); 5671 return ElementCount::getScalable(0); 5672 } 5673 5674 if (Legal->isSafeForAnyVectorWidth()) 5675 return MaxScalableVF; 5676 5677 // Limit MaxScalableVF by the maximum safe dependence distance. 5678 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5679 MaxScalableVF = ElementCount::getScalable( 5680 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5681 if (!MaxScalableVF) 5682 reportVectorizationInfo( 5683 "Max legal vector width too small, scalable vectorization " 5684 "unfeasible.", 5685 "ScalableVFUnfeasible", ORE, TheLoop); 5686 5687 return MaxScalableVF; 5688 } 5689 5690 FixedScalableVFPair 5691 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5692 ElementCount UserVF) { 5693 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5694 unsigned SmallestType, WidestType; 5695 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5696 5697 // Get the maximum safe dependence distance in bits computed by LAA. 5698 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5699 // the memory accesses that is most restrictive (involved in the smallest 5700 // dependence distance). 5701 unsigned MaxSafeElements = 5702 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5703 5704 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5705 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5706 5707 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5708 << ".\n"); 5709 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5710 << ".\n"); 5711 5712 // First analyze the UserVF, fall back if the UserVF should be ignored. 5713 if (UserVF) { 5714 auto MaxSafeUserVF = 5715 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5716 5717 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5718 return UserVF; 5719 5720 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5721 5722 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5723 // is better to ignore the hint and let the compiler choose a suitable VF. 5724 if (!UserVF.isScalable()) { 5725 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5726 << " is unsafe, clamping to max safe VF=" 5727 << MaxSafeFixedVF << ".\n"); 5728 ORE->emit([&]() { 5729 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5730 TheLoop->getStartLoc(), 5731 TheLoop->getHeader()) 5732 << "User-specified vectorization factor " 5733 << ore::NV("UserVectorizationFactor", UserVF) 5734 << " is unsafe, clamping to maximum safe vectorization factor " 5735 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5736 }); 5737 return MaxSafeFixedVF; 5738 } 5739 5740 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5741 << " is unsafe. Ignoring scalable UserVF.\n"); 5742 ORE->emit([&]() { 5743 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5744 TheLoop->getStartLoc(), 5745 TheLoop->getHeader()) 5746 << "User-specified vectorization factor " 5747 << ore::NV("UserVectorizationFactor", UserVF) 5748 << " is unsafe. Ignoring the hint to let the compiler pick a " 5749 "suitable VF."; 5750 }); 5751 } 5752 5753 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5754 << " / " << WidestType << " bits.\n"); 5755 5756 FixedScalableVFPair Result(ElementCount::getFixed(1), 5757 ElementCount::getScalable(0)); 5758 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5759 WidestType, MaxSafeFixedVF)) 5760 Result.FixedVF = MaxVF; 5761 5762 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5763 WidestType, MaxSafeScalableVF)) 5764 if (MaxVF.isScalable()) { 5765 Result.ScalableVF = MaxVF; 5766 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5767 << "\n"); 5768 } 5769 5770 return Result; 5771 } 5772 5773 FixedScalableVFPair 5774 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5775 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5776 // TODO: It may by useful to do since it's still likely to be dynamically 5777 // uniform if the target can skip. 5778 reportVectorizationFailure( 5779 "Not inserting runtime ptr check for divergent target", 5780 "runtime pointer checks needed. Not enabled for divergent target", 5781 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5782 return FixedScalableVFPair::getNone(); 5783 } 5784 5785 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5786 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5787 if (TC == 1) { 5788 reportVectorizationFailure("Single iteration (non) loop", 5789 "loop trip count is one, irrelevant for vectorization", 5790 "SingleIterationLoop", ORE, TheLoop); 5791 return FixedScalableVFPair::getNone(); 5792 } 5793 5794 switch (ScalarEpilogueStatus) { 5795 case CM_ScalarEpilogueAllowed: 5796 return computeFeasibleMaxVF(TC, UserVF); 5797 case CM_ScalarEpilogueNotAllowedUsePredicate: 5798 LLVM_FALLTHROUGH; 5799 case CM_ScalarEpilogueNotNeededUsePredicate: 5800 LLVM_DEBUG( 5801 dbgs() << "LV: vector predicate hint/switch found.\n" 5802 << "LV: Not allowing scalar epilogue, creating predicated " 5803 << "vector loop.\n"); 5804 break; 5805 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5806 // fallthrough as a special case of OptForSize 5807 case CM_ScalarEpilogueNotAllowedOptSize: 5808 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5809 LLVM_DEBUG( 5810 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5811 else 5812 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5813 << "count.\n"); 5814 5815 // Bail if runtime checks are required, which are not good when optimising 5816 // for size. 5817 if (runtimeChecksRequired()) 5818 return FixedScalableVFPair::getNone(); 5819 5820 break; 5821 } 5822 5823 // The only loops we can vectorize without a scalar epilogue, are loops with 5824 // a bottom-test and a single exiting block. We'd have to handle the fact 5825 // that not every instruction executes on the last iteration. This will 5826 // require a lane mask which varies through the vector loop body. (TODO) 5827 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5828 // If there was a tail-folding hint/switch, but we can't fold the tail by 5829 // masking, fallback to a vectorization with a scalar epilogue. 5830 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5831 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5832 "scalar epilogue instead.\n"); 5833 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5834 return computeFeasibleMaxVF(TC, UserVF); 5835 } 5836 return FixedScalableVFPair::getNone(); 5837 } 5838 5839 // Now try the tail folding 5840 5841 // Invalidate interleave groups that require an epilogue if we can't mask 5842 // the interleave-group. 5843 if (!useMaskedInterleavedAccesses(TTI)) { 5844 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5845 "No decisions should have been taken at this point"); 5846 // Note: There is no need to invalidate any cost modeling decisions here, as 5847 // non where taken so far. 5848 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5849 } 5850 5851 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5852 // Avoid tail folding if the trip count is known to be a multiple of any VF 5853 // we chose. 5854 // FIXME: The condition below pessimises the case for fixed-width vectors, 5855 // when scalable VFs are also candidates for vectorization. 5856 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5857 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5858 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5859 "MaxFixedVF must be a power of 2"); 5860 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5861 : MaxFixedVF.getFixedValue(); 5862 ScalarEvolution *SE = PSE.getSE(); 5863 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5864 const SCEV *ExitCount = SE->getAddExpr( 5865 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5866 const SCEV *Rem = SE->getURemExpr( 5867 SE->applyLoopGuards(ExitCount, TheLoop), 5868 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5869 if (Rem->isZero()) { 5870 // Accept MaxFixedVF if we do not have a tail. 5871 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5872 return MaxFactors; 5873 } 5874 } 5875 5876 // If we don't know the precise trip count, or if the trip count that we 5877 // found modulo the vectorization factor is not zero, try to fold the tail 5878 // by masking. 5879 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5880 if (Legal->prepareToFoldTailByMasking()) { 5881 FoldTailByMasking = true; 5882 return MaxFactors; 5883 } 5884 5885 // If there was a tail-folding hint/switch, but we can't fold the tail by 5886 // masking, fallback to a vectorization with a scalar epilogue. 5887 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5888 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5889 "scalar epilogue instead.\n"); 5890 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5891 return MaxFactors; 5892 } 5893 5894 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5895 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5896 return FixedScalableVFPair::getNone(); 5897 } 5898 5899 if (TC == 0) { 5900 reportVectorizationFailure( 5901 "Unable to calculate the loop count due to complex control flow", 5902 "unable to calculate the loop count due to complex control flow", 5903 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5904 return FixedScalableVFPair::getNone(); 5905 } 5906 5907 reportVectorizationFailure( 5908 "Cannot optimize for size and vectorize at the same time.", 5909 "cannot optimize for size and vectorize at the same time. " 5910 "Enable vectorization of this loop with '#pragma clang loop " 5911 "vectorize(enable)' when compiling with -Os/-Oz", 5912 "NoTailLoopWithOptForSize", ORE, TheLoop); 5913 return FixedScalableVFPair::getNone(); 5914 } 5915 5916 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5917 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5918 const ElementCount &MaxSafeVF) { 5919 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5920 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5921 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5922 : TargetTransformInfo::RGK_FixedWidthVector); 5923 5924 // Convenience function to return the minimum of two ElementCounts. 5925 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5926 assert((LHS.isScalable() == RHS.isScalable()) && 5927 "Scalable flags must match"); 5928 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5929 }; 5930 5931 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5932 // Note that both WidestRegister and WidestType may not be a powers of 2. 5933 auto MaxVectorElementCount = ElementCount::get( 5934 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5935 ComputeScalableMaxVF); 5936 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5937 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5938 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5939 5940 if (!MaxVectorElementCount) { 5941 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5942 return ElementCount::getFixed(1); 5943 } 5944 5945 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5946 if (ConstTripCount && 5947 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5948 isPowerOf2_32(ConstTripCount)) { 5949 // We need to clamp the VF to be the ConstTripCount. There is no point in 5950 // choosing a higher viable VF as done in the loop below. If 5951 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5952 // the TC is less than or equal to the known number of lanes. 5953 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5954 << ConstTripCount << "\n"); 5955 return TripCountEC; 5956 } 5957 5958 ElementCount MaxVF = MaxVectorElementCount; 5959 if (TTI.shouldMaximizeVectorBandwidth() || 5960 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5961 auto MaxVectorElementCountMaxBW = ElementCount::get( 5962 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5963 ComputeScalableMaxVF); 5964 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5965 5966 // Collect all viable vectorization factors larger than the default MaxVF 5967 // (i.e. MaxVectorElementCount). 5968 SmallVector<ElementCount, 8> VFs; 5969 for (ElementCount VS = MaxVectorElementCount * 2; 5970 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5971 VFs.push_back(VS); 5972 5973 // For each VF calculate its register usage. 5974 auto RUs = calculateRegisterUsage(VFs); 5975 5976 // Select the largest VF which doesn't require more registers than existing 5977 // ones. 5978 for (int i = RUs.size() - 1; i >= 0; --i) { 5979 bool Selected = true; 5980 for (auto &pair : RUs[i].MaxLocalUsers) { 5981 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5982 if (pair.second > TargetNumRegisters) 5983 Selected = false; 5984 } 5985 if (Selected) { 5986 MaxVF = VFs[i]; 5987 break; 5988 } 5989 } 5990 if (ElementCount MinVF = 5991 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5992 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5993 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5994 << ") with target's minimum: " << MinVF << '\n'); 5995 MaxVF = MinVF; 5996 } 5997 } 5998 } 5999 return MaxVF; 6000 } 6001 6002 bool LoopVectorizationCostModel::isMoreProfitable( 6003 const VectorizationFactor &A, const VectorizationFactor &B) const { 6004 InstructionCost::CostType CostA = *A.Cost.getValue(); 6005 InstructionCost::CostType CostB = *B.Cost.getValue(); 6006 6007 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6008 6009 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6010 MaxTripCount) { 6011 // If we are folding the tail and the trip count is a known (possibly small) 6012 // constant, the trip count will be rounded up to an integer number of 6013 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6014 // which we compare directly. When not folding the tail, the total cost will 6015 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6016 // approximated with the per-lane cost below instead of using the tripcount 6017 // as here. 6018 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6019 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6020 return RTCostA < RTCostB; 6021 } 6022 6023 // To avoid the need for FP division: 6024 // (CostA / A.Width) < (CostB / B.Width) 6025 // <=> (CostA * B.Width) < (CostB * A.Width) 6026 return (CostA * B.Width.getKnownMinValue()) < 6027 (CostB * A.Width.getKnownMinValue()); 6028 } 6029 6030 VectorizationFactor 6031 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 6032 // FIXME: This can be fixed for scalable vectors later, because at this stage 6033 // the LoopVectorizer will only consider vectorizing a loop with scalable 6034 // vectors when the loop has a hint to enable vectorization for a given VF. 6035 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 6036 6037 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6038 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6039 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6040 6041 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6042 VectorizationFactor ChosenFactor = ScalarCost; 6043 6044 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6045 if (ForceVectorization && MaxVF.isVector()) { 6046 // Ignore scalar width, because the user explicitly wants vectorization. 6047 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6048 // evaluation. 6049 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6050 } 6051 6052 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 6053 i *= 2) { 6054 // Notice that the vector loop needs to be executed less times, so 6055 // we need to divide the cost of the vector loops by the width of 6056 // the vector elements. 6057 VectorizationCostTy C = expectedCost(i); 6058 6059 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6060 VectorizationFactor Candidate(i, C.first); 6061 LLVM_DEBUG( 6062 dbgs() << "LV: Vector loop of width " << i << " costs: " 6063 << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue()) 6064 << ".\n"); 6065 6066 if (!C.second && !ForceVectorization) { 6067 LLVM_DEBUG( 6068 dbgs() << "LV: Not considering vector loop of width " << i 6069 << " because it will not generate any vector instructions.\n"); 6070 continue; 6071 } 6072 6073 // If profitable add it to ProfitableVF list. 6074 if (isMoreProfitable(Candidate, ScalarCost)) 6075 ProfitableVFs.push_back(Candidate); 6076 6077 if (isMoreProfitable(Candidate, ChosenFactor)) 6078 ChosenFactor = Candidate; 6079 } 6080 6081 if (!EnableCondStoresVectorization && NumPredStores) { 6082 reportVectorizationFailure("There are conditional stores.", 6083 "store that is conditionally executed prevents vectorization", 6084 "ConditionalStore", ORE, TheLoop); 6085 ChosenFactor = ScalarCost; 6086 } 6087 6088 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6089 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6090 dbgs() 6091 << "LV: Vectorization seems to be not beneficial, " 6092 << "but was forced by a user.\n"); 6093 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6094 return ChosenFactor; 6095 } 6096 6097 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6098 const Loop &L, ElementCount VF) const { 6099 // Cross iteration phis such as reductions need special handling and are 6100 // currently unsupported. 6101 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6102 return Legal->isFirstOrderRecurrence(&Phi) || 6103 Legal->isReductionVariable(&Phi); 6104 })) 6105 return false; 6106 6107 // Phis with uses outside of the loop require special handling and are 6108 // currently unsupported. 6109 for (auto &Entry : Legal->getInductionVars()) { 6110 // Look for uses of the value of the induction at the last iteration. 6111 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6112 for (User *U : PostInc->users()) 6113 if (!L.contains(cast<Instruction>(U))) 6114 return false; 6115 // Look for uses of penultimate value of the induction. 6116 for (User *U : Entry.first->users()) 6117 if (!L.contains(cast<Instruction>(U))) 6118 return false; 6119 } 6120 6121 // Induction variables that are widened require special handling that is 6122 // currently not supported. 6123 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6124 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6125 this->isProfitableToScalarize(Entry.first, VF)); 6126 })) 6127 return false; 6128 6129 return true; 6130 } 6131 6132 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6133 const ElementCount VF) const { 6134 // FIXME: We need a much better cost-model to take different parameters such 6135 // as register pressure, code size increase and cost of extra branches into 6136 // account. For now we apply a very crude heuristic and only consider loops 6137 // with vectorization factors larger than a certain value. 6138 // We also consider epilogue vectorization unprofitable for targets that don't 6139 // consider interleaving beneficial (eg. MVE). 6140 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6141 return false; 6142 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6143 return true; 6144 return false; 6145 } 6146 6147 VectorizationFactor 6148 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6149 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6150 VectorizationFactor Result = VectorizationFactor::Disabled(); 6151 if (!EnableEpilogueVectorization) { 6152 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6153 return Result; 6154 } 6155 6156 if (!isScalarEpilogueAllowed()) { 6157 LLVM_DEBUG( 6158 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6159 "allowed.\n";); 6160 return Result; 6161 } 6162 6163 // FIXME: This can be fixed for scalable vectors later, because at this stage 6164 // the LoopVectorizer will only consider vectorizing a loop with scalable 6165 // vectors when the loop has a hint to enable vectorization for a given VF. 6166 if (MainLoopVF.isScalable()) { 6167 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6168 "yet supported.\n"); 6169 return Result; 6170 } 6171 6172 // Not really a cost consideration, but check for unsupported cases here to 6173 // simplify the logic. 6174 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6175 LLVM_DEBUG( 6176 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6177 "not a supported candidate.\n";); 6178 return Result; 6179 } 6180 6181 if (EpilogueVectorizationForceVF > 1) { 6182 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6183 if (LVP.hasPlanWithVFs( 6184 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6185 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6186 else { 6187 LLVM_DEBUG( 6188 dbgs() 6189 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6190 return Result; 6191 } 6192 } 6193 6194 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6195 TheLoop->getHeader()->getParent()->hasMinSize()) { 6196 LLVM_DEBUG( 6197 dbgs() 6198 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6199 return Result; 6200 } 6201 6202 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6203 return Result; 6204 6205 for (auto &NextVF : ProfitableVFs) 6206 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6207 (Result.Width.getFixedValue() == 1 || 6208 isMoreProfitable(NextVF, Result)) && 6209 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6210 Result = NextVF; 6211 6212 if (Result != VectorizationFactor::Disabled()) 6213 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6214 << Result.Width.getFixedValue() << "\n";); 6215 return Result; 6216 } 6217 6218 std::pair<unsigned, unsigned> 6219 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6220 unsigned MinWidth = -1U; 6221 unsigned MaxWidth = 8; 6222 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6223 6224 // For each block. 6225 for (BasicBlock *BB : TheLoop->blocks()) { 6226 // For each instruction in the loop. 6227 for (Instruction &I : BB->instructionsWithoutDebug()) { 6228 Type *T = I.getType(); 6229 6230 // Skip ignored values. 6231 if (ValuesToIgnore.count(&I)) 6232 continue; 6233 6234 // Only examine Loads, Stores and PHINodes. 6235 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6236 continue; 6237 6238 // Examine PHI nodes that are reduction variables. Update the type to 6239 // account for the recurrence type. 6240 if (auto *PN = dyn_cast<PHINode>(&I)) { 6241 if (!Legal->isReductionVariable(PN)) 6242 continue; 6243 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6244 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6245 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6246 RdxDesc.getRecurrenceType(), 6247 TargetTransformInfo::ReductionFlags())) 6248 continue; 6249 T = RdxDesc.getRecurrenceType(); 6250 } 6251 6252 // Examine the stored values. 6253 if (auto *ST = dyn_cast<StoreInst>(&I)) 6254 T = ST->getValueOperand()->getType(); 6255 6256 // Ignore loaded pointer types and stored pointer types that are not 6257 // vectorizable. 6258 // 6259 // FIXME: The check here attempts to predict whether a load or store will 6260 // be vectorized. We only know this for certain after a VF has 6261 // been selected. Here, we assume that if an access can be 6262 // vectorized, it will be. We should also look at extending this 6263 // optimization to non-pointer types. 6264 // 6265 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6266 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6267 continue; 6268 6269 MinWidth = std::min(MinWidth, 6270 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6271 MaxWidth = std::max(MaxWidth, 6272 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6273 } 6274 } 6275 6276 return {MinWidth, MaxWidth}; 6277 } 6278 6279 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6280 unsigned LoopCost) { 6281 // -- The interleave heuristics -- 6282 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6283 // There are many micro-architectural considerations that we can't predict 6284 // at this level. For example, frontend pressure (on decode or fetch) due to 6285 // code size, or the number and capabilities of the execution ports. 6286 // 6287 // We use the following heuristics to select the interleave count: 6288 // 1. If the code has reductions, then we interleave to break the cross 6289 // iteration dependency. 6290 // 2. If the loop is really small, then we interleave to reduce the loop 6291 // overhead. 6292 // 3. We don't interleave if we think that we will spill registers to memory 6293 // due to the increased register pressure. 6294 6295 if (!isScalarEpilogueAllowed()) 6296 return 1; 6297 6298 // We used the distance for the interleave count. 6299 if (Legal->getMaxSafeDepDistBytes() != -1U) 6300 return 1; 6301 6302 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6303 const bool HasReductions = !Legal->getReductionVars().empty(); 6304 // Do not interleave loops with a relatively small known or estimated trip 6305 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6306 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6307 // because with the above conditions interleaving can expose ILP and break 6308 // cross iteration dependences for reductions. 6309 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6310 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6311 return 1; 6312 6313 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6314 // We divide by these constants so assume that we have at least one 6315 // instruction that uses at least one register. 6316 for (auto& pair : R.MaxLocalUsers) { 6317 pair.second = std::max(pair.second, 1U); 6318 } 6319 6320 // We calculate the interleave count using the following formula. 6321 // Subtract the number of loop invariants from the number of available 6322 // registers. These registers are used by all of the interleaved instances. 6323 // Next, divide the remaining registers by the number of registers that is 6324 // required by the loop, in order to estimate how many parallel instances 6325 // fit without causing spills. All of this is rounded down if necessary to be 6326 // a power of two. We want power of two interleave count to simplify any 6327 // addressing operations or alignment considerations. 6328 // We also want power of two interleave counts to ensure that the induction 6329 // variable of the vector loop wraps to zero, when tail is folded by masking; 6330 // this currently happens when OptForSize, in which case IC is set to 1 above. 6331 unsigned IC = UINT_MAX; 6332 6333 for (auto& pair : R.MaxLocalUsers) { 6334 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6335 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6336 << " registers of " 6337 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6338 if (VF.isScalar()) { 6339 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6340 TargetNumRegisters = ForceTargetNumScalarRegs; 6341 } else { 6342 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6343 TargetNumRegisters = ForceTargetNumVectorRegs; 6344 } 6345 unsigned MaxLocalUsers = pair.second; 6346 unsigned LoopInvariantRegs = 0; 6347 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6348 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6349 6350 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6351 // Don't count the induction variable as interleaved. 6352 if (EnableIndVarRegisterHeur) { 6353 TmpIC = 6354 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6355 std::max(1U, (MaxLocalUsers - 1))); 6356 } 6357 6358 IC = std::min(IC, TmpIC); 6359 } 6360 6361 // Clamp the interleave ranges to reasonable counts. 6362 unsigned MaxInterleaveCount = 6363 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6364 6365 // Check if the user has overridden the max. 6366 if (VF.isScalar()) { 6367 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6368 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6369 } else { 6370 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6371 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6372 } 6373 6374 // If trip count is known or estimated compile time constant, limit the 6375 // interleave count to be less than the trip count divided by VF, provided it 6376 // is at least 1. 6377 // 6378 // For scalable vectors we can't know if interleaving is beneficial. It may 6379 // not be beneficial for small loops if none of the lanes in the second vector 6380 // iterations is enabled. However, for larger loops, there is likely to be a 6381 // similar benefit as for fixed-width vectors. For now, we choose to leave 6382 // the InterleaveCount as if vscale is '1', although if some information about 6383 // the vector is known (e.g. min vector size), we can make a better decision. 6384 if (BestKnownTC) { 6385 MaxInterleaveCount = 6386 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6387 // Make sure MaxInterleaveCount is greater than 0. 6388 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6389 } 6390 6391 assert(MaxInterleaveCount > 0 && 6392 "Maximum interleave count must be greater than 0"); 6393 6394 // Clamp the calculated IC to be between the 1 and the max interleave count 6395 // that the target and trip count allows. 6396 if (IC > MaxInterleaveCount) 6397 IC = MaxInterleaveCount; 6398 else 6399 // Make sure IC is greater than 0. 6400 IC = std::max(1u, IC); 6401 6402 assert(IC > 0 && "Interleave count must be greater than 0."); 6403 6404 // If we did not calculate the cost for VF (because the user selected the VF) 6405 // then we calculate the cost of VF here. 6406 if (LoopCost == 0) { 6407 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6408 LoopCost = *expectedCost(VF).first.getValue(); 6409 } 6410 6411 assert(LoopCost && "Non-zero loop cost expected"); 6412 6413 // Interleave if we vectorized this loop and there is a reduction that could 6414 // benefit from interleaving. 6415 if (VF.isVector() && HasReductions) { 6416 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6417 return IC; 6418 } 6419 6420 // Note that if we've already vectorized the loop we will have done the 6421 // runtime check and so interleaving won't require further checks. 6422 bool InterleavingRequiresRuntimePointerCheck = 6423 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6424 6425 // We want to interleave small loops in order to reduce the loop overhead and 6426 // potentially expose ILP opportunities. 6427 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6428 << "LV: IC is " << IC << '\n' 6429 << "LV: VF is " << VF << '\n'); 6430 const bool AggressivelyInterleaveReductions = 6431 TTI.enableAggressiveInterleaving(HasReductions); 6432 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6433 // We assume that the cost overhead is 1 and we use the cost model 6434 // to estimate the cost of the loop and interleave until the cost of the 6435 // loop overhead is about 5% of the cost of the loop. 6436 unsigned SmallIC = 6437 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6438 6439 // Interleave until store/load ports (estimated by max interleave count) are 6440 // saturated. 6441 unsigned NumStores = Legal->getNumStores(); 6442 unsigned NumLoads = Legal->getNumLoads(); 6443 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6444 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6445 6446 // If we have a scalar reduction (vector reductions are already dealt with 6447 // by this point), we can increase the critical path length if the loop 6448 // we're interleaving is inside another loop. Limit, by default to 2, so the 6449 // critical path only gets increased by one reduction operation. 6450 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6451 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6452 SmallIC = std::min(SmallIC, F); 6453 StoresIC = std::min(StoresIC, F); 6454 LoadsIC = std::min(LoadsIC, F); 6455 } 6456 6457 if (EnableLoadStoreRuntimeInterleave && 6458 std::max(StoresIC, LoadsIC) > SmallIC) { 6459 LLVM_DEBUG( 6460 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6461 return std::max(StoresIC, LoadsIC); 6462 } 6463 6464 // If there are scalar reductions and TTI has enabled aggressive 6465 // interleaving for reductions, we will interleave to expose ILP. 6466 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6467 AggressivelyInterleaveReductions) { 6468 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6469 // Interleave no less than SmallIC but not as aggressive as the normal IC 6470 // to satisfy the rare situation when resources are too limited. 6471 return std::max(IC / 2, SmallIC); 6472 } else { 6473 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6474 return SmallIC; 6475 } 6476 } 6477 6478 // Interleave if this is a large loop (small loops are already dealt with by 6479 // this point) that could benefit from interleaving. 6480 if (AggressivelyInterleaveReductions) { 6481 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6482 return IC; 6483 } 6484 6485 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6486 return 1; 6487 } 6488 6489 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6490 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6491 // This function calculates the register usage by measuring the highest number 6492 // of values that are alive at a single location. Obviously, this is a very 6493 // rough estimation. We scan the loop in a topological order in order and 6494 // assign a number to each instruction. We use RPO to ensure that defs are 6495 // met before their users. We assume that each instruction that has in-loop 6496 // users starts an interval. We record every time that an in-loop value is 6497 // used, so we have a list of the first and last occurrences of each 6498 // instruction. Next, we transpose this data structure into a multi map that 6499 // holds the list of intervals that *end* at a specific location. This multi 6500 // map allows us to perform a linear search. We scan the instructions linearly 6501 // and record each time that a new interval starts, by placing it in a set. 6502 // If we find this value in the multi-map then we remove it from the set. 6503 // The max register usage is the maximum size of the set. 6504 // We also search for instructions that are defined outside the loop, but are 6505 // used inside the loop. We need this number separately from the max-interval 6506 // usage number because when we unroll, loop-invariant values do not take 6507 // more register. 6508 LoopBlocksDFS DFS(TheLoop); 6509 DFS.perform(LI); 6510 6511 RegisterUsage RU; 6512 6513 // Each 'key' in the map opens a new interval. The values 6514 // of the map are the index of the 'last seen' usage of the 6515 // instruction that is the key. 6516 using IntervalMap = DenseMap<Instruction *, unsigned>; 6517 6518 // Maps instruction to its index. 6519 SmallVector<Instruction *, 64> IdxToInstr; 6520 // Marks the end of each interval. 6521 IntervalMap EndPoint; 6522 // Saves the list of instruction indices that are used in the loop. 6523 SmallPtrSet<Instruction *, 8> Ends; 6524 // Saves the list of values that are used in the loop but are 6525 // defined outside the loop, such as arguments and constants. 6526 SmallPtrSet<Value *, 8> LoopInvariants; 6527 6528 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6529 for (Instruction &I : BB->instructionsWithoutDebug()) { 6530 IdxToInstr.push_back(&I); 6531 6532 // Save the end location of each USE. 6533 for (Value *U : I.operands()) { 6534 auto *Instr = dyn_cast<Instruction>(U); 6535 6536 // Ignore non-instruction values such as arguments, constants, etc. 6537 if (!Instr) 6538 continue; 6539 6540 // If this instruction is outside the loop then record it and continue. 6541 if (!TheLoop->contains(Instr)) { 6542 LoopInvariants.insert(Instr); 6543 continue; 6544 } 6545 6546 // Overwrite previous end points. 6547 EndPoint[Instr] = IdxToInstr.size(); 6548 Ends.insert(Instr); 6549 } 6550 } 6551 } 6552 6553 // Saves the list of intervals that end with the index in 'key'. 6554 using InstrList = SmallVector<Instruction *, 2>; 6555 DenseMap<unsigned, InstrList> TransposeEnds; 6556 6557 // Transpose the EndPoints to a list of values that end at each index. 6558 for (auto &Interval : EndPoint) 6559 TransposeEnds[Interval.second].push_back(Interval.first); 6560 6561 SmallPtrSet<Instruction *, 8> OpenIntervals; 6562 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6563 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6564 6565 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6566 6567 // A lambda that gets the register usage for the given type and VF. 6568 const auto &TTICapture = TTI; 6569 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6570 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6571 return 0U; 6572 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6573 }; 6574 6575 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6576 Instruction *I = IdxToInstr[i]; 6577 6578 // Remove all of the instructions that end at this location. 6579 InstrList &List = TransposeEnds[i]; 6580 for (Instruction *ToRemove : List) 6581 OpenIntervals.erase(ToRemove); 6582 6583 // Ignore instructions that are never used within the loop. 6584 if (!Ends.count(I)) 6585 continue; 6586 6587 // Skip ignored values. 6588 if (ValuesToIgnore.count(I)) 6589 continue; 6590 6591 // For each VF find the maximum usage of registers. 6592 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6593 // Count the number of live intervals. 6594 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6595 6596 if (VFs[j].isScalar()) { 6597 for (auto Inst : OpenIntervals) { 6598 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6599 if (RegUsage.find(ClassID) == RegUsage.end()) 6600 RegUsage[ClassID] = 1; 6601 else 6602 RegUsage[ClassID] += 1; 6603 } 6604 } else { 6605 collectUniformsAndScalars(VFs[j]); 6606 for (auto Inst : OpenIntervals) { 6607 // Skip ignored values for VF > 1. 6608 if (VecValuesToIgnore.count(Inst)) 6609 continue; 6610 if (isScalarAfterVectorization(Inst, VFs[j])) { 6611 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6612 if (RegUsage.find(ClassID) == RegUsage.end()) 6613 RegUsage[ClassID] = 1; 6614 else 6615 RegUsage[ClassID] += 1; 6616 } else { 6617 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6618 if (RegUsage.find(ClassID) == RegUsage.end()) 6619 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6620 else 6621 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6622 } 6623 } 6624 } 6625 6626 for (auto& pair : RegUsage) { 6627 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6628 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6629 else 6630 MaxUsages[j][pair.first] = pair.second; 6631 } 6632 } 6633 6634 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6635 << OpenIntervals.size() << '\n'); 6636 6637 // Add the current instruction to the list of open intervals. 6638 OpenIntervals.insert(I); 6639 } 6640 6641 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6642 SmallMapVector<unsigned, unsigned, 4> Invariant; 6643 6644 for (auto Inst : LoopInvariants) { 6645 unsigned Usage = 6646 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6647 unsigned ClassID = 6648 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6649 if (Invariant.find(ClassID) == Invariant.end()) 6650 Invariant[ClassID] = Usage; 6651 else 6652 Invariant[ClassID] += Usage; 6653 } 6654 6655 LLVM_DEBUG({ 6656 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6657 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6658 << " item\n"; 6659 for (const auto &pair : MaxUsages[i]) { 6660 dbgs() << "LV(REG): RegisterClass: " 6661 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6662 << " registers\n"; 6663 } 6664 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6665 << " item\n"; 6666 for (const auto &pair : Invariant) { 6667 dbgs() << "LV(REG): RegisterClass: " 6668 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6669 << " registers\n"; 6670 } 6671 }); 6672 6673 RU.LoopInvariantRegs = Invariant; 6674 RU.MaxLocalUsers = MaxUsages[i]; 6675 RUs[i] = RU; 6676 } 6677 6678 return RUs; 6679 } 6680 6681 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6682 // TODO: Cost model for emulated masked load/store is completely 6683 // broken. This hack guides the cost model to use an artificially 6684 // high enough value to practically disable vectorization with such 6685 // operations, except where previously deployed legality hack allowed 6686 // using very low cost values. This is to avoid regressions coming simply 6687 // from moving "masked load/store" check from legality to cost model. 6688 // Masked Load/Gather emulation was previously never allowed. 6689 // Limited number of Masked Store/Scatter emulation was allowed. 6690 assert(isPredicatedInst(I) && 6691 "Expecting a scalar emulated instruction"); 6692 return isa<LoadInst>(I) || 6693 (isa<StoreInst>(I) && 6694 NumPredStores > NumberOfStoresToPredicate); 6695 } 6696 6697 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6698 // If we aren't vectorizing the loop, or if we've already collected the 6699 // instructions to scalarize, there's nothing to do. Collection may already 6700 // have occurred if we have a user-selected VF and are now computing the 6701 // expected cost for interleaving. 6702 if (VF.isScalar() || VF.isZero() || 6703 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6704 return; 6705 6706 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6707 // not profitable to scalarize any instructions, the presence of VF in the 6708 // map will indicate that we've analyzed it already. 6709 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6710 6711 // Find all the instructions that are scalar with predication in the loop and 6712 // determine if it would be better to not if-convert the blocks they are in. 6713 // If so, we also record the instructions to scalarize. 6714 for (BasicBlock *BB : TheLoop->blocks()) { 6715 if (!blockNeedsPredication(BB)) 6716 continue; 6717 for (Instruction &I : *BB) 6718 if (isScalarWithPredication(&I)) { 6719 ScalarCostsTy ScalarCosts; 6720 // Do not apply discount logic if hacked cost is needed 6721 // for emulated masked memrefs. 6722 if (!useEmulatedMaskMemRefHack(&I) && 6723 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6724 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6725 // Remember that BB will remain after vectorization. 6726 PredicatedBBsAfterVectorization.insert(BB); 6727 } 6728 } 6729 } 6730 6731 int LoopVectorizationCostModel::computePredInstDiscount( 6732 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6733 assert(!isUniformAfterVectorization(PredInst, VF) && 6734 "Instruction marked uniform-after-vectorization will be predicated"); 6735 6736 // Initialize the discount to zero, meaning that the scalar version and the 6737 // vector version cost the same. 6738 InstructionCost Discount = 0; 6739 6740 // Holds instructions to analyze. The instructions we visit are mapped in 6741 // ScalarCosts. Those instructions are the ones that would be scalarized if 6742 // we find that the scalar version costs less. 6743 SmallVector<Instruction *, 8> Worklist; 6744 6745 // Returns true if the given instruction can be scalarized. 6746 auto canBeScalarized = [&](Instruction *I) -> bool { 6747 // We only attempt to scalarize instructions forming a single-use chain 6748 // from the original predicated block that would otherwise be vectorized. 6749 // Although not strictly necessary, we give up on instructions we know will 6750 // already be scalar to avoid traversing chains that are unlikely to be 6751 // beneficial. 6752 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6753 isScalarAfterVectorization(I, VF)) 6754 return false; 6755 6756 // If the instruction is scalar with predication, it will be analyzed 6757 // separately. We ignore it within the context of PredInst. 6758 if (isScalarWithPredication(I)) 6759 return false; 6760 6761 // If any of the instruction's operands are uniform after vectorization, 6762 // the instruction cannot be scalarized. This prevents, for example, a 6763 // masked load from being scalarized. 6764 // 6765 // We assume we will only emit a value for lane zero of an instruction 6766 // marked uniform after vectorization, rather than VF identical values. 6767 // Thus, if we scalarize an instruction that uses a uniform, we would 6768 // create uses of values corresponding to the lanes we aren't emitting code 6769 // for. This behavior can be changed by allowing getScalarValue to clone 6770 // the lane zero values for uniforms rather than asserting. 6771 for (Use &U : I->operands()) 6772 if (auto *J = dyn_cast<Instruction>(U.get())) 6773 if (isUniformAfterVectorization(J, VF)) 6774 return false; 6775 6776 // Otherwise, we can scalarize the instruction. 6777 return true; 6778 }; 6779 6780 // Compute the expected cost discount from scalarizing the entire expression 6781 // feeding the predicated instruction. We currently only consider expressions 6782 // that are single-use instruction chains. 6783 Worklist.push_back(PredInst); 6784 while (!Worklist.empty()) { 6785 Instruction *I = Worklist.pop_back_val(); 6786 6787 // If we've already analyzed the instruction, there's nothing to do. 6788 if (ScalarCosts.find(I) != ScalarCosts.end()) 6789 continue; 6790 6791 // Compute the cost of the vector instruction. Note that this cost already 6792 // includes the scalarization overhead of the predicated instruction. 6793 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6794 6795 // Compute the cost of the scalarized instruction. This cost is the cost of 6796 // the instruction as if it wasn't if-converted and instead remained in the 6797 // predicated block. We will scale this cost by block probability after 6798 // computing the scalarization overhead. 6799 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6800 InstructionCost ScalarCost = 6801 VF.getKnownMinValue() * 6802 getInstructionCost(I, ElementCount::getFixed(1)).first; 6803 6804 // Compute the scalarization overhead of needed insertelement instructions 6805 // and phi nodes. 6806 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6807 ScalarCost += TTI.getScalarizationOverhead( 6808 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6809 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6810 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6811 ScalarCost += 6812 VF.getKnownMinValue() * 6813 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6814 } 6815 6816 // Compute the scalarization overhead of needed extractelement 6817 // instructions. For each of the instruction's operands, if the operand can 6818 // be scalarized, add it to the worklist; otherwise, account for the 6819 // overhead. 6820 for (Use &U : I->operands()) 6821 if (auto *J = dyn_cast<Instruction>(U.get())) { 6822 assert(VectorType::isValidElementType(J->getType()) && 6823 "Instruction has non-scalar type"); 6824 if (canBeScalarized(J)) 6825 Worklist.push_back(J); 6826 else if (needsExtract(J, VF)) { 6827 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6828 ScalarCost += TTI.getScalarizationOverhead( 6829 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6830 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6831 } 6832 } 6833 6834 // Scale the total scalar cost by block probability. 6835 ScalarCost /= getReciprocalPredBlockProb(); 6836 6837 // Compute the discount. A non-negative discount means the vector version 6838 // of the instruction costs more, and scalarizing would be beneficial. 6839 Discount += VectorCost - ScalarCost; 6840 ScalarCosts[I] = ScalarCost; 6841 } 6842 6843 return *Discount.getValue(); 6844 } 6845 6846 LoopVectorizationCostModel::VectorizationCostTy 6847 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6848 VectorizationCostTy Cost; 6849 6850 // For each block. 6851 for (BasicBlock *BB : TheLoop->blocks()) { 6852 VectorizationCostTy BlockCost; 6853 6854 // For each instruction in the old loop. 6855 for (Instruction &I : BB->instructionsWithoutDebug()) { 6856 // Skip ignored values. 6857 if (ValuesToIgnore.count(&I) || 6858 (VF.isVector() && VecValuesToIgnore.count(&I))) 6859 continue; 6860 6861 VectorizationCostTy C = getInstructionCost(&I, VF); 6862 6863 // Check if we should override the cost. 6864 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6865 C.first = InstructionCost(ForceTargetInstructionCost); 6866 6867 BlockCost.first += C.first; 6868 BlockCost.second |= C.second; 6869 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6870 << " for VF " << VF << " For instruction: " << I 6871 << '\n'); 6872 } 6873 6874 // If we are vectorizing a predicated block, it will have been 6875 // if-converted. This means that the block's instructions (aside from 6876 // stores and instructions that may divide by zero) will now be 6877 // unconditionally executed. For the scalar case, we may not always execute 6878 // the predicated block, if it is an if-else block. Thus, scale the block's 6879 // cost by the probability of executing it. blockNeedsPredication from 6880 // Legal is used so as to not include all blocks in tail folded loops. 6881 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6882 BlockCost.first /= getReciprocalPredBlockProb(); 6883 6884 Cost.first += BlockCost.first; 6885 Cost.second |= BlockCost.second; 6886 } 6887 6888 return Cost; 6889 } 6890 6891 /// Gets Address Access SCEV after verifying that the access pattern 6892 /// is loop invariant except the induction variable dependence. 6893 /// 6894 /// This SCEV can be sent to the Target in order to estimate the address 6895 /// calculation cost. 6896 static const SCEV *getAddressAccessSCEV( 6897 Value *Ptr, 6898 LoopVectorizationLegality *Legal, 6899 PredicatedScalarEvolution &PSE, 6900 const Loop *TheLoop) { 6901 6902 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6903 if (!Gep) 6904 return nullptr; 6905 6906 // We are looking for a gep with all loop invariant indices except for one 6907 // which should be an induction variable. 6908 auto SE = PSE.getSE(); 6909 unsigned NumOperands = Gep->getNumOperands(); 6910 for (unsigned i = 1; i < NumOperands; ++i) { 6911 Value *Opd = Gep->getOperand(i); 6912 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6913 !Legal->isInductionVariable(Opd)) 6914 return nullptr; 6915 } 6916 6917 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6918 return PSE.getSCEV(Ptr); 6919 } 6920 6921 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6922 return Legal->hasStride(I->getOperand(0)) || 6923 Legal->hasStride(I->getOperand(1)); 6924 } 6925 6926 InstructionCost 6927 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6928 ElementCount VF) { 6929 assert(VF.isVector() && 6930 "Scalarization cost of instruction implies vectorization."); 6931 if (VF.isScalable()) 6932 return InstructionCost::getInvalid(); 6933 6934 Type *ValTy = getMemInstValueType(I); 6935 auto SE = PSE.getSE(); 6936 6937 unsigned AS = getLoadStoreAddressSpace(I); 6938 Value *Ptr = getLoadStorePointerOperand(I); 6939 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6940 6941 // Figure out whether the access is strided and get the stride value 6942 // if it's known in compile time 6943 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6944 6945 // Get the cost of the scalar memory instruction and address computation. 6946 InstructionCost Cost = 6947 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6948 6949 // Don't pass *I here, since it is scalar but will actually be part of a 6950 // vectorized loop where the user of it is a vectorized instruction. 6951 const Align Alignment = getLoadStoreAlignment(I); 6952 Cost += VF.getKnownMinValue() * 6953 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6954 AS, TTI::TCK_RecipThroughput); 6955 6956 // Get the overhead of the extractelement and insertelement instructions 6957 // we might create due to scalarization. 6958 Cost += getScalarizationOverhead(I, VF); 6959 6960 // If we have a predicated load/store, it will need extra i1 extracts and 6961 // conditional branches, but may not be executed for each vector lane. Scale 6962 // the cost by the probability of executing the predicated block. 6963 if (isPredicatedInst(I)) { 6964 Cost /= getReciprocalPredBlockProb(); 6965 6966 // Add the cost of an i1 extract and a branch 6967 auto *Vec_i1Ty = 6968 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6969 Cost += TTI.getScalarizationOverhead( 6970 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6971 /*Insert=*/false, /*Extract=*/true); 6972 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6973 6974 if (useEmulatedMaskMemRefHack(I)) 6975 // Artificially setting to a high enough value to practically disable 6976 // vectorization with such operations. 6977 Cost = 3000000; 6978 } 6979 6980 return Cost; 6981 } 6982 6983 InstructionCost 6984 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6985 ElementCount VF) { 6986 Type *ValTy = getMemInstValueType(I); 6987 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6988 Value *Ptr = getLoadStorePointerOperand(I); 6989 unsigned AS = getLoadStoreAddressSpace(I); 6990 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6991 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6992 6993 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6994 "Stride should be 1 or -1 for consecutive memory access"); 6995 const Align Alignment = getLoadStoreAlignment(I); 6996 InstructionCost Cost = 0; 6997 if (Legal->isMaskRequired(I)) 6998 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6999 CostKind); 7000 else 7001 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7002 CostKind, I); 7003 7004 bool Reverse = ConsecutiveStride < 0; 7005 if (Reverse) 7006 Cost += 7007 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7008 return Cost; 7009 } 7010 7011 InstructionCost 7012 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7013 ElementCount VF) { 7014 assert(Legal->isUniformMemOp(*I)); 7015 7016 Type *ValTy = getMemInstValueType(I); 7017 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7018 const Align Alignment = getLoadStoreAlignment(I); 7019 unsigned AS = getLoadStoreAddressSpace(I); 7020 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7021 if (isa<LoadInst>(I)) { 7022 return TTI.getAddressComputationCost(ValTy) + 7023 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7024 CostKind) + 7025 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7026 } 7027 StoreInst *SI = cast<StoreInst>(I); 7028 7029 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7030 return TTI.getAddressComputationCost(ValTy) + 7031 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7032 CostKind) + 7033 (isLoopInvariantStoreValue 7034 ? 0 7035 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7036 VF.getKnownMinValue() - 1)); 7037 } 7038 7039 InstructionCost 7040 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7041 ElementCount VF) { 7042 Type *ValTy = getMemInstValueType(I); 7043 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7044 const Align Alignment = getLoadStoreAlignment(I); 7045 const Value *Ptr = getLoadStorePointerOperand(I); 7046 7047 return TTI.getAddressComputationCost(VectorTy) + 7048 TTI.getGatherScatterOpCost( 7049 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7050 TargetTransformInfo::TCK_RecipThroughput, I); 7051 } 7052 7053 InstructionCost 7054 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7055 ElementCount VF) { 7056 // TODO: Once we have support for interleaving with scalable vectors 7057 // we can calculate the cost properly here. 7058 if (VF.isScalable()) 7059 return InstructionCost::getInvalid(); 7060 7061 Type *ValTy = getMemInstValueType(I); 7062 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7063 unsigned AS = getLoadStoreAddressSpace(I); 7064 7065 auto Group = getInterleavedAccessGroup(I); 7066 assert(Group && "Fail to get an interleaved access group."); 7067 7068 unsigned InterleaveFactor = Group->getFactor(); 7069 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7070 7071 // Holds the indices of existing members in an interleaved load group. 7072 // An interleaved store group doesn't need this as it doesn't allow gaps. 7073 SmallVector<unsigned, 4> Indices; 7074 if (isa<LoadInst>(I)) { 7075 for (unsigned i = 0; i < InterleaveFactor; i++) 7076 if (Group->getMember(i)) 7077 Indices.push_back(i); 7078 } 7079 7080 // Calculate the cost of the whole interleaved group. 7081 bool UseMaskForGaps = 7082 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7083 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7084 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7085 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7086 7087 if (Group->isReverse()) { 7088 // TODO: Add support for reversed masked interleaved access. 7089 assert(!Legal->isMaskRequired(I) && 7090 "Reverse masked interleaved access not supported."); 7091 Cost += 7092 Group->getNumMembers() * 7093 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7094 } 7095 return Cost; 7096 } 7097 7098 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7099 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7100 // Early exit for no inloop reductions 7101 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7102 return InstructionCost::getInvalid(); 7103 auto *VectorTy = cast<VectorType>(Ty); 7104 7105 // We are looking for a pattern of, and finding the minimal acceptable cost: 7106 // reduce(mul(ext(A), ext(B))) or 7107 // reduce(mul(A, B)) or 7108 // reduce(ext(A)) or 7109 // reduce(A). 7110 // The basic idea is that we walk down the tree to do that, finding the root 7111 // reduction instruction in InLoopReductionImmediateChains. From there we find 7112 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7113 // of the components. If the reduction cost is lower then we return it for the 7114 // reduction instruction and 0 for the other instructions in the pattern. If 7115 // it is not we return an invalid cost specifying the orignal cost method 7116 // should be used. 7117 Instruction *RetI = I; 7118 if ((RetI->getOpcode() == Instruction::SExt || 7119 RetI->getOpcode() == Instruction::ZExt)) { 7120 if (!RetI->hasOneUser()) 7121 return InstructionCost::getInvalid(); 7122 RetI = RetI->user_back(); 7123 } 7124 if (RetI->getOpcode() == Instruction::Mul && 7125 RetI->user_back()->getOpcode() == Instruction::Add) { 7126 if (!RetI->hasOneUser()) 7127 return InstructionCost::getInvalid(); 7128 RetI = RetI->user_back(); 7129 } 7130 7131 // Test if the found instruction is a reduction, and if not return an invalid 7132 // cost specifying the parent to use the original cost modelling. 7133 if (!InLoopReductionImmediateChains.count(RetI)) 7134 return InstructionCost::getInvalid(); 7135 7136 // Find the reduction this chain is a part of and calculate the basic cost of 7137 // the reduction on its own. 7138 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7139 Instruction *ReductionPhi = LastChain; 7140 while (!isa<PHINode>(ReductionPhi)) 7141 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7142 7143 RecurrenceDescriptor RdxDesc = 7144 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7145 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7146 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7147 7148 // Get the operand that was not the reduction chain and match it to one of the 7149 // patterns, returning the better cost if it is found. 7150 Instruction *RedOp = RetI->getOperand(1) == LastChain 7151 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7152 : dyn_cast<Instruction>(RetI->getOperand(1)); 7153 7154 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7155 7156 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7157 !TheLoop->isLoopInvariant(RedOp)) { 7158 bool IsUnsigned = isa<ZExtInst>(RedOp); 7159 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7160 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7161 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7162 CostKind); 7163 7164 InstructionCost ExtCost = 7165 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7166 TTI::CastContextHint::None, CostKind, RedOp); 7167 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7168 return I == RetI ? *RedCost.getValue() : 0; 7169 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7170 Instruction *Mul = RedOp; 7171 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7172 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7173 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7174 Op0->getOpcode() == Op1->getOpcode() && 7175 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7176 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7177 bool IsUnsigned = isa<ZExtInst>(Op0); 7178 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7179 // reduce(mul(ext, ext)) 7180 InstructionCost ExtCost = 7181 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7182 TTI::CastContextHint::None, CostKind, Op0); 7183 InstructionCost MulCost = 7184 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7185 7186 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7187 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7188 CostKind); 7189 7190 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7191 return I == RetI ? *RedCost.getValue() : 0; 7192 } else { 7193 InstructionCost MulCost = 7194 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7195 7196 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7197 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7198 CostKind); 7199 7200 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7201 return I == RetI ? *RedCost.getValue() : 0; 7202 } 7203 } 7204 7205 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7206 } 7207 7208 InstructionCost 7209 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7210 ElementCount VF) { 7211 // Calculate scalar cost only. Vectorization cost should be ready at this 7212 // moment. 7213 if (VF.isScalar()) { 7214 Type *ValTy = getMemInstValueType(I); 7215 const Align Alignment = getLoadStoreAlignment(I); 7216 unsigned AS = getLoadStoreAddressSpace(I); 7217 7218 return TTI.getAddressComputationCost(ValTy) + 7219 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7220 TTI::TCK_RecipThroughput, I); 7221 } 7222 return getWideningCost(I, VF); 7223 } 7224 7225 LoopVectorizationCostModel::VectorizationCostTy 7226 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7227 ElementCount VF) { 7228 // If we know that this instruction will remain uniform, check the cost of 7229 // the scalar version. 7230 if (isUniformAfterVectorization(I, VF)) 7231 VF = ElementCount::getFixed(1); 7232 7233 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7234 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7235 7236 // Forced scalars do not have any scalarization overhead. 7237 auto ForcedScalar = ForcedScalars.find(VF); 7238 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7239 auto InstSet = ForcedScalar->second; 7240 if (InstSet.count(I)) 7241 return VectorizationCostTy( 7242 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7243 VF.getKnownMinValue()), 7244 false); 7245 } 7246 7247 Type *VectorTy; 7248 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7249 7250 bool TypeNotScalarized = 7251 VF.isVector() && VectorTy->isVectorTy() && 7252 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7253 return VectorizationCostTy(C, TypeNotScalarized); 7254 } 7255 7256 InstructionCost 7257 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7258 ElementCount VF) const { 7259 7260 if (VF.isScalable()) 7261 return InstructionCost::getInvalid(); 7262 7263 if (VF.isScalar()) 7264 return 0; 7265 7266 InstructionCost Cost = 0; 7267 Type *RetTy = ToVectorTy(I->getType(), VF); 7268 if (!RetTy->isVoidTy() && 7269 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7270 Cost += TTI.getScalarizationOverhead( 7271 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7272 true, false); 7273 7274 // Some targets keep addresses scalar. 7275 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7276 return Cost; 7277 7278 // Some targets support efficient element stores. 7279 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7280 return Cost; 7281 7282 // Collect operands to consider. 7283 CallInst *CI = dyn_cast<CallInst>(I); 7284 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7285 7286 // Skip operands that do not require extraction/scalarization and do not incur 7287 // any overhead. 7288 SmallVector<Type *> Tys; 7289 for (auto *V : filterExtractingOperands(Ops, VF)) 7290 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7291 return Cost + TTI.getOperandsScalarizationOverhead( 7292 filterExtractingOperands(Ops, VF), Tys); 7293 } 7294 7295 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7296 if (VF.isScalar()) 7297 return; 7298 NumPredStores = 0; 7299 for (BasicBlock *BB : TheLoop->blocks()) { 7300 // For each instruction in the old loop. 7301 for (Instruction &I : *BB) { 7302 Value *Ptr = getLoadStorePointerOperand(&I); 7303 if (!Ptr) 7304 continue; 7305 7306 // TODO: We should generate better code and update the cost model for 7307 // predicated uniform stores. Today they are treated as any other 7308 // predicated store (see added test cases in 7309 // invariant-store-vectorization.ll). 7310 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7311 NumPredStores++; 7312 7313 if (Legal->isUniformMemOp(I)) { 7314 // TODO: Avoid replicating loads and stores instead of 7315 // relying on instcombine to remove them. 7316 // Load: Scalar load + broadcast 7317 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7318 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7319 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7320 continue; 7321 } 7322 7323 // We assume that widening is the best solution when possible. 7324 if (memoryInstructionCanBeWidened(&I, VF)) { 7325 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7326 int ConsecutiveStride = 7327 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7328 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7329 "Expected consecutive stride."); 7330 InstWidening Decision = 7331 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7332 setWideningDecision(&I, VF, Decision, Cost); 7333 continue; 7334 } 7335 7336 // Choose between Interleaving, Gather/Scatter or Scalarization. 7337 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7338 unsigned NumAccesses = 1; 7339 if (isAccessInterleaved(&I)) { 7340 auto Group = getInterleavedAccessGroup(&I); 7341 assert(Group && "Fail to get an interleaved access group."); 7342 7343 // Make one decision for the whole group. 7344 if (getWideningDecision(&I, VF) != CM_Unknown) 7345 continue; 7346 7347 NumAccesses = Group->getNumMembers(); 7348 if (interleavedAccessCanBeWidened(&I, VF)) 7349 InterleaveCost = getInterleaveGroupCost(&I, VF); 7350 } 7351 7352 InstructionCost GatherScatterCost = 7353 isLegalGatherOrScatter(&I) 7354 ? getGatherScatterCost(&I, VF) * NumAccesses 7355 : InstructionCost::getInvalid(); 7356 7357 InstructionCost ScalarizationCost = 7358 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7359 7360 // Choose better solution for the current VF, 7361 // write down this decision and use it during vectorization. 7362 InstructionCost Cost; 7363 InstWidening Decision; 7364 if (InterleaveCost <= GatherScatterCost && 7365 InterleaveCost < ScalarizationCost) { 7366 Decision = CM_Interleave; 7367 Cost = InterleaveCost; 7368 } else if (GatherScatterCost < ScalarizationCost) { 7369 Decision = CM_GatherScatter; 7370 Cost = GatherScatterCost; 7371 } else { 7372 assert(!VF.isScalable() && 7373 "We cannot yet scalarise for scalable vectors"); 7374 Decision = CM_Scalarize; 7375 Cost = ScalarizationCost; 7376 } 7377 // If the instructions belongs to an interleave group, the whole group 7378 // receives the same decision. The whole group receives the cost, but 7379 // the cost will actually be assigned to one instruction. 7380 if (auto Group = getInterleavedAccessGroup(&I)) 7381 setWideningDecision(Group, VF, Decision, Cost); 7382 else 7383 setWideningDecision(&I, VF, Decision, Cost); 7384 } 7385 } 7386 7387 // Make sure that any load of address and any other address computation 7388 // remains scalar unless there is gather/scatter support. This avoids 7389 // inevitable extracts into address registers, and also has the benefit of 7390 // activating LSR more, since that pass can't optimize vectorized 7391 // addresses. 7392 if (TTI.prefersVectorizedAddressing()) 7393 return; 7394 7395 // Start with all scalar pointer uses. 7396 SmallPtrSet<Instruction *, 8> AddrDefs; 7397 for (BasicBlock *BB : TheLoop->blocks()) 7398 for (Instruction &I : *BB) { 7399 Instruction *PtrDef = 7400 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7401 if (PtrDef && TheLoop->contains(PtrDef) && 7402 getWideningDecision(&I, VF) != CM_GatherScatter) 7403 AddrDefs.insert(PtrDef); 7404 } 7405 7406 // Add all instructions used to generate the addresses. 7407 SmallVector<Instruction *, 4> Worklist; 7408 append_range(Worklist, AddrDefs); 7409 while (!Worklist.empty()) { 7410 Instruction *I = Worklist.pop_back_val(); 7411 for (auto &Op : I->operands()) 7412 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7413 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7414 AddrDefs.insert(InstOp).second) 7415 Worklist.push_back(InstOp); 7416 } 7417 7418 for (auto *I : AddrDefs) { 7419 if (isa<LoadInst>(I)) { 7420 // Setting the desired widening decision should ideally be handled in 7421 // by cost functions, but since this involves the task of finding out 7422 // if the loaded register is involved in an address computation, it is 7423 // instead changed here when we know this is the case. 7424 InstWidening Decision = getWideningDecision(I, VF); 7425 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7426 // Scalarize a widened load of address. 7427 setWideningDecision( 7428 I, VF, CM_Scalarize, 7429 (VF.getKnownMinValue() * 7430 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7431 else if (auto Group = getInterleavedAccessGroup(I)) { 7432 // Scalarize an interleave group of address loads. 7433 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7434 if (Instruction *Member = Group->getMember(I)) 7435 setWideningDecision( 7436 Member, VF, CM_Scalarize, 7437 (VF.getKnownMinValue() * 7438 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7439 } 7440 } 7441 } else 7442 // Make sure I gets scalarized and a cost estimate without 7443 // scalarization overhead. 7444 ForcedScalars[VF].insert(I); 7445 } 7446 } 7447 7448 InstructionCost 7449 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7450 Type *&VectorTy) { 7451 Type *RetTy = I->getType(); 7452 if (canTruncateToMinimalBitwidth(I, VF)) 7453 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7454 auto SE = PSE.getSE(); 7455 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7456 7457 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7458 ElementCount VF) -> bool { 7459 if (VF.isScalar()) 7460 return true; 7461 7462 auto Scalarized = InstsToScalarize.find(VF); 7463 assert(Scalarized != InstsToScalarize.end() && 7464 "VF not yet analyzed for scalarization profitability"); 7465 return !Scalarized->second.count(I) && 7466 llvm::all_of(I->users(), [&](User *U) { 7467 auto *UI = cast<Instruction>(U); 7468 return !Scalarized->second.count(UI); 7469 }); 7470 }; 7471 (void) hasSingleCopyAfterVectorization; 7472 7473 if (isScalarAfterVectorization(I, VF)) { 7474 // With the exception of GEPs and PHIs, after scalarization there should 7475 // only be one copy of the instruction generated in the loop. This is 7476 // because the VF is either 1, or any instructions that need scalarizing 7477 // have already been dealt with by the the time we get here. As a result, 7478 // it means we don't have to multiply the instruction cost by VF. 7479 assert(I->getOpcode() == Instruction::GetElementPtr || 7480 I->getOpcode() == Instruction::PHI || 7481 (I->getOpcode() == Instruction::BitCast && 7482 I->getType()->isPointerTy()) || 7483 hasSingleCopyAfterVectorization(I, VF)); 7484 VectorTy = RetTy; 7485 } else 7486 VectorTy = ToVectorTy(RetTy, VF); 7487 7488 // TODO: We need to estimate the cost of intrinsic calls. 7489 switch (I->getOpcode()) { 7490 case Instruction::GetElementPtr: 7491 // We mark this instruction as zero-cost because the cost of GEPs in 7492 // vectorized code depends on whether the corresponding memory instruction 7493 // is scalarized or not. Therefore, we handle GEPs with the memory 7494 // instruction cost. 7495 return 0; 7496 case Instruction::Br: { 7497 // In cases of scalarized and predicated instructions, there will be VF 7498 // predicated blocks in the vectorized loop. Each branch around these 7499 // blocks requires also an extract of its vector compare i1 element. 7500 bool ScalarPredicatedBB = false; 7501 BranchInst *BI = cast<BranchInst>(I); 7502 if (VF.isVector() && BI->isConditional() && 7503 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7504 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7505 ScalarPredicatedBB = true; 7506 7507 if (ScalarPredicatedBB) { 7508 // Return cost for branches around scalarized and predicated blocks. 7509 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7510 auto *Vec_i1Ty = 7511 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7512 return (TTI.getScalarizationOverhead( 7513 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7514 false, true) + 7515 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7516 VF.getKnownMinValue())); 7517 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7518 // The back-edge branch will remain, as will all scalar branches. 7519 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7520 else 7521 // This branch will be eliminated by if-conversion. 7522 return 0; 7523 // Note: We currently assume zero cost for an unconditional branch inside 7524 // a predicated block since it will become a fall-through, although we 7525 // may decide in the future to call TTI for all branches. 7526 } 7527 case Instruction::PHI: { 7528 auto *Phi = cast<PHINode>(I); 7529 7530 // First-order recurrences are replaced by vector shuffles inside the loop. 7531 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7532 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7533 return TTI.getShuffleCost( 7534 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7535 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7536 7537 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7538 // converted into select instructions. We require N - 1 selects per phi 7539 // node, where N is the number of incoming values. 7540 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7541 return (Phi->getNumIncomingValues() - 1) * 7542 TTI.getCmpSelInstrCost( 7543 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7544 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7545 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7546 7547 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7548 } 7549 case Instruction::UDiv: 7550 case Instruction::SDiv: 7551 case Instruction::URem: 7552 case Instruction::SRem: 7553 // If we have a predicated instruction, it may not be executed for each 7554 // vector lane. Get the scalarization cost and scale this amount by the 7555 // probability of executing the predicated block. If the instruction is not 7556 // predicated, we fall through to the next case. 7557 if (VF.isVector() && isScalarWithPredication(I)) { 7558 InstructionCost Cost = 0; 7559 7560 // These instructions have a non-void type, so account for the phi nodes 7561 // that we will create. This cost is likely to be zero. The phi node 7562 // cost, if any, should be scaled by the block probability because it 7563 // models a copy at the end of each predicated block. 7564 Cost += VF.getKnownMinValue() * 7565 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7566 7567 // The cost of the non-predicated instruction. 7568 Cost += VF.getKnownMinValue() * 7569 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7570 7571 // The cost of insertelement and extractelement instructions needed for 7572 // scalarization. 7573 Cost += getScalarizationOverhead(I, VF); 7574 7575 // Scale the cost by the probability of executing the predicated blocks. 7576 // This assumes the predicated block for each vector lane is equally 7577 // likely. 7578 return Cost / getReciprocalPredBlockProb(); 7579 } 7580 LLVM_FALLTHROUGH; 7581 case Instruction::Add: 7582 case Instruction::FAdd: 7583 case Instruction::Sub: 7584 case Instruction::FSub: 7585 case Instruction::Mul: 7586 case Instruction::FMul: 7587 case Instruction::FDiv: 7588 case Instruction::FRem: 7589 case Instruction::Shl: 7590 case Instruction::LShr: 7591 case Instruction::AShr: 7592 case Instruction::And: 7593 case Instruction::Or: 7594 case Instruction::Xor: { 7595 // Since we will replace the stride by 1 the multiplication should go away. 7596 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7597 return 0; 7598 7599 // Detect reduction patterns 7600 InstructionCost RedCost; 7601 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7602 .isValid()) 7603 return RedCost; 7604 7605 // Certain instructions can be cheaper to vectorize if they have a constant 7606 // second vector operand. One example of this are shifts on x86. 7607 Value *Op2 = I->getOperand(1); 7608 TargetTransformInfo::OperandValueProperties Op2VP; 7609 TargetTransformInfo::OperandValueKind Op2VK = 7610 TTI.getOperandInfo(Op2, Op2VP); 7611 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7612 Op2VK = TargetTransformInfo::OK_UniformValue; 7613 7614 SmallVector<const Value *, 4> Operands(I->operand_values()); 7615 return TTI.getArithmeticInstrCost( 7616 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7617 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7618 } 7619 case Instruction::FNeg: { 7620 return TTI.getArithmeticInstrCost( 7621 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7622 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7623 TargetTransformInfo::OP_None, I->getOperand(0), I); 7624 } 7625 case Instruction::Select: { 7626 SelectInst *SI = cast<SelectInst>(I); 7627 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7628 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7629 7630 const Value *Op0, *Op1; 7631 using namespace llvm::PatternMatch; 7632 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7633 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7634 // select x, y, false --> x & y 7635 // select x, true, y --> x | y 7636 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7637 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7638 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7639 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7640 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7641 Op1->getType()->getScalarSizeInBits() == 1); 7642 7643 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7644 return TTI.getArithmeticInstrCost( 7645 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7646 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7647 } 7648 7649 Type *CondTy = SI->getCondition()->getType(); 7650 if (!ScalarCond) 7651 CondTy = VectorType::get(CondTy, VF); 7652 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7653 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7654 } 7655 case Instruction::ICmp: 7656 case Instruction::FCmp: { 7657 Type *ValTy = I->getOperand(0)->getType(); 7658 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7659 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7660 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7661 VectorTy = ToVectorTy(ValTy, VF); 7662 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7663 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7664 } 7665 case Instruction::Store: 7666 case Instruction::Load: { 7667 ElementCount Width = VF; 7668 if (Width.isVector()) { 7669 InstWidening Decision = getWideningDecision(I, Width); 7670 assert(Decision != CM_Unknown && 7671 "CM decision should be taken at this point"); 7672 if (Decision == CM_Scalarize) 7673 Width = ElementCount::getFixed(1); 7674 } 7675 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7676 return getMemoryInstructionCost(I, VF); 7677 } 7678 case Instruction::BitCast: 7679 if (I->getType()->isPointerTy()) 7680 return 0; 7681 LLVM_FALLTHROUGH; 7682 case Instruction::ZExt: 7683 case Instruction::SExt: 7684 case Instruction::FPToUI: 7685 case Instruction::FPToSI: 7686 case Instruction::FPExt: 7687 case Instruction::PtrToInt: 7688 case Instruction::IntToPtr: 7689 case Instruction::SIToFP: 7690 case Instruction::UIToFP: 7691 case Instruction::Trunc: 7692 case Instruction::FPTrunc: { 7693 // Computes the CastContextHint from a Load/Store instruction. 7694 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7695 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7696 "Expected a load or a store!"); 7697 7698 if (VF.isScalar() || !TheLoop->contains(I)) 7699 return TTI::CastContextHint::Normal; 7700 7701 switch (getWideningDecision(I, VF)) { 7702 case LoopVectorizationCostModel::CM_GatherScatter: 7703 return TTI::CastContextHint::GatherScatter; 7704 case LoopVectorizationCostModel::CM_Interleave: 7705 return TTI::CastContextHint::Interleave; 7706 case LoopVectorizationCostModel::CM_Scalarize: 7707 case LoopVectorizationCostModel::CM_Widen: 7708 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7709 : TTI::CastContextHint::Normal; 7710 case LoopVectorizationCostModel::CM_Widen_Reverse: 7711 return TTI::CastContextHint::Reversed; 7712 case LoopVectorizationCostModel::CM_Unknown: 7713 llvm_unreachable("Instr did not go through cost modelling?"); 7714 } 7715 7716 llvm_unreachable("Unhandled case!"); 7717 }; 7718 7719 unsigned Opcode = I->getOpcode(); 7720 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7721 // For Trunc, the context is the only user, which must be a StoreInst. 7722 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7723 if (I->hasOneUse()) 7724 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7725 CCH = ComputeCCH(Store); 7726 } 7727 // For Z/Sext, the context is the operand, which must be a LoadInst. 7728 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7729 Opcode == Instruction::FPExt) { 7730 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7731 CCH = ComputeCCH(Load); 7732 } 7733 7734 // We optimize the truncation of induction variables having constant 7735 // integer steps. The cost of these truncations is the same as the scalar 7736 // operation. 7737 if (isOptimizableIVTruncate(I, VF)) { 7738 auto *Trunc = cast<TruncInst>(I); 7739 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7740 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7741 } 7742 7743 // Detect reduction patterns 7744 InstructionCost RedCost; 7745 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7746 .isValid()) 7747 return RedCost; 7748 7749 Type *SrcScalarTy = I->getOperand(0)->getType(); 7750 Type *SrcVecTy = 7751 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7752 if (canTruncateToMinimalBitwidth(I, VF)) { 7753 // This cast is going to be shrunk. This may remove the cast or it might 7754 // turn it into slightly different cast. For example, if MinBW == 16, 7755 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7756 // 7757 // Calculate the modified src and dest types. 7758 Type *MinVecTy = VectorTy; 7759 if (Opcode == Instruction::Trunc) { 7760 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7761 VectorTy = 7762 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7763 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7764 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7765 VectorTy = 7766 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7767 } 7768 } 7769 7770 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7771 } 7772 case Instruction::Call: { 7773 bool NeedToScalarize; 7774 CallInst *CI = cast<CallInst>(I); 7775 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7776 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7777 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7778 return std::min(CallCost, IntrinsicCost); 7779 } 7780 return CallCost; 7781 } 7782 case Instruction::ExtractValue: 7783 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7784 default: 7785 // This opcode is unknown. Assume that it is the same as 'mul'. 7786 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7787 } // end of switch. 7788 } 7789 7790 char LoopVectorize::ID = 0; 7791 7792 static const char lv_name[] = "Loop Vectorization"; 7793 7794 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7795 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7796 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7797 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7798 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7799 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7800 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7801 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7802 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7803 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7804 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7805 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7806 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7807 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7808 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7809 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7810 7811 namespace llvm { 7812 7813 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7814 7815 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7816 bool VectorizeOnlyWhenForced) { 7817 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7818 } 7819 7820 } // end namespace llvm 7821 7822 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7823 // Check if the pointer operand of a load or store instruction is 7824 // consecutive. 7825 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7826 return Legal->isConsecutivePtr(Ptr); 7827 return false; 7828 } 7829 7830 void LoopVectorizationCostModel::collectValuesToIgnore() { 7831 // Ignore ephemeral values. 7832 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7833 7834 // Ignore type-promoting instructions we identified during reduction 7835 // detection. 7836 for (auto &Reduction : Legal->getReductionVars()) { 7837 RecurrenceDescriptor &RedDes = Reduction.second; 7838 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7839 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7840 } 7841 // Ignore type-casting instructions we identified during induction 7842 // detection. 7843 for (auto &Induction : Legal->getInductionVars()) { 7844 InductionDescriptor &IndDes = Induction.second; 7845 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7846 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7847 } 7848 } 7849 7850 void LoopVectorizationCostModel::collectInLoopReductions() { 7851 for (auto &Reduction : Legal->getReductionVars()) { 7852 PHINode *Phi = Reduction.first; 7853 RecurrenceDescriptor &RdxDesc = Reduction.second; 7854 7855 // We don't collect reductions that are type promoted (yet). 7856 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7857 continue; 7858 7859 // If the target would prefer this reduction to happen "in-loop", then we 7860 // want to record it as such. 7861 unsigned Opcode = RdxDesc.getOpcode(); 7862 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7863 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7864 TargetTransformInfo::ReductionFlags())) 7865 continue; 7866 7867 // Check that we can correctly put the reductions into the loop, by 7868 // finding the chain of operations that leads from the phi to the loop 7869 // exit value. 7870 SmallVector<Instruction *, 4> ReductionOperations = 7871 RdxDesc.getReductionOpChain(Phi, TheLoop); 7872 bool InLoop = !ReductionOperations.empty(); 7873 if (InLoop) { 7874 InLoopReductionChains[Phi] = ReductionOperations; 7875 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7876 Instruction *LastChain = Phi; 7877 for (auto *I : ReductionOperations) { 7878 InLoopReductionImmediateChains[I] = LastChain; 7879 LastChain = I; 7880 } 7881 } 7882 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7883 << " reduction for phi: " << *Phi << "\n"); 7884 } 7885 } 7886 7887 // TODO: we could return a pair of values that specify the max VF and 7888 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7889 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7890 // doesn't have a cost model that can choose which plan to execute if 7891 // more than one is generated. 7892 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7893 LoopVectorizationCostModel &CM) { 7894 unsigned WidestType; 7895 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7896 return WidestVectorRegBits / WidestType; 7897 } 7898 7899 VectorizationFactor 7900 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7901 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7902 ElementCount VF = UserVF; 7903 // Outer loop handling: They may require CFG and instruction level 7904 // transformations before even evaluating whether vectorization is profitable. 7905 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7906 // the vectorization pipeline. 7907 if (!OrigLoop->isInnermost()) { 7908 // If the user doesn't provide a vectorization factor, determine a 7909 // reasonable one. 7910 if (UserVF.isZero()) { 7911 VF = ElementCount::getFixed(determineVPlanVF( 7912 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7913 .getFixedSize(), 7914 CM)); 7915 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7916 7917 // Make sure we have a VF > 1 for stress testing. 7918 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7919 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7920 << "overriding computed VF.\n"); 7921 VF = ElementCount::getFixed(4); 7922 } 7923 } 7924 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7925 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7926 "VF needs to be a power of two"); 7927 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7928 << "VF " << VF << " to build VPlans.\n"); 7929 buildVPlans(VF, VF); 7930 7931 // For VPlan build stress testing, we bail out after VPlan construction. 7932 if (VPlanBuildStressTest) 7933 return VectorizationFactor::Disabled(); 7934 7935 return {VF, 0 /*Cost*/}; 7936 } 7937 7938 LLVM_DEBUG( 7939 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7940 "VPlan-native path.\n"); 7941 return VectorizationFactor::Disabled(); 7942 } 7943 7944 Optional<VectorizationFactor> 7945 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7946 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7947 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7948 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7949 return None; 7950 7951 // Invalidate interleave groups if all blocks of loop will be predicated. 7952 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7953 !useMaskedInterleavedAccesses(*TTI)) { 7954 LLVM_DEBUG( 7955 dbgs() 7956 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7957 "which requires masked-interleaved support.\n"); 7958 if (CM.InterleaveInfo.invalidateGroups()) 7959 // Invalidating interleave groups also requires invalidating all decisions 7960 // based on them, which includes widening decisions and uniform and scalar 7961 // values. 7962 CM.invalidateCostModelingDecisions(); 7963 } 7964 7965 ElementCount MaxUserVF = 7966 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7967 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7968 if (!UserVF.isZero() && UserVFIsLegal) { 7969 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7970 << " VF " << UserVF << ".\n"); 7971 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7972 "VF needs to be a power of two"); 7973 // Collect the instructions (and their associated costs) that will be more 7974 // profitable to scalarize. 7975 CM.selectUserVectorizationFactor(UserVF); 7976 CM.collectInLoopReductions(); 7977 buildVPlansWithVPRecipes({UserVF}, {UserVF}); 7978 LLVM_DEBUG(printPlans(dbgs())); 7979 return {{UserVF, 0}}; 7980 } 7981 7982 ElementCount MaxVF = MaxFactors.FixedVF; 7983 assert(!MaxVF.isScalable() && 7984 "Scalable vectors not yet supported beyond this point"); 7985 7986 for (ElementCount VF = ElementCount::getFixed(1); 7987 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7988 // Collect Uniform and Scalar instructions after vectorization with VF. 7989 CM.collectUniformsAndScalars(VF); 7990 7991 // Collect the instructions (and their associated costs) that will be more 7992 // profitable to scalarize. 7993 if (VF.isVector()) 7994 CM.collectInstsToScalarize(VF); 7995 } 7996 7997 CM.collectInLoopReductions(); 7998 7999 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 8000 LLVM_DEBUG(printPlans(dbgs())); 8001 if (!MaxFactors.hasVector()) 8002 return VectorizationFactor::Disabled(); 8003 8004 // Select the optimal vectorization factor. 8005 auto SelectedVF = CM.selectVectorizationFactor(MaxVF); 8006 8007 // Check if it is profitable to vectorize with runtime checks. 8008 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8009 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8010 bool PragmaThresholdReached = 8011 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8012 bool ThresholdReached = 8013 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8014 if ((ThresholdReached && !Hints.allowReordering()) || 8015 PragmaThresholdReached) { 8016 ORE->emit([&]() { 8017 return OptimizationRemarkAnalysisAliasing( 8018 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8019 OrigLoop->getHeader()) 8020 << "loop not vectorized: cannot prove it is safe to reorder " 8021 "memory operations"; 8022 }); 8023 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8024 Hints.emitRemarkWithHints(); 8025 return VectorizationFactor::Disabled(); 8026 } 8027 } 8028 return SelectedVF; 8029 } 8030 8031 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8032 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8033 << '\n'); 8034 BestVF = VF; 8035 BestUF = UF; 8036 8037 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8038 return !Plan->hasVF(VF); 8039 }); 8040 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8041 } 8042 8043 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8044 DominatorTree *DT) { 8045 // Perform the actual loop transformation. 8046 8047 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8048 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8049 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8050 8051 VPTransformState State{ 8052 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8053 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8054 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8055 State.CanonicalIV = ILV.Induction; 8056 8057 ILV.printDebugTracesAtStart(); 8058 8059 //===------------------------------------------------===// 8060 // 8061 // Notice: any optimization or new instruction that go 8062 // into the code below should also be implemented in 8063 // the cost-model. 8064 // 8065 //===------------------------------------------------===// 8066 8067 // 2. Copy and widen instructions from the old loop into the new loop. 8068 VPlans.front()->execute(&State); 8069 8070 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8071 // predication, updating analyses. 8072 ILV.fixVectorizedLoop(State); 8073 8074 ILV.printDebugTracesAtEnd(); 8075 } 8076 8077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8078 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8079 for (const auto &Plan : VPlans) 8080 if (PrintVPlansInDotFormat) 8081 Plan->printDOT(O); 8082 else 8083 Plan->print(O); 8084 } 8085 #endif 8086 8087 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8088 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8089 8090 // We create new control-flow for the vectorized loop, so the original exit 8091 // conditions will be dead after vectorization if it's only used by the 8092 // terminator 8093 SmallVector<BasicBlock*> ExitingBlocks; 8094 OrigLoop->getExitingBlocks(ExitingBlocks); 8095 for (auto *BB : ExitingBlocks) { 8096 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8097 if (!Cmp || !Cmp->hasOneUse()) 8098 continue; 8099 8100 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8101 if (!DeadInstructions.insert(Cmp).second) 8102 continue; 8103 8104 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8105 // TODO: can recurse through operands in general 8106 for (Value *Op : Cmp->operands()) { 8107 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8108 DeadInstructions.insert(cast<Instruction>(Op)); 8109 } 8110 } 8111 8112 // We create new "steps" for induction variable updates to which the original 8113 // induction variables map. An original update instruction will be dead if 8114 // all its users except the induction variable are dead. 8115 auto *Latch = OrigLoop->getLoopLatch(); 8116 for (auto &Induction : Legal->getInductionVars()) { 8117 PHINode *Ind = Induction.first; 8118 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8119 8120 // If the tail is to be folded by masking, the primary induction variable, 8121 // if exists, isn't dead: it will be used for masking. Don't kill it. 8122 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8123 continue; 8124 8125 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8126 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8127 })) 8128 DeadInstructions.insert(IndUpdate); 8129 8130 // We record as "Dead" also the type-casting instructions we had identified 8131 // during induction analysis. We don't need any handling for them in the 8132 // vectorized loop because we have proven that, under a proper runtime 8133 // test guarding the vectorized loop, the value of the phi, and the casted 8134 // value of the phi, are the same. The last instruction in this casting chain 8135 // will get its scalar/vector/widened def from the scalar/vector/widened def 8136 // of the respective phi node. Any other casts in the induction def-use chain 8137 // have no other uses outside the phi update chain, and will be ignored. 8138 InductionDescriptor &IndDes = Induction.second; 8139 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8140 DeadInstructions.insert(Casts.begin(), Casts.end()); 8141 } 8142 } 8143 8144 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8145 8146 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8147 8148 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8149 Instruction::BinaryOps BinOp) { 8150 // When unrolling and the VF is 1, we only need to add a simple scalar. 8151 Type *Ty = Val->getType(); 8152 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8153 8154 if (Ty->isFloatingPointTy()) { 8155 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8156 8157 // Floating-point operations inherit FMF via the builder's flags. 8158 Value *MulOp = Builder.CreateFMul(C, Step); 8159 return Builder.CreateBinOp(BinOp, Val, MulOp); 8160 } 8161 Constant *C = ConstantInt::get(Ty, StartIdx); 8162 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8163 } 8164 8165 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8166 SmallVector<Metadata *, 4> MDs; 8167 // Reserve first location for self reference to the LoopID metadata node. 8168 MDs.push_back(nullptr); 8169 bool IsUnrollMetadata = false; 8170 MDNode *LoopID = L->getLoopID(); 8171 if (LoopID) { 8172 // First find existing loop unrolling disable metadata. 8173 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8174 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8175 if (MD) { 8176 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8177 IsUnrollMetadata = 8178 S && S->getString().startswith("llvm.loop.unroll.disable"); 8179 } 8180 MDs.push_back(LoopID->getOperand(i)); 8181 } 8182 } 8183 8184 if (!IsUnrollMetadata) { 8185 // Add runtime unroll disable metadata. 8186 LLVMContext &Context = L->getHeader()->getContext(); 8187 SmallVector<Metadata *, 1> DisableOperands; 8188 DisableOperands.push_back( 8189 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8190 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8191 MDs.push_back(DisableNode); 8192 MDNode *NewLoopID = MDNode::get(Context, MDs); 8193 // Set operand 0 to refer to the loop id itself. 8194 NewLoopID->replaceOperandWith(0, NewLoopID); 8195 L->setLoopID(NewLoopID); 8196 } 8197 } 8198 8199 //===--------------------------------------------------------------------===// 8200 // EpilogueVectorizerMainLoop 8201 //===--------------------------------------------------------------------===// 8202 8203 /// This function is partially responsible for generating the control flow 8204 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8205 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8206 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8207 Loop *Lp = createVectorLoopSkeleton(""); 8208 8209 // Generate the code to check the minimum iteration count of the vector 8210 // epilogue (see below). 8211 EPI.EpilogueIterationCountCheck = 8212 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8213 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8214 8215 // Generate the code to check any assumptions that we've made for SCEV 8216 // expressions. 8217 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8218 8219 // Generate the code that checks at runtime if arrays overlap. We put the 8220 // checks into a separate block to make the more common case of few elements 8221 // faster. 8222 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8223 8224 // Generate the iteration count check for the main loop, *after* the check 8225 // for the epilogue loop, so that the path-length is shorter for the case 8226 // that goes directly through the vector epilogue. The longer-path length for 8227 // the main loop is compensated for, by the gain from vectorizing the larger 8228 // trip count. Note: the branch will get updated later on when we vectorize 8229 // the epilogue. 8230 EPI.MainLoopIterationCountCheck = 8231 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8232 8233 // Generate the induction variable. 8234 OldInduction = Legal->getPrimaryInduction(); 8235 Type *IdxTy = Legal->getWidestInductionType(); 8236 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8237 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8238 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8239 EPI.VectorTripCount = CountRoundDown; 8240 Induction = 8241 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8242 getDebugLocFromInstOrOperands(OldInduction)); 8243 8244 // Skip induction resume value creation here because they will be created in 8245 // the second pass. If we created them here, they wouldn't be used anyway, 8246 // because the vplan in the second pass still contains the inductions from the 8247 // original loop. 8248 8249 return completeLoopSkeleton(Lp, OrigLoopID); 8250 } 8251 8252 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8253 LLVM_DEBUG({ 8254 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8255 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8256 << ", Main Loop UF:" << EPI.MainLoopUF 8257 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8258 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8259 }); 8260 } 8261 8262 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8263 DEBUG_WITH_TYPE(VerboseDebug, { 8264 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8265 }); 8266 } 8267 8268 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8269 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8270 assert(L && "Expected valid Loop."); 8271 assert(Bypass && "Expected valid bypass basic block."); 8272 unsigned VFactor = 8273 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8274 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8275 Value *Count = getOrCreateTripCount(L); 8276 // Reuse existing vector loop preheader for TC checks. 8277 // Note that new preheader block is generated for vector loop. 8278 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8279 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8280 8281 // Generate code to check if the loop's trip count is less than VF * UF of the 8282 // main vector loop. 8283 auto P = 8284 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8285 8286 Value *CheckMinIters = Builder.CreateICmp( 8287 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8288 "min.iters.check"); 8289 8290 if (!ForEpilogue) 8291 TCCheckBlock->setName("vector.main.loop.iter.check"); 8292 8293 // Create new preheader for vector loop. 8294 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8295 DT, LI, nullptr, "vector.ph"); 8296 8297 if (ForEpilogue) { 8298 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8299 DT->getNode(Bypass)->getIDom()) && 8300 "TC check is expected to dominate Bypass"); 8301 8302 // Update dominator for Bypass & LoopExit. 8303 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8304 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8305 8306 LoopBypassBlocks.push_back(TCCheckBlock); 8307 8308 // Save the trip count so we don't have to regenerate it in the 8309 // vec.epilog.iter.check. This is safe to do because the trip count 8310 // generated here dominates the vector epilog iter check. 8311 EPI.TripCount = Count; 8312 } 8313 8314 ReplaceInstWithInst( 8315 TCCheckBlock->getTerminator(), 8316 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8317 8318 return TCCheckBlock; 8319 } 8320 8321 //===--------------------------------------------------------------------===// 8322 // EpilogueVectorizerEpilogueLoop 8323 //===--------------------------------------------------------------------===// 8324 8325 /// This function is partially responsible for generating the control flow 8326 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8327 BasicBlock * 8328 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8329 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8330 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8331 8332 // Now, compare the remaining count and if there aren't enough iterations to 8333 // execute the vectorized epilogue skip to the scalar part. 8334 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8335 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8336 LoopVectorPreHeader = 8337 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8338 LI, nullptr, "vec.epilog.ph"); 8339 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8340 VecEpilogueIterationCountCheck); 8341 8342 // Adjust the control flow taking the state info from the main loop 8343 // vectorization into account. 8344 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8345 "expected this to be saved from the previous pass."); 8346 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8347 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8348 8349 DT->changeImmediateDominator(LoopVectorPreHeader, 8350 EPI.MainLoopIterationCountCheck); 8351 8352 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8353 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8354 8355 if (EPI.SCEVSafetyCheck) 8356 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8357 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8358 if (EPI.MemSafetyCheck) 8359 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8360 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8361 8362 DT->changeImmediateDominator( 8363 VecEpilogueIterationCountCheck, 8364 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8365 8366 DT->changeImmediateDominator(LoopScalarPreHeader, 8367 EPI.EpilogueIterationCountCheck); 8368 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8369 8370 // Keep track of bypass blocks, as they feed start values to the induction 8371 // phis in the scalar loop preheader. 8372 if (EPI.SCEVSafetyCheck) 8373 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8374 if (EPI.MemSafetyCheck) 8375 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8376 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8377 8378 // Generate a resume induction for the vector epilogue and put it in the 8379 // vector epilogue preheader 8380 Type *IdxTy = Legal->getWidestInductionType(); 8381 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8382 LoopVectorPreHeader->getFirstNonPHI()); 8383 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8384 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8385 EPI.MainLoopIterationCountCheck); 8386 8387 // Generate the induction variable. 8388 OldInduction = Legal->getPrimaryInduction(); 8389 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8390 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8391 Value *StartIdx = EPResumeVal; 8392 Induction = 8393 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8394 getDebugLocFromInstOrOperands(OldInduction)); 8395 8396 // Generate induction resume values. These variables save the new starting 8397 // indexes for the scalar loop. They are used to test if there are any tail 8398 // iterations left once the vector loop has completed. 8399 // Note that when the vectorized epilogue is skipped due to iteration count 8400 // check, then the resume value for the induction variable comes from 8401 // the trip count of the main vector loop, hence passing the AdditionalBypass 8402 // argument. 8403 createInductionResumeValues(Lp, CountRoundDown, 8404 {VecEpilogueIterationCountCheck, 8405 EPI.VectorTripCount} /* AdditionalBypass */); 8406 8407 AddRuntimeUnrollDisableMetaData(Lp); 8408 return completeLoopSkeleton(Lp, OrigLoopID); 8409 } 8410 8411 BasicBlock * 8412 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8413 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8414 8415 assert(EPI.TripCount && 8416 "Expected trip count to have been safed in the first pass."); 8417 assert( 8418 (!isa<Instruction>(EPI.TripCount) || 8419 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8420 "saved trip count does not dominate insertion point."); 8421 Value *TC = EPI.TripCount; 8422 IRBuilder<> Builder(Insert->getTerminator()); 8423 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8424 8425 // Generate code to check if the loop's trip count is less than VF * UF of the 8426 // vector epilogue loop. 8427 auto P = 8428 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8429 8430 Value *CheckMinIters = Builder.CreateICmp( 8431 P, Count, 8432 ConstantInt::get(Count->getType(), 8433 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8434 "min.epilog.iters.check"); 8435 8436 ReplaceInstWithInst( 8437 Insert->getTerminator(), 8438 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8439 8440 LoopBypassBlocks.push_back(Insert); 8441 return Insert; 8442 } 8443 8444 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8445 LLVM_DEBUG({ 8446 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8447 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8448 << ", Main Loop UF:" << EPI.MainLoopUF 8449 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8450 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8451 }); 8452 } 8453 8454 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8455 DEBUG_WITH_TYPE(VerboseDebug, { 8456 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8457 }); 8458 } 8459 8460 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8461 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8462 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8463 bool PredicateAtRangeStart = Predicate(Range.Start); 8464 8465 for (ElementCount TmpVF = Range.Start * 2; 8466 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8467 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8468 Range.End = TmpVF; 8469 break; 8470 } 8471 8472 return PredicateAtRangeStart; 8473 } 8474 8475 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8476 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8477 /// of VF's starting at a given VF and extending it as much as possible. Each 8478 /// vectorization decision can potentially shorten this sub-range during 8479 /// buildVPlan(). 8480 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8481 ElementCount MaxVF) { 8482 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8483 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8484 VFRange SubRange = {VF, MaxVFPlusOne}; 8485 VPlans.push_back(buildVPlan(SubRange)); 8486 VF = SubRange.End; 8487 } 8488 } 8489 8490 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8491 VPlanPtr &Plan) { 8492 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8493 8494 // Look for cached value. 8495 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8496 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8497 if (ECEntryIt != EdgeMaskCache.end()) 8498 return ECEntryIt->second; 8499 8500 VPValue *SrcMask = createBlockInMask(Src, Plan); 8501 8502 // The terminator has to be a branch inst! 8503 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8504 assert(BI && "Unexpected terminator found"); 8505 8506 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8507 return EdgeMaskCache[Edge] = SrcMask; 8508 8509 // If source is an exiting block, we know the exit edge is dynamically dead 8510 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8511 // adding uses of an otherwise potentially dead instruction. 8512 if (OrigLoop->isLoopExiting(Src)) 8513 return EdgeMaskCache[Edge] = SrcMask; 8514 8515 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8516 assert(EdgeMask && "No Edge Mask found for condition"); 8517 8518 if (BI->getSuccessor(0) != Dst) 8519 EdgeMask = Builder.createNot(EdgeMask); 8520 8521 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8522 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8523 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8524 // The select version does not introduce new UB if SrcMask is false and 8525 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8526 VPValue *False = Plan->getOrAddVPValue( 8527 ConstantInt::getFalse(BI->getCondition()->getType())); 8528 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8529 } 8530 8531 return EdgeMaskCache[Edge] = EdgeMask; 8532 } 8533 8534 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8535 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8536 8537 // Look for cached value. 8538 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8539 if (BCEntryIt != BlockMaskCache.end()) 8540 return BCEntryIt->second; 8541 8542 // All-one mask is modelled as no-mask following the convention for masked 8543 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8544 VPValue *BlockMask = nullptr; 8545 8546 if (OrigLoop->getHeader() == BB) { 8547 if (!CM.blockNeedsPredication(BB)) 8548 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8549 8550 // Create the block in mask as the first non-phi instruction in the block. 8551 VPBuilder::InsertPointGuard Guard(Builder); 8552 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8553 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8554 8555 // Introduce the early-exit compare IV <= BTC to form header block mask. 8556 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8557 // Start by constructing the desired canonical IV. 8558 VPValue *IV = nullptr; 8559 if (Legal->getPrimaryInduction()) 8560 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8561 else { 8562 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8563 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8564 IV = IVRecipe->getVPSingleValue(); 8565 } 8566 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8567 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8568 8569 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8570 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8571 // as a second argument, we only pass the IV here and extract the 8572 // tripcount from the transform state where codegen of the VP instructions 8573 // happen. 8574 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8575 } else { 8576 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8577 } 8578 return BlockMaskCache[BB] = BlockMask; 8579 } 8580 8581 // This is the block mask. We OR all incoming edges. 8582 for (auto *Predecessor : predecessors(BB)) { 8583 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8584 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8585 return BlockMaskCache[BB] = EdgeMask; 8586 8587 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8588 BlockMask = EdgeMask; 8589 continue; 8590 } 8591 8592 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8593 } 8594 8595 return BlockMaskCache[BB] = BlockMask; 8596 } 8597 8598 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8599 ArrayRef<VPValue *> Operands, 8600 VFRange &Range, 8601 VPlanPtr &Plan) { 8602 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8603 "Must be called with either a load or store"); 8604 8605 auto willWiden = [&](ElementCount VF) -> bool { 8606 if (VF.isScalar()) 8607 return false; 8608 LoopVectorizationCostModel::InstWidening Decision = 8609 CM.getWideningDecision(I, VF); 8610 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8611 "CM decision should be taken at this point."); 8612 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8613 return true; 8614 if (CM.isScalarAfterVectorization(I, VF) || 8615 CM.isProfitableToScalarize(I, VF)) 8616 return false; 8617 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8618 }; 8619 8620 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8621 return nullptr; 8622 8623 VPValue *Mask = nullptr; 8624 if (Legal->isMaskRequired(I)) 8625 Mask = createBlockInMask(I->getParent(), Plan); 8626 8627 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8628 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8629 8630 StoreInst *Store = cast<StoreInst>(I); 8631 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8632 Mask); 8633 } 8634 8635 VPWidenIntOrFpInductionRecipe * 8636 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8637 ArrayRef<VPValue *> Operands) const { 8638 // Check if this is an integer or fp induction. If so, build the recipe that 8639 // produces its scalar and vector values. 8640 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8641 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8642 II.getKind() == InductionDescriptor::IK_FpInduction) { 8643 assert(II.getStartValue() == 8644 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8645 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8646 return new VPWidenIntOrFpInductionRecipe( 8647 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8648 } 8649 8650 return nullptr; 8651 } 8652 8653 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8654 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8655 VPlan &Plan) const { 8656 // Optimize the special case where the source is a constant integer 8657 // induction variable. Notice that we can only optimize the 'trunc' case 8658 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8659 // (c) other casts depend on pointer size. 8660 8661 // Determine whether \p K is a truncation based on an induction variable that 8662 // can be optimized. 8663 auto isOptimizableIVTruncate = 8664 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8665 return [=](ElementCount VF) -> bool { 8666 return CM.isOptimizableIVTruncate(K, VF); 8667 }; 8668 }; 8669 8670 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8671 isOptimizableIVTruncate(I), Range)) { 8672 8673 InductionDescriptor II = 8674 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8675 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8676 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8677 Start, nullptr, I); 8678 } 8679 return nullptr; 8680 } 8681 8682 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8683 ArrayRef<VPValue *> Operands, 8684 VPlanPtr &Plan) { 8685 // If all incoming values are equal, the incoming VPValue can be used directly 8686 // instead of creating a new VPBlendRecipe. 8687 VPValue *FirstIncoming = Operands[0]; 8688 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8689 return FirstIncoming == Inc; 8690 })) { 8691 return Operands[0]; 8692 } 8693 8694 // We know that all PHIs in non-header blocks are converted into selects, so 8695 // we don't have to worry about the insertion order and we can just use the 8696 // builder. At this point we generate the predication tree. There may be 8697 // duplications since this is a simple recursive scan, but future 8698 // optimizations will clean it up. 8699 SmallVector<VPValue *, 2> OperandsWithMask; 8700 unsigned NumIncoming = Phi->getNumIncomingValues(); 8701 8702 for (unsigned In = 0; In < NumIncoming; In++) { 8703 VPValue *EdgeMask = 8704 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8705 assert((EdgeMask || NumIncoming == 1) && 8706 "Multiple predecessors with one having a full mask"); 8707 OperandsWithMask.push_back(Operands[In]); 8708 if (EdgeMask) 8709 OperandsWithMask.push_back(EdgeMask); 8710 } 8711 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8712 } 8713 8714 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8715 ArrayRef<VPValue *> Operands, 8716 VFRange &Range) const { 8717 8718 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8719 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8720 Range); 8721 8722 if (IsPredicated) 8723 return nullptr; 8724 8725 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8726 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8727 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8728 ID == Intrinsic::pseudoprobe || 8729 ID == Intrinsic::experimental_noalias_scope_decl)) 8730 return nullptr; 8731 8732 auto willWiden = [&](ElementCount VF) -> bool { 8733 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8734 // The following case may be scalarized depending on the VF. 8735 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8736 // version of the instruction. 8737 // Is it beneficial to perform intrinsic call compared to lib call? 8738 bool NeedToScalarize = false; 8739 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8740 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8741 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8742 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8743 "Either the intrinsic cost or vector call cost must be valid"); 8744 return UseVectorIntrinsic || !NeedToScalarize; 8745 }; 8746 8747 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8748 return nullptr; 8749 8750 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8751 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8752 } 8753 8754 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8755 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8756 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8757 // Instruction should be widened, unless it is scalar after vectorization, 8758 // scalarization is profitable or it is predicated. 8759 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8760 return CM.isScalarAfterVectorization(I, VF) || 8761 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8762 }; 8763 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8764 Range); 8765 } 8766 8767 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8768 ArrayRef<VPValue *> Operands) const { 8769 auto IsVectorizableOpcode = [](unsigned Opcode) { 8770 switch (Opcode) { 8771 case Instruction::Add: 8772 case Instruction::And: 8773 case Instruction::AShr: 8774 case Instruction::BitCast: 8775 case Instruction::FAdd: 8776 case Instruction::FCmp: 8777 case Instruction::FDiv: 8778 case Instruction::FMul: 8779 case Instruction::FNeg: 8780 case Instruction::FPExt: 8781 case Instruction::FPToSI: 8782 case Instruction::FPToUI: 8783 case Instruction::FPTrunc: 8784 case Instruction::FRem: 8785 case Instruction::FSub: 8786 case Instruction::ICmp: 8787 case Instruction::IntToPtr: 8788 case Instruction::LShr: 8789 case Instruction::Mul: 8790 case Instruction::Or: 8791 case Instruction::PtrToInt: 8792 case Instruction::SDiv: 8793 case Instruction::Select: 8794 case Instruction::SExt: 8795 case Instruction::Shl: 8796 case Instruction::SIToFP: 8797 case Instruction::SRem: 8798 case Instruction::Sub: 8799 case Instruction::Trunc: 8800 case Instruction::UDiv: 8801 case Instruction::UIToFP: 8802 case Instruction::URem: 8803 case Instruction::Xor: 8804 case Instruction::ZExt: 8805 return true; 8806 } 8807 return false; 8808 }; 8809 8810 if (!IsVectorizableOpcode(I->getOpcode())) 8811 return nullptr; 8812 8813 // Success: widen this instruction. 8814 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8815 } 8816 8817 void VPRecipeBuilder::fixHeaderPhis() { 8818 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8819 for (VPWidenPHIRecipe *R : PhisToFix) { 8820 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8821 VPRecipeBase *IncR = 8822 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8823 R->addOperand(IncR->getVPSingleValue()); 8824 } 8825 } 8826 8827 VPBasicBlock *VPRecipeBuilder::handleReplication( 8828 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8829 VPlanPtr &Plan) { 8830 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8831 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8832 Range); 8833 8834 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8835 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8836 8837 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8838 IsUniform, IsPredicated); 8839 setRecipe(I, Recipe); 8840 Plan->addVPValue(I, Recipe); 8841 8842 // Find if I uses a predicated instruction. If so, it will use its scalar 8843 // value. Avoid hoisting the insert-element which packs the scalar value into 8844 // a vector value, as that happens iff all users use the vector value. 8845 for (VPValue *Op : Recipe->operands()) { 8846 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8847 if (!PredR) 8848 continue; 8849 auto *RepR = 8850 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8851 assert(RepR->isPredicated() && 8852 "expected Replicate recipe to be predicated"); 8853 RepR->setAlsoPack(false); 8854 } 8855 8856 // Finalize the recipe for Instr, first if it is not predicated. 8857 if (!IsPredicated) { 8858 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8859 VPBB->appendRecipe(Recipe); 8860 return VPBB; 8861 } 8862 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8863 assert(VPBB->getSuccessors().empty() && 8864 "VPBB has successors when handling predicated replication."); 8865 // Record predicated instructions for above packing optimizations. 8866 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8867 VPBlockUtils::insertBlockAfter(Region, VPBB); 8868 auto *RegSucc = new VPBasicBlock(); 8869 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8870 return RegSucc; 8871 } 8872 8873 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8874 VPRecipeBase *PredRecipe, 8875 VPlanPtr &Plan) { 8876 // Instructions marked for predication are replicated and placed under an 8877 // if-then construct to prevent side-effects. 8878 8879 // Generate recipes to compute the block mask for this region. 8880 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8881 8882 // Build the triangular if-then region. 8883 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8884 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8885 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8886 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8887 auto *PHIRecipe = Instr->getType()->isVoidTy() 8888 ? nullptr 8889 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8890 if (PHIRecipe) { 8891 Plan->removeVPValueFor(Instr); 8892 Plan->addVPValue(Instr, PHIRecipe); 8893 } 8894 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8895 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8896 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8897 8898 // Note: first set Entry as region entry and then connect successors starting 8899 // from it in order, to propagate the "parent" of each VPBasicBlock. 8900 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8901 VPBlockUtils::connectBlocks(Pred, Exit); 8902 8903 return Region; 8904 } 8905 8906 VPRecipeOrVPValueTy 8907 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8908 ArrayRef<VPValue *> Operands, 8909 VFRange &Range, VPlanPtr &Plan) { 8910 // First, check for specific widening recipes that deal with calls, memory 8911 // operations, inductions and Phi nodes. 8912 if (auto *CI = dyn_cast<CallInst>(Instr)) 8913 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8914 8915 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8916 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8917 8918 VPRecipeBase *Recipe; 8919 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8920 if (Phi->getParent() != OrigLoop->getHeader()) 8921 return tryToBlend(Phi, Operands, Plan); 8922 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8923 return toVPRecipeResult(Recipe); 8924 8925 if (Legal->isReductionVariable(Phi)) { 8926 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8927 assert(RdxDesc.getRecurrenceStartValue() == 8928 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8929 VPValue *StartV = Operands[0]; 8930 8931 auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8932 PhisToFix.push_back(PhiRecipe); 8933 // Record the incoming value from the backedge, so we can add the incoming 8934 // value from the backedge after all recipes have been created. 8935 recordRecipeOf(cast<Instruction>( 8936 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8937 return toVPRecipeResult(PhiRecipe); 8938 } 8939 8940 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8941 } 8942 8943 if (isa<TruncInst>(Instr) && 8944 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8945 Range, *Plan))) 8946 return toVPRecipeResult(Recipe); 8947 8948 if (!shouldWiden(Instr, Range)) 8949 return nullptr; 8950 8951 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8952 return toVPRecipeResult(new VPWidenGEPRecipe( 8953 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8954 8955 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8956 bool InvariantCond = 8957 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8958 return toVPRecipeResult(new VPWidenSelectRecipe( 8959 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8960 } 8961 8962 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8963 } 8964 8965 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8966 ElementCount MaxVF) { 8967 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8968 8969 // Collect instructions from the original loop that will become trivially dead 8970 // in the vectorized loop. We don't need to vectorize these instructions. For 8971 // example, original induction update instructions can become dead because we 8972 // separately emit induction "steps" when generating code for the new loop. 8973 // Similarly, we create a new latch condition when setting up the structure 8974 // of the new loop, so the old one can become dead. 8975 SmallPtrSet<Instruction *, 4> DeadInstructions; 8976 collectTriviallyDeadInstructions(DeadInstructions); 8977 8978 // Add assume instructions we need to drop to DeadInstructions, to prevent 8979 // them from being added to the VPlan. 8980 // TODO: We only need to drop assumes in blocks that get flattend. If the 8981 // control flow is preserved, we should keep them. 8982 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8983 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8984 8985 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8986 // Dead instructions do not need sinking. Remove them from SinkAfter. 8987 for (Instruction *I : DeadInstructions) 8988 SinkAfter.erase(I); 8989 8990 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8991 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8992 VFRange SubRange = {VF, MaxVFPlusOne}; 8993 VPlans.push_back( 8994 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8995 VF = SubRange.End; 8996 } 8997 } 8998 8999 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9000 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9001 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 9002 9003 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9004 9005 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9006 9007 // --------------------------------------------------------------------------- 9008 // Pre-construction: record ingredients whose recipes we'll need to further 9009 // process after constructing the initial VPlan. 9010 // --------------------------------------------------------------------------- 9011 9012 // Mark instructions we'll need to sink later and their targets as 9013 // ingredients whose recipe we'll need to record. 9014 for (auto &Entry : SinkAfter) { 9015 RecipeBuilder.recordRecipeOf(Entry.first); 9016 RecipeBuilder.recordRecipeOf(Entry.second); 9017 } 9018 for (auto &Reduction : CM.getInLoopReductionChains()) { 9019 PHINode *Phi = Reduction.first; 9020 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9021 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9022 9023 RecipeBuilder.recordRecipeOf(Phi); 9024 for (auto &R : ReductionOperations) { 9025 RecipeBuilder.recordRecipeOf(R); 9026 // For min/max reducitons, where we have a pair of icmp/select, we also 9027 // need to record the ICmp recipe, so it can be removed later. 9028 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9029 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9030 } 9031 } 9032 9033 // For each interleave group which is relevant for this (possibly trimmed) 9034 // Range, add it to the set of groups to be later applied to the VPlan and add 9035 // placeholders for its members' Recipes which we'll be replacing with a 9036 // single VPInterleaveRecipe. 9037 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9038 auto applyIG = [IG, this](ElementCount VF) -> bool { 9039 return (VF.isVector() && // Query is illegal for VF == 1 9040 CM.getWideningDecision(IG->getInsertPos(), VF) == 9041 LoopVectorizationCostModel::CM_Interleave); 9042 }; 9043 if (!getDecisionAndClampRange(applyIG, Range)) 9044 continue; 9045 InterleaveGroups.insert(IG); 9046 for (unsigned i = 0; i < IG->getFactor(); i++) 9047 if (Instruction *Member = IG->getMember(i)) 9048 RecipeBuilder.recordRecipeOf(Member); 9049 }; 9050 9051 // --------------------------------------------------------------------------- 9052 // Build initial VPlan: Scan the body of the loop in a topological order to 9053 // visit each basic block after having visited its predecessor basic blocks. 9054 // --------------------------------------------------------------------------- 9055 9056 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9057 auto Plan = std::make_unique<VPlan>(); 9058 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9059 Plan->setEntry(VPBB); 9060 9061 // Scan the body of the loop in a topological order to visit each basic block 9062 // after having visited its predecessor basic blocks. 9063 LoopBlocksDFS DFS(OrigLoop); 9064 DFS.perform(LI); 9065 9066 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9067 // Relevant instructions from basic block BB will be grouped into VPRecipe 9068 // ingredients and fill a new VPBasicBlock. 9069 unsigned VPBBsForBB = 0; 9070 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9071 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9072 VPBB = FirstVPBBForBB; 9073 Builder.setInsertPoint(VPBB); 9074 9075 // Introduce each ingredient into VPlan. 9076 // TODO: Model and preserve debug instrinsics in VPlan. 9077 for (Instruction &I : BB->instructionsWithoutDebug()) { 9078 Instruction *Instr = &I; 9079 9080 // First filter out irrelevant instructions, to ensure no recipes are 9081 // built for them. 9082 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9083 continue; 9084 9085 SmallVector<VPValue *, 4> Operands; 9086 auto *Phi = dyn_cast<PHINode>(Instr); 9087 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9088 Operands.push_back(Plan->getOrAddVPValue( 9089 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9090 } else { 9091 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9092 Operands = {OpRange.begin(), OpRange.end()}; 9093 } 9094 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9095 Instr, Operands, Range, Plan)) { 9096 // If Instr can be simplified to an existing VPValue, use it. 9097 if (RecipeOrValue.is<VPValue *>()) { 9098 auto *VPV = RecipeOrValue.get<VPValue *>(); 9099 Plan->addVPValue(Instr, VPV); 9100 // If the re-used value is a recipe, register the recipe for the 9101 // instruction, in case the recipe for Instr needs to be recorded. 9102 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9103 RecipeBuilder.setRecipe(Instr, R); 9104 continue; 9105 } 9106 // Otherwise, add the new recipe. 9107 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9108 for (auto *Def : Recipe->definedValues()) { 9109 auto *UV = Def->getUnderlyingValue(); 9110 Plan->addVPValue(UV, Def); 9111 } 9112 9113 RecipeBuilder.setRecipe(Instr, Recipe); 9114 VPBB->appendRecipe(Recipe); 9115 continue; 9116 } 9117 9118 // Otherwise, if all widening options failed, Instruction is to be 9119 // replicated. This may create a successor for VPBB. 9120 VPBasicBlock *NextVPBB = 9121 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9122 if (NextVPBB != VPBB) { 9123 VPBB = NextVPBB; 9124 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9125 : ""); 9126 } 9127 } 9128 } 9129 9130 RecipeBuilder.fixHeaderPhis(); 9131 9132 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9133 // may also be empty, such as the last one VPBB, reflecting original 9134 // basic-blocks with no recipes. 9135 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9136 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9137 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9138 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9139 delete PreEntry; 9140 9141 // --------------------------------------------------------------------------- 9142 // Transform initial VPlan: Apply previously taken decisions, in order, to 9143 // bring the VPlan to its final state. 9144 // --------------------------------------------------------------------------- 9145 9146 // Apply Sink-After legal constraints. 9147 for (auto &Entry : SinkAfter) { 9148 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9149 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9150 9151 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9152 auto *Region = 9153 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9154 if (Region && Region->isReplicator()) 9155 return Region; 9156 return nullptr; 9157 }; 9158 9159 // If the target is in a replication region, make sure to move Sink to the 9160 // block after it, not into the replication region itself. 9161 if (auto *TargetRegion = GetReplicateRegion(Target)) { 9162 assert(TargetRegion->getNumSuccessors() == 1 && "Expected SESE region!"); 9163 assert(!GetReplicateRegion(Sink) && 9164 "cannot sink a region into another region yet"); 9165 VPBasicBlock *NextBlock = 9166 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9167 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9168 continue; 9169 } 9170 9171 auto *SinkRegion = GetReplicateRegion(Sink); 9172 // Unless the sink source is in a replicate region, sink the recipe 9173 // directly. 9174 if (!SinkRegion) { 9175 Sink->moveAfter(Target); 9176 continue; 9177 } 9178 9179 // If the sink source is in a replicate region, we need to move the whole 9180 // replicate region, which should only contain a single recipe in the main 9181 // block. 9182 assert(Sink->getParent()->size() == 1 && 9183 "parent must be a replicator with a single recipe"); 9184 auto *SplitBlock = 9185 Target->getParent()->splitAt(std::next(Target->getIterator())); 9186 9187 auto *Pred = SinkRegion->getSinglePredecessor(); 9188 auto *Succ = SinkRegion->getSingleSuccessor(); 9189 VPBlockUtils::disconnectBlocks(Pred, SinkRegion); 9190 VPBlockUtils::disconnectBlocks(SinkRegion, Succ); 9191 VPBlockUtils::connectBlocks(Pred, Succ); 9192 9193 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9194 9195 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9196 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9197 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9198 if (VPBB == SplitPred) 9199 VPBB = SplitBlock; 9200 } 9201 9202 // Interleave memory: for each Interleave Group we marked earlier as relevant 9203 // for this VPlan, replace the Recipes widening its memory instructions with a 9204 // single VPInterleaveRecipe at its insertion point. 9205 for (auto IG : InterleaveGroups) { 9206 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9207 RecipeBuilder.getRecipe(IG->getInsertPos())); 9208 SmallVector<VPValue *, 4> StoredValues; 9209 for (unsigned i = 0; i < IG->getFactor(); ++i) 9210 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9211 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9212 9213 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9214 Recipe->getMask()); 9215 VPIG->insertBefore(Recipe); 9216 unsigned J = 0; 9217 for (unsigned i = 0; i < IG->getFactor(); ++i) 9218 if (Instruction *Member = IG->getMember(i)) { 9219 if (!Member->getType()->isVoidTy()) { 9220 VPValue *OriginalV = Plan->getVPValue(Member); 9221 Plan->removeVPValueFor(Member); 9222 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9223 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9224 J++; 9225 } 9226 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9227 } 9228 } 9229 9230 // Adjust the recipes for any inloop reductions. 9231 if (Range.Start.isVector()) 9232 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 9233 9234 // Finally, if tail is folded by masking, introduce selects between the phi 9235 // and the live-out instruction of each reduction, at the end of the latch. 9236 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9237 Builder.setInsertPoint(VPBB); 9238 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9239 for (auto &Reduction : Legal->getReductionVars()) { 9240 if (CM.isInLoopReduction(Reduction.first)) 9241 continue; 9242 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9243 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9244 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9245 } 9246 } 9247 9248 std::string PlanName; 9249 raw_string_ostream RSO(PlanName); 9250 ElementCount VF = Range.Start; 9251 Plan->addVF(VF); 9252 RSO << "Initial VPlan for VF={" << VF; 9253 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9254 Plan->addVF(VF); 9255 RSO << "," << VF; 9256 } 9257 RSO << "},UF>=1"; 9258 RSO.flush(); 9259 Plan->setName(PlanName); 9260 9261 return Plan; 9262 } 9263 9264 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9265 // Outer loop handling: They may require CFG and instruction level 9266 // transformations before even evaluating whether vectorization is profitable. 9267 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9268 // the vectorization pipeline. 9269 assert(!OrigLoop->isInnermost()); 9270 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9271 9272 // Create new empty VPlan 9273 auto Plan = std::make_unique<VPlan>(); 9274 9275 // Build hierarchical CFG 9276 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9277 HCFGBuilder.buildHierarchicalCFG(); 9278 9279 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9280 VF *= 2) 9281 Plan->addVF(VF); 9282 9283 if (EnableVPlanPredication) { 9284 VPlanPredicator VPP(*Plan); 9285 VPP.predicate(); 9286 9287 // Avoid running transformation to recipes until masked code generation in 9288 // VPlan-native path is in place. 9289 return Plan; 9290 } 9291 9292 SmallPtrSet<Instruction *, 1> DeadInstructions; 9293 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9294 Legal->getInductionVars(), 9295 DeadInstructions, *PSE.getSE()); 9296 return Plan; 9297 } 9298 9299 // Adjust the recipes for any inloop reductions. The chain of instructions 9300 // leading from the loop exit instr to the phi need to be converted to 9301 // reductions, with one operand being vector and the other being the scalar 9302 // reduction chain. 9303 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9304 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9305 for (auto &Reduction : CM.getInLoopReductionChains()) { 9306 PHINode *Phi = Reduction.first; 9307 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9308 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9309 9310 // ReductionOperations are orders top-down from the phi's use to the 9311 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9312 // which of the two operands will remain scalar and which will be reduced. 9313 // For minmax the chain will be the select instructions. 9314 Instruction *Chain = Phi; 9315 for (Instruction *R : ReductionOperations) { 9316 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9317 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9318 9319 VPValue *ChainOp = Plan->getVPValue(Chain); 9320 unsigned FirstOpId; 9321 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9322 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9323 "Expected to replace a VPWidenSelectSC"); 9324 FirstOpId = 1; 9325 } else { 9326 assert(isa<VPWidenRecipe>(WidenRecipe) && 9327 "Expected to replace a VPWidenSC"); 9328 FirstOpId = 0; 9329 } 9330 unsigned VecOpId = 9331 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9332 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9333 9334 auto *CondOp = CM.foldTailByMasking() 9335 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9336 : nullptr; 9337 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9338 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9339 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9340 Plan->removeVPValueFor(R); 9341 Plan->addVPValue(R, RedRecipe); 9342 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9343 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9344 WidenRecipe->eraseFromParent(); 9345 9346 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9347 VPRecipeBase *CompareRecipe = 9348 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9349 assert(isa<VPWidenRecipe>(CompareRecipe) && 9350 "Expected to replace a VPWidenSC"); 9351 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9352 "Expected no remaining users"); 9353 CompareRecipe->eraseFromParent(); 9354 } 9355 Chain = R; 9356 } 9357 } 9358 } 9359 9360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9361 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9362 VPSlotTracker &SlotTracker) const { 9363 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9364 IG->getInsertPos()->printAsOperand(O, false); 9365 O << ", "; 9366 getAddr()->printAsOperand(O, SlotTracker); 9367 VPValue *Mask = getMask(); 9368 if (Mask) { 9369 O << ", "; 9370 Mask->printAsOperand(O, SlotTracker); 9371 } 9372 for (unsigned i = 0; i < IG->getFactor(); ++i) 9373 if (Instruction *I = IG->getMember(i)) 9374 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9375 } 9376 #endif 9377 9378 void VPWidenCallRecipe::execute(VPTransformState &State) { 9379 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9380 *this, State); 9381 } 9382 9383 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9384 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9385 this, *this, InvariantCond, State); 9386 } 9387 9388 void VPWidenRecipe::execute(VPTransformState &State) { 9389 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9390 } 9391 9392 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9393 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9394 *this, State.UF, State.VF, IsPtrLoopInvariant, 9395 IsIndexLoopInvariant, State); 9396 } 9397 9398 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9399 assert(!State.Instance && "Int or FP induction being replicated."); 9400 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9401 getTruncInst(), getVPValue(0), 9402 getCastValue(), State); 9403 } 9404 9405 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9406 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9407 this, State); 9408 } 9409 9410 void VPBlendRecipe::execute(VPTransformState &State) { 9411 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9412 // We know that all PHIs in non-header blocks are converted into 9413 // selects, so we don't have to worry about the insertion order and we 9414 // can just use the builder. 9415 // At this point we generate the predication tree. There may be 9416 // duplications since this is a simple recursive scan, but future 9417 // optimizations will clean it up. 9418 9419 unsigned NumIncoming = getNumIncomingValues(); 9420 9421 // Generate a sequence of selects of the form: 9422 // SELECT(Mask3, In3, 9423 // SELECT(Mask2, In2, 9424 // SELECT(Mask1, In1, 9425 // In0))) 9426 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9427 // are essentially undef are taken from In0. 9428 InnerLoopVectorizer::VectorParts Entry(State.UF); 9429 for (unsigned In = 0; In < NumIncoming; ++In) { 9430 for (unsigned Part = 0; Part < State.UF; ++Part) { 9431 // We might have single edge PHIs (blocks) - use an identity 9432 // 'select' for the first PHI operand. 9433 Value *In0 = State.get(getIncomingValue(In), Part); 9434 if (In == 0) 9435 Entry[Part] = In0; // Initialize with the first incoming value. 9436 else { 9437 // Select between the current value and the previous incoming edge 9438 // based on the incoming mask. 9439 Value *Cond = State.get(getMask(In), Part); 9440 Entry[Part] = 9441 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9442 } 9443 } 9444 } 9445 for (unsigned Part = 0; Part < State.UF; ++Part) 9446 State.set(this, Entry[Part], Part); 9447 } 9448 9449 void VPInterleaveRecipe::execute(VPTransformState &State) { 9450 assert(!State.Instance && "Interleave group being replicated."); 9451 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9452 getStoredValues(), getMask()); 9453 } 9454 9455 void VPReductionRecipe::execute(VPTransformState &State) { 9456 assert(!State.Instance && "Reduction being replicated."); 9457 Value *PrevInChain = State.get(getChainOp(), 0); 9458 for (unsigned Part = 0; Part < State.UF; ++Part) { 9459 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9460 bool IsOrdered = useOrderedReductions(*RdxDesc); 9461 Value *NewVecOp = State.get(getVecOp(), Part); 9462 if (VPValue *Cond = getCondOp()) { 9463 Value *NewCond = State.get(Cond, Part); 9464 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9465 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9466 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9467 Constant *IdenVec = 9468 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9469 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9470 NewVecOp = Select; 9471 } 9472 Value *NewRed; 9473 Value *NextInChain; 9474 if (IsOrdered) { 9475 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9476 PrevInChain); 9477 PrevInChain = NewRed; 9478 } else { 9479 PrevInChain = State.get(getChainOp(), Part); 9480 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9481 } 9482 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9483 NextInChain = 9484 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9485 NewRed, PrevInChain); 9486 } else if (IsOrdered) 9487 NextInChain = NewRed; 9488 else { 9489 NextInChain = State.Builder.CreateBinOp( 9490 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9491 PrevInChain); 9492 } 9493 State.set(this, NextInChain, Part); 9494 } 9495 } 9496 9497 void VPReplicateRecipe::execute(VPTransformState &State) { 9498 if (State.Instance) { // Generate a single instance. 9499 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9500 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9501 *State.Instance, IsPredicated, State); 9502 // Insert scalar instance packing it into a vector. 9503 if (AlsoPack && State.VF.isVector()) { 9504 // If we're constructing lane 0, initialize to start from poison. 9505 if (State.Instance->Lane.isFirstLane()) { 9506 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9507 Value *Poison = PoisonValue::get( 9508 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9509 State.set(this, Poison, State.Instance->Part); 9510 } 9511 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9512 } 9513 return; 9514 } 9515 9516 // Generate scalar instances for all VF lanes of all UF parts, unless the 9517 // instruction is uniform inwhich case generate only the first lane for each 9518 // of the UF parts. 9519 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9520 assert((!State.VF.isScalable() || IsUniform) && 9521 "Can't scalarize a scalable vector"); 9522 for (unsigned Part = 0; Part < State.UF; ++Part) 9523 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9524 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9525 VPIteration(Part, Lane), IsPredicated, 9526 State); 9527 } 9528 9529 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9530 assert(State.Instance && "Branch on Mask works only on single instance."); 9531 9532 unsigned Part = State.Instance->Part; 9533 unsigned Lane = State.Instance->Lane.getKnownLane(); 9534 9535 Value *ConditionBit = nullptr; 9536 VPValue *BlockInMask = getMask(); 9537 if (BlockInMask) { 9538 ConditionBit = State.get(BlockInMask, Part); 9539 if (ConditionBit->getType()->isVectorTy()) 9540 ConditionBit = State.Builder.CreateExtractElement( 9541 ConditionBit, State.Builder.getInt32(Lane)); 9542 } else // Block in mask is all-one. 9543 ConditionBit = State.Builder.getTrue(); 9544 9545 // Replace the temporary unreachable terminator with a new conditional branch, 9546 // whose two destinations will be set later when they are created. 9547 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9548 assert(isa<UnreachableInst>(CurrentTerminator) && 9549 "Expected to replace unreachable terminator with conditional branch."); 9550 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9551 CondBr->setSuccessor(0, nullptr); 9552 ReplaceInstWithInst(CurrentTerminator, CondBr); 9553 } 9554 9555 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9556 assert(State.Instance && "Predicated instruction PHI works per instance."); 9557 Instruction *ScalarPredInst = 9558 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9559 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9560 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9561 assert(PredicatingBB && "Predicated block has no single predecessor."); 9562 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9563 "operand must be VPReplicateRecipe"); 9564 9565 // By current pack/unpack logic we need to generate only a single phi node: if 9566 // a vector value for the predicated instruction exists at this point it means 9567 // the instruction has vector users only, and a phi for the vector value is 9568 // needed. In this case the recipe of the predicated instruction is marked to 9569 // also do that packing, thereby "hoisting" the insert-element sequence. 9570 // Otherwise, a phi node for the scalar value is needed. 9571 unsigned Part = State.Instance->Part; 9572 if (State.hasVectorValue(getOperand(0), Part)) { 9573 Value *VectorValue = State.get(getOperand(0), Part); 9574 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9575 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9576 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9577 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9578 if (State.hasVectorValue(this, Part)) 9579 State.reset(this, VPhi, Part); 9580 else 9581 State.set(this, VPhi, Part); 9582 // NOTE: Currently we need to update the value of the operand, so the next 9583 // predicated iteration inserts its generated value in the correct vector. 9584 State.reset(getOperand(0), VPhi, Part); 9585 } else { 9586 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9587 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9588 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9589 PredicatingBB); 9590 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9591 if (State.hasScalarValue(this, *State.Instance)) 9592 State.reset(this, Phi, *State.Instance); 9593 else 9594 State.set(this, Phi, *State.Instance); 9595 // NOTE: Currently we need to update the value of the operand, so the next 9596 // predicated iteration inserts its generated value in the correct vector. 9597 State.reset(getOperand(0), Phi, *State.Instance); 9598 } 9599 } 9600 9601 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9602 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9603 State.ILV->vectorizeMemoryInstruction( 9604 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9605 StoredValue, getMask()); 9606 } 9607 9608 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9609 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9610 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9611 // for predication. 9612 static ScalarEpilogueLowering getScalarEpilogueLowering( 9613 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9614 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9615 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9616 LoopVectorizationLegality &LVL) { 9617 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9618 // don't look at hints or options, and don't request a scalar epilogue. 9619 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9620 // LoopAccessInfo (due to code dependency and not being able to reliably get 9621 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9622 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9623 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9624 // back to the old way and vectorize with versioning when forced. See D81345.) 9625 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9626 PGSOQueryType::IRPass) && 9627 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9628 return CM_ScalarEpilogueNotAllowedOptSize; 9629 9630 // 2) If set, obey the directives 9631 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9632 switch (PreferPredicateOverEpilogue) { 9633 case PreferPredicateTy::ScalarEpilogue: 9634 return CM_ScalarEpilogueAllowed; 9635 case PreferPredicateTy::PredicateElseScalarEpilogue: 9636 return CM_ScalarEpilogueNotNeededUsePredicate; 9637 case PreferPredicateTy::PredicateOrDontVectorize: 9638 return CM_ScalarEpilogueNotAllowedUsePredicate; 9639 }; 9640 } 9641 9642 // 3) If set, obey the hints 9643 switch (Hints.getPredicate()) { 9644 case LoopVectorizeHints::FK_Enabled: 9645 return CM_ScalarEpilogueNotNeededUsePredicate; 9646 case LoopVectorizeHints::FK_Disabled: 9647 return CM_ScalarEpilogueAllowed; 9648 }; 9649 9650 // 4) if the TTI hook indicates this is profitable, request predication. 9651 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9652 LVL.getLAI())) 9653 return CM_ScalarEpilogueNotNeededUsePredicate; 9654 9655 return CM_ScalarEpilogueAllowed; 9656 } 9657 9658 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9659 // If Values have been set for this Def return the one relevant for \p Part. 9660 if (hasVectorValue(Def, Part)) 9661 return Data.PerPartOutput[Def][Part]; 9662 9663 if (!hasScalarValue(Def, {Part, 0})) { 9664 Value *IRV = Def->getLiveInIRValue(); 9665 Value *B = ILV->getBroadcastInstrs(IRV); 9666 set(Def, B, Part); 9667 return B; 9668 } 9669 9670 Value *ScalarValue = get(Def, {Part, 0}); 9671 // If we aren't vectorizing, we can just copy the scalar map values over 9672 // to the vector map. 9673 if (VF.isScalar()) { 9674 set(Def, ScalarValue, Part); 9675 return ScalarValue; 9676 } 9677 9678 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9679 bool IsUniform = RepR && RepR->isUniform(); 9680 9681 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9682 // Check if there is a scalar value for the selected lane. 9683 if (!hasScalarValue(Def, {Part, LastLane})) { 9684 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9685 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9686 "unexpected recipe found to be invariant"); 9687 IsUniform = true; 9688 LastLane = 0; 9689 } 9690 9691 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9692 9693 // Set the insert point after the last scalarized instruction. This 9694 // ensures the insertelement sequence will directly follow the scalar 9695 // definitions. 9696 auto OldIP = Builder.saveIP(); 9697 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9698 Builder.SetInsertPoint(&*NewIP); 9699 9700 // However, if we are vectorizing, we need to construct the vector values. 9701 // If the value is known to be uniform after vectorization, we can just 9702 // broadcast the scalar value corresponding to lane zero for each unroll 9703 // iteration. Otherwise, we construct the vector values using 9704 // insertelement instructions. Since the resulting vectors are stored in 9705 // State, we will only generate the insertelements once. 9706 Value *VectorValue = nullptr; 9707 if (IsUniform) { 9708 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9709 set(Def, VectorValue, Part); 9710 } else { 9711 // Initialize packing with insertelements to start from undef. 9712 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9713 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9714 set(Def, Undef, Part); 9715 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9716 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9717 VectorValue = get(Def, Part); 9718 } 9719 Builder.restoreIP(OldIP); 9720 return VectorValue; 9721 } 9722 9723 // Process the loop in the VPlan-native vectorization path. This path builds 9724 // VPlan upfront in the vectorization pipeline, which allows to apply 9725 // VPlan-to-VPlan transformations from the very beginning without modifying the 9726 // input LLVM IR. 9727 static bool processLoopInVPlanNativePath( 9728 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9729 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9730 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9731 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9732 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9733 LoopVectorizationRequirements &Requirements) { 9734 9735 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9736 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9737 return false; 9738 } 9739 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9740 Function *F = L->getHeader()->getParent(); 9741 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9742 9743 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9744 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9745 9746 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9747 &Hints, IAI); 9748 // Use the planner for outer loop vectorization. 9749 // TODO: CM is not used at this point inside the planner. Turn CM into an 9750 // optional argument if we don't need it in the future. 9751 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9752 Requirements, ORE); 9753 9754 // Get user vectorization factor. 9755 ElementCount UserVF = Hints.getWidth(); 9756 9757 // Plan how to best vectorize, return the best VF and its cost. 9758 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9759 9760 // If we are stress testing VPlan builds, do not attempt to generate vector 9761 // code. Masked vector code generation support will follow soon. 9762 // Also, do not attempt to vectorize if no vector code will be produced. 9763 if (VPlanBuildStressTest || EnableVPlanPredication || 9764 VectorizationFactor::Disabled() == VF) 9765 return false; 9766 9767 LVP.setBestPlan(VF.Width, 1); 9768 9769 { 9770 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9771 F->getParent()->getDataLayout()); 9772 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9773 &CM, BFI, PSI, Checks); 9774 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9775 << L->getHeader()->getParent()->getName() << "\"\n"); 9776 LVP.executePlan(LB, DT); 9777 } 9778 9779 // Mark the loop as already vectorized to avoid vectorizing again. 9780 Hints.setAlreadyVectorized(); 9781 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9782 return true; 9783 } 9784 9785 // Emit a remark if there are stores to floats that required a floating point 9786 // extension. If the vectorized loop was generated with floating point there 9787 // will be a performance penalty from the conversion overhead and the change in 9788 // the vector width. 9789 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9790 SmallVector<Instruction *, 4> Worklist; 9791 for (BasicBlock *BB : L->getBlocks()) { 9792 for (Instruction &Inst : *BB) { 9793 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9794 if (S->getValueOperand()->getType()->isFloatTy()) 9795 Worklist.push_back(S); 9796 } 9797 } 9798 } 9799 9800 // Traverse the floating point stores upwards searching, for floating point 9801 // conversions. 9802 SmallPtrSet<const Instruction *, 4> Visited; 9803 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9804 while (!Worklist.empty()) { 9805 auto *I = Worklist.pop_back_val(); 9806 if (!L->contains(I)) 9807 continue; 9808 if (!Visited.insert(I).second) 9809 continue; 9810 9811 // Emit a remark if the floating point store required a floating 9812 // point conversion. 9813 // TODO: More work could be done to identify the root cause such as a 9814 // constant or a function return type and point the user to it. 9815 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9816 ORE->emit([&]() { 9817 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9818 I->getDebugLoc(), L->getHeader()) 9819 << "floating point conversion changes vector width. " 9820 << "Mixed floating point precision requires an up/down " 9821 << "cast that will negatively impact performance."; 9822 }); 9823 9824 for (Use &Op : I->operands()) 9825 if (auto *OpI = dyn_cast<Instruction>(Op)) 9826 Worklist.push_back(OpI); 9827 } 9828 } 9829 9830 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9831 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9832 !EnableLoopInterleaving), 9833 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9834 !EnableLoopVectorization) {} 9835 9836 bool LoopVectorizePass::processLoop(Loop *L) { 9837 assert((EnableVPlanNativePath || L->isInnermost()) && 9838 "VPlan-native path is not enabled. Only process inner loops."); 9839 9840 #ifndef NDEBUG 9841 const std::string DebugLocStr = getDebugLocString(L); 9842 #endif /* NDEBUG */ 9843 9844 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9845 << L->getHeader()->getParent()->getName() << "\" from " 9846 << DebugLocStr << "\n"); 9847 9848 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9849 9850 LLVM_DEBUG( 9851 dbgs() << "LV: Loop hints:" 9852 << " force=" 9853 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9854 ? "disabled" 9855 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9856 ? "enabled" 9857 : "?")) 9858 << " width=" << Hints.getWidth() 9859 << " interleave=" << Hints.getInterleave() << "\n"); 9860 9861 // Function containing loop 9862 Function *F = L->getHeader()->getParent(); 9863 9864 // Looking at the diagnostic output is the only way to determine if a loop 9865 // was vectorized (other than looking at the IR or machine code), so it 9866 // is important to generate an optimization remark for each loop. Most of 9867 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9868 // generated as OptimizationRemark and OptimizationRemarkMissed are 9869 // less verbose reporting vectorized loops and unvectorized loops that may 9870 // benefit from vectorization, respectively. 9871 9872 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9873 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9874 return false; 9875 } 9876 9877 PredicatedScalarEvolution PSE(*SE, *L); 9878 9879 // Check if it is legal to vectorize the loop. 9880 LoopVectorizationRequirements Requirements; 9881 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9882 &Requirements, &Hints, DB, AC, BFI, PSI); 9883 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9884 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9885 Hints.emitRemarkWithHints(); 9886 return false; 9887 } 9888 9889 // Check the function attributes and profiles to find out if this function 9890 // should be optimized for size. 9891 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9892 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9893 9894 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9895 // here. They may require CFG and instruction level transformations before 9896 // even evaluating whether vectorization is profitable. Since we cannot modify 9897 // the incoming IR, we need to build VPlan upfront in the vectorization 9898 // pipeline. 9899 if (!L->isInnermost()) 9900 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9901 ORE, BFI, PSI, Hints, Requirements); 9902 9903 assert(L->isInnermost() && "Inner loop expected."); 9904 9905 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9906 // count by optimizing for size, to minimize overheads. 9907 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9908 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9909 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9910 << "This loop is worth vectorizing only if no scalar " 9911 << "iteration overheads are incurred."); 9912 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9913 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9914 else { 9915 LLVM_DEBUG(dbgs() << "\n"); 9916 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9917 } 9918 } 9919 9920 // Check the function attributes to see if implicit floats are allowed. 9921 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9922 // an integer loop and the vector instructions selected are purely integer 9923 // vector instructions? 9924 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9925 reportVectorizationFailure( 9926 "Can't vectorize when the NoImplicitFloat attribute is used", 9927 "loop not vectorized due to NoImplicitFloat attribute", 9928 "NoImplicitFloat", ORE, L); 9929 Hints.emitRemarkWithHints(); 9930 return false; 9931 } 9932 9933 // Check if the target supports potentially unsafe FP vectorization. 9934 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9935 // for the target we're vectorizing for, to make sure none of the 9936 // additional fp-math flags can help. 9937 if (Hints.isPotentiallyUnsafe() && 9938 TTI->isFPVectorizationPotentiallyUnsafe()) { 9939 reportVectorizationFailure( 9940 "Potentially unsafe FP op prevents vectorization", 9941 "loop not vectorized due to unsafe FP support.", 9942 "UnsafeFP", ORE, L); 9943 Hints.emitRemarkWithHints(); 9944 return false; 9945 } 9946 9947 if (!Requirements.canVectorizeFPMath(Hints)) { 9948 ORE->emit([&]() { 9949 auto *ExactFPMathInst = Requirements.getExactFPInst(); 9950 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 9951 ExactFPMathInst->getDebugLoc(), 9952 ExactFPMathInst->getParent()) 9953 << "loop not vectorized: cannot prove it is safe to reorder " 9954 "floating-point operations"; 9955 }); 9956 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 9957 "reorder floating-point operations\n"); 9958 Hints.emitRemarkWithHints(); 9959 return false; 9960 } 9961 9962 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9963 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9964 9965 // If an override option has been passed in for interleaved accesses, use it. 9966 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9967 UseInterleaved = EnableInterleavedMemAccesses; 9968 9969 // Analyze interleaved memory accesses. 9970 if (UseInterleaved) { 9971 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9972 } 9973 9974 // Use the cost model. 9975 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9976 F, &Hints, IAI); 9977 CM.collectValuesToIgnore(); 9978 9979 // Use the planner for vectorization. 9980 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 9981 Requirements, ORE); 9982 9983 // Get user vectorization factor and interleave count. 9984 ElementCount UserVF = Hints.getWidth(); 9985 unsigned UserIC = Hints.getInterleave(); 9986 9987 // Plan how to best vectorize, return the best VF and its cost. 9988 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9989 9990 VectorizationFactor VF = VectorizationFactor::Disabled(); 9991 unsigned IC = 1; 9992 9993 if (MaybeVF) { 9994 VF = *MaybeVF; 9995 // Select the interleave count. 9996 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 9997 } 9998 9999 // Identify the diagnostic messages that should be produced. 10000 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10001 bool VectorizeLoop = true, InterleaveLoop = true; 10002 if (VF.Width.isScalar()) { 10003 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10004 VecDiagMsg = std::make_pair( 10005 "VectorizationNotBeneficial", 10006 "the cost-model indicates that vectorization is not beneficial"); 10007 VectorizeLoop = false; 10008 } 10009 10010 if (!MaybeVF && UserIC > 1) { 10011 // Tell the user interleaving was avoided up-front, despite being explicitly 10012 // requested. 10013 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10014 "interleaving should be avoided up front\n"); 10015 IntDiagMsg = std::make_pair( 10016 "InterleavingAvoided", 10017 "Ignoring UserIC, because interleaving was avoided up front"); 10018 InterleaveLoop = false; 10019 } else if (IC == 1 && UserIC <= 1) { 10020 // Tell the user interleaving is not beneficial. 10021 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10022 IntDiagMsg = std::make_pair( 10023 "InterleavingNotBeneficial", 10024 "the cost-model indicates that interleaving is not beneficial"); 10025 InterleaveLoop = false; 10026 if (UserIC == 1) { 10027 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10028 IntDiagMsg.second += 10029 " and is explicitly disabled or interleave count is set to 1"; 10030 } 10031 } else if (IC > 1 && UserIC == 1) { 10032 // Tell the user interleaving is beneficial, but it explicitly disabled. 10033 LLVM_DEBUG( 10034 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10035 IntDiagMsg = std::make_pair( 10036 "InterleavingBeneficialButDisabled", 10037 "the cost-model indicates that interleaving is beneficial " 10038 "but is explicitly disabled or interleave count is set to 1"); 10039 InterleaveLoop = false; 10040 } 10041 10042 // Override IC if user provided an interleave count. 10043 IC = UserIC > 0 ? UserIC : IC; 10044 10045 // Emit diagnostic messages, if any. 10046 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10047 if (!VectorizeLoop && !InterleaveLoop) { 10048 // Do not vectorize or interleaving the loop. 10049 ORE->emit([&]() { 10050 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10051 L->getStartLoc(), L->getHeader()) 10052 << VecDiagMsg.second; 10053 }); 10054 ORE->emit([&]() { 10055 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10056 L->getStartLoc(), L->getHeader()) 10057 << IntDiagMsg.second; 10058 }); 10059 return false; 10060 } else if (!VectorizeLoop && InterleaveLoop) { 10061 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10062 ORE->emit([&]() { 10063 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10064 L->getStartLoc(), L->getHeader()) 10065 << VecDiagMsg.second; 10066 }); 10067 } else if (VectorizeLoop && !InterleaveLoop) { 10068 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10069 << ") in " << DebugLocStr << '\n'); 10070 ORE->emit([&]() { 10071 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10072 L->getStartLoc(), L->getHeader()) 10073 << IntDiagMsg.second; 10074 }); 10075 } else if (VectorizeLoop && InterleaveLoop) { 10076 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10077 << ") in " << DebugLocStr << '\n'); 10078 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10079 } 10080 10081 bool DisableRuntimeUnroll = false; 10082 MDNode *OrigLoopID = L->getLoopID(); 10083 { 10084 // Optimistically generate runtime checks. Drop them if they turn out to not 10085 // be profitable. Limit the scope of Checks, so the cleanup happens 10086 // immediately after vector codegeneration is done. 10087 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10088 F->getParent()->getDataLayout()); 10089 if (!VF.Width.isScalar() || IC > 1) 10090 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10091 LVP.setBestPlan(VF.Width, IC); 10092 10093 using namespace ore; 10094 if (!VectorizeLoop) { 10095 assert(IC > 1 && "interleave count should not be 1 or 0"); 10096 // If we decided that it is not legal to vectorize the loop, then 10097 // interleave it. 10098 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10099 &CM, BFI, PSI, Checks); 10100 LVP.executePlan(Unroller, DT); 10101 10102 ORE->emit([&]() { 10103 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10104 L->getHeader()) 10105 << "interleaved loop (interleaved count: " 10106 << NV("InterleaveCount", IC) << ")"; 10107 }); 10108 } else { 10109 // If we decided that it is *legal* to vectorize the loop, then do it. 10110 10111 // Consider vectorizing the epilogue too if it's profitable. 10112 VectorizationFactor EpilogueVF = 10113 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10114 if (EpilogueVF.Width.isVector()) { 10115 10116 // The first pass vectorizes the main loop and creates a scalar epilogue 10117 // to be vectorized by executing the plan (potentially with a different 10118 // factor) again shortly afterwards. 10119 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10120 EpilogueVF.Width.getKnownMinValue(), 10121 1); 10122 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10123 EPI, &LVL, &CM, BFI, PSI, Checks); 10124 10125 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10126 LVP.executePlan(MainILV, DT); 10127 ++LoopsVectorized; 10128 10129 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10130 formLCSSARecursively(*L, *DT, LI, SE); 10131 10132 // Second pass vectorizes the epilogue and adjusts the control flow 10133 // edges from the first pass. 10134 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10135 EPI.MainLoopVF = EPI.EpilogueVF; 10136 EPI.MainLoopUF = EPI.EpilogueUF; 10137 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10138 ORE, EPI, &LVL, &CM, BFI, PSI, 10139 Checks); 10140 LVP.executePlan(EpilogILV, DT); 10141 ++LoopsEpilogueVectorized; 10142 10143 if (!MainILV.areSafetyChecksAdded()) 10144 DisableRuntimeUnroll = true; 10145 } else { 10146 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10147 &LVL, &CM, BFI, PSI, Checks); 10148 LVP.executePlan(LB, DT); 10149 ++LoopsVectorized; 10150 10151 // Add metadata to disable runtime unrolling a scalar loop when there 10152 // are no runtime checks about strides and memory. A scalar loop that is 10153 // rarely used is not worth unrolling. 10154 if (!LB.areSafetyChecksAdded()) 10155 DisableRuntimeUnroll = true; 10156 } 10157 // Report the vectorization decision. 10158 ORE->emit([&]() { 10159 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10160 L->getHeader()) 10161 << "vectorized loop (vectorization width: " 10162 << NV("VectorizationFactor", VF.Width) 10163 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10164 }); 10165 } 10166 10167 if (ORE->allowExtraAnalysis(LV_NAME)) 10168 checkMixedPrecision(L, ORE); 10169 } 10170 10171 Optional<MDNode *> RemainderLoopID = 10172 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10173 LLVMLoopVectorizeFollowupEpilogue}); 10174 if (RemainderLoopID.hasValue()) { 10175 L->setLoopID(RemainderLoopID.getValue()); 10176 } else { 10177 if (DisableRuntimeUnroll) 10178 AddRuntimeUnrollDisableMetaData(L); 10179 10180 // Mark the loop as already vectorized to avoid vectorizing again. 10181 Hints.setAlreadyVectorized(); 10182 } 10183 10184 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10185 return true; 10186 } 10187 10188 LoopVectorizeResult LoopVectorizePass::runImpl( 10189 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10190 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10191 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10192 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10193 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10194 SE = &SE_; 10195 LI = &LI_; 10196 TTI = &TTI_; 10197 DT = &DT_; 10198 BFI = &BFI_; 10199 TLI = TLI_; 10200 AA = &AA_; 10201 AC = &AC_; 10202 GetLAA = &GetLAA_; 10203 DB = &DB_; 10204 ORE = &ORE_; 10205 PSI = PSI_; 10206 10207 // Don't attempt if 10208 // 1. the target claims to have no vector registers, and 10209 // 2. interleaving won't help ILP. 10210 // 10211 // The second condition is necessary because, even if the target has no 10212 // vector registers, loop vectorization may still enable scalar 10213 // interleaving. 10214 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10215 TTI->getMaxInterleaveFactor(1) < 2) 10216 return LoopVectorizeResult(false, false); 10217 10218 bool Changed = false, CFGChanged = false; 10219 10220 // The vectorizer requires loops to be in simplified form. 10221 // Since simplification may add new inner loops, it has to run before the 10222 // legality and profitability checks. This means running the loop vectorizer 10223 // will simplify all loops, regardless of whether anything end up being 10224 // vectorized. 10225 for (auto &L : *LI) 10226 Changed |= CFGChanged |= 10227 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10228 10229 // Build up a worklist of inner-loops to vectorize. This is necessary as 10230 // the act of vectorizing or partially unrolling a loop creates new loops 10231 // and can invalidate iterators across the loops. 10232 SmallVector<Loop *, 8> Worklist; 10233 10234 for (Loop *L : *LI) 10235 collectSupportedLoops(*L, LI, ORE, Worklist); 10236 10237 LoopsAnalyzed += Worklist.size(); 10238 10239 // Now walk the identified inner loops. 10240 while (!Worklist.empty()) { 10241 Loop *L = Worklist.pop_back_val(); 10242 10243 // For the inner loops we actually process, form LCSSA to simplify the 10244 // transform. 10245 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10246 10247 Changed |= CFGChanged |= processLoop(L); 10248 } 10249 10250 // Process each loop nest in the function. 10251 return LoopVectorizeResult(Changed, CFGChanged); 10252 } 10253 10254 PreservedAnalyses LoopVectorizePass::run(Function &F, 10255 FunctionAnalysisManager &AM) { 10256 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10257 auto &LI = AM.getResult<LoopAnalysis>(F); 10258 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10259 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10260 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10261 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10262 auto &AA = AM.getResult<AAManager>(F); 10263 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10264 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10265 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10266 MemorySSA *MSSA = EnableMSSALoopDependency 10267 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10268 : nullptr; 10269 10270 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10271 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10272 [&](Loop &L) -> const LoopAccessInfo & { 10273 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10274 TLI, TTI, nullptr, MSSA}; 10275 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10276 }; 10277 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10278 ProfileSummaryInfo *PSI = 10279 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10280 LoopVectorizeResult Result = 10281 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10282 if (!Result.MadeAnyChange) 10283 return PreservedAnalyses::all(); 10284 PreservedAnalyses PA; 10285 10286 // We currently do not preserve loopinfo/dominator analyses with outer loop 10287 // vectorization. Until this is addressed, mark these analyses as preserved 10288 // only for non-VPlan-native path. 10289 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10290 if (!EnableVPlanNativePath) { 10291 PA.preserve<LoopAnalysis>(); 10292 PA.preserve<DominatorTreeAnalysis>(); 10293 } 10294 if (!Result.MadeCFGChange) 10295 PA.preserveSet<CFGAnalyses>(); 10296 return PA; 10297 } 10298