1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask, 548 bool ConsecutiveStride, bool Reverse); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Create the exit value of first order recurrences in the middle block and 594 /// update their users. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Create code for the loop exit value of the reduction. 598 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value * 624 getStepVector(Value *Val, Value *StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The unique ExitBlock of the scalar loop if one exists. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector( 893 Value *Val, Value *StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 914 ElementCount EVF, unsigned EUF) 915 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 916 assert(EUF == 1 && 917 "A high UF for the epilogue loop is likely not beneficial."); 918 } 919 }; 920 921 /// An extension of the inner loop vectorizer that creates a skeleton for a 922 /// vectorized loop that has its epilogue (residual) also vectorized. 923 /// The idea is to run the vplan on a given loop twice, firstly to setup the 924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 925 /// from the first step and vectorize the epilogue. This is achieved by 926 /// deriving two concrete strategy classes from this base class and invoking 927 /// them in succession from the loop vectorizer planner. 928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 929 public: 930 InnerLoopAndEpilogueVectorizer( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 940 Checks), 941 EPI(EPI) {} 942 943 // Override this function to handle the more complex control flow around the 944 // three loops. 945 BasicBlock *createVectorizedLoopSkeleton() final override { 946 return createEpilogueVectorizedLoopSkeleton(); 947 } 948 949 /// The interface for creating a vectorized skeleton using one of two 950 /// different strategies, each corresponding to one execution of the vplan 951 /// as described above. 952 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 953 954 /// Holds and updates state information required to vectorize the main loop 955 /// and its epilogue in two separate passes. This setup helps us avoid 956 /// regenerating and recomputing runtime safety checks. It also helps us to 957 /// shorten the iteration-count-check path length for the cases where the 958 /// iteration count of the loop is so small that the main vector loop is 959 /// completely skipped. 960 EpilogueLoopVectorizationInfo &EPI; 961 }; 962 963 /// A specialized derived class of inner loop vectorizer that performs 964 /// vectorization of *main* loops in the process of vectorizing loops and their 965 /// epilogues. 966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 967 public: 968 EpilogueVectorizerMainLoop( 969 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 970 DominatorTree *DT, const TargetLibraryInfo *TLI, 971 const TargetTransformInfo *TTI, AssumptionCache *AC, 972 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 973 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 GeneratedRTChecks &Check) 976 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 977 EPI, LVL, CM, BFI, PSI, Check) {} 978 /// Implements the interface for creating a vectorized skeleton using the 979 /// *main loop* strategy (ie the first pass of vplan execution). 980 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 981 982 protected: 983 /// Emits an iteration count bypass check once for the main loop (when \p 984 /// ForEpilogue is false) and once for the epilogue loop (when \p 985 /// ForEpilogue is true). 986 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 987 bool ForEpilogue); 988 void printDebugTracesAtStart() override; 989 void printDebugTracesAtEnd() override; 990 }; 991 992 // A specialized derived class of inner loop vectorizer that performs 993 // vectorization of *epilogue* loops in the process of vectorizing loops and 994 // their epilogues. 995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 996 public: 997 EpilogueVectorizerEpilogueLoop( 998 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 999 DominatorTree *DT, const TargetLibraryInfo *TLI, 1000 const TargetTransformInfo *TTI, AssumptionCache *AC, 1001 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1002 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1003 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1004 GeneratedRTChecks &Checks) 1005 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1006 EPI, LVL, CM, BFI, PSI, Checks) {} 1007 /// Implements the interface for creating a vectorized skeleton using the 1008 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1009 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1010 1011 protected: 1012 /// Emits an iteration count bypass check after the main vector loop has 1013 /// finished to see if there are any iterations left to execute by either 1014 /// the vector epilogue or the scalar epilogue. 1015 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1016 BasicBlock *Bypass, 1017 BasicBlock *Insert); 1018 void printDebugTracesAtStart() override; 1019 void printDebugTracesAtEnd() override; 1020 }; 1021 } // end namespace llvm 1022 1023 /// Look for a meaningful debug location on the instruction or it's 1024 /// operands. 1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1026 if (!I) 1027 return I; 1028 1029 DebugLoc Empty; 1030 if (I->getDebugLoc() != Empty) 1031 return I; 1032 1033 for (Use &Op : I->operands()) { 1034 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1035 if (OpInst->getDebugLoc() != Empty) 1036 return OpInst; 1037 } 1038 1039 return I; 1040 } 1041 1042 void InnerLoopVectorizer::setDebugLocFromInst( 1043 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1044 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1045 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1046 const DILocation *DIL = Inst->getDebugLoc(); 1047 1048 // When a FSDiscriminator is enabled, we don't need to add the multiply 1049 // factors to the discriminators. 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1052 // FIXME: For scalable vectors, assume vscale=1. 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B->SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } else 1062 B->SetCurrentDebugLocation(DIL); 1063 } else 1064 B->SetCurrentDebugLocation(DebugLoc()); 1065 } 1066 1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1068 /// is passed, the message relates to that particular instruction. 1069 #ifndef NDEBUG 1070 static void debugVectorizationMessage(const StringRef Prefix, 1071 const StringRef DebugMsg, 1072 Instruction *I) { 1073 dbgs() << "LV: " << Prefix << DebugMsg; 1074 if (I != nullptr) 1075 dbgs() << " " << *I; 1076 else 1077 dbgs() << '.'; 1078 dbgs() << '\n'; 1079 } 1080 #endif 1081 1082 /// Create an analysis remark that explains why vectorization failed 1083 /// 1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1085 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1086 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1087 /// the location of the remark. \return the remark object that can be 1088 /// streamed to. 1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1090 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1091 Value *CodeRegion = TheLoop->getHeader(); 1092 DebugLoc DL = TheLoop->getStartLoc(); 1093 1094 if (I) { 1095 CodeRegion = I->getParent(); 1096 // If there is no debug location attached to the instruction, revert back to 1097 // using the loop's. 1098 if (I->getDebugLoc()) 1099 DL = I->getDebugLoc(); 1100 } 1101 1102 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1103 } 1104 1105 /// Return a value for Step multiplied by VF. 1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1107 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1108 Constant *StepVal = ConstantInt::get( 1109 Step->getType(), 1110 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1111 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1112 } 1113 1114 namespace llvm { 1115 1116 /// Return the runtime value for VF. 1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1118 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1119 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1120 } 1121 1122 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1123 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1124 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1125 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1126 return B.CreateUIToFP(RuntimeVF, FTy); 1127 } 1128 1129 void reportVectorizationFailure(const StringRef DebugMsg, 1130 const StringRef OREMsg, const StringRef ORETag, 1131 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1132 Instruction *I) { 1133 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1134 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1135 ORE->emit( 1136 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1137 << "loop not vectorized: " << OREMsg); 1138 } 1139 1140 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1141 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1142 Instruction *I) { 1143 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1144 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1145 ORE->emit( 1146 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1147 << Msg); 1148 } 1149 1150 } // end namespace llvm 1151 1152 #ifndef NDEBUG 1153 /// \return string containing a file name and a line # for the given loop. 1154 static std::string getDebugLocString(const Loop *L) { 1155 std::string Result; 1156 if (L) { 1157 raw_string_ostream OS(Result); 1158 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1159 LoopDbgLoc.print(OS); 1160 else 1161 // Just print the module name. 1162 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1163 OS.flush(); 1164 } 1165 return Result; 1166 } 1167 #endif 1168 1169 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1170 const Instruction *Orig) { 1171 // If the loop was versioned with memchecks, add the corresponding no-alias 1172 // metadata. 1173 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1174 LVer->annotateInstWithNoAlias(To, Orig); 1175 } 1176 1177 void InnerLoopVectorizer::addMetadata(Instruction *To, 1178 Instruction *From) { 1179 propagateMetadata(To, From); 1180 addNewMetadata(To, From); 1181 } 1182 1183 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1184 Instruction *From) { 1185 for (Value *V : To) { 1186 if (Instruction *I = dyn_cast<Instruction>(V)) 1187 addMetadata(I, From); 1188 } 1189 } 1190 1191 namespace llvm { 1192 1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1194 // lowered. 1195 enum ScalarEpilogueLowering { 1196 1197 // The default: allowing scalar epilogues. 1198 CM_ScalarEpilogueAllowed, 1199 1200 // Vectorization with OptForSize: don't allow epilogues. 1201 CM_ScalarEpilogueNotAllowedOptSize, 1202 1203 // A special case of vectorisation with OptForSize: loops with a very small 1204 // trip count are considered for vectorization under OptForSize, thereby 1205 // making sure the cost of their loop body is dominant, free of runtime 1206 // guards and scalar iteration overheads. 1207 CM_ScalarEpilogueNotAllowedLowTripLoop, 1208 1209 // Loop hint predicate indicating an epilogue is undesired. 1210 CM_ScalarEpilogueNotNeededUsePredicate, 1211 1212 // Directive indicating we must either tail fold or not vectorize 1213 CM_ScalarEpilogueNotAllowedUsePredicate 1214 }; 1215 1216 /// ElementCountComparator creates a total ordering for ElementCount 1217 /// for the purposes of using it in a set structure. 1218 struct ElementCountComparator { 1219 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1220 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1221 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1222 } 1223 }; 1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1225 1226 /// LoopVectorizationCostModel - estimates the expected speedups due to 1227 /// vectorization. 1228 /// In many cases vectorization is not profitable. This can happen because of 1229 /// a number of reasons. In this class we mainly attempt to predict the 1230 /// expected speedup/slowdowns due to the supported instruction set. We use the 1231 /// TargetTransformInfo to query the different backends for the cost of 1232 /// different operations. 1233 class LoopVectorizationCostModel { 1234 public: 1235 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1236 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1237 LoopVectorizationLegality *Legal, 1238 const TargetTransformInfo &TTI, 1239 const TargetLibraryInfo *TLI, DemandedBits *DB, 1240 AssumptionCache *AC, 1241 OptimizationRemarkEmitter *ORE, const Function *F, 1242 const LoopVectorizeHints *Hints, 1243 InterleavedAccessInfo &IAI) 1244 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1245 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1246 Hints(Hints), InterleaveInfo(IAI) {} 1247 1248 /// \return An upper bound for the vectorization factors (both fixed and 1249 /// scalable). If the factors are 0, vectorization and interleaving should be 1250 /// avoided up front. 1251 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor 1262 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1263 1264 VectorizationFactor 1265 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1266 const LoopVectorizationPlanner &LVP); 1267 1268 /// Setup cost-based decisions for user vectorization factor. 1269 /// \return true if the UserVF is a feasible VF to be chosen. 1270 bool selectUserVectorizationFactor(ElementCount UserVF) { 1271 collectUniformsAndScalars(UserVF); 1272 collectInstsToScalarize(UserVF); 1273 return expectedCost(UserVF).first.isValid(); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Collect all element types in the loop for which widening is needed. 1316 void collectElementTypesForWidening(); 1317 1318 /// Split reductions into those that happen in the loop, and those that happen 1319 /// outside. In loop reductions are collected into InLoopReductionChains. 1320 void collectInLoopReductions(); 1321 1322 /// Returns true if we should use strict in-order reductions for the given 1323 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1324 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1325 /// of FP operations. 1326 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1327 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1328 } 1329 1330 /// \returns The smallest bitwidth each instruction can be represented with. 1331 /// The vector equivalents of these instructions should be truncated to this 1332 /// type. 1333 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1334 return MinBWs; 1335 } 1336 1337 /// \returns True if it is more profitable to scalarize instruction \p I for 1338 /// vectorization factor \p VF. 1339 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1340 assert(VF.isVector() && 1341 "Profitable to scalarize relevant only for VF > 1."); 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto Scalars = InstsToScalarize.find(VF); 1349 assert(Scalars != InstsToScalarize.end() && 1350 "VF not yet analyzed for scalarization profitability"); 1351 return Scalars->second.find(I) != Scalars->second.end(); 1352 } 1353 1354 /// Returns true if \p I is known to be uniform after vectorization. 1355 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1356 if (VF.isScalar()) 1357 return true; 1358 1359 // Cost model is not run in the VPlan-native path - return conservative 1360 // result until this changes. 1361 if (EnableVPlanNativePath) 1362 return false; 1363 1364 auto UniformsPerVF = Uniforms.find(VF); 1365 assert(UniformsPerVF != Uniforms.end() && 1366 "VF not yet analyzed for uniformity"); 1367 return UniformsPerVF->second.count(I); 1368 } 1369 1370 /// Returns true if \p I is known to be scalar after vectorization. 1371 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1372 if (VF.isScalar()) 1373 return true; 1374 1375 // Cost model is not run in the VPlan-native path - return conservative 1376 // result until this changes. 1377 if (EnableVPlanNativePath) 1378 return false; 1379 1380 auto ScalarsPerVF = Scalars.find(VF); 1381 assert(ScalarsPerVF != Scalars.end() && 1382 "Scalar values are not calculated for VF"); 1383 return ScalarsPerVF->second.count(I); 1384 } 1385 1386 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1387 /// for vectorization factor \p VF. 1388 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1389 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1390 !isProfitableToScalarize(I, VF) && 1391 !isScalarAfterVectorization(I, VF); 1392 } 1393 1394 /// Decision that was taken during cost calculation for memory instruction. 1395 enum InstWidening { 1396 CM_Unknown, 1397 CM_Widen, // For consecutive accesses with stride +1. 1398 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1399 CM_Interleave, 1400 CM_GatherScatter, 1401 CM_Scalarize 1402 }; 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// instruction \p I and vector width \p VF. 1406 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1410 } 1411 1412 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1413 /// interleaving group \p Grp and vector width \p VF. 1414 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1415 ElementCount VF, InstWidening W, 1416 InstructionCost Cost) { 1417 assert(VF.isVector() && "Expected VF >=2"); 1418 /// Broadcast this decicion to all instructions inside the group. 1419 /// But the cost will be assigned to one instruction only. 1420 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1421 if (auto *I = Grp->getMember(i)) { 1422 if (Grp->getInsertPos() == I) 1423 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1424 else 1425 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1426 } 1427 } 1428 } 1429 1430 /// Return the cost model decision for the given instruction \p I and vector 1431 /// width \p VF. Return CM_Unknown if this instruction did not pass 1432 /// through the cost modeling. 1433 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1434 assert(VF.isVector() && "Expected VF to be a vector VF"); 1435 // Cost model is not run in the VPlan-native path - return conservative 1436 // result until this changes. 1437 if (EnableVPlanNativePath) 1438 return CM_GatherScatter; 1439 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 auto Itr = WideningDecisions.find(InstOnVF); 1442 if (Itr == WideningDecisions.end()) 1443 return CM_Unknown; 1444 return Itr->second.first; 1445 } 1446 1447 /// Return the vectorization cost for the given instruction \p I and vector 1448 /// width \p VF. 1449 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1450 assert(VF.isVector() && "Expected VF >=2"); 1451 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1452 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1453 "The cost is not calculated"); 1454 return WideningDecisions[InstOnVF].second; 1455 } 1456 1457 /// Return True if instruction \p I is an optimizable truncate whose operand 1458 /// is an induction variable. Such a truncate will be removed by adding a new 1459 /// induction variable with the destination type. 1460 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1461 // If the instruction is not a truncate, return false. 1462 auto *Trunc = dyn_cast<TruncInst>(I); 1463 if (!Trunc) 1464 return false; 1465 1466 // Get the source and destination types of the truncate. 1467 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1468 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1469 1470 // If the truncate is free for the given types, return false. Replacing a 1471 // free truncate with an induction variable would add an induction variable 1472 // update instruction to each iteration of the loop. We exclude from this 1473 // check the primary induction variable since it will need an update 1474 // instruction regardless. 1475 Value *Op = Trunc->getOperand(0); 1476 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1477 return false; 1478 1479 // If the truncated value is not an induction variable, return false. 1480 return Legal->isInductionPhi(Op); 1481 } 1482 1483 /// Collects the instructions to scalarize for each predicated instruction in 1484 /// the loop. 1485 void collectInstsToScalarize(ElementCount VF); 1486 1487 /// Collect Uniform and Scalar values for the given \p VF. 1488 /// The sets depend on CM decision for Load/Store instructions 1489 /// that may be vectorized as interleave, gather-scatter or scalarized. 1490 void collectUniformsAndScalars(ElementCount VF) { 1491 // Do the analysis once. 1492 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1493 return; 1494 setCostBasedWideningDecision(VF); 1495 collectLoopUniforms(VF); 1496 collectLoopScalars(VF); 1497 } 1498 1499 /// Returns true if the target machine supports masked store operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedStore(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine supports masked load operation 1507 /// for the given \p DataType and kind of access to \p Ptr. 1508 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1509 return Legal->isConsecutivePtr(DataType, Ptr) && 1510 TTI.isLegalMaskedLoad(DataType, Alignment); 1511 } 1512 1513 /// Returns true if the target machine can represent \p V as a masked gather 1514 /// or scatter operation. 1515 bool isLegalGatherOrScatter(Value *V) { 1516 bool LI = isa<LoadInst>(V); 1517 bool SI = isa<StoreInst>(V); 1518 if (!LI && !SI) 1519 return false; 1520 auto *Ty = getLoadStoreType(V); 1521 Align Align = getLoadStoreAlignment(V); 1522 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1523 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1524 } 1525 1526 /// Returns true if the target machine supports all of the reduction 1527 /// variables found for the given VF. 1528 bool canVectorizeReductions(ElementCount VF) const { 1529 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1530 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1531 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1532 })); 1533 } 1534 1535 /// Returns true if \p I is an instruction that will be scalarized with 1536 /// predication. Such instructions include conditional stores and 1537 /// instructions that may divide by zero. 1538 /// If a non-zero VF has been calculated, we check if I will be scalarized 1539 /// predication for that VF. 1540 bool isScalarWithPredication(Instruction *I) const; 1541 1542 // Returns true if \p I is an instruction that will be predicated either 1543 // through scalar predication or masked load/store or masked gather/scatter. 1544 // Superset of instructions that return true for isScalarWithPredication. 1545 bool isPredicatedInst(Instruction *I) { 1546 if (!blockNeedsPredication(I->getParent())) 1547 return false; 1548 // Loads and stores that need some form of masked operation are predicated 1549 // instructions. 1550 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1551 return Legal->isMaskRequired(I); 1552 return isScalarWithPredication(I); 1553 } 1554 1555 /// Returns true if \p I is a memory instruction with consecutive memory 1556 /// access that can be widened. 1557 bool 1558 memoryInstructionCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Returns true if \p I is a memory instruction in an interleaved-group 1562 /// of memory accesses that can be vectorized with wide vector loads/stores 1563 /// and shuffles. 1564 bool 1565 interleavedAccessCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Check if \p Instr belongs to any interleaved access group. 1569 bool isAccessInterleaved(Instruction *Instr) { 1570 return InterleaveInfo.isInterleaved(Instr); 1571 } 1572 1573 /// Get the interleaved access group that \p Instr belongs to. 1574 const InterleaveGroup<Instruction> * 1575 getInterleavedAccessGroup(Instruction *Instr) { 1576 return InterleaveInfo.getInterleaveGroup(Instr); 1577 } 1578 1579 /// Returns true if we're required to use a scalar epilogue for at least 1580 /// the final iteration of the original loop. 1581 bool requiresScalarEpilogue(ElementCount VF) const { 1582 if (!isScalarEpilogueAllowed()) 1583 return false; 1584 // If we might exit from anywhere but the latch, must run the exiting 1585 // iteration in scalar form. 1586 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1587 return true; 1588 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1589 } 1590 1591 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1592 /// loop hint annotation. 1593 bool isScalarEpilogueAllowed() const { 1594 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1595 } 1596 1597 /// Returns true if all loop blocks should be masked to fold tail loop. 1598 bool foldTailByMasking() const { return FoldTailByMasking; } 1599 1600 bool blockNeedsPredication(BasicBlock *BB) const { 1601 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1602 } 1603 1604 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1605 /// nodes to the chain of instructions representing the reductions. Uses a 1606 /// MapVector to ensure deterministic iteration order. 1607 using ReductionChainMap = 1608 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1609 1610 /// Return the chain of instructions representing an inloop reduction. 1611 const ReductionChainMap &getInLoopReductionChains() const { 1612 return InLoopReductionChains; 1613 } 1614 1615 /// Returns true if the Phi is part of an inloop reduction. 1616 bool isInLoopReduction(PHINode *Phi) const { 1617 return InLoopReductionChains.count(Phi); 1618 } 1619 1620 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1621 /// with factor VF. Return the cost of the instruction, including 1622 /// scalarization overhead if it's needed. 1623 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1624 1625 /// Estimate cost of a call instruction CI if it were vectorized with factor 1626 /// VF. Return the cost of the instruction, including scalarization overhead 1627 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1628 /// scalarized - 1629 /// i.e. either vector version isn't available, or is too expensive. 1630 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1631 bool &NeedToScalarize) const; 1632 1633 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1634 /// that of B. 1635 bool isMoreProfitable(const VectorizationFactor &A, 1636 const VectorizationFactor &B) const; 1637 1638 /// Invalidates decisions already taken by the cost model. 1639 void invalidateCostModelingDecisions() { 1640 WideningDecisions.clear(); 1641 Uniforms.clear(); 1642 Scalars.clear(); 1643 } 1644 1645 private: 1646 unsigned NumPredStores = 0; 1647 1648 /// \return An upper bound for the vectorization factors for both 1649 /// fixed and scalable vectorization, where the minimum-known number of 1650 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1651 /// disabled or unsupported, then the scalable part will be equal to 1652 /// ElementCount::getScalable(0). 1653 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1654 ElementCount UserVF); 1655 1656 /// \return the maximized element count based on the targets vector 1657 /// registers and the loop trip-count, but limited to a maximum safe VF. 1658 /// This is a helper function of computeFeasibleMaxVF. 1659 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1660 /// issue that occurred on one of the buildbots which cannot be reproduced 1661 /// without having access to the properietary compiler (see comments on 1662 /// D98509). The issue is currently under investigation and this workaround 1663 /// will be removed as soon as possible. 1664 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1665 unsigned SmallestType, 1666 unsigned WidestType, 1667 const ElementCount &MaxSafeVF); 1668 1669 /// \return the maximum legal scalable VF, based on the safe max number 1670 /// of elements. 1671 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1672 1673 /// The vectorization cost is a combination of the cost itself and a boolean 1674 /// indicating whether any of the contributing operations will actually 1675 /// operate on vector values after type legalization in the backend. If this 1676 /// latter value is false, then all operations will be scalarized (i.e. no 1677 /// vectorization has actually taken place). 1678 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1679 1680 /// Returns the expected execution cost. The unit of the cost does 1681 /// not matter because we use the 'cost' units to compare different 1682 /// vector widths. The cost that is returned is *not* normalized by 1683 /// the factor width. If \p Invalid is not nullptr, this function 1684 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1685 /// each instruction that has an Invalid cost for the given VF. 1686 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1687 VectorizationCostTy 1688 expectedCost(ElementCount VF, 1689 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1690 1691 /// Returns the execution time cost of an instruction for a given vector 1692 /// width. Vector width of one means scalar. 1693 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost-computation logic from getInstructionCost which provides 1696 /// the vector type as an output parameter. 1697 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1698 Type *&VectorTy); 1699 1700 /// Return the cost of instructions in an inloop reduction pattern, if I is 1701 /// part of that pattern. 1702 Optional<InstructionCost> 1703 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1704 TTI::TargetCostKind CostKind); 1705 1706 /// Calculate vectorization cost of memory instruction \p I. 1707 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1708 1709 /// The cost computation for scalarized memory instruction. 1710 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost computation for interleaving group of memory instructions. 1713 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost computation for Gather/Scatter instruction. 1716 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost computation for widening instruction \p I with consecutive 1719 /// memory access. 1720 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1721 1722 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1723 /// Load: scalar load + broadcast. 1724 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1725 /// element) 1726 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1727 1728 /// Estimate the overhead of scalarizing an instruction. This is a 1729 /// convenience wrapper for the type-based getScalarizationOverhead API. 1730 InstructionCost getScalarizationOverhead(Instruction *I, 1731 ElementCount VF) const; 1732 1733 /// Returns whether the instruction is a load or store and will be a emitted 1734 /// as a vector operation. 1735 bool isConsecutiveLoadOrStore(Instruction *I); 1736 1737 /// Returns true if an artificially high cost for emulated masked memrefs 1738 /// should be used. 1739 bool useEmulatedMaskMemRefHack(Instruction *I); 1740 1741 /// Map of scalar integer values to the smallest bitwidth they can be legally 1742 /// represented as. The vector equivalents of these values should be truncated 1743 /// to this type. 1744 MapVector<Instruction *, uint64_t> MinBWs; 1745 1746 /// A type representing the costs for instructions if they were to be 1747 /// scalarized rather than vectorized. The entries are Instruction-Cost 1748 /// pairs. 1749 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1750 1751 /// A set containing all BasicBlocks that are known to present after 1752 /// vectorization as a predicated block. 1753 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1754 1755 /// Records whether it is allowed to have the original scalar loop execute at 1756 /// least once. This may be needed as a fallback loop in case runtime 1757 /// aliasing/dependence checks fail, or to handle the tail/remainder 1758 /// iterations when the trip count is unknown or doesn't divide by the VF, 1759 /// or as a peel-loop to handle gaps in interleave-groups. 1760 /// Under optsize and when the trip count is very small we don't allow any 1761 /// iterations to execute in the scalar loop. 1762 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1763 1764 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1765 bool FoldTailByMasking = false; 1766 1767 /// A map holding scalar costs for different vectorization factors. The 1768 /// presence of a cost for an instruction in the mapping indicates that the 1769 /// instruction will be scalarized when vectorizing with the associated 1770 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1771 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1772 1773 /// Holds the instructions known to be uniform after vectorization. 1774 /// The data is collected per VF. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1776 1777 /// Holds the instructions known to be scalar after vectorization. 1778 /// The data is collected per VF. 1779 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1780 1781 /// Holds the instructions (address computations) that are forced to be 1782 /// scalarized. 1783 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1784 1785 /// PHINodes of the reductions that should be expanded in-loop along with 1786 /// their associated chains of reduction operations, in program order from top 1787 /// (PHI) to bottom 1788 ReductionChainMap InLoopReductionChains; 1789 1790 /// A Map of inloop reduction operations and their immediate chain operand. 1791 /// FIXME: This can be removed once reductions can be costed correctly in 1792 /// vplan. This was added to allow quick lookup to the inloop operations, 1793 /// without having to loop through InLoopReductionChains. 1794 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1795 1796 /// Returns the expected difference in cost from scalarizing the expression 1797 /// feeding a predicated instruction \p PredInst. The instructions to 1798 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1799 /// non-negative return value implies the expression will be scalarized. 1800 /// Currently, only single-use chains are considered for scalarization. 1801 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1802 ElementCount VF); 1803 1804 /// Collect the instructions that are uniform after vectorization. An 1805 /// instruction is uniform if we represent it with a single scalar value in 1806 /// the vectorized loop corresponding to each vector iteration. Examples of 1807 /// uniform instructions include pointer operands of consecutive or 1808 /// interleaved memory accesses. Note that although uniformity implies an 1809 /// instruction will be scalar, the reverse is not true. In general, a 1810 /// scalarized instruction will be represented by VF scalar values in the 1811 /// vectorized loop, each corresponding to an iteration of the original 1812 /// scalar loop. 1813 void collectLoopUniforms(ElementCount VF); 1814 1815 /// Collect the instructions that are scalar after vectorization. An 1816 /// instruction is scalar if it is known to be uniform or will be scalarized 1817 /// during vectorization. Non-uniform scalarized instructions will be 1818 /// represented by VF values in the vectorized loop, each corresponding to an 1819 /// iteration of the original scalar loop. 1820 void collectLoopScalars(ElementCount VF); 1821 1822 /// Keeps cost model vectorization decision and cost for instructions. 1823 /// Right now it is used for memory instructions only. 1824 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1825 std::pair<InstWidening, InstructionCost>>; 1826 1827 DecisionList WideningDecisions; 1828 1829 /// Returns true if \p V is expected to be vectorized and it needs to be 1830 /// extracted. 1831 bool needsExtract(Value *V, ElementCount VF) const { 1832 Instruction *I = dyn_cast<Instruction>(V); 1833 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1834 TheLoop->isLoopInvariant(I)) 1835 return false; 1836 1837 // Assume we can vectorize V (and hence we need extraction) if the 1838 // scalars are not computed yet. This can happen, because it is called 1839 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1840 // the scalars are collected. That should be a safe assumption in most 1841 // cases, because we check if the operands have vectorizable types 1842 // beforehand in LoopVectorizationLegality. 1843 return Scalars.find(VF) == Scalars.end() || 1844 !isScalarAfterVectorization(I, VF); 1845 }; 1846 1847 /// Returns a range containing only operands needing to be extracted. 1848 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1849 ElementCount VF) const { 1850 return SmallVector<Value *, 4>(make_filter_range( 1851 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1852 } 1853 1854 /// Determines if we have the infrastructure to vectorize loop \p L and its 1855 /// epilogue, assuming the main loop is vectorized by \p VF. 1856 bool isCandidateForEpilogueVectorization(const Loop &L, 1857 const ElementCount VF) const; 1858 1859 /// Returns true if epilogue vectorization is considered profitable, and 1860 /// false otherwise. 1861 /// \p VF is the vectorization factor chosen for the original loop. 1862 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1863 1864 public: 1865 /// The loop that we evaluate. 1866 Loop *TheLoop; 1867 1868 /// Predicated scalar evolution analysis. 1869 PredicatedScalarEvolution &PSE; 1870 1871 /// Loop Info analysis. 1872 LoopInfo *LI; 1873 1874 /// Vectorization legality. 1875 LoopVectorizationLegality *Legal; 1876 1877 /// Vector target information. 1878 const TargetTransformInfo &TTI; 1879 1880 /// Target Library Info. 1881 const TargetLibraryInfo *TLI; 1882 1883 /// Demanded bits analysis. 1884 DemandedBits *DB; 1885 1886 /// Assumption cache. 1887 AssumptionCache *AC; 1888 1889 /// Interface to emit optimization remarks. 1890 OptimizationRemarkEmitter *ORE; 1891 1892 const Function *TheFunction; 1893 1894 /// Loop Vectorize Hint. 1895 const LoopVectorizeHints *Hints; 1896 1897 /// The interleave access information contains groups of interleaved accesses 1898 /// with the same stride and close to each other. 1899 InterleavedAccessInfo &InterleaveInfo; 1900 1901 /// Values to ignore in the cost model. 1902 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1903 1904 /// Values to ignore in the cost model when VF > 1. 1905 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1906 1907 /// All element types found in the loop. 1908 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1909 1910 /// Profitable vector factors. 1911 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1912 }; 1913 } // end namespace llvm 1914 1915 /// Helper struct to manage generating runtime checks for vectorization. 1916 /// 1917 /// The runtime checks are created up-front in temporary blocks to allow better 1918 /// estimating the cost and un-linked from the existing IR. After deciding to 1919 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1920 /// temporary blocks are completely removed. 1921 class GeneratedRTChecks { 1922 /// Basic block which contains the generated SCEV checks, if any. 1923 BasicBlock *SCEVCheckBlock = nullptr; 1924 1925 /// The value representing the result of the generated SCEV checks. If it is 1926 /// nullptr, either no SCEV checks have been generated or they have been used. 1927 Value *SCEVCheckCond = nullptr; 1928 1929 /// Basic block which contains the generated memory runtime checks, if any. 1930 BasicBlock *MemCheckBlock = nullptr; 1931 1932 /// The value representing the result of the generated memory runtime checks. 1933 /// If it is nullptr, either no memory runtime checks have been generated or 1934 /// they have been used. 1935 Value *MemRuntimeCheckCond = nullptr; 1936 1937 DominatorTree *DT; 1938 LoopInfo *LI; 1939 1940 SCEVExpander SCEVExp; 1941 SCEVExpander MemCheckExp; 1942 1943 public: 1944 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1945 const DataLayout &DL) 1946 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1947 MemCheckExp(SE, DL, "scev.check") {} 1948 1949 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1950 /// accurately estimate the cost of the runtime checks. The blocks are 1951 /// un-linked from the IR and is added back during vector code generation. If 1952 /// there is no vector code generation, the check blocks are removed 1953 /// completely. 1954 void Create(Loop *L, const LoopAccessInfo &LAI, 1955 const SCEVUnionPredicate &UnionPred) { 1956 1957 BasicBlock *LoopHeader = L->getHeader(); 1958 BasicBlock *Preheader = L->getLoopPreheader(); 1959 1960 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1961 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1962 // may be used by SCEVExpander. The blocks will be un-linked from their 1963 // predecessors and removed from LI & DT at the end of the function. 1964 if (!UnionPred.isAlwaysTrue()) { 1965 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1966 nullptr, "vector.scevcheck"); 1967 1968 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1969 &UnionPred, SCEVCheckBlock->getTerminator()); 1970 } 1971 1972 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1973 if (RtPtrChecking.Need) { 1974 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1975 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1976 "vector.memcheck"); 1977 1978 MemRuntimeCheckCond = 1979 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1980 RtPtrChecking.getChecks(), MemCheckExp); 1981 assert(MemRuntimeCheckCond && 1982 "no RT checks generated although RtPtrChecking " 1983 "claimed checks are required"); 1984 } 1985 1986 if (!MemCheckBlock && !SCEVCheckBlock) 1987 return; 1988 1989 // Unhook the temporary block with the checks, update various places 1990 // accordingly. 1991 if (SCEVCheckBlock) 1992 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1993 if (MemCheckBlock) 1994 MemCheckBlock->replaceAllUsesWith(Preheader); 1995 1996 if (SCEVCheckBlock) { 1997 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1998 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1999 Preheader->getTerminator()->eraseFromParent(); 2000 } 2001 if (MemCheckBlock) { 2002 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2003 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2004 Preheader->getTerminator()->eraseFromParent(); 2005 } 2006 2007 DT->changeImmediateDominator(LoopHeader, Preheader); 2008 if (MemCheckBlock) { 2009 DT->eraseNode(MemCheckBlock); 2010 LI->removeBlock(MemCheckBlock); 2011 } 2012 if (SCEVCheckBlock) { 2013 DT->eraseNode(SCEVCheckBlock); 2014 LI->removeBlock(SCEVCheckBlock); 2015 } 2016 } 2017 2018 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2019 /// unused. 2020 ~GeneratedRTChecks() { 2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2023 if (!SCEVCheckCond) 2024 SCEVCleaner.markResultUsed(); 2025 2026 if (!MemRuntimeCheckCond) 2027 MemCheckCleaner.markResultUsed(); 2028 2029 if (MemRuntimeCheckCond) { 2030 auto &SE = *MemCheckExp.getSE(); 2031 // Memory runtime check generation creates compares that use expanded 2032 // values. Remove them before running the SCEVExpanderCleaners. 2033 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2034 if (MemCheckExp.isInsertedInstruction(&I)) 2035 continue; 2036 SE.forgetValue(&I); 2037 SE.eraseValueFromMap(&I); 2038 I.eraseFromParent(); 2039 } 2040 } 2041 MemCheckCleaner.cleanup(); 2042 SCEVCleaner.cleanup(); 2043 2044 if (SCEVCheckCond) 2045 SCEVCheckBlock->eraseFromParent(); 2046 if (MemRuntimeCheckCond) 2047 MemCheckBlock->eraseFromParent(); 2048 } 2049 2050 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2051 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2052 /// depending on the generated condition. 2053 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2054 BasicBlock *LoopVectorPreHeader, 2055 BasicBlock *LoopExitBlock) { 2056 if (!SCEVCheckCond) 2057 return nullptr; 2058 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2059 if (C->isZero()) 2060 return nullptr; 2061 2062 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2063 2064 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2065 // Create new preheader for vector loop. 2066 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2067 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2068 2069 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2070 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2071 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2072 SCEVCheckBlock); 2073 2074 DT->addNewBlock(SCEVCheckBlock, Pred); 2075 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2076 2077 ReplaceInstWithInst( 2078 SCEVCheckBlock->getTerminator(), 2079 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2080 // Mark the check as used, to prevent it from being removed during cleanup. 2081 SCEVCheckCond = nullptr; 2082 return SCEVCheckBlock; 2083 } 2084 2085 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2086 /// the branches to branch to the vector preheader or \p Bypass, depending on 2087 /// the generated condition. 2088 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2089 BasicBlock *LoopVectorPreHeader) { 2090 // Check if we generated code that checks in runtime if arrays overlap. 2091 if (!MemRuntimeCheckCond) 2092 return nullptr; 2093 2094 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2095 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2096 MemCheckBlock); 2097 2098 DT->addNewBlock(MemCheckBlock, Pred); 2099 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2100 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2101 2102 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2103 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2104 2105 ReplaceInstWithInst( 2106 MemCheckBlock->getTerminator(), 2107 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2108 MemCheckBlock->getTerminator()->setDebugLoc( 2109 Pred->getTerminator()->getDebugLoc()); 2110 2111 // Mark the check as used, to prevent it from being removed during cleanup. 2112 MemRuntimeCheckCond = nullptr; 2113 return MemCheckBlock; 2114 } 2115 }; 2116 2117 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2118 // vectorization. The loop needs to be annotated with #pragma omp simd 2119 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2120 // vector length information is not provided, vectorization is not considered 2121 // explicit. Interleave hints are not allowed either. These limitations will be 2122 // relaxed in the future. 2123 // Please, note that we are currently forced to abuse the pragma 'clang 2124 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2125 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2126 // provides *explicit vectorization hints* (LV can bypass legal checks and 2127 // assume that vectorization is legal). However, both hints are implemented 2128 // using the same metadata (llvm.loop.vectorize, processed by 2129 // LoopVectorizeHints). This will be fixed in the future when the native IR 2130 // representation for pragma 'omp simd' is introduced. 2131 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2132 OptimizationRemarkEmitter *ORE) { 2133 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2134 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2135 2136 // Only outer loops with an explicit vectorization hint are supported. 2137 // Unannotated outer loops are ignored. 2138 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2139 return false; 2140 2141 Function *Fn = OuterLp->getHeader()->getParent(); 2142 if (!Hints.allowVectorization(Fn, OuterLp, 2143 true /*VectorizeOnlyWhenForced*/)) { 2144 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2145 return false; 2146 } 2147 2148 if (Hints.getInterleave() > 1) { 2149 // TODO: Interleave support is future work. 2150 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2151 "outer loops.\n"); 2152 Hints.emitRemarkWithHints(); 2153 return false; 2154 } 2155 2156 return true; 2157 } 2158 2159 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2160 OptimizationRemarkEmitter *ORE, 2161 SmallVectorImpl<Loop *> &V) { 2162 // Collect inner loops and outer loops without irreducible control flow. For 2163 // now, only collect outer loops that have explicit vectorization hints. If we 2164 // are stress testing the VPlan H-CFG construction, we collect the outermost 2165 // loop of every loop nest. 2166 if (L.isInnermost() || VPlanBuildStressTest || 2167 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2168 LoopBlocksRPO RPOT(&L); 2169 RPOT.perform(LI); 2170 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2171 V.push_back(&L); 2172 // TODO: Collect inner loops inside marked outer loops in case 2173 // vectorization fails for the outer loop. Do not invoke 2174 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2175 // already known to be reducible. We can use an inherited attribute for 2176 // that. 2177 return; 2178 } 2179 } 2180 for (Loop *InnerL : L) 2181 collectSupportedLoops(*InnerL, LI, ORE, V); 2182 } 2183 2184 namespace { 2185 2186 /// The LoopVectorize Pass. 2187 struct LoopVectorize : public FunctionPass { 2188 /// Pass identification, replacement for typeid 2189 static char ID; 2190 2191 LoopVectorizePass Impl; 2192 2193 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2194 bool VectorizeOnlyWhenForced = false) 2195 : FunctionPass(ID), 2196 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2197 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2198 } 2199 2200 bool runOnFunction(Function &F) override { 2201 if (skipFunction(F)) 2202 return false; 2203 2204 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2205 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2206 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2207 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2208 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2209 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2210 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2211 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2212 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2213 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2214 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2215 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2216 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2217 2218 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2219 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2220 2221 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2222 GetLAA, *ORE, PSI).MadeAnyChange; 2223 } 2224 2225 void getAnalysisUsage(AnalysisUsage &AU) const override { 2226 AU.addRequired<AssumptionCacheTracker>(); 2227 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2228 AU.addRequired<DominatorTreeWrapperPass>(); 2229 AU.addRequired<LoopInfoWrapperPass>(); 2230 AU.addRequired<ScalarEvolutionWrapperPass>(); 2231 AU.addRequired<TargetTransformInfoWrapperPass>(); 2232 AU.addRequired<AAResultsWrapperPass>(); 2233 AU.addRequired<LoopAccessLegacyAnalysis>(); 2234 AU.addRequired<DemandedBitsWrapperPass>(); 2235 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2236 AU.addRequired<InjectTLIMappingsLegacy>(); 2237 2238 // We currently do not preserve loopinfo/dominator analyses with outer loop 2239 // vectorization. Until this is addressed, mark these analyses as preserved 2240 // only for non-VPlan-native path. 2241 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2242 if (!EnableVPlanNativePath) { 2243 AU.addPreserved<LoopInfoWrapperPass>(); 2244 AU.addPreserved<DominatorTreeWrapperPass>(); 2245 } 2246 2247 AU.addPreserved<BasicAAWrapperPass>(); 2248 AU.addPreserved<GlobalsAAWrapperPass>(); 2249 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2250 } 2251 }; 2252 2253 } // end anonymous namespace 2254 2255 //===----------------------------------------------------------------------===// 2256 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2257 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2258 //===----------------------------------------------------------------------===// 2259 2260 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2261 // We need to place the broadcast of invariant variables outside the loop, 2262 // but only if it's proven safe to do so. Else, broadcast will be inside 2263 // vector loop body. 2264 Instruction *Instr = dyn_cast<Instruction>(V); 2265 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2266 (!Instr || 2267 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2268 // Place the code for broadcasting invariant variables in the new preheader. 2269 IRBuilder<>::InsertPointGuard Guard(Builder); 2270 if (SafeToHoist) 2271 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2272 2273 // Broadcast the scalar into all locations in the vector. 2274 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2275 2276 return Shuf; 2277 } 2278 2279 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2280 const InductionDescriptor &II, Value *Step, Value *Start, 2281 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2282 VPTransformState &State) { 2283 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2284 "Expected either an induction phi-node or a truncate of it!"); 2285 2286 // Construct the initial value of the vector IV in the vector loop preheader 2287 auto CurrIP = Builder.saveIP(); 2288 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2289 if (isa<TruncInst>(EntryVal)) { 2290 assert(Start->getType()->isIntegerTy() && 2291 "Truncation requires an integer type"); 2292 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2293 Step = Builder.CreateTrunc(Step, TruncType); 2294 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2295 } 2296 2297 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2298 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2299 Value *SteppedStart = 2300 getStepVector(SplatStart, Zero, Step, II.getInductionOpcode()); 2301 2302 // We create vector phi nodes for both integer and floating-point induction 2303 // variables. Here, we determine the kind of arithmetic we will perform. 2304 Instruction::BinaryOps AddOp; 2305 Instruction::BinaryOps MulOp; 2306 if (Step->getType()->isIntegerTy()) { 2307 AddOp = Instruction::Add; 2308 MulOp = Instruction::Mul; 2309 } else { 2310 AddOp = II.getInductionOpcode(); 2311 MulOp = Instruction::FMul; 2312 } 2313 2314 // Multiply the vectorization factor by the step using integer or 2315 // floating-point arithmetic as appropriate. 2316 Type *StepType = Step->getType(); 2317 Value *RuntimeVF; 2318 if (Step->getType()->isFloatingPointTy()) 2319 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF); 2320 else 2321 RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2322 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2323 2324 // Create a vector splat to use in the induction update. 2325 // 2326 // FIXME: If the step is non-constant, we create the vector splat with 2327 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2328 // handle a constant vector splat. 2329 Value *SplatVF = isa<Constant>(Mul) 2330 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2331 : Builder.CreateVectorSplat(VF, Mul); 2332 Builder.restoreIP(CurrIP); 2333 2334 // We may need to add the step a number of times, depending on the unroll 2335 // factor. The last of those goes into the PHI. 2336 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2337 &*LoopVectorBody->getFirstInsertionPt()); 2338 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2339 Instruction *LastInduction = VecInd; 2340 for (unsigned Part = 0; Part < UF; ++Part) { 2341 State.set(Def, LastInduction, Part); 2342 2343 if (isa<TruncInst>(EntryVal)) 2344 addMetadata(LastInduction, EntryVal); 2345 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2346 State, Part); 2347 2348 LastInduction = cast<Instruction>( 2349 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2350 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2351 } 2352 2353 // Move the last step to the end of the latch block. This ensures consistent 2354 // placement of all induction updates. 2355 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2356 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2357 auto *ICmp = cast<Instruction>(Br->getCondition()); 2358 LastInduction->moveBefore(ICmp); 2359 LastInduction->setName("vec.ind.next"); 2360 2361 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2362 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2363 } 2364 2365 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2366 return Cost->isScalarAfterVectorization(I, VF) || 2367 Cost->isProfitableToScalarize(I, VF); 2368 } 2369 2370 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2371 if (shouldScalarizeInstruction(IV)) 2372 return true; 2373 auto isScalarInst = [&](User *U) -> bool { 2374 auto *I = cast<Instruction>(U); 2375 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2376 }; 2377 return llvm::any_of(IV->users(), isScalarInst); 2378 } 2379 2380 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2381 const InductionDescriptor &ID, const Instruction *EntryVal, 2382 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2383 unsigned Part, unsigned Lane) { 2384 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2385 "Expected either an induction phi-node or a truncate of it!"); 2386 2387 // This induction variable is not the phi from the original loop but the 2388 // newly-created IV based on the proof that casted Phi is equal to the 2389 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2390 // re-uses the same InductionDescriptor that original IV uses but we don't 2391 // have to do any recording in this case - that is done when original IV is 2392 // processed. 2393 if (isa<TruncInst>(EntryVal)) 2394 return; 2395 2396 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2397 if (Casts.empty()) 2398 return; 2399 // Only the first Cast instruction in the Casts vector is of interest. 2400 // The rest of the Casts (if exist) have no uses outside the 2401 // induction update chain itself. 2402 if (Lane < UINT_MAX) 2403 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2404 else 2405 State.set(CastDef, VectorLoopVal, Part); 2406 } 2407 2408 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2409 TruncInst *Trunc, VPValue *Def, 2410 VPValue *CastDef, 2411 VPTransformState &State) { 2412 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2413 "Primary induction variable must have an integer type"); 2414 2415 auto II = Legal->getInductionVars().find(IV); 2416 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2417 2418 auto ID = II->second; 2419 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2420 2421 // The value from the original loop to which we are mapping the new induction 2422 // variable. 2423 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2424 2425 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2426 2427 // Generate code for the induction step. Note that induction steps are 2428 // required to be loop-invariant 2429 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2430 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2431 "Induction step should be loop invariant"); 2432 if (PSE.getSE()->isSCEVable(IV->getType())) { 2433 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2434 return Exp.expandCodeFor(Step, Step->getType(), 2435 LoopVectorPreHeader->getTerminator()); 2436 } 2437 return cast<SCEVUnknown>(Step)->getValue(); 2438 }; 2439 2440 // The scalar value to broadcast. This is derived from the canonical 2441 // induction variable. If a truncation type is given, truncate the canonical 2442 // induction variable and step. Otherwise, derive these values from the 2443 // induction descriptor. 2444 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2445 Value *ScalarIV = Induction; 2446 if (IV != OldInduction) { 2447 ScalarIV = IV->getType()->isIntegerTy() 2448 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2449 : Builder.CreateCast(Instruction::SIToFP, Induction, 2450 IV->getType()); 2451 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2452 ScalarIV->setName("offset.idx"); 2453 } 2454 if (Trunc) { 2455 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2456 assert(Step->getType()->isIntegerTy() && 2457 "Truncation requires an integer step"); 2458 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2459 Step = Builder.CreateTrunc(Step, TruncType); 2460 } 2461 return ScalarIV; 2462 }; 2463 2464 // Create the vector values from the scalar IV, in the absence of creating a 2465 // vector IV. 2466 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2467 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2468 for (unsigned Part = 0; Part < UF; ++Part) { 2469 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2470 Value *StartIdx; 2471 if (Step->getType()->isFloatingPointTy()) 2472 StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part); 2473 else 2474 StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part); 2475 2476 Value *EntryPart = 2477 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode()); 2478 State.set(Def, EntryPart, Part); 2479 if (Trunc) 2480 addMetadata(EntryPart, Trunc); 2481 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2482 State, Part); 2483 } 2484 }; 2485 2486 // Fast-math-flags propagate from the original induction instruction. 2487 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2488 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2489 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2490 2491 // Now do the actual transformations, and start with creating the step value. 2492 Value *Step = CreateStepValue(ID.getStep()); 2493 if (VF.isZero() || VF.isScalar()) { 2494 Value *ScalarIV = CreateScalarIV(Step); 2495 CreateSplatIV(ScalarIV, Step); 2496 return; 2497 } 2498 2499 // Determine if we want a scalar version of the induction variable. This is 2500 // true if the induction variable itself is not widened, or if it has at 2501 // least one user in the loop that is not widened. 2502 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2503 if (!NeedsScalarIV) { 2504 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2505 State); 2506 return; 2507 } 2508 2509 // Try to create a new independent vector induction variable. If we can't 2510 // create the phi node, we will splat the scalar induction variable in each 2511 // loop iteration. 2512 if (!shouldScalarizeInstruction(EntryVal)) { 2513 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2514 State); 2515 Value *ScalarIV = CreateScalarIV(Step); 2516 // Create scalar steps that can be used by instructions we will later 2517 // scalarize. Note that the addition of the scalar steps will not increase 2518 // the number of instructions in the loop in the common case prior to 2519 // InstCombine. We will be trading one vector extract for each scalar step. 2520 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2521 return; 2522 } 2523 2524 // All IV users are scalar instructions, so only emit a scalar IV, not a 2525 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2526 // predicate used by the masked loads/stores. 2527 Value *ScalarIV = CreateScalarIV(Step); 2528 if (!Cost->isScalarEpilogueAllowed()) 2529 CreateSplatIV(ScalarIV, Step); 2530 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2531 } 2532 2533 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx, 2534 Value *Step, 2535 Instruction::BinaryOps BinOp) { 2536 // Create and check the types. 2537 auto *ValVTy = cast<VectorType>(Val->getType()); 2538 ElementCount VLen = ValVTy->getElementCount(); 2539 2540 Type *STy = Val->getType()->getScalarType(); 2541 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2542 "Induction Step must be an integer or FP"); 2543 assert(Step->getType() == STy && "Step has wrong type"); 2544 2545 SmallVector<Constant *, 8> Indices; 2546 2547 // Create a vector of consecutive numbers from zero to VF. 2548 VectorType *InitVecValVTy = ValVTy; 2549 Type *InitVecValSTy = STy; 2550 if (STy->isFloatingPointTy()) { 2551 InitVecValSTy = 2552 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2553 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2554 } 2555 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2556 2557 // Splat the StartIdx 2558 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2559 2560 if (STy->isIntegerTy()) { 2561 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2562 Step = Builder.CreateVectorSplat(VLen, Step); 2563 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2564 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2565 // which can be found from the original scalar operations. 2566 Step = Builder.CreateMul(InitVec, Step); 2567 return Builder.CreateAdd(Val, Step, "induction"); 2568 } 2569 2570 // Floating point induction. 2571 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2572 "Binary Opcode should be specified for FP induction"); 2573 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2574 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2575 2576 Step = Builder.CreateVectorSplat(VLen, Step); 2577 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2578 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2579 } 2580 2581 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2582 Instruction *EntryVal, 2583 const InductionDescriptor &ID, 2584 VPValue *Def, VPValue *CastDef, 2585 VPTransformState &State) { 2586 // We shouldn't have to build scalar steps if we aren't vectorizing. 2587 assert(VF.isVector() && "VF should be greater than one"); 2588 // Get the value type and ensure it and the step have the same integer type. 2589 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2590 assert(ScalarIVTy == Step->getType() && 2591 "Val and Step should have the same type"); 2592 2593 // We build scalar steps for both integer and floating-point induction 2594 // variables. Here, we determine the kind of arithmetic we will perform. 2595 Instruction::BinaryOps AddOp; 2596 Instruction::BinaryOps MulOp; 2597 if (ScalarIVTy->isIntegerTy()) { 2598 AddOp = Instruction::Add; 2599 MulOp = Instruction::Mul; 2600 } else { 2601 AddOp = ID.getInductionOpcode(); 2602 MulOp = Instruction::FMul; 2603 } 2604 2605 // Determine the number of scalars we need to generate for each unroll 2606 // iteration. If EntryVal is uniform, we only need to generate the first 2607 // lane. Otherwise, we generate all VF values. 2608 bool IsUniform = 2609 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2610 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2611 // Compute the scalar steps and save the results in State. 2612 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2613 ScalarIVTy->getScalarSizeInBits()); 2614 Type *VecIVTy = nullptr; 2615 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2616 if (!IsUniform && VF.isScalable()) { 2617 VecIVTy = VectorType::get(ScalarIVTy, VF); 2618 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2619 SplatStep = Builder.CreateVectorSplat(VF, Step); 2620 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2621 } 2622 2623 for (unsigned Part = 0; Part < UF; ++Part) { 2624 Value *StartIdx0 = 2625 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2626 2627 if (!IsUniform && VF.isScalable()) { 2628 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2629 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2630 if (ScalarIVTy->isFloatingPointTy()) 2631 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2632 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2633 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2634 State.set(Def, Add, Part); 2635 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2636 Part); 2637 // It's useful to record the lane values too for the known minimum number 2638 // of elements so we do those below. This improves the code quality when 2639 // trying to extract the first element, for example. 2640 } 2641 2642 if (ScalarIVTy->isFloatingPointTy()) 2643 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2644 2645 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2646 Value *StartIdx = Builder.CreateBinOp( 2647 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2648 // The step returned by `createStepForVF` is a runtime-evaluated value 2649 // when VF is scalable. Otherwise, it should be folded into a Constant. 2650 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2651 "Expected StartIdx to be folded to a constant when VF is not " 2652 "scalable"); 2653 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2654 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2655 State.set(Def, Add, VPIteration(Part, Lane)); 2656 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2657 Part, Lane); 2658 } 2659 } 2660 } 2661 2662 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2663 const VPIteration &Instance, 2664 VPTransformState &State) { 2665 Value *ScalarInst = State.get(Def, Instance); 2666 Value *VectorValue = State.get(Def, Instance.Part); 2667 VectorValue = Builder.CreateInsertElement( 2668 VectorValue, ScalarInst, 2669 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2670 State.set(Def, VectorValue, Instance.Part); 2671 } 2672 2673 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2674 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2675 return Builder.CreateVectorReverse(Vec, "reverse"); 2676 } 2677 2678 // Return whether we allow using masked interleave-groups (for dealing with 2679 // strided loads/stores that reside in predicated blocks, or for dealing 2680 // with gaps). 2681 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2682 // If an override option has been passed in for interleaved accesses, use it. 2683 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2684 return EnableMaskedInterleavedMemAccesses; 2685 2686 return TTI.enableMaskedInterleavedAccessVectorization(); 2687 } 2688 2689 // Try to vectorize the interleave group that \p Instr belongs to. 2690 // 2691 // E.g. Translate following interleaved load group (factor = 3): 2692 // for (i = 0; i < N; i+=3) { 2693 // R = Pic[i]; // Member of index 0 2694 // G = Pic[i+1]; // Member of index 1 2695 // B = Pic[i+2]; // Member of index 2 2696 // ... // do something to R, G, B 2697 // } 2698 // To: 2699 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2700 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2701 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2702 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2703 // 2704 // Or translate following interleaved store group (factor = 3): 2705 // for (i = 0; i < N; i+=3) { 2706 // ... do something to R, G, B 2707 // Pic[i] = R; // Member of index 0 2708 // Pic[i+1] = G; // Member of index 1 2709 // Pic[i+2] = B; // Member of index 2 2710 // } 2711 // To: 2712 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2713 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2714 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2715 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2716 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2717 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2718 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2719 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2720 VPValue *BlockInMask) { 2721 Instruction *Instr = Group->getInsertPos(); 2722 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2723 2724 // Prepare for the vector type of the interleaved load/store. 2725 Type *ScalarTy = getLoadStoreType(Instr); 2726 unsigned InterleaveFactor = Group->getFactor(); 2727 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2728 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2729 2730 // Prepare for the new pointers. 2731 SmallVector<Value *, 2> AddrParts; 2732 unsigned Index = Group->getIndex(Instr); 2733 2734 // TODO: extend the masked interleaved-group support to reversed access. 2735 assert((!BlockInMask || !Group->isReverse()) && 2736 "Reversed masked interleave-group not supported."); 2737 2738 // If the group is reverse, adjust the index to refer to the last vector lane 2739 // instead of the first. We adjust the index from the first vector lane, 2740 // rather than directly getting the pointer for lane VF - 1, because the 2741 // pointer operand of the interleaved access is supposed to be uniform. For 2742 // uniform instructions, we're only required to generate a value for the 2743 // first vector lane in each unroll iteration. 2744 if (Group->isReverse()) 2745 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2746 2747 for (unsigned Part = 0; Part < UF; Part++) { 2748 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2749 setDebugLocFromInst(AddrPart); 2750 2751 // Notice current instruction could be any index. Need to adjust the address 2752 // to the member of index 0. 2753 // 2754 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2755 // b = A[i]; // Member of index 0 2756 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2757 // 2758 // E.g. A[i+1] = a; // Member of index 1 2759 // A[i] = b; // Member of index 0 2760 // A[i+2] = c; // Member of index 2 (Current instruction) 2761 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2762 2763 bool InBounds = false; 2764 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2765 InBounds = gep->isInBounds(); 2766 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2767 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2768 2769 // Cast to the vector pointer type. 2770 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2771 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2772 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2773 } 2774 2775 setDebugLocFromInst(Instr); 2776 Value *PoisonVec = PoisonValue::get(VecTy); 2777 2778 Value *MaskForGaps = nullptr; 2779 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2780 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2781 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2782 } 2783 2784 // Vectorize the interleaved load group. 2785 if (isa<LoadInst>(Instr)) { 2786 // For each unroll part, create a wide load for the group. 2787 SmallVector<Value *, 2> NewLoads; 2788 for (unsigned Part = 0; Part < UF; Part++) { 2789 Instruction *NewLoad; 2790 if (BlockInMask || MaskForGaps) { 2791 assert(useMaskedInterleavedAccesses(*TTI) && 2792 "masked interleaved groups are not allowed."); 2793 Value *GroupMask = MaskForGaps; 2794 if (BlockInMask) { 2795 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2796 Value *ShuffledMask = Builder.CreateShuffleVector( 2797 BlockInMaskPart, 2798 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2799 "interleaved.mask"); 2800 GroupMask = MaskForGaps 2801 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2802 MaskForGaps) 2803 : ShuffledMask; 2804 } 2805 NewLoad = 2806 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2807 GroupMask, PoisonVec, "wide.masked.vec"); 2808 } 2809 else 2810 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2811 Group->getAlign(), "wide.vec"); 2812 Group->addMetadata(NewLoad); 2813 NewLoads.push_back(NewLoad); 2814 } 2815 2816 // For each member in the group, shuffle out the appropriate data from the 2817 // wide loads. 2818 unsigned J = 0; 2819 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2820 Instruction *Member = Group->getMember(I); 2821 2822 // Skip the gaps in the group. 2823 if (!Member) 2824 continue; 2825 2826 auto StrideMask = 2827 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2828 for (unsigned Part = 0; Part < UF; Part++) { 2829 Value *StridedVec = Builder.CreateShuffleVector( 2830 NewLoads[Part], StrideMask, "strided.vec"); 2831 2832 // If this member has different type, cast the result type. 2833 if (Member->getType() != ScalarTy) { 2834 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2835 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2836 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2837 } 2838 2839 if (Group->isReverse()) 2840 StridedVec = reverseVector(StridedVec); 2841 2842 State.set(VPDefs[J], StridedVec, Part); 2843 } 2844 ++J; 2845 } 2846 return; 2847 } 2848 2849 // The sub vector type for current instruction. 2850 auto *SubVT = VectorType::get(ScalarTy, VF); 2851 2852 // Vectorize the interleaved store group. 2853 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2854 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2855 "masked interleaved groups are not allowed."); 2856 assert((!MaskForGaps || !VF.isScalable()) && 2857 "masking gaps for scalable vectors is not yet supported."); 2858 for (unsigned Part = 0; Part < UF; Part++) { 2859 // Collect the stored vector from each member. 2860 SmallVector<Value *, 4> StoredVecs; 2861 for (unsigned i = 0; i < InterleaveFactor; i++) { 2862 assert((Group->getMember(i) || MaskForGaps) && 2863 "Fail to get a member from an interleaved store group"); 2864 Instruction *Member = Group->getMember(i); 2865 2866 // Skip the gaps in the group. 2867 if (!Member) { 2868 Value *Undef = PoisonValue::get(SubVT); 2869 StoredVecs.push_back(Undef); 2870 continue; 2871 } 2872 2873 Value *StoredVec = State.get(StoredValues[i], Part); 2874 2875 if (Group->isReverse()) 2876 StoredVec = reverseVector(StoredVec); 2877 2878 // If this member has different type, cast it to a unified type. 2879 2880 if (StoredVec->getType() != SubVT) 2881 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2882 2883 StoredVecs.push_back(StoredVec); 2884 } 2885 2886 // Concatenate all vectors into a wide vector. 2887 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2888 2889 // Interleave the elements in the wide vector. 2890 Value *IVec = Builder.CreateShuffleVector( 2891 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2892 "interleaved.vec"); 2893 2894 Instruction *NewStoreInstr; 2895 if (BlockInMask || MaskForGaps) { 2896 Value *GroupMask = MaskForGaps; 2897 if (BlockInMask) { 2898 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2899 Value *ShuffledMask = Builder.CreateShuffleVector( 2900 BlockInMaskPart, 2901 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2902 "interleaved.mask"); 2903 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2904 ShuffledMask, MaskForGaps) 2905 : ShuffledMask; 2906 } 2907 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2908 Group->getAlign(), GroupMask); 2909 } else 2910 NewStoreInstr = 2911 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2912 2913 Group->addMetadata(NewStoreInstr); 2914 } 2915 } 2916 2917 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2918 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2919 VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride, 2920 bool Reverse) { 2921 // Attempt to issue a wide load. 2922 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2923 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2924 2925 assert((LI || SI) && "Invalid Load/Store instruction"); 2926 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2927 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2928 2929 Type *ScalarDataTy = getLoadStoreType(Instr); 2930 2931 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2932 const Align Alignment = getLoadStoreAlignment(Instr); 2933 bool CreateGatherScatter = !ConsecutiveStride; 2934 2935 VectorParts BlockInMaskParts(UF); 2936 bool isMaskRequired = BlockInMask; 2937 if (isMaskRequired) 2938 for (unsigned Part = 0; Part < UF; ++Part) 2939 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2940 2941 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2942 // Calculate the pointer for the specific unroll-part. 2943 GetElementPtrInst *PartPtr = nullptr; 2944 2945 bool InBounds = false; 2946 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2947 InBounds = gep->isInBounds(); 2948 if (Reverse) { 2949 // If the address is consecutive but reversed, then the 2950 // wide store needs to start at the last vector element. 2951 // RunTimeVF = VScale * VF.getKnownMinValue() 2952 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2953 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2954 // NumElt = -Part * RunTimeVF 2955 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2956 // LastLane = 1 - RunTimeVF 2957 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2958 PartPtr = 2959 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2960 PartPtr->setIsInBounds(InBounds); 2961 PartPtr = cast<GetElementPtrInst>( 2962 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2963 PartPtr->setIsInBounds(InBounds); 2964 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2965 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2966 } else { 2967 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2968 PartPtr = cast<GetElementPtrInst>( 2969 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2970 PartPtr->setIsInBounds(InBounds); 2971 } 2972 2973 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2974 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2975 }; 2976 2977 // Handle Stores: 2978 if (SI) { 2979 setDebugLocFromInst(SI); 2980 2981 for (unsigned Part = 0; Part < UF; ++Part) { 2982 Instruction *NewSI = nullptr; 2983 Value *StoredVal = State.get(StoredValue, Part); 2984 if (CreateGatherScatter) { 2985 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2986 Value *VectorGep = State.get(Addr, Part); 2987 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2988 MaskPart); 2989 } else { 2990 if (Reverse) { 2991 // If we store to reverse consecutive memory locations, then we need 2992 // to reverse the order of elements in the stored value. 2993 StoredVal = reverseVector(StoredVal); 2994 // We don't want to update the value in the map as it might be used in 2995 // another expression. So don't call resetVectorValue(StoredVal). 2996 } 2997 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2998 if (isMaskRequired) 2999 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3000 BlockInMaskParts[Part]); 3001 else 3002 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3003 } 3004 addMetadata(NewSI, SI); 3005 } 3006 return; 3007 } 3008 3009 // Handle loads. 3010 assert(LI && "Must have a load instruction"); 3011 setDebugLocFromInst(LI); 3012 for (unsigned Part = 0; Part < UF; ++Part) { 3013 Value *NewLI; 3014 if (CreateGatherScatter) { 3015 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3016 Value *VectorGep = State.get(Addr, Part); 3017 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3018 nullptr, "wide.masked.gather"); 3019 addMetadata(NewLI, LI); 3020 } else { 3021 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3022 if (isMaskRequired) 3023 NewLI = Builder.CreateMaskedLoad( 3024 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3025 PoisonValue::get(DataTy), "wide.masked.load"); 3026 else 3027 NewLI = 3028 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3029 3030 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3031 addMetadata(NewLI, LI); 3032 if (Reverse) 3033 NewLI = reverseVector(NewLI); 3034 } 3035 3036 State.set(Def, NewLI, Part); 3037 } 3038 } 3039 3040 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3041 VPUser &User, 3042 const VPIteration &Instance, 3043 bool IfPredicateInstr, 3044 VPTransformState &State) { 3045 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3046 3047 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3048 // the first lane and part. 3049 if (isa<NoAliasScopeDeclInst>(Instr)) 3050 if (!Instance.isFirstIteration()) 3051 return; 3052 3053 setDebugLocFromInst(Instr); 3054 3055 // Does this instruction return a value ? 3056 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3057 3058 Instruction *Cloned = Instr->clone(); 3059 if (!IsVoidRetTy) 3060 Cloned->setName(Instr->getName() + ".cloned"); 3061 3062 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3063 Builder.GetInsertPoint()); 3064 // Replace the operands of the cloned instructions with their scalar 3065 // equivalents in the new loop. 3066 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3067 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3068 auto InputInstance = Instance; 3069 if (!Operand || !OrigLoop->contains(Operand) || 3070 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3071 InputInstance.Lane = VPLane::getFirstLane(); 3072 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3073 Cloned->setOperand(op, NewOp); 3074 } 3075 addNewMetadata(Cloned, Instr); 3076 3077 // Place the cloned scalar in the new loop. 3078 Builder.Insert(Cloned); 3079 3080 State.set(Def, Cloned, Instance); 3081 3082 // If we just cloned a new assumption, add it the assumption cache. 3083 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3084 AC->registerAssumption(II); 3085 3086 // End if-block. 3087 if (IfPredicateInstr) 3088 PredicatedInstructions.push_back(Cloned); 3089 } 3090 3091 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3092 Value *End, Value *Step, 3093 Instruction *DL) { 3094 BasicBlock *Header = L->getHeader(); 3095 BasicBlock *Latch = L->getLoopLatch(); 3096 // As we're just creating this loop, it's possible no latch exists 3097 // yet. If so, use the header as this will be a single block loop. 3098 if (!Latch) 3099 Latch = Header; 3100 3101 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3102 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3103 setDebugLocFromInst(OldInst, &B); 3104 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3105 3106 B.SetInsertPoint(Latch->getTerminator()); 3107 setDebugLocFromInst(OldInst, &B); 3108 3109 // Create i+1 and fill the PHINode. 3110 // 3111 // If the tail is not folded, we know that End - Start >= Step (either 3112 // statically or through the minimum iteration checks). We also know that both 3113 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3114 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3115 // overflows and we can mark the induction increment as NUW. 3116 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3117 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3118 Induction->addIncoming(Start, L->getLoopPreheader()); 3119 Induction->addIncoming(Next, Latch); 3120 // Create the compare. 3121 Value *ICmp = B.CreateICmpEQ(Next, End); 3122 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3123 3124 // Now we have two terminators. Remove the old one from the block. 3125 Latch->getTerminator()->eraseFromParent(); 3126 3127 return Induction; 3128 } 3129 3130 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3131 if (TripCount) 3132 return TripCount; 3133 3134 assert(L && "Create Trip Count for null loop."); 3135 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3136 // Find the loop boundaries. 3137 ScalarEvolution *SE = PSE.getSE(); 3138 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3139 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3140 "Invalid loop count"); 3141 3142 Type *IdxTy = Legal->getWidestInductionType(); 3143 assert(IdxTy && "No type for induction"); 3144 3145 // The exit count might have the type of i64 while the phi is i32. This can 3146 // happen if we have an induction variable that is sign extended before the 3147 // compare. The only way that we get a backedge taken count is that the 3148 // induction variable was signed and as such will not overflow. In such a case 3149 // truncation is legal. 3150 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3151 IdxTy->getPrimitiveSizeInBits()) 3152 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3153 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3154 3155 // Get the total trip count from the count by adding 1. 3156 const SCEV *ExitCount = SE->getAddExpr( 3157 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3158 3159 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3160 3161 // Expand the trip count and place the new instructions in the preheader. 3162 // Notice that the pre-header does not change, only the loop body. 3163 SCEVExpander Exp(*SE, DL, "induction"); 3164 3165 // Count holds the overall loop count (N). 3166 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3167 L->getLoopPreheader()->getTerminator()); 3168 3169 if (TripCount->getType()->isPointerTy()) 3170 TripCount = 3171 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3172 L->getLoopPreheader()->getTerminator()); 3173 3174 return TripCount; 3175 } 3176 3177 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3178 if (VectorTripCount) 3179 return VectorTripCount; 3180 3181 Value *TC = getOrCreateTripCount(L); 3182 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3183 3184 Type *Ty = TC->getType(); 3185 // This is where we can make the step a runtime constant. 3186 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3187 3188 // If the tail is to be folded by masking, round the number of iterations N 3189 // up to a multiple of Step instead of rounding down. This is done by first 3190 // adding Step-1 and then rounding down. Note that it's ok if this addition 3191 // overflows: the vector induction variable will eventually wrap to zero given 3192 // that it starts at zero and its Step is a power of two; the loop will then 3193 // exit, with the last early-exit vector comparison also producing all-true. 3194 if (Cost->foldTailByMasking()) { 3195 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3196 "VF*UF must be a power of 2 when folding tail by masking"); 3197 assert(!VF.isScalable() && 3198 "Tail folding not yet supported for scalable vectors"); 3199 TC = Builder.CreateAdd( 3200 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3201 } 3202 3203 // Now we need to generate the expression for the part of the loop that the 3204 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3205 // iterations are not required for correctness, or N - Step, otherwise. Step 3206 // is equal to the vectorization factor (number of SIMD elements) times the 3207 // unroll factor (number of SIMD instructions). 3208 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3209 3210 // There are cases where we *must* run at least one iteration in the remainder 3211 // loop. See the cost model for when this can happen. If the step evenly 3212 // divides the trip count, we set the remainder to be equal to the step. If 3213 // the step does not evenly divide the trip count, no adjustment is necessary 3214 // since there will already be scalar iterations. Note that the minimum 3215 // iterations check ensures that N >= Step. 3216 if (Cost->requiresScalarEpilogue(VF)) { 3217 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3218 R = Builder.CreateSelect(IsZero, Step, R); 3219 } 3220 3221 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3222 3223 return VectorTripCount; 3224 } 3225 3226 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3227 const DataLayout &DL) { 3228 // Verify that V is a vector type with same number of elements as DstVTy. 3229 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3230 unsigned VF = DstFVTy->getNumElements(); 3231 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3232 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3233 Type *SrcElemTy = SrcVecTy->getElementType(); 3234 Type *DstElemTy = DstFVTy->getElementType(); 3235 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3236 "Vector elements must have same size"); 3237 3238 // Do a direct cast if element types are castable. 3239 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3240 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3241 } 3242 // V cannot be directly casted to desired vector type. 3243 // May happen when V is a floating point vector but DstVTy is a vector of 3244 // pointers or vice-versa. Handle this using a two-step bitcast using an 3245 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3246 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3247 "Only one type should be a pointer type"); 3248 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3249 "Only one type should be a floating point type"); 3250 Type *IntTy = 3251 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3252 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3253 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3254 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3255 } 3256 3257 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3258 BasicBlock *Bypass) { 3259 Value *Count = getOrCreateTripCount(L); 3260 // Reuse existing vector loop preheader for TC checks. 3261 // Note that new preheader block is generated for vector loop. 3262 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3263 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3264 3265 // Generate code to check if the loop's trip count is less than VF * UF, or 3266 // equal to it in case a scalar epilogue is required; this implies that the 3267 // vector trip count is zero. This check also covers the case where adding one 3268 // to the backedge-taken count overflowed leading to an incorrect trip count 3269 // of zero. In this case we will also jump to the scalar loop. 3270 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3271 : ICmpInst::ICMP_ULT; 3272 3273 // If tail is to be folded, vector loop takes care of all iterations. 3274 Value *CheckMinIters = Builder.getFalse(); 3275 if (!Cost->foldTailByMasking()) { 3276 Value *Step = 3277 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3278 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3279 } 3280 // Create new preheader for vector loop. 3281 LoopVectorPreHeader = 3282 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3283 "vector.ph"); 3284 3285 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3286 DT->getNode(Bypass)->getIDom()) && 3287 "TC check is expected to dominate Bypass"); 3288 3289 // Update dominator for Bypass & LoopExit (if needed). 3290 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3291 if (!Cost->requiresScalarEpilogue(VF)) 3292 // If there is an epilogue which must run, there's no edge from the 3293 // middle block to exit blocks and thus no need to update the immediate 3294 // dominator of the exit blocks. 3295 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3296 3297 ReplaceInstWithInst( 3298 TCCheckBlock->getTerminator(), 3299 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3300 LoopBypassBlocks.push_back(TCCheckBlock); 3301 } 3302 3303 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3304 3305 BasicBlock *const SCEVCheckBlock = 3306 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3307 if (!SCEVCheckBlock) 3308 return nullptr; 3309 3310 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3311 (OptForSizeBasedOnProfile && 3312 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3313 "Cannot SCEV check stride or overflow when optimizing for size"); 3314 3315 3316 // Update dominator only if this is first RT check. 3317 if (LoopBypassBlocks.empty()) { 3318 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3319 if (!Cost->requiresScalarEpilogue(VF)) 3320 // If there is an epilogue which must run, there's no edge from the 3321 // middle block to exit blocks and thus no need to update the immediate 3322 // dominator of the exit blocks. 3323 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3324 } 3325 3326 LoopBypassBlocks.push_back(SCEVCheckBlock); 3327 AddedSafetyChecks = true; 3328 return SCEVCheckBlock; 3329 } 3330 3331 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3332 BasicBlock *Bypass) { 3333 // VPlan-native path does not do any analysis for runtime checks currently. 3334 if (EnableVPlanNativePath) 3335 return nullptr; 3336 3337 BasicBlock *const MemCheckBlock = 3338 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3339 3340 // Check if we generated code that checks in runtime if arrays overlap. We put 3341 // the checks into a separate block to make the more common case of few 3342 // elements faster. 3343 if (!MemCheckBlock) 3344 return nullptr; 3345 3346 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3347 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3348 "Cannot emit memory checks when optimizing for size, unless forced " 3349 "to vectorize."); 3350 ORE->emit([&]() { 3351 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3352 L->getStartLoc(), L->getHeader()) 3353 << "Code-size may be reduced by not forcing " 3354 "vectorization, or by source-code modifications " 3355 "eliminating the need for runtime checks " 3356 "(e.g., adding 'restrict')."; 3357 }); 3358 } 3359 3360 LoopBypassBlocks.push_back(MemCheckBlock); 3361 3362 AddedSafetyChecks = true; 3363 3364 // We currently don't use LoopVersioning for the actual loop cloning but we 3365 // still use it to add the noalias metadata. 3366 LVer = std::make_unique<LoopVersioning>( 3367 *Legal->getLAI(), 3368 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3369 DT, PSE.getSE()); 3370 LVer->prepareNoAliasMetadata(); 3371 return MemCheckBlock; 3372 } 3373 3374 Value *InnerLoopVectorizer::emitTransformedIndex( 3375 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3376 const InductionDescriptor &ID) const { 3377 3378 SCEVExpander Exp(*SE, DL, "induction"); 3379 auto Step = ID.getStep(); 3380 auto StartValue = ID.getStartValue(); 3381 assert(Index->getType()->getScalarType() == Step->getType() && 3382 "Index scalar type does not match StepValue type"); 3383 3384 // Note: the IR at this point is broken. We cannot use SE to create any new 3385 // SCEV and then expand it, hoping that SCEV's simplification will give us 3386 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3387 // lead to various SCEV crashes. So all we can do is to use builder and rely 3388 // on InstCombine for future simplifications. Here we handle some trivial 3389 // cases only. 3390 auto CreateAdd = [&B](Value *X, Value *Y) { 3391 assert(X->getType() == Y->getType() && "Types don't match!"); 3392 if (auto *CX = dyn_cast<ConstantInt>(X)) 3393 if (CX->isZero()) 3394 return Y; 3395 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3396 if (CY->isZero()) 3397 return X; 3398 return B.CreateAdd(X, Y); 3399 }; 3400 3401 // We allow X to be a vector type, in which case Y will potentially be 3402 // splatted into a vector with the same element count. 3403 auto CreateMul = [&B](Value *X, Value *Y) { 3404 assert(X->getType()->getScalarType() == Y->getType() && 3405 "Types don't match!"); 3406 if (auto *CX = dyn_cast<ConstantInt>(X)) 3407 if (CX->isOne()) 3408 return Y; 3409 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3410 if (CY->isOne()) 3411 return X; 3412 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3413 if (XVTy && !isa<VectorType>(Y->getType())) 3414 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3415 return B.CreateMul(X, Y); 3416 }; 3417 3418 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3419 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3420 // the DomTree is not kept up-to-date for additional blocks generated in the 3421 // vector loop. By using the header as insertion point, we guarantee that the 3422 // expanded instructions dominate all their uses. 3423 auto GetInsertPoint = [this, &B]() { 3424 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3425 if (InsertBB != LoopVectorBody && 3426 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3427 return LoopVectorBody->getTerminator(); 3428 return &*B.GetInsertPoint(); 3429 }; 3430 3431 switch (ID.getKind()) { 3432 case InductionDescriptor::IK_IntInduction: { 3433 assert(!isa<VectorType>(Index->getType()) && 3434 "Vector indices not supported for integer inductions yet"); 3435 assert(Index->getType() == StartValue->getType() && 3436 "Index type does not match StartValue type"); 3437 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3438 return B.CreateSub(StartValue, Index); 3439 auto *Offset = CreateMul( 3440 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3441 return CreateAdd(StartValue, Offset); 3442 } 3443 case InductionDescriptor::IK_PtrInduction: { 3444 assert(isa<SCEVConstant>(Step) && 3445 "Expected constant step for pointer induction"); 3446 return B.CreateGEP( 3447 ID.getElementType(), StartValue, 3448 CreateMul(Index, 3449 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3450 GetInsertPoint()))); 3451 } 3452 case InductionDescriptor::IK_FpInduction: { 3453 assert(!isa<VectorType>(Index->getType()) && 3454 "Vector indices not supported for FP inductions yet"); 3455 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3456 auto InductionBinOp = ID.getInductionBinOp(); 3457 assert(InductionBinOp && 3458 (InductionBinOp->getOpcode() == Instruction::FAdd || 3459 InductionBinOp->getOpcode() == Instruction::FSub) && 3460 "Original bin op should be defined for FP induction"); 3461 3462 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3463 Value *MulExp = B.CreateFMul(StepValue, Index); 3464 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3465 "induction"); 3466 } 3467 case InductionDescriptor::IK_NoInduction: 3468 return nullptr; 3469 } 3470 llvm_unreachable("invalid enum"); 3471 } 3472 3473 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3474 LoopScalarBody = OrigLoop->getHeader(); 3475 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3476 assert(LoopVectorPreHeader && "Invalid loop structure"); 3477 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3478 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3479 "multiple exit loop without required epilogue?"); 3480 3481 LoopMiddleBlock = 3482 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3483 LI, nullptr, Twine(Prefix) + "middle.block"); 3484 LoopScalarPreHeader = 3485 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3486 nullptr, Twine(Prefix) + "scalar.ph"); 3487 3488 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3489 3490 // Set up the middle block terminator. Two cases: 3491 // 1) If we know that we must execute the scalar epilogue, emit an 3492 // unconditional branch. 3493 // 2) Otherwise, we must have a single unique exit block (due to how we 3494 // implement the multiple exit case). In this case, set up a conditonal 3495 // branch from the middle block to the loop scalar preheader, and the 3496 // exit block. completeLoopSkeleton will update the condition to use an 3497 // iteration check, if required to decide whether to execute the remainder. 3498 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3499 BranchInst::Create(LoopScalarPreHeader) : 3500 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3501 Builder.getTrue()); 3502 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3503 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3504 3505 // We intentionally don't let SplitBlock to update LoopInfo since 3506 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3507 // LoopVectorBody is explicitly added to the correct place few lines later. 3508 LoopVectorBody = 3509 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3510 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3511 3512 // Update dominator for loop exit. 3513 if (!Cost->requiresScalarEpilogue(VF)) 3514 // If there is an epilogue which must run, there's no edge from the 3515 // middle block to exit blocks and thus no need to update the immediate 3516 // dominator of the exit blocks. 3517 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3518 3519 // Create and register the new vector loop. 3520 Loop *Lp = LI->AllocateLoop(); 3521 Loop *ParentLoop = OrigLoop->getParentLoop(); 3522 3523 // Insert the new loop into the loop nest and register the new basic blocks 3524 // before calling any utilities such as SCEV that require valid LoopInfo. 3525 if (ParentLoop) { 3526 ParentLoop->addChildLoop(Lp); 3527 } else { 3528 LI->addTopLevelLoop(Lp); 3529 } 3530 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3531 return Lp; 3532 } 3533 3534 void InnerLoopVectorizer::createInductionResumeValues( 3535 Loop *L, Value *VectorTripCount, 3536 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3537 assert(VectorTripCount && L && "Expected valid arguments"); 3538 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3539 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3540 "Inconsistent information about additional bypass."); 3541 // We are going to resume the execution of the scalar loop. 3542 // Go over all of the induction variables that we found and fix the 3543 // PHIs that are left in the scalar version of the loop. 3544 // The starting values of PHI nodes depend on the counter of the last 3545 // iteration in the vectorized loop. 3546 // If we come from a bypass edge then we need to start from the original 3547 // start value. 3548 for (auto &InductionEntry : Legal->getInductionVars()) { 3549 PHINode *OrigPhi = InductionEntry.first; 3550 InductionDescriptor II = InductionEntry.second; 3551 3552 // Create phi nodes to merge from the backedge-taken check block. 3553 PHINode *BCResumeVal = 3554 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3555 LoopScalarPreHeader->getTerminator()); 3556 // Copy original phi DL over to the new one. 3557 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3558 Value *&EndValue = IVEndValues[OrigPhi]; 3559 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3560 if (OrigPhi == OldInduction) { 3561 // We know what the end value is. 3562 EndValue = VectorTripCount; 3563 } else { 3564 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3565 3566 // Fast-math-flags propagate from the original induction instruction. 3567 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3568 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3569 3570 Type *StepType = II.getStep()->getType(); 3571 Instruction::CastOps CastOp = 3572 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3573 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3574 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3575 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3576 EndValue->setName("ind.end"); 3577 3578 // Compute the end value for the additional bypass (if applicable). 3579 if (AdditionalBypass.first) { 3580 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3581 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3582 StepType, true); 3583 CRD = 3584 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3585 EndValueFromAdditionalBypass = 3586 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3587 EndValueFromAdditionalBypass->setName("ind.end"); 3588 } 3589 } 3590 // The new PHI merges the original incoming value, in case of a bypass, 3591 // or the value at the end of the vectorized loop. 3592 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3593 3594 // Fix the scalar body counter (PHI node). 3595 // The old induction's phi node in the scalar body needs the truncated 3596 // value. 3597 for (BasicBlock *BB : LoopBypassBlocks) 3598 BCResumeVal->addIncoming(II.getStartValue(), BB); 3599 3600 if (AdditionalBypass.first) 3601 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3602 EndValueFromAdditionalBypass); 3603 3604 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3605 } 3606 } 3607 3608 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3609 MDNode *OrigLoopID) { 3610 assert(L && "Expected valid loop."); 3611 3612 // The trip counts should be cached by now. 3613 Value *Count = getOrCreateTripCount(L); 3614 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3615 3616 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3617 3618 // Add a check in the middle block to see if we have completed 3619 // all of the iterations in the first vector loop. Three cases: 3620 // 1) If we require a scalar epilogue, there is no conditional branch as 3621 // we unconditionally branch to the scalar preheader. Do nothing. 3622 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3623 // Thus if tail is to be folded, we know we don't need to run the 3624 // remainder and we can use the previous value for the condition (true). 3625 // 3) Otherwise, construct a runtime check. 3626 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3627 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3628 Count, VectorTripCount, "cmp.n", 3629 LoopMiddleBlock->getTerminator()); 3630 3631 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3632 // of the corresponding compare because they may have ended up with 3633 // different line numbers and we want to avoid awkward line stepping while 3634 // debugging. Eg. if the compare has got a line number inside the loop. 3635 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3636 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3637 } 3638 3639 // Get ready to start creating new instructions into the vectorized body. 3640 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3641 "Inconsistent vector loop preheader"); 3642 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3643 3644 Optional<MDNode *> VectorizedLoopID = 3645 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3646 LLVMLoopVectorizeFollowupVectorized}); 3647 if (VectorizedLoopID.hasValue()) { 3648 L->setLoopID(VectorizedLoopID.getValue()); 3649 3650 // Do not setAlreadyVectorized if loop attributes have been defined 3651 // explicitly. 3652 return LoopVectorPreHeader; 3653 } 3654 3655 // Keep all loop hints from the original loop on the vector loop (we'll 3656 // replace the vectorizer-specific hints below). 3657 if (MDNode *LID = OrigLoop->getLoopID()) 3658 L->setLoopID(LID); 3659 3660 LoopVectorizeHints Hints(L, true, *ORE); 3661 Hints.setAlreadyVectorized(); 3662 3663 #ifdef EXPENSIVE_CHECKS 3664 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3665 LI->verify(*DT); 3666 #endif 3667 3668 return LoopVectorPreHeader; 3669 } 3670 3671 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3672 /* 3673 In this function we generate a new loop. The new loop will contain 3674 the vectorized instructions while the old loop will continue to run the 3675 scalar remainder. 3676 3677 [ ] <-- loop iteration number check. 3678 / | 3679 / v 3680 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3681 | / | 3682 | / v 3683 || [ ] <-- vector pre header. 3684 |/ | 3685 | v 3686 | [ ] \ 3687 | [ ]_| <-- vector loop. 3688 | | 3689 | v 3690 \ -[ ] <--- middle-block. 3691 \/ | 3692 /\ v 3693 | ->[ ] <--- new preheader. 3694 | | 3695 (opt) v <-- edge from middle to exit iff epilogue is not required. 3696 | [ ] \ 3697 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3698 \ | 3699 \ v 3700 >[ ] <-- exit block(s). 3701 ... 3702 */ 3703 3704 // Get the metadata of the original loop before it gets modified. 3705 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3706 3707 // Workaround! Compute the trip count of the original loop and cache it 3708 // before we start modifying the CFG. This code has a systemic problem 3709 // wherein it tries to run analysis over partially constructed IR; this is 3710 // wrong, and not simply for SCEV. The trip count of the original loop 3711 // simply happens to be prone to hitting this in practice. In theory, we 3712 // can hit the same issue for any SCEV, or ValueTracking query done during 3713 // mutation. See PR49900. 3714 getOrCreateTripCount(OrigLoop); 3715 3716 // Create an empty vector loop, and prepare basic blocks for the runtime 3717 // checks. 3718 Loop *Lp = createVectorLoopSkeleton(""); 3719 3720 // Now, compare the new count to zero. If it is zero skip the vector loop and 3721 // jump to the scalar loop. This check also covers the case where the 3722 // backedge-taken count is uint##_max: adding one to it will overflow leading 3723 // to an incorrect trip count of zero. In this (rare) case we will also jump 3724 // to the scalar loop. 3725 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3726 3727 // Generate the code to check any assumptions that we've made for SCEV 3728 // expressions. 3729 emitSCEVChecks(Lp, LoopScalarPreHeader); 3730 3731 // Generate the code that checks in runtime if arrays overlap. We put the 3732 // checks into a separate block to make the more common case of few elements 3733 // faster. 3734 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3735 3736 // Some loops have a single integer induction variable, while other loops 3737 // don't. One example is c++ iterators that often have multiple pointer 3738 // induction variables. In the code below we also support a case where we 3739 // don't have a single induction variable. 3740 // 3741 // We try to obtain an induction variable from the original loop as hard 3742 // as possible. However if we don't find one that: 3743 // - is an integer 3744 // - counts from zero, stepping by one 3745 // - is the size of the widest induction variable type 3746 // then we create a new one. 3747 OldInduction = Legal->getPrimaryInduction(); 3748 Type *IdxTy = Legal->getWidestInductionType(); 3749 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3750 // The loop step is equal to the vectorization factor (num of SIMD elements) 3751 // times the unroll factor (num of SIMD instructions). 3752 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3753 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3754 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3755 Induction = 3756 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3757 getDebugLocFromInstOrOperands(OldInduction)); 3758 3759 // Emit phis for the new starting index of the scalar loop. 3760 createInductionResumeValues(Lp, CountRoundDown); 3761 3762 return completeLoopSkeleton(Lp, OrigLoopID); 3763 } 3764 3765 // Fix up external users of the induction variable. At this point, we are 3766 // in LCSSA form, with all external PHIs that use the IV having one input value, 3767 // coming from the remainder loop. We need those PHIs to also have a correct 3768 // value for the IV when arriving directly from the middle block. 3769 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3770 const InductionDescriptor &II, 3771 Value *CountRoundDown, Value *EndValue, 3772 BasicBlock *MiddleBlock) { 3773 // There are two kinds of external IV usages - those that use the value 3774 // computed in the last iteration (the PHI) and those that use the penultimate 3775 // value (the value that feeds into the phi from the loop latch). 3776 // We allow both, but they, obviously, have different values. 3777 3778 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3779 3780 DenseMap<Value *, Value *> MissingVals; 3781 3782 // An external user of the last iteration's value should see the value that 3783 // the remainder loop uses to initialize its own IV. 3784 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3785 for (User *U : PostInc->users()) { 3786 Instruction *UI = cast<Instruction>(U); 3787 if (!OrigLoop->contains(UI)) { 3788 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3789 MissingVals[UI] = EndValue; 3790 } 3791 } 3792 3793 // An external user of the penultimate value need to see EndValue - Step. 3794 // The simplest way to get this is to recompute it from the constituent SCEVs, 3795 // that is Start + (Step * (CRD - 1)). 3796 for (User *U : OrigPhi->users()) { 3797 auto *UI = cast<Instruction>(U); 3798 if (!OrigLoop->contains(UI)) { 3799 const DataLayout &DL = 3800 OrigLoop->getHeader()->getModule()->getDataLayout(); 3801 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3802 3803 IRBuilder<> B(MiddleBlock->getTerminator()); 3804 3805 // Fast-math-flags propagate from the original induction instruction. 3806 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3807 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3808 3809 Value *CountMinusOne = B.CreateSub( 3810 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3811 Value *CMO = 3812 !II.getStep()->getType()->isIntegerTy() 3813 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3814 II.getStep()->getType()) 3815 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3816 CMO->setName("cast.cmo"); 3817 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3818 Escape->setName("ind.escape"); 3819 MissingVals[UI] = Escape; 3820 } 3821 } 3822 3823 for (auto &I : MissingVals) { 3824 PHINode *PHI = cast<PHINode>(I.first); 3825 // One corner case we have to handle is two IVs "chasing" each-other, 3826 // that is %IV2 = phi [...], [ %IV1, %latch ] 3827 // In this case, if IV1 has an external use, we need to avoid adding both 3828 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3829 // don't already have an incoming value for the middle block. 3830 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3831 PHI->addIncoming(I.second, MiddleBlock); 3832 } 3833 } 3834 3835 namespace { 3836 3837 struct CSEDenseMapInfo { 3838 static bool canHandle(const Instruction *I) { 3839 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3840 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3841 } 3842 3843 static inline Instruction *getEmptyKey() { 3844 return DenseMapInfo<Instruction *>::getEmptyKey(); 3845 } 3846 3847 static inline Instruction *getTombstoneKey() { 3848 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3849 } 3850 3851 static unsigned getHashValue(const Instruction *I) { 3852 assert(canHandle(I) && "Unknown instruction!"); 3853 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3854 I->value_op_end())); 3855 } 3856 3857 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3858 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3859 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3860 return LHS == RHS; 3861 return LHS->isIdenticalTo(RHS); 3862 } 3863 }; 3864 3865 } // end anonymous namespace 3866 3867 ///Perform cse of induction variable instructions. 3868 static void cse(BasicBlock *BB) { 3869 // Perform simple cse. 3870 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3871 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3872 if (!CSEDenseMapInfo::canHandle(&In)) 3873 continue; 3874 3875 // Check if we can replace this instruction with any of the 3876 // visited instructions. 3877 if (Instruction *V = CSEMap.lookup(&In)) { 3878 In.replaceAllUsesWith(V); 3879 In.eraseFromParent(); 3880 continue; 3881 } 3882 3883 CSEMap[&In] = &In; 3884 } 3885 } 3886 3887 InstructionCost 3888 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3889 bool &NeedToScalarize) const { 3890 Function *F = CI->getCalledFunction(); 3891 Type *ScalarRetTy = CI->getType(); 3892 SmallVector<Type *, 4> Tys, ScalarTys; 3893 for (auto &ArgOp : CI->args()) 3894 ScalarTys.push_back(ArgOp->getType()); 3895 3896 // Estimate cost of scalarized vector call. The source operands are assumed 3897 // to be vectors, so we need to extract individual elements from there, 3898 // execute VF scalar calls, and then gather the result into the vector return 3899 // value. 3900 InstructionCost ScalarCallCost = 3901 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3902 if (VF.isScalar()) 3903 return ScalarCallCost; 3904 3905 // Compute corresponding vector type for return value and arguments. 3906 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3907 for (Type *ScalarTy : ScalarTys) 3908 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3909 3910 // Compute costs of unpacking argument values for the scalar calls and 3911 // packing the return values to a vector. 3912 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3913 3914 InstructionCost Cost = 3915 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3916 3917 // If we can't emit a vector call for this function, then the currently found 3918 // cost is the cost we need to return. 3919 NeedToScalarize = true; 3920 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3921 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3922 3923 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3924 return Cost; 3925 3926 // If the corresponding vector cost is cheaper, return its cost. 3927 InstructionCost VectorCallCost = 3928 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3929 if (VectorCallCost < Cost) { 3930 NeedToScalarize = false; 3931 Cost = VectorCallCost; 3932 } 3933 return Cost; 3934 } 3935 3936 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3937 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3938 return Elt; 3939 return VectorType::get(Elt, VF); 3940 } 3941 3942 InstructionCost 3943 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3944 ElementCount VF) const { 3945 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3946 assert(ID && "Expected intrinsic call!"); 3947 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3948 FastMathFlags FMF; 3949 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3950 FMF = FPMO->getFastMathFlags(); 3951 3952 SmallVector<const Value *> Arguments(CI->args()); 3953 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3954 SmallVector<Type *> ParamTys; 3955 std::transform(FTy->param_begin(), FTy->param_end(), 3956 std::back_inserter(ParamTys), 3957 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3958 3959 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3960 dyn_cast<IntrinsicInst>(CI)); 3961 return TTI.getIntrinsicInstrCost(CostAttrs, 3962 TargetTransformInfo::TCK_RecipThroughput); 3963 } 3964 3965 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3966 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3967 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3968 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3969 } 3970 3971 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3972 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3973 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3974 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3975 } 3976 3977 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3978 // For every instruction `I` in MinBWs, truncate the operands, create a 3979 // truncated version of `I` and reextend its result. InstCombine runs 3980 // later and will remove any ext/trunc pairs. 3981 SmallPtrSet<Value *, 4> Erased; 3982 for (const auto &KV : Cost->getMinimalBitwidths()) { 3983 // If the value wasn't vectorized, we must maintain the original scalar 3984 // type. The absence of the value from State indicates that it 3985 // wasn't vectorized. 3986 // FIXME: Should not rely on getVPValue at this point. 3987 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3988 if (!State.hasAnyVectorValue(Def)) 3989 continue; 3990 for (unsigned Part = 0; Part < UF; ++Part) { 3991 Value *I = State.get(Def, Part); 3992 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3993 continue; 3994 Type *OriginalTy = I->getType(); 3995 Type *ScalarTruncatedTy = 3996 IntegerType::get(OriginalTy->getContext(), KV.second); 3997 auto *TruncatedTy = VectorType::get( 3998 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3999 if (TruncatedTy == OriginalTy) 4000 continue; 4001 4002 IRBuilder<> B(cast<Instruction>(I)); 4003 auto ShrinkOperand = [&](Value *V) -> Value * { 4004 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4005 if (ZI->getSrcTy() == TruncatedTy) 4006 return ZI->getOperand(0); 4007 return B.CreateZExtOrTrunc(V, TruncatedTy); 4008 }; 4009 4010 // The actual instruction modification depends on the instruction type, 4011 // unfortunately. 4012 Value *NewI = nullptr; 4013 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4014 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4015 ShrinkOperand(BO->getOperand(1))); 4016 4017 // Any wrapping introduced by shrinking this operation shouldn't be 4018 // considered undefined behavior. So, we can't unconditionally copy 4019 // arithmetic wrapping flags to NewI. 4020 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4021 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4022 NewI = 4023 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4024 ShrinkOperand(CI->getOperand(1))); 4025 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4026 NewI = B.CreateSelect(SI->getCondition(), 4027 ShrinkOperand(SI->getTrueValue()), 4028 ShrinkOperand(SI->getFalseValue())); 4029 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4030 switch (CI->getOpcode()) { 4031 default: 4032 llvm_unreachable("Unhandled cast!"); 4033 case Instruction::Trunc: 4034 NewI = ShrinkOperand(CI->getOperand(0)); 4035 break; 4036 case Instruction::SExt: 4037 NewI = B.CreateSExtOrTrunc( 4038 CI->getOperand(0), 4039 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4040 break; 4041 case Instruction::ZExt: 4042 NewI = B.CreateZExtOrTrunc( 4043 CI->getOperand(0), 4044 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4045 break; 4046 } 4047 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4048 auto Elements0 = 4049 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4050 auto *O0 = B.CreateZExtOrTrunc( 4051 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4052 auto Elements1 = 4053 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4054 auto *O1 = B.CreateZExtOrTrunc( 4055 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4056 4057 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4058 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4059 // Don't do anything with the operands, just extend the result. 4060 continue; 4061 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4062 auto Elements = 4063 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4064 auto *O0 = B.CreateZExtOrTrunc( 4065 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4066 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4067 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4068 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4069 auto Elements = 4070 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4071 auto *O0 = B.CreateZExtOrTrunc( 4072 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4073 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4074 } else { 4075 // If we don't know what to do, be conservative and don't do anything. 4076 continue; 4077 } 4078 4079 // Lastly, extend the result. 4080 NewI->takeName(cast<Instruction>(I)); 4081 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4082 I->replaceAllUsesWith(Res); 4083 cast<Instruction>(I)->eraseFromParent(); 4084 Erased.insert(I); 4085 State.reset(Def, Res, Part); 4086 } 4087 } 4088 4089 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4090 for (const auto &KV : Cost->getMinimalBitwidths()) { 4091 // If the value wasn't vectorized, we must maintain the original scalar 4092 // type. The absence of the value from State indicates that it 4093 // wasn't vectorized. 4094 // FIXME: Should not rely on getVPValue at this point. 4095 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4096 if (!State.hasAnyVectorValue(Def)) 4097 continue; 4098 for (unsigned Part = 0; Part < UF; ++Part) { 4099 Value *I = State.get(Def, Part); 4100 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4101 if (Inst && Inst->use_empty()) { 4102 Value *NewI = Inst->getOperand(0); 4103 Inst->eraseFromParent(); 4104 State.reset(Def, NewI, Part); 4105 } 4106 } 4107 } 4108 } 4109 4110 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4111 // Insert truncates and extends for any truncated instructions as hints to 4112 // InstCombine. 4113 if (VF.isVector()) 4114 truncateToMinimalBitwidths(State); 4115 4116 // Fix widened non-induction PHIs by setting up the PHI operands. 4117 if (OrigPHIsToFix.size()) { 4118 assert(EnableVPlanNativePath && 4119 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4120 fixNonInductionPHIs(State); 4121 } 4122 4123 // At this point every instruction in the original loop is widened to a 4124 // vector form. Now we need to fix the recurrences in the loop. These PHI 4125 // nodes are currently empty because we did not want to introduce cycles. 4126 // This is the second stage of vectorizing recurrences. 4127 fixCrossIterationPHIs(State); 4128 4129 // Forget the original basic block. 4130 PSE.getSE()->forgetLoop(OrigLoop); 4131 4132 // If we inserted an edge from the middle block to the unique exit block, 4133 // update uses outside the loop (phis) to account for the newly inserted 4134 // edge. 4135 if (!Cost->requiresScalarEpilogue(VF)) { 4136 // Fix-up external users of the induction variables. 4137 for (auto &Entry : Legal->getInductionVars()) 4138 fixupIVUsers(Entry.first, Entry.second, 4139 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4140 IVEndValues[Entry.first], LoopMiddleBlock); 4141 4142 fixLCSSAPHIs(State); 4143 } 4144 4145 for (Instruction *PI : PredicatedInstructions) 4146 sinkScalarOperands(&*PI); 4147 4148 // Remove redundant induction instructions. 4149 cse(LoopVectorBody); 4150 4151 // Set/update profile weights for the vector and remainder loops as original 4152 // loop iterations are now distributed among them. Note that original loop 4153 // represented by LoopScalarBody becomes remainder loop after vectorization. 4154 // 4155 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4156 // end up getting slightly roughened result but that should be OK since 4157 // profile is not inherently precise anyway. Note also possible bypass of 4158 // vector code caused by legality checks is ignored, assigning all the weight 4159 // to the vector loop, optimistically. 4160 // 4161 // For scalable vectorization we can't know at compile time how many iterations 4162 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4163 // vscale of '1'. 4164 setProfileInfoAfterUnrolling( 4165 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4166 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4167 } 4168 4169 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4170 // In order to support recurrences we need to be able to vectorize Phi nodes. 4171 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4172 // stage #2: We now need to fix the recurrences by adding incoming edges to 4173 // the currently empty PHI nodes. At this point every instruction in the 4174 // original loop is widened to a vector form so we can use them to construct 4175 // the incoming edges. 4176 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4177 for (VPRecipeBase &R : Header->phis()) { 4178 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4179 fixReduction(ReductionPhi, State); 4180 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4181 fixFirstOrderRecurrence(FOR, State); 4182 } 4183 } 4184 4185 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4186 VPTransformState &State) { 4187 // This is the second phase of vectorizing first-order recurrences. An 4188 // overview of the transformation is described below. Suppose we have the 4189 // following loop. 4190 // 4191 // for (int i = 0; i < n; ++i) 4192 // b[i] = a[i] - a[i - 1]; 4193 // 4194 // There is a first-order recurrence on "a". For this loop, the shorthand 4195 // scalar IR looks like: 4196 // 4197 // scalar.ph: 4198 // s_init = a[-1] 4199 // br scalar.body 4200 // 4201 // scalar.body: 4202 // i = phi [0, scalar.ph], [i+1, scalar.body] 4203 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4204 // s2 = a[i] 4205 // b[i] = s2 - s1 4206 // br cond, scalar.body, ... 4207 // 4208 // In this example, s1 is a recurrence because it's value depends on the 4209 // previous iteration. In the first phase of vectorization, we created a 4210 // vector phi v1 for s1. We now complete the vectorization and produce the 4211 // shorthand vector IR shown below (for VF = 4, UF = 1). 4212 // 4213 // vector.ph: 4214 // v_init = vector(..., ..., ..., a[-1]) 4215 // br vector.body 4216 // 4217 // vector.body 4218 // i = phi [0, vector.ph], [i+4, vector.body] 4219 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4220 // v2 = a[i, i+1, i+2, i+3]; 4221 // v3 = vector(v1(3), v2(0, 1, 2)) 4222 // b[i, i+1, i+2, i+3] = v2 - v3 4223 // br cond, vector.body, middle.block 4224 // 4225 // middle.block: 4226 // x = v2(3) 4227 // br scalar.ph 4228 // 4229 // scalar.ph: 4230 // s_init = phi [x, middle.block], [a[-1], otherwise] 4231 // br scalar.body 4232 // 4233 // After execution completes the vector loop, we extract the next value of 4234 // the recurrence (x) to use as the initial value in the scalar loop. 4235 4236 // Extract the last vector element in the middle block. This will be the 4237 // initial value for the recurrence when jumping to the scalar loop. 4238 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4239 Value *Incoming = State.get(PreviousDef, UF - 1); 4240 auto *ExtractForScalar = Incoming; 4241 auto *IdxTy = Builder.getInt32Ty(); 4242 if (VF.isVector()) { 4243 auto *One = ConstantInt::get(IdxTy, 1); 4244 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4245 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4246 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4247 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4248 "vector.recur.extract"); 4249 } 4250 // Extract the second last element in the middle block if the 4251 // Phi is used outside the loop. We need to extract the phi itself 4252 // and not the last element (the phi update in the current iteration). This 4253 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4254 // when the scalar loop is not run at all. 4255 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4256 if (VF.isVector()) { 4257 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4258 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4259 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4260 Incoming, Idx, "vector.recur.extract.for.phi"); 4261 } else if (UF > 1) 4262 // When loop is unrolled without vectorizing, initialize 4263 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4264 // of `Incoming`. This is analogous to the vectorized case above: extracting 4265 // the second last element when VF > 1. 4266 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4267 4268 // Fix the initial value of the original recurrence in the scalar loop. 4269 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4270 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4271 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4272 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4273 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4274 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4275 Start->addIncoming(Incoming, BB); 4276 } 4277 4278 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4279 Phi->setName("scalar.recur"); 4280 4281 // Finally, fix users of the recurrence outside the loop. The users will need 4282 // either the last value of the scalar recurrence or the last value of the 4283 // vector recurrence we extracted in the middle block. Since the loop is in 4284 // LCSSA form, we just need to find all the phi nodes for the original scalar 4285 // recurrence in the exit block, and then add an edge for the middle block. 4286 // Note that LCSSA does not imply single entry when the original scalar loop 4287 // had multiple exiting edges (as we always run the last iteration in the 4288 // scalar epilogue); in that case, there is no edge from middle to exit and 4289 // and thus no phis which needed updated. 4290 if (!Cost->requiresScalarEpilogue(VF)) 4291 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4292 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4293 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4294 } 4295 4296 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4297 VPTransformState &State) { 4298 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4299 // Get it's reduction variable descriptor. 4300 assert(Legal->isReductionVariable(OrigPhi) && 4301 "Unable to find the reduction variable"); 4302 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4303 4304 RecurKind RK = RdxDesc.getRecurrenceKind(); 4305 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4306 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4307 setDebugLocFromInst(ReductionStartValue); 4308 4309 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4310 // This is the vector-clone of the value that leaves the loop. 4311 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4312 4313 // Wrap flags are in general invalid after vectorization, clear them. 4314 clearReductionWrapFlags(RdxDesc, State); 4315 4316 // Before each round, move the insertion point right between 4317 // the PHIs and the values we are going to write. 4318 // This allows us to write both PHINodes and the extractelement 4319 // instructions. 4320 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4321 4322 setDebugLocFromInst(LoopExitInst); 4323 4324 Type *PhiTy = OrigPhi->getType(); 4325 // If tail is folded by masking, the vector value to leave the loop should be 4326 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4327 // instead of the former. For an inloop reduction the reduction will already 4328 // be predicated, and does not need to be handled here. 4329 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4330 for (unsigned Part = 0; Part < UF; ++Part) { 4331 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4332 Value *Sel = nullptr; 4333 for (User *U : VecLoopExitInst->users()) { 4334 if (isa<SelectInst>(U)) { 4335 assert(!Sel && "Reduction exit feeding two selects"); 4336 Sel = U; 4337 } else 4338 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4339 } 4340 assert(Sel && "Reduction exit feeds no select"); 4341 State.reset(LoopExitInstDef, Sel, Part); 4342 4343 // If the target can create a predicated operator for the reduction at no 4344 // extra cost in the loop (for example a predicated vadd), it can be 4345 // cheaper for the select to remain in the loop than be sunk out of it, 4346 // and so use the select value for the phi instead of the old 4347 // LoopExitValue. 4348 if (PreferPredicatedReductionSelect || 4349 TTI->preferPredicatedReductionSelect( 4350 RdxDesc.getOpcode(), PhiTy, 4351 TargetTransformInfo::ReductionFlags())) { 4352 auto *VecRdxPhi = 4353 cast<PHINode>(State.get(PhiR, Part)); 4354 VecRdxPhi->setIncomingValueForBlock( 4355 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4356 } 4357 } 4358 } 4359 4360 // If the vector reduction can be performed in a smaller type, we truncate 4361 // then extend the loop exit value to enable InstCombine to evaluate the 4362 // entire expression in the smaller type. 4363 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4364 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4365 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4366 Builder.SetInsertPoint( 4367 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4368 VectorParts RdxParts(UF); 4369 for (unsigned Part = 0; Part < UF; ++Part) { 4370 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4371 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4372 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4373 : Builder.CreateZExt(Trunc, VecTy); 4374 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4375 UI != RdxParts[Part]->user_end();) 4376 if (*UI != Trunc) { 4377 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4378 RdxParts[Part] = Extnd; 4379 } else { 4380 ++UI; 4381 } 4382 } 4383 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4384 for (unsigned Part = 0; Part < UF; ++Part) { 4385 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4386 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4387 } 4388 } 4389 4390 // Reduce all of the unrolled parts into a single vector. 4391 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4392 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4393 4394 // The middle block terminator has already been assigned a DebugLoc here (the 4395 // OrigLoop's single latch terminator). We want the whole middle block to 4396 // appear to execute on this line because: (a) it is all compiler generated, 4397 // (b) these instructions are always executed after evaluating the latch 4398 // conditional branch, and (c) other passes may add new predecessors which 4399 // terminate on this line. This is the easiest way to ensure we don't 4400 // accidentally cause an extra step back into the loop while debugging. 4401 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4402 if (PhiR->isOrdered()) 4403 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4404 else { 4405 // Floating-point operations should have some FMF to enable the reduction. 4406 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4407 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4408 for (unsigned Part = 1; Part < UF; ++Part) { 4409 Value *RdxPart = State.get(LoopExitInstDef, Part); 4410 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4411 ReducedPartRdx = Builder.CreateBinOp( 4412 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4413 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4414 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4415 ReducedPartRdx, RdxPart); 4416 else 4417 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4418 } 4419 } 4420 4421 // Create the reduction after the loop. Note that inloop reductions create the 4422 // target reduction in the loop using a Reduction recipe. 4423 if (VF.isVector() && !PhiR->isInLoop()) { 4424 ReducedPartRdx = 4425 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4426 // If the reduction can be performed in a smaller type, we need to extend 4427 // the reduction to the wider type before we branch to the original loop. 4428 if (PhiTy != RdxDesc.getRecurrenceType()) 4429 ReducedPartRdx = RdxDesc.isSigned() 4430 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4431 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4432 } 4433 4434 // Create a phi node that merges control-flow from the backedge-taken check 4435 // block and the middle block. 4436 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4437 LoopScalarPreHeader->getTerminator()); 4438 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4439 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4440 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4441 4442 // Now, we need to fix the users of the reduction variable 4443 // inside and outside of the scalar remainder loop. 4444 4445 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4446 // in the exit blocks. See comment on analogous loop in 4447 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4448 if (!Cost->requiresScalarEpilogue(VF)) 4449 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4450 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4451 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4452 4453 // Fix the scalar loop reduction variable with the incoming reduction sum 4454 // from the vector body and from the backedge value. 4455 int IncomingEdgeBlockIdx = 4456 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4457 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4458 // Pick the other block. 4459 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4460 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4461 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4462 } 4463 4464 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4465 VPTransformState &State) { 4466 RecurKind RK = RdxDesc.getRecurrenceKind(); 4467 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4468 return; 4469 4470 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4471 assert(LoopExitInstr && "null loop exit instruction"); 4472 SmallVector<Instruction *, 8> Worklist; 4473 SmallPtrSet<Instruction *, 8> Visited; 4474 Worklist.push_back(LoopExitInstr); 4475 Visited.insert(LoopExitInstr); 4476 4477 while (!Worklist.empty()) { 4478 Instruction *Cur = Worklist.pop_back_val(); 4479 if (isa<OverflowingBinaryOperator>(Cur)) 4480 for (unsigned Part = 0; Part < UF; ++Part) { 4481 // FIXME: Should not rely on getVPValue at this point. 4482 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4483 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4484 } 4485 4486 for (User *U : Cur->users()) { 4487 Instruction *UI = cast<Instruction>(U); 4488 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4489 Visited.insert(UI).second) 4490 Worklist.push_back(UI); 4491 } 4492 } 4493 } 4494 4495 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4496 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4497 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4498 // Some phis were already hand updated by the reduction and recurrence 4499 // code above, leave them alone. 4500 continue; 4501 4502 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4503 // Non-instruction incoming values will have only one value. 4504 4505 VPLane Lane = VPLane::getFirstLane(); 4506 if (isa<Instruction>(IncomingValue) && 4507 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4508 VF)) 4509 Lane = VPLane::getLastLaneForVF(VF); 4510 4511 // Can be a loop invariant incoming value or the last scalar value to be 4512 // extracted from the vectorized loop. 4513 // FIXME: Should not rely on getVPValue at this point. 4514 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4515 Value *lastIncomingValue = 4516 OrigLoop->isLoopInvariant(IncomingValue) 4517 ? IncomingValue 4518 : State.get(State.Plan->getVPValue(IncomingValue, true), 4519 VPIteration(UF - 1, Lane)); 4520 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4521 } 4522 } 4523 4524 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4525 // The basic block and loop containing the predicated instruction. 4526 auto *PredBB = PredInst->getParent(); 4527 auto *VectorLoop = LI->getLoopFor(PredBB); 4528 4529 // Initialize a worklist with the operands of the predicated instruction. 4530 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4531 4532 // Holds instructions that we need to analyze again. An instruction may be 4533 // reanalyzed if we don't yet know if we can sink it or not. 4534 SmallVector<Instruction *, 8> InstsToReanalyze; 4535 4536 // Returns true if a given use occurs in the predicated block. Phi nodes use 4537 // their operands in their corresponding predecessor blocks. 4538 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4539 auto *I = cast<Instruction>(U.getUser()); 4540 BasicBlock *BB = I->getParent(); 4541 if (auto *Phi = dyn_cast<PHINode>(I)) 4542 BB = Phi->getIncomingBlock( 4543 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4544 return BB == PredBB; 4545 }; 4546 4547 // Iteratively sink the scalarized operands of the predicated instruction 4548 // into the block we created for it. When an instruction is sunk, it's 4549 // operands are then added to the worklist. The algorithm ends after one pass 4550 // through the worklist doesn't sink a single instruction. 4551 bool Changed; 4552 do { 4553 // Add the instructions that need to be reanalyzed to the worklist, and 4554 // reset the changed indicator. 4555 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4556 InstsToReanalyze.clear(); 4557 Changed = false; 4558 4559 while (!Worklist.empty()) { 4560 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4561 4562 // We can't sink an instruction if it is a phi node, is not in the loop, 4563 // or may have side effects. 4564 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4565 I->mayHaveSideEffects()) 4566 continue; 4567 4568 // If the instruction is already in PredBB, check if we can sink its 4569 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4570 // sinking the scalar instruction I, hence it appears in PredBB; but it 4571 // may have failed to sink I's operands (recursively), which we try 4572 // (again) here. 4573 if (I->getParent() == PredBB) { 4574 Worklist.insert(I->op_begin(), I->op_end()); 4575 continue; 4576 } 4577 4578 // It's legal to sink the instruction if all its uses occur in the 4579 // predicated block. Otherwise, there's nothing to do yet, and we may 4580 // need to reanalyze the instruction. 4581 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4582 InstsToReanalyze.push_back(I); 4583 continue; 4584 } 4585 4586 // Move the instruction to the beginning of the predicated block, and add 4587 // it's operands to the worklist. 4588 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4589 Worklist.insert(I->op_begin(), I->op_end()); 4590 4591 // The sinking may have enabled other instructions to be sunk, so we will 4592 // need to iterate. 4593 Changed = true; 4594 } 4595 } while (Changed); 4596 } 4597 4598 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4599 for (PHINode *OrigPhi : OrigPHIsToFix) { 4600 VPWidenPHIRecipe *VPPhi = 4601 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4602 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4603 // Make sure the builder has a valid insert point. 4604 Builder.SetInsertPoint(NewPhi); 4605 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4606 VPValue *Inc = VPPhi->getIncomingValue(i); 4607 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4608 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4609 } 4610 } 4611 } 4612 4613 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4614 return Cost->useOrderedReductions(RdxDesc); 4615 } 4616 4617 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4618 VPUser &Operands, unsigned UF, 4619 ElementCount VF, bool IsPtrLoopInvariant, 4620 SmallBitVector &IsIndexLoopInvariant, 4621 VPTransformState &State) { 4622 // Construct a vector GEP by widening the operands of the scalar GEP as 4623 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4624 // results in a vector of pointers when at least one operand of the GEP 4625 // is vector-typed. Thus, to keep the representation compact, we only use 4626 // vector-typed operands for loop-varying values. 4627 4628 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4629 // If we are vectorizing, but the GEP has only loop-invariant operands, 4630 // the GEP we build (by only using vector-typed operands for 4631 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4632 // produce a vector of pointers, we need to either arbitrarily pick an 4633 // operand to broadcast, or broadcast a clone of the original GEP. 4634 // Here, we broadcast a clone of the original. 4635 // 4636 // TODO: If at some point we decide to scalarize instructions having 4637 // loop-invariant operands, this special case will no longer be 4638 // required. We would add the scalarization decision to 4639 // collectLoopScalars() and teach getVectorValue() to broadcast 4640 // the lane-zero scalar value. 4641 auto *Clone = Builder.Insert(GEP->clone()); 4642 for (unsigned Part = 0; Part < UF; ++Part) { 4643 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4644 State.set(VPDef, EntryPart, Part); 4645 addMetadata(EntryPart, GEP); 4646 } 4647 } else { 4648 // If the GEP has at least one loop-varying operand, we are sure to 4649 // produce a vector of pointers. But if we are only unrolling, we want 4650 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4651 // produce with the code below will be scalar (if VF == 1) or vector 4652 // (otherwise). Note that for the unroll-only case, we still maintain 4653 // values in the vector mapping with initVector, as we do for other 4654 // instructions. 4655 for (unsigned Part = 0; Part < UF; ++Part) { 4656 // The pointer operand of the new GEP. If it's loop-invariant, we 4657 // won't broadcast it. 4658 auto *Ptr = IsPtrLoopInvariant 4659 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4660 : State.get(Operands.getOperand(0), Part); 4661 4662 // Collect all the indices for the new GEP. If any index is 4663 // loop-invariant, we won't broadcast it. 4664 SmallVector<Value *, 4> Indices; 4665 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4666 VPValue *Operand = Operands.getOperand(I); 4667 if (IsIndexLoopInvariant[I - 1]) 4668 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4669 else 4670 Indices.push_back(State.get(Operand, Part)); 4671 } 4672 4673 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4674 // but it should be a vector, otherwise. 4675 auto *NewGEP = 4676 GEP->isInBounds() 4677 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4678 Indices) 4679 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4680 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4681 "NewGEP is not a pointer vector"); 4682 State.set(VPDef, NewGEP, Part); 4683 addMetadata(NewGEP, GEP); 4684 } 4685 } 4686 } 4687 4688 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4689 VPWidenPHIRecipe *PhiR, 4690 VPTransformState &State) { 4691 PHINode *P = cast<PHINode>(PN); 4692 if (EnableVPlanNativePath) { 4693 // Currently we enter here in the VPlan-native path for non-induction 4694 // PHIs where all control flow is uniform. We simply widen these PHIs. 4695 // Create a vector phi with no operands - the vector phi operands will be 4696 // set at the end of vector code generation. 4697 Type *VecTy = (State.VF.isScalar()) 4698 ? PN->getType() 4699 : VectorType::get(PN->getType(), State.VF); 4700 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4701 State.set(PhiR, VecPhi, 0); 4702 OrigPHIsToFix.push_back(P); 4703 4704 return; 4705 } 4706 4707 assert(PN->getParent() == OrigLoop->getHeader() && 4708 "Non-header phis should have been handled elsewhere"); 4709 4710 // In order to support recurrences we need to be able to vectorize Phi nodes. 4711 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4712 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4713 // this value when we vectorize all of the instructions that use the PHI. 4714 4715 assert(!Legal->isReductionVariable(P) && 4716 "reductions should be handled elsewhere"); 4717 4718 setDebugLocFromInst(P); 4719 4720 // This PHINode must be an induction variable. 4721 // Make sure that we know about it. 4722 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4723 4724 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4725 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4726 4727 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4728 // which can be found from the original scalar operations. 4729 switch (II.getKind()) { 4730 case InductionDescriptor::IK_NoInduction: 4731 llvm_unreachable("Unknown induction"); 4732 case InductionDescriptor::IK_IntInduction: 4733 case InductionDescriptor::IK_FpInduction: 4734 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4735 case InductionDescriptor::IK_PtrInduction: { 4736 // Handle the pointer induction variable case. 4737 assert(P->getType()->isPointerTy() && "Unexpected type."); 4738 4739 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4740 // This is the normalized GEP that starts counting at zero. 4741 Value *PtrInd = 4742 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4743 // Determine the number of scalars we need to generate for each unroll 4744 // iteration. If the instruction is uniform, we only need to generate the 4745 // first lane. Otherwise, we generate all VF values. 4746 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4747 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4748 4749 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4750 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4751 if (NeedsVectorIndex) { 4752 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4753 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4754 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4755 } 4756 4757 for (unsigned Part = 0; Part < UF; ++Part) { 4758 Value *PartStart = createStepForVF( 4759 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4760 4761 if (NeedsVectorIndex) { 4762 // Here we cache the whole vector, which means we can support the 4763 // extraction of any lane. However, in some cases the extractelement 4764 // instruction that is generated for scalar uses of this vector (e.g. 4765 // a load instruction) is not folded away. Therefore we still 4766 // calculate values for the first n lanes to avoid redundant moves 4767 // (when extracting the 0th element) and to produce scalar code (i.e. 4768 // additional add/gep instructions instead of expensive extractelement 4769 // instructions) when extracting higher-order elements. 4770 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4771 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4772 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4773 Value *SclrGep = 4774 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4775 SclrGep->setName("next.gep"); 4776 State.set(PhiR, SclrGep, Part); 4777 } 4778 4779 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4780 Value *Idx = Builder.CreateAdd( 4781 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4782 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4783 Value *SclrGep = 4784 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4785 SclrGep->setName("next.gep"); 4786 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4787 } 4788 } 4789 return; 4790 } 4791 assert(isa<SCEVConstant>(II.getStep()) && 4792 "Induction step not a SCEV constant!"); 4793 Type *PhiType = II.getStep()->getType(); 4794 4795 // Build a pointer phi 4796 Value *ScalarStartValue = II.getStartValue(); 4797 Type *ScStValueType = ScalarStartValue->getType(); 4798 PHINode *NewPointerPhi = 4799 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4800 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4801 4802 // A pointer induction, performed by using a gep 4803 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4804 Instruction *InductionLoc = LoopLatch->getTerminator(); 4805 const SCEV *ScalarStep = II.getStep(); 4806 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4807 Value *ScalarStepValue = 4808 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4809 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4810 Value *NumUnrolledElems = 4811 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4812 Value *InductionGEP = GetElementPtrInst::Create( 4813 II.getElementType(), NewPointerPhi, 4814 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4815 InductionLoc); 4816 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4817 4818 // Create UF many actual address geps that use the pointer 4819 // phi as base and a vectorized version of the step value 4820 // (<step*0, ..., step*N>) as offset. 4821 for (unsigned Part = 0; Part < State.UF; ++Part) { 4822 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4823 Value *StartOffsetScalar = 4824 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4825 Value *StartOffset = 4826 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4827 // Create a vector of consecutive numbers from zero to VF. 4828 StartOffset = 4829 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4830 4831 Value *GEP = Builder.CreateGEP( 4832 II.getElementType(), NewPointerPhi, 4833 Builder.CreateMul( 4834 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4835 "vector.gep")); 4836 State.set(PhiR, GEP, Part); 4837 } 4838 } 4839 } 4840 } 4841 4842 /// A helper function for checking whether an integer division-related 4843 /// instruction may divide by zero (in which case it must be predicated if 4844 /// executed conditionally in the scalar code). 4845 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4846 /// Non-zero divisors that are non compile-time constants will not be 4847 /// converted into multiplication, so we will still end up scalarizing 4848 /// the division, but can do so w/o predication. 4849 static bool mayDivideByZero(Instruction &I) { 4850 assert((I.getOpcode() == Instruction::UDiv || 4851 I.getOpcode() == Instruction::SDiv || 4852 I.getOpcode() == Instruction::URem || 4853 I.getOpcode() == Instruction::SRem) && 4854 "Unexpected instruction"); 4855 Value *Divisor = I.getOperand(1); 4856 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4857 return !CInt || CInt->isZero(); 4858 } 4859 4860 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4861 VPUser &User, 4862 VPTransformState &State) { 4863 switch (I.getOpcode()) { 4864 case Instruction::Call: 4865 case Instruction::Br: 4866 case Instruction::PHI: 4867 case Instruction::GetElementPtr: 4868 case Instruction::Select: 4869 llvm_unreachable("This instruction is handled by a different recipe."); 4870 case Instruction::UDiv: 4871 case Instruction::SDiv: 4872 case Instruction::SRem: 4873 case Instruction::URem: 4874 case Instruction::Add: 4875 case Instruction::FAdd: 4876 case Instruction::Sub: 4877 case Instruction::FSub: 4878 case Instruction::FNeg: 4879 case Instruction::Mul: 4880 case Instruction::FMul: 4881 case Instruction::FDiv: 4882 case Instruction::FRem: 4883 case Instruction::Shl: 4884 case Instruction::LShr: 4885 case Instruction::AShr: 4886 case Instruction::And: 4887 case Instruction::Or: 4888 case Instruction::Xor: { 4889 // Just widen unops and binops. 4890 setDebugLocFromInst(&I); 4891 4892 for (unsigned Part = 0; Part < UF; ++Part) { 4893 SmallVector<Value *, 2> Ops; 4894 for (VPValue *VPOp : User.operands()) 4895 Ops.push_back(State.get(VPOp, Part)); 4896 4897 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4898 4899 if (auto *VecOp = dyn_cast<Instruction>(V)) 4900 VecOp->copyIRFlags(&I); 4901 4902 // Use this vector value for all users of the original instruction. 4903 State.set(Def, V, Part); 4904 addMetadata(V, &I); 4905 } 4906 4907 break; 4908 } 4909 case Instruction::ICmp: 4910 case Instruction::FCmp: { 4911 // Widen compares. Generate vector compares. 4912 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4913 auto *Cmp = cast<CmpInst>(&I); 4914 setDebugLocFromInst(Cmp); 4915 for (unsigned Part = 0; Part < UF; ++Part) { 4916 Value *A = State.get(User.getOperand(0), Part); 4917 Value *B = State.get(User.getOperand(1), Part); 4918 Value *C = nullptr; 4919 if (FCmp) { 4920 // Propagate fast math flags. 4921 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4922 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4923 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4924 } else { 4925 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4926 } 4927 State.set(Def, C, Part); 4928 addMetadata(C, &I); 4929 } 4930 4931 break; 4932 } 4933 4934 case Instruction::ZExt: 4935 case Instruction::SExt: 4936 case Instruction::FPToUI: 4937 case Instruction::FPToSI: 4938 case Instruction::FPExt: 4939 case Instruction::PtrToInt: 4940 case Instruction::IntToPtr: 4941 case Instruction::SIToFP: 4942 case Instruction::UIToFP: 4943 case Instruction::Trunc: 4944 case Instruction::FPTrunc: 4945 case Instruction::BitCast: { 4946 auto *CI = cast<CastInst>(&I); 4947 setDebugLocFromInst(CI); 4948 4949 /// Vectorize casts. 4950 Type *DestTy = 4951 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4952 4953 for (unsigned Part = 0; Part < UF; ++Part) { 4954 Value *A = State.get(User.getOperand(0), Part); 4955 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4956 State.set(Def, Cast, Part); 4957 addMetadata(Cast, &I); 4958 } 4959 break; 4960 } 4961 default: 4962 // This instruction is not vectorized by simple widening. 4963 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4964 llvm_unreachable("Unhandled instruction!"); 4965 } // end of switch. 4966 } 4967 4968 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4969 VPUser &ArgOperands, 4970 VPTransformState &State) { 4971 assert(!isa<DbgInfoIntrinsic>(I) && 4972 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4973 setDebugLocFromInst(&I); 4974 4975 Module *M = I.getParent()->getParent()->getParent(); 4976 auto *CI = cast<CallInst>(&I); 4977 4978 SmallVector<Type *, 4> Tys; 4979 for (Value *ArgOperand : CI->args()) 4980 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4981 4982 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4983 4984 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4985 // version of the instruction. 4986 // Is it beneficial to perform intrinsic call compared to lib call? 4987 bool NeedToScalarize = false; 4988 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4989 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4990 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4991 assert((UseVectorIntrinsic || !NeedToScalarize) && 4992 "Instruction should be scalarized elsewhere."); 4993 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4994 "Either the intrinsic cost or vector call cost must be valid"); 4995 4996 for (unsigned Part = 0; Part < UF; ++Part) { 4997 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4998 SmallVector<Value *, 4> Args; 4999 for (auto &I : enumerate(ArgOperands.operands())) { 5000 // Some intrinsics have a scalar argument - don't replace it with a 5001 // vector. 5002 Value *Arg; 5003 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5004 Arg = State.get(I.value(), Part); 5005 else { 5006 Arg = State.get(I.value(), VPIteration(0, 0)); 5007 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5008 TysForDecl.push_back(Arg->getType()); 5009 } 5010 Args.push_back(Arg); 5011 } 5012 5013 Function *VectorF; 5014 if (UseVectorIntrinsic) { 5015 // Use vector version of the intrinsic. 5016 if (VF.isVector()) 5017 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5018 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5019 assert(VectorF && "Can't retrieve vector intrinsic."); 5020 } else { 5021 // Use vector version of the function call. 5022 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5023 #ifndef NDEBUG 5024 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5025 "Can't create vector function."); 5026 #endif 5027 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5028 } 5029 SmallVector<OperandBundleDef, 1> OpBundles; 5030 CI->getOperandBundlesAsDefs(OpBundles); 5031 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5032 5033 if (isa<FPMathOperator>(V)) 5034 V->copyFastMathFlags(CI); 5035 5036 State.set(Def, V, Part); 5037 addMetadata(V, &I); 5038 } 5039 } 5040 5041 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5042 VPUser &Operands, 5043 bool InvariantCond, 5044 VPTransformState &State) { 5045 setDebugLocFromInst(&I); 5046 5047 // The condition can be loop invariant but still defined inside the 5048 // loop. This means that we can't just use the original 'cond' value. 5049 // We have to take the 'vectorized' value and pick the first lane. 5050 // Instcombine will make this a no-op. 5051 auto *InvarCond = InvariantCond 5052 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5053 : nullptr; 5054 5055 for (unsigned Part = 0; Part < UF; ++Part) { 5056 Value *Cond = 5057 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5058 Value *Op0 = State.get(Operands.getOperand(1), Part); 5059 Value *Op1 = State.get(Operands.getOperand(2), Part); 5060 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5061 State.set(VPDef, Sel, Part); 5062 addMetadata(Sel, &I); 5063 } 5064 } 5065 5066 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5067 // We should not collect Scalars more than once per VF. Right now, this 5068 // function is called from collectUniformsAndScalars(), which already does 5069 // this check. Collecting Scalars for VF=1 does not make any sense. 5070 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5071 "This function should not be visited twice for the same VF"); 5072 5073 SmallSetVector<Instruction *, 8> Worklist; 5074 5075 // These sets are used to seed the analysis with pointers used by memory 5076 // accesses that will remain scalar. 5077 SmallSetVector<Instruction *, 8> ScalarPtrs; 5078 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5079 auto *Latch = TheLoop->getLoopLatch(); 5080 5081 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5082 // The pointer operands of loads and stores will be scalar as long as the 5083 // memory access is not a gather or scatter operation. The value operand of a 5084 // store will remain scalar if the store is scalarized. 5085 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5086 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5087 assert(WideningDecision != CM_Unknown && 5088 "Widening decision should be ready at this moment"); 5089 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5090 if (Ptr == Store->getValueOperand()) 5091 return WideningDecision == CM_Scalarize; 5092 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5093 "Ptr is neither a value or pointer operand"); 5094 return WideningDecision != CM_GatherScatter; 5095 }; 5096 5097 // A helper that returns true if the given value is a bitcast or 5098 // getelementptr instruction contained in the loop. 5099 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5100 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5101 isa<GetElementPtrInst>(V)) && 5102 !TheLoop->isLoopInvariant(V); 5103 }; 5104 5105 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5106 if (!isa<PHINode>(Ptr) || 5107 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5108 return false; 5109 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5110 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5111 return false; 5112 return isScalarUse(MemAccess, Ptr); 5113 }; 5114 5115 // A helper that evaluates a memory access's use of a pointer. If the 5116 // pointer is actually the pointer induction of a loop, it is being 5117 // inserted into Worklist. If the use will be a scalar use, and the 5118 // pointer is only used by memory accesses, we place the pointer in 5119 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5120 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5121 if (isScalarPtrInduction(MemAccess, Ptr)) { 5122 Worklist.insert(cast<Instruction>(Ptr)); 5123 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5124 << "\n"); 5125 5126 Instruction *Update = cast<Instruction>( 5127 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5128 5129 // If there is more than one user of Update (Ptr), we shouldn't assume it 5130 // will be scalar after vectorisation as other users of the instruction 5131 // may require widening. Otherwise, add it to ScalarPtrs. 5132 if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) { 5133 ScalarPtrs.insert(Update); 5134 return; 5135 } 5136 } 5137 // We only care about bitcast and getelementptr instructions contained in 5138 // the loop. 5139 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5140 return; 5141 5142 // If the pointer has already been identified as scalar (e.g., if it was 5143 // also identified as uniform), there's nothing to do. 5144 auto *I = cast<Instruction>(Ptr); 5145 if (Worklist.count(I)) 5146 return; 5147 5148 // If the use of the pointer will be a scalar use, and all users of the 5149 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5150 // place the pointer in PossibleNonScalarPtrs. 5151 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5152 return isa<LoadInst>(U) || isa<StoreInst>(U); 5153 })) 5154 ScalarPtrs.insert(I); 5155 else 5156 PossibleNonScalarPtrs.insert(I); 5157 }; 5158 5159 // We seed the scalars analysis with three classes of instructions: (1) 5160 // instructions marked uniform-after-vectorization and (2) bitcast, 5161 // getelementptr and (pointer) phi instructions used by memory accesses 5162 // requiring a scalar use. 5163 // 5164 // (1) Add to the worklist all instructions that have been identified as 5165 // uniform-after-vectorization. 5166 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5167 5168 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5169 // memory accesses requiring a scalar use. The pointer operands of loads and 5170 // stores will be scalar as long as the memory accesses is not a gather or 5171 // scatter operation. The value operand of a store will remain scalar if the 5172 // store is scalarized. 5173 for (auto *BB : TheLoop->blocks()) 5174 for (auto &I : *BB) { 5175 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5176 evaluatePtrUse(Load, Load->getPointerOperand()); 5177 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5178 evaluatePtrUse(Store, Store->getPointerOperand()); 5179 evaluatePtrUse(Store, Store->getValueOperand()); 5180 } 5181 } 5182 for (auto *I : ScalarPtrs) 5183 if (!PossibleNonScalarPtrs.count(I)) { 5184 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5185 Worklist.insert(I); 5186 } 5187 5188 // Insert the forced scalars. 5189 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5190 // induction variable when the PHI user is scalarized. 5191 auto ForcedScalar = ForcedScalars.find(VF); 5192 if (ForcedScalar != ForcedScalars.end()) 5193 for (auto *I : ForcedScalar->second) 5194 Worklist.insert(I); 5195 5196 // Expand the worklist by looking through any bitcasts and getelementptr 5197 // instructions we've already identified as scalar. This is similar to the 5198 // expansion step in collectLoopUniforms(); however, here we're only 5199 // expanding to include additional bitcasts and getelementptr instructions. 5200 unsigned Idx = 0; 5201 while (Idx != Worklist.size()) { 5202 Instruction *Dst = Worklist[Idx++]; 5203 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5204 continue; 5205 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5206 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5207 auto *J = cast<Instruction>(U); 5208 return !TheLoop->contains(J) || Worklist.count(J) || 5209 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5210 isScalarUse(J, Src)); 5211 })) { 5212 Worklist.insert(Src); 5213 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5214 } 5215 } 5216 5217 // An induction variable will remain scalar if all users of the induction 5218 // variable and induction variable update remain scalar. 5219 for (auto &Induction : Legal->getInductionVars()) { 5220 auto *Ind = Induction.first; 5221 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5222 5223 // If tail-folding is applied, the primary induction variable will be used 5224 // to feed a vector compare. 5225 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5226 continue; 5227 5228 // Determine if all users of the induction variable are scalar after 5229 // vectorization. 5230 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5231 auto *I = cast<Instruction>(U); 5232 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5233 }); 5234 if (!ScalarInd) 5235 continue; 5236 5237 // Determine if all users of the induction variable update instruction are 5238 // scalar after vectorization. 5239 auto ScalarIndUpdate = 5240 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5241 auto *I = cast<Instruction>(U); 5242 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5243 }); 5244 if (!ScalarIndUpdate) 5245 continue; 5246 5247 // The induction variable and its update instruction will remain scalar. 5248 Worklist.insert(Ind); 5249 Worklist.insert(IndUpdate); 5250 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5251 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5252 << "\n"); 5253 } 5254 5255 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5256 } 5257 5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5259 if (!blockNeedsPredication(I->getParent())) 5260 return false; 5261 switch(I->getOpcode()) { 5262 default: 5263 break; 5264 case Instruction::Load: 5265 case Instruction::Store: { 5266 if (!Legal->isMaskRequired(I)) 5267 return false; 5268 auto *Ptr = getLoadStorePointerOperand(I); 5269 auto *Ty = getLoadStoreType(I); 5270 const Align Alignment = getLoadStoreAlignment(I); 5271 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5272 TTI.isLegalMaskedGather(Ty, Alignment)) 5273 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5274 TTI.isLegalMaskedScatter(Ty, Alignment)); 5275 } 5276 case Instruction::UDiv: 5277 case Instruction::SDiv: 5278 case Instruction::SRem: 5279 case Instruction::URem: 5280 return mayDivideByZero(*I); 5281 } 5282 return false; 5283 } 5284 5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5286 Instruction *I, ElementCount VF) { 5287 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5288 assert(getWideningDecision(I, VF) == CM_Unknown && 5289 "Decision should not be set yet."); 5290 auto *Group = getInterleavedAccessGroup(I); 5291 assert(Group && "Must have a group."); 5292 5293 // If the instruction's allocated size doesn't equal it's type size, it 5294 // requires padding and will be scalarized. 5295 auto &DL = I->getModule()->getDataLayout(); 5296 auto *ScalarTy = getLoadStoreType(I); 5297 if (hasIrregularType(ScalarTy, DL)) 5298 return false; 5299 5300 // Check if masking is required. 5301 // A Group may need masking for one of two reasons: it resides in a block that 5302 // needs predication, or it was decided to use masking to deal with gaps 5303 // (either a gap at the end of a load-access that may result in a speculative 5304 // load, or any gaps in a store-access). 5305 bool PredicatedAccessRequiresMasking = 5306 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5307 bool LoadAccessWithGapsRequiresEpilogMasking = 5308 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5309 !isScalarEpilogueAllowed(); 5310 bool StoreAccessWithGapsRequiresMasking = 5311 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5312 if (!PredicatedAccessRequiresMasking && 5313 !LoadAccessWithGapsRequiresEpilogMasking && 5314 !StoreAccessWithGapsRequiresMasking) 5315 return true; 5316 5317 // If masked interleaving is required, we expect that the user/target had 5318 // enabled it, because otherwise it either wouldn't have been created or 5319 // it should have been invalidated by the CostModel. 5320 assert(useMaskedInterleavedAccesses(TTI) && 5321 "Masked interleave-groups for predicated accesses are not enabled."); 5322 5323 if (Group->isReverse()) 5324 return false; 5325 5326 auto *Ty = getLoadStoreType(I); 5327 const Align Alignment = getLoadStoreAlignment(I); 5328 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5329 : TTI.isLegalMaskedStore(Ty, Alignment); 5330 } 5331 5332 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5333 Instruction *I, ElementCount VF) { 5334 // Get and ensure we have a valid memory instruction. 5335 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5336 5337 auto *Ptr = getLoadStorePointerOperand(I); 5338 auto *ScalarTy = getLoadStoreType(I); 5339 5340 // In order to be widened, the pointer should be consecutive, first of all. 5341 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5342 return false; 5343 5344 // If the instruction is a store located in a predicated block, it will be 5345 // scalarized. 5346 if (isScalarWithPredication(I)) 5347 return false; 5348 5349 // If the instruction's allocated size doesn't equal it's type size, it 5350 // requires padding and will be scalarized. 5351 auto &DL = I->getModule()->getDataLayout(); 5352 if (hasIrregularType(ScalarTy, DL)) 5353 return false; 5354 5355 return true; 5356 } 5357 5358 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5359 // We should not collect Uniforms more than once per VF. Right now, 5360 // this function is called from collectUniformsAndScalars(), which 5361 // already does this check. Collecting Uniforms for VF=1 does not make any 5362 // sense. 5363 5364 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5365 "This function should not be visited twice for the same VF"); 5366 5367 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5368 // not analyze again. Uniforms.count(VF) will return 1. 5369 Uniforms[VF].clear(); 5370 5371 // We now know that the loop is vectorizable! 5372 // Collect instructions inside the loop that will remain uniform after 5373 // vectorization. 5374 5375 // Global values, params and instructions outside of current loop are out of 5376 // scope. 5377 auto isOutOfScope = [&](Value *V) -> bool { 5378 Instruction *I = dyn_cast<Instruction>(V); 5379 return (!I || !TheLoop->contains(I)); 5380 }; 5381 5382 // Worklist containing uniform instructions demanding lane 0. 5383 SetVector<Instruction *> Worklist; 5384 BasicBlock *Latch = TheLoop->getLoopLatch(); 5385 5386 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5387 // that are scalar with predication must not be considered uniform after 5388 // vectorization, because that would create an erroneous replicating region 5389 // where only a single instance out of VF should be formed. 5390 // TODO: optimize such seldom cases if found important, see PR40816. 5391 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5392 if (isOutOfScope(I)) { 5393 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5394 << *I << "\n"); 5395 return; 5396 } 5397 if (isScalarWithPredication(I)) { 5398 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5399 << *I << "\n"); 5400 return; 5401 } 5402 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5403 Worklist.insert(I); 5404 }; 5405 5406 // Start with the conditional branch. If the branch condition is an 5407 // instruction contained in the loop that is only used by the branch, it is 5408 // uniform. 5409 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5410 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5411 addToWorklistIfAllowed(Cmp); 5412 5413 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5414 InstWidening WideningDecision = getWideningDecision(I, VF); 5415 assert(WideningDecision != CM_Unknown && 5416 "Widening decision should be ready at this moment"); 5417 5418 // A uniform memory op is itself uniform. We exclude uniform stores 5419 // here as they demand the last lane, not the first one. 5420 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5421 assert(WideningDecision == CM_Scalarize); 5422 return true; 5423 } 5424 5425 return (WideningDecision == CM_Widen || 5426 WideningDecision == CM_Widen_Reverse || 5427 WideningDecision == CM_Interleave); 5428 }; 5429 5430 5431 // Returns true if Ptr is the pointer operand of a memory access instruction 5432 // I, and I is known to not require scalarization. 5433 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5434 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5435 }; 5436 5437 // Holds a list of values which are known to have at least one uniform use. 5438 // Note that there may be other uses which aren't uniform. A "uniform use" 5439 // here is something which only demands lane 0 of the unrolled iterations; 5440 // it does not imply that all lanes produce the same value (e.g. this is not 5441 // the usual meaning of uniform) 5442 SetVector<Value *> HasUniformUse; 5443 5444 // Scan the loop for instructions which are either a) known to have only 5445 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5446 for (auto *BB : TheLoop->blocks()) 5447 for (auto &I : *BB) { 5448 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5449 switch (II->getIntrinsicID()) { 5450 case Intrinsic::sideeffect: 5451 case Intrinsic::experimental_noalias_scope_decl: 5452 case Intrinsic::assume: 5453 case Intrinsic::lifetime_start: 5454 case Intrinsic::lifetime_end: 5455 if (TheLoop->hasLoopInvariantOperands(&I)) 5456 addToWorklistIfAllowed(&I); 5457 break; 5458 default: 5459 break; 5460 } 5461 } 5462 5463 // ExtractValue instructions must be uniform, because the operands are 5464 // known to be loop-invariant. 5465 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5466 assert(isOutOfScope(EVI->getAggregateOperand()) && 5467 "Expected aggregate value to be loop invariant"); 5468 addToWorklistIfAllowed(EVI); 5469 continue; 5470 } 5471 5472 // If there's no pointer operand, there's nothing to do. 5473 auto *Ptr = getLoadStorePointerOperand(&I); 5474 if (!Ptr) 5475 continue; 5476 5477 // A uniform memory op is itself uniform. We exclude uniform stores 5478 // here as they demand the last lane, not the first one. 5479 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5480 addToWorklistIfAllowed(&I); 5481 5482 if (isUniformDecision(&I, VF)) { 5483 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5484 HasUniformUse.insert(Ptr); 5485 } 5486 } 5487 5488 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5489 // demanding) users. Since loops are assumed to be in LCSSA form, this 5490 // disallows uses outside the loop as well. 5491 for (auto *V : HasUniformUse) { 5492 if (isOutOfScope(V)) 5493 continue; 5494 auto *I = cast<Instruction>(V); 5495 auto UsersAreMemAccesses = 5496 llvm::all_of(I->users(), [&](User *U) -> bool { 5497 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5498 }); 5499 if (UsersAreMemAccesses) 5500 addToWorklistIfAllowed(I); 5501 } 5502 5503 // Expand Worklist in topological order: whenever a new instruction 5504 // is added , its users should be already inside Worklist. It ensures 5505 // a uniform instruction will only be used by uniform instructions. 5506 unsigned idx = 0; 5507 while (idx != Worklist.size()) { 5508 Instruction *I = Worklist[idx++]; 5509 5510 for (auto OV : I->operand_values()) { 5511 // isOutOfScope operands cannot be uniform instructions. 5512 if (isOutOfScope(OV)) 5513 continue; 5514 // First order recurrence Phi's should typically be considered 5515 // non-uniform. 5516 auto *OP = dyn_cast<PHINode>(OV); 5517 if (OP && Legal->isFirstOrderRecurrence(OP)) 5518 continue; 5519 // If all the users of the operand are uniform, then add the 5520 // operand into the uniform worklist. 5521 auto *OI = cast<Instruction>(OV); 5522 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5523 auto *J = cast<Instruction>(U); 5524 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5525 })) 5526 addToWorklistIfAllowed(OI); 5527 } 5528 } 5529 5530 // For an instruction to be added into Worklist above, all its users inside 5531 // the loop should also be in Worklist. However, this condition cannot be 5532 // true for phi nodes that form a cyclic dependence. We must process phi 5533 // nodes separately. An induction variable will remain uniform if all users 5534 // of the induction variable and induction variable update remain uniform. 5535 // The code below handles both pointer and non-pointer induction variables. 5536 for (auto &Induction : Legal->getInductionVars()) { 5537 auto *Ind = Induction.first; 5538 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5539 5540 // Determine if all users of the induction variable are uniform after 5541 // vectorization. 5542 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5543 auto *I = cast<Instruction>(U); 5544 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5545 isVectorizedMemAccessUse(I, Ind); 5546 }); 5547 if (!UniformInd) 5548 continue; 5549 5550 // Determine if all users of the induction variable update instruction are 5551 // uniform after vectorization. 5552 auto UniformIndUpdate = 5553 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5554 auto *I = cast<Instruction>(U); 5555 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5556 isVectorizedMemAccessUse(I, IndUpdate); 5557 }); 5558 if (!UniformIndUpdate) 5559 continue; 5560 5561 // The induction variable and its update instruction will remain uniform. 5562 addToWorklistIfAllowed(Ind); 5563 addToWorklistIfAllowed(IndUpdate); 5564 } 5565 5566 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5567 } 5568 5569 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5570 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5571 5572 if (Legal->getRuntimePointerChecking()->Need) { 5573 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5574 "runtime pointer checks needed. Enable vectorization of this " 5575 "loop with '#pragma clang loop vectorize(enable)' when " 5576 "compiling with -Os/-Oz", 5577 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5578 return true; 5579 } 5580 5581 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5582 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5583 "runtime SCEV checks needed. Enable vectorization of this " 5584 "loop with '#pragma clang loop vectorize(enable)' when " 5585 "compiling with -Os/-Oz", 5586 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5587 return true; 5588 } 5589 5590 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5591 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5592 reportVectorizationFailure("Runtime stride check for small trip count", 5593 "runtime stride == 1 checks needed. Enable vectorization of " 5594 "this loop without such check by compiling with -Os/-Oz", 5595 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5596 return true; 5597 } 5598 5599 return false; 5600 } 5601 5602 ElementCount 5603 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5604 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5605 return ElementCount::getScalable(0); 5606 5607 if (Hints->isScalableVectorizationDisabled()) { 5608 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5609 "ScalableVectorizationDisabled", ORE, TheLoop); 5610 return ElementCount::getScalable(0); 5611 } 5612 5613 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5614 5615 auto MaxScalableVF = ElementCount::getScalable( 5616 std::numeric_limits<ElementCount::ScalarTy>::max()); 5617 5618 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5619 // FIXME: While for scalable vectors this is currently sufficient, this should 5620 // be replaced by a more detailed mechanism that filters out specific VFs, 5621 // instead of invalidating vectorization for a whole set of VFs based on the 5622 // MaxVF. 5623 5624 // Disable scalable vectorization if the loop contains unsupported reductions. 5625 if (!canVectorizeReductions(MaxScalableVF)) { 5626 reportVectorizationInfo( 5627 "Scalable vectorization not supported for the reduction " 5628 "operations found in this loop.", 5629 "ScalableVFUnfeasible", ORE, TheLoop); 5630 return ElementCount::getScalable(0); 5631 } 5632 5633 // Disable scalable vectorization if the loop contains any instructions 5634 // with element types not supported for scalable vectors. 5635 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5636 return !Ty->isVoidTy() && 5637 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5638 })) { 5639 reportVectorizationInfo("Scalable vectorization is not supported " 5640 "for all element types found in this loop.", 5641 "ScalableVFUnfeasible", ORE, TheLoop); 5642 return ElementCount::getScalable(0); 5643 } 5644 5645 if (Legal->isSafeForAnyVectorWidth()) 5646 return MaxScalableVF; 5647 5648 // Limit MaxScalableVF by the maximum safe dependence distance. 5649 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5650 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5651 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5652 .getVScaleRangeArgs() 5653 .second; 5654 if (VScaleMax > 0) 5655 MaxVScale = VScaleMax; 5656 } 5657 MaxScalableVF = ElementCount::getScalable( 5658 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5659 if (!MaxScalableVF) 5660 reportVectorizationInfo( 5661 "Max legal vector width too small, scalable vectorization " 5662 "unfeasible.", 5663 "ScalableVFUnfeasible", ORE, TheLoop); 5664 5665 return MaxScalableVF; 5666 } 5667 5668 FixedScalableVFPair 5669 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5670 ElementCount UserVF) { 5671 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5672 unsigned SmallestType, WidestType; 5673 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5674 5675 // Get the maximum safe dependence distance in bits computed by LAA. 5676 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5677 // the memory accesses that is most restrictive (involved in the smallest 5678 // dependence distance). 5679 unsigned MaxSafeElements = 5680 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5681 5682 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5683 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5684 5685 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5686 << ".\n"); 5687 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5688 << ".\n"); 5689 5690 // First analyze the UserVF, fall back if the UserVF should be ignored. 5691 if (UserVF) { 5692 auto MaxSafeUserVF = 5693 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5694 5695 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5696 // If `VF=vscale x N` is safe, then so is `VF=N` 5697 if (UserVF.isScalable()) 5698 return FixedScalableVFPair( 5699 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5700 else 5701 return UserVF; 5702 } 5703 5704 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5705 5706 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5707 // is better to ignore the hint and let the compiler choose a suitable VF. 5708 if (!UserVF.isScalable()) { 5709 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5710 << " is unsafe, clamping to max safe VF=" 5711 << MaxSafeFixedVF << ".\n"); 5712 ORE->emit([&]() { 5713 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5714 TheLoop->getStartLoc(), 5715 TheLoop->getHeader()) 5716 << "User-specified vectorization factor " 5717 << ore::NV("UserVectorizationFactor", UserVF) 5718 << " is unsafe, clamping to maximum safe vectorization factor " 5719 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5720 }); 5721 return MaxSafeFixedVF; 5722 } 5723 5724 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5725 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5726 << " is ignored because scalable vectors are not " 5727 "available.\n"); 5728 ORE->emit([&]() { 5729 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5730 TheLoop->getStartLoc(), 5731 TheLoop->getHeader()) 5732 << "User-specified vectorization factor " 5733 << ore::NV("UserVectorizationFactor", UserVF) 5734 << " is ignored because the target does not support scalable " 5735 "vectors. The compiler will pick a more suitable value."; 5736 }); 5737 } else { 5738 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5739 << " is unsafe. Ignoring scalable UserVF.\n"); 5740 ORE->emit([&]() { 5741 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5742 TheLoop->getStartLoc(), 5743 TheLoop->getHeader()) 5744 << "User-specified vectorization factor " 5745 << ore::NV("UserVectorizationFactor", UserVF) 5746 << " is unsafe. Ignoring the hint to let the compiler pick a " 5747 "more suitable value."; 5748 }); 5749 } 5750 } 5751 5752 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5753 << " / " << WidestType << " bits.\n"); 5754 5755 FixedScalableVFPair Result(ElementCount::getFixed(1), 5756 ElementCount::getScalable(0)); 5757 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5758 WidestType, MaxSafeFixedVF)) 5759 Result.FixedVF = MaxVF; 5760 5761 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5762 WidestType, MaxSafeScalableVF)) 5763 if (MaxVF.isScalable()) { 5764 Result.ScalableVF = MaxVF; 5765 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5766 << "\n"); 5767 } 5768 5769 return Result; 5770 } 5771 5772 FixedScalableVFPair 5773 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5774 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5775 // TODO: It may by useful to do since it's still likely to be dynamically 5776 // uniform if the target can skip. 5777 reportVectorizationFailure( 5778 "Not inserting runtime ptr check for divergent target", 5779 "runtime pointer checks needed. Not enabled for divergent target", 5780 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5781 return FixedScalableVFPair::getNone(); 5782 } 5783 5784 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5785 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5786 if (TC == 1) { 5787 reportVectorizationFailure("Single iteration (non) loop", 5788 "loop trip count is one, irrelevant for vectorization", 5789 "SingleIterationLoop", ORE, TheLoop); 5790 return FixedScalableVFPair::getNone(); 5791 } 5792 5793 switch (ScalarEpilogueStatus) { 5794 case CM_ScalarEpilogueAllowed: 5795 return computeFeasibleMaxVF(TC, UserVF); 5796 case CM_ScalarEpilogueNotAllowedUsePredicate: 5797 LLVM_FALLTHROUGH; 5798 case CM_ScalarEpilogueNotNeededUsePredicate: 5799 LLVM_DEBUG( 5800 dbgs() << "LV: vector predicate hint/switch found.\n" 5801 << "LV: Not allowing scalar epilogue, creating predicated " 5802 << "vector loop.\n"); 5803 break; 5804 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5805 // fallthrough as a special case of OptForSize 5806 case CM_ScalarEpilogueNotAllowedOptSize: 5807 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5808 LLVM_DEBUG( 5809 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5810 else 5811 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5812 << "count.\n"); 5813 5814 // Bail if runtime checks are required, which are not good when optimising 5815 // for size. 5816 if (runtimeChecksRequired()) 5817 return FixedScalableVFPair::getNone(); 5818 5819 break; 5820 } 5821 5822 // The only loops we can vectorize without a scalar epilogue, are loops with 5823 // a bottom-test and a single exiting block. We'd have to handle the fact 5824 // that not every instruction executes on the last iteration. This will 5825 // require a lane mask which varies through the vector loop body. (TODO) 5826 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5827 // If there was a tail-folding hint/switch, but we can't fold the tail by 5828 // masking, fallback to a vectorization with a scalar epilogue. 5829 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5830 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5831 "scalar epilogue instead.\n"); 5832 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5833 return computeFeasibleMaxVF(TC, UserVF); 5834 } 5835 return FixedScalableVFPair::getNone(); 5836 } 5837 5838 // Now try the tail folding 5839 5840 // Invalidate interleave groups that require an epilogue if we can't mask 5841 // the interleave-group. 5842 if (!useMaskedInterleavedAccesses(TTI)) { 5843 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5844 "No decisions should have been taken at this point"); 5845 // Note: There is no need to invalidate any cost modeling decisions here, as 5846 // non where taken so far. 5847 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5848 } 5849 5850 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5851 // Avoid tail folding if the trip count is known to be a multiple of any VF 5852 // we chose. 5853 // FIXME: The condition below pessimises the case for fixed-width vectors, 5854 // when scalable VFs are also candidates for vectorization. 5855 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5856 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5857 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5858 "MaxFixedVF must be a power of 2"); 5859 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5860 : MaxFixedVF.getFixedValue(); 5861 ScalarEvolution *SE = PSE.getSE(); 5862 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5863 const SCEV *ExitCount = SE->getAddExpr( 5864 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5865 const SCEV *Rem = SE->getURemExpr( 5866 SE->applyLoopGuards(ExitCount, TheLoop), 5867 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5868 if (Rem->isZero()) { 5869 // Accept MaxFixedVF if we do not have a tail. 5870 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5871 return MaxFactors; 5872 } 5873 } 5874 5875 // For scalable vectors, don't use tail folding as this is currently not yet 5876 // supported. The code is likely to have ended up here if the tripcount is 5877 // low, in which case it makes sense not to use scalable vectors. 5878 if (MaxFactors.ScalableVF.isVector()) 5879 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5880 5881 // If we don't know the precise trip count, or if the trip count that we 5882 // found modulo the vectorization factor is not zero, try to fold the tail 5883 // by masking. 5884 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5885 if (Legal->prepareToFoldTailByMasking()) { 5886 FoldTailByMasking = true; 5887 return MaxFactors; 5888 } 5889 5890 // If there was a tail-folding hint/switch, but we can't fold the tail by 5891 // masking, fallback to a vectorization with a scalar epilogue. 5892 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5893 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5894 "scalar epilogue instead.\n"); 5895 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5896 return MaxFactors; 5897 } 5898 5899 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5900 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5901 return FixedScalableVFPair::getNone(); 5902 } 5903 5904 if (TC == 0) { 5905 reportVectorizationFailure( 5906 "Unable to calculate the loop count due to complex control flow", 5907 "unable to calculate the loop count due to complex control flow", 5908 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5909 return FixedScalableVFPair::getNone(); 5910 } 5911 5912 reportVectorizationFailure( 5913 "Cannot optimize for size and vectorize at the same time.", 5914 "cannot optimize for size and vectorize at the same time. " 5915 "Enable vectorization of this loop with '#pragma clang loop " 5916 "vectorize(enable)' when compiling with -Os/-Oz", 5917 "NoTailLoopWithOptForSize", ORE, TheLoop); 5918 return FixedScalableVFPair::getNone(); 5919 } 5920 5921 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5922 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5923 const ElementCount &MaxSafeVF) { 5924 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5925 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5926 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5927 : TargetTransformInfo::RGK_FixedWidthVector); 5928 5929 // Convenience function to return the minimum of two ElementCounts. 5930 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5931 assert((LHS.isScalable() == RHS.isScalable()) && 5932 "Scalable flags must match"); 5933 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5934 }; 5935 5936 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5937 // Note that both WidestRegister and WidestType may not be a powers of 2. 5938 auto MaxVectorElementCount = ElementCount::get( 5939 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5940 ComputeScalableMaxVF); 5941 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5942 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5943 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5944 5945 if (!MaxVectorElementCount) { 5946 LLVM_DEBUG(dbgs() << "LV: The target has no " 5947 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5948 << " vector registers.\n"); 5949 return ElementCount::getFixed(1); 5950 } 5951 5952 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5953 if (ConstTripCount && 5954 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5955 isPowerOf2_32(ConstTripCount)) { 5956 // We need to clamp the VF to be the ConstTripCount. There is no point in 5957 // choosing a higher viable VF as done in the loop below. If 5958 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5959 // the TC is less than or equal to the known number of lanes. 5960 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5961 << ConstTripCount << "\n"); 5962 return TripCountEC; 5963 } 5964 5965 ElementCount MaxVF = MaxVectorElementCount; 5966 if (TTI.shouldMaximizeVectorBandwidth() || 5967 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5968 auto MaxVectorElementCountMaxBW = ElementCount::get( 5969 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5970 ComputeScalableMaxVF); 5971 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5972 5973 // Collect all viable vectorization factors larger than the default MaxVF 5974 // (i.e. MaxVectorElementCount). 5975 SmallVector<ElementCount, 8> VFs; 5976 for (ElementCount VS = MaxVectorElementCount * 2; 5977 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5978 VFs.push_back(VS); 5979 5980 // For each VF calculate its register usage. 5981 auto RUs = calculateRegisterUsage(VFs); 5982 5983 // Select the largest VF which doesn't require more registers than existing 5984 // ones. 5985 for (int i = RUs.size() - 1; i >= 0; --i) { 5986 bool Selected = true; 5987 for (auto &pair : RUs[i].MaxLocalUsers) { 5988 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5989 if (pair.second > TargetNumRegisters) 5990 Selected = false; 5991 } 5992 if (Selected) { 5993 MaxVF = VFs[i]; 5994 break; 5995 } 5996 } 5997 if (ElementCount MinVF = 5998 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5999 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6000 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6001 << ") with target's minimum: " << MinVF << '\n'); 6002 MaxVF = MinVF; 6003 } 6004 } 6005 } 6006 return MaxVF; 6007 } 6008 6009 bool LoopVectorizationCostModel::isMoreProfitable( 6010 const VectorizationFactor &A, const VectorizationFactor &B) const { 6011 InstructionCost CostA = A.Cost; 6012 InstructionCost CostB = B.Cost; 6013 6014 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6015 6016 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6017 MaxTripCount) { 6018 // If we are folding the tail and the trip count is a known (possibly small) 6019 // constant, the trip count will be rounded up to an integer number of 6020 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6021 // which we compare directly. When not folding the tail, the total cost will 6022 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6023 // approximated with the per-lane cost below instead of using the tripcount 6024 // as here. 6025 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6026 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6027 return RTCostA < RTCostB; 6028 } 6029 6030 // When set to preferred, for now assume vscale may be larger than 1, so 6031 // that scalable vectorization is slightly favorable over fixed-width 6032 // vectorization. 6033 if (Hints->isScalableVectorizationPreferred()) 6034 if (A.Width.isScalable() && !B.Width.isScalable()) 6035 return (CostA * B.Width.getKnownMinValue()) <= 6036 (CostB * A.Width.getKnownMinValue()); 6037 6038 // To avoid the need for FP division: 6039 // (CostA / A.Width) < (CostB / B.Width) 6040 // <=> (CostA * B.Width) < (CostB * A.Width) 6041 return (CostA * B.Width.getKnownMinValue()) < 6042 (CostB * A.Width.getKnownMinValue()); 6043 } 6044 6045 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6046 const ElementCountSet &VFCandidates) { 6047 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6048 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6049 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6050 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6051 "Expected Scalar VF to be a candidate"); 6052 6053 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6054 VectorizationFactor ChosenFactor = ScalarCost; 6055 6056 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6057 if (ForceVectorization && VFCandidates.size() > 1) { 6058 // Ignore scalar width, because the user explicitly wants vectorization. 6059 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6060 // evaluation. 6061 ChosenFactor.Cost = InstructionCost::getMax(); 6062 } 6063 6064 SmallVector<InstructionVFPair> InvalidCosts; 6065 for (const auto &i : VFCandidates) { 6066 // The cost for scalar VF=1 is already calculated, so ignore it. 6067 if (i.isScalar()) 6068 continue; 6069 6070 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6071 VectorizationFactor Candidate(i, C.first); 6072 LLVM_DEBUG( 6073 dbgs() << "LV: Vector loop of width " << i << " costs: " 6074 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6075 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6076 << ".\n"); 6077 6078 if (!C.second && !ForceVectorization) { 6079 LLVM_DEBUG( 6080 dbgs() << "LV: Not considering vector loop of width " << i 6081 << " because it will not generate any vector instructions.\n"); 6082 continue; 6083 } 6084 6085 // If profitable add it to ProfitableVF list. 6086 if (isMoreProfitable(Candidate, ScalarCost)) 6087 ProfitableVFs.push_back(Candidate); 6088 6089 if (isMoreProfitable(Candidate, ChosenFactor)) 6090 ChosenFactor = Candidate; 6091 } 6092 6093 // Emit a report of VFs with invalid costs in the loop. 6094 if (!InvalidCosts.empty()) { 6095 // Group the remarks per instruction, keeping the instruction order from 6096 // InvalidCosts. 6097 std::map<Instruction *, unsigned> Numbering; 6098 unsigned I = 0; 6099 for (auto &Pair : InvalidCosts) 6100 if (!Numbering.count(Pair.first)) 6101 Numbering[Pair.first] = I++; 6102 6103 // Sort the list, first on instruction(number) then on VF. 6104 llvm::sort(InvalidCosts, 6105 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6106 if (Numbering[A.first] != Numbering[B.first]) 6107 return Numbering[A.first] < Numbering[B.first]; 6108 ElementCountComparator ECC; 6109 return ECC(A.second, B.second); 6110 }); 6111 6112 // For a list of ordered instruction-vf pairs: 6113 // [(load, vf1), (load, vf2), (store, vf1)] 6114 // Group the instructions together to emit separate remarks for: 6115 // load (vf1, vf2) 6116 // store (vf1) 6117 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6118 auto Subset = ArrayRef<InstructionVFPair>(); 6119 do { 6120 if (Subset.empty()) 6121 Subset = Tail.take_front(1); 6122 6123 Instruction *I = Subset.front().first; 6124 6125 // If the next instruction is different, or if there are no other pairs, 6126 // emit a remark for the collated subset. e.g. 6127 // [(load, vf1), (load, vf2))] 6128 // to emit: 6129 // remark: invalid costs for 'load' at VF=(vf, vf2) 6130 if (Subset == Tail || Tail[Subset.size()].first != I) { 6131 std::string OutString; 6132 raw_string_ostream OS(OutString); 6133 assert(!Subset.empty() && "Unexpected empty range"); 6134 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6135 for (auto &Pair : Subset) 6136 OS << (Pair.second == Subset.front().second ? "" : ", ") 6137 << Pair.second; 6138 OS << "):"; 6139 if (auto *CI = dyn_cast<CallInst>(I)) 6140 OS << " call to " << CI->getCalledFunction()->getName(); 6141 else 6142 OS << " " << I->getOpcodeName(); 6143 OS.flush(); 6144 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6145 Tail = Tail.drop_front(Subset.size()); 6146 Subset = {}; 6147 } else 6148 // Grow the subset by one element 6149 Subset = Tail.take_front(Subset.size() + 1); 6150 } while (!Tail.empty()); 6151 } 6152 6153 if (!EnableCondStoresVectorization && NumPredStores) { 6154 reportVectorizationFailure("There are conditional stores.", 6155 "store that is conditionally executed prevents vectorization", 6156 "ConditionalStore", ORE, TheLoop); 6157 ChosenFactor = ScalarCost; 6158 } 6159 6160 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6161 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6162 << "LV: Vectorization seems to be not beneficial, " 6163 << "but was forced by a user.\n"); 6164 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6165 return ChosenFactor; 6166 } 6167 6168 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6169 const Loop &L, ElementCount VF) const { 6170 // Cross iteration phis such as reductions need special handling and are 6171 // currently unsupported. 6172 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6173 return Legal->isFirstOrderRecurrence(&Phi) || 6174 Legal->isReductionVariable(&Phi); 6175 })) 6176 return false; 6177 6178 // Phis with uses outside of the loop require special handling and are 6179 // currently unsupported. 6180 for (auto &Entry : Legal->getInductionVars()) { 6181 // Look for uses of the value of the induction at the last iteration. 6182 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6183 for (User *U : PostInc->users()) 6184 if (!L.contains(cast<Instruction>(U))) 6185 return false; 6186 // Look for uses of penultimate value of the induction. 6187 for (User *U : Entry.first->users()) 6188 if (!L.contains(cast<Instruction>(U))) 6189 return false; 6190 } 6191 6192 // Induction variables that are widened require special handling that is 6193 // currently not supported. 6194 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6195 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6196 this->isProfitableToScalarize(Entry.first, VF)); 6197 })) 6198 return false; 6199 6200 // Epilogue vectorization code has not been auditted to ensure it handles 6201 // non-latch exits properly. It may be fine, but it needs auditted and 6202 // tested. 6203 if (L.getExitingBlock() != L.getLoopLatch()) 6204 return false; 6205 6206 return true; 6207 } 6208 6209 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6210 const ElementCount VF) const { 6211 // FIXME: We need a much better cost-model to take different parameters such 6212 // as register pressure, code size increase and cost of extra branches into 6213 // account. For now we apply a very crude heuristic and only consider loops 6214 // with vectorization factors larger than a certain value. 6215 // We also consider epilogue vectorization unprofitable for targets that don't 6216 // consider interleaving beneficial (eg. MVE). 6217 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6218 return false; 6219 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6220 return true; 6221 return false; 6222 } 6223 6224 VectorizationFactor 6225 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6226 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6227 VectorizationFactor Result = VectorizationFactor::Disabled(); 6228 if (!EnableEpilogueVectorization) { 6229 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6230 return Result; 6231 } 6232 6233 if (!isScalarEpilogueAllowed()) { 6234 LLVM_DEBUG( 6235 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6236 "allowed.\n";); 6237 return Result; 6238 } 6239 6240 // FIXME: This can be fixed for scalable vectors later, because at this stage 6241 // the LoopVectorizer will only consider vectorizing a loop with scalable 6242 // vectors when the loop has a hint to enable vectorization for a given VF. 6243 if (MainLoopVF.isScalable()) { 6244 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6245 "yet supported.\n"); 6246 return Result; 6247 } 6248 6249 // Not really a cost consideration, but check for unsupported cases here to 6250 // simplify the logic. 6251 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6252 LLVM_DEBUG( 6253 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6254 "not a supported candidate.\n";); 6255 return Result; 6256 } 6257 6258 if (EpilogueVectorizationForceVF > 1) { 6259 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6260 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 6261 if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC})) 6262 return {ForcedEC, 0}; 6263 else { 6264 LLVM_DEBUG( 6265 dbgs() 6266 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6267 return Result; 6268 } 6269 } 6270 6271 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6272 TheLoop->getHeader()->getParent()->hasMinSize()) { 6273 LLVM_DEBUG( 6274 dbgs() 6275 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6276 return Result; 6277 } 6278 6279 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6280 return Result; 6281 6282 for (auto &NextVF : ProfitableVFs) 6283 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6284 (Result.Width.getFixedValue() == 1 || 6285 isMoreProfitable(NextVF, Result)) && 6286 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6287 Result = NextVF; 6288 6289 if (Result != VectorizationFactor::Disabled()) 6290 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6291 << Result.Width.getFixedValue() << "\n";); 6292 return Result; 6293 } 6294 6295 std::pair<unsigned, unsigned> 6296 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6297 unsigned MinWidth = -1U; 6298 unsigned MaxWidth = 8; 6299 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6300 for (Type *T : ElementTypesInLoop) { 6301 MinWidth = std::min<unsigned>( 6302 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6303 MaxWidth = std::max<unsigned>( 6304 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6305 } 6306 return {MinWidth, MaxWidth}; 6307 } 6308 6309 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6310 ElementTypesInLoop.clear(); 6311 // For each block. 6312 for (BasicBlock *BB : TheLoop->blocks()) { 6313 // For each instruction in the loop. 6314 for (Instruction &I : BB->instructionsWithoutDebug()) { 6315 Type *T = I.getType(); 6316 6317 // Skip ignored values. 6318 if (ValuesToIgnore.count(&I)) 6319 continue; 6320 6321 // Only examine Loads, Stores and PHINodes. 6322 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6323 continue; 6324 6325 // Examine PHI nodes that are reduction variables. Update the type to 6326 // account for the recurrence type. 6327 if (auto *PN = dyn_cast<PHINode>(&I)) { 6328 if (!Legal->isReductionVariable(PN)) 6329 continue; 6330 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6331 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6332 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6333 RdxDesc.getRecurrenceType(), 6334 TargetTransformInfo::ReductionFlags())) 6335 continue; 6336 T = RdxDesc.getRecurrenceType(); 6337 } 6338 6339 // Examine the stored values. 6340 if (auto *ST = dyn_cast<StoreInst>(&I)) 6341 T = ST->getValueOperand()->getType(); 6342 6343 // Ignore loaded pointer types and stored pointer types that are not 6344 // vectorizable. 6345 // 6346 // FIXME: The check here attempts to predict whether a load or store will 6347 // be vectorized. We only know this for certain after a VF has 6348 // been selected. Here, we assume that if an access can be 6349 // vectorized, it will be. We should also look at extending this 6350 // optimization to non-pointer types. 6351 // 6352 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6353 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6354 continue; 6355 6356 ElementTypesInLoop.insert(T); 6357 } 6358 } 6359 } 6360 6361 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6362 unsigned LoopCost) { 6363 // -- The interleave heuristics -- 6364 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6365 // There are many micro-architectural considerations that we can't predict 6366 // at this level. For example, frontend pressure (on decode or fetch) due to 6367 // code size, or the number and capabilities of the execution ports. 6368 // 6369 // We use the following heuristics to select the interleave count: 6370 // 1. If the code has reductions, then we interleave to break the cross 6371 // iteration dependency. 6372 // 2. If the loop is really small, then we interleave to reduce the loop 6373 // overhead. 6374 // 3. We don't interleave if we think that we will spill registers to memory 6375 // due to the increased register pressure. 6376 6377 if (!isScalarEpilogueAllowed()) 6378 return 1; 6379 6380 // We used the distance for the interleave count. 6381 if (Legal->getMaxSafeDepDistBytes() != -1U) 6382 return 1; 6383 6384 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6385 const bool HasReductions = !Legal->getReductionVars().empty(); 6386 // Do not interleave loops with a relatively small known or estimated trip 6387 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6388 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6389 // because with the above conditions interleaving can expose ILP and break 6390 // cross iteration dependences for reductions. 6391 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6392 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6393 return 1; 6394 6395 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6396 // We divide by these constants so assume that we have at least one 6397 // instruction that uses at least one register. 6398 for (auto& pair : R.MaxLocalUsers) { 6399 pair.second = std::max(pair.second, 1U); 6400 } 6401 6402 // We calculate the interleave count using the following formula. 6403 // Subtract the number of loop invariants from the number of available 6404 // registers. These registers are used by all of the interleaved instances. 6405 // Next, divide the remaining registers by the number of registers that is 6406 // required by the loop, in order to estimate how many parallel instances 6407 // fit without causing spills. All of this is rounded down if necessary to be 6408 // a power of two. We want power of two interleave count to simplify any 6409 // addressing operations or alignment considerations. 6410 // We also want power of two interleave counts to ensure that the induction 6411 // variable of the vector loop wraps to zero, when tail is folded by masking; 6412 // this currently happens when OptForSize, in which case IC is set to 1 above. 6413 unsigned IC = UINT_MAX; 6414 6415 for (auto& pair : R.MaxLocalUsers) { 6416 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6417 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6418 << " registers of " 6419 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6420 if (VF.isScalar()) { 6421 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6422 TargetNumRegisters = ForceTargetNumScalarRegs; 6423 } else { 6424 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6425 TargetNumRegisters = ForceTargetNumVectorRegs; 6426 } 6427 unsigned MaxLocalUsers = pair.second; 6428 unsigned LoopInvariantRegs = 0; 6429 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6430 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6431 6432 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6433 // Don't count the induction variable as interleaved. 6434 if (EnableIndVarRegisterHeur) { 6435 TmpIC = 6436 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6437 std::max(1U, (MaxLocalUsers - 1))); 6438 } 6439 6440 IC = std::min(IC, TmpIC); 6441 } 6442 6443 // Clamp the interleave ranges to reasonable counts. 6444 unsigned MaxInterleaveCount = 6445 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6446 6447 // Check if the user has overridden the max. 6448 if (VF.isScalar()) { 6449 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6450 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6451 } else { 6452 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6453 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6454 } 6455 6456 // If trip count is known or estimated compile time constant, limit the 6457 // interleave count to be less than the trip count divided by VF, provided it 6458 // is at least 1. 6459 // 6460 // For scalable vectors we can't know if interleaving is beneficial. It may 6461 // not be beneficial for small loops if none of the lanes in the second vector 6462 // iterations is enabled. However, for larger loops, there is likely to be a 6463 // similar benefit as for fixed-width vectors. For now, we choose to leave 6464 // the InterleaveCount as if vscale is '1', although if some information about 6465 // the vector is known (e.g. min vector size), we can make a better decision. 6466 if (BestKnownTC) { 6467 MaxInterleaveCount = 6468 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6469 // Make sure MaxInterleaveCount is greater than 0. 6470 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6471 } 6472 6473 assert(MaxInterleaveCount > 0 && 6474 "Maximum interleave count must be greater than 0"); 6475 6476 // Clamp the calculated IC to be between the 1 and the max interleave count 6477 // that the target and trip count allows. 6478 if (IC > MaxInterleaveCount) 6479 IC = MaxInterleaveCount; 6480 else 6481 // Make sure IC is greater than 0. 6482 IC = std::max(1u, IC); 6483 6484 assert(IC > 0 && "Interleave count must be greater than 0."); 6485 6486 // If we did not calculate the cost for VF (because the user selected the VF) 6487 // then we calculate the cost of VF here. 6488 if (LoopCost == 0) { 6489 InstructionCost C = expectedCost(VF).first; 6490 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6491 LoopCost = *C.getValue(); 6492 } 6493 6494 assert(LoopCost && "Non-zero loop cost expected"); 6495 6496 // Interleave if we vectorized this loop and there is a reduction that could 6497 // benefit from interleaving. 6498 if (VF.isVector() && HasReductions) { 6499 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6500 return IC; 6501 } 6502 6503 // Note that if we've already vectorized the loop we will have done the 6504 // runtime check and so interleaving won't require further checks. 6505 bool InterleavingRequiresRuntimePointerCheck = 6506 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6507 6508 // We want to interleave small loops in order to reduce the loop overhead and 6509 // potentially expose ILP opportunities. 6510 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6511 << "LV: IC is " << IC << '\n' 6512 << "LV: VF is " << VF << '\n'); 6513 const bool AggressivelyInterleaveReductions = 6514 TTI.enableAggressiveInterleaving(HasReductions); 6515 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6516 // We assume that the cost overhead is 1 and we use the cost model 6517 // to estimate the cost of the loop and interleave until the cost of the 6518 // loop overhead is about 5% of the cost of the loop. 6519 unsigned SmallIC = 6520 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6521 6522 // Interleave until store/load ports (estimated by max interleave count) are 6523 // saturated. 6524 unsigned NumStores = Legal->getNumStores(); 6525 unsigned NumLoads = Legal->getNumLoads(); 6526 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6527 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6528 6529 // There is little point in interleaving for reductions containing selects 6530 // and compares when VF=1 since it may just create more overhead than it's 6531 // worth for loops with small trip counts. This is because we still have to 6532 // do the final reduction after the loop. 6533 bool HasSelectCmpReductions = 6534 HasReductions && 6535 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6536 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6537 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6538 RdxDesc.getRecurrenceKind()); 6539 }); 6540 if (HasSelectCmpReductions) { 6541 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6542 return 1; 6543 } 6544 6545 // If we have a scalar reduction (vector reductions are already dealt with 6546 // by this point), we can increase the critical path length if the loop 6547 // we're interleaving is inside another loop. For tree-wise reductions 6548 // set the limit to 2, and for ordered reductions it's best to disable 6549 // interleaving entirely. 6550 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6551 bool HasOrderedReductions = 6552 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6553 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6554 return RdxDesc.isOrdered(); 6555 }); 6556 if (HasOrderedReductions) { 6557 LLVM_DEBUG( 6558 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6559 return 1; 6560 } 6561 6562 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6563 SmallIC = std::min(SmallIC, F); 6564 StoresIC = std::min(StoresIC, F); 6565 LoadsIC = std::min(LoadsIC, F); 6566 } 6567 6568 if (EnableLoadStoreRuntimeInterleave && 6569 std::max(StoresIC, LoadsIC) > SmallIC) { 6570 LLVM_DEBUG( 6571 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6572 return std::max(StoresIC, LoadsIC); 6573 } 6574 6575 // If there are scalar reductions and TTI has enabled aggressive 6576 // interleaving for reductions, we will interleave to expose ILP. 6577 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6578 AggressivelyInterleaveReductions) { 6579 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6580 // Interleave no less than SmallIC but not as aggressive as the normal IC 6581 // to satisfy the rare situation when resources are too limited. 6582 return std::max(IC / 2, SmallIC); 6583 } else { 6584 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6585 return SmallIC; 6586 } 6587 } 6588 6589 // Interleave if this is a large loop (small loops are already dealt with by 6590 // this point) that could benefit from interleaving. 6591 if (AggressivelyInterleaveReductions) { 6592 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6593 return IC; 6594 } 6595 6596 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6597 return 1; 6598 } 6599 6600 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6601 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6602 // This function calculates the register usage by measuring the highest number 6603 // of values that are alive at a single location. Obviously, this is a very 6604 // rough estimation. We scan the loop in a topological order in order and 6605 // assign a number to each instruction. We use RPO to ensure that defs are 6606 // met before their users. We assume that each instruction that has in-loop 6607 // users starts an interval. We record every time that an in-loop value is 6608 // used, so we have a list of the first and last occurrences of each 6609 // instruction. Next, we transpose this data structure into a multi map that 6610 // holds the list of intervals that *end* at a specific location. This multi 6611 // map allows us to perform a linear search. We scan the instructions linearly 6612 // and record each time that a new interval starts, by placing it in a set. 6613 // If we find this value in the multi-map then we remove it from the set. 6614 // The max register usage is the maximum size of the set. 6615 // We also search for instructions that are defined outside the loop, but are 6616 // used inside the loop. We need this number separately from the max-interval 6617 // usage number because when we unroll, loop-invariant values do not take 6618 // more register. 6619 LoopBlocksDFS DFS(TheLoop); 6620 DFS.perform(LI); 6621 6622 RegisterUsage RU; 6623 6624 // Each 'key' in the map opens a new interval. The values 6625 // of the map are the index of the 'last seen' usage of the 6626 // instruction that is the key. 6627 using IntervalMap = DenseMap<Instruction *, unsigned>; 6628 6629 // Maps instruction to its index. 6630 SmallVector<Instruction *, 64> IdxToInstr; 6631 // Marks the end of each interval. 6632 IntervalMap EndPoint; 6633 // Saves the list of instruction indices that are used in the loop. 6634 SmallPtrSet<Instruction *, 8> Ends; 6635 // Saves the list of values that are used in the loop but are 6636 // defined outside the loop, such as arguments and constants. 6637 SmallPtrSet<Value *, 8> LoopInvariants; 6638 6639 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6640 for (Instruction &I : BB->instructionsWithoutDebug()) { 6641 IdxToInstr.push_back(&I); 6642 6643 // Save the end location of each USE. 6644 for (Value *U : I.operands()) { 6645 auto *Instr = dyn_cast<Instruction>(U); 6646 6647 // Ignore non-instruction values such as arguments, constants, etc. 6648 if (!Instr) 6649 continue; 6650 6651 // If this instruction is outside the loop then record it and continue. 6652 if (!TheLoop->contains(Instr)) { 6653 LoopInvariants.insert(Instr); 6654 continue; 6655 } 6656 6657 // Overwrite previous end points. 6658 EndPoint[Instr] = IdxToInstr.size(); 6659 Ends.insert(Instr); 6660 } 6661 } 6662 } 6663 6664 // Saves the list of intervals that end with the index in 'key'. 6665 using InstrList = SmallVector<Instruction *, 2>; 6666 DenseMap<unsigned, InstrList> TransposeEnds; 6667 6668 // Transpose the EndPoints to a list of values that end at each index. 6669 for (auto &Interval : EndPoint) 6670 TransposeEnds[Interval.second].push_back(Interval.first); 6671 6672 SmallPtrSet<Instruction *, 8> OpenIntervals; 6673 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6674 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6675 6676 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6677 6678 // A lambda that gets the register usage for the given type and VF. 6679 const auto &TTICapture = TTI; 6680 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6681 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6682 return 0; 6683 InstructionCost::CostType RegUsage = 6684 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6685 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6686 "Nonsensical values for register usage."); 6687 return RegUsage; 6688 }; 6689 6690 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6691 Instruction *I = IdxToInstr[i]; 6692 6693 // Remove all of the instructions that end at this location. 6694 InstrList &List = TransposeEnds[i]; 6695 for (Instruction *ToRemove : List) 6696 OpenIntervals.erase(ToRemove); 6697 6698 // Ignore instructions that are never used within the loop. 6699 if (!Ends.count(I)) 6700 continue; 6701 6702 // Skip ignored values. 6703 if (ValuesToIgnore.count(I)) 6704 continue; 6705 6706 // For each VF find the maximum usage of registers. 6707 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6708 // Count the number of live intervals. 6709 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6710 6711 if (VFs[j].isScalar()) { 6712 for (auto Inst : OpenIntervals) { 6713 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6714 if (RegUsage.find(ClassID) == RegUsage.end()) 6715 RegUsage[ClassID] = 1; 6716 else 6717 RegUsage[ClassID] += 1; 6718 } 6719 } else { 6720 collectUniformsAndScalars(VFs[j]); 6721 for (auto Inst : OpenIntervals) { 6722 // Skip ignored values for VF > 1. 6723 if (VecValuesToIgnore.count(Inst)) 6724 continue; 6725 if (isScalarAfterVectorization(Inst, VFs[j])) { 6726 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6727 if (RegUsage.find(ClassID) == RegUsage.end()) 6728 RegUsage[ClassID] = 1; 6729 else 6730 RegUsage[ClassID] += 1; 6731 } else { 6732 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6733 if (RegUsage.find(ClassID) == RegUsage.end()) 6734 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6735 else 6736 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6737 } 6738 } 6739 } 6740 6741 for (auto& pair : RegUsage) { 6742 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6743 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6744 else 6745 MaxUsages[j][pair.first] = pair.second; 6746 } 6747 } 6748 6749 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6750 << OpenIntervals.size() << '\n'); 6751 6752 // Add the current instruction to the list of open intervals. 6753 OpenIntervals.insert(I); 6754 } 6755 6756 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6757 SmallMapVector<unsigned, unsigned, 4> Invariant; 6758 6759 for (auto Inst : LoopInvariants) { 6760 unsigned Usage = 6761 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6762 unsigned ClassID = 6763 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6764 if (Invariant.find(ClassID) == Invariant.end()) 6765 Invariant[ClassID] = Usage; 6766 else 6767 Invariant[ClassID] += Usage; 6768 } 6769 6770 LLVM_DEBUG({ 6771 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6772 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6773 << " item\n"; 6774 for (const auto &pair : MaxUsages[i]) { 6775 dbgs() << "LV(REG): RegisterClass: " 6776 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6777 << " registers\n"; 6778 } 6779 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6780 << " item\n"; 6781 for (const auto &pair : Invariant) { 6782 dbgs() << "LV(REG): RegisterClass: " 6783 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6784 << " registers\n"; 6785 } 6786 }); 6787 6788 RU.LoopInvariantRegs = Invariant; 6789 RU.MaxLocalUsers = MaxUsages[i]; 6790 RUs[i] = RU; 6791 } 6792 6793 return RUs; 6794 } 6795 6796 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6797 // TODO: Cost model for emulated masked load/store is completely 6798 // broken. This hack guides the cost model to use an artificially 6799 // high enough value to practically disable vectorization with such 6800 // operations, except where previously deployed legality hack allowed 6801 // using very low cost values. This is to avoid regressions coming simply 6802 // from moving "masked load/store" check from legality to cost model. 6803 // Masked Load/Gather emulation was previously never allowed. 6804 // Limited number of Masked Store/Scatter emulation was allowed. 6805 assert(isPredicatedInst(I) && 6806 "Expecting a scalar emulated instruction"); 6807 return isa<LoadInst>(I) || 6808 (isa<StoreInst>(I) && 6809 NumPredStores > NumberOfStoresToPredicate); 6810 } 6811 6812 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6813 // If we aren't vectorizing the loop, or if we've already collected the 6814 // instructions to scalarize, there's nothing to do. Collection may already 6815 // have occurred if we have a user-selected VF and are now computing the 6816 // expected cost for interleaving. 6817 if (VF.isScalar() || VF.isZero() || 6818 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6819 return; 6820 6821 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6822 // not profitable to scalarize any instructions, the presence of VF in the 6823 // map will indicate that we've analyzed it already. 6824 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6825 6826 // Find all the instructions that are scalar with predication in the loop and 6827 // determine if it would be better to not if-convert the blocks they are in. 6828 // If so, we also record the instructions to scalarize. 6829 for (BasicBlock *BB : TheLoop->blocks()) { 6830 if (!blockNeedsPredication(BB)) 6831 continue; 6832 for (Instruction &I : *BB) 6833 if (isScalarWithPredication(&I)) { 6834 ScalarCostsTy ScalarCosts; 6835 // Do not apply discount if scalable, because that would lead to 6836 // invalid scalarization costs. 6837 // Do not apply discount logic if hacked cost is needed 6838 // for emulated masked memrefs. 6839 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6840 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6841 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6842 // Remember that BB will remain after vectorization. 6843 PredicatedBBsAfterVectorization.insert(BB); 6844 } 6845 } 6846 } 6847 6848 int LoopVectorizationCostModel::computePredInstDiscount( 6849 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6850 assert(!isUniformAfterVectorization(PredInst, VF) && 6851 "Instruction marked uniform-after-vectorization will be predicated"); 6852 6853 // Initialize the discount to zero, meaning that the scalar version and the 6854 // vector version cost the same. 6855 InstructionCost Discount = 0; 6856 6857 // Holds instructions to analyze. The instructions we visit are mapped in 6858 // ScalarCosts. Those instructions are the ones that would be scalarized if 6859 // we find that the scalar version costs less. 6860 SmallVector<Instruction *, 8> Worklist; 6861 6862 // Returns true if the given instruction can be scalarized. 6863 auto canBeScalarized = [&](Instruction *I) -> bool { 6864 // We only attempt to scalarize instructions forming a single-use chain 6865 // from the original predicated block that would otherwise be vectorized. 6866 // Although not strictly necessary, we give up on instructions we know will 6867 // already be scalar to avoid traversing chains that are unlikely to be 6868 // beneficial. 6869 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6870 isScalarAfterVectorization(I, VF)) 6871 return false; 6872 6873 // If the instruction is scalar with predication, it will be analyzed 6874 // separately. We ignore it within the context of PredInst. 6875 if (isScalarWithPredication(I)) 6876 return false; 6877 6878 // If any of the instruction's operands are uniform after vectorization, 6879 // the instruction cannot be scalarized. This prevents, for example, a 6880 // masked load from being scalarized. 6881 // 6882 // We assume we will only emit a value for lane zero of an instruction 6883 // marked uniform after vectorization, rather than VF identical values. 6884 // Thus, if we scalarize an instruction that uses a uniform, we would 6885 // create uses of values corresponding to the lanes we aren't emitting code 6886 // for. This behavior can be changed by allowing getScalarValue to clone 6887 // the lane zero values for uniforms rather than asserting. 6888 for (Use &U : I->operands()) 6889 if (auto *J = dyn_cast<Instruction>(U.get())) 6890 if (isUniformAfterVectorization(J, VF)) 6891 return false; 6892 6893 // Otherwise, we can scalarize the instruction. 6894 return true; 6895 }; 6896 6897 // Compute the expected cost discount from scalarizing the entire expression 6898 // feeding the predicated instruction. We currently only consider expressions 6899 // that are single-use instruction chains. 6900 Worklist.push_back(PredInst); 6901 while (!Worklist.empty()) { 6902 Instruction *I = Worklist.pop_back_val(); 6903 6904 // If we've already analyzed the instruction, there's nothing to do. 6905 if (ScalarCosts.find(I) != ScalarCosts.end()) 6906 continue; 6907 6908 // Compute the cost of the vector instruction. Note that this cost already 6909 // includes the scalarization overhead of the predicated instruction. 6910 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6911 6912 // Compute the cost of the scalarized instruction. This cost is the cost of 6913 // the instruction as if it wasn't if-converted and instead remained in the 6914 // predicated block. We will scale this cost by block probability after 6915 // computing the scalarization overhead. 6916 InstructionCost ScalarCost = 6917 VF.getFixedValue() * 6918 getInstructionCost(I, ElementCount::getFixed(1)).first; 6919 6920 // Compute the scalarization overhead of needed insertelement instructions 6921 // and phi nodes. 6922 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6923 ScalarCost += TTI.getScalarizationOverhead( 6924 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6925 APInt::getAllOnes(VF.getFixedValue()), true, false); 6926 ScalarCost += 6927 VF.getFixedValue() * 6928 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6929 } 6930 6931 // Compute the scalarization overhead of needed extractelement 6932 // instructions. For each of the instruction's operands, if the operand can 6933 // be scalarized, add it to the worklist; otherwise, account for the 6934 // overhead. 6935 for (Use &U : I->operands()) 6936 if (auto *J = dyn_cast<Instruction>(U.get())) { 6937 assert(VectorType::isValidElementType(J->getType()) && 6938 "Instruction has non-scalar type"); 6939 if (canBeScalarized(J)) 6940 Worklist.push_back(J); 6941 else if (needsExtract(J, VF)) { 6942 ScalarCost += TTI.getScalarizationOverhead( 6943 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6944 APInt::getAllOnes(VF.getFixedValue()), false, true); 6945 } 6946 } 6947 6948 // Scale the total scalar cost by block probability. 6949 ScalarCost /= getReciprocalPredBlockProb(); 6950 6951 // Compute the discount. A non-negative discount means the vector version 6952 // of the instruction costs more, and scalarizing would be beneficial. 6953 Discount += VectorCost - ScalarCost; 6954 ScalarCosts[I] = ScalarCost; 6955 } 6956 6957 return *Discount.getValue(); 6958 } 6959 6960 LoopVectorizationCostModel::VectorizationCostTy 6961 LoopVectorizationCostModel::expectedCost( 6962 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6963 VectorizationCostTy Cost; 6964 6965 // For each block. 6966 for (BasicBlock *BB : TheLoop->blocks()) { 6967 VectorizationCostTy BlockCost; 6968 6969 // For each instruction in the old loop. 6970 for (Instruction &I : BB->instructionsWithoutDebug()) { 6971 // Skip ignored values. 6972 if (ValuesToIgnore.count(&I) || 6973 (VF.isVector() && VecValuesToIgnore.count(&I))) 6974 continue; 6975 6976 VectorizationCostTy C = getInstructionCost(&I, VF); 6977 6978 // Check if we should override the cost. 6979 if (C.first.isValid() && 6980 ForceTargetInstructionCost.getNumOccurrences() > 0) 6981 C.first = InstructionCost(ForceTargetInstructionCost); 6982 6983 // Keep a list of instructions with invalid costs. 6984 if (Invalid && !C.first.isValid()) 6985 Invalid->emplace_back(&I, VF); 6986 6987 BlockCost.first += C.first; 6988 BlockCost.second |= C.second; 6989 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6990 << " for VF " << VF << " For instruction: " << I 6991 << '\n'); 6992 } 6993 6994 // If we are vectorizing a predicated block, it will have been 6995 // if-converted. This means that the block's instructions (aside from 6996 // stores and instructions that may divide by zero) will now be 6997 // unconditionally executed. For the scalar case, we may not always execute 6998 // the predicated block, if it is an if-else block. Thus, scale the block's 6999 // cost by the probability of executing it. blockNeedsPredication from 7000 // Legal is used so as to not include all blocks in tail folded loops. 7001 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 7002 BlockCost.first /= getReciprocalPredBlockProb(); 7003 7004 Cost.first += BlockCost.first; 7005 Cost.second |= BlockCost.second; 7006 } 7007 7008 return Cost; 7009 } 7010 7011 /// Gets Address Access SCEV after verifying that the access pattern 7012 /// is loop invariant except the induction variable dependence. 7013 /// 7014 /// This SCEV can be sent to the Target in order to estimate the address 7015 /// calculation cost. 7016 static const SCEV *getAddressAccessSCEV( 7017 Value *Ptr, 7018 LoopVectorizationLegality *Legal, 7019 PredicatedScalarEvolution &PSE, 7020 const Loop *TheLoop) { 7021 7022 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7023 if (!Gep) 7024 return nullptr; 7025 7026 // We are looking for a gep with all loop invariant indices except for one 7027 // which should be an induction variable. 7028 auto SE = PSE.getSE(); 7029 unsigned NumOperands = Gep->getNumOperands(); 7030 for (unsigned i = 1; i < NumOperands; ++i) { 7031 Value *Opd = Gep->getOperand(i); 7032 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7033 !Legal->isInductionVariable(Opd)) 7034 return nullptr; 7035 } 7036 7037 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7038 return PSE.getSCEV(Ptr); 7039 } 7040 7041 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7042 return Legal->hasStride(I->getOperand(0)) || 7043 Legal->hasStride(I->getOperand(1)); 7044 } 7045 7046 InstructionCost 7047 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7048 ElementCount VF) { 7049 assert(VF.isVector() && 7050 "Scalarization cost of instruction implies vectorization."); 7051 if (VF.isScalable()) 7052 return InstructionCost::getInvalid(); 7053 7054 Type *ValTy = getLoadStoreType(I); 7055 auto SE = PSE.getSE(); 7056 7057 unsigned AS = getLoadStoreAddressSpace(I); 7058 Value *Ptr = getLoadStorePointerOperand(I); 7059 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7060 7061 // Figure out whether the access is strided and get the stride value 7062 // if it's known in compile time 7063 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7064 7065 // Get the cost of the scalar memory instruction and address computation. 7066 InstructionCost Cost = 7067 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7068 7069 // Don't pass *I here, since it is scalar but will actually be part of a 7070 // vectorized loop where the user of it is a vectorized instruction. 7071 const Align Alignment = getLoadStoreAlignment(I); 7072 Cost += VF.getKnownMinValue() * 7073 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7074 AS, TTI::TCK_RecipThroughput); 7075 7076 // Get the overhead of the extractelement and insertelement instructions 7077 // we might create due to scalarization. 7078 Cost += getScalarizationOverhead(I, VF); 7079 7080 // If we have a predicated load/store, it will need extra i1 extracts and 7081 // conditional branches, but may not be executed for each vector lane. Scale 7082 // the cost by the probability of executing the predicated block. 7083 if (isPredicatedInst(I)) { 7084 Cost /= getReciprocalPredBlockProb(); 7085 7086 // Add the cost of an i1 extract and a branch 7087 auto *Vec_i1Ty = 7088 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7089 Cost += TTI.getScalarizationOverhead( 7090 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7091 /*Insert=*/false, /*Extract=*/true); 7092 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7093 7094 if (useEmulatedMaskMemRefHack(I)) 7095 // Artificially setting to a high enough value to practically disable 7096 // vectorization with such operations. 7097 Cost = 3000000; 7098 } 7099 7100 return Cost; 7101 } 7102 7103 InstructionCost 7104 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7105 ElementCount VF) { 7106 Type *ValTy = getLoadStoreType(I); 7107 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7108 Value *Ptr = getLoadStorePointerOperand(I); 7109 unsigned AS = getLoadStoreAddressSpace(I); 7110 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7111 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7112 7113 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7114 "Stride should be 1 or -1 for consecutive memory access"); 7115 const Align Alignment = getLoadStoreAlignment(I); 7116 InstructionCost Cost = 0; 7117 if (Legal->isMaskRequired(I)) 7118 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7119 CostKind); 7120 else 7121 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7122 CostKind, I); 7123 7124 bool Reverse = ConsecutiveStride < 0; 7125 if (Reverse) 7126 Cost += 7127 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7128 return Cost; 7129 } 7130 7131 InstructionCost 7132 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7133 ElementCount VF) { 7134 assert(Legal->isUniformMemOp(*I)); 7135 7136 Type *ValTy = getLoadStoreType(I); 7137 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7138 const Align Alignment = getLoadStoreAlignment(I); 7139 unsigned AS = getLoadStoreAddressSpace(I); 7140 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7141 if (isa<LoadInst>(I)) { 7142 return TTI.getAddressComputationCost(ValTy) + 7143 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7144 CostKind) + 7145 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7146 } 7147 StoreInst *SI = cast<StoreInst>(I); 7148 7149 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7150 return TTI.getAddressComputationCost(ValTy) + 7151 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7152 CostKind) + 7153 (isLoopInvariantStoreValue 7154 ? 0 7155 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7156 VF.getKnownMinValue() - 1)); 7157 } 7158 7159 InstructionCost 7160 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7161 ElementCount VF) { 7162 Type *ValTy = getLoadStoreType(I); 7163 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7164 const Align Alignment = getLoadStoreAlignment(I); 7165 const Value *Ptr = getLoadStorePointerOperand(I); 7166 7167 return TTI.getAddressComputationCost(VectorTy) + 7168 TTI.getGatherScatterOpCost( 7169 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7170 TargetTransformInfo::TCK_RecipThroughput, I); 7171 } 7172 7173 InstructionCost 7174 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7175 ElementCount VF) { 7176 // TODO: Once we have support for interleaving with scalable vectors 7177 // we can calculate the cost properly here. 7178 if (VF.isScalable()) 7179 return InstructionCost::getInvalid(); 7180 7181 Type *ValTy = getLoadStoreType(I); 7182 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7183 unsigned AS = getLoadStoreAddressSpace(I); 7184 7185 auto Group = getInterleavedAccessGroup(I); 7186 assert(Group && "Fail to get an interleaved access group."); 7187 7188 unsigned InterleaveFactor = Group->getFactor(); 7189 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7190 7191 // Holds the indices of existing members in the interleaved group. 7192 SmallVector<unsigned, 4> Indices; 7193 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7194 if (Group->getMember(IF)) 7195 Indices.push_back(IF); 7196 7197 // Calculate the cost of the whole interleaved group. 7198 bool UseMaskForGaps = 7199 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7200 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7201 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7202 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7203 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7204 7205 if (Group->isReverse()) { 7206 // TODO: Add support for reversed masked interleaved access. 7207 assert(!Legal->isMaskRequired(I) && 7208 "Reverse masked interleaved access not supported."); 7209 Cost += 7210 Group->getNumMembers() * 7211 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7212 } 7213 return Cost; 7214 } 7215 7216 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7217 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7218 using namespace llvm::PatternMatch; 7219 // Early exit for no inloop reductions 7220 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7221 return None; 7222 auto *VectorTy = cast<VectorType>(Ty); 7223 7224 // We are looking for a pattern of, and finding the minimal acceptable cost: 7225 // reduce(mul(ext(A), ext(B))) or 7226 // reduce(mul(A, B)) or 7227 // reduce(ext(A)) or 7228 // reduce(A). 7229 // The basic idea is that we walk down the tree to do that, finding the root 7230 // reduction instruction in InLoopReductionImmediateChains. From there we find 7231 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7232 // of the components. If the reduction cost is lower then we return it for the 7233 // reduction instruction and 0 for the other instructions in the pattern. If 7234 // it is not we return an invalid cost specifying the orignal cost method 7235 // should be used. 7236 Instruction *RetI = I; 7237 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7238 if (!RetI->hasOneUser()) 7239 return None; 7240 RetI = RetI->user_back(); 7241 } 7242 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7243 RetI->user_back()->getOpcode() == Instruction::Add) { 7244 if (!RetI->hasOneUser()) 7245 return None; 7246 RetI = RetI->user_back(); 7247 } 7248 7249 // Test if the found instruction is a reduction, and if not return an invalid 7250 // cost specifying the parent to use the original cost modelling. 7251 if (!InLoopReductionImmediateChains.count(RetI)) 7252 return None; 7253 7254 // Find the reduction this chain is a part of and calculate the basic cost of 7255 // the reduction on its own. 7256 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7257 Instruction *ReductionPhi = LastChain; 7258 while (!isa<PHINode>(ReductionPhi)) 7259 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7260 7261 const RecurrenceDescriptor &RdxDesc = 7262 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7263 7264 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7265 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7266 7267 // If we're using ordered reductions then we can just return the base cost 7268 // here, since getArithmeticReductionCost calculates the full ordered 7269 // reduction cost when FP reassociation is not allowed. 7270 if (useOrderedReductions(RdxDesc)) 7271 return BaseCost; 7272 7273 // Get the operand that was not the reduction chain and match it to one of the 7274 // patterns, returning the better cost if it is found. 7275 Instruction *RedOp = RetI->getOperand(1) == LastChain 7276 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7277 : dyn_cast<Instruction>(RetI->getOperand(1)); 7278 7279 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7280 7281 Instruction *Op0, *Op1; 7282 if (RedOp && 7283 match(RedOp, 7284 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7285 match(Op0, m_ZExtOrSExt(m_Value())) && 7286 Op0->getOpcode() == Op1->getOpcode() && 7287 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7288 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7289 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7290 7291 // Matched reduce(ext(mul(ext(A), ext(B))) 7292 // Note that the extend opcodes need to all match, or if A==B they will have 7293 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7294 // which is equally fine. 7295 bool IsUnsigned = isa<ZExtInst>(Op0); 7296 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7297 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7298 7299 InstructionCost ExtCost = 7300 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7301 TTI::CastContextHint::None, CostKind, Op0); 7302 InstructionCost MulCost = 7303 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7304 InstructionCost Ext2Cost = 7305 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7306 TTI::CastContextHint::None, CostKind, RedOp); 7307 7308 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7309 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7310 CostKind); 7311 7312 if (RedCost.isValid() && 7313 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7314 return I == RetI ? RedCost : 0; 7315 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7316 !TheLoop->isLoopInvariant(RedOp)) { 7317 // Matched reduce(ext(A)) 7318 bool IsUnsigned = isa<ZExtInst>(RedOp); 7319 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7320 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7321 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7322 CostKind); 7323 7324 InstructionCost ExtCost = 7325 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7326 TTI::CastContextHint::None, CostKind, RedOp); 7327 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7328 return I == RetI ? RedCost : 0; 7329 } else if (RedOp && 7330 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7331 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7332 Op0->getOpcode() == Op1->getOpcode() && 7333 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7334 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7335 bool IsUnsigned = isa<ZExtInst>(Op0); 7336 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7337 // Matched reduce(mul(ext, ext)) 7338 InstructionCost ExtCost = 7339 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7340 TTI::CastContextHint::None, CostKind, Op0); 7341 InstructionCost MulCost = 7342 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7343 7344 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7345 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7346 CostKind); 7347 7348 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7349 return I == RetI ? RedCost : 0; 7350 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7351 // Matched reduce(mul()) 7352 InstructionCost MulCost = 7353 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7354 7355 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7356 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7357 CostKind); 7358 7359 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7360 return I == RetI ? RedCost : 0; 7361 } 7362 } 7363 7364 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7365 } 7366 7367 InstructionCost 7368 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7369 ElementCount VF) { 7370 // Calculate scalar cost only. Vectorization cost should be ready at this 7371 // moment. 7372 if (VF.isScalar()) { 7373 Type *ValTy = getLoadStoreType(I); 7374 const Align Alignment = getLoadStoreAlignment(I); 7375 unsigned AS = getLoadStoreAddressSpace(I); 7376 7377 return TTI.getAddressComputationCost(ValTy) + 7378 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7379 TTI::TCK_RecipThroughput, I); 7380 } 7381 return getWideningCost(I, VF); 7382 } 7383 7384 LoopVectorizationCostModel::VectorizationCostTy 7385 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7386 ElementCount VF) { 7387 // If we know that this instruction will remain uniform, check the cost of 7388 // the scalar version. 7389 if (isUniformAfterVectorization(I, VF)) 7390 VF = ElementCount::getFixed(1); 7391 7392 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7393 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7394 7395 // Forced scalars do not have any scalarization overhead. 7396 auto ForcedScalar = ForcedScalars.find(VF); 7397 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7398 auto InstSet = ForcedScalar->second; 7399 if (InstSet.count(I)) 7400 return VectorizationCostTy( 7401 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7402 VF.getKnownMinValue()), 7403 false); 7404 } 7405 7406 Type *VectorTy; 7407 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7408 7409 bool TypeNotScalarized = 7410 VF.isVector() && VectorTy->isVectorTy() && 7411 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7412 return VectorizationCostTy(C, TypeNotScalarized); 7413 } 7414 7415 InstructionCost 7416 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7417 ElementCount VF) const { 7418 7419 // There is no mechanism yet to create a scalable scalarization loop, 7420 // so this is currently Invalid. 7421 if (VF.isScalable()) 7422 return InstructionCost::getInvalid(); 7423 7424 if (VF.isScalar()) 7425 return 0; 7426 7427 InstructionCost Cost = 0; 7428 Type *RetTy = ToVectorTy(I->getType(), VF); 7429 if (!RetTy->isVoidTy() && 7430 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7431 Cost += TTI.getScalarizationOverhead( 7432 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7433 false); 7434 7435 // Some targets keep addresses scalar. 7436 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7437 return Cost; 7438 7439 // Some targets support efficient element stores. 7440 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7441 return Cost; 7442 7443 // Collect operands to consider. 7444 CallInst *CI = dyn_cast<CallInst>(I); 7445 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7446 7447 // Skip operands that do not require extraction/scalarization and do not incur 7448 // any overhead. 7449 SmallVector<Type *> Tys; 7450 for (auto *V : filterExtractingOperands(Ops, VF)) 7451 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7452 return Cost + TTI.getOperandsScalarizationOverhead( 7453 filterExtractingOperands(Ops, VF), Tys); 7454 } 7455 7456 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7457 if (VF.isScalar()) 7458 return; 7459 NumPredStores = 0; 7460 for (BasicBlock *BB : TheLoop->blocks()) { 7461 // For each instruction in the old loop. 7462 for (Instruction &I : *BB) { 7463 Value *Ptr = getLoadStorePointerOperand(&I); 7464 if (!Ptr) 7465 continue; 7466 7467 // TODO: We should generate better code and update the cost model for 7468 // predicated uniform stores. Today they are treated as any other 7469 // predicated store (see added test cases in 7470 // invariant-store-vectorization.ll). 7471 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7472 NumPredStores++; 7473 7474 if (Legal->isUniformMemOp(I)) { 7475 // TODO: Avoid replicating loads and stores instead of 7476 // relying on instcombine to remove them. 7477 // Load: Scalar load + broadcast 7478 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7479 InstructionCost Cost; 7480 if (isa<StoreInst>(&I) && VF.isScalable() && 7481 isLegalGatherOrScatter(&I)) { 7482 Cost = getGatherScatterCost(&I, VF); 7483 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7484 } else { 7485 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7486 "Cannot yet scalarize uniform stores"); 7487 Cost = getUniformMemOpCost(&I, VF); 7488 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7489 } 7490 continue; 7491 } 7492 7493 // We assume that widening is the best solution when possible. 7494 if (memoryInstructionCanBeWidened(&I, VF)) { 7495 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7496 int ConsecutiveStride = Legal->isConsecutivePtr( 7497 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7498 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7499 "Expected consecutive stride."); 7500 InstWidening Decision = 7501 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7502 setWideningDecision(&I, VF, Decision, Cost); 7503 continue; 7504 } 7505 7506 // Choose between Interleaving, Gather/Scatter or Scalarization. 7507 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7508 unsigned NumAccesses = 1; 7509 if (isAccessInterleaved(&I)) { 7510 auto Group = getInterleavedAccessGroup(&I); 7511 assert(Group && "Fail to get an interleaved access group."); 7512 7513 // Make one decision for the whole group. 7514 if (getWideningDecision(&I, VF) != CM_Unknown) 7515 continue; 7516 7517 NumAccesses = Group->getNumMembers(); 7518 if (interleavedAccessCanBeWidened(&I, VF)) 7519 InterleaveCost = getInterleaveGroupCost(&I, VF); 7520 } 7521 7522 InstructionCost GatherScatterCost = 7523 isLegalGatherOrScatter(&I) 7524 ? getGatherScatterCost(&I, VF) * NumAccesses 7525 : InstructionCost::getInvalid(); 7526 7527 InstructionCost ScalarizationCost = 7528 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7529 7530 // Choose better solution for the current VF, 7531 // write down this decision and use it during vectorization. 7532 InstructionCost Cost; 7533 InstWidening Decision; 7534 if (InterleaveCost <= GatherScatterCost && 7535 InterleaveCost < ScalarizationCost) { 7536 Decision = CM_Interleave; 7537 Cost = InterleaveCost; 7538 } else if (GatherScatterCost < ScalarizationCost) { 7539 Decision = CM_GatherScatter; 7540 Cost = GatherScatterCost; 7541 } else { 7542 Decision = CM_Scalarize; 7543 Cost = ScalarizationCost; 7544 } 7545 // If the instructions belongs to an interleave group, the whole group 7546 // receives the same decision. The whole group receives the cost, but 7547 // the cost will actually be assigned to one instruction. 7548 if (auto Group = getInterleavedAccessGroup(&I)) 7549 setWideningDecision(Group, VF, Decision, Cost); 7550 else 7551 setWideningDecision(&I, VF, Decision, Cost); 7552 } 7553 } 7554 7555 // Make sure that any load of address and any other address computation 7556 // remains scalar unless there is gather/scatter support. This avoids 7557 // inevitable extracts into address registers, and also has the benefit of 7558 // activating LSR more, since that pass can't optimize vectorized 7559 // addresses. 7560 if (TTI.prefersVectorizedAddressing()) 7561 return; 7562 7563 // Start with all scalar pointer uses. 7564 SmallPtrSet<Instruction *, 8> AddrDefs; 7565 for (BasicBlock *BB : TheLoop->blocks()) 7566 for (Instruction &I : *BB) { 7567 Instruction *PtrDef = 7568 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7569 if (PtrDef && TheLoop->contains(PtrDef) && 7570 getWideningDecision(&I, VF) != CM_GatherScatter) 7571 AddrDefs.insert(PtrDef); 7572 } 7573 7574 // Add all instructions used to generate the addresses. 7575 SmallVector<Instruction *, 4> Worklist; 7576 append_range(Worklist, AddrDefs); 7577 while (!Worklist.empty()) { 7578 Instruction *I = Worklist.pop_back_val(); 7579 for (auto &Op : I->operands()) 7580 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7581 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7582 AddrDefs.insert(InstOp).second) 7583 Worklist.push_back(InstOp); 7584 } 7585 7586 for (auto *I : AddrDefs) { 7587 if (isa<LoadInst>(I)) { 7588 // Setting the desired widening decision should ideally be handled in 7589 // by cost functions, but since this involves the task of finding out 7590 // if the loaded register is involved in an address computation, it is 7591 // instead changed here when we know this is the case. 7592 InstWidening Decision = getWideningDecision(I, VF); 7593 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7594 // Scalarize a widened load of address. 7595 setWideningDecision( 7596 I, VF, CM_Scalarize, 7597 (VF.getKnownMinValue() * 7598 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7599 else if (auto Group = getInterleavedAccessGroup(I)) { 7600 // Scalarize an interleave group of address loads. 7601 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7602 if (Instruction *Member = Group->getMember(I)) 7603 setWideningDecision( 7604 Member, VF, CM_Scalarize, 7605 (VF.getKnownMinValue() * 7606 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7607 } 7608 } 7609 } else 7610 // Make sure I gets scalarized and a cost estimate without 7611 // scalarization overhead. 7612 ForcedScalars[VF].insert(I); 7613 } 7614 } 7615 7616 InstructionCost 7617 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7618 Type *&VectorTy) { 7619 Type *RetTy = I->getType(); 7620 if (canTruncateToMinimalBitwidth(I, VF)) 7621 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7622 auto SE = PSE.getSE(); 7623 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7624 7625 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7626 ElementCount VF) -> bool { 7627 if (VF.isScalar()) 7628 return true; 7629 7630 auto Scalarized = InstsToScalarize.find(VF); 7631 assert(Scalarized != InstsToScalarize.end() && 7632 "VF not yet analyzed for scalarization profitability"); 7633 return !Scalarized->second.count(I) && 7634 llvm::all_of(I->users(), [&](User *U) { 7635 auto *UI = cast<Instruction>(U); 7636 return !Scalarized->second.count(UI); 7637 }); 7638 }; 7639 (void) hasSingleCopyAfterVectorization; 7640 7641 if (isScalarAfterVectorization(I, VF)) { 7642 // With the exception of GEPs and PHIs, after scalarization there should 7643 // only be one copy of the instruction generated in the loop. This is 7644 // because the VF is either 1, or any instructions that need scalarizing 7645 // have already been dealt with by the the time we get here. As a result, 7646 // it means we don't have to multiply the instruction cost by VF. 7647 assert(I->getOpcode() == Instruction::GetElementPtr || 7648 I->getOpcode() == Instruction::PHI || 7649 (I->getOpcode() == Instruction::BitCast && 7650 I->getType()->isPointerTy()) || 7651 hasSingleCopyAfterVectorization(I, VF)); 7652 VectorTy = RetTy; 7653 } else 7654 VectorTy = ToVectorTy(RetTy, VF); 7655 7656 // TODO: We need to estimate the cost of intrinsic calls. 7657 switch (I->getOpcode()) { 7658 case Instruction::GetElementPtr: 7659 // We mark this instruction as zero-cost because the cost of GEPs in 7660 // vectorized code depends on whether the corresponding memory instruction 7661 // is scalarized or not. Therefore, we handle GEPs with the memory 7662 // instruction cost. 7663 return 0; 7664 case Instruction::Br: { 7665 // In cases of scalarized and predicated instructions, there will be VF 7666 // predicated blocks in the vectorized loop. Each branch around these 7667 // blocks requires also an extract of its vector compare i1 element. 7668 bool ScalarPredicatedBB = false; 7669 BranchInst *BI = cast<BranchInst>(I); 7670 if (VF.isVector() && BI->isConditional() && 7671 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7672 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7673 ScalarPredicatedBB = true; 7674 7675 if (ScalarPredicatedBB) { 7676 // Not possible to scalarize scalable vector with predicated instructions. 7677 if (VF.isScalable()) 7678 return InstructionCost::getInvalid(); 7679 // Return cost for branches around scalarized and predicated blocks. 7680 auto *Vec_i1Ty = 7681 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7682 return ( 7683 TTI.getScalarizationOverhead( 7684 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7685 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7686 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7687 // The back-edge branch will remain, as will all scalar branches. 7688 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7689 else 7690 // This branch will be eliminated by if-conversion. 7691 return 0; 7692 // Note: We currently assume zero cost for an unconditional branch inside 7693 // a predicated block since it will become a fall-through, although we 7694 // may decide in the future to call TTI for all branches. 7695 } 7696 case Instruction::PHI: { 7697 auto *Phi = cast<PHINode>(I); 7698 7699 // First-order recurrences are replaced by vector shuffles inside the loop. 7700 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7701 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7702 return TTI.getShuffleCost( 7703 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7704 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7705 7706 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7707 // converted into select instructions. We require N - 1 selects per phi 7708 // node, where N is the number of incoming values. 7709 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7710 return (Phi->getNumIncomingValues() - 1) * 7711 TTI.getCmpSelInstrCost( 7712 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7713 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7714 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7715 7716 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7717 } 7718 case Instruction::UDiv: 7719 case Instruction::SDiv: 7720 case Instruction::URem: 7721 case Instruction::SRem: 7722 // If we have a predicated instruction, it may not be executed for each 7723 // vector lane. Get the scalarization cost and scale this amount by the 7724 // probability of executing the predicated block. If the instruction is not 7725 // predicated, we fall through to the next case. 7726 if (VF.isVector() && isScalarWithPredication(I)) { 7727 InstructionCost Cost = 0; 7728 7729 // These instructions have a non-void type, so account for the phi nodes 7730 // that we will create. This cost is likely to be zero. The phi node 7731 // cost, if any, should be scaled by the block probability because it 7732 // models a copy at the end of each predicated block. 7733 Cost += VF.getKnownMinValue() * 7734 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7735 7736 // The cost of the non-predicated instruction. 7737 Cost += VF.getKnownMinValue() * 7738 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7739 7740 // The cost of insertelement and extractelement instructions needed for 7741 // scalarization. 7742 Cost += getScalarizationOverhead(I, VF); 7743 7744 // Scale the cost by the probability of executing the predicated blocks. 7745 // This assumes the predicated block for each vector lane is equally 7746 // likely. 7747 return Cost / getReciprocalPredBlockProb(); 7748 } 7749 LLVM_FALLTHROUGH; 7750 case Instruction::Add: 7751 case Instruction::FAdd: 7752 case Instruction::Sub: 7753 case Instruction::FSub: 7754 case Instruction::Mul: 7755 case Instruction::FMul: 7756 case Instruction::FDiv: 7757 case Instruction::FRem: 7758 case Instruction::Shl: 7759 case Instruction::LShr: 7760 case Instruction::AShr: 7761 case Instruction::And: 7762 case Instruction::Or: 7763 case Instruction::Xor: { 7764 // Since we will replace the stride by 1 the multiplication should go away. 7765 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7766 return 0; 7767 7768 // Detect reduction patterns 7769 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7770 return *RedCost; 7771 7772 // Certain instructions can be cheaper to vectorize if they have a constant 7773 // second vector operand. One example of this are shifts on x86. 7774 Value *Op2 = I->getOperand(1); 7775 TargetTransformInfo::OperandValueProperties Op2VP; 7776 TargetTransformInfo::OperandValueKind Op2VK = 7777 TTI.getOperandInfo(Op2, Op2VP); 7778 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7779 Op2VK = TargetTransformInfo::OK_UniformValue; 7780 7781 SmallVector<const Value *, 4> Operands(I->operand_values()); 7782 return TTI.getArithmeticInstrCost( 7783 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7784 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7785 } 7786 case Instruction::FNeg: { 7787 return TTI.getArithmeticInstrCost( 7788 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7789 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7790 TargetTransformInfo::OP_None, I->getOperand(0), I); 7791 } 7792 case Instruction::Select: { 7793 SelectInst *SI = cast<SelectInst>(I); 7794 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7795 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7796 7797 const Value *Op0, *Op1; 7798 using namespace llvm::PatternMatch; 7799 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7800 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7801 // select x, y, false --> x & y 7802 // select x, true, y --> x | y 7803 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7804 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7805 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7806 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7807 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7808 Op1->getType()->getScalarSizeInBits() == 1); 7809 7810 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7811 return TTI.getArithmeticInstrCost( 7812 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7813 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7814 } 7815 7816 Type *CondTy = SI->getCondition()->getType(); 7817 if (!ScalarCond) 7818 CondTy = VectorType::get(CondTy, VF); 7819 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7820 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7821 } 7822 case Instruction::ICmp: 7823 case Instruction::FCmp: { 7824 Type *ValTy = I->getOperand(0)->getType(); 7825 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7826 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7827 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7828 VectorTy = ToVectorTy(ValTy, VF); 7829 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7830 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7831 } 7832 case Instruction::Store: 7833 case Instruction::Load: { 7834 ElementCount Width = VF; 7835 if (Width.isVector()) { 7836 InstWidening Decision = getWideningDecision(I, Width); 7837 assert(Decision != CM_Unknown && 7838 "CM decision should be taken at this point"); 7839 if (Decision == CM_Scalarize) 7840 Width = ElementCount::getFixed(1); 7841 } 7842 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7843 return getMemoryInstructionCost(I, VF); 7844 } 7845 case Instruction::BitCast: 7846 if (I->getType()->isPointerTy()) 7847 return 0; 7848 LLVM_FALLTHROUGH; 7849 case Instruction::ZExt: 7850 case Instruction::SExt: 7851 case Instruction::FPToUI: 7852 case Instruction::FPToSI: 7853 case Instruction::FPExt: 7854 case Instruction::PtrToInt: 7855 case Instruction::IntToPtr: 7856 case Instruction::SIToFP: 7857 case Instruction::UIToFP: 7858 case Instruction::Trunc: 7859 case Instruction::FPTrunc: { 7860 // Computes the CastContextHint from a Load/Store instruction. 7861 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7862 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7863 "Expected a load or a store!"); 7864 7865 if (VF.isScalar() || !TheLoop->contains(I)) 7866 return TTI::CastContextHint::Normal; 7867 7868 switch (getWideningDecision(I, VF)) { 7869 case LoopVectorizationCostModel::CM_GatherScatter: 7870 return TTI::CastContextHint::GatherScatter; 7871 case LoopVectorizationCostModel::CM_Interleave: 7872 return TTI::CastContextHint::Interleave; 7873 case LoopVectorizationCostModel::CM_Scalarize: 7874 case LoopVectorizationCostModel::CM_Widen: 7875 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7876 : TTI::CastContextHint::Normal; 7877 case LoopVectorizationCostModel::CM_Widen_Reverse: 7878 return TTI::CastContextHint::Reversed; 7879 case LoopVectorizationCostModel::CM_Unknown: 7880 llvm_unreachable("Instr did not go through cost modelling?"); 7881 } 7882 7883 llvm_unreachable("Unhandled case!"); 7884 }; 7885 7886 unsigned Opcode = I->getOpcode(); 7887 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7888 // For Trunc, the context is the only user, which must be a StoreInst. 7889 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7890 if (I->hasOneUse()) 7891 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7892 CCH = ComputeCCH(Store); 7893 } 7894 // For Z/Sext, the context is the operand, which must be a LoadInst. 7895 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7896 Opcode == Instruction::FPExt) { 7897 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7898 CCH = ComputeCCH(Load); 7899 } 7900 7901 // We optimize the truncation of induction variables having constant 7902 // integer steps. The cost of these truncations is the same as the scalar 7903 // operation. 7904 if (isOptimizableIVTruncate(I, VF)) { 7905 auto *Trunc = cast<TruncInst>(I); 7906 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7907 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7908 } 7909 7910 // Detect reduction patterns 7911 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7912 return *RedCost; 7913 7914 Type *SrcScalarTy = I->getOperand(0)->getType(); 7915 Type *SrcVecTy = 7916 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7917 if (canTruncateToMinimalBitwidth(I, VF)) { 7918 // This cast is going to be shrunk. This may remove the cast or it might 7919 // turn it into slightly different cast. For example, if MinBW == 16, 7920 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7921 // 7922 // Calculate the modified src and dest types. 7923 Type *MinVecTy = VectorTy; 7924 if (Opcode == Instruction::Trunc) { 7925 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7926 VectorTy = 7927 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7928 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7929 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7930 VectorTy = 7931 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7932 } 7933 } 7934 7935 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7936 } 7937 case Instruction::Call: { 7938 bool NeedToScalarize; 7939 CallInst *CI = cast<CallInst>(I); 7940 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7941 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7942 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7943 return std::min(CallCost, IntrinsicCost); 7944 } 7945 return CallCost; 7946 } 7947 case Instruction::ExtractValue: 7948 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7949 case Instruction::Alloca: 7950 // We cannot easily widen alloca to a scalable alloca, as 7951 // the result would need to be a vector of pointers. 7952 if (VF.isScalable()) 7953 return InstructionCost::getInvalid(); 7954 LLVM_FALLTHROUGH; 7955 default: 7956 // This opcode is unknown. Assume that it is the same as 'mul'. 7957 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7958 } // end of switch. 7959 } 7960 7961 char LoopVectorize::ID = 0; 7962 7963 static const char lv_name[] = "Loop Vectorization"; 7964 7965 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7966 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7967 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7968 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7969 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7970 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7971 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7972 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7973 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7974 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7975 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7976 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7977 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7978 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7979 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7980 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7981 7982 namespace llvm { 7983 7984 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7985 7986 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7987 bool VectorizeOnlyWhenForced) { 7988 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7989 } 7990 7991 } // end namespace llvm 7992 7993 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7994 // Check if the pointer operand of a load or store instruction is 7995 // consecutive. 7996 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7997 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7998 return false; 7999 } 8000 8001 void LoopVectorizationCostModel::collectValuesToIgnore() { 8002 // Ignore ephemeral values. 8003 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 8004 8005 // Ignore type-promoting instructions we identified during reduction 8006 // detection. 8007 for (auto &Reduction : Legal->getReductionVars()) { 8008 RecurrenceDescriptor &RedDes = Reduction.second; 8009 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 8010 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8011 } 8012 // Ignore type-casting instructions we identified during induction 8013 // detection. 8014 for (auto &Induction : Legal->getInductionVars()) { 8015 InductionDescriptor &IndDes = Induction.second; 8016 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8017 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8018 } 8019 } 8020 8021 void LoopVectorizationCostModel::collectInLoopReductions() { 8022 for (auto &Reduction : Legal->getReductionVars()) { 8023 PHINode *Phi = Reduction.first; 8024 RecurrenceDescriptor &RdxDesc = Reduction.second; 8025 8026 // We don't collect reductions that are type promoted (yet). 8027 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8028 continue; 8029 8030 // If the target would prefer this reduction to happen "in-loop", then we 8031 // want to record it as such. 8032 unsigned Opcode = RdxDesc.getOpcode(); 8033 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8034 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8035 TargetTransformInfo::ReductionFlags())) 8036 continue; 8037 8038 // Check that we can correctly put the reductions into the loop, by 8039 // finding the chain of operations that leads from the phi to the loop 8040 // exit value. 8041 SmallVector<Instruction *, 4> ReductionOperations = 8042 RdxDesc.getReductionOpChain(Phi, TheLoop); 8043 bool InLoop = !ReductionOperations.empty(); 8044 if (InLoop) { 8045 InLoopReductionChains[Phi] = ReductionOperations; 8046 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8047 Instruction *LastChain = Phi; 8048 for (auto *I : ReductionOperations) { 8049 InLoopReductionImmediateChains[I] = LastChain; 8050 LastChain = I; 8051 } 8052 } 8053 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8054 << " reduction for phi: " << *Phi << "\n"); 8055 } 8056 } 8057 8058 // TODO: we could return a pair of values that specify the max VF and 8059 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8060 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8061 // doesn't have a cost model that can choose which plan to execute if 8062 // more than one is generated. 8063 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8064 LoopVectorizationCostModel &CM) { 8065 unsigned WidestType; 8066 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8067 return WidestVectorRegBits / WidestType; 8068 } 8069 8070 VectorizationFactor 8071 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8072 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8073 ElementCount VF = UserVF; 8074 // Outer loop handling: They may require CFG and instruction level 8075 // transformations before even evaluating whether vectorization is profitable. 8076 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8077 // the vectorization pipeline. 8078 if (!OrigLoop->isInnermost()) { 8079 // If the user doesn't provide a vectorization factor, determine a 8080 // reasonable one. 8081 if (UserVF.isZero()) { 8082 VF = ElementCount::getFixed(determineVPlanVF( 8083 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8084 .getFixedSize(), 8085 CM)); 8086 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8087 8088 // Make sure we have a VF > 1 for stress testing. 8089 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8090 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8091 << "overriding computed VF.\n"); 8092 VF = ElementCount::getFixed(4); 8093 } 8094 } 8095 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8096 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8097 "VF needs to be a power of two"); 8098 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8099 << "VF " << VF << " to build VPlans.\n"); 8100 buildVPlans(VF, VF); 8101 8102 // For VPlan build stress testing, we bail out after VPlan construction. 8103 if (VPlanBuildStressTest) 8104 return VectorizationFactor::Disabled(); 8105 8106 return {VF, 0 /*Cost*/}; 8107 } 8108 8109 LLVM_DEBUG( 8110 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8111 "VPlan-native path.\n"); 8112 return VectorizationFactor::Disabled(); 8113 } 8114 8115 Optional<VectorizationFactor> 8116 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8117 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8118 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8119 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8120 return None; 8121 8122 // Invalidate interleave groups if all blocks of loop will be predicated. 8123 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8124 !useMaskedInterleavedAccesses(*TTI)) { 8125 LLVM_DEBUG( 8126 dbgs() 8127 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8128 "which requires masked-interleaved support.\n"); 8129 if (CM.InterleaveInfo.invalidateGroups()) 8130 // Invalidating interleave groups also requires invalidating all decisions 8131 // based on them, which includes widening decisions and uniform and scalar 8132 // values. 8133 CM.invalidateCostModelingDecisions(); 8134 } 8135 8136 ElementCount MaxUserVF = 8137 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8138 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8139 if (!UserVF.isZero() && UserVFIsLegal) { 8140 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8141 "VF needs to be a power of two"); 8142 // Collect the instructions (and their associated costs) that will be more 8143 // profitable to scalarize. 8144 if (CM.selectUserVectorizationFactor(UserVF)) { 8145 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8146 CM.collectInLoopReductions(); 8147 buildVPlansWithVPRecipes(UserVF, UserVF); 8148 LLVM_DEBUG(printPlans(dbgs())); 8149 return {{UserVF, 0}}; 8150 } else 8151 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8152 "InvalidCost", ORE, OrigLoop); 8153 } 8154 8155 // Populate the set of Vectorization Factor Candidates. 8156 ElementCountSet VFCandidates; 8157 for (auto VF = ElementCount::getFixed(1); 8158 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8159 VFCandidates.insert(VF); 8160 for (auto VF = ElementCount::getScalable(1); 8161 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8162 VFCandidates.insert(VF); 8163 8164 for (const auto &VF : VFCandidates) { 8165 // Collect Uniform and Scalar instructions after vectorization with VF. 8166 CM.collectUniformsAndScalars(VF); 8167 8168 // Collect the instructions (and their associated costs) that will be more 8169 // profitable to scalarize. 8170 if (VF.isVector()) 8171 CM.collectInstsToScalarize(VF); 8172 } 8173 8174 CM.collectInLoopReductions(); 8175 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8176 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8177 8178 LLVM_DEBUG(printPlans(dbgs())); 8179 if (!MaxFactors.hasVector()) 8180 return VectorizationFactor::Disabled(); 8181 8182 // Select the optimal vectorization factor. 8183 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8184 8185 // Check if it is profitable to vectorize with runtime checks. 8186 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8187 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8188 bool PragmaThresholdReached = 8189 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8190 bool ThresholdReached = 8191 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8192 if ((ThresholdReached && !Hints.allowReordering()) || 8193 PragmaThresholdReached) { 8194 ORE->emit([&]() { 8195 return OptimizationRemarkAnalysisAliasing( 8196 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8197 OrigLoop->getHeader()) 8198 << "loop not vectorized: cannot prove it is safe to reorder " 8199 "memory operations"; 8200 }); 8201 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8202 Hints.emitRemarkWithHints(); 8203 return VectorizationFactor::Disabled(); 8204 } 8205 } 8206 return SelectedVF; 8207 } 8208 8209 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 8210 assert(count_if(VPlans, 8211 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 8212 1 && 8213 "Best VF has not a single VPlan."); 8214 8215 for (const VPlanPtr &Plan : VPlans) { 8216 if (Plan->hasVF(VF)) 8217 return *Plan.get(); 8218 } 8219 llvm_unreachable("No plan found!"); 8220 } 8221 8222 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 8223 VPlan &BestVPlan, 8224 InnerLoopVectorizer &ILV, 8225 DominatorTree *DT) { 8226 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 8227 << '\n'); 8228 8229 // Perform the actual loop transformation. 8230 8231 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8232 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 8233 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8234 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8235 State.CanonicalIV = ILV.Induction; 8236 8237 ILV.printDebugTracesAtStart(); 8238 8239 //===------------------------------------------------===// 8240 // 8241 // Notice: any optimization or new instruction that go 8242 // into the code below should also be implemented in 8243 // the cost-model. 8244 // 8245 //===------------------------------------------------===// 8246 8247 // 2. Copy and widen instructions from the old loop into the new loop. 8248 BestVPlan.execute(&State); 8249 8250 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8251 // predication, updating analyses. 8252 ILV.fixVectorizedLoop(State); 8253 8254 ILV.printDebugTracesAtEnd(); 8255 } 8256 8257 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8258 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8259 for (const auto &Plan : VPlans) 8260 if (PrintVPlansInDotFormat) 8261 Plan->printDOT(O); 8262 else 8263 Plan->print(O); 8264 } 8265 #endif 8266 8267 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8268 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8269 8270 // We create new control-flow for the vectorized loop, so the original exit 8271 // conditions will be dead after vectorization if it's only used by the 8272 // terminator 8273 SmallVector<BasicBlock*> ExitingBlocks; 8274 OrigLoop->getExitingBlocks(ExitingBlocks); 8275 for (auto *BB : ExitingBlocks) { 8276 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8277 if (!Cmp || !Cmp->hasOneUse()) 8278 continue; 8279 8280 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8281 if (!DeadInstructions.insert(Cmp).second) 8282 continue; 8283 8284 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8285 // TODO: can recurse through operands in general 8286 for (Value *Op : Cmp->operands()) { 8287 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8288 DeadInstructions.insert(cast<Instruction>(Op)); 8289 } 8290 } 8291 8292 // We create new "steps" for induction variable updates to which the original 8293 // induction variables map. An original update instruction will be dead if 8294 // all its users except the induction variable are dead. 8295 auto *Latch = OrigLoop->getLoopLatch(); 8296 for (auto &Induction : Legal->getInductionVars()) { 8297 PHINode *Ind = Induction.first; 8298 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8299 8300 // If the tail is to be folded by masking, the primary induction variable, 8301 // if exists, isn't dead: it will be used for masking. Don't kill it. 8302 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8303 continue; 8304 8305 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8306 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8307 })) 8308 DeadInstructions.insert(IndUpdate); 8309 8310 // We record as "Dead" also the type-casting instructions we had identified 8311 // during induction analysis. We don't need any handling for them in the 8312 // vectorized loop because we have proven that, under a proper runtime 8313 // test guarding the vectorized loop, the value of the phi, and the casted 8314 // value of the phi, are the same. The last instruction in this casting chain 8315 // will get its scalar/vector/widened def from the scalar/vector/widened def 8316 // of the respective phi node. Any other casts in the induction def-use chain 8317 // have no other uses outside the phi update chain, and will be ignored. 8318 InductionDescriptor &IndDes = Induction.second; 8319 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8320 DeadInstructions.insert(Casts.begin(), Casts.end()); 8321 } 8322 } 8323 8324 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8325 8326 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8327 8328 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx, 8329 Value *Step, 8330 Instruction::BinaryOps BinOp) { 8331 // When unrolling and the VF is 1, we only need to add a simple scalar. 8332 Type *Ty = Val->getType(); 8333 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8334 8335 if (Ty->isFloatingPointTy()) { 8336 // Floating-point operations inherit FMF via the builder's flags. 8337 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 8338 return Builder.CreateBinOp(BinOp, Val, MulOp); 8339 } 8340 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction"); 8341 } 8342 8343 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8344 SmallVector<Metadata *, 4> MDs; 8345 // Reserve first location for self reference to the LoopID metadata node. 8346 MDs.push_back(nullptr); 8347 bool IsUnrollMetadata = false; 8348 MDNode *LoopID = L->getLoopID(); 8349 if (LoopID) { 8350 // First find existing loop unrolling disable metadata. 8351 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8352 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8353 if (MD) { 8354 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8355 IsUnrollMetadata = 8356 S && S->getString().startswith("llvm.loop.unroll.disable"); 8357 } 8358 MDs.push_back(LoopID->getOperand(i)); 8359 } 8360 } 8361 8362 if (!IsUnrollMetadata) { 8363 // Add runtime unroll disable metadata. 8364 LLVMContext &Context = L->getHeader()->getContext(); 8365 SmallVector<Metadata *, 1> DisableOperands; 8366 DisableOperands.push_back( 8367 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8368 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8369 MDs.push_back(DisableNode); 8370 MDNode *NewLoopID = MDNode::get(Context, MDs); 8371 // Set operand 0 to refer to the loop id itself. 8372 NewLoopID->replaceOperandWith(0, NewLoopID); 8373 L->setLoopID(NewLoopID); 8374 } 8375 } 8376 8377 //===--------------------------------------------------------------------===// 8378 // EpilogueVectorizerMainLoop 8379 //===--------------------------------------------------------------------===// 8380 8381 /// This function is partially responsible for generating the control flow 8382 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8383 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8384 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8385 Loop *Lp = createVectorLoopSkeleton(""); 8386 8387 // Generate the code to check the minimum iteration count of the vector 8388 // epilogue (see below). 8389 EPI.EpilogueIterationCountCheck = 8390 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8391 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8392 8393 // Generate the code to check any assumptions that we've made for SCEV 8394 // expressions. 8395 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8396 8397 // Generate the code that checks at runtime if arrays overlap. We put the 8398 // checks into a separate block to make the more common case of few elements 8399 // faster. 8400 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8401 8402 // Generate the iteration count check for the main loop, *after* the check 8403 // for the epilogue loop, so that the path-length is shorter for the case 8404 // that goes directly through the vector epilogue. The longer-path length for 8405 // the main loop is compensated for, by the gain from vectorizing the larger 8406 // trip count. Note: the branch will get updated later on when we vectorize 8407 // the epilogue. 8408 EPI.MainLoopIterationCountCheck = 8409 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8410 8411 // Generate the induction variable. 8412 OldInduction = Legal->getPrimaryInduction(); 8413 Type *IdxTy = Legal->getWidestInductionType(); 8414 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8415 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8416 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8417 EPI.VectorTripCount = CountRoundDown; 8418 Induction = 8419 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8420 getDebugLocFromInstOrOperands(OldInduction)); 8421 8422 // Skip induction resume value creation here because they will be created in 8423 // the second pass. If we created them here, they wouldn't be used anyway, 8424 // because the vplan in the second pass still contains the inductions from the 8425 // original loop. 8426 8427 return completeLoopSkeleton(Lp, OrigLoopID); 8428 } 8429 8430 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8431 LLVM_DEBUG({ 8432 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8433 << "Main Loop VF:" << EPI.MainLoopVF 8434 << ", Main Loop UF:" << EPI.MainLoopUF 8435 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8436 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8437 }); 8438 } 8439 8440 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8441 DEBUG_WITH_TYPE(VerboseDebug, { 8442 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8443 }); 8444 } 8445 8446 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8447 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8448 assert(L && "Expected valid Loop."); 8449 assert(Bypass && "Expected valid bypass basic block."); 8450 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8451 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8452 Value *Count = getOrCreateTripCount(L); 8453 // Reuse existing vector loop preheader for TC checks. 8454 // Note that new preheader block is generated for vector loop. 8455 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8456 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8457 8458 // Generate code to check if the loop's trip count is less than VF * UF of the 8459 // main vector loop. 8460 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8461 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8462 8463 Value *CheckMinIters = Builder.CreateICmp( 8464 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8465 "min.iters.check"); 8466 8467 if (!ForEpilogue) 8468 TCCheckBlock->setName("vector.main.loop.iter.check"); 8469 8470 // Create new preheader for vector loop. 8471 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8472 DT, LI, nullptr, "vector.ph"); 8473 8474 if (ForEpilogue) { 8475 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8476 DT->getNode(Bypass)->getIDom()) && 8477 "TC check is expected to dominate Bypass"); 8478 8479 // Update dominator for Bypass & LoopExit. 8480 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8481 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8482 // For loops with multiple exits, there's no edge from the middle block 8483 // to exit blocks (as the epilogue must run) and thus no need to update 8484 // the immediate dominator of the exit blocks. 8485 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8486 8487 LoopBypassBlocks.push_back(TCCheckBlock); 8488 8489 // Save the trip count so we don't have to regenerate it in the 8490 // vec.epilog.iter.check. This is safe to do because the trip count 8491 // generated here dominates the vector epilog iter check. 8492 EPI.TripCount = Count; 8493 } 8494 8495 ReplaceInstWithInst( 8496 TCCheckBlock->getTerminator(), 8497 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8498 8499 return TCCheckBlock; 8500 } 8501 8502 //===--------------------------------------------------------------------===// 8503 // EpilogueVectorizerEpilogueLoop 8504 //===--------------------------------------------------------------------===// 8505 8506 /// This function is partially responsible for generating the control flow 8507 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8508 BasicBlock * 8509 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8510 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8511 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8512 8513 // Now, compare the remaining count and if there aren't enough iterations to 8514 // execute the vectorized epilogue skip to the scalar part. 8515 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8516 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8517 LoopVectorPreHeader = 8518 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8519 LI, nullptr, "vec.epilog.ph"); 8520 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8521 VecEpilogueIterationCountCheck); 8522 8523 // Adjust the control flow taking the state info from the main loop 8524 // vectorization into account. 8525 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8526 "expected this to be saved from the previous pass."); 8527 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8528 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8529 8530 DT->changeImmediateDominator(LoopVectorPreHeader, 8531 EPI.MainLoopIterationCountCheck); 8532 8533 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8534 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8535 8536 if (EPI.SCEVSafetyCheck) 8537 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8538 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8539 if (EPI.MemSafetyCheck) 8540 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8541 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8542 8543 DT->changeImmediateDominator( 8544 VecEpilogueIterationCountCheck, 8545 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8546 8547 DT->changeImmediateDominator(LoopScalarPreHeader, 8548 EPI.EpilogueIterationCountCheck); 8549 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8550 // If there is an epilogue which must run, there's no edge from the 8551 // middle block to exit blocks and thus no need to update the immediate 8552 // dominator of the exit blocks. 8553 DT->changeImmediateDominator(LoopExitBlock, 8554 EPI.EpilogueIterationCountCheck); 8555 8556 // Keep track of bypass blocks, as they feed start values to the induction 8557 // phis in the scalar loop preheader. 8558 if (EPI.SCEVSafetyCheck) 8559 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8560 if (EPI.MemSafetyCheck) 8561 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8562 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8563 8564 // Generate a resume induction for the vector epilogue and put it in the 8565 // vector epilogue preheader 8566 Type *IdxTy = Legal->getWidestInductionType(); 8567 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8568 LoopVectorPreHeader->getFirstNonPHI()); 8569 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8570 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8571 EPI.MainLoopIterationCountCheck); 8572 8573 // Generate the induction variable. 8574 OldInduction = Legal->getPrimaryInduction(); 8575 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8576 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8577 Value *StartIdx = EPResumeVal; 8578 Induction = 8579 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8580 getDebugLocFromInstOrOperands(OldInduction)); 8581 8582 // Generate induction resume values. These variables save the new starting 8583 // indexes for the scalar loop. They are used to test if there are any tail 8584 // iterations left once the vector loop has completed. 8585 // Note that when the vectorized epilogue is skipped due to iteration count 8586 // check, then the resume value for the induction variable comes from 8587 // the trip count of the main vector loop, hence passing the AdditionalBypass 8588 // argument. 8589 createInductionResumeValues(Lp, CountRoundDown, 8590 {VecEpilogueIterationCountCheck, 8591 EPI.VectorTripCount} /* AdditionalBypass */); 8592 8593 AddRuntimeUnrollDisableMetaData(Lp); 8594 return completeLoopSkeleton(Lp, OrigLoopID); 8595 } 8596 8597 BasicBlock * 8598 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8599 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8600 8601 assert(EPI.TripCount && 8602 "Expected trip count to have been safed in the first pass."); 8603 assert( 8604 (!isa<Instruction>(EPI.TripCount) || 8605 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8606 "saved trip count does not dominate insertion point."); 8607 Value *TC = EPI.TripCount; 8608 IRBuilder<> Builder(Insert->getTerminator()); 8609 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8610 8611 // Generate code to check if the loop's trip count is less than VF * UF of the 8612 // vector epilogue loop. 8613 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8614 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8615 8616 Value *CheckMinIters = Builder.CreateICmp( 8617 P, Count, 8618 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8619 "min.epilog.iters.check"); 8620 8621 ReplaceInstWithInst( 8622 Insert->getTerminator(), 8623 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8624 8625 LoopBypassBlocks.push_back(Insert); 8626 return Insert; 8627 } 8628 8629 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8630 LLVM_DEBUG({ 8631 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8632 << "Epilogue Loop VF:" << EPI.EpilogueVF 8633 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8634 }); 8635 } 8636 8637 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8638 DEBUG_WITH_TYPE(VerboseDebug, { 8639 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8640 }); 8641 } 8642 8643 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8644 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8645 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8646 bool PredicateAtRangeStart = Predicate(Range.Start); 8647 8648 for (ElementCount TmpVF = Range.Start * 2; 8649 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8650 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8651 Range.End = TmpVF; 8652 break; 8653 } 8654 8655 return PredicateAtRangeStart; 8656 } 8657 8658 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8659 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8660 /// of VF's starting at a given VF and extending it as much as possible. Each 8661 /// vectorization decision can potentially shorten this sub-range during 8662 /// buildVPlan(). 8663 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8664 ElementCount MaxVF) { 8665 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8666 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8667 VFRange SubRange = {VF, MaxVFPlusOne}; 8668 VPlans.push_back(buildVPlan(SubRange)); 8669 VF = SubRange.End; 8670 } 8671 } 8672 8673 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8674 VPlanPtr &Plan) { 8675 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8676 8677 // Look for cached value. 8678 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8679 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8680 if (ECEntryIt != EdgeMaskCache.end()) 8681 return ECEntryIt->second; 8682 8683 VPValue *SrcMask = createBlockInMask(Src, Plan); 8684 8685 // The terminator has to be a branch inst! 8686 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8687 assert(BI && "Unexpected terminator found"); 8688 8689 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8690 return EdgeMaskCache[Edge] = SrcMask; 8691 8692 // If source is an exiting block, we know the exit edge is dynamically dead 8693 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8694 // adding uses of an otherwise potentially dead instruction. 8695 if (OrigLoop->isLoopExiting(Src)) 8696 return EdgeMaskCache[Edge] = SrcMask; 8697 8698 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8699 assert(EdgeMask && "No Edge Mask found for condition"); 8700 8701 if (BI->getSuccessor(0) != Dst) 8702 EdgeMask = Builder.createNot(EdgeMask); 8703 8704 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8705 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8706 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8707 // The select version does not introduce new UB if SrcMask is false and 8708 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8709 VPValue *False = Plan->getOrAddVPValue( 8710 ConstantInt::getFalse(BI->getCondition()->getType())); 8711 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8712 } 8713 8714 return EdgeMaskCache[Edge] = EdgeMask; 8715 } 8716 8717 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8718 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8719 8720 // Look for cached value. 8721 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8722 if (BCEntryIt != BlockMaskCache.end()) 8723 return BCEntryIt->second; 8724 8725 // All-one mask is modelled as no-mask following the convention for masked 8726 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8727 VPValue *BlockMask = nullptr; 8728 8729 if (OrigLoop->getHeader() == BB) { 8730 if (!CM.blockNeedsPredication(BB)) 8731 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8732 8733 // Create the block in mask as the first non-phi instruction in the block. 8734 VPBuilder::InsertPointGuard Guard(Builder); 8735 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8736 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8737 8738 // Introduce the early-exit compare IV <= BTC to form header block mask. 8739 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8740 // Start by constructing the desired canonical IV. 8741 VPValue *IV = nullptr; 8742 if (Legal->getPrimaryInduction()) 8743 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8744 else { 8745 auto *IVRecipe = new VPWidenCanonicalIVRecipe(); 8746 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8747 IV = IVRecipe; 8748 } 8749 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8750 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8751 8752 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8753 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8754 // as a second argument, we only pass the IV here and extract the 8755 // tripcount from the transform state where codegen of the VP instructions 8756 // happen. 8757 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8758 } else { 8759 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8760 } 8761 return BlockMaskCache[BB] = BlockMask; 8762 } 8763 8764 // This is the block mask. We OR all incoming edges. 8765 for (auto *Predecessor : predecessors(BB)) { 8766 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8767 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8768 return BlockMaskCache[BB] = EdgeMask; 8769 8770 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8771 BlockMask = EdgeMask; 8772 continue; 8773 } 8774 8775 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8776 } 8777 8778 return BlockMaskCache[BB] = BlockMask; 8779 } 8780 8781 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8782 ArrayRef<VPValue *> Operands, 8783 VFRange &Range, 8784 VPlanPtr &Plan) { 8785 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8786 "Must be called with either a load or store"); 8787 8788 auto willWiden = [&](ElementCount VF) -> bool { 8789 if (VF.isScalar()) 8790 return false; 8791 LoopVectorizationCostModel::InstWidening Decision = 8792 CM.getWideningDecision(I, VF); 8793 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8794 "CM decision should be taken at this point."); 8795 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8796 return true; 8797 if (CM.isScalarAfterVectorization(I, VF) || 8798 CM.isProfitableToScalarize(I, VF)) 8799 return false; 8800 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8801 }; 8802 8803 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8804 return nullptr; 8805 8806 VPValue *Mask = nullptr; 8807 if (Legal->isMaskRequired(I)) 8808 Mask = createBlockInMask(I->getParent(), Plan); 8809 8810 // Determine if the pointer operand of the access is either consecutive or 8811 // reverse consecutive. 8812 LoopVectorizationCostModel::InstWidening Decision = 8813 CM.getWideningDecision(I, Range.Start); 8814 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8815 bool Consecutive = 8816 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8817 8818 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8819 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8820 Consecutive, Reverse); 8821 8822 StoreInst *Store = cast<StoreInst>(I); 8823 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8824 Mask, Consecutive, Reverse); 8825 } 8826 8827 VPWidenIntOrFpInductionRecipe * 8828 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8829 ArrayRef<VPValue *> Operands) const { 8830 // Check if this is an integer or fp induction. If so, build the recipe that 8831 // produces its scalar and vector values. 8832 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8833 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8834 II.getKind() == InductionDescriptor::IK_FpInduction) { 8835 assert(II.getStartValue() == 8836 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8837 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8838 return new VPWidenIntOrFpInductionRecipe( 8839 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8840 } 8841 8842 return nullptr; 8843 } 8844 8845 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8846 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8847 VPlan &Plan) const { 8848 // Optimize the special case where the source is a constant integer 8849 // induction variable. Notice that we can only optimize the 'trunc' case 8850 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8851 // (c) other casts depend on pointer size. 8852 8853 // Determine whether \p K is a truncation based on an induction variable that 8854 // can be optimized. 8855 auto isOptimizableIVTruncate = 8856 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8857 return [=](ElementCount VF) -> bool { 8858 return CM.isOptimizableIVTruncate(K, VF); 8859 }; 8860 }; 8861 8862 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8863 isOptimizableIVTruncate(I), Range)) { 8864 8865 InductionDescriptor II = 8866 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8867 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8868 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8869 Start, nullptr, I); 8870 } 8871 return nullptr; 8872 } 8873 8874 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8875 ArrayRef<VPValue *> Operands, 8876 VPlanPtr &Plan) { 8877 // If all incoming values are equal, the incoming VPValue can be used directly 8878 // instead of creating a new VPBlendRecipe. 8879 VPValue *FirstIncoming = Operands[0]; 8880 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8881 return FirstIncoming == Inc; 8882 })) { 8883 return Operands[0]; 8884 } 8885 8886 // We know that all PHIs in non-header blocks are converted into selects, so 8887 // we don't have to worry about the insertion order and we can just use the 8888 // builder. At this point we generate the predication tree. There may be 8889 // duplications since this is a simple recursive scan, but future 8890 // optimizations will clean it up. 8891 SmallVector<VPValue *, 2> OperandsWithMask; 8892 unsigned NumIncoming = Phi->getNumIncomingValues(); 8893 8894 for (unsigned In = 0; In < NumIncoming; In++) { 8895 VPValue *EdgeMask = 8896 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8897 assert((EdgeMask || NumIncoming == 1) && 8898 "Multiple predecessors with one having a full mask"); 8899 OperandsWithMask.push_back(Operands[In]); 8900 if (EdgeMask) 8901 OperandsWithMask.push_back(EdgeMask); 8902 } 8903 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8904 } 8905 8906 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8907 ArrayRef<VPValue *> Operands, 8908 VFRange &Range) const { 8909 8910 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8911 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8912 Range); 8913 8914 if (IsPredicated) 8915 return nullptr; 8916 8917 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8918 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8919 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8920 ID == Intrinsic::pseudoprobe || 8921 ID == Intrinsic::experimental_noalias_scope_decl)) 8922 return nullptr; 8923 8924 auto willWiden = [&](ElementCount VF) -> bool { 8925 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8926 // The following case may be scalarized depending on the VF. 8927 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8928 // version of the instruction. 8929 // Is it beneficial to perform intrinsic call compared to lib call? 8930 bool NeedToScalarize = false; 8931 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8932 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8933 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8934 return UseVectorIntrinsic || !NeedToScalarize; 8935 }; 8936 8937 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8938 return nullptr; 8939 8940 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8941 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8942 } 8943 8944 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8945 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8946 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8947 // Instruction should be widened, unless it is scalar after vectorization, 8948 // scalarization is profitable or it is predicated. 8949 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8950 return CM.isScalarAfterVectorization(I, VF) || 8951 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8952 }; 8953 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8954 Range); 8955 } 8956 8957 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8958 ArrayRef<VPValue *> Operands) const { 8959 auto IsVectorizableOpcode = [](unsigned Opcode) { 8960 switch (Opcode) { 8961 case Instruction::Add: 8962 case Instruction::And: 8963 case Instruction::AShr: 8964 case Instruction::BitCast: 8965 case Instruction::FAdd: 8966 case Instruction::FCmp: 8967 case Instruction::FDiv: 8968 case Instruction::FMul: 8969 case Instruction::FNeg: 8970 case Instruction::FPExt: 8971 case Instruction::FPToSI: 8972 case Instruction::FPToUI: 8973 case Instruction::FPTrunc: 8974 case Instruction::FRem: 8975 case Instruction::FSub: 8976 case Instruction::ICmp: 8977 case Instruction::IntToPtr: 8978 case Instruction::LShr: 8979 case Instruction::Mul: 8980 case Instruction::Or: 8981 case Instruction::PtrToInt: 8982 case Instruction::SDiv: 8983 case Instruction::Select: 8984 case Instruction::SExt: 8985 case Instruction::Shl: 8986 case Instruction::SIToFP: 8987 case Instruction::SRem: 8988 case Instruction::Sub: 8989 case Instruction::Trunc: 8990 case Instruction::UDiv: 8991 case Instruction::UIToFP: 8992 case Instruction::URem: 8993 case Instruction::Xor: 8994 case Instruction::ZExt: 8995 return true; 8996 } 8997 return false; 8998 }; 8999 9000 if (!IsVectorizableOpcode(I->getOpcode())) 9001 return nullptr; 9002 9003 // Success: widen this instruction. 9004 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 9005 } 9006 9007 void VPRecipeBuilder::fixHeaderPhis() { 9008 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 9009 for (VPWidenPHIRecipe *R : PhisToFix) { 9010 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 9011 VPRecipeBase *IncR = 9012 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 9013 R->addOperand(IncR->getVPSingleValue()); 9014 } 9015 } 9016 9017 VPBasicBlock *VPRecipeBuilder::handleReplication( 9018 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 9019 VPlanPtr &Plan) { 9020 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 9021 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 9022 Range); 9023 9024 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 9025 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9026 9027 // Even if the instruction is not marked as uniform, there are certain 9028 // intrinsic calls that can be effectively treated as such, so we check for 9029 // them here. Conservatively, we only do this for scalable vectors, since 9030 // for fixed-width VFs we can always fall back on full scalarization. 9031 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9032 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9033 case Intrinsic::assume: 9034 case Intrinsic::lifetime_start: 9035 case Intrinsic::lifetime_end: 9036 // For scalable vectors if one of the operands is variant then we still 9037 // want to mark as uniform, which will generate one instruction for just 9038 // the first lane of the vector. We can't scalarize the call in the same 9039 // way as for fixed-width vectors because we don't know how many lanes 9040 // there are. 9041 // 9042 // The reasons for doing it this way for scalable vectors are: 9043 // 1. For the assume intrinsic generating the instruction for the first 9044 // lane is still be better than not generating any at all. For 9045 // example, the input may be a splat across all lanes. 9046 // 2. For the lifetime start/end intrinsics the pointer operand only 9047 // does anything useful when the input comes from a stack object, 9048 // which suggests it should always be uniform. For non-stack objects 9049 // the effect is to poison the object, which still allows us to 9050 // remove the call. 9051 IsUniform = true; 9052 break; 9053 default: 9054 break; 9055 } 9056 } 9057 9058 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9059 IsUniform, IsPredicated); 9060 setRecipe(I, Recipe); 9061 Plan->addVPValue(I, Recipe); 9062 9063 // Find if I uses a predicated instruction. If so, it will use its scalar 9064 // value. Avoid hoisting the insert-element which packs the scalar value into 9065 // a vector value, as that happens iff all users use the vector value. 9066 for (VPValue *Op : Recipe->operands()) { 9067 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9068 if (!PredR) 9069 continue; 9070 auto *RepR = 9071 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9072 assert(RepR->isPredicated() && 9073 "expected Replicate recipe to be predicated"); 9074 RepR->setAlsoPack(false); 9075 } 9076 9077 // Finalize the recipe for Instr, first if it is not predicated. 9078 if (!IsPredicated) { 9079 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9080 VPBB->appendRecipe(Recipe); 9081 return VPBB; 9082 } 9083 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9084 assert(VPBB->getSuccessors().empty() && 9085 "VPBB has successors when handling predicated replication."); 9086 // Record predicated instructions for above packing optimizations. 9087 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9088 VPBlockUtils::insertBlockAfter(Region, VPBB); 9089 auto *RegSucc = new VPBasicBlock(); 9090 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9091 return RegSucc; 9092 } 9093 9094 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9095 VPRecipeBase *PredRecipe, 9096 VPlanPtr &Plan) { 9097 // Instructions marked for predication are replicated and placed under an 9098 // if-then construct to prevent side-effects. 9099 9100 // Generate recipes to compute the block mask for this region. 9101 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9102 9103 // Build the triangular if-then region. 9104 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9105 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9106 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9107 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9108 auto *PHIRecipe = Instr->getType()->isVoidTy() 9109 ? nullptr 9110 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9111 if (PHIRecipe) { 9112 Plan->removeVPValueFor(Instr); 9113 Plan->addVPValue(Instr, PHIRecipe); 9114 } 9115 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9116 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9117 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9118 9119 // Note: first set Entry as region entry and then connect successors starting 9120 // from it in order, to propagate the "parent" of each VPBasicBlock. 9121 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9122 VPBlockUtils::connectBlocks(Pred, Exit); 9123 9124 return Region; 9125 } 9126 9127 VPRecipeOrVPValueTy 9128 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9129 ArrayRef<VPValue *> Operands, 9130 VFRange &Range, VPlanPtr &Plan) { 9131 // First, check for specific widening recipes that deal with calls, memory 9132 // operations, inductions and Phi nodes. 9133 if (auto *CI = dyn_cast<CallInst>(Instr)) 9134 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9135 9136 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9137 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9138 9139 VPRecipeBase *Recipe; 9140 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9141 if (Phi->getParent() != OrigLoop->getHeader()) 9142 return tryToBlend(Phi, Operands, Plan); 9143 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9144 return toVPRecipeResult(Recipe); 9145 9146 VPWidenPHIRecipe *PhiRecipe = nullptr; 9147 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9148 VPValue *StartV = Operands[0]; 9149 if (Legal->isReductionVariable(Phi)) { 9150 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9151 assert(RdxDesc.getRecurrenceStartValue() == 9152 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9153 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9154 CM.isInLoopReduction(Phi), 9155 CM.useOrderedReductions(RdxDesc)); 9156 } else { 9157 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9158 } 9159 9160 // Record the incoming value from the backedge, so we can add the incoming 9161 // value from the backedge after all recipes have been created. 9162 recordRecipeOf(cast<Instruction>( 9163 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9164 PhisToFix.push_back(PhiRecipe); 9165 } else { 9166 // TODO: record start and backedge value for remaining pointer induction 9167 // phis. 9168 assert(Phi->getType()->isPointerTy() && 9169 "only pointer phis should be handled here"); 9170 PhiRecipe = new VPWidenPHIRecipe(Phi); 9171 } 9172 9173 return toVPRecipeResult(PhiRecipe); 9174 } 9175 9176 if (isa<TruncInst>(Instr) && 9177 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9178 Range, *Plan))) 9179 return toVPRecipeResult(Recipe); 9180 9181 if (!shouldWiden(Instr, Range)) 9182 return nullptr; 9183 9184 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9185 return toVPRecipeResult(new VPWidenGEPRecipe( 9186 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9187 9188 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9189 bool InvariantCond = 9190 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9191 return toVPRecipeResult(new VPWidenSelectRecipe( 9192 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9193 } 9194 9195 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9196 } 9197 9198 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9199 ElementCount MaxVF) { 9200 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9201 9202 // Collect instructions from the original loop that will become trivially dead 9203 // in the vectorized loop. We don't need to vectorize these instructions. For 9204 // example, original induction update instructions can become dead because we 9205 // separately emit induction "steps" when generating code for the new loop. 9206 // Similarly, we create a new latch condition when setting up the structure 9207 // of the new loop, so the old one can become dead. 9208 SmallPtrSet<Instruction *, 4> DeadInstructions; 9209 collectTriviallyDeadInstructions(DeadInstructions); 9210 9211 // Add assume instructions we need to drop to DeadInstructions, to prevent 9212 // them from being added to the VPlan. 9213 // TODO: We only need to drop assumes in blocks that get flattend. If the 9214 // control flow is preserved, we should keep them. 9215 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9216 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9217 9218 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9219 // Dead instructions do not need sinking. Remove them from SinkAfter. 9220 for (Instruction *I : DeadInstructions) 9221 SinkAfter.erase(I); 9222 9223 // Cannot sink instructions after dead instructions (there won't be any 9224 // recipes for them). Instead, find the first non-dead previous instruction. 9225 for (auto &P : Legal->getSinkAfter()) { 9226 Instruction *SinkTarget = P.second; 9227 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9228 (void)FirstInst; 9229 while (DeadInstructions.contains(SinkTarget)) { 9230 assert( 9231 SinkTarget != FirstInst && 9232 "Must find a live instruction (at least the one feeding the " 9233 "first-order recurrence PHI) before reaching beginning of the block"); 9234 SinkTarget = SinkTarget->getPrevNode(); 9235 assert(SinkTarget != P.first && 9236 "sink source equals target, no sinking required"); 9237 } 9238 P.second = SinkTarget; 9239 } 9240 9241 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9242 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9243 VFRange SubRange = {VF, MaxVFPlusOne}; 9244 VPlans.push_back( 9245 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9246 VF = SubRange.End; 9247 } 9248 } 9249 9250 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9251 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9252 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9253 9254 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9255 9256 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9257 9258 // --------------------------------------------------------------------------- 9259 // Pre-construction: record ingredients whose recipes we'll need to further 9260 // process after constructing the initial VPlan. 9261 // --------------------------------------------------------------------------- 9262 9263 // Mark instructions we'll need to sink later and their targets as 9264 // ingredients whose recipe we'll need to record. 9265 for (auto &Entry : SinkAfter) { 9266 RecipeBuilder.recordRecipeOf(Entry.first); 9267 RecipeBuilder.recordRecipeOf(Entry.second); 9268 } 9269 for (auto &Reduction : CM.getInLoopReductionChains()) { 9270 PHINode *Phi = Reduction.first; 9271 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9272 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9273 9274 RecipeBuilder.recordRecipeOf(Phi); 9275 for (auto &R : ReductionOperations) { 9276 RecipeBuilder.recordRecipeOf(R); 9277 // For min/max reducitons, where we have a pair of icmp/select, we also 9278 // need to record the ICmp recipe, so it can be removed later. 9279 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9280 "Only min/max recurrences allowed for inloop reductions"); 9281 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9282 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9283 } 9284 } 9285 9286 // For each interleave group which is relevant for this (possibly trimmed) 9287 // Range, add it to the set of groups to be later applied to the VPlan and add 9288 // placeholders for its members' Recipes which we'll be replacing with a 9289 // single VPInterleaveRecipe. 9290 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9291 auto applyIG = [IG, this](ElementCount VF) -> bool { 9292 return (VF.isVector() && // Query is illegal for VF == 1 9293 CM.getWideningDecision(IG->getInsertPos(), VF) == 9294 LoopVectorizationCostModel::CM_Interleave); 9295 }; 9296 if (!getDecisionAndClampRange(applyIG, Range)) 9297 continue; 9298 InterleaveGroups.insert(IG); 9299 for (unsigned i = 0; i < IG->getFactor(); i++) 9300 if (Instruction *Member = IG->getMember(i)) 9301 RecipeBuilder.recordRecipeOf(Member); 9302 }; 9303 9304 // --------------------------------------------------------------------------- 9305 // Build initial VPlan: Scan the body of the loop in a topological order to 9306 // visit each basic block after having visited its predecessor basic blocks. 9307 // --------------------------------------------------------------------------- 9308 9309 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9310 auto Plan = std::make_unique<VPlan>(); 9311 9312 // Scan the body of the loop in a topological order to visit each basic block 9313 // after having visited its predecessor basic blocks. 9314 LoopBlocksDFS DFS(OrigLoop); 9315 DFS.perform(LI); 9316 9317 VPBasicBlock *VPBB = nullptr; 9318 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9319 // Relevant instructions from basic block BB will be grouped into VPRecipe 9320 // ingredients and fill a new VPBasicBlock. 9321 unsigned VPBBsForBB = 0; 9322 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9323 if (VPBB) 9324 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9325 else 9326 Plan->setEntry(FirstVPBBForBB); 9327 VPBB = FirstVPBBForBB; 9328 Builder.setInsertPoint(VPBB); 9329 9330 // Introduce each ingredient into VPlan. 9331 // TODO: Model and preserve debug instrinsics in VPlan. 9332 for (Instruction &I : BB->instructionsWithoutDebug()) { 9333 Instruction *Instr = &I; 9334 9335 // First filter out irrelevant instructions, to ensure no recipes are 9336 // built for them. 9337 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9338 continue; 9339 9340 SmallVector<VPValue *, 4> Operands; 9341 auto *Phi = dyn_cast<PHINode>(Instr); 9342 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9343 Operands.push_back(Plan->getOrAddVPValue( 9344 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9345 } else { 9346 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9347 Operands = {OpRange.begin(), OpRange.end()}; 9348 } 9349 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9350 Instr, Operands, Range, Plan)) { 9351 // If Instr can be simplified to an existing VPValue, use it. 9352 if (RecipeOrValue.is<VPValue *>()) { 9353 auto *VPV = RecipeOrValue.get<VPValue *>(); 9354 Plan->addVPValue(Instr, VPV); 9355 // If the re-used value is a recipe, register the recipe for the 9356 // instruction, in case the recipe for Instr needs to be recorded. 9357 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9358 RecipeBuilder.setRecipe(Instr, R); 9359 continue; 9360 } 9361 // Otherwise, add the new recipe. 9362 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9363 for (auto *Def : Recipe->definedValues()) { 9364 auto *UV = Def->getUnderlyingValue(); 9365 Plan->addVPValue(UV, Def); 9366 } 9367 9368 RecipeBuilder.setRecipe(Instr, Recipe); 9369 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe)) { 9370 // Make sure induction recipes are all kept in the header block. 9371 // VPWidenIntOrFpInductionRecipe may be generated when reaching a 9372 // Trunc of an induction Phi, where Trunc may not be in the header. 9373 auto *Header = Plan->getEntry()->getEntryBasicBlock(); 9374 Header->insert(Recipe, Header->getFirstNonPhi()); 9375 } else 9376 VPBB->appendRecipe(Recipe); 9377 continue; 9378 } 9379 9380 // Otherwise, if all widening options failed, Instruction is to be 9381 // replicated. This may create a successor for VPBB. 9382 VPBasicBlock *NextVPBB = 9383 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9384 if (NextVPBB != VPBB) { 9385 VPBB = NextVPBB; 9386 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9387 : ""); 9388 } 9389 } 9390 } 9391 9392 assert(isa<VPBasicBlock>(Plan->getEntry()) && 9393 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9394 "entry block must be set to a non-empty VPBasicBlock"); 9395 RecipeBuilder.fixHeaderPhis(); 9396 9397 // --------------------------------------------------------------------------- 9398 // Transform initial VPlan: Apply previously taken decisions, in order, to 9399 // bring the VPlan to its final state. 9400 // --------------------------------------------------------------------------- 9401 9402 // Apply Sink-After legal constraints. 9403 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9404 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9405 if (Region && Region->isReplicator()) { 9406 assert(Region->getNumSuccessors() == 1 && 9407 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9408 assert(R->getParent()->size() == 1 && 9409 "A recipe in an original replicator region must be the only " 9410 "recipe in its block"); 9411 return Region; 9412 } 9413 return nullptr; 9414 }; 9415 for (auto &Entry : SinkAfter) { 9416 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9417 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9418 9419 auto *TargetRegion = GetReplicateRegion(Target); 9420 auto *SinkRegion = GetReplicateRegion(Sink); 9421 if (!SinkRegion) { 9422 // If the sink source is not a replicate region, sink the recipe directly. 9423 if (TargetRegion) { 9424 // The target is in a replication region, make sure to move Sink to 9425 // the block after it, not into the replication region itself. 9426 VPBasicBlock *NextBlock = 9427 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9428 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9429 } else 9430 Sink->moveAfter(Target); 9431 continue; 9432 } 9433 9434 // The sink source is in a replicate region. Unhook the region from the CFG. 9435 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9436 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9437 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9438 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9439 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9440 9441 if (TargetRegion) { 9442 // The target recipe is also in a replicate region, move the sink region 9443 // after the target region. 9444 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9445 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9446 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9447 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9448 } else { 9449 // The sink source is in a replicate region, we need to move the whole 9450 // replicate region, which should only contain a single recipe in the 9451 // main block. 9452 auto *SplitBlock = 9453 Target->getParent()->splitAt(std::next(Target->getIterator())); 9454 9455 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9456 9457 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9458 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9459 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9460 if (VPBB == SplitPred) 9461 VPBB = SplitBlock; 9462 } 9463 } 9464 9465 // Adjust the recipes for any inloop reductions. 9466 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9467 9468 // Introduce a recipe to combine the incoming and previous values of a 9469 // first-order recurrence. 9470 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9471 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9472 if (!RecurPhi) 9473 continue; 9474 9475 auto *RecurSplice = cast<VPInstruction>( 9476 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9477 {RecurPhi, RecurPhi->getBackedgeValue()})); 9478 9479 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9480 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9481 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9482 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9483 } else 9484 RecurSplice->moveAfter(PrevRecipe); 9485 RecurPhi->replaceAllUsesWith(RecurSplice); 9486 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9487 // all users. 9488 RecurSplice->setOperand(0, RecurPhi); 9489 } 9490 9491 // Interleave memory: for each Interleave Group we marked earlier as relevant 9492 // for this VPlan, replace the Recipes widening its memory instructions with a 9493 // single VPInterleaveRecipe at its insertion point. 9494 for (auto IG : InterleaveGroups) { 9495 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9496 RecipeBuilder.getRecipe(IG->getInsertPos())); 9497 SmallVector<VPValue *, 4> StoredValues; 9498 for (unsigned i = 0; i < IG->getFactor(); ++i) 9499 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9500 auto *StoreR = 9501 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9502 StoredValues.push_back(StoreR->getStoredValue()); 9503 } 9504 9505 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9506 Recipe->getMask()); 9507 VPIG->insertBefore(Recipe); 9508 unsigned J = 0; 9509 for (unsigned i = 0; i < IG->getFactor(); ++i) 9510 if (Instruction *Member = IG->getMember(i)) { 9511 if (!Member->getType()->isVoidTy()) { 9512 VPValue *OriginalV = Plan->getVPValue(Member); 9513 Plan->removeVPValueFor(Member); 9514 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9515 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9516 J++; 9517 } 9518 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9519 } 9520 } 9521 9522 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9523 // in ways that accessing values using original IR values is incorrect. 9524 Plan->disableValue2VPValue(); 9525 9526 VPlanTransforms::sinkScalarOperands(*Plan); 9527 VPlanTransforms::mergeReplicateRegions(*Plan); 9528 9529 std::string PlanName; 9530 raw_string_ostream RSO(PlanName); 9531 ElementCount VF = Range.Start; 9532 Plan->addVF(VF); 9533 RSO << "Initial VPlan for VF={" << VF; 9534 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9535 Plan->addVF(VF); 9536 RSO << "," << VF; 9537 } 9538 RSO << "},UF>=1"; 9539 RSO.flush(); 9540 Plan->setName(PlanName); 9541 9542 return Plan; 9543 } 9544 9545 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9546 // Outer loop handling: They may require CFG and instruction level 9547 // transformations before even evaluating whether vectorization is profitable. 9548 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9549 // the vectorization pipeline. 9550 assert(!OrigLoop->isInnermost()); 9551 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9552 9553 // Create new empty VPlan 9554 auto Plan = std::make_unique<VPlan>(); 9555 9556 // Build hierarchical CFG 9557 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9558 HCFGBuilder.buildHierarchicalCFG(); 9559 9560 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9561 VF *= 2) 9562 Plan->addVF(VF); 9563 9564 if (EnableVPlanPredication) { 9565 VPlanPredicator VPP(*Plan); 9566 VPP.predicate(); 9567 9568 // Avoid running transformation to recipes until masked code generation in 9569 // VPlan-native path is in place. 9570 return Plan; 9571 } 9572 9573 SmallPtrSet<Instruction *, 1> DeadInstructions; 9574 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9575 Legal->getInductionVars(), 9576 DeadInstructions, *PSE.getSE()); 9577 return Plan; 9578 } 9579 9580 // Adjust the recipes for reductions. For in-loop reductions the chain of 9581 // instructions leading from the loop exit instr to the phi need to be converted 9582 // to reductions, with one operand being vector and the other being the scalar 9583 // reduction chain. For other reductions, a select is introduced between the phi 9584 // and live-out recipes when folding the tail. 9585 void LoopVectorizationPlanner::adjustRecipesForReductions( 9586 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9587 ElementCount MinVF) { 9588 for (auto &Reduction : CM.getInLoopReductionChains()) { 9589 PHINode *Phi = Reduction.first; 9590 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9591 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9592 9593 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9594 continue; 9595 9596 // ReductionOperations are orders top-down from the phi's use to the 9597 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9598 // which of the two operands will remain scalar and which will be reduced. 9599 // For minmax the chain will be the select instructions. 9600 Instruction *Chain = Phi; 9601 for (Instruction *R : ReductionOperations) { 9602 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9603 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9604 9605 VPValue *ChainOp = Plan->getVPValue(Chain); 9606 unsigned FirstOpId; 9607 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9608 "Only min/max recurrences allowed for inloop reductions"); 9609 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9610 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9611 "Expected to replace a VPWidenSelectSC"); 9612 FirstOpId = 1; 9613 } else { 9614 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9615 "Expected to replace a VPWidenSC"); 9616 FirstOpId = 0; 9617 } 9618 unsigned VecOpId = 9619 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9620 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9621 9622 auto *CondOp = CM.foldTailByMasking() 9623 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9624 : nullptr; 9625 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9626 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9627 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9628 Plan->removeVPValueFor(R); 9629 Plan->addVPValue(R, RedRecipe); 9630 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9631 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9632 WidenRecipe->eraseFromParent(); 9633 9634 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9635 VPRecipeBase *CompareRecipe = 9636 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9637 assert(isa<VPWidenRecipe>(CompareRecipe) && 9638 "Expected to replace a VPWidenSC"); 9639 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9640 "Expected no remaining users"); 9641 CompareRecipe->eraseFromParent(); 9642 } 9643 Chain = R; 9644 } 9645 } 9646 9647 // If tail is folded by masking, introduce selects between the phi 9648 // and the live-out instruction of each reduction, at the end of the latch. 9649 if (CM.foldTailByMasking()) { 9650 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9651 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9652 if (!PhiR || PhiR->isInLoop()) 9653 continue; 9654 Builder.setInsertPoint(LatchVPBB); 9655 VPValue *Cond = 9656 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9657 VPValue *Red = PhiR->getBackedgeValue(); 9658 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9659 } 9660 } 9661 } 9662 9663 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9664 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9665 VPSlotTracker &SlotTracker) const { 9666 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9667 IG->getInsertPos()->printAsOperand(O, false); 9668 O << ", "; 9669 getAddr()->printAsOperand(O, SlotTracker); 9670 VPValue *Mask = getMask(); 9671 if (Mask) { 9672 O << ", "; 9673 Mask->printAsOperand(O, SlotTracker); 9674 } 9675 9676 unsigned OpIdx = 0; 9677 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9678 if (!IG->getMember(i)) 9679 continue; 9680 if (getNumStoreOperands() > 0) { 9681 O << "\n" << Indent << " store "; 9682 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9683 O << " to index " << i; 9684 } else { 9685 O << "\n" << Indent << " "; 9686 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9687 O << " = load from index " << i; 9688 } 9689 ++OpIdx; 9690 } 9691 } 9692 #endif 9693 9694 void VPWidenCallRecipe::execute(VPTransformState &State) { 9695 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9696 *this, State); 9697 } 9698 9699 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9700 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9701 this, *this, InvariantCond, State); 9702 } 9703 9704 void VPWidenRecipe::execute(VPTransformState &State) { 9705 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9706 } 9707 9708 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9709 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9710 *this, State.UF, State.VF, IsPtrLoopInvariant, 9711 IsIndexLoopInvariant, State); 9712 } 9713 9714 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9715 assert(!State.Instance && "Int or FP induction being replicated."); 9716 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9717 getTruncInst(), getVPValue(0), 9718 getCastValue(), State); 9719 } 9720 9721 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9722 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9723 State); 9724 } 9725 9726 void VPBlendRecipe::execute(VPTransformState &State) { 9727 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9728 // We know that all PHIs in non-header blocks are converted into 9729 // selects, so we don't have to worry about the insertion order and we 9730 // can just use the builder. 9731 // At this point we generate the predication tree. There may be 9732 // duplications since this is a simple recursive scan, but future 9733 // optimizations will clean it up. 9734 9735 unsigned NumIncoming = getNumIncomingValues(); 9736 9737 // Generate a sequence of selects of the form: 9738 // SELECT(Mask3, In3, 9739 // SELECT(Mask2, In2, 9740 // SELECT(Mask1, In1, 9741 // In0))) 9742 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9743 // are essentially undef are taken from In0. 9744 InnerLoopVectorizer::VectorParts Entry(State.UF); 9745 for (unsigned In = 0; In < NumIncoming; ++In) { 9746 for (unsigned Part = 0; Part < State.UF; ++Part) { 9747 // We might have single edge PHIs (blocks) - use an identity 9748 // 'select' for the first PHI operand. 9749 Value *In0 = State.get(getIncomingValue(In), Part); 9750 if (In == 0) 9751 Entry[Part] = In0; // Initialize with the first incoming value. 9752 else { 9753 // Select between the current value and the previous incoming edge 9754 // based on the incoming mask. 9755 Value *Cond = State.get(getMask(In), Part); 9756 Entry[Part] = 9757 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9758 } 9759 } 9760 } 9761 for (unsigned Part = 0; Part < State.UF; ++Part) 9762 State.set(this, Entry[Part], Part); 9763 } 9764 9765 void VPInterleaveRecipe::execute(VPTransformState &State) { 9766 assert(!State.Instance && "Interleave group being replicated."); 9767 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9768 getStoredValues(), getMask()); 9769 } 9770 9771 void VPReductionRecipe::execute(VPTransformState &State) { 9772 assert(!State.Instance && "Reduction being replicated."); 9773 Value *PrevInChain = State.get(getChainOp(), 0); 9774 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9775 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9776 // Propagate the fast-math flags carried by the underlying instruction. 9777 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9778 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9779 for (unsigned Part = 0; Part < State.UF; ++Part) { 9780 Value *NewVecOp = State.get(getVecOp(), Part); 9781 if (VPValue *Cond = getCondOp()) { 9782 Value *NewCond = State.get(Cond, Part); 9783 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9784 Value *Iden = RdxDesc->getRecurrenceIdentity( 9785 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9786 Value *IdenVec = 9787 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9788 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9789 NewVecOp = Select; 9790 } 9791 Value *NewRed; 9792 Value *NextInChain; 9793 if (IsOrdered) { 9794 if (State.VF.isVector()) 9795 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9796 PrevInChain); 9797 else 9798 NewRed = State.Builder.CreateBinOp( 9799 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9800 NewVecOp); 9801 PrevInChain = NewRed; 9802 } else { 9803 PrevInChain = State.get(getChainOp(), Part); 9804 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9805 } 9806 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9807 NextInChain = 9808 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9809 NewRed, PrevInChain); 9810 } else if (IsOrdered) 9811 NextInChain = NewRed; 9812 else 9813 NextInChain = State.Builder.CreateBinOp( 9814 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9815 PrevInChain); 9816 State.set(this, NextInChain, Part); 9817 } 9818 } 9819 9820 void VPReplicateRecipe::execute(VPTransformState &State) { 9821 if (State.Instance) { // Generate a single instance. 9822 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9823 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9824 *State.Instance, IsPredicated, State); 9825 // Insert scalar instance packing it into a vector. 9826 if (AlsoPack && State.VF.isVector()) { 9827 // If we're constructing lane 0, initialize to start from poison. 9828 if (State.Instance->Lane.isFirstLane()) { 9829 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9830 Value *Poison = PoisonValue::get( 9831 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9832 State.set(this, Poison, State.Instance->Part); 9833 } 9834 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9835 } 9836 return; 9837 } 9838 9839 // Generate scalar instances for all VF lanes of all UF parts, unless the 9840 // instruction is uniform inwhich case generate only the first lane for each 9841 // of the UF parts. 9842 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9843 assert((!State.VF.isScalable() || IsUniform) && 9844 "Can't scalarize a scalable vector"); 9845 for (unsigned Part = 0; Part < State.UF; ++Part) 9846 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9847 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9848 VPIteration(Part, Lane), IsPredicated, 9849 State); 9850 } 9851 9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9853 assert(State.Instance && "Branch on Mask works only on single instance."); 9854 9855 unsigned Part = State.Instance->Part; 9856 unsigned Lane = State.Instance->Lane.getKnownLane(); 9857 9858 Value *ConditionBit = nullptr; 9859 VPValue *BlockInMask = getMask(); 9860 if (BlockInMask) { 9861 ConditionBit = State.get(BlockInMask, Part); 9862 if (ConditionBit->getType()->isVectorTy()) 9863 ConditionBit = State.Builder.CreateExtractElement( 9864 ConditionBit, State.Builder.getInt32(Lane)); 9865 } else // Block in mask is all-one. 9866 ConditionBit = State.Builder.getTrue(); 9867 9868 // Replace the temporary unreachable terminator with a new conditional branch, 9869 // whose two destinations will be set later when they are created. 9870 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9871 assert(isa<UnreachableInst>(CurrentTerminator) && 9872 "Expected to replace unreachable terminator with conditional branch."); 9873 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9874 CondBr->setSuccessor(0, nullptr); 9875 ReplaceInstWithInst(CurrentTerminator, CondBr); 9876 } 9877 9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9879 assert(State.Instance && "Predicated instruction PHI works per instance."); 9880 Instruction *ScalarPredInst = 9881 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9882 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9883 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9884 assert(PredicatingBB && "Predicated block has no single predecessor."); 9885 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9886 "operand must be VPReplicateRecipe"); 9887 9888 // By current pack/unpack logic we need to generate only a single phi node: if 9889 // a vector value for the predicated instruction exists at this point it means 9890 // the instruction has vector users only, and a phi for the vector value is 9891 // needed. In this case the recipe of the predicated instruction is marked to 9892 // also do that packing, thereby "hoisting" the insert-element sequence. 9893 // Otherwise, a phi node for the scalar value is needed. 9894 unsigned Part = State.Instance->Part; 9895 if (State.hasVectorValue(getOperand(0), Part)) { 9896 Value *VectorValue = State.get(getOperand(0), Part); 9897 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9898 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9899 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9900 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9901 if (State.hasVectorValue(this, Part)) 9902 State.reset(this, VPhi, Part); 9903 else 9904 State.set(this, VPhi, Part); 9905 // NOTE: Currently we need to update the value of the operand, so the next 9906 // predicated iteration inserts its generated value in the correct vector. 9907 State.reset(getOperand(0), VPhi, Part); 9908 } else { 9909 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9910 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9911 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9912 PredicatingBB); 9913 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9914 if (State.hasScalarValue(this, *State.Instance)) 9915 State.reset(this, Phi, *State.Instance); 9916 else 9917 State.set(this, Phi, *State.Instance); 9918 // NOTE: Currently we need to update the value of the operand, so the next 9919 // predicated iteration inserts its generated value in the correct vector. 9920 State.reset(getOperand(0), Phi, *State.Instance); 9921 } 9922 } 9923 9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9925 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9926 State.ILV->vectorizeMemoryInstruction( 9927 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9928 StoredValue, getMask(), Consecutive, Reverse); 9929 } 9930 9931 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9932 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9933 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9934 // for predication. 9935 static ScalarEpilogueLowering getScalarEpilogueLowering( 9936 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9937 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9938 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9939 LoopVectorizationLegality &LVL) { 9940 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9941 // don't look at hints or options, and don't request a scalar epilogue. 9942 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9943 // LoopAccessInfo (due to code dependency and not being able to reliably get 9944 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9945 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9946 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9947 // back to the old way and vectorize with versioning when forced. See D81345.) 9948 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9949 PGSOQueryType::IRPass) && 9950 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9951 return CM_ScalarEpilogueNotAllowedOptSize; 9952 9953 // 2) If set, obey the directives 9954 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9955 switch (PreferPredicateOverEpilogue) { 9956 case PreferPredicateTy::ScalarEpilogue: 9957 return CM_ScalarEpilogueAllowed; 9958 case PreferPredicateTy::PredicateElseScalarEpilogue: 9959 return CM_ScalarEpilogueNotNeededUsePredicate; 9960 case PreferPredicateTy::PredicateOrDontVectorize: 9961 return CM_ScalarEpilogueNotAllowedUsePredicate; 9962 }; 9963 } 9964 9965 // 3) If set, obey the hints 9966 switch (Hints.getPredicate()) { 9967 case LoopVectorizeHints::FK_Enabled: 9968 return CM_ScalarEpilogueNotNeededUsePredicate; 9969 case LoopVectorizeHints::FK_Disabled: 9970 return CM_ScalarEpilogueAllowed; 9971 }; 9972 9973 // 4) if the TTI hook indicates this is profitable, request predication. 9974 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9975 LVL.getLAI())) 9976 return CM_ScalarEpilogueNotNeededUsePredicate; 9977 9978 return CM_ScalarEpilogueAllowed; 9979 } 9980 9981 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9982 // If Values have been set for this Def return the one relevant for \p Part. 9983 if (hasVectorValue(Def, Part)) 9984 return Data.PerPartOutput[Def][Part]; 9985 9986 if (!hasScalarValue(Def, {Part, 0})) { 9987 Value *IRV = Def->getLiveInIRValue(); 9988 Value *B = ILV->getBroadcastInstrs(IRV); 9989 set(Def, B, Part); 9990 return B; 9991 } 9992 9993 Value *ScalarValue = get(Def, {Part, 0}); 9994 // If we aren't vectorizing, we can just copy the scalar map values over 9995 // to the vector map. 9996 if (VF.isScalar()) { 9997 set(Def, ScalarValue, Part); 9998 return ScalarValue; 9999 } 10000 10001 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10002 bool IsUniform = RepR && RepR->isUniform(); 10003 10004 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10005 // Check if there is a scalar value for the selected lane. 10006 if (!hasScalarValue(Def, {Part, LastLane})) { 10007 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10008 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10009 "unexpected recipe found to be invariant"); 10010 IsUniform = true; 10011 LastLane = 0; 10012 } 10013 10014 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10015 // Set the insert point after the last scalarized instruction or after the 10016 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10017 // will directly follow the scalar definitions. 10018 auto OldIP = Builder.saveIP(); 10019 auto NewIP = 10020 isa<PHINode>(LastInst) 10021 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10022 : std::next(BasicBlock::iterator(LastInst)); 10023 Builder.SetInsertPoint(&*NewIP); 10024 10025 // However, if we are vectorizing, we need to construct the vector values. 10026 // If the value is known to be uniform after vectorization, we can just 10027 // broadcast the scalar value corresponding to lane zero for each unroll 10028 // iteration. Otherwise, we construct the vector values using 10029 // insertelement instructions. Since the resulting vectors are stored in 10030 // State, we will only generate the insertelements once. 10031 Value *VectorValue = nullptr; 10032 if (IsUniform) { 10033 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10034 set(Def, VectorValue, Part); 10035 } else { 10036 // Initialize packing with insertelements to start from undef. 10037 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10038 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10039 set(Def, Undef, Part); 10040 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10041 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10042 VectorValue = get(Def, Part); 10043 } 10044 Builder.restoreIP(OldIP); 10045 return VectorValue; 10046 } 10047 10048 // Process the loop in the VPlan-native vectorization path. This path builds 10049 // VPlan upfront in the vectorization pipeline, which allows to apply 10050 // VPlan-to-VPlan transformations from the very beginning without modifying the 10051 // input LLVM IR. 10052 static bool processLoopInVPlanNativePath( 10053 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10054 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10055 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10056 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10057 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10058 LoopVectorizationRequirements &Requirements) { 10059 10060 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10061 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10062 return false; 10063 } 10064 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10065 Function *F = L->getHeader()->getParent(); 10066 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10067 10068 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10069 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10070 10071 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10072 &Hints, IAI); 10073 // Use the planner for outer loop vectorization. 10074 // TODO: CM is not used at this point inside the planner. Turn CM into an 10075 // optional argument if we don't need it in the future. 10076 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10077 Requirements, ORE); 10078 10079 // Get user vectorization factor. 10080 ElementCount UserVF = Hints.getWidth(); 10081 10082 CM.collectElementTypesForWidening(); 10083 10084 // Plan how to best vectorize, return the best VF and its cost. 10085 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10086 10087 // If we are stress testing VPlan builds, do not attempt to generate vector 10088 // code. Masked vector code generation support will follow soon. 10089 // Also, do not attempt to vectorize if no vector code will be produced. 10090 if (VPlanBuildStressTest || EnableVPlanPredication || 10091 VectorizationFactor::Disabled() == VF) 10092 return false; 10093 10094 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10095 10096 { 10097 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10098 F->getParent()->getDataLayout()); 10099 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10100 &CM, BFI, PSI, Checks); 10101 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10102 << L->getHeader()->getParent()->getName() << "\"\n"); 10103 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10104 } 10105 10106 // Mark the loop as already vectorized to avoid vectorizing again. 10107 Hints.setAlreadyVectorized(); 10108 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10109 return true; 10110 } 10111 10112 // Emit a remark if there are stores to floats that required a floating point 10113 // extension. If the vectorized loop was generated with floating point there 10114 // will be a performance penalty from the conversion overhead and the change in 10115 // the vector width. 10116 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10117 SmallVector<Instruction *, 4> Worklist; 10118 for (BasicBlock *BB : L->getBlocks()) { 10119 for (Instruction &Inst : *BB) { 10120 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10121 if (S->getValueOperand()->getType()->isFloatTy()) 10122 Worklist.push_back(S); 10123 } 10124 } 10125 } 10126 10127 // Traverse the floating point stores upwards searching, for floating point 10128 // conversions. 10129 SmallPtrSet<const Instruction *, 4> Visited; 10130 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10131 while (!Worklist.empty()) { 10132 auto *I = Worklist.pop_back_val(); 10133 if (!L->contains(I)) 10134 continue; 10135 if (!Visited.insert(I).second) 10136 continue; 10137 10138 // Emit a remark if the floating point store required a floating 10139 // point conversion. 10140 // TODO: More work could be done to identify the root cause such as a 10141 // constant or a function return type and point the user to it. 10142 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10143 ORE->emit([&]() { 10144 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10145 I->getDebugLoc(), L->getHeader()) 10146 << "floating point conversion changes vector width. " 10147 << "Mixed floating point precision requires an up/down " 10148 << "cast that will negatively impact performance."; 10149 }); 10150 10151 for (Use &Op : I->operands()) 10152 if (auto *OpI = dyn_cast<Instruction>(Op)) 10153 Worklist.push_back(OpI); 10154 } 10155 } 10156 10157 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10158 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10159 !EnableLoopInterleaving), 10160 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10161 !EnableLoopVectorization) {} 10162 10163 bool LoopVectorizePass::processLoop(Loop *L) { 10164 assert((EnableVPlanNativePath || L->isInnermost()) && 10165 "VPlan-native path is not enabled. Only process inner loops."); 10166 10167 #ifndef NDEBUG 10168 const std::string DebugLocStr = getDebugLocString(L); 10169 #endif /* NDEBUG */ 10170 10171 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10172 << L->getHeader()->getParent()->getName() << "\" from " 10173 << DebugLocStr << "\n"); 10174 10175 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10176 10177 LLVM_DEBUG( 10178 dbgs() << "LV: Loop hints:" 10179 << " force=" 10180 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10181 ? "disabled" 10182 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10183 ? "enabled" 10184 : "?")) 10185 << " width=" << Hints.getWidth() 10186 << " interleave=" << Hints.getInterleave() << "\n"); 10187 10188 // Function containing loop 10189 Function *F = L->getHeader()->getParent(); 10190 10191 // Looking at the diagnostic output is the only way to determine if a loop 10192 // was vectorized (other than looking at the IR or machine code), so it 10193 // is important to generate an optimization remark for each loop. Most of 10194 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10195 // generated as OptimizationRemark and OptimizationRemarkMissed are 10196 // less verbose reporting vectorized loops and unvectorized loops that may 10197 // benefit from vectorization, respectively. 10198 10199 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10200 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10201 return false; 10202 } 10203 10204 PredicatedScalarEvolution PSE(*SE, *L); 10205 10206 // Check if it is legal to vectorize the loop. 10207 LoopVectorizationRequirements Requirements; 10208 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10209 &Requirements, &Hints, DB, AC, BFI, PSI); 10210 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10211 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10212 Hints.emitRemarkWithHints(); 10213 return false; 10214 } 10215 10216 // Check the function attributes and profiles to find out if this function 10217 // should be optimized for size. 10218 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10219 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10220 10221 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10222 // here. They may require CFG and instruction level transformations before 10223 // even evaluating whether vectorization is profitable. Since we cannot modify 10224 // the incoming IR, we need to build VPlan upfront in the vectorization 10225 // pipeline. 10226 if (!L->isInnermost()) 10227 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10228 ORE, BFI, PSI, Hints, Requirements); 10229 10230 assert(L->isInnermost() && "Inner loop expected."); 10231 10232 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10233 // count by optimizing for size, to minimize overheads. 10234 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10235 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10236 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10237 << "This loop is worth vectorizing only if no scalar " 10238 << "iteration overheads are incurred."); 10239 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10240 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10241 else { 10242 LLVM_DEBUG(dbgs() << "\n"); 10243 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10244 } 10245 } 10246 10247 // Check the function attributes to see if implicit floats are allowed. 10248 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10249 // an integer loop and the vector instructions selected are purely integer 10250 // vector instructions? 10251 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10252 reportVectorizationFailure( 10253 "Can't vectorize when the NoImplicitFloat attribute is used", 10254 "loop not vectorized due to NoImplicitFloat attribute", 10255 "NoImplicitFloat", ORE, L); 10256 Hints.emitRemarkWithHints(); 10257 return false; 10258 } 10259 10260 // Check if the target supports potentially unsafe FP vectorization. 10261 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10262 // for the target we're vectorizing for, to make sure none of the 10263 // additional fp-math flags can help. 10264 if (Hints.isPotentiallyUnsafe() && 10265 TTI->isFPVectorizationPotentiallyUnsafe()) { 10266 reportVectorizationFailure( 10267 "Potentially unsafe FP op prevents vectorization", 10268 "loop not vectorized due to unsafe FP support.", 10269 "UnsafeFP", ORE, L); 10270 Hints.emitRemarkWithHints(); 10271 return false; 10272 } 10273 10274 bool AllowOrderedReductions; 10275 // If the flag is set, use that instead and override the TTI behaviour. 10276 if (ForceOrderedReductions.getNumOccurrences() > 0) 10277 AllowOrderedReductions = ForceOrderedReductions; 10278 else 10279 AllowOrderedReductions = TTI->enableOrderedReductions(); 10280 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10281 ORE->emit([&]() { 10282 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10283 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10284 ExactFPMathInst->getDebugLoc(), 10285 ExactFPMathInst->getParent()) 10286 << "loop not vectorized: cannot prove it is safe to reorder " 10287 "floating-point operations"; 10288 }); 10289 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10290 "reorder floating-point operations\n"); 10291 Hints.emitRemarkWithHints(); 10292 return false; 10293 } 10294 10295 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10296 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10297 10298 // If an override option has been passed in for interleaved accesses, use it. 10299 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10300 UseInterleaved = EnableInterleavedMemAccesses; 10301 10302 // Analyze interleaved memory accesses. 10303 if (UseInterleaved) { 10304 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10305 } 10306 10307 // Use the cost model. 10308 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10309 F, &Hints, IAI); 10310 CM.collectValuesToIgnore(); 10311 CM.collectElementTypesForWidening(); 10312 10313 // Use the planner for vectorization. 10314 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10315 Requirements, ORE); 10316 10317 // Get user vectorization factor and interleave count. 10318 ElementCount UserVF = Hints.getWidth(); 10319 unsigned UserIC = Hints.getInterleave(); 10320 10321 // Plan how to best vectorize, return the best VF and its cost. 10322 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10323 10324 VectorizationFactor VF = VectorizationFactor::Disabled(); 10325 unsigned IC = 1; 10326 10327 if (MaybeVF) { 10328 VF = *MaybeVF; 10329 // Select the interleave count. 10330 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10331 } 10332 10333 // Identify the diagnostic messages that should be produced. 10334 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10335 bool VectorizeLoop = true, InterleaveLoop = true; 10336 if (VF.Width.isScalar()) { 10337 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10338 VecDiagMsg = std::make_pair( 10339 "VectorizationNotBeneficial", 10340 "the cost-model indicates that vectorization is not beneficial"); 10341 VectorizeLoop = false; 10342 } 10343 10344 if (!MaybeVF && UserIC > 1) { 10345 // Tell the user interleaving was avoided up-front, despite being explicitly 10346 // requested. 10347 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10348 "interleaving should be avoided up front\n"); 10349 IntDiagMsg = std::make_pair( 10350 "InterleavingAvoided", 10351 "Ignoring UserIC, because interleaving was avoided up front"); 10352 InterleaveLoop = false; 10353 } else if (IC == 1 && UserIC <= 1) { 10354 // Tell the user interleaving is not beneficial. 10355 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10356 IntDiagMsg = std::make_pair( 10357 "InterleavingNotBeneficial", 10358 "the cost-model indicates that interleaving is not beneficial"); 10359 InterleaveLoop = false; 10360 if (UserIC == 1) { 10361 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10362 IntDiagMsg.second += 10363 " and is explicitly disabled or interleave count is set to 1"; 10364 } 10365 } else if (IC > 1 && UserIC == 1) { 10366 // Tell the user interleaving is beneficial, but it explicitly disabled. 10367 LLVM_DEBUG( 10368 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10369 IntDiagMsg = std::make_pair( 10370 "InterleavingBeneficialButDisabled", 10371 "the cost-model indicates that interleaving is beneficial " 10372 "but is explicitly disabled or interleave count is set to 1"); 10373 InterleaveLoop = false; 10374 } 10375 10376 // Override IC if user provided an interleave count. 10377 IC = UserIC > 0 ? UserIC : IC; 10378 10379 // Emit diagnostic messages, if any. 10380 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10381 if (!VectorizeLoop && !InterleaveLoop) { 10382 // Do not vectorize or interleaving the loop. 10383 ORE->emit([&]() { 10384 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10385 L->getStartLoc(), L->getHeader()) 10386 << VecDiagMsg.second; 10387 }); 10388 ORE->emit([&]() { 10389 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10390 L->getStartLoc(), L->getHeader()) 10391 << IntDiagMsg.second; 10392 }); 10393 return false; 10394 } else if (!VectorizeLoop && InterleaveLoop) { 10395 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10396 ORE->emit([&]() { 10397 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10398 L->getStartLoc(), L->getHeader()) 10399 << VecDiagMsg.second; 10400 }); 10401 } else if (VectorizeLoop && !InterleaveLoop) { 10402 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10403 << ") in " << DebugLocStr << '\n'); 10404 ORE->emit([&]() { 10405 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10406 L->getStartLoc(), L->getHeader()) 10407 << IntDiagMsg.second; 10408 }); 10409 } else if (VectorizeLoop && InterleaveLoop) { 10410 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10411 << ") in " << DebugLocStr << '\n'); 10412 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10413 } 10414 10415 bool DisableRuntimeUnroll = false; 10416 MDNode *OrigLoopID = L->getLoopID(); 10417 { 10418 // Optimistically generate runtime checks. Drop them if they turn out to not 10419 // be profitable. Limit the scope of Checks, so the cleanup happens 10420 // immediately after vector codegeneration is done. 10421 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10422 F->getParent()->getDataLayout()); 10423 if (!VF.Width.isScalar() || IC > 1) 10424 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10425 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10426 10427 using namespace ore; 10428 if (!VectorizeLoop) { 10429 assert(IC > 1 && "interleave count should not be 1 or 0"); 10430 // If we decided that it is not legal to vectorize the loop, then 10431 // interleave it. 10432 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10433 &CM, BFI, PSI, Checks); 10434 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10435 10436 ORE->emit([&]() { 10437 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10438 L->getHeader()) 10439 << "interleaved loop (interleaved count: " 10440 << NV("InterleaveCount", IC) << ")"; 10441 }); 10442 } else { 10443 // If we decided that it is *legal* to vectorize the loop, then do it. 10444 10445 // Consider vectorizing the epilogue too if it's profitable. 10446 VectorizationFactor EpilogueVF = 10447 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10448 if (EpilogueVF.Width.isVector()) { 10449 10450 // The first pass vectorizes the main loop and creates a scalar epilogue 10451 // to be vectorized by executing the plan (potentially with a different 10452 // factor) again shortly afterwards. 10453 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10454 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10455 EPI, &LVL, &CM, BFI, PSI, Checks); 10456 10457 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestPlan, MainILV, DT); 10458 ++LoopsVectorized; 10459 10460 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10461 formLCSSARecursively(*L, *DT, LI, SE); 10462 10463 // Second pass vectorizes the epilogue and adjusts the control flow 10464 // edges from the first pass. 10465 EPI.MainLoopVF = EPI.EpilogueVF; 10466 EPI.MainLoopUF = EPI.EpilogueUF; 10467 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10468 ORE, EPI, &LVL, &CM, BFI, PSI, 10469 Checks); 10470 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestPlan, EpilogILV, 10471 DT); 10472 ++LoopsEpilogueVectorized; 10473 10474 if (!MainILV.areSafetyChecksAdded()) 10475 DisableRuntimeUnroll = true; 10476 } else { 10477 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10478 &LVL, &CM, BFI, PSI, Checks); 10479 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10480 ++LoopsVectorized; 10481 10482 // Add metadata to disable runtime unrolling a scalar loop when there 10483 // are no runtime checks about strides and memory. A scalar loop that is 10484 // rarely used is not worth unrolling. 10485 if (!LB.areSafetyChecksAdded()) 10486 DisableRuntimeUnroll = true; 10487 } 10488 // Report the vectorization decision. 10489 ORE->emit([&]() { 10490 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10491 L->getHeader()) 10492 << "vectorized loop (vectorization width: " 10493 << NV("VectorizationFactor", VF.Width) 10494 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10495 }); 10496 } 10497 10498 if (ORE->allowExtraAnalysis(LV_NAME)) 10499 checkMixedPrecision(L, ORE); 10500 } 10501 10502 Optional<MDNode *> RemainderLoopID = 10503 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10504 LLVMLoopVectorizeFollowupEpilogue}); 10505 if (RemainderLoopID.hasValue()) { 10506 L->setLoopID(RemainderLoopID.getValue()); 10507 } else { 10508 if (DisableRuntimeUnroll) 10509 AddRuntimeUnrollDisableMetaData(L); 10510 10511 // Mark the loop as already vectorized to avoid vectorizing again. 10512 Hints.setAlreadyVectorized(); 10513 } 10514 10515 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10516 return true; 10517 } 10518 10519 LoopVectorizeResult LoopVectorizePass::runImpl( 10520 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10521 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10522 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10523 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10524 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10525 SE = &SE_; 10526 LI = &LI_; 10527 TTI = &TTI_; 10528 DT = &DT_; 10529 BFI = &BFI_; 10530 TLI = TLI_; 10531 AA = &AA_; 10532 AC = &AC_; 10533 GetLAA = &GetLAA_; 10534 DB = &DB_; 10535 ORE = &ORE_; 10536 PSI = PSI_; 10537 10538 // Don't attempt if 10539 // 1. the target claims to have no vector registers, and 10540 // 2. interleaving won't help ILP. 10541 // 10542 // The second condition is necessary because, even if the target has no 10543 // vector registers, loop vectorization may still enable scalar 10544 // interleaving. 10545 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10546 TTI->getMaxInterleaveFactor(1) < 2) 10547 return LoopVectorizeResult(false, false); 10548 10549 bool Changed = false, CFGChanged = false; 10550 10551 // The vectorizer requires loops to be in simplified form. 10552 // Since simplification may add new inner loops, it has to run before the 10553 // legality and profitability checks. This means running the loop vectorizer 10554 // will simplify all loops, regardless of whether anything end up being 10555 // vectorized. 10556 for (auto &L : *LI) 10557 Changed |= CFGChanged |= 10558 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10559 10560 // Build up a worklist of inner-loops to vectorize. This is necessary as 10561 // the act of vectorizing or partially unrolling a loop creates new loops 10562 // and can invalidate iterators across the loops. 10563 SmallVector<Loop *, 8> Worklist; 10564 10565 for (Loop *L : *LI) 10566 collectSupportedLoops(*L, LI, ORE, Worklist); 10567 10568 LoopsAnalyzed += Worklist.size(); 10569 10570 // Now walk the identified inner loops. 10571 while (!Worklist.empty()) { 10572 Loop *L = Worklist.pop_back_val(); 10573 10574 // For the inner loops we actually process, form LCSSA to simplify the 10575 // transform. 10576 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10577 10578 Changed |= CFGChanged |= processLoop(L); 10579 } 10580 10581 // Process each loop nest in the function. 10582 return LoopVectorizeResult(Changed, CFGChanged); 10583 } 10584 10585 PreservedAnalyses LoopVectorizePass::run(Function &F, 10586 FunctionAnalysisManager &AM) { 10587 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10588 auto &LI = AM.getResult<LoopAnalysis>(F); 10589 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10590 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10591 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10592 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10593 auto &AA = AM.getResult<AAManager>(F); 10594 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10595 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10596 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10597 10598 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10599 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10600 [&](Loop &L) -> const LoopAccessInfo & { 10601 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10602 TLI, TTI, nullptr, nullptr, nullptr}; 10603 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10604 }; 10605 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10606 ProfileSummaryInfo *PSI = 10607 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10608 LoopVectorizeResult Result = 10609 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10610 if (!Result.MadeAnyChange) 10611 return PreservedAnalyses::all(); 10612 PreservedAnalyses PA; 10613 10614 // We currently do not preserve loopinfo/dominator analyses with outer loop 10615 // vectorization. Until this is addressed, mark these analyses as preserved 10616 // only for non-VPlan-native path. 10617 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10618 if (!EnableVPlanNativePath) { 10619 PA.preserve<LoopAnalysis>(); 10620 PA.preserve<DominatorTreeAnalysis>(); 10621 } 10622 if (!Result.MadeCFGChange) 10623 PA.preserveSet<CFGAnalyses>(); 10624 return PA; 10625 } 10626 10627 void LoopVectorizePass::printPipeline( 10628 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10629 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10630 OS, MapClassName2PassName); 10631 10632 OS << "<"; 10633 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10634 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10635 OS << ">"; 10636 } 10637