1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = FixedVectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, VPUser &Operands,
419                               bool InvariantCond, VPTransformState &State);
420 
421   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
422   void fixVectorizedLoop();
423 
424   // Return true if any runtime check is added.
425   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
426 
427   /// A type for vectorized values in the new loop. Each value from the
428   /// original loop, when vectorized, is represented by UF vector values in the
429   /// new unrolled loop, where UF is the unroll factor.
430   using VectorParts = SmallVector<Value *, 2>;
431 
432   /// Vectorize a single GetElementPtrInst based on information gathered and
433   /// decisions taken during planning.
434   void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
435                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
436 
437   /// Vectorize a single PHINode in a block. This method handles the induction
438   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
439   /// arbitrary length vectors.
440   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
441 
442   /// A helper function to scalarize a single Instruction in the innermost loop.
443   /// Generates a sequence of scalar instances for each lane between \p MinLane
444   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
445   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
446   /// Instr's operands.
447   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
448                             const VPIteration &Instance, bool IfPredicateInstr,
449                             VPTransformState &State);
450 
451   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
452   /// is provided, the integer induction variable will first be truncated to
453   /// the corresponding type.
454   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
455 
456   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
457   /// vector or scalar value on-demand if one is not yet available. When
458   /// vectorizing a loop, we visit the definition of an instruction before its
459   /// uses. When visiting the definition, we either vectorize or scalarize the
460   /// instruction, creating an entry for it in the corresponding map. (In some
461   /// cases, such as induction variables, we will create both vector and scalar
462   /// entries.) Then, as we encounter uses of the definition, we derive values
463   /// for each scalar or vector use unless such a value is already available.
464   /// For example, if we scalarize a definition and one of its uses is vector,
465   /// we build the required vector on-demand with an insertelement sequence
466   /// when visiting the use. Otherwise, if the use is scalar, we can use the
467   /// existing scalar definition.
468   ///
469   /// Return a value in the new loop corresponding to \p V from the original
470   /// loop at unroll index \p Part. If the value has already been vectorized,
471   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
472   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
473   /// a new vector value on-demand by inserting the scalar values into a vector
474   /// with an insertelement sequence. If the value has been neither vectorized
475   /// nor scalarized, it must be loop invariant, so we simply broadcast the
476   /// value into a vector.
477   Value *getOrCreateVectorValue(Value *V, unsigned Part);
478 
479   /// Return a value in the new loop corresponding to \p V from the original
480   /// loop at unroll and vector indices \p Instance. If the value has been
481   /// vectorized but not scalarized, the necessary extractelement instruction
482   /// will be generated.
483   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
484 
485   /// Construct the vector value of a scalarized value \p V one lane at a time.
486   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
487 
488   /// Try to vectorize interleaved access group \p Group with the base address
489   /// given in \p Addr, optionally masking the vector operations if \p
490   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
491   /// values in the vectorized loop.
492   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
493                                 VPTransformState &State, VPValue *Addr,
494                                 VPValue *BlockInMask = nullptr);
495 
496   /// Vectorize Load and Store instructions with the base address given in \p
497   /// Addr, optionally masking the vector operations if \p BlockInMask is
498   /// non-null. Use \p State to translate given VPValues to IR values in the
499   /// vectorized loop.
500   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
501                                   VPValue *Addr, VPValue *StoredValue,
502                                   VPValue *BlockInMask);
503 
504   /// Set the debug location in the builder using the debug location in
505   /// the instruction.
506   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
507 
508   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
509   void fixNonInductionPHIs(void);
510 
511 protected:
512   friend class LoopVectorizationPlanner;
513 
514   /// A small list of PHINodes.
515   using PhiVector = SmallVector<PHINode *, 4>;
516 
517   /// A type for scalarized values in the new loop. Each value from the
518   /// original loop, when scalarized, is represented by UF x VF scalar values
519   /// in the new unrolled loop, where UF is the unroll factor and VF is the
520   /// vectorization factor.
521   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
522 
523   /// Set up the values of the IVs correctly when exiting the vector loop.
524   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
525                     Value *CountRoundDown, Value *EndValue,
526                     BasicBlock *MiddleBlock);
527 
528   /// Create a new induction variable inside L.
529   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
530                                    Value *Step, Instruction *DL);
531 
532   /// Handle all cross-iteration phis in the header.
533   void fixCrossIterationPHIs();
534 
535   /// Fix a first-order recurrence. This is the second phase of vectorizing
536   /// this phi node.
537   void fixFirstOrderRecurrence(PHINode *Phi);
538 
539   /// Fix a reduction cross-iteration phi. This is the second phase of
540   /// vectorizing this phi node.
541   void fixReduction(PHINode *Phi);
542 
543   /// Clear NSW/NUW flags from reduction instructions if necessary.
544   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
545 
546   /// The Loop exit block may have single value PHI nodes with some
547   /// incoming value. While vectorizing we only handled real values
548   /// that were defined inside the loop and we should have one value for
549   /// each predecessor of its parent basic block. See PR14725.
550   void fixLCSSAPHIs();
551 
552   /// Iteratively sink the scalarized operands of a predicated instruction into
553   /// the block that was created for it.
554   void sinkScalarOperands(Instruction *PredInst);
555 
556   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
557   /// represented as.
558   void truncateToMinimalBitwidths();
559 
560   /// Create a broadcast instruction. This method generates a broadcast
561   /// instruction (shuffle) for loop invariant values and for the induction
562   /// value. If this is the induction variable then we extend it to N, N+1, ...
563   /// this is needed because each iteration in the loop corresponds to a SIMD
564   /// element.
565   virtual Value *getBroadcastInstrs(Value *V);
566 
567   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
568   /// to each vector element of Val. The sequence starts at StartIndex.
569   /// \p Opcode is relevant for FP induction variable.
570   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
571                                Instruction::BinaryOps Opcode =
572                                Instruction::BinaryOpsEnd);
573 
574   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
575   /// variable on which to base the steps, \p Step is the size of the step, and
576   /// \p EntryVal is the value from the original loop that maps to the steps.
577   /// Note that \p EntryVal doesn't have to be an induction variable - it
578   /// can also be a truncate instruction.
579   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
580                         const InductionDescriptor &ID);
581 
582   /// Create a vector induction phi node based on an existing scalar one. \p
583   /// EntryVal is the value from the original loop that maps to the vector phi
584   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
585   /// truncate instruction, instead of widening the original IV, we widen a
586   /// version of the IV truncated to \p EntryVal's type.
587   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
588                                        Value *Step, Instruction *EntryVal);
589 
590   /// Returns true if an instruction \p I should be scalarized instead of
591   /// vectorized for the chosen vectorization factor.
592   bool shouldScalarizeInstruction(Instruction *I) const;
593 
594   /// Returns true if we should generate a scalar version of \p IV.
595   bool needsScalarInduction(Instruction *IV) const;
596 
597   /// If there is a cast involved in the induction variable \p ID, which should
598   /// be ignored in the vectorized loop body, this function records the
599   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
600   /// cast. We had already proved that the casted Phi is equal to the uncasted
601   /// Phi in the vectorized loop (under a runtime guard), and therefore
602   /// there is no need to vectorize the cast - the same value can be used in the
603   /// vector loop for both the Phi and the cast.
604   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
605   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
606   ///
607   /// \p EntryVal is the value from the original loop that maps to the vector
608   /// phi node and is used to distinguish what is the IV currently being
609   /// processed - original one (if \p EntryVal is a phi corresponding to the
610   /// original IV) or the "newly-created" one based on the proof mentioned above
611   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
612   /// latter case \p EntryVal is a TruncInst and we must not record anything for
613   /// that IV, but it's error-prone to expect callers of this routine to care
614   /// about that, hence this explicit parameter.
615   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
616                                              const Instruction *EntryVal,
617                                              Value *VectorLoopValue,
618                                              unsigned Part,
619                                              unsigned Lane = UINT_MAX);
620 
621   /// Generate a shuffle sequence that will reverse the vector Vec.
622   virtual Value *reverseVector(Value *Vec);
623 
624   /// Returns (and creates if needed) the original loop trip count.
625   Value *getOrCreateTripCount(Loop *NewLoop);
626 
627   /// Returns (and creates if needed) the trip count of the widened loop.
628   Value *getOrCreateVectorTripCount(Loop *NewLoop);
629 
630   /// Returns a bitcasted value to the requested vector type.
631   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
632   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
633                                 const DataLayout &DL);
634 
635   /// Emit a bypass check to see if the vector trip count is zero, including if
636   /// it overflows.
637   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
638 
639   /// Emit a bypass check to see if all of the SCEV assumptions we've
640   /// had to make are correct.
641   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
642 
643   /// Emit bypass checks to check any memory assumptions we may have made.
644   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
645 
646   /// Compute the transformed value of Index at offset StartValue using step
647   /// StepValue.
648   /// For integer induction, returns StartValue + Index * StepValue.
649   /// For pointer induction, returns StartValue[Index * StepValue].
650   /// FIXME: The newly created binary instructions should contain nsw/nuw
651   /// flags, which can be found from the original scalar operations.
652   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
653                               const DataLayout &DL,
654                               const InductionDescriptor &ID) const;
655 
656   /// Add additional metadata to \p To that was not present on \p Orig.
657   ///
658   /// Currently this is used to add the noalias annotations based on the
659   /// inserted memchecks.  Use this for instructions that are *cloned* into the
660   /// vector loop.
661   void addNewMetadata(Instruction *To, const Instruction *Orig);
662 
663   /// Add metadata from one instruction to another.
664   ///
665   /// This includes both the original MDs from \p From and additional ones (\see
666   /// addNewMetadata).  Use this for *newly created* instructions in the vector
667   /// loop.
668   void addMetadata(Instruction *To, Instruction *From);
669 
670   /// Similar to the previous function but it adds the metadata to a
671   /// vector of instructions.
672   void addMetadata(ArrayRef<Value *> To, Instruction *From);
673 
674   /// The original loop.
675   Loop *OrigLoop;
676 
677   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
678   /// dynamic knowledge to simplify SCEV expressions and converts them to a
679   /// more usable form.
680   PredicatedScalarEvolution &PSE;
681 
682   /// Loop Info.
683   LoopInfo *LI;
684 
685   /// Dominator Tree.
686   DominatorTree *DT;
687 
688   /// Alias Analysis.
689   AliasAnalysis *AA;
690 
691   /// Target Library Info.
692   const TargetLibraryInfo *TLI;
693 
694   /// Target Transform Info.
695   const TargetTransformInfo *TTI;
696 
697   /// Assumption Cache.
698   AssumptionCache *AC;
699 
700   /// Interface to emit optimization remarks.
701   OptimizationRemarkEmitter *ORE;
702 
703   /// LoopVersioning.  It's only set up (non-null) if memchecks were
704   /// used.
705   ///
706   /// This is currently only used to add no-alias metadata based on the
707   /// memchecks.  The actually versioning is performed manually.
708   std::unique_ptr<LoopVersioning> LVer;
709 
710   /// The vectorization SIMD factor to use. Each vector will have this many
711   /// vector elements.
712   unsigned VF;
713 
714   /// The vectorization unroll factor to use. Each scalar is vectorized to this
715   /// many different vector instructions.
716   unsigned UF;
717 
718   /// The builder that we use
719   IRBuilder<> Builder;
720 
721   // --- Vectorization state ---
722 
723   /// The vector-loop preheader.
724   BasicBlock *LoopVectorPreHeader;
725 
726   /// The scalar-loop preheader.
727   BasicBlock *LoopScalarPreHeader;
728 
729   /// Middle Block between the vector and the scalar.
730   BasicBlock *LoopMiddleBlock;
731 
732   /// The ExitBlock of the scalar loop.
733   BasicBlock *LoopExitBlock;
734 
735   /// The vector loop body.
736   BasicBlock *LoopVectorBody;
737 
738   /// The scalar loop body.
739   BasicBlock *LoopScalarBody;
740 
741   /// A list of all bypass blocks. The first block is the entry of the loop.
742   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
743 
744   /// The new Induction variable which was added to the new block.
745   PHINode *Induction = nullptr;
746 
747   /// The induction variable of the old basic block.
748   PHINode *OldInduction = nullptr;
749 
750   /// Maps values from the original loop to their corresponding values in the
751   /// vectorized loop. A key value can map to either vector values, scalar
752   /// values or both kinds of values, depending on whether the key was
753   /// vectorized and scalarized.
754   VectorizerValueMap VectorLoopValueMap;
755 
756   /// Store instructions that were predicated.
757   SmallVector<Instruction *, 4> PredicatedInstructions;
758 
759   /// Trip count of the original loop.
760   Value *TripCount = nullptr;
761 
762   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
763   Value *VectorTripCount = nullptr;
764 
765   /// The legality analysis.
766   LoopVectorizationLegality *Legal;
767 
768   /// The profitablity analysis.
769   LoopVectorizationCostModel *Cost;
770 
771   // Record whether runtime checks are added.
772   bool AddedSafetyChecks = false;
773 
774   // Holds the end values for each induction variable. We save the end values
775   // so we can later fix-up the external users of the induction variables.
776   DenseMap<PHINode *, Value *> IVEndValues;
777 
778   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
779   // fixed up at the end of vector code generation.
780   SmallVector<PHINode *, 8> OrigPHIsToFix;
781 };
782 
783 class InnerLoopUnroller : public InnerLoopVectorizer {
784 public:
785   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
786                     LoopInfo *LI, DominatorTree *DT,
787                     const TargetLibraryInfo *TLI,
788                     const TargetTransformInfo *TTI, AssumptionCache *AC,
789                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
790                     LoopVectorizationLegality *LVL,
791                     LoopVectorizationCostModel *CM)
792       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
793                             UnrollFactor, LVL, CM) {}
794 
795 private:
796   Value *getBroadcastInstrs(Value *V) override;
797   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
798                        Instruction::BinaryOps Opcode =
799                        Instruction::BinaryOpsEnd) override;
800   Value *reverseVector(Value *Vec) override;
801 };
802 
803 } // end namespace llvm
804 
805 /// Look for a meaningful debug location on the instruction or it's
806 /// operands.
807 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
808   if (!I)
809     return I;
810 
811   DebugLoc Empty;
812   if (I->getDebugLoc() != Empty)
813     return I;
814 
815   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
816     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
817       if (OpInst->getDebugLoc() != Empty)
818         return OpInst;
819   }
820 
821   return I;
822 }
823 
824 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
825   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
826     const DILocation *DIL = Inst->getDebugLoc();
827     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
828         !isa<DbgInfoIntrinsic>(Inst)) {
829       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
830       if (NewDIL)
831         B.SetCurrentDebugLocation(NewDIL.getValue());
832       else
833         LLVM_DEBUG(dbgs()
834                    << "Failed to create new discriminator: "
835                    << DIL->getFilename() << " Line: " << DIL->getLine());
836     }
837     else
838       B.SetCurrentDebugLocation(DIL);
839   } else
840     B.SetCurrentDebugLocation(DebugLoc());
841 }
842 
843 /// Write a record \p DebugMsg about vectorization failure to the debug
844 /// output stream. If \p I is passed, it is an instruction that prevents
845 /// vectorization.
846 #ifndef NDEBUG
847 static void debugVectorizationFailure(const StringRef DebugMsg,
848     Instruction *I) {
849   dbgs() << "LV: Not vectorizing: " << DebugMsg;
850   if (I != nullptr)
851     dbgs() << " " << *I;
852   else
853     dbgs() << '.';
854   dbgs() << '\n';
855 }
856 #endif
857 
858 /// Create an analysis remark that explains why vectorization failed
859 ///
860 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
861 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
862 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
863 /// the location of the remark.  \return the remark object that can be
864 /// streamed to.
865 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
866     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
867   Value *CodeRegion = TheLoop->getHeader();
868   DebugLoc DL = TheLoop->getStartLoc();
869 
870   if (I) {
871     CodeRegion = I->getParent();
872     // If there is no debug location attached to the instruction, revert back to
873     // using the loop's.
874     if (I->getDebugLoc())
875       DL = I->getDebugLoc();
876   }
877 
878   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
879   R << "loop not vectorized: ";
880   return R;
881 }
882 
883 namespace llvm {
884 
885 void reportVectorizationFailure(const StringRef DebugMsg,
886     const StringRef OREMsg, const StringRef ORETag,
887     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
888   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
889   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
890   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
891                 ORETag, TheLoop, I) << OREMsg);
892 }
893 
894 } // end namespace llvm
895 
896 #ifndef NDEBUG
897 /// \return string containing a file name and a line # for the given loop.
898 static std::string getDebugLocString(const Loop *L) {
899   std::string Result;
900   if (L) {
901     raw_string_ostream OS(Result);
902     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
903       LoopDbgLoc.print(OS);
904     else
905       // Just print the module name.
906       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
907     OS.flush();
908   }
909   return Result;
910 }
911 #endif
912 
913 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
914                                          const Instruction *Orig) {
915   // If the loop was versioned with memchecks, add the corresponding no-alias
916   // metadata.
917   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
918     LVer->annotateInstWithNoAlias(To, Orig);
919 }
920 
921 void InnerLoopVectorizer::addMetadata(Instruction *To,
922                                       Instruction *From) {
923   propagateMetadata(To, From);
924   addNewMetadata(To, From);
925 }
926 
927 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
928                                       Instruction *From) {
929   for (Value *V : To) {
930     if (Instruction *I = dyn_cast<Instruction>(V))
931       addMetadata(I, From);
932   }
933 }
934 
935 namespace llvm {
936 
937 // Loop vectorization cost-model hints how the scalar epilogue loop should be
938 // lowered.
939 enum ScalarEpilogueLowering {
940 
941   // The default: allowing scalar epilogues.
942   CM_ScalarEpilogueAllowed,
943 
944   // Vectorization with OptForSize: don't allow epilogues.
945   CM_ScalarEpilogueNotAllowedOptSize,
946 
947   // A special case of vectorisation with OptForSize: loops with a very small
948   // trip count are considered for vectorization under OptForSize, thereby
949   // making sure the cost of their loop body is dominant, free of runtime
950   // guards and scalar iteration overheads.
951   CM_ScalarEpilogueNotAllowedLowTripLoop,
952 
953   // Loop hint predicate indicating an epilogue is undesired.
954   CM_ScalarEpilogueNotNeededUsePredicate
955 };
956 
957 /// LoopVectorizationCostModel - estimates the expected speedups due to
958 /// vectorization.
959 /// In many cases vectorization is not profitable. This can happen because of
960 /// a number of reasons. In this class we mainly attempt to predict the
961 /// expected speedup/slowdowns due to the supported instruction set. We use the
962 /// TargetTransformInfo to query the different backends for the cost of
963 /// different operations.
964 class LoopVectorizationCostModel {
965 public:
966   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
967                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
968                              LoopVectorizationLegality *Legal,
969                              const TargetTransformInfo &TTI,
970                              const TargetLibraryInfo *TLI, DemandedBits *DB,
971                              AssumptionCache *AC,
972                              OptimizationRemarkEmitter *ORE, const Function *F,
973                              const LoopVectorizeHints *Hints,
974                              InterleavedAccessInfo &IAI)
975       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
976         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
977         Hints(Hints), InterleaveInfo(IAI) {}
978 
979   /// \return An upper bound for the vectorization factor, or None if
980   /// vectorization and interleaving should be avoided up front.
981   Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC);
982 
983   /// \return True if runtime checks are required for vectorization, and false
984   /// otherwise.
985   bool runtimeChecksRequired();
986 
987   /// \return The most profitable vectorization factor and the cost of that VF.
988   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
989   /// then this vectorization factor will be selected if vectorization is
990   /// possible.
991   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
992 
993   /// Setup cost-based decisions for user vectorization factor.
994   void selectUserVectorizationFactor(unsigned UserVF) {
995     collectUniformsAndScalars(UserVF);
996     collectInstsToScalarize(UserVF);
997   }
998 
999   /// \return The size (in bits) of the smallest and widest types in the code
1000   /// that needs to be vectorized. We ignore values that remain scalar such as
1001   /// 64 bit loop indices.
1002   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1003 
1004   /// \return The desired interleave count.
1005   /// If interleave count has been specified by metadata it will be returned.
1006   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1007   /// are the selected vectorization factor and the cost of the selected VF.
1008   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1009 
1010   /// Memory access instruction may be vectorized in more than one way.
1011   /// Form of instruction after vectorization depends on cost.
1012   /// This function takes cost-based decisions for Load/Store instructions
1013   /// and collects them in a map. This decisions map is used for building
1014   /// the lists of loop-uniform and loop-scalar instructions.
1015   /// The calculated cost is saved with widening decision in order to
1016   /// avoid redundant calculations.
1017   void setCostBasedWideningDecision(unsigned VF);
1018 
1019   /// A struct that represents some properties of the register usage
1020   /// of a loop.
1021   struct RegisterUsage {
1022     /// Holds the number of loop invariant values that are used in the loop.
1023     /// The key is ClassID of target-provided register class.
1024     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1025     /// Holds the maximum number of concurrent live intervals in the loop.
1026     /// The key is ClassID of target-provided register class.
1027     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1028   };
1029 
1030   /// \return Returns information about the register usages of the loop for the
1031   /// given vectorization factors.
1032   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1033 
1034   /// Collect values we want to ignore in the cost model.
1035   void collectValuesToIgnore();
1036 
1037   /// \returns The smallest bitwidth each instruction can be represented with.
1038   /// The vector equivalents of these instructions should be truncated to this
1039   /// type.
1040   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1041     return MinBWs;
1042   }
1043 
1044   /// \returns True if it is more profitable to scalarize instruction \p I for
1045   /// vectorization factor \p VF.
1046   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1047     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1048 
1049     // Cost model is not run in the VPlan-native path - return conservative
1050     // result until this changes.
1051     if (EnableVPlanNativePath)
1052       return false;
1053 
1054     auto Scalars = InstsToScalarize.find(VF);
1055     assert(Scalars != InstsToScalarize.end() &&
1056            "VF not yet analyzed for scalarization profitability");
1057     return Scalars->second.find(I) != Scalars->second.end();
1058   }
1059 
1060   /// Returns true if \p I is known to be uniform after vectorization.
1061   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1062     if (VF == 1)
1063       return true;
1064 
1065     // Cost model is not run in the VPlan-native path - return conservative
1066     // result until this changes.
1067     if (EnableVPlanNativePath)
1068       return false;
1069 
1070     auto UniformsPerVF = Uniforms.find(VF);
1071     assert(UniformsPerVF != Uniforms.end() &&
1072            "VF not yet analyzed for uniformity");
1073     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1074   }
1075 
1076   /// Returns true if \p I is known to be scalar after vectorization.
1077   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1078     if (VF == 1)
1079       return true;
1080 
1081     // Cost model is not run in the VPlan-native path - return conservative
1082     // result until this changes.
1083     if (EnableVPlanNativePath)
1084       return false;
1085 
1086     auto ScalarsPerVF = Scalars.find(VF);
1087     assert(ScalarsPerVF != Scalars.end() &&
1088            "Scalar values are not calculated for VF");
1089     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1090   }
1091 
1092   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1093   /// for vectorization factor \p VF.
1094   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1095     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1096            !isProfitableToScalarize(I, VF) &&
1097            !isScalarAfterVectorization(I, VF);
1098   }
1099 
1100   /// Decision that was taken during cost calculation for memory instruction.
1101   enum InstWidening {
1102     CM_Unknown,
1103     CM_Widen,         // For consecutive accesses with stride +1.
1104     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1105     CM_Interleave,
1106     CM_GatherScatter,
1107     CM_Scalarize
1108   };
1109 
1110   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1111   /// instruction \p I and vector width \p VF.
1112   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1113                            unsigned Cost) {
1114     assert(VF >= 2 && "Expected VF >=2");
1115     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1116   }
1117 
1118   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1119   /// interleaving group \p Grp and vector width \p VF.
1120   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1121                            InstWidening W, unsigned Cost) {
1122     assert(VF >= 2 && "Expected VF >=2");
1123     /// Broadcast this decicion to all instructions inside the group.
1124     /// But the cost will be assigned to one instruction only.
1125     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1126       if (auto *I = Grp->getMember(i)) {
1127         if (Grp->getInsertPos() == I)
1128           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1129         else
1130           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1131       }
1132     }
1133   }
1134 
1135   /// Return the cost model decision for the given instruction \p I and vector
1136   /// width \p VF. Return CM_Unknown if this instruction did not pass
1137   /// through the cost modeling.
1138   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1139     assert(VF >= 2 && "Expected VF >=2");
1140 
1141     // Cost model is not run in the VPlan-native path - return conservative
1142     // result until this changes.
1143     if (EnableVPlanNativePath)
1144       return CM_GatherScatter;
1145 
1146     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1147     auto Itr = WideningDecisions.find(InstOnVF);
1148     if (Itr == WideningDecisions.end())
1149       return CM_Unknown;
1150     return Itr->second.first;
1151   }
1152 
1153   /// Return the vectorization cost for the given instruction \p I and vector
1154   /// width \p VF.
1155   unsigned getWideningCost(Instruction *I, unsigned VF) {
1156     assert(VF >= 2 && "Expected VF >=2");
1157     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1158     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1159            "The cost is not calculated");
1160     return WideningDecisions[InstOnVF].second;
1161   }
1162 
1163   /// Return True if instruction \p I is an optimizable truncate whose operand
1164   /// is an induction variable. Such a truncate will be removed by adding a new
1165   /// induction variable with the destination type.
1166   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1167     // If the instruction is not a truncate, return false.
1168     auto *Trunc = dyn_cast<TruncInst>(I);
1169     if (!Trunc)
1170       return false;
1171 
1172     // Get the source and destination types of the truncate.
1173     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1174     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1175 
1176     // If the truncate is free for the given types, return false. Replacing a
1177     // free truncate with an induction variable would add an induction variable
1178     // update instruction to each iteration of the loop. We exclude from this
1179     // check the primary induction variable since it will need an update
1180     // instruction regardless.
1181     Value *Op = Trunc->getOperand(0);
1182     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1183       return false;
1184 
1185     // If the truncated value is not an induction variable, return false.
1186     return Legal->isInductionPhi(Op);
1187   }
1188 
1189   /// Collects the instructions to scalarize for each predicated instruction in
1190   /// the loop.
1191   void collectInstsToScalarize(unsigned VF);
1192 
1193   /// Collect Uniform and Scalar values for the given \p VF.
1194   /// The sets depend on CM decision for Load/Store instructions
1195   /// that may be vectorized as interleave, gather-scatter or scalarized.
1196   void collectUniformsAndScalars(unsigned VF) {
1197     // Do the analysis once.
1198     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1199       return;
1200     setCostBasedWideningDecision(VF);
1201     collectLoopUniforms(VF);
1202     collectLoopScalars(VF);
1203   }
1204 
1205   /// Returns true if the target machine supports masked store operation
1206   /// for the given \p DataType and kind of access to \p Ptr.
1207   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1208     return Legal->isConsecutivePtr(Ptr) &&
1209            TTI.isLegalMaskedStore(DataType, Alignment);
1210   }
1211 
1212   /// Returns true if the target machine supports masked load operation
1213   /// for the given \p DataType and kind of access to \p Ptr.
1214   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1215     return Legal->isConsecutivePtr(Ptr) &&
1216            TTI.isLegalMaskedLoad(DataType, Alignment);
1217   }
1218 
1219   /// Returns true if the target machine supports masked scatter operation
1220   /// for the given \p DataType.
1221   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1222     return TTI.isLegalMaskedScatter(DataType, Alignment);
1223   }
1224 
1225   /// Returns true if the target machine supports masked gather operation
1226   /// for the given \p DataType.
1227   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1228     return TTI.isLegalMaskedGather(DataType, Alignment);
1229   }
1230 
1231   /// Returns true if the target machine can represent \p V as a masked gather
1232   /// or scatter operation.
1233   bool isLegalGatherOrScatter(Value *V) {
1234     bool LI = isa<LoadInst>(V);
1235     bool SI = isa<StoreInst>(V);
1236     if (!LI && !SI)
1237       return false;
1238     auto *Ty = getMemInstValueType(V);
1239     Align Align = getLoadStoreAlignment(V);
1240     return (LI && isLegalMaskedGather(Ty, Align)) ||
1241            (SI && isLegalMaskedScatter(Ty, Align));
1242   }
1243 
1244   /// Returns true if \p I is an instruction that will be scalarized with
1245   /// predication. Such instructions include conditional stores and
1246   /// instructions that may divide by zero.
1247   /// If a non-zero VF has been calculated, we check if I will be scalarized
1248   /// predication for that VF.
1249   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1250 
1251   // Returns true if \p I is an instruction that will be predicated either
1252   // through scalar predication or masked load/store or masked gather/scatter.
1253   // Superset of instructions that return true for isScalarWithPredication.
1254   bool isPredicatedInst(Instruction *I) {
1255     if (!blockNeedsPredication(I->getParent()))
1256       return false;
1257     // Loads and stores that need some form of masked operation are predicated
1258     // instructions.
1259     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1260       return Legal->isMaskRequired(I);
1261     return isScalarWithPredication(I);
1262   }
1263 
1264   /// Returns true if \p I is a memory instruction with consecutive memory
1265   /// access that can be widened.
1266   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1267 
1268   /// Returns true if \p I is a memory instruction in an interleaved-group
1269   /// of memory accesses that can be vectorized with wide vector loads/stores
1270   /// and shuffles.
1271   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1272 
1273   /// Check if \p Instr belongs to any interleaved access group.
1274   bool isAccessInterleaved(Instruction *Instr) {
1275     return InterleaveInfo.isInterleaved(Instr);
1276   }
1277 
1278   /// Get the interleaved access group that \p Instr belongs to.
1279   const InterleaveGroup<Instruction> *
1280   getInterleavedAccessGroup(Instruction *Instr) {
1281     return InterleaveInfo.getInterleaveGroup(Instr);
1282   }
1283 
1284   /// Returns true if an interleaved group requires a scalar iteration
1285   /// to handle accesses with gaps, and there is nothing preventing us from
1286   /// creating a scalar epilogue.
1287   bool requiresScalarEpilogue() const {
1288     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1289   }
1290 
1291   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1292   /// loop hint annotation.
1293   bool isScalarEpilogueAllowed() const {
1294     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1295   }
1296 
1297   /// Returns true if all loop blocks should be masked to fold tail loop.
1298   bool foldTailByMasking() const { return FoldTailByMasking; }
1299 
1300   bool blockNeedsPredication(BasicBlock *BB) {
1301     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1302   }
1303 
1304   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1305   /// with factor VF.  Return the cost of the instruction, including
1306   /// scalarization overhead if it's needed.
1307   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1308 
1309   /// Estimate cost of a call instruction CI if it were vectorized with factor
1310   /// VF. Return the cost of the instruction, including scalarization overhead
1311   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1312   /// scalarized -
1313   /// i.e. either vector version isn't available, or is too expensive.
1314   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1315 
1316   /// Invalidates decisions already taken by the cost model.
1317   void invalidateCostModelingDecisions() {
1318     WideningDecisions.clear();
1319     Uniforms.clear();
1320     Scalars.clear();
1321   }
1322 
1323 private:
1324   unsigned NumPredStores = 0;
1325 
1326   /// \return An upper bound for the vectorization factor, larger than zero.
1327   /// One is returned if vectorization should best be avoided due to cost.
1328   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1329 
1330   /// The vectorization cost is a combination of the cost itself and a boolean
1331   /// indicating whether any of the contributing operations will actually
1332   /// operate on
1333   /// vector values after type legalization in the backend. If this latter value
1334   /// is
1335   /// false, then all operations will be scalarized (i.e. no vectorization has
1336   /// actually taken place).
1337   using VectorizationCostTy = std::pair<unsigned, bool>;
1338 
1339   /// Returns the expected execution cost. The unit of the cost does
1340   /// not matter because we use the 'cost' units to compare different
1341   /// vector widths. The cost that is returned is *not* normalized by
1342   /// the factor width.
1343   VectorizationCostTy expectedCost(unsigned VF);
1344 
1345   /// Returns the execution time cost of an instruction for a given vector
1346   /// width. Vector width of one means scalar.
1347   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1348 
1349   /// The cost-computation logic from getInstructionCost which provides
1350   /// the vector type as an output parameter.
1351   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1352 
1353   /// Calculate vectorization cost of memory instruction \p I.
1354   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1355 
1356   /// The cost computation for scalarized memory instruction.
1357   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1358 
1359   /// The cost computation for interleaving group of memory instructions.
1360   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1361 
1362   /// The cost computation for Gather/Scatter instruction.
1363   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1364 
1365   /// The cost computation for widening instruction \p I with consecutive
1366   /// memory access.
1367   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1368 
1369   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1370   /// Load: scalar load + broadcast.
1371   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1372   /// element)
1373   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1374 
1375   /// Estimate the overhead of scalarizing an instruction. This is a
1376   /// convenience wrapper for the type-based getScalarizationOverhead API.
1377   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1378 
1379   /// Returns whether the instruction is a load or store and will be a emitted
1380   /// as a vector operation.
1381   bool isConsecutiveLoadOrStore(Instruction *I);
1382 
1383   /// Returns true if an artificially high cost for emulated masked memrefs
1384   /// should be used.
1385   bool useEmulatedMaskMemRefHack(Instruction *I);
1386 
1387   /// Map of scalar integer values to the smallest bitwidth they can be legally
1388   /// represented as. The vector equivalents of these values should be truncated
1389   /// to this type.
1390   MapVector<Instruction *, uint64_t> MinBWs;
1391 
1392   /// A type representing the costs for instructions if they were to be
1393   /// scalarized rather than vectorized. The entries are Instruction-Cost
1394   /// pairs.
1395   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1396 
1397   /// A set containing all BasicBlocks that are known to present after
1398   /// vectorization as a predicated block.
1399   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1400 
1401   /// Records whether it is allowed to have the original scalar loop execute at
1402   /// least once. This may be needed as a fallback loop in case runtime
1403   /// aliasing/dependence checks fail, or to handle the tail/remainder
1404   /// iterations when the trip count is unknown or doesn't divide by the VF,
1405   /// or as a peel-loop to handle gaps in interleave-groups.
1406   /// Under optsize and when the trip count is very small we don't allow any
1407   /// iterations to execute in the scalar loop.
1408   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1409 
1410   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1411   bool FoldTailByMasking = false;
1412 
1413   /// A map holding scalar costs for different vectorization factors. The
1414   /// presence of a cost for an instruction in the mapping indicates that the
1415   /// instruction will be scalarized when vectorizing with the associated
1416   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1417   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1418 
1419   /// Holds the instructions known to be uniform after vectorization.
1420   /// The data is collected per VF.
1421   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1422 
1423   /// Holds the instructions known to be scalar after vectorization.
1424   /// The data is collected per VF.
1425   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1426 
1427   /// Holds the instructions (address computations) that are forced to be
1428   /// scalarized.
1429   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1430 
1431   /// Returns the expected difference in cost from scalarizing the expression
1432   /// feeding a predicated instruction \p PredInst. The instructions to
1433   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1434   /// non-negative return value implies the expression will be scalarized.
1435   /// Currently, only single-use chains are considered for scalarization.
1436   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1437                               unsigned VF);
1438 
1439   /// Collect the instructions that are uniform after vectorization. An
1440   /// instruction is uniform if we represent it with a single scalar value in
1441   /// the vectorized loop corresponding to each vector iteration. Examples of
1442   /// uniform instructions include pointer operands of consecutive or
1443   /// interleaved memory accesses. Note that although uniformity implies an
1444   /// instruction will be scalar, the reverse is not true. In general, a
1445   /// scalarized instruction will be represented by VF scalar values in the
1446   /// vectorized loop, each corresponding to an iteration of the original
1447   /// scalar loop.
1448   void collectLoopUniforms(unsigned VF);
1449 
1450   /// Collect the instructions that are scalar after vectorization. An
1451   /// instruction is scalar if it is known to be uniform or will be scalarized
1452   /// during vectorization. Non-uniform scalarized instructions will be
1453   /// represented by VF values in the vectorized loop, each corresponding to an
1454   /// iteration of the original scalar loop.
1455   void collectLoopScalars(unsigned VF);
1456 
1457   /// Keeps cost model vectorization decision and cost for instructions.
1458   /// Right now it is used for memory instructions only.
1459   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1460                                 std::pair<InstWidening, unsigned>>;
1461 
1462   DecisionList WideningDecisions;
1463 
1464   /// Returns true if \p V is expected to be vectorized and it needs to be
1465   /// extracted.
1466   bool needsExtract(Value *V, unsigned VF) const {
1467     Instruction *I = dyn_cast<Instruction>(V);
1468     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1469       return false;
1470 
1471     // Assume we can vectorize V (and hence we need extraction) if the
1472     // scalars are not computed yet. This can happen, because it is called
1473     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1474     // the scalars are collected. That should be a safe assumption in most
1475     // cases, because we check if the operands have vectorizable types
1476     // beforehand in LoopVectorizationLegality.
1477     return Scalars.find(VF) == Scalars.end() ||
1478            !isScalarAfterVectorization(I, VF);
1479   };
1480 
1481   /// Returns a range containing only operands needing to be extracted.
1482   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1483                                                    unsigned VF) {
1484     return SmallVector<Value *, 4>(make_filter_range(
1485         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1486   }
1487 
1488 public:
1489   /// The loop that we evaluate.
1490   Loop *TheLoop;
1491 
1492   /// Predicated scalar evolution analysis.
1493   PredicatedScalarEvolution &PSE;
1494 
1495   /// Loop Info analysis.
1496   LoopInfo *LI;
1497 
1498   /// Vectorization legality.
1499   LoopVectorizationLegality *Legal;
1500 
1501   /// Vector target information.
1502   const TargetTransformInfo &TTI;
1503 
1504   /// Target Library Info.
1505   const TargetLibraryInfo *TLI;
1506 
1507   /// Demanded bits analysis.
1508   DemandedBits *DB;
1509 
1510   /// Assumption cache.
1511   AssumptionCache *AC;
1512 
1513   /// Interface to emit optimization remarks.
1514   OptimizationRemarkEmitter *ORE;
1515 
1516   const Function *TheFunction;
1517 
1518   /// Loop Vectorize Hint.
1519   const LoopVectorizeHints *Hints;
1520 
1521   /// The interleave access information contains groups of interleaved accesses
1522   /// with the same stride and close to each other.
1523   InterleavedAccessInfo &InterleaveInfo;
1524 
1525   /// Values to ignore in the cost model.
1526   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1527 
1528   /// Values to ignore in the cost model when VF > 1.
1529   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1530 };
1531 
1532 } // end namespace llvm
1533 
1534 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1535 // vectorization. The loop needs to be annotated with #pragma omp simd
1536 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1537 // vector length information is not provided, vectorization is not considered
1538 // explicit. Interleave hints are not allowed either. These limitations will be
1539 // relaxed in the future.
1540 // Please, note that we are currently forced to abuse the pragma 'clang
1541 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1542 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1543 // provides *explicit vectorization hints* (LV can bypass legal checks and
1544 // assume that vectorization is legal). However, both hints are implemented
1545 // using the same metadata (llvm.loop.vectorize, processed by
1546 // LoopVectorizeHints). This will be fixed in the future when the native IR
1547 // representation for pragma 'omp simd' is introduced.
1548 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1549                                    OptimizationRemarkEmitter *ORE) {
1550   assert(!OuterLp->empty() && "This is not an outer loop");
1551   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1552 
1553   // Only outer loops with an explicit vectorization hint are supported.
1554   // Unannotated outer loops are ignored.
1555   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1556     return false;
1557 
1558   Function *Fn = OuterLp->getHeader()->getParent();
1559   if (!Hints.allowVectorization(Fn, OuterLp,
1560                                 true /*VectorizeOnlyWhenForced*/)) {
1561     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1562     return false;
1563   }
1564 
1565   if (Hints.getInterleave() > 1) {
1566     // TODO: Interleave support is future work.
1567     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1568                          "outer loops.\n");
1569     Hints.emitRemarkWithHints();
1570     return false;
1571   }
1572 
1573   return true;
1574 }
1575 
1576 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1577                                   OptimizationRemarkEmitter *ORE,
1578                                   SmallVectorImpl<Loop *> &V) {
1579   // Collect inner loops and outer loops without irreducible control flow. For
1580   // now, only collect outer loops that have explicit vectorization hints. If we
1581   // are stress testing the VPlan H-CFG construction, we collect the outermost
1582   // loop of every loop nest.
1583   if (L.empty() || VPlanBuildStressTest ||
1584       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1585     LoopBlocksRPO RPOT(&L);
1586     RPOT.perform(LI);
1587     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1588       V.push_back(&L);
1589       // TODO: Collect inner loops inside marked outer loops in case
1590       // vectorization fails for the outer loop. Do not invoke
1591       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1592       // already known to be reducible. We can use an inherited attribute for
1593       // that.
1594       return;
1595     }
1596   }
1597   for (Loop *InnerL : L)
1598     collectSupportedLoops(*InnerL, LI, ORE, V);
1599 }
1600 
1601 namespace {
1602 
1603 /// The LoopVectorize Pass.
1604 struct LoopVectorize : public FunctionPass {
1605   /// Pass identification, replacement for typeid
1606   static char ID;
1607 
1608   LoopVectorizePass Impl;
1609 
1610   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1611                          bool VectorizeOnlyWhenForced = false)
1612       : FunctionPass(ID),
1613         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1614     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1615   }
1616 
1617   bool runOnFunction(Function &F) override {
1618     if (skipFunction(F))
1619       return false;
1620 
1621     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1622     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1623     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1624     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1625     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1626     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1627     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1628     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1629     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1630     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1631     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1632     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1633     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1634 
1635     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1636         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1637 
1638     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1639                         GetLAA, *ORE, PSI).MadeAnyChange;
1640   }
1641 
1642   void getAnalysisUsage(AnalysisUsage &AU) const override {
1643     AU.addRequired<AssumptionCacheTracker>();
1644     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1645     AU.addRequired<DominatorTreeWrapperPass>();
1646     AU.addRequired<LoopInfoWrapperPass>();
1647     AU.addRequired<ScalarEvolutionWrapperPass>();
1648     AU.addRequired<TargetTransformInfoWrapperPass>();
1649     AU.addRequired<AAResultsWrapperPass>();
1650     AU.addRequired<LoopAccessLegacyAnalysis>();
1651     AU.addRequired<DemandedBitsWrapperPass>();
1652     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1653     AU.addRequired<InjectTLIMappingsLegacy>();
1654 
1655     // We currently do not preserve loopinfo/dominator analyses with outer loop
1656     // vectorization. Until this is addressed, mark these analyses as preserved
1657     // only for non-VPlan-native path.
1658     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1659     if (!EnableVPlanNativePath) {
1660       AU.addPreserved<LoopInfoWrapperPass>();
1661       AU.addPreserved<DominatorTreeWrapperPass>();
1662     }
1663 
1664     AU.addPreserved<BasicAAWrapperPass>();
1665     AU.addPreserved<GlobalsAAWrapperPass>();
1666     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1667   }
1668 };
1669 
1670 } // end anonymous namespace
1671 
1672 //===----------------------------------------------------------------------===//
1673 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1674 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1675 //===----------------------------------------------------------------------===//
1676 
1677 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1678   // We need to place the broadcast of invariant variables outside the loop,
1679   // but only if it's proven safe to do so. Else, broadcast will be inside
1680   // vector loop body.
1681   Instruction *Instr = dyn_cast<Instruction>(V);
1682   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1683                      (!Instr ||
1684                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1685   // Place the code for broadcasting invariant variables in the new preheader.
1686   IRBuilder<>::InsertPointGuard Guard(Builder);
1687   if (SafeToHoist)
1688     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1689 
1690   // Broadcast the scalar into all locations in the vector.
1691   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1692 
1693   return Shuf;
1694 }
1695 
1696 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1697     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1698   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1699          "Expected either an induction phi-node or a truncate of it!");
1700   Value *Start = II.getStartValue();
1701 
1702   // Construct the initial value of the vector IV in the vector loop preheader
1703   auto CurrIP = Builder.saveIP();
1704   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1705   if (isa<TruncInst>(EntryVal)) {
1706     assert(Start->getType()->isIntegerTy() &&
1707            "Truncation requires an integer type");
1708     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1709     Step = Builder.CreateTrunc(Step, TruncType);
1710     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1711   }
1712   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1713   Value *SteppedStart =
1714       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1715 
1716   // We create vector phi nodes for both integer and floating-point induction
1717   // variables. Here, we determine the kind of arithmetic we will perform.
1718   Instruction::BinaryOps AddOp;
1719   Instruction::BinaryOps MulOp;
1720   if (Step->getType()->isIntegerTy()) {
1721     AddOp = Instruction::Add;
1722     MulOp = Instruction::Mul;
1723   } else {
1724     AddOp = II.getInductionOpcode();
1725     MulOp = Instruction::FMul;
1726   }
1727 
1728   // Multiply the vectorization factor by the step using integer or
1729   // floating-point arithmetic as appropriate.
1730   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1731   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1732 
1733   // Create a vector splat to use in the induction update.
1734   //
1735   // FIXME: If the step is non-constant, we create the vector splat with
1736   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1737   //        handle a constant vector splat.
1738   Value *SplatVF =
1739       isa<Constant>(Mul)
1740           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1741           : Builder.CreateVectorSplat(VF, Mul);
1742   Builder.restoreIP(CurrIP);
1743 
1744   // We may need to add the step a number of times, depending on the unroll
1745   // factor. The last of those goes into the PHI.
1746   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1747                                     &*LoopVectorBody->getFirstInsertionPt());
1748   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1749   Instruction *LastInduction = VecInd;
1750   for (unsigned Part = 0; Part < UF; ++Part) {
1751     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1752 
1753     if (isa<TruncInst>(EntryVal))
1754       addMetadata(LastInduction, EntryVal);
1755     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1756 
1757     LastInduction = cast<Instruction>(addFastMathFlag(
1758         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1759     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1760   }
1761 
1762   // Move the last step to the end of the latch block. This ensures consistent
1763   // placement of all induction updates.
1764   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1765   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1766   auto *ICmp = cast<Instruction>(Br->getCondition());
1767   LastInduction->moveBefore(ICmp);
1768   LastInduction->setName("vec.ind.next");
1769 
1770   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1771   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1772 }
1773 
1774 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1775   return Cost->isScalarAfterVectorization(I, VF) ||
1776          Cost->isProfitableToScalarize(I, VF);
1777 }
1778 
1779 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1780   if (shouldScalarizeInstruction(IV))
1781     return true;
1782   auto isScalarInst = [&](User *U) -> bool {
1783     auto *I = cast<Instruction>(U);
1784     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1785   };
1786   return llvm::any_of(IV->users(), isScalarInst);
1787 }
1788 
1789 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1790     const InductionDescriptor &ID, const Instruction *EntryVal,
1791     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1792   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1793          "Expected either an induction phi-node or a truncate of it!");
1794 
1795   // This induction variable is not the phi from the original loop but the
1796   // newly-created IV based on the proof that casted Phi is equal to the
1797   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1798   // re-uses the same InductionDescriptor that original IV uses but we don't
1799   // have to do any recording in this case - that is done when original IV is
1800   // processed.
1801   if (isa<TruncInst>(EntryVal))
1802     return;
1803 
1804   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1805   if (Casts.empty())
1806     return;
1807   // Only the first Cast instruction in the Casts vector is of interest.
1808   // The rest of the Casts (if exist) have no uses outside the
1809   // induction update chain itself.
1810   Instruction *CastInst = *Casts.begin();
1811   if (Lane < UINT_MAX)
1812     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1813   else
1814     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1815 }
1816 
1817 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1818   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1819          "Primary induction variable must have an integer type");
1820 
1821   auto II = Legal->getInductionVars().find(IV);
1822   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1823 
1824   auto ID = II->second;
1825   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1826 
1827   // The value from the original loop to which we are mapping the new induction
1828   // variable.
1829   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1830 
1831   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1832 
1833   // Generate code for the induction step. Note that induction steps are
1834   // required to be loop-invariant
1835   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1836     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1837            "Induction step should be loop invariant");
1838     if (PSE.getSE()->isSCEVable(IV->getType())) {
1839       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1840       return Exp.expandCodeFor(Step, Step->getType(),
1841                                LoopVectorPreHeader->getTerminator());
1842     }
1843     return cast<SCEVUnknown>(Step)->getValue();
1844   };
1845 
1846   // The scalar value to broadcast. This is derived from the canonical
1847   // induction variable. If a truncation type is given, truncate the canonical
1848   // induction variable and step. Otherwise, derive these values from the
1849   // induction descriptor.
1850   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1851     Value *ScalarIV = Induction;
1852     if (IV != OldInduction) {
1853       ScalarIV = IV->getType()->isIntegerTy()
1854                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1855                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1856                                           IV->getType());
1857       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1858       ScalarIV->setName("offset.idx");
1859     }
1860     if (Trunc) {
1861       auto *TruncType = cast<IntegerType>(Trunc->getType());
1862       assert(Step->getType()->isIntegerTy() &&
1863              "Truncation requires an integer step");
1864       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1865       Step = Builder.CreateTrunc(Step, TruncType);
1866     }
1867     return ScalarIV;
1868   };
1869 
1870   // Create the vector values from the scalar IV, in the absence of creating a
1871   // vector IV.
1872   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1873     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1874     for (unsigned Part = 0; Part < UF; ++Part) {
1875       Value *EntryPart =
1876           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1877       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1878       if (Trunc)
1879         addMetadata(EntryPart, Trunc);
1880       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1881     }
1882   };
1883 
1884   // Now do the actual transformations, and start with creating the step value.
1885   Value *Step = CreateStepValue(ID.getStep());
1886   if (VF <= 1) {
1887     Value *ScalarIV = CreateScalarIV(Step);
1888     CreateSplatIV(ScalarIV, Step);
1889     return;
1890   }
1891 
1892   // Determine if we want a scalar version of the induction variable. This is
1893   // true if the induction variable itself is not widened, or if it has at
1894   // least one user in the loop that is not widened.
1895   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1896   if (!NeedsScalarIV) {
1897     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1898     return;
1899   }
1900 
1901   // Try to create a new independent vector induction variable. If we can't
1902   // create the phi node, we will splat the scalar induction variable in each
1903   // loop iteration.
1904   if (!shouldScalarizeInstruction(EntryVal)) {
1905     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1906     Value *ScalarIV = CreateScalarIV(Step);
1907     // Create scalar steps that can be used by instructions we will later
1908     // scalarize. Note that the addition of the scalar steps will not increase
1909     // the number of instructions in the loop in the common case prior to
1910     // InstCombine. We will be trading one vector extract for each scalar step.
1911     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1912     return;
1913   }
1914 
1915   // All IV users are scalar instructions, so only emit a scalar IV, not a
1916   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
1917   // predicate used by the masked loads/stores.
1918   Value *ScalarIV = CreateScalarIV(Step);
1919   if (!Cost->isScalarEpilogueAllowed())
1920     CreateSplatIV(ScalarIV, Step);
1921   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1922 }
1923 
1924 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1925                                           Instruction::BinaryOps BinOp) {
1926   // Create and check the types.
1927   auto *ValVTy = cast<VectorType>(Val->getType());
1928   int VLen = ValVTy->getNumElements();
1929 
1930   Type *STy = Val->getType()->getScalarType();
1931   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1932          "Induction Step must be an integer or FP");
1933   assert(Step->getType() == STy && "Step has wrong type");
1934 
1935   SmallVector<Constant *, 8> Indices;
1936 
1937   if (STy->isIntegerTy()) {
1938     // Create a vector of consecutive numbers from zero to VF.
1939     for (int i = 0; i < VLen; ++i)
1940       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1941 
1942     // Add the consecutive indices to the vector value.
1943     Constant *Cv = ConstantVector::get(Indices);
1944     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1945     Step = Builder.CreateVectorSplat(VLen, Step);
1946     assert(Step->getType() == Val->getType() && "Invalid step vec");
1947     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1948     // which can be found from the original scalar operations.
1949     Step = Builder.CreateMul(Cv, Step);
1950     return Builder.CreateAdd(Val, Step, "induction");
1951   }
1952 
1953   // Floating point induction.
1954   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1955          "Binary Opcode should be specified for FP induction");
1956   // Create a vector of consecutive numbers from zero to VF.
1957   for (int i = 0; i < VLen; ++i)
1958     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1959 
1960   // Add the consecutive indices to the vector value.
1961   Constant *Cv = ConstantVector::get(Indices);
1962 
1963   Step = Builder.CreateVectorSplat(VLen, Step);
1964 
1965   // Floating point operations had to be 'fast' to enable the induction.
1966   FastMathFlags Flags;
1967   Flags.setFast();
1968 
1969   Value *MulOp = Builder.CreateFMul(Cv, Step);
1970   if (isa<Instruction>(MulOp))
1971     // Have to check, MulOp may be a constant
1972     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1973 
1974   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1975   if (isa<Instruction>(BOp))
1976     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1977   return BOp;
1978 }
1979 
1980 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1981                                            Instruction *EntryVal,
1982                                            const InductionDescriptor &ID) {
1983   // We shouldn't have to build scalar steps if we aren't vectorizing.
1984   assert(VF > 1 && "VF should be greater than one");
1985 
1986   // Get the value type and ensure it and the step have the same integer type.
1987   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1988   assert(ScalarIVTy == Step->getType() &&
1989          "Val and Step should have the same type");
1990 
1991   // We build scalar steps for both integer and floating-point induction
1992   // variables. Here, we determine the kind of arithmetic we will perform.
1993   Instruction::BinaryOps AddOp;
1994   Instruction::BinaryOps MulOp;
1995   if (ScalarIVTy->isIntegerTy()) {
1996     AddOp = Instruction::Add;
1997     MulOp = Instruction::Mul;
1998   } else {
1999     AddOp = ID.getInductionOpcode();
2000     MulOp = Instruction::FMul;
2001   }
2002 
2003   // Determine the number of scalars we need to generate for each unroll
2004   // iteration. If EntryVal is uniform, we only need to generate the first
2005   // lane. Otherwise, we generate all VF values.
2006   unsigned Lanes =
2007       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2008                                                                          : VF;
2009   // Compute the scalar steps and save the results in VectorLoopValueMap.
2010   for (unsigned Part = 0; Part < UF; ++Part) {
2011     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2012       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2013       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2014       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2015       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2016       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2017     }
2018   }
2019 }
2020 
2021 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2022   assert(V != Induction && "The new induction variable should not be used.");
2023   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2024   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2025 
2026   // If we have a stride that is replaced by one, do it here. Defer this for
2027   // the VPlan-native path until we start running Legal checks in that path.
2028   if (!EnableVPlanNativePath && Legal->hasStride(V))
2029     V = ConstantInt::get(V->getType(), 1);
2030 
2031   // If we have a vector mapped to this value, return it.
2032   if (VectorLoopValueMap.hasVectorValue(V, Part))
2033     return VectorLoopValueMap.getVectorValue(V, Part);
2034 
2035   // If the value has not been vectorized, check if it has been scalarized
2036   // instead. If it has been scalarized, and we actually need the value in
2037   // vector form, we will construct the vector values on demand.
2038   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2039     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2040 
2041     // If we've scalarized a value, that value should be an instruction.
2042     auto *I = cast<Instruction>(V);
2043 
2044     // If we aren't vectorizing, we can just copy the scalar map values over to
2045     // the vector map.
2046     if (VF == 1) {
2047       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2048       return ScalarValue;
2049     }
2050 
2051     // Get the last scalar instruction we generated for V and Part. If the value
2052     // is known to be uniform after vectorization, this corresponds to lane zero
2053     // of the Part unroll iteration. Otherwise, the last instruction is the one
2054     // we created for the last vector lane of the Part unroll iteration.
2055     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2056     auto *LastInst = cast<Instruction>(
2057         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2058 
2059     // Set the insert point after the last scalarized instruction. This ensures
2060     // the insertelement sequence will directly follow the scalar definitions.
2061     auto OldIP = Builder.saveIP();
2062     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2063     Builder.SetInsertPoint(&*NewIP);
2064 
2065     // However, if we are vectorizing, we need to construct the vector values.
2066     // If the value is known to be uniform after vectorization, we can just
2067     // broadcast the scalar value corresponding to lane zero for each unroll
2068     // iteration. Otherwise, we construct the vector values using insertelement
2069     // instructions. Since the resulting vectors are stored in
2070     // VectorLoopValueMap, we will only generate the insertelements once.
2071     Value *VectorValue = nullptr;
2072     if (Cost->isUniformAfterVectorization(I, VF)) {
2073       VectorValue = getBroadcastInstrs(ScalarValue);
2074       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2075     } else {
2076       // Initialize packing with insertelements to start from undef.
2077       Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF));
2078       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2079       for (unsigned Lane = 0; Lane < VF; ++Lane)
2080         packScalarIntoVectorValue(V, {Part, Lane});
2081       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2082     }
2083     Builder.restoreIP(OldIP);
2084     return VectorValue;
2085   }
2086 
2087   // If this scalar is unknown, assume that it is a constant or that it is
2088   // loop invariant. Broadcast V and save the value for future uses.
2089   Value *B = getBroadcastInstrs(V);
2090   VectorLoopValueMap.setVectorValue(V, Part, B);
2091   return B;
2092 }
2093 
2094 Value *
2095 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2096                                             const VPIteration &Instance) {
2097   // If the value is not an instruction contained in the loop, it should
2098   // already be scalar.
2099   if (OrigLoop->isLoopInvariant(V))
2100     return V;
2101 
2102   assert(Instance.Lane > 0
2103              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2104              : true && "Uniform values only have lane zero");
2105 
2106   // If the value from the original loop has not been vectorized, it is
2107   // represented by UF x VF scalar values in the new loop. Return the requested
2108   // scalar value.
2109   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2110     return VectorLoopValueMap.getScalarValue(V, Instance);
2111 
2112   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2113   // for the given unroll part. If this entry is not a vector type (i.e., the
2114   // vectorization factor is one), there is no need to generate an
2115   // extractelement instruction.
2116   auto *U = getOrCreateVectorValue(V, Instance.Part);
2117   if (!U->getType()->isVectorTy()) {
2118     assert(VF == 1 && "Value not scalarized has non-vector type");
2119     return U;
2120   }
2121 
2122   // Otherwise, the value from the original loop has been vectorized and is
2123   // represented by UF vector values. Extract and return the requested scalar
2124   // value from the appropriate vector lane.
2125   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2126 }
2127 
2128 void InnerLoopVectorizer::packScalarIntoVectorValue(
2129     Value *V, const VPIteration &Instance) {
2130   assert(V != Induction && "The new induction variable should not be used.");
2131   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2132   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2133 
2134   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2135   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2136   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2137                                             Builder.getInt32(Instance.Lane));
2138   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2139 }
2140 
2141 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2142   assert(Vec->getType()->isVectorTy() && "Invalid type");
2143   SmallVector<int, 8> ShuffleMask;
2144   for (unsigned i = 0; i < VF; ++i)
2145     ShuffleMask.push_back(VF - i - 1);
2146 
2147   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2148                                      ShuffleMask, "reverse");
2149 }
2150 
2151 // Return whether we allow using masked interleave-groups (for dealing with
2152 // strided loads/stores that reside in predicated blocks, or for dealing
2153 // with gaps).
2154 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2155   // If an override option has been passed in for interleaved accesses, use it.
2156   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2157     return EnableMaskedInterleavedMemAccesses;
2158 
2159   return TTI.enableMaskedInterleavedAccessVectorization();
2160 }
2161 
2162 // Try to vectorize the interleave group that \p Instr belongs to.
2163 //
2164 // E.g. Translate following interleaved load group (factor = 3):
2165 //   for (i = 0; i < N; i+=3) {
2166 //     R = Pic[i];             // Member of index 0
2167 //     G = Pic[i+1];           // Member of index 1
2168 //     B = Pic[i+2];           // Member of index 2
2169 //     ... // do something to R, G, B
2170 //   }
2171 // To:
2172 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2173 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2174 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2175 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2176 //
2177 // Or translate following interleaved store group (factor = 3):
2178 //   for (i = 0; i < N; i+=3) {
2179 //     ... do something to R, G, B
2180 //     Pic[i]   = R;           // Member of index 0
2181 //     Pic[i+1] = G;           // Member of index 1
2182 //     Pic[i+2] = B;           // Member of index 2
2183 //   }
2184 // To:
2185 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2186 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2187 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2188 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2189 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2190 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2191     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2192     VPValue *Addr, VPValue *BlockInMask) {
2193   Instruction *Instr = Group->getInsertPos();
2194   const DataLayout &DL = Instr->getModule()->getDataLayout();
2195 
2196   // Prepare for the vector type of the interleaved load/store.
2197   Type *ScalarTy = getMemInstValueType(Instr);
2198   unsigned InterleaveFactor = Group->getFactor();
2199   auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF);
2200 
2201   // Prepare for the new pointers.
2202   SmallVector<Value *, 2> AddrParts;
2203   unsigned Index = Group->getIndex(Instr);
2204 
2205   // TODO: extend the masked interleaved-group support to reversed access.
2206   assert((!BlockInMask || !Group->isReverse()) &&
2207          "Reversed masked interleave-group not supported.");
2208 
2209   // If the group is reverse, adjust the index to refer to the last vector lane
2210   // instead of the first. We adjust the index from the first vector lane,
2211   // rather than directly getting the pointer for lane VF - 1, because the
2212   // pointer operand of the interleaved access is supposed to be uniform. For
2213   // uniform instructions, we're only required to generate a value for the
2214   // first vector lane in each unroll iteration.
2215   if (Group->isReverse())
2216     Index += (VF - 1) * Group->getFactor();
2217 
2218   for (unsigned Part = 0; Part < UF; Part++) {
2219     Value *AddrPart = State.get(Addr, {Part, 0});
2220     setDebugLocFromInst(Builder, AddrPart);
2221 
2222     // Notice current instruction could be any index. Need to adjust the address
2223     // to the member of index 0.
2224     //
2225     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2226     //       b = A[i];       // Member of index 0
2227     // Current pointer is pointed to A[i+1], adjust it to A[i].
2228     //
2229     // E.g.  A[i+1] = a;     // Member of index 1
2230     //       A[i]   = b;     // Member of index 0
2231     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2232     // Current pointer is pointed to A[i+2], adjust it to A[i].
2233 
2234     bool InBounds = false;
2235     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2236       InBounds = gep->isInBounds();
2237     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2238     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2239 
2240     // Cast to the vector pointer type.
2241     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2242     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2243     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2244   }
2245 
2246   setDebugLocFromInst(Builder, Instr);
2247   Value *UndefVec = UndefValue::get(VecTy);
2248 
2249   Value *MaskForGaps = nullptr;
2250   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2251     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2252     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2253   }
2254 
2255   // Vectorize the interleaved load group.
2256   if (isa<LoadInst>(Instr)) {
2257     // For each unroll part, create a wide load for the group.
2258     SmallVector<Value *, 2> NewLoads;
2259     for (unsigned Part = 0; Part < UF; Part++) {
2260       Instruction *NewLoad;
2261       if (BlockInMask || MaskForGaps) {
2262         assert(useMaskedInterleavedAccesses(*TTI) &&
2263                "masked interleaved groups are not allowed.");
2264         Value *GroupMask = MaskForGaps;
2265         if (BlockInMask) {
2266           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2267           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2268           Value *ShuffledMask = Builder.CreateShuffleVector(
2269               BlockInMaskPart, Undefs,
2270               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2271           GroupMask = MaskForGaps
2272                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2273                                                 MaskForGaps)
2274                           : ShuffledMask;
2275         }
2276         NewLoad =
2277             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2278                                      GroupMask, UndefVec, "wide.masked.vec");
2279       }
2280       else
2281         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2282                                             Group->getAlign(), "wide.vec");
2283       Group->addMetadata(NewLoad);
2284       NewLoads.push_back(NewLoad);
2285     }
2286 
2287     // For each member in the group, shuffle out the appropriate data from the
2288     // wide loads.
2289     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2290       Instruction *Member = Group->getMember(I);
2291 
2292       // Skip the gaps in the group.
2293       if (!Member)
2294         continue;
2295 
2296       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2297       for (unsigned Part = 0; Part < UF; Part++) {
2298         Value *StridedVec = Builder.CreateShuffleVector(
2299             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2300 
2301         // If this member has different type, cast the result type.
2302         if (Member->getType() != ScalarTy) {
2303           VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF);
2304           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2305         }
2306 
2307         if (Group->isReverse())
2308           StridedVec = reverseVector(StridedVec);
2309 
2310         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2311       }
2312     }
2313     return;
2314   }
2315 
2316   // The sub vector type for current instruction.
2317   auto *SubVT = FixedVectorType::get(ScalarTy, VF);
2318 
2319   // Vectorize the interleaved store group.
2320   for (unsigned Part = 0; Part < UF; Part++) {
2321     // Collect the stored vector from each member.
2322     SmallVector<Value *, 4> StoredVecs;
2323     for (unsigned i = 0; i < InterleaveFactor; i++) {
2324       // Interleaved store group doesn't allow a gap, so each index has a member
2325       Instruction *Member = Group->getMember(i);
2326       assert(Member && "Fail to get a member from an interleaved store group");
2327 
2328       Value *StoredVec = getOrCreateVectorValue(
2329           cast<StoreInst>(Member)->getValueOperand(), Part);
2330       if (Group->isReverse())
2331         StoredVec = reverseVector(StoredVec);
2332 
2333       // If this member has different type, cast it to a unified type.
2334 
2335       if (StoredVec->getType() != SubVT)
2336         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2337 
2338       StoredVecs.push_back(StoredVec);
2339     }
2340 
2341     // Concatenate all vectors into a wide vector.
2342     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2343 
2344     // Interleave the elements in the wide vector.
2345     Value *IVec = Builder.CreateShuffleVector(
2346         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2347         "interleaved.vec");
2348 
2349     Instruction *NewStoreInstr;
2350     if (BlockInMask) {
2351       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2352       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2353       Value *ShuffledMask = Builder.CreateShuffleVector(
2354           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2355           "interleaved.mask");
2356       NewStoreInstr = Builder.CreateMaskedStore(
2357           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2358     }
2359     else
2360       NewStoreInstr =
2361           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2362 
2363     Group->addMetadata(NewStoreInstr);
2364   }
2365 }
2366 
2367 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2368                                                      VPTransformState &State,
2369                                                      VPValue *Addr,
2370                                                      VPValue *StoredValue,
2371                                                      VPValue *BlockInMask) {
2372   // Attempt to issue a wide load.
2373   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2374   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2375 
2376   assert((LI || SI) && "Invalid Load/Store instruction");
2377   assert((!SI || StoredValue) && "No stored value provided for widened store");
2378   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2379 
2380   LoopVectorizationCostModel::InstWidening Decision =
2381       Cost->getWideningDecision(Instr, VF);
2382   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2383           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2384           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2385          "CM decision is not to widen the memory instruction");
2386 
2387   Type *ScalarDataTy = getMemInstValueType(Instr);
2388   auto *DataTy = FixedVectorType::get(ScalarDataTy, VF);
2389   const Align Alignment = getLoadStoreAlignment(Instr);
2390 
2391   // Determine if the pointer operand of the access is either consecutive or
2392   // reverse consecutive.
2393   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2394   bool ConsecutiveStride =
2395       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2396   bool CreateGatherScatter =
2397       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2398 
2399   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2400   // gather/scatter. Otherwise Decision should have been to Scalarize.
2401   assert((ConsecutiveStride || CreateGatherScatter) &&
2402          "The instruction should be scalarized");
2403   (void)ConsecutiveStride;
2404 
2405   VectorParts BlockInMaskParts(UF);
2406   bool isMaskRequired = BlockInMask;
2407   if (isMaskRequired)
2408     for (unsigned Part = 0; Part < UF; ++Part)
2409       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2410 
2411   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2412     // Calculate the pointer for the specific unroll-part.
2413     GetElementPtrInst *PartPtr = nullptr;
2414 
2415     bool InBounds = false;
2416     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2417       InBounds = gep->isInBounds();
2418 
2419     if (Reverse) {
2420       // If the address is consecutive but reversed, then the
2421       // wide store needs to start at the last vector element.
2422       PartPtr = cast<GetElementPtrInst>(
2423           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2424       PartPtr->setIsInBounds(InBounds);
2425       PartPtr = cast<GetElementPtrInst>(
2426           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2427       PartPtr->setIsInBounds(InBounds);
2428       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2429         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2430     } else {
2431       PartPtr = cast<GetElementPtrInst>(
2432           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2433       PartPtr->setIsInBounds(InBounds);
2434     }
2435 
2436     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2437     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2438   };
2439 
2440   // Handle Stores:
2441   if (SI) {
2442     setDebugLocFromInst(Builder, SI);
2443 
2444     for (unsigned Part = 0; Part < UF; ++Part) {
2445       Instruction *NewSI = nullptr;
2446       Value *StoredVal = State.get(StoredValue, Part);
2447       if (CreateGatherScatter) {
2448         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2449         Value *VectorGep = State.get(Addr, Part);
2450         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2451                                             MaskPart);
2452       } else {
2453         if (Reverse) {
2454           // If we store to reverse consecutive memory locations, then we need
2455           // to reverse the order of elements in the stored value.
2456           StoredVal = reverseVector(StoredVal);
2457           // We don't want to update the value in the map as it might be used in
2458           // another expression. So don't call resetVectorValue(StoredVal).
2459         }
2460         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2461         if (isMaskRequired)
2462           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2463                                             BlockInMaskParts[Part]);
2464         else
2465           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2466       }
2467       addMetadata(NewSI, SI);
2468     }
2469     return;
2470   }
2471 
2472   // Handle loads.
2473   assert(LI && "Must have a load instruction");
2474   setDebugLocFromInst(Builder, LI);
2475   for (unsigned Part = 0; Part < UF; ++Part) {
2476     Value *NewLI;
2477     if (CreateGatherScatter) {
2478       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2479       Value *VectorGep = State.get(Addr, Part);
2480       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2481                                          nullptr, "wide.masked.gather");
2482       addMetadata(NewLI, LI);
2483     } else {
2484       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2485       if (isMaskRequired)
2486         NewLI = Builder.CreateMaskedLoad(
2487             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2488             "wide.masked.load");
2489       else
2490         NewLI =
2491             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2492 
2493       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2494       addMetadata(NewLI, LI);
2495       if (Reverse)
2496         NewLI = reverseVector(NewLI);
2497     }
2498     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2499   }
2500 }
2501 
2502 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2503                                                const VPIteration &Instance,
2504                                                bool IfPredicateInstr,
2505                                                VPTransformState &State) {
2506   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2507 
2508   setDebugLocFromInst(Builder, Instr);
2509 
2510   // Does this instruction return a value ?
2511   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2512 
2513   Instruction *Cloned = Instr->clone();
2514   if (!IsVoidRetTy)
2515     Cloned->setName(Instr->getName() + ".cloned");
2516 
2517   // Replace the operands of the cloned instructions with their scalar
2518   // equivalents in the new loop.
2519   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2520     auto *NewOp = State.get(User.getOperand(op), Instance);
2521     Cloned->setOperand(op, NewOp);
2522   }
2523   addNewMetadata(Cloned, Instr);
2524 
2525   // Place the cloned scalar in the new loop.
2526   Builder.Insert(Cloned);
2527 
2528   // Add the cloned scalar to the scalar map entry.
2529   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2530 
2531   // If we just cloned a new assumption, add it the assumption cache.
2532   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2533     if (II->getIntrinsicID() == Intrinsic::assume)
2534       AC->registerAssumption(II);
2535 
2536   // End if-block.
2537   if (IfPredicateInstr)
2538     PredicatedInstructions.push_back(Cloned);
2539 }
2540 
2541 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2542                                                       Value *End, Value *Step,
2543                                                       Instruction *DL) {
2544   BasicBlock *Header = L->getHeader();
2545   BasicBlock *Latch = L->getLoopLatch();
2546   // As we're just creating this loop, it's possible no latch exists
2547   // yet. If so, use the header as this will be a single block loop.
2548   if (!Latch)
2549     Latch = Header;
2550 
2551   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2552   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2553   setDebugLocFromInst(Builder, OldInst);
2554   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2555 
2556   Builder.SetInsertPoint(Latch->getTerminator());
2557   setDebugLocFromInst(Builder, OldInst);
2558 
2559   // Create i+1 and fill the PHINode.
2560   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2561   Induction->addIncoming(Start, L->getLoopPreheader());
2562   Induction->addIncoming(Next, Latch);
2563   // Create the compare.
2564   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2565   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2566 
2567   // Now we have two terminators. Remove the old one from the block.
2568   Latch->getTerminator()->eraseFromParent();
2569 
2570   return Induction;
2571 }
2572 
2573 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2574   if (TripCount)
2575     return TripCount;
2576 
2577   assert(L && "Create Trip Count for null loop.");
2578   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2579   // Find the loop boundaries.
2580   ScalarEvolution *SE = PSE.getSE();
2581   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2582   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2583          "Invalid loop count");
2584 
2585   Type *IdxTy = Legal->getWidestInductionType();
2586   assert(IdxTy && "No type for induction");
2587 
2588   // The exit count might have the type of i64 while the phi is i32. This can
2589   // happen if we have an induction variable that is sign extended before the
2590   // compare. The only way that we get a backedge taken count is that the
2591   // induction variable was signed and as such will not overflow. In such a case
2592   // truncation is legal.
2593   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2594       IdxTy->getPrimitiveSizeInBits())
2595     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2596   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2597 
2598   // Get the total trip count from the count by adding 1.
2599   const SCEV *ExitCount = SE->getAddExpr(
2600       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2601 
2602   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2603 
2604   // Expand the trip count and place the new instructions in the preheader.
2605   // Notice that the pre-header does not change, only the loop body.
2606   SCEVExpander Exp(*SE, DL, "induction");
2607 
2608   // Count holds the overall loop count (N).
2609   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2610                                 L->getLoopPreheader()->getTerminator());
2611 
2612   if (TripCount->getType()->isPointerTy())
2613     TripCount =
2614         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2615                                     L->getLoopPreheader()->getTerminator());
2616 
2617   return TripCount;
2618 }
2619 
2620 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2621   if (VectorTripCount)
2622     return VectorTripCount;
2623 
2624   Value *TC = getOrCreateTripCount(L);
2625   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2626 
2627   Type *Ty = TC->getType();
2628   Constant *Step = ConstantInt::get(Ty, VF * UF);
2629 
2630   // If the tail is to be folded by masking, round the number of iterations N
2631   // up to a multiple of Step instead of rounding down. This is done by first
2632   // adding Step-1 and then rounding down. Note that it's ok if this addition
2633   // overflows: the vector induction variable will eventually wrap to zero given
2634   // that it starts at zero and its Step is a power of two; the loop will then
2635   // exit, with the last early-exit vector comparison also producing all-true.
2636   if (Cost->foldTailByMasking()) {
2637     assert(isPowerOf2_32(VF * UF) &&
2638            "VF*UF must be a power of 2 when folding tail by masking");
2639     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2640   }
2641 
2642   // Now we need to generate the expression for the part of the loop that the
2643   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2644   // iterations are not required for correctness, or N - Step, otherwise. Step
2645   // is equal to the vectorization factor (number of SIMD elements) times the
2646   // unroll factor (number of SIMD instructions).
2647   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2648 
2649   // If there is a non-reversed interleaved group that may speculatively access
2650   // memory out-of-bounds, we need to ensure that there will be at least one
2651   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2652   // the trip count, we set the remainder to be equal to the step. If the step
2653   // does not evenly divide the trip count, no adjustment is necessary since
2654   // there will already be scalar iterations. Note that the minimum iterations
2655   // check ensures that N >= Step.
2656   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2657     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2658     R = Builder.CreateSelect(IsZero, Step, R);
2659   }
2660 
2661   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2662 
2663   return VectorTripCount;
2664 }
2665 
2666 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2667                                                    const DataLayout &DL) {
2668   // Verify that V is a vector type with same number of elements as DstVTy.
2669   unsigned VF = DstVTy->getNumElements();
2670   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2671   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2672   Type *SrcElemTy = SrcVecTy->getElementType();
2673   Type *DstElemTy = DstVTy->getElementType();
2674   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2675          "Vector elements must have same size");
2676 
2677   // Do a direct cast if element types are castable.
2678   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2679     return Builder.CreateBitOrPointerCast(V, DstVTy);
2680   }
2681   // V cannot be directly casted to desired vector type.
2682   // May happen when V is a floating point vector but DstVTy is a vector of
2683   // pointers or vice-versa. Handle this using a two-step bitcast using an
2684   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2685   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2686          "Only one type should be a pointer type");
2687   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2688          "Only one type should be a floating point type");
2689   Type *IntTy =
2690       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2691   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2692   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2693   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2694 }
2695 
2696 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2697                                                          BasicBlock *Bypass) {
2698   Value *Count = getOrCreateTripCount(L);
2699   // Reuse existing vector loop preheader for TC checks.
2700   // Note that new preheader block is generated for vector loop.
2701   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2702   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2703 
2704   // Generate code to check if the loop's trip count is less than VF * UF, or
2705   // equal to it in case a scalar epilogue is required; this implies that the
2706   // vector trip count is zero. This check also covers the case where adding one
2707   // to the backedge-taken count overflowed leading to an incorrect trip count
2708   // of zero. In this case we will also jump to the scalar loop.
2709   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2710                                           : ICmpInst::ICMP_ULT;
2711 
2712   // If tail is to be folded, vector loop takes care of all iterations.
2713   Value *CheckMinIters = Builder.getFalse();
2714   if (!Cost->foldTailByMasking())
2715     CheckMinIters = Builder.CreateICmp(
2716         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2717         "min.iters.check");
2718 
2719   // Create new preheader for vector loop.
2720   LoopVectorPreHeader =
2721       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2722                  "vector.ph");
2723 
2724   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2725                                DT->getNode(Bypass)->getIDom()) &&
2726          "TC check is expected to dominate Bypass");
2727 
2728   // Update dominator for Bypass & LoopExit.
2729   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2730   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2731 
2732   ReplaceInstWithInst(
2733       TCCheckBlock->getTerminator(),
2734       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2735   LoopBypassBlocks.push_back(TCCheckBlock);
2736 }
2737 
2738 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2739   // Reuse existing vector loop preheader for SCEV checks.
2740   // Note that new preheader block is generated for vector loop.
2741   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2742 
2743   // Generate the code to check that the SCEV assumptions that we made.
2744   // We want the new basic block to start at the first instruction in a
2745   // sequence of instructions that form a check.
2746   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2747                    "scev.check");
2748   Value *SCEVCheck = Exp.expandCodeForPredicate(
2749       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2750 
2751   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2752     if (C->isZero())
2753       return;
2754 
2755   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2756          "Cannot SCEV check stride or overflow when optimizing for size");
2757 
2758   SCEVCheckBlock->setName("vector.scevcheck");
2759   // Create new preheader for vector loop.
2760   LoopVectorPreHeader =
2761       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2762                  nullptr, "vector.ph");
2763 
2764   // Update dominator only if this is first RT check.
2765   if (LoopBypassBlocks.empty()) {
2766     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2767     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2768   }
2769 
2770   ReplaceInstWithInst(
2771       SCEVCheckBlock->getTerminator(),
2772       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2773   LoopBypassBlocks.push_back(SCEVCheckBlock);
2774   AddedSafetyChecks = true;
2775 }
2776 
2777 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2778   // VPlan-native path does not do any analysis for runtime checks currently.
2779   if (EnableVPlanNativePath)
2780     return;
2781 
2782   // Reuse existing vector loop preheader for runtime memory checks.
2783   // Note that new preheader block is generated for vector loop.
2784   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2785 
2786   // Generate the code that checks in runtime if arrays overlap. We put the
2787   // checks into a separate block to make the more common case of few elements
2788   // faster.
2789   auto *LAI = Legal->getLAI();
2790   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2791   if (!RtPtrChecking.Need)
2792     return;
2793   Instruction *FirstCheckInst;
2794   Instruction *MemRuntimeCheck;
2795   std::tie(FirstCheckInst, MemRuntimeCheck) =
2796       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2797                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2798   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2799                             "claimed checks are required");
2800 
2801   if (MemCheckBlock->getParent()->hasOptSize()) {
2802     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2803            "Cannot emit memory checks when optimizing for size, unless forced "
2804            "to vectorize.");
2805     ORE->emit([&]() {
2806       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2807                                         L->getStartLoc(), L->getHeader())
2808              << "Code-size may be reduced by not forcing "
2809                 "vectorization, or by source-code modifications "
2810                 "eliminating the need for runtime checks "
2811                 "(e.g., adding 'restrict').";
2812     });
2813   }
2814 
2815   MemCheckBlock->setName("vector.memcheck");
2816   // Create new preheader for vector loop.
2817   LoopVectorPreHeader =
2818       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2819                  "vector.ph");
2820 
2821   // Update dominator only if this is first RT check.
2822   if (LoopBypassBlocks.empty()) {
2823     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2824     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2825   }
2826 
2827   ReplaceInstWithInst(
2828       MemCheckBlock->getTerminator(),
2829       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2830   LoopBypassBlocks.push_back(MemCheckBlock);
2831   AddedSafetyChecks = true;
2832 
2833   // We currently don't use LoopVersioning for the actual loop cloning but we
2834   // still use it to add the noalias metadata.
2835   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2836                                           PSE.getSE());
2837   LVer->prepareNoAliasMetadata();
2838 }
2839 
2840 Value *InnerLoopVectorizer::emitTransformedIndex(
2841     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2842     const InductionDescriptor &ID) const {
2843 
2844   SCEVExpander Exp(*SE, DL, "induction");
2845   auto Step = ID.getStep();
2846   auto StartValue = ID.getStartValue();
2847   assert(Index->getType() == Step->getType() &&
2848          "Index type does not match StepValue type");
2849 
2850   // Note: the IR at this point is broken. We cannot use SE to create any new
2851   // SCEV and then expand it, hoping that SCEV's simplification will give us
2852   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2853   // lead to various SCEV crashes. So all we can do is to use builder and rely
2854   // on InstCombine for future simplifications. Here we handle some trivial
2855   // cases only.
2856   auto CreateAdd = [&B](Value *X, Value *Y) {
2857     assert(X->getType() == Y->getType() && "Types don't match!");
2858     if (auto *CX = dyn_cast<ConstantInt>(X))
2859       if (CX->isZero())
2860         return Y;
2861     if (auto *CY = dyn_cast<ConstantInt>(Y))
2862       if (CY->isZero())
2863         return X;
2864     return B.CreateAdd(X, Y);
2865   };
2866 
2867   auto CreateMul = [&B](Value *X, Value *Y) {
2868     assert(X->getType() == Y->getType() && "Types don't match!");
2869     if (auto *CX = dyn_cast<ConstantInt>(X))
2870       if (CX->isOne())
2871         return Y;
2872     if (auto *CY = dyn_cast<ConstantInt>(Y))
2873       if (CY->isOne())
2874         return X;
2875     return B.CreateMul(X, Y);
2876   };
2877 
2878   switch (ID.getKind()) {
2879   case InductionDescriptor::IK_IntInduction: {
2880     assert(Index->getType() == StartValue->getType() &&
2881            "Index type does not match StartValue type");
2882     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2883       return B.CreateSub(StartValue, Index);
2884     auto *Offset = CreateMul(
2885         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2886     return CreateAdd(StartValue, Offset);
2887   }
2888   case InductionDescriptor::IK_PtrInduction: {
2889     assert(isa<SCEVConstant>(Step) &&
2890            "Expected constant step for pointer induction");
2891     return B.CreateGEP(
2892         StartValue->getType()->getPointerElementType(), StartValue,
2893         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2894                                            &*B.GetInsertPoint())));
2895   }
2896   case InductionDescriptor::IK_FpInduction: {
2897     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2898     auto InductionBinOp = ID.getInductionBinOp();
2899     assert(InductionBinOp &&
2900            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2901             InductionBinOp->getOpcode() == Instruction::FSub) &&
2902            "Original bin op should be defined for FP induction");
2903 
2904     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2905 
2906     // Floating point operations had to be 'fast' to enable the induction.
2907     FastMathFlags Flags;
2908     Flags.setFast();
2909 
2910     Value *MulExp = B.CreateFMul(StepValue, Index);
2911     if (isa<Instruction>(MulExp))
2912       // We have to check, the MulExp may be a constant.
2913       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2914 
2915     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2916                                "induction");
2917     if (isa<Instruction>(BOp))
2918       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2919 
2920     return BOp;
2921   }
2922   case InductionDescriptor::IK_NoInduction:
2923     return nullptr;
2924   }
2925   llvm_unreachable("invalid enum");
2926 }
2927 
2928 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2929   /*
2930    In this function we generate a new loop. The new loop will contain
2931    the vectorized instructions while the old loop will continue to run the
2932    scalar remainder.
2933 
2934        [ ] <-- loop iteration number check.
2935     /   |
2936    /    v
2937   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2938   |  /  |
2939   | /   v
2940   ||   [ ]     <-- vector pre header.
2941   |/    |
2942   |     v
2943   |    [  ] \
2944   |    [  ]_|   <-- vector loop.
2945   |     |
2946   |     v
2947   |   -[ ]   <--- middle-block.
2948   |  /  |
2949   | /   v
2950   -|- >[ ]     <--- new preheader.
2951    |    |
2952    |    v
2953    |   [ ] \
2954    |   [ ]_|   <-- old scalar loop to handle remainder.
2955     \   |
2956      \  v
2957       >[ ]     <-- exit block.
2958    ...
2959    */
2960 
2961   MDNode *OrigLoopID = OrigLoop->getLoopID();
2962 
2963   // Some loops have a single integer induction variable, while other loops
2964   // don't. One example is c++ iterators that often have multiple pointer
2965   // induction variables. In the code below we also support a case where we
2966   // don't have a single induction variable.
2967   //
2968   // We try to obtain an induction variable from the original loop as hard
2969   // as possible. However if we don't find one that:
2970   //   - is an integer
2971   //   - counts from zero, stepping by one
2972   //   - is the size of the widest induction variable type
2973   // then we create a new one.
2974   OldInduction = Legal->getPrimaryInduction();
2975   Type *IdxTy = Legal->getWidestInductionType();
2976 
2977   // Split the single block loop into the two loop structure described above.
2978   LoopScalarBody = OrigLoop->getHeader();
2979   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2980   LoopExitBlock = OrigLoop->getExitBlock();
2981   assert(LoopExitBlock && "Must have an exit block");
2982   assert(LoopVectorPreHeader && "Invalid loop structure");
2983 
2984   LoopMiddleBlock =
2985       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2986                  LI, nullptr, "middle.block");
2987   LoopScalarPreHeader =
2988       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2989                  nullptr, "scalar.ph");
2990   // We intentionally don't let SplitBlock to update LoopInfo since
2991   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2992   // LoopVectorBody is explicitly added to the correct place few lines later.
2993   LoopVectorBody =
2994       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2995                  nullptr, nullptr, "vector.body");
2996 
2997   // Update dominator for loop exit.
2998   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2999 
3000   // Create and register the new vector loop.
3001   Loop *Lp = LI->AllocateLoop();
3002   Loop *ParentLoop = OrigLoop->getParentLoop();
3003 
3004   // Insert the new loop into the loop nest and register the new basic blocks
3005   // before calling any utilities such as SCEV that require valid LoopInfo.
3006   if (ParentLoop) {
3007     ParentLoop->addChildLoop(Lp);
3008   } else {
3009     LI->addTopLevelLoop(Lp);
3010   }
3011   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3012 
3013   // Find the loop boundaries.
3014   Value *Count = getOrCreateTripCount(Lp);
3015 
3016   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3017 
3018   // Now, compare the new count to zero. If it is zero skip the vector loop and
3019   // jump to the scalar loop. This check also covers the case where the
3020   // backedge-taken count is uint##_max: adding one to it will overflow leading
3021   // to an incorrect trip count of zero. In this (rare) case we will also jump
3022   // to the scalar loop.
3023   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3024 
3025   // Generate the code to check any assumptions that we've made for SCEV
3026   // expressions.
3027   emitSCEVChecks(Lp, LoopScalarPreHeader);
3028 
3029   // Generate the code that checks in runtime if arrays overlap. We put the
3030   // checks into a separate block to make the more common case of few elements
3031   // faster.
3032   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3033 
3034   // Generate the induction variable.
3035   // The loop step is equal to the vectorization factor (num of SIMD elements)
3036   // times the unroll factor (num of SIMD instructions).
3037   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3038   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3039   Induction =
3040       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3041                               getDebugLocFromInstOrOperands(OldInduction));
3042 
3043   // We are going to resume the execution of the scalar loop.
3044   // Go over all of the induction variables that we found and fix the
3045   // PHIs that are left in the scalar version of the loop.
3046   // The starting values of PHI nodes depend on the counter of the last
3047   // iteration in the vectorized loop.
3048   // If we come from a bypass edge then we need to start from the original
3049   // start value.
3050 
3051   // This variable saves the new starting index for the scalar loop. It is used
3052   // to test if there are any tail iterations left once the vector loop has
3053   // completed.
3054   for (auto &InductionEntry : Legal->getInductionVars()) {
3055     PHINode *OrigPhi = InductionEntry.first;
3056     InductionDescriptor II = InductionEntry.second;
3057 
3058     // Create phi nodes to merge from the  backedge-taken check block.
3059     PHINode *BCResumeVal =
3060         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3061                         LoopScalarPreHeader->getTerminator());
3062     // Copy original phi DL over to the new one.
3063     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3064     Value *&EndValue = IVEndValues[OrigPhi];
3065     if (OrigPhi == OldInduction) {
3066       // We know what the end value is.
3067       EndValue = CountRoundDown;
3068     } else {
3069       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3070       Type *StepType = II.getStep()->getType();
3071       Instruction::CastOps CastOp =
3072           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3073       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3074       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3075       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3076       EndValue->setName("ind.end");
3077     }
3078 
3079     // The new PHI merges the original incoming value, in case of a bypass,
3080     // or the value at the end of the vectorized loop.
3081     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3082 
3083     // Fix the scalar body counter (PHI node).
3084     // The old induction's phi node in the scalar body needs the truncated
3085     // value.
3086     for (BasicBlock *BB : LoopBypassBlocks)
3087       BCResumeVal->addIncoming(II.getStartValue(), BB);
3088     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3089   }
3090 
3091   // We need the OrigLoop (scalar loop part) latch terminator to help
3092   // produce correct debug info for the middle block BB instructions.
3093   // The legality check stage guarantees that the loop will have a single
3094   // latch.
3095   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3096          "Scalar loop latch terminator isn't a branch");
3097   BranchInst *ScalarLatchBr =
3098       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3099 
3100   // Add a check in the middle block to see if we have completed
3101   // all of the iterations in the first vector loop.
3102   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3103   // If tail is to be folded, we know we don't need to run the remainder.
3104   Value *CmpN = Builder.getTrue();
3105   if (!Cost->foldTailByMasking()) {
3106     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3107                            CountRoundDown, "cmp.n",
3108                            LoopMiddleBlock->getTerminator());
3109 
3110     // Here we use the same DebugLoc as the scalar loop latch branch instead
3111     // of the corresponding compare because they may have ended up with
3112     // different line numbers and we want to avoid awkward line stepping while
3113     // debugging. Eg. if the compare has got a line number inside the loop.
3114     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3115   }
3116 
3117   BranchInst *BrInst =
3118       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3119   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3120   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3121 
3122   // Get ready to start creating new instructions into the vectorized body.
3123   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3124          "Inconsistent vector loop preheader");
3125   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3126 
3127   Optional<MDNode *> VectorizedLoopID =
3128       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3129                                       LLVMLoopVectorizeFollowupVectorized});
3130   if (VectorizedLoopID.hasValue()) {
3131     Lp->setLoopID(VectorizedLoopID.getValue());
3132 
3133     // Do not setAlreadyVectorized if loop attributes have been defined
3134     // explicitly.
3135     return LoopVectorPreHeader;
3136   }
3137 
3138   // Keep all loop hints from the original loop on the vector loop (we'll
3139   // replace the vectorizer-specific hints below).
3140   if (MDNode *LID = OrigLoop->getLoopID())
3141     Lp->setLoopID(LID);
3142 
3143   LoopVectorizeHints Hints(Lp, true, *ORE);
3144   Hints.setAlreadyVectorized();
3145 
3146 #ifdef EXPENSIVE_CHECKS
3147   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3148   LI->verify(*DT);
3149 #endif
3150 
3151   return LoopVectorPreHeader;
3152 }
3153 
3154 // Fix up external users of the induction variable. At this point, we are
3155 // in LCSSA form, with all external PHIs that use the IV having one input value,
3156 // coming from the remainder loop. We need those PHIs to also have a correct
3157 // value for the IV when arriving directly from the middle block.
3158 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3159                                        const InductionDescriptor &II,
3160                                        Value *CountRoundDown, Value *EndValue,
3161                                        BasicBlock *MiddleBlock) {
3162   // There are two kinds of external IV usages - those that use the value
3163   // computed in the last iteration (the PHI) and those that use the penultimate
3164   // value (the value that feeds into the phi from the loop latch).
3165   // We allow both, but they, obviously, have different values.
3166 
3167   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3168 
3169   DenseMap<Value *, Value *> MissingVals;
3170 
3171   // An external user of the last iteration's value should see the value that
3172   // the remainder loop uses to initialize its own IV.
3173   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3174   for (User *U : PostInc->users()) {
3175     Instruction *UI = cast<Instruction>(U);
3176     if (!OrigLoop->contains(UI)) {
3177       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3178       MissingVals[UI] = EndValue;
3179     }
3180   }
3181 
3182   // An external user of the penultimate value need to see EndValue - Step.
3183   // The simplest way to get this is to recompute it from the constituent SCEVs,
3184   // that is Start + (Step * (CRD - 1)).
3185   for (User *U : OrigPhi->users()) {
3186     auto *UI = cast<Instruction>(U);
3187     if (!OrigLoop->contains(UI)) {
3188       const DataLayout &DL =
3189           OrigLoop->getHeader()->getModule()->getDataLayout();
3190       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3191 
3192       IRBuilder<> B(MiddleBlock->getTerminator());
3193       Value *CountMinusOne = B.CreateSub(
3194           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3195       Value *CMO =
3196           !II.getStep()->getType()->isIntegerTy()
3197               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3198                              II.getStep()->getType())
3199               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3200       CMO->setName("cast.cmo");
3201       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3202       Escape->setName("ind.escape");
3203       MissingVals[UI] = Escape;
3204     }
3205   }
3206 
3207   for (auto &I : MissingVals) {
3208     PHINode *PHI = cast<PHINode>(I.first);
3209     // One corner case we have to handle is two IVs "chasing" each-other,
3210     // that is %IV2 = phi [...], [ %IV1, %latch ]
3211     // In this case, if IV1 has an external use, we need to avoid adding both
3212     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3213     // don't already have an incoming value for the middle block.
3214     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3215       PHI->addIncoming(I.second, MiddleBlock);
3216   }
3217 }
3218 
3219 namespace {
3220 
3221 struct CSEDenseMapInfo {
3222   static bool canHandle(const Instruction *I) {
3223     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3224            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3225   }
3226 
3227   static inline Instruction *getEmptyKey() {
3228     return DenseMapInfo<Instruction *>::getEmptyKey();
3229   }
3230 
3231   static inline Instruction *getTombstoneKey() {
3232     return DenseMapInfo<Instruction *>::getTombstoneKey();
3233   }
3234 
3235   static unsigned getHashValue(const Instruction *I) {
3236     assert(canHandle(I) && "Unknown instruction!");
3237     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3238                                                            I->value_op_end()));
3239   }
3240 
3241   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3242     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3243         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3244       return LHS == RHS;
3245     return LHS->isIdenticalTo(RHS);
3246   }
3247 };
3248 
3249 } // end anonymous namespace
3250 
3251 ///Perform cse of induction variable instructions.
3252 static void cse(BasicBlock *BB) {
3253   // Perform simple cse.
3254   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3255   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3256     Instruction *In = &*I++;
3257 
3258     if (!CSEDenseMapInfo::canHandle(In))
3259       continue;
3260 
3261     // Check if we can replace this instruction with any of the
3262     // visited instructions.
3263     if (Instruction *V = CSEMap.lookup(In)) {
3264       In->replaceAllUsesWith(V);
3265       In->eraseFromParent();
3266       continue;
3267     }
3268 
3269     CSEMap[In] = In;
3270   }
3271 }
3272 
3273 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3274                                                        unsigned VF,
3275                                                        bool &NeedToScalarize) {
3276   Function *F = CI->getCalledFunction();
3277   Type *ScalarRetTy = CI->getType();
3278   SmallVector<Type *, 4> Tys, ScalarTys;
3279   for (auto &ArgOp : CI->arg_operands())
3280     ScalarTys.push_back(ArgOp->getType());
3281 
3282   // Estimate cost of scalarized vector call. The source operands are assumed
3283   // to be vectors, so we need to extract individual elements from there,
3284   // execute VF scalar calls, and then gather the result into the vector return
3285   // value.
3286   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3287                                                  TTI::TCK_RecipThroughput);
3288   if (VF == 1)
3289     return ScalarCallCost;
3290 
3291   // Compute corresponding vector type for return value and arguments.
3292   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3293   for (Type *ScalarTy : ScalarTys)
3294     Tys.push_back(ToVectorTy(ScalarTy, VF));
3295 
3296   // Compute costs of unpacking argument values for the scalar calls and
3297   // packing the return values to a vector.
3298   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3299 
3300   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3301 
3302   // If we can't emit a vector call for this function, then the currently found
3303   // cost is the cost we need to return.
3304   NeedToScalarize = true;
3305   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3306   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3307 
3308   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3309     return Cost;
3310 
3311   // If the corresponding vector cost is cheaper, return its cost.
3312   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3313                                                  TTI::TCK_RecipThroughput);
3314   if (VectorCallCost < Cost) {
3315     NeedToScalarize = false;
3316     return VectorCallCost;
3317   }
3318   return Cost;
3319 }
3320 
3321 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3322                                                             unsigned VF) {
3323   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3324   assert(ID && "Expected intrinsic call!");
3325 
3326   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3327   return TTI.getIntrinsicInstrCost(CostAttrs,
3328                                    TargetTransformInfo::TCK_RecipThroughput);
3329 }
3330 
3331 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3332   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3333   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3334   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3335 }
3336 
3337 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3338   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3339   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3340   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3341 }
3342 
3343 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3344   // For every instruction `I` in MinBWs, truncate the operands, create a
3345   // truncated version of `I` and reextend its result. InstCombine runs
3346   // later and will remove any ext/trunc pairs.
3347   SmallPtrSet<Value *, 4> Erased;
3348   for (const auto &KV : Cost->getMinimalBitwidths()) {
3349     // If the value wasn't vectorized, we must maintain the original scalar
3350     // type. The absence of the value from VectorLoopValueMap indicates that it
3351     // wasn't vectorized.
3352     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3353       continue;
3354     for (unsigned Part = 0; Part < UF; ++Part) {
3355       Value *I = getOrCreateVectorValue(KV.first, Part);
3356       if (Erased.find(I) != Erased.end() || I->use_empty() ||
3357           !isa<Instruction>(I))
3358         continue;
3359       Type *OriginalTy = I->getType();
3360       Type *ScalarTruncatedTy =
3361           IntegerType::get(OriginalTy->getContext(), KV.second);
3362       auto *TruncatedTy = FixedVectorType::get(
3363           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3364       if (TruncatedTy == OriginalTy)
3365         continue;
3366 
3367       IRBuilder<> B(cast<Instruction>(I));
3368       auto ShrinkOperand = [&](Value *V) -> Value * {
3369         if (auto *ZI = dyn_cast<ZExtInst>(V))
3370           if (ZI->getSrcTy() == TruncatedTy)
3371             return ZI->getOperand(0);
3372         return B.CreateZExtOrTrunc(V, TruncatedTy);
3373       };
3374 
3375       // The actual instruction modification depends on the instruction type,
3376       // unfortunately.
3377       Value *NewI = nullptr;
3378       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3379         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3380                              ShrinkOperand(BO->getOperand(1)));
3381 
3382         // Any wrapping introduced by shrinking this operation shouldn't be
3383         // considered undefined behavior. So, we can't unconditionally copy
3384         // arithmetic wrapping flags to NewI.
3385         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3386       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3387         NewI =
3388             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3389                          ShrinkOperand(CI->getOperand(1)));
3390       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3391         NewI = B.CreateSelect(SI->getCondition(),
3392                               ShrinkOperand(SI->getTrueValue()),
3393                               ShrinkOperand(SI->getFalseValue()));
3394       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3395         switch (CI->getOpcode()) {
3396         default:
3397           llvm_unreachable("Unhandled cast!");
3398         case Instruction::Trunc:
3399           NewI = ShrinkOperand(CI->getOperand(0));
3400           break;
3401         case Instruction::SExt:
3402           NewI = B.CreateSExtOrTrunc(
3403               CI->getOperand(0),
3404               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3405           break;
3406         case Instruction::ZExt:
3407           NewI = B.CreateZExtOrTrunc(
3408               CI->getOperand(0),
3409               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3410           break;
3411         }
3412       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3413         auto Elements0 =
3414             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3415         auto *O0 = B.CreateZExtOrTrunc(
3416             SI->getOperand(0),
3417             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3418         auto Elements1 =
3419             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3420         auto *O1 = B.CreateZExtOrTrunc(
3421             SI->getOperand(1),
3422             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3423 
3424         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3425       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3426         // Don't do anything with the operands, just extend the result.
3427         continue;
3428       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3429         auto Elements =
3430             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3431         auto *O0 = B.CreateZExtOrTrunc(
3432             IE->getOperand(0),
3433             FixedVectorType::get(ScalarTruncatedTy, Elements));
3434         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3435         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3436       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3437         auto Elements =
3438             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3439         auto *O0 = B.CreateZExtOrTrunc(
3440             EE->getOperand(0),
3441             FixedVectorType::get(ScalarTruncatedTy, Elements));
3442         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3443       } else {
3444         // If we don't know what to do, be conservative and don't do anything.
3445         continue;
3446       }
3447 
3448       // Lastly, extend the result.
3449       NewI->takeName(cast<Instruction>(I));
3450       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3451       I->replaceAllUsesWith(Res);
3452       cast<Instruction>(I)->eraseFromParent();
3453       Erased.insert(I);
3454       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3455     }
3456   }
3457 
3458   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3459   for (const auto &KV : Cost->getMinimalBitwidths()) {
3460     // If the value wasn't vectorized, we must maintain the original scalar
3461     // type. The absence of the value from VectorLoopValueMap indicates that it
3462     // wasn't vectorized.
3463     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3464       continue;
3465     for (unsigned Part = 0; Part < UF; ++Part) {
3466       Value *I = getOrCreateVectorValue(KV.first, Part);
3467       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3468       if (Inst && Inst->use_empty()) {
3469         Value *NewI = Inst->getOperand(0);
3470         Inst->eraseFromParent();
3471         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3472       }
3473     }
3474   }
3475 }
3476 
3477 void InnerLoopVectorizer::fixVectorizedLoop() {
3478   // Insert truncates and extends for any truncated instructions as hints to
3479   // InstCombine.
3480   if (VF > 1)
3481     truncateToMinimalBitwidths();
3482 
3483   // Fix widened non-induction PHIs by setting up the PHI operands.
3484   if (OrigPHIsToFix.size()) {
3485     assert(EnableVPlanNativePath &&
3486            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3487     fixNonInductionPHIs();
3488   }
3489 
3490   // At this point every instruction in the original loop is widened to a
3491   // vector form. Now we need to fix the recurrences in the loop. These PHI
3492   // nodes are currently empty because we did not want to introduce cycles.
3493   // This is the second stage of vectorizing recurrences.
3494   fixCrossIterationPHIs();
3495 
3496   // Forget the original basic block.
3497   PSE.getSE()->forgetLoop(OrigLoop);
3498 
3499   // Fix-up external users of the induction variables.
3500   for (auto &Entry : Legal->getInductionVars())
3501     fixupIVUsers(Entry.first, Entry.second,
3502                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3503                  IVEndValues[Entry.first], LoopMiddleBlock);
3504 
3505   fixLCSSAPHIs();
3506   for (Instruction *PI : PredicatedInstructions)
3507     sinkScalarOperands(&*PI);
3508 
3509   // Remove redundant induction instructions.
3510   cse(LoopVectorBody);
3511 
3512   // Set/update profile weights for the vector and remainder loops as original
3513   // loop iterations are now distributed among them. Note that original loop
3514   // represented by LoopScalarBody becomes remainder loop after vectorization.
3515   //
3516   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3517   // end up getting slightly roughened result but that should be OK since
3518   // profile is not inherently precise anyway. Note also possible bypass of
3519   // vector code caused by legality checks is ignored, assigning all the weight
3520   // to the vector loop, optimistically.
3521   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3522                                LI->getLoopFor(LoopVectorBody),
3523                                LI->getLoopFor(LoopScalarBody), VF * UF);
3524 }
3525 
3526 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3527   // In order to support recurrences we need to be able to vectorize Phi nodes.
3528   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3529   // stage #2: We now need to fix the recurrences by adding incoming edges to
3530   // the currently empty PHI nodes. At this point every instruction in the
3531   // original loop is widened to a vector form so we can use them to construct
3532   // the incoming edges.
3533   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3534     // Handle first-order recurrences and reductions that need to be fixed.
3535     if (Legal->isFirstOrderRecurrence(&Phi))
3536       fixFirstOrderRecurrence(&Phi);
3537     else if (Legal->isReductionVariable(&Phi))
3538       fixReduction(&Phi);
3539   }
3540 }
3541 
3542 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3543   // This is the second phase of vectorizing first-order recurrences. An
3544   // overview of the transformation is described below. Suppose we have the
3545   // following loop.
3546   //
3547   //   for (int i = 0; i < n; ++i)
3548   //     b[i] = a[i] - a[i - 1];
3549   //
3550   // There is a first-order recurrence on "a". For this loop, the shorthand
3551   // scalar IR looks like:
3552   //
3553   //   scalar.ph:
3554   //     s_init = a[-1]
3555   //     br scalar.body
3556   //
3557   //   scalar.body:
3558   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3559   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3560   //     s2 = a[i]
3561   //     b[i] = s2 - s1
3562   //     br cond, scalar.body, ...
3563   //
3564   // In this example, s1 is a recurrence because it's value depends on the
3565   // previous iteration. In the first phase of vectorization, we created a
3566   // temporary value for s1. We now complete the vectorization and produce the
3567   // shorthand vector IR shown below (for VF = 4, UF = 1).
3568   //
3569   //   vector.ph:
3570   //     v_init = vector(..., ..., ..., a[-1])
3571   //     br vector.body
3572   //
3573   //   vector.body
3574   //     i = phi [0, vector.ph], [i+4, vector.body]
3575   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3576   //     v2 = a[i, i+1, i+2, i+3];
3577   //     v3 = vector(v1(3), v2(0, 1, 2))
3578   //     b[i, i+1, i+2, i+3] = v2 - v3
3579   //     br cond, vector.body, middle.block
3580   //
3581   //   middle.block:
3582   //     x = v2(3)
3583   //     br scalar.ph
3584   //
3585   //   scalar.ph:
3586   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3587   //     br scalar.body
3588   //
3589   // After execution completes the vector loop, we extract the next value of
3590   // the recurrence (x) to use as the initial value in the scalar loop.
3591 
3592   // Get the original loop preheader and single loop latch.
3593   auto *Preheader = OrigLoop->getLoopPreheader();
3594   auto *Latch = OrigLoop->getLoopLatch();
3595 
3596   // Get the initial and previous values of the scalar recurrence.
3597   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3598   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3599 
3600   // Create a vector from the initial value.
3601   auto *VectorInit = ScalarInit;
3602   if (VF > 1) {
3603     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3604     VectorInit = Builder.CreateInsertElement(
3605         UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)),
3606         VectorInit, Builder.getInt32(VF - 1), "vector.recur.init");
3607   }
3608 
3609   // We constructed a temporary phi node in the first phase of vectorization.
3610   // This phi node will eventually be deleted.
3611   Builder.SetInsertPoint(
3612       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3613 
3614   // Create a phi node for the new recurrence. The current value will either be
3615   // the initial value inserted into a vector or loop-varying vector value.
3616   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3617   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3618 
3619   // Get the vectorized previous value of the last part UF - 1. It appears last
3620   // among all unrolled iterations, due to the order of their construction.
3621   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3622 
3623   // Find and set the insertion point after the previous value if it is an
3624   // instruction.
3625   BasicBlock::iterator InsertPt;
3626   // Note that the previous value may have been constant-folded so it is not
3627   // guaranteed to be an instruction in the vector loop.
3628   // FIXME: Loop invariant values do not form recurrences. We should deal with
3629   //        them earlier.
3630   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3631     InsertPt = LoopVectorBody->getFirstInsertionPt();
3632   else {
3633     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3634     if (isa<PHINode>(PreviousLastPart))
3635       // If the previous value is a phi node, we should insert after all the phi
3636       // nodes in the block containing the PHI to avoid breaking basic block
3637       // verification. Note that the basic block may be different to
3638       // LoopVectorBody, in case we predicate the loop.
3639       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3640     else
3641       InsertPt = ++PreviousInst->getIterator();
3642   }
3643   Builder.SetInsertPoint(&*InsertPt);
3644 
3645   // We will construct a vector for the recurrence by combining the values for
3646   // the current and previous iterations. This is the required shuffle mask.
3647   SmallVector<int, 8> ShuffleMask(VF);
3648   ShuffleMask[0] = VF - 1;
3649   for (unsigned I = 1; I < VF; ++I)
3650     ShuffleMask[I] = I + VF - 1;
3651 
3652   // The vector from which to take the initial value for the current iteration
3653   // (actual or unrolled). Initially, this is the vector phi node.
3654   Value *Incoming = VecPhi;
3655 
3656   // Shuffle the current and previous vector and update the vector parts.
3657   for (unsigned Part = 0; Part < UF; ++Part) {
3658     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3659     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3660     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3661                                                          ShuffleMask)
3662                            : Incoming;
3663     PhiPart->replaceAllUsesWith(Shuffle);
3664     cast<Instruction>(PhiPart)->eraseFromParent();
3665     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3666     Incoming = PreviousPart;
3667   }
3668 
3669   // Fix the latch value of the new recurrence in the vector loop.
3670   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3671 
3672   // Extract the last vector element in the middle block. This will be the
3673   // initial value for the recurrence when jumping to the scalar loop.
3674   auto *ExtractForScalar = Incoming;
3675   if (VF > 1) {
3676     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3677     ExtractForScalar = Builder.CreateExtractElement(
3678         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3679   }
3680   // Extract the second last element in the middle block if the
3681   // Phi is used outside the loop. We need to extract the phi itself
3682   // and not the last element (the phi update in the current iteration). This
3683   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3684   // when the scalar loop is not run at all.
3685   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3686   if (VF > 1)
3687     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3688         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3689   // When loop is unrolled without vectorizing, initialize
3690   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3691   // `Incoming`. This is analogous to the vectorized case above: extracting the
3692   // second last element when VF > 1.
3693   else if (UF > 1)
3694     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3695 
3696   // Fix the initial value of the original recurrence in the scalar loop.
3697   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3698   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3699   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3700     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3701     Start->addIncoming(Incoming, BB);
3702   }
3703 
3704   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3705   Phi->setName("scalar.recur");
3706 
3707   // Finally, fix users of the recurrence outside the loop. The users will need
3708   // either the last value of the scalar recurrence or the last value of the
3709   // vector recurrence we extracted in the middle block. Since the loop is in
3710   // LCSSA form, we just need to find all the phi nodes for the original scalar
3711   // recurrence in the exit block, and then add an edge for the middle block.
3712   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3713     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3714       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3715     }
3716   }
3717 }
3718 
3719 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3720   Constant *Zero = Builder.getInt32(0);
3721 
3722   // Get it's reduction variable descriptor.
3723   assert(Legal->isReductionVariable(Phi) &&
3724          "Unable to find the reduction variable");
3725   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3726 
3727   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3728   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3729   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3730   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3731     RdxDesc.getMinMaxRecurrenceKind();
3732   setDebugLocFromInst(Builder, ReductionStartValue);
3733 
3734   // We need to generate a reduction vector from the incoming scalar.
3735   // To do so, we need to generate the 'identity' vector and override
3736   // one of the elements with the incoming scalar reduction. We need
3737   // to do it in the vector-loop preheader.
3738   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3739 
3740   // This is the vector-clone of the value that leaves the loop.
3741   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3742 
3743   // Find the reduction identity variable. Zero for addition, or, xor,
3744   // one for multiplication, -1 for And.
3745   Value *Identity;
3746   Value *VectorStart;
3747   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3748       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3749     // MinMax reduction have the start value as their identify.
3750     if (VF == 1) {
3751       VectorStart = Identity = ReductionStartValue;
3752     } else {
3753       VectorStart = Identity =
3754         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3755     }
3756   } else {
3757     // Handle other reduction kinds:
3758     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3759         RK, VecTy->getScalarType());
3760     if (VF == 1) {
3761       Identity = Iden;
3762       // This vector is the Identity vector where the first element is the
3763       // incoming scalar reduction.
3764       VectorStart = ReductionStartValue;
3765     } else {
3766       Identity = ConstantVector::getSplat({VF, false}, Iden);
3767 
3768       // This vector is the Identity vector where the first element is the
3769       // incoming scalar reduction.
3770       VectorStart =
3771         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3772     }
3773   }
3774 
3775   // Wrap flags are in general invalid after vectorization, clear them.
3776   clearReductionWrapFlags(RdxDesc);
3777 
3778   // Fix the vector-loop phi.
3779 
3780   // Reductions do not have to start at zero. They can start with
3781   // any loop invariant values.
3782   BasicBlock *Latch = OrigLoop->getLoopLatch();
3783   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3784 
3785   for (unsigned Part = 0; Part < UF; ++Part) {
3786     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3787     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3788     // Make sure to add the reduction start value only to the
3789     // first unroll part.
3790     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3791     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3792     cast<PHINode>(VecRdxPhi)
3793       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3794   }
3795 
3796   // Before each round, move the insertion point right between
3797   // the PHIs and the values we are going to write.
3798   // This allows us to write both PHINodes and the extractelement
3799   // instructions.
3800   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3801 
3802   setDebugLocFromInst(Builder, LoopExitInst);
3803 
3804   // If tail is folded by masking, the vector value to leave the loop should be
3805   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3806   // instead of the former.
3807   if (Cost->foldTailByMasking()) {
3808     for (unsigned Part = 0; Part < UF; ++Part) {
3809       Value *VecLoopExitInst =
3810           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3811       Value *Sel = nullptr;
3812       for (User *U : VecLoopExitInst->users()) {
3813         if (isa<SelectInst>(U)) {
3814           assert(!Sel && "Reduction exit feeding two selects");
3815           Sel = U;
3816         } else
3817           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3818       }
3819       assert(Sel && "Reduction exit feeds no select");
3820       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3821     }
3822   }
3823 
3824   // If the vector reduction can be performed in a smaller type, we truncate
3825   // then extend the loop exit value to enable InstCombine to evaluate the
3826   // entire expression in the smaller type.
3827   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3828     Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF);
3829     Builder.SetInsertPoint(
3830         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3831     VectorParts RdxParts(UF);
3832     for (unsigned Part = 0; Part < UF; ++Part) {
3833       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3834       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3835       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3836                                         : Builder.CreateZExt(Trunc, VecTy);
3837       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3838            UI != RdxParts[Part]->user_end();)
3839         if (*UI != Trunc) {
3840           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3841           RdxParts[Part] = Extnd;
3842         } else {
3843           ++UI;
3844         }
3845     }
3846     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3847     for (unsigned Part = 0; Part < UF; ++Part) {
3848       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3849       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3850     }
3851   }
3852 
3853   // Reduce all of the unrolled parts into a single vector.
3854   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3855   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3856 
3857   // The middle block terminator has already been assigned a DebugLoc here (the
3858   // OrigLoop's single latch terminator). We want the whole middle block to
3859   // appear to execute on this line because: (a) it is all compiler generated,
3860   // (b) these instructions are always executed after evaluating the latch
3861   // conditional branch, and (c) other passes may add new predecessors which
3862   // terminate on this line. This is the easiest way to ensure we don't
3863   // accidentally cause an extra step back into the loop while debugging.
3864   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3865   for (unsigned Part = 1; Part < UF; ++Part) {
3866     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3867     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3868       // Floating point operations had to be 'fast' to enable the reduction.
3869       ReducedPartRdx = addFastMathFlag(
3870           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3871                               ReducedPartRdx, "bin.rdx"),
3872           RdxDesc.getFastMathFlags());
3873     else
3874       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3875                                       RdxPart);
3876   }
3877 
3878   if (VF > 1) {
3879     bool NoNaN = Legal->hasFunNoNaNAttr();
3880     ReducedPartRdx =
3881         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3882     // If the reduction can be performed in a smaller type, we need to extend
3883     // the reduction to the wider type before we branch to the original loop.
3884     if (Phi->getType() != RdxDesc.getRecurrenceType())
3885       ReducedPartRdx =
3886         RdxDesc.isSigned()
3887         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3888         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3889   }
3890 
3891   // Create a phi node that merges control-flow from the backedge-taken check
3892   // block and the middle block.
3893   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3894                                         LoopScalarPreHeader->getTerminator());
3895   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3896     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3897   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3898 
3899   // Now, we need to fix the users of the reduction variable
3900   // inside and outside of the scalar remainder loop.
3901   // We know that the loop is in LCSSA form. We need to update the
3902   // PHI nodes in the exit blocks.
3903   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3904     // All PHINodes need to have a single entry edge, or two if
3905     // we already fixed them.
3906     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3907 
3908     // We found a reduction value exit-PHI. Update it with the
3909     // incoming bypass edge.
3910     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3911       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3912   } // end of the LCSSA phi scan.
3913 
3914     // Fix the scalar loop reduction variable with the incoming reduction sum
3915     // from the vector body and from the backedge value.
3916   int IncomingEdgeBlockIdx =
3917     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3918   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3919   // Pick the other block.
3920   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3921   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3922   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3923 }
3924 
3925 void InnerLoopVectorizer::clearReductionWrapFlags(
3926     RecurrenceDescriptor &RdxDesc) {
3927   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3928   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3929       RK != RecurrenceDescriptor::RK_IntegerMult)
3930     return;
3931 
3932   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3933   assert(LoopExitInstr && "null loop exit instruction");
3934   SmallVector<Instruction *, 8> Worklist;
3935   SmallPtrSet<Instruction *, 8> Visited;
3936   Worklist.push_back(LoopExitInstr);
3937   Visited.insert(LoopExitInstr);
3938 
3939   while (!Worklist.empty()) {
3940     Instruction *Cur = Worklist.pop_back_val();
3941     if (isa<OverflowingBinaryOperator>(Cur))
3942       for (unsigned Part = 0; Part < UF; ++Part) {
3943         Value *V = getOrCreateVectorValue(Cur, Part);
3944         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3945       }
3946 
3947     for (User *U : Cur->users()) {
3948       Instruction *UI = cast<Instruction>(U);
3949       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3950           Visited.insert(UI).second)
3951         Worklist.push_back(UI);
3952     }
3953   }
3954 }
3955 
3956 void InnerLoopVectorizer::fixLCSSAPHIs() {
3957   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3958     if (LCSSAPhi.getNumIncomingValues() == 1) {
3959       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3960       // Non-instruction incoming values will have only one value.
3961       unsigned LastLane = 0;
3962       if (isa<Instruction>(IncomingValue))
3963           LastLane = Cost->isUniformAfterVectorization(
3964                          cast<Instruction>(IncomingValue), VF)
3965                          ? 0
3966                          : VF - 1;
3967       // Can be a loop invariant incoming value or the last scalar value to be
3968       // extracted from the vectorized loop.
3969       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3970       Value *lastIncomingValue =
3971           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3972       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3973     }
3974   }
3975 }
3976 
3977 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3978   // The basic block and loop containing the predicated instruction.
3979   auto *PredBB = PredInst->getParent();
3980   auto *VectorLoop = LI->getLoopFor(PredBB);
3981 
3982   // Initialize a worklist with the operands of the predicated instruction.
3983   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3984 
3985   // Holds instructions that we need to analyze again. An instruction may be
3986   // reanalyzed if we don't yet know if we can sink it or not.
3987   SmallVector<Instruction *, 8> InstsToReanalyze;
3988 
3989   // Returns true if a given use occurs in the predicated block. Phi nodes use
3990   // their operands in their corresponding predecessor blocks.
3991   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3992     auto *I = cast<Instruction>(U.getUser());
3993     BasicBlock *BB = I->getParent();
3994     if (auto *Phi = dyn_cast<PHINode>(I))
3995       BB = Phi->getIncomingBlock(
3996           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3997     return BB == PredBB;
3998   };
3999 
4000   // Iteratively sink the scalarized operands of the predicated instruction
4001   // into the block we created for it. When an instruction is sunk, it's
4002   // operands are then added to the worklist. The algorithm ends after one pass
4003   // through the worklist doesn't sink a single instruction.
4004   bool Changed;
4005   do {
4006     // Add the instructions that need to be reanalyzed to the worklist, and
4007     // reset the changed indicator.
4008     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4009     InstsToReanalyze.clear();
4010     Changed = false;
4011 
4012     while (!Worklist.empty()) {
4013       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4014 
4015       // We can't sink an instruction if it is a phi node, is already in the
4016       // predicated block, is not in the loop, or may have side effects.
4017       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4018           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4019         continue;
4020 
4021       // It's legal to sink the instruction if all its uses occur in the
4022       // predicated block. Otherwise, there's nothing to do yet, and we may
4023       // need to reanalyze the instruction.
4024       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4025         InstsToReanalyze.push_back(I);
4026         continue;
4027       }
4028 
4029       // Move the instruction to the beginning of the predicated block, and add
4030       // it's operands to the worklist.
4031       I->moveBefore(&*PredBB->getFirstInsertionPt());
4032       Worklist.insert(I->op_begin(), I->op_end());
4033 
4034       // The sinking may have enabled other instructions to be sunk, so we will
4035       // need to iterate.
4036       Changed = true;
4037     }
4038   } while (Changed);
4039 }
4040 
4041 void InnerLoopVectorizer::fixNonInductionPHIs() {
4042   for (PHINode *OrigPhi : OrigPHIsToFix) {
4043     PHINode *NewPhi =
4044         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4045     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4046 
4047     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4048         predecessors(OrigPhi->getParent()));
4049     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4050         predecessors(NewPhi->getParent()));
4051     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4052            "Scalar and Vector BB should have the same number of predecessors");
4053 
4054     // The insertion point in Builder may be invalidated by the time we get
4055     // here. Force the Builder insertion point to something valid so that we do
4056     // not run into issues during insertion point restore in
4057     // getOrCreateVectorValue calls below.
4058     Builder.SetInsertPoint(NewPhi);
4059 
4060     // The predecessor order is preserved and we can rely on mapping between
4061     // scalar and vector block predecessors.
4062     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4063       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4064 
4065       // When looking up the new scalar/vector values to fix up, use incoming
4066       // values from original phi.
4067       Value *ScIncV =
4068           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4069 
4070       // Scalar incoming value may need a broadcast
4071       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4072       NewPhi->addIncoming(NewIncV, NewPredBB);
4073     }
4074   }
4075 }
4076 
4077 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4078                                    unsigned VF, bool IsPtrLoopInvariant,
4079                                    SmallBitVector &IsIndexLoopInvariant) {
4080   // Construct a vector GEP by widening the operands of the scalar GEP as
4081   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4082   // results in a vector of pointers when at least one operand of the GEP
4083   // is vector-typed. Thus, to keep the representation compact, we only use
4084   // vector-typed operands for loop-varying values.
4085 
4086   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4087     // If we are vectorizing, but the GEP has only loop-invariant operands,
4088     // the GEP we build (by only using vector-typed operands for
4089     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4090     // produce a vector of pointers, we need to either arbitrarily pick an
4091     // operand to broadcast, or broadcast a clone of the original GEP.
4092     // Here, we broadcast a clone of the original.
4093     //
4094     // TODO: If at some point we decide to scalarize instructions having
4095     //       loop-invariant operands, this special case will no longer be
4096     //       required. We would add the scalarization decision to
4097     //       collectLoopScalars() and teach getVectorValue() to broadcast
4098     //       the lane-zero scalar value.
4099     auto *Clone = Builder.Insert(GEP->clone());
4100     for (unsigned Part = 0; Part < UF; ++Part) {
4101       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4102       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4103       addMetadata(EntryPart, GEP);
4104     }
4105   } else {
4106     // If the GEP has at least one loop-varying operand, we are sure to
4107     // produce a vector of pointers. But if we are only unrolling, we want
4108     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4109     // produce with the code below will be scalar (if VF == 1) or vector
4110     // (otherwise). Note that for the unroll-only case, we still maintain
4111     // values in the vector mapping with initVector, as we do for other
4112     // instructions.
4113     for (unsigned Part = 0; Part < UF; ++Part) {
4114       // The pointer operand of the new GEP. If it's loop-invariant, we
4115       // won't broadcast it.
4116       auto *Ptr = IsPtrLoopInvariant
4117                       ? GEP->getPointerOperand()
4118                       : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4119 
4120       // Collect all the indices for the new GEP. If any index is
4121       // loop-invariant, we won't broadcast it.
4122       SmallVector<Value *, 4> Indices;
4123       for (auto Index : enumerate(GEP->indices())) {
4124         Value *User = Index.value().get();
4125         if (IsIndexLoopInvariant[Index.index()])
4126           Indices.push_back(User);
4127         else
4128           Indices.push_back(getOrCreateVectorValue(User, Part));
4129       }
4130 
4131       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4132       // but it should be a vector, otherwise.
4133       auto *NewGEP =
4134           GEP->isInBounds()
4135               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4136                                           Indices)
4137               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4138       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4139              "NewGEP is not a pointer vector");
4140       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4141       addMetadata(NewGEP, GEP);
4142     }
4143   }
4144 }
4145 
4146 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4147                                               unsigned VF) {
4148   PHINode *P = cast<PHINode>(PN);
4149   if (EnableVPlanNativePath) {
4150     // Currently we enter here in the VPlan-native path for non-induction
4151     // PHIs where all control flow is uniform. We simply widen these PHIs.
4152     // Create a vector phi with no operands - the vector phi operands will be
4153     // set at the end of vector code generation.
4154     Type *VecTy =
4155         (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4156     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4157     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4158     OrigPHIsToFix.push_back(P);
4159 
4160     return;
4161   }
4162 
4163   assert(PN->getParent() == OrigLoop->getHeader() &&
4164          "Non-header phis should have been handled elsewhere");
4165 
4166   // In order to support recurrences we need to be able to vectorize Phi nodes.
4167   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4168   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4169   // this value when we vectorize all of the instructions that use the PHI.
4170   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4171     for (unsigned Part = 0; Part < UF; ++Part) {
4172       // This is phase one of vectorizing PHIs.
4173       Type *VecTy =
4174           (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4175       Value *EntryPart = PHINode::Create(
4176           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4177       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4178     }
4179     return;
4180   }
4181 
4182   setDebugLocFromInst(Builder, P);
4183 
4184   // This PHINode must be an induction variable.
4185   // Make sure that we know about it.
4186   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4187 
4188   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4189   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4190 
4191   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4192   // which can be found from the original scalar operations.
4193   switch (II.getKind()) {
4194   case InductionDescriptor::IK_NoInduction:
4195     llvm_unreachable("Unknown induction");
4196   case InductionDescriptor::IK_IntInduction:
4197   case InductionDescriptor::IK_FpInduction:
4198     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4199   case InductionDescriptor::IK_PtrInduction: {
4200     // Handle the pointer induction variable case.
4201     assert(P->getType()->isPointerTy() && "Unexpected type.");
4202     // This is the normalized GEP that starts counting at zero.
4203     Value *PtrInd = Induction;
4204     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4205     // Determine the number of scalars we need to generate for each unroll
4206     // iteration. If the instruction is uniform, we only need to generate the
4207     // first lane. Otherwise, we generate all VF values.
4208     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4209     // These are the scalar results. Notice that we don't generate vector GEPs
4210     // because scalar GEPs result in better code.
4211     for (unsigned Part = 0; Part < UF; ++Part) {
4212       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4213         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4214         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4215         Value *SclrGep =
4216             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4217         SclrGep->setName("next.gep");
4218         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4219       }
4220     }
4221     return;
4222   }
4223   }
4224 }
4225 
4226 /// A helper function for checking whether an integer division-related
4227 /// instruction may divide by zero (in which case it must be predicated if
4228 /// executed conditionally in the scalar code).
4229 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4230 /// Non-zero divisors that are non compile-time constants will not be
4231 /// converted into multiplication, so we will still end up scalarizing
4232 /// the division, but can do so w/o predication.
4233 static bool mayDivideByZero(Instruction &I) {
4234   assert((I.getOpcode() == Instruction::UDiv ||
4235           I.getOpcode() == Instruction::SDiv ||
4236           I.getOpcode() == Instruction::URem ||
4237           I.getOpcode() == Instruction::SRem) &&
4238          "Unexpected instruction");
4239   Value *Divisor = I.getOperand(1);
4240   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4241   return !CInt || CInt->isZero();
4242 }
4243 
4244 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4245                                            VPTransformState &State) {
4246   switch (I.getOpcode()) {
4247   case Instruction::Call:
4248   case Instruction::Br:
4249   case Instruction::PHI:
4250   case Instruction::GetElementPtr:
4251   case Instruction::Select:
4252     llvm_unreachable("This instruction is handled by a different recipe.");
4253   case Instruction::UDiv:
4254   case Instruction::SDiv:
4255   case Instruction::SRem:
4256   case Instruction::URem:
4257   case Instruction::Add:
4258   case Instruction::FAdd:
4259   case Instruction::Sub:
4260   case Instruction::FSub:
4261   case Instruction::FNeg:
4262   case Instruction::Mul:
4263   case Instruction::FMul:
4264   case Instruction::FDiv:
4265   case Instruction::FRem:
4266   case Instruction::Shl:
4267   case Instruction::LShr:
4268   case Instruction::AShr:
4269   case Instruction::And:
4270   case Instruction::Or:
4271   case Instruction::Xor: {
4272     // Just widen unops and binops.
4273     setDebugLocFromInst(Builder, &I);
4274 
4275     for (unsigned Part = 0; Part < UF; ++Part) {
4276       SmallVector<Value *, 2> Ops;
4277       for (VPValue *VPOp : User.operands())
4278         Ops.push_back(State.get(VPOp, Part));
4279 
4280       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4281 
4282       if (auto *VecOp = dyn_cast<Instruction>(V))
4283         VecOp->copyIRFlags(&I);
4284 
4285       // Use this vector value for all users of the original instruction.
4286       VectorLoopValueMap.setVectorValue(&I, Part, V);
4287       addMetadata(V, &I);
4288     }
4289 
4290     break;
4291   }
4292   case Instruction::ICmp:
4293   case Instruction::FCmp: {
4294     // Widen compares. Generate vector compares.
4295     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4296     auto *Cmp = cast<CmpInst>(&I);
4297     setDebugLocFromInst(Builder, Cmp);
4298     for (unsigned Part = 0; Part < UF; ++Part) {
4299       Value *A = State.get(User.getOperand(0), Part);
4300       Value *B = State.get(User.getOperand(1), Part);
4301       Value *C = nullptr;
4302       if (FCmp) {
4303         // Propagate fast math flags.
4304         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4305         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4306         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4307       } else {
4308         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4309       }
4310       VectorLoopValueMap.setVectorValue(&I, Part, C);
4311       addMetadata(C, &I);
4312     }
4313 
4314     break;
4315   }
4316 
4317   case Instruction::ZExt:
4318   case Instruction::SExt:
4319   case Instruction::FPToUI:
4320   case Instruction::FPToSI:
4321   case Instruction::FPExt:
4322   case Instruction::PtrToInt:
4323   case Instruction::IntToPtr:
4324   case Instruction::SIToFP:
4325   case Instruction::UIToFP:
4326   case Instruction::Trunc:
4327   case Instruction::FPTrunc:
4328   case Instruction::BitCast: {
4329     auto *CI = cast<CastInst>(&I);
4330     setDebugLocFromInst(Builder, CI);
4331 
4332     /// Vectorize casts.
4333     Type *DestTy =
4334         (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF);
4335 
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *A = State.get(User.getOperand(0), Part);
4338       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4339       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4340       addMetadata(Cast, &I);
4341     }
4342     break;
4343   }
4344   default:
4345     // This instruction is not vectorized by simple widening.
4346     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4347     llvm_unreachable("Unhandled instruction!");
4348   } // end of switch.
4349 }
4350 
4351 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4352                                                VPTransformState &State) {
4353   assert(!isa<DbgInfoIntrinsic>(I) &&
4354          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4355   setDebugLocFromInst(Builder, &I);
4356 
4357   Module *M = I.getParent()->getParent()->getParent();
4358   auto *CI = cast<CallInst>(&I);
4359 
4360   SmallVector<Type *, 4> Tys;
4361   for (Value *ArgOperand : CI->arg_operands())
4362     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4363 
4364   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4365 
4366   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4367   // version of the instruction.
4368   // Is it beneficial to perform intrinsic call compared to lib call?
4369   bool NeedToScalarize = false;
4370   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4371   bool UseVectorIntrinsic =
4372       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4373   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4374          "Instruction should be scalarized elsewhere.");
4375 
4376   for (unsigned Part = 0; Part < UF; ++Part) {
4377     SmallVector<Value *, 4> Args;
4378     for (auto &I : enumerate(ArgOperands.operands())) {
4379       // Some intrinsics have a scalar argument - don't replace it with a
4380       // vector.
4381       Value *Arg;
4382       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4383         Arg = State.get(I.value(), Part);
4384       else
4385         Arg = State.get(I.value(), {0, 0});
4386       Args.push_back(Arg);
4387     }
4388 
4389     Function *VectorF;
4390     if (UseVectorIntrinsic) {
4391       // Use vector version of the intrinsic.
4392       Type *TysForDecl[] = {CI->getType()};
4393       if (VF > 1)
4394         TysForDecl[0] =
4395             FixedVectorType::get(CI->getType()->getScalarType(), VF);
4396       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4397       assert(VectorF && "Can't retrieve vector intrinsic.");
4398     } else {
4399       // Use vector version of the function call.
4400       const VFShape Shape =
4401           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4402 #ifndef NDEBUG
4403       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4404              "Can't create vector function.");
4405 #endif
4406         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4407     }
4408       SmallVector<OperandBundleDef, 1> OpBundles;
4409       CI->getOperandBundlesAsDefs(OpBundles);
4410       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4411 
4412       if (isa<FPMathOperator>(V))
4413         V->copyFastMathFlags(CI);
4414 
4415       VectorLoopValueMap.setVectorValue(&I, Part, V);
4416       addMetadata(V, &I);
4417   }
4418 }
4419 
4420 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4421                                                  VPUser &Operands,
4422                                                  bool InvariantCond,
4423                                                  VPTransformState &State) {
4424   setDebugLocFromInst(Builder, &I);
4425 
4426   // The condition can be loop invariant  but still defined inside the
4427   // loop. This means that we can't just use the original 'cond' value.
4428   // We have to take the 'vectorized' value and pick the first lane.
4429   // Instcombine will make this a no-op.
4430   auto *InvarCond =
4431       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4432 
4433   for (unsigned Part = 0; Part < UF; ++Part) {
4434     Value *Cond =
4435         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4436     Value *Op0 = State.get(Operands.getOperand(1), Part);
4437     Value *Op1 = State.get(Operands.getOperand(2), Part);
4438     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4439     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4440     addMetadata(Sel, &I);
4441   }
4442 }
4443 
4444 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4445   // We should not collect Scalars more than once per VF. Right now, this
4446   // function is called from collectUniformsAndScalars(), which already does
4447   // this check. Collecting Scalars for VF=1 does not make any sense.
4448   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4449          "This function should not be visited twice for the same VF");
4450 
4451   SmallSetVector<Instruction *, 8> Worklist;
4452 
4453   // These sets are used to seed the analysis with pointers used by memory
4454   // accesses that will remain scalar.
4455   SmallSetVector<Instruction *, 8> ScalarPtrs;
4456   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4457 
4458   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4459   // The pointer operands of loads and stores will be scalar as long as the
4460   // memory access is not a gather or scatter operation. The value operand of a
4461   // store will remain scalar if the store is scalarized.
4462   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4463     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4464     assert(WideningDecision != CM_Unknown &&
4465            "Widening decision should be ready at this moment");
4466     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4467       if (Ptr == Store->getValueOperand())
4468         return WideningDecision == CM_Scalarize;
4469     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4470            "Ptr is neither a value or pointer operand");
4471     return WideningDecision != CM_GatherScatter;
4472   };
4473 
4474   // A helper that returns true if the given value is a bitcast or
4475   // getelementptr instruction contained in the loop.
4476   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4477     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4478             isa<GetElementPtrInst>(V)) &&
4479            !TheLoop->isLoopInvariant(V);
4480   };
4481 
4482   // A helper that evaluates a memory access's use of a pointer. If the use
4483   // will be a scalar use, and the pointer is only used by memory accesses, we
4484   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4485   // PossibleNonScalarPtrs.
4486   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4487     // We only care about bitcast and getelementptr instructions contained in
4488     // the loop.
4489     if (!isLoopVaryingBitCastOrGEP(Ptr))
4490       return;
4491 
4492     // If the pointer has already been identified as scalar (e.g., if it was
4493     // also identified as uniform), there's nothing to do.
4494     auto *I = cast<Instruction>(Ptr);
4495     if (Worklist.count(I))
4496       return;
4497 
4498     // If the use of the pointer will be a scalar use, and all users of the
4499     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4500     // place the pointer in PossibleNonScalarPtrs.
4501     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4502           return isa<LoadInst>(U) || isa<StoreInst>(U);
4503         }))
4504       ScalarPtrs.insert(I);
4505     else
4506       PossibleNonScalarPtrs.insert(I);
4507   };
4508 
4509   // We seed the scalars analysis with three classes of instructions: (1)
4510   // instructions marked uniform-after-vectorization, (2) bitcast and
4511   // getelementptr instructions used by memory accesses requiring a scalar use,
4512   // and (3) pointer induction variables and their update instructions (we
4513   // currently only scalarize these).
4514   //
4515   // (1) Add to the worklist all instructions that have been identified as
4516   // uniform-after-vectorization.
4517   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4518 
4519   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4520   // memory accesses requiring a scalar use. The pointer operands of loads and
4521   // stores will be scalar as long as the memory accesses is not a gather or
4522   // scatter operation. The value operand of a store will remain scalar if the
4523   // store is scalarized.
4524   for (auto *BB : TheLoop->blocks())
4525     for (auto &I : *BB) {
4526       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4527         evaluatePtrUse(Load, Load->getPointerOperand());
4528       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4529         evaluatePtrUse(Store, Store->getPointerOperand());
4530         evaluatePtrUse(Store, Store->getValueOperand());
4531       }
4532     }
4533   for (auto *I : ScalarPtrs)
4534     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4535       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4536       Worklist.insert(I);
4537     }
4538 
4539   // (3) Add to the worklist all pointer induction variables and their update
4540   // instructions.
4541   //
4542   // TODO: Once we are able to vectorize pointer induction variables we should
4543   //       no longer insert them into the worklist here.
4544   auto *Latch = TheLoop->getLoopLatch();
4545   for (auto &Induction : Legal->getInductionVars()) {
4546     auto *Ind = Induction.first;
4547     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4548     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4549       continue;
4550     Worklist.insert(Ind);
4551     Worklist.insert(IndUpdate);
4552     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4553     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4554                       << "\n");
4555   }
4556 
4557   // Insert the forced scalars.
4558   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4559   // induction variable when the PHI user is scalarized.
4560   auto ForcedScalar = ForcedScalars.find(VF);
4561   if (ForcedScalar != ForcedScalars.end())
4562     for (auto *I : ForcedScalar->second)
4563       Worklist.insert(I);
4564 
4565   // Expand the worklist by looking through any bitcasts and getelementptr
4566   // instructions we've already identified as scalar. This is similar to the
4567   // expansion step in collectLoopUniforms(); however, here we're only
4568   // expanding to include additional bitcasts and getelementptr instructions.
4569   unsigned Idx = 0;
4570   while (Idx != Worklist.size()) {
4571     Instruction *Dst = Worklist[Idx++];
4572     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4573       continue;
4574     auto *Src = cast<Instruction>(Dst->getOperand(0));
4575     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4576           auto *J = cast<Instruction>(U);
4577           return !TheLoop->contains(J) || Worklist.count(J) ||
4578                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4579                   isScalarUse(J, Src));
4580         })) {
4581       Worklist.insert(Src);
4582       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4583     }
4584   }
4585 
4586   // An induction variable will remain scalar if all users of the induction
4587   // variable and induction variable update remain scalar.
4588   for (auto &Induction : Legal->getInductionVars()) {
4589     auto *Ind = Induction.first;
4590     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4591 
4592     // We already considered pointer induction variables, so there's no reason
4593     // to look at their users again.
4594     //
4595     // TODO: Once we are able to vectorize pointer induction variables we
4596     //       should no longer skip over them here.
4597     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4598       continue;
4599 
4600     // If tail-folding is applied, the primary induction variable will be used
4601     // to feed a vector compare.
4602     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4603       continue;
4604 
4605     // Determine if all users of the induction variable are scalar after
4606     // vectorization.
4607     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4608       auto *I = cast<Instruction>(U);
4609       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4610     });
4611     if (!ScalarInd)
4612       continue;
4613 
4614     // Determine if all users of the induction variable update instruction are
4615     // scalar after vectorization.
4616     auto ScalarIndUpdate =
4617         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4618           auto *I = cast<Instruction>(U);
4619           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4620         });
4621     if (!ScalarIndUpdate)
4622       continue;
4623 
4624     // The induction variable and its update instruction will remain scalar.
4625     Worklist.insert(Ind);
4626     Worklist.insert(IndUpdate);
4627     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4628     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4629                       << "\n");
4630   }
4631 
4632   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4633 }
4634 
4635 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4636   if (!blockNeedsPredication(I->getParent()))
4637     return false;
4638   switch(I->getOpcode()) {
4639   default:
4640     break;
4641   case Instruction::Load:
4642   case Instruction::Store: {
4643     if (!Legal->isMaskRequired(I))
4644       return false;
4645     auto *Ptr = getLoadStorePointerOperand(I);
4646     auto *Ty = getMemInstValueType(I);
4647     // We have already decided how to vectorize this instruction, get that
4648     // result.
4649     if (VF > 1) {
4650       InstWidening WideningDecision = getWideningDecision(I, VF);
4651       assert(WideningDecision != CM_Unknown &&
4652              "Widening decision should be ready at this moment");
4653       return WideningDecision == CM_Scalarize;
4654     }
4655     const Align Alignment = getLoadStoreAlignment(I);
4656     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4657                                 isLegalMaskedGather(Ty, Alignment))
4658                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4659                                 isLegalMaskedScatter(Ty, Alignment));
4660   }
4661   case Instruction::UDiv:
4662   case Instruction::SDiv:
4663   case Instruction::SRem:
4664   case Instruction::URem:
4665     return mayDivideByZero(*I);
4666   }
4667   return false;
4668 }
4669 
4670 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4671                                                                unsigned VF) {
4672   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4673   assert(getWideningDecision(I, VF) == CM_Unknown &&
4674          "Decision should not be set yet.");
4675   auto *Group = getInterleavedAccessGroup(I);
4676   assert(Group && "Must have a group.");
4677 
4678   // If the instruction's allocated size doesn't equal it's type size, it
4679   // requires padding and will be scalarized.
4680   auto &DL = I->getModule()->getDataLayout();
4681   auto *ScalarTy = getMemInstValueType(I);
4682   if (hasIrregularType(ScalarTy, DL, VF))
4683     return false;
4684 
4685   // Check if masking is required.
4686   // A Group may need masking for one of two reasons: it resides in a block that
4687   // needs predication, or it was decided to use masking to deal with gaps.
4688   bool PredicatedAccessRequiresMasking =
4689       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4690   bool AccessWithGapsRequiresMasking =
4691       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4692   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4693     return true;
4694 
4695   // If masked interleaving is required, we expect that the user/target had
4696   // enabled it, because otherwise it either wouldn't have been created or
4697   // it should have been invalidated by the CostModel.
4698   assert(useMaskedInterleavedAccesses(TTI) &&
4699          "Masked interleave-groups for predicated accesses are not enabled.");
4700 
4701   auto *Ty = getMemInstValueType(I);
4702   const Align Alignment = getLoadStoreAlignment(I);
4703   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4704                           : TTI.isLegalMaskedStore(Ty, Alignment);
4705 }
4706 
4707 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4708                                                                unsigned VF) {
4709   // Get and ensure we have a valid memory instruction.
4710   LoadInst *LI = dyn_cast<LoadInst>(I);
4711   StoreInst *SI = dyn_cast<StoreInst>(I);
4712   assert((LI || SI) && "Invalid memory instruction");
4713 
4714   auto *Ptr = getLoadStorePointerOperand(I);
4715 
4716   // In order to be widened, the pointer should be consecutive, first of all.
4717   if (!Legal->isConsecutivePtr(Ptr))
4718     return false;
4719 
4720   // If the instruction is a store located in a predicated block, it will be
4721   // scalarized.
4722   if (isScalarWithPredication(I))
4723     return false;
4724 
4725   // If the instruction's allocated size doesn't equal it's type size, it
4726   // requires padding and will be scalarized.
4727   auto &DL = I->getModule()->getDataLayout();
4728   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4729   if (hasIrregularType(ScalarTy, DL, VF))
4730     return false;
4731 
4732   return true;
4733 }
4734 
4735 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4736   // We should not collect Uniforms more than once per VF. Right now,
4737   // this function is called from collectUniformsAndScalars(), which
4738   // already does this check. Collecting Uniforms for VF=1 does not make any
4739   // sense.
4740 
4741   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4742          "This function should not be visited twice for the same VF");
4743 
4744   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4745   // not analyze again.  Uniforms.count(VF) will return 1.
4746   Uniforms[VF].clear();
4747 
4748   // We now know that the loop is vectorizable!
4749   // Collect instructions inside the loop that will remain uniform after
4750   // vectorization.
4751 
4752   // Global values, params and instructions outside of current loop are out of
4753   // scope.
4754   auto isOutOfScope = [&](Value *V) -> bool {
4755     Instruction *I = dyn_cast<Instruction>(V);
4756     return (!I || !TheLoop->contains(I));
4757   };
4758 
4759   SetVector<Instruction *> Worklist;
4760   BasicBlock *Latch = TheLoop->getLoopLatch();
4761 
4762   // Instructions that are scalar with predication must not be considered
4763   // uniform after vectorization, because that would create an erroneous
4764   // replicating region where only a single instance out of VF should be formed.
4765   // TODO: optimize such seldom cases if found important, see PR40816.
4766   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4767     if (isScalarWithPredication(I, VF)) {
4768       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4769                         << *I << "\n");
4770       return;
4771     }
4772     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4773     Worklist.insert(I);
4774   };
4775 
4776   // Start with the conditional branch. If the branch condition is an
4777   // instruction contained in the loop that is only used by the branch, it is
4778   // uniform.
4779   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4780   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4781     addToWorklistIfAllowed(Cmp);
4782 
4783   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4784   // are pointers that are treated like consecutive pointers during
4785   // vectorization. The pointer operands of interleaved accesses are an
4786   // example.
4787   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4788 
4789   // Holds pointer operands of instructions that are possibly non-uniform.
4790   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4791 
4792   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4793     InstWidening WideningDecision = getWideningDecision(I, VF);
4794     assert(WideningDecision != CM_Unknown &&
4795            "Widening decision should be ready at this moment");
4796 
4797     return (WideningDecision == CM_Widen ||
4798             WideningDecision == CM_Widen_Reverse ||
4799             WideningDecision == CM_Interleave);
4800   };
4801   // Iterate over the instructions in the loop, and collect all
4802   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4803   // that a consecutive-like pointer operand will be scalarized, we collect it
4804   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4805   // getelementptr instruction can be used by both vectorized and scalarized
4806   // memory instructions. For example, if a loop loads and stores from the same
4807   // location, but the store is conditional, the store will be scalarized, and
4808   // the getelementptr won't remain uniform.
4809   for (auto *BB : TheLoop->blocks())
4810     for (auto &I : *BB) {
4811       // If there's no pointer operand, there's nothing to do.
4812       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4813       if (!Ptr)
4814         continue;
4815 
4816       // True if all users of Ptr are memory accesses that have Ptr as their
4817       // pointer operand.
4818       auto UsersAreMemAccesses =
4819           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4820             return getLoadStorePointerOperand(U) == Ptr;
4821           });
4822 
4823       // Ensure the memory instruction will not be scalarized or used by
4824       // gather/scatter, making its pointer operand non-uniform. If the pointer
4825       // operand is used by any instruction other than a memory access, we
4826       // conservatively assume the pointer operand may be non-uniform.
4827       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4828         PossibleNonUniformPtrs.insert(Ptr);
4829 
4830       // If the memory instruction will be vectorized and its pointer operand
4831       // is consecutive-like, or interleaving - the pointer operand should
4832       // remain uniform.
4833       else
4834         ConsecutiveLikePtrs.insert(Ptr);
4835     }
4836 
4837   // Add to the Worklist all consecutive and consecutive-like pointers that
4838   // aren't also identified as possibly non-uniform.
4839   for (auto *V : ConsecutiveLikePtrs)
4840     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4841       addToWorklistIfAllowed(V);
4842 
4843   // Expand Worklist in topological order: whenever a new instruction
4844   // is added , its users should be already inside Worklist.  It ensures
4845   // a uniform instruction will only be used by uniform instructions.
4846   unsigned idx = 0;
4847   while (idx != Worklist.size()) {
4848     Instruction *I = Worklist[idx++];
4849 
4850     for (auto OV : I->operand_values()) {
4851       // isOutOfScope operands cannot be uniform instructions.
4852       if (isOutOfScope(OV))
4853         continue;
4854       // First order recurrence Phi's should typically be considered
4855       // non-uniform.
4856       auto *OP = dyn_cast<PHINode>(OV);
4857       if (OP && Legal->isFirstOrderRecurrence(OP))
4858         continue;
4859       // If all the users of the operand are uniform, then add the
4860       // operand into the uniform worklist.
4861       auto *OI = cast<Instruction>(OV);
4862       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4863             auto *J = cast<Instruction>(U);
4864             return Worklist.count(J) ||
4865                    (OI == getLoadStorePointerOperand(J) &&
4866                     isUniformDecision(J, VF));
4867           }))
4868         addToWorklistIfAllowed(OI);
4869     }
4870   }
4871 
4872   // Returns true if Ptr is the pointer operand of a memory access instruction
4873   // I, and I is known to not require scalarization.
4874   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4875     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4876   };
4877 
4878   // For an instruction to be added into Worklist above, all its users inside
4879   // the loop should also be in Worklist. However, this condition cannot be
4880   // true for phi nodes that form a cyclic dependence. We must process phi
4881   // nodes separately. An induction variable will remain uniform if all users
4882   // of the induction variable and induction variable update remain uniform.
4883   // The code below handles both pointer and non-pointer induction variables.
4884   for (auto &Induction : Legal->getInductionVars()) {
4885     auto *Ind = Induction.first;
4886     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4887 
4888     // Determine if all users of the induction variable are uniform after
4889     // vectorization.
4890     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4891       auto *I = cast<Instruction>(U);
4892       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4893              isVectorizedMemAccessUse(I, Ind);
4894     });
4895     if (!UniformInd)
4896       continue;
4897 
4898     // Determine if all users of the induction variable update instruction are
4899     // uniform after vectorization.
4900     auto UniformIndUpdate =
4901         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4902           auto *I = cast<Instruction>(U);
4903           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4904                  isVectorizedMemAccessUse(I, IndUpdate);
4905         });
4906     if (!UniformIndUpdate)
4907       continue;
4908 
4909     // The induction variable and its update instruction will remain uniform.
4910     addToWorklistIfAllowed(Ind);
4911     addToWorklistIfAllowed(IndUpdate);
4912   }
4913 
4914   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4915 }
4916 
4917 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4918   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4919 
4920   if (Legal->getRuntimePointerChecking()->Need) {
4921     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4922         "runtime pointer checks needed. Enable vectorization of this "
4923         "loop with '#pragma clang loop vectorize(enable)' when "
4924         "compiling with -Os/-Oz",
4925         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4926     return true;
4927   }
4928 
4929   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4930     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4931         "runtime SCEV checks needed. Enable vectorization of this "
4932         "loop with '#pragma clang loop vectorize(enable)' when "
4933         "compiling with -Os/-Oz",
4934         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4935     return true;
4936   }
4937 
4938   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4939   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4940     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4941         "runtime stride == 1 checks needed. Enable vectorization of "
4942         "this loop with '#pragma clang loop vectorize(enable)' when "
4943         "compiling with -Os/-Oz",
4944         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4945     return true;
4946   }
4947 
4948   return false;
4949 }
4950 
4951 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF,
4952                                                             unsigned UserIC) {
4953   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4954     // TODO: It may by useful to do since it's still likely to be dynamically
4955     // uniform if the target can skip.
4956     reportVectorizationFailure(
4957         "Not inserting runtime ptr check for divergent target",
4958         "runtime pointer checks needed. Not enabled for divergent target",
4959         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4960     return None;
4961   }
4962 
4963   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4964   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4965   if (TC == 1) {
4966     reportVectorizationFailure("Single iteration (non) loop",
4967         "loop trip count is one, irrelevant for vectorization",
4968         "SingleIterationLoop", ORE, TheLoop);
4969     return None;
4970   }
4971 
4972   switch (ScalarEpilogueStatus) {
4973   case CM_ScalarEpilogueAllowed:
4974     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
4975   case CM_ScalarEpilogueNotNeededUsePredicate:
4976     LLVM_DEBUG(
4977         dbgs() << "LV: vector predicate hint/switch found.\n"
4978                << "LV: Not allowing scalar epilogue, creating predicated "
4979                << "vector loop.\n");
4980     break;
4981   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4982     // fallthrough as a special case of OptForSize
4983   case CM_ScalarEpilogueNotAllowedOptSize:
4984     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4985       LLVM_DEBUG(
4986           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4987     else
4988       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4989                         << "count.\n");
4990 
4991     // Bail if runtime checks are required, which are not good when optimising
4992     // for size.
4993     if (runtimeChecksRequired())
4994       return None;
4995     break;
4996   }
4997 
4998   // Now try the tail folding
4999 
5000   // Invalidate interleave groups that require an epilogue if we can't mask
5001   // the interleave-group.
5002   if (!useMaskedInterleavedAccesses(TTI)) {
5003     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5004            "No decisions should have been taken at this point");
5005     // Note: There is no need to invalidate any cost modeling decisions here, as
5006     // non where taken so far.
5007     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5008   }
5009 
5010   unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5011   assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2");
5012   unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
5013   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5014     // Accept MaxVF if we do not have a tail.
5015     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5016     return MaxVF;
5017   }
5018 
5019   // If we don't know the precise trip count, or if the trip count that we
5020   // found modulo the vectorization factor is not zero, try to fold the tail
5021   // by masking.
5022   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5023   if (Legal->prepareToFoldTailByMasking()) {
5024     FoldTailByMasking = true;
5025     return MaxVF;
5026   }
5027 
5028   if (TC == 0) {
5029     reportVectorizationFailure(
5030         "Unable to calculate the loop count due to complex control flow",
5031         "unable to calculate the loop count due to complex control flow",
5032         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5033     return None;
5034   }
5035 
5036   reportVectorizationFailure(
5037       "Cannot optimize for size and vectorize at the same time.",
5038       "cannot optimize for size and vectorize at the same time. "
5039       "Enable vectorization of this loop with '#pragma clang loop "
5040       "vectorize(enable)' when compiling with -Os/-Oz",
5041       "NoTailLoopWithOptForSize", ORE, TheLoop);
5042   return None;
5043 }
5044 
5045 unsigned
5046 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5047   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5048   unsigned SmallestType, WidestType;
5049   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5050   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5051 
5052   // Get the maximum safe dependence distance in bits computed by LAA.
5053   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5054   // the memory accesses that is most restrictive (involved in the smallest
5055   // dependence distance).
5056   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5057 
5058   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5059 
5060   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5061   WidestRegister = PowerOf2Floor(WidestRegister);
5062 
5063   unsigned MaxVectorSize = WidestRegister / WidestType;
5064 
5065   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5066                     << " / " << WidestType << " bits.\n");
5067   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5068                     << WidestRegister << " bits.\n");
5069 
5070   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5071                                  " into one vector!");
5072   if (MaxVectorSize == 0) {
5073     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5074     MaxVectorSize = 1;
5075     return MaxVectorSize;
5076   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5077              isPowerOf2_32(ConstTripCount)) {
5078     // We need to clamp the VF to be the ConstTripCount. There is no point in
5079     // choosing a higher viable VF as done in the loop below.
5080     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5081                       << ConstTripCount << "\n");
5082     MaxVectorSize = ConstTripCount;
5083     return MaxVectorSize;
5084   }
5085 
5086   unsigned MaxVF = MaxVectorSize;
5087   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5088       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5089     // Collect all viable vectorization factors larger than the default MaxVF
5090     // (i.e. MaxVectorSize).
5091     SmallVector<unsigned, 8> VFs;
5092     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5093     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5094       VFs.push_back(VS);
5095 
5096     // For each VF calculate its register usage.
5097     auto RUs = calculateRegisterUsage(VFs);
5098 
5099     // Select the largest VF which doesn't require more registers than existing
5100     // ones.
5101     for (int i = RUs.size() - 1; i >= 0; --i) {
5102       bool Selected = true;
5103       for (auto& pair : RUs[i].MaxLocalUsers) {
5104         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5105         if (pair.second > TargetNumRegisters)
5106           Selected = false;
5107       }
5108       if (Selected) {
5109         MaxVF = VFs[i];
5110         break;
5111       }
5112     }
5113     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5114       if (MaxVF < MinVF) {
5115         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5116                           << ") with target's minimum: " << MinVF << '\n');
5117         MaxVF = MinVF;
5118       }
5119     }
5120   }
5121   return MaxVF;
5122 }
5123 
5124 VectorizationFactor
5125 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5126   float Cost = expectedCost(1).first;
5127   const float ScalarCost = Cost;
5128   unsigned Width = 1;
5129   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5130 
5131   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5132   if (ForceVectorization && MaxVF > 1) {
5133     // Ignore scalar width, because the user explicitly wants vectorization.
5134     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5135     // evaluation.
5136     Cost = std::numeric_limits<float>::max();
5137   }
5138 
5139   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5140     // Notice that the vector loop needs to be executed less times, so
5141     // we need to divide the cost of the vector loops by the width of
5142     // the vector elements.
5143     VectorizationCostTy C = expectedCost(i);
5144     float VectorCost = C.first / (float)i;
5145     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5146                       << " costs: " << (int)VectorCost << ".\n");
5147     if (!C.second && !ForceVectorization) {
5148       LLVM_DEBUG(
5149           dbgs() << "LV: Not considering vector loop of width " << i
5150                  << " because it will not generate any vector instructions.\n");
5151       continue;
5152     }
5153     if (VectorCost < Cost) {
5154       Cost = VectorCost;
5155       Width = i;
5156     }
5157   }
5158 
5159   if (!EnableCondStoresVectorization && NumPredStores) {
5160     reportVectorizationFailure("There are conditional stores.",
5161         "store that is conditionally executed prevents vectorization",
5162         "ConditionalStore", ORE, TheLoop);
5163     Width = 1;
5164     Cost = ScalarCost;
5165   }
5166 
5167   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5168              << "LV: Vectorization seems to be not beneficial, "
5169              << "but was forced by a user.\n");
5170   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5171   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5172   return Factor;
5173 }
5174 
5175 std::pair<unsigned, unsigned>
5176 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5177   unsigned MinWidth = -1U;
5178   unsigned MaxWidth = 8;
5179   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5180 
5181   // For each block.
5182   for (BasicBlock *BB : TheLoop->blocks()) {
5183     // For each instruction in the loop.
5184     for (Instruction &I : BB->instructionsWithoutDebug()) {
5185       Type *T = I.getType();
5186 
5187       // Skip ignored values.
5188       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5189         continue;
5190 
5191       // Only examine Loads, Stores and PHINodes.
5192       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5193         continue;
5194 
5195       // Examine PHI nodes that are reduction variables. Update the type to
5196       // account for the recurrence type.
5197       if (auto *PN = dyn_cast<PHINode>(&I)) {
5198         if (!Legal->isReductionVariable(PN))
5199           continue;
5200         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5201         T = RdxDesc.getRecurrenceType();
5202       }
5203 
5204       // Examine the stored values.
5205       if (auto *ST = dyn_cast<StoreInst>(&I))
5206         T = ST->getValueOperand()->getType();
5207 
5208       // Ignore loaded pointer types and stored pointer types that are not
5209       // vectorizable.
5210       //
5211       // FIXME: The check here attempts to predict whether a load or store will
5212       //        be vectorized. We only know this for certain after a VF has
5213       //        been selected. Here, we assume that if an access can be
5214       //        vectorized, it will be. We should also look at extending this
5215       //        optimization to non-pointer types.
5216       //
5217       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5218           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5219         continue;
5220 
5221       MinWidth = std::min(MinWidth,
5222                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5223       MaxWidth = std::max(MaxWidth,
5224                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5225     }
5226   }
5227 
5228   return {MinWidth, MaxWidth};
5229 }
5230 
5231 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5232                                                            unsigned LoopCost) {
5233   // -- The interleave heuristics --
5234   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5235   // There are many micro-architectural considerations that we can't predict
5236   // at this level. For example, frontend pressure (on decode or fetch) due to
5237   // code size, or the number and capabilities of the execution ports.
5238   //
5239   // We use the following heuristics to select the interleave count:
5240   // 1. If the code has reductions, then we interleave to break the cross
5241   // iteration dependency.
5242   // 2. If the loop is really small, then we interleave to reduce the loop
5243   // overhead.
5244   // 3. We don't interleave if we think that we will spill registers to memory
5245   // due to the increased register pressure.
5246 
5247   if (!isScalarEpilogueAllowed())
5248     return 1;
5249 
5250   // We used the distance for the interleave count.
5251   if (Legal->getMaxSafeDepDistBytes() != -1U)
5252     return 1;
5253 
5254   // Do not interleave loops with a relatively small known or estimated trip
5255   // count.
5256   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5257   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5258     return 1;
5259 
5260   RegisterUsage R = calculateRegisterUsage({VF})[0];
5261   // We divide by these constants so assume that we have at least one
5262   // instruction that uses at least one register.
5263   for (auto& pair : R.MaxLocalUsers) {
5264     pair.second = std::max(pair.second, 1U);
5265   }
5266 
5267   // We calculate the interleave count using the following formula.
5268   // Subtract the number of loop invariants from the number of available
5269   // registers. These registers are used by all of the interleaved instances.
5270   // Next, divide the remaining registers by the number of registers that is
5271   // required by the loop, in order to estimate how many parallel instances
5272   // fit without causing spills. All of this is rounded down if necessary to be
5273   // a power of two. We want power of two interleave count to simplify any
5274   // addressing operations or alignment considerations.
5275   // We also want power of two interleave counts to ensure that the induction
5276   // variable of the vector loop wraps to zero, when tail is folded by masking;
5277   // this currently happens when OptForSize, in which case IC is set to 1 above.
5278   unsigned IC = UINT_MAX;
5279 
5280   for (auto& pair : R.MaxLocalUsers) {
5281     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5282     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5283                       << " registers of "
5284                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5285     if (VF == 1) {
5286       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5287         TargetNumRegisters = ForceTargetNumScalarRegs;
5288     } else {
5289       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5290         TargetNumRegisters = ForceTargetNumVectorRegs;
5291     }
5292     unsigned MaxLocalUsers = pair.second;
5293     unsigned LoopInvariantRegs = 0;
5294     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5295       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5296 
5297     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5298     // Don't count the induction variable as interleaved.
5299     if (EnableIndVarRegisterHeur) {
5300       TmpIC =
5301           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5302                         std::max(1U, (MaxLocalUsers - 1)));
5303     }
5304 
5305     IC = std::min(IC, TmpIC);
5306   }
5307 
5308   // Clamp the interleave ranges to reasonable counts.
5309   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5310 
5311   // Check if the user has overridden the max.
5312   if (VF == 1) {
5313     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5314       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5315   } else {
5316     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5317       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5318   }
5319 
5320   // If trip count is known or estimated compile time constant, limit the
5321   // interleave count to be less than the trip count divided by VF.
5322   if (BestKnownTC) {
5323     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5324   }
5325 
5326   // If we did not calculate the cost for VF (because the user selected the VF)
5327   // then we calculate the cost of VF here.
5328   if (LoopCost == 0)
5329     LoopCost = expectedCost(VF).first;
5330 
5331   assert(LoopCost && "Non-zero loop cost expected");
5332 
5333   // Clamp the calculated IC to be between the 1 and the max interleave count
5334   // that the target and trip count allows.
5335   if (IC > MaxInterleaveCount)
5336     IC = MaxInterleaveCount;
5337   else if (IC < 1)
5338     IC = 1;
5339 
5340   // Interleave if we vectorized this loop and there is a reduction that could
5341   // benefit from interleaving.
5342   if (VF > 1 && !Legal->getReductionVars().empty()) {
5343     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5344     return IC;
5345   }
5346 
5347   // Note that if we've already vectorized the loop we will have done the
5348   // runtime check and so interleaving won't require further checks.
5349   bool InterleavingRequiresRuntimePointerCheck =
5350       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5351 
5352   // We want to interleave small loops in order to reduce the loop overhead and
5353   // potentially expose ILP opportunities.
5354   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5355   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5356     // We assume that the cost overhead is 1 and we use the cost model
5357     // to estimate the cost of the loop and interleave until the cost of the
5358     // loop overhead is about 5% of the cost of the loop.
5359     unsigned SmallIC =
5360         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5361 
5362     // Interleave until store/load ports (estimated by max interleave count) are
5363     // saturated.
5364     unsigned NumStores = Legal->getNumStores();
5365     unsigned NumLoads = Legal->getNumLoads();
5366     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5367     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5368 
5369     // If we have a scalar reduction (vector reductions are already dealt with
5370     // by this point), we can increase the critical path length if the loop
5371     // we're interleaving is inside another loop. Limit, by default to 2, so the
5372     // critical path only gets increased by one reduction operation.
5373     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5374       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5375       SmallIC = std::min(SmallIC, F);
5376       StoresIC = std::min(StoresIC, F);
5377       LoadsIC = std::min(LoadsIC, F);
5378     }
5379 
5380     if (EnableLoadStoreRuntimeInterleave &&
5381         std::max(StoresIC, LoadsIC) > SmallIC) {
5382       LLVM_DEBUG(
5383           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5384       return std::max(StoresIC, LoadsIC);
5385     }
5386 
5387     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5388     return SmallIC;
5389   }
5390 
5391   // Interleave if this is a large loop (small loops are already dealt with by
5392   // this point) that could benefit from interleaving.
5393   bool HasReductions = !Legal->getReductionVars().empty();
5394   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5395     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5396     return IC;
5397   }
5398 
5399   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5400   return 1;
5401 }
5402 
5403 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5404 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5405   // This function calculates the register usage by measuring the highest number
5406   // of values that are alive at a single location. Obviously, this is a very
5407   // rough estimation. We scan the loop in a topological order in order and
5408   // assign a number to each instruction. We use RPO to ensure that defs are
5409   // met before their users. We assume that each instruction that has in-loop
5410   // users starts an interval. We record every time that an in-loop value is
5411   // used, so we have a list of the first and last occurrences of each
5412   // instruction. Next, we transpose this data structure into a multi map that
5413   // holds the list of intervals that *end* at a specific location. This multi
5414   // map allows us to perform a linear search. We scan the instructions linearly
5415   // and record each time that a new interval starts, by placing it in a set.
5416   // If we find this value in the multi-map then we remove it from the set.
5417   // The max register usage is the maximum size of the set.
5418   // We also search for instructions that are defined outside the loop, but are
5419   // used inside the loop. We need this number separately from the max-interval
5420   // usage number because when we unroll, loop-invariant values do not take
5421   // more register.
5422   LoopBlocksDFS DFS(TheLoop);
5423   DFS.perform(LI);
5424 
5425   RegisterUsage RU;
5426 
5427   // Each 'key' in the map opens a new interval. The values
5428   // of the map are the index of the 'last seen' usage of the
5429   // instruction that is the key.
5430   using IntervalMap = DenseMap<Instruction *, unsigned>;
5431 
5432   // Maps instruction to its index.
5433   SmallVector<Instruction *, 64> IdxToInstr;
5434   // Marks the end of each interval.
5435   IntervalMap EndPoint;
5436   // Saves the list of instruction indices that are used in the loop.
5437   SmallPtrSet<Instruction *, 8> Ends;
5438   // Saves the list of values that are used in the loop but are
5439   // defined outside the loop, such as arguments and constants.
5440   SmallPtrSet<Value *, 8> LoopInvariants;
5441 
5442   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5443     for (Instruction &I : BB->instructionsWithoutDebug()) {
5444       IdxToInstr.push_back(&I);
5445 
5446       // Save the end location of each USE.
5447       for (Value *U : I.operands()) {
5448         auto *Instr = dyn_cast<Instruction>(U);
5449 
5450         // Ignore non-instruction values such as arguments, constants, etc.
5451         if (!Instr)
5452           continue;
5453 
5454         // If this instruction is outside the loop then record it and continue.
5455         if (!TheLoop->contains(Instr)) {
5456           LoopInvariants.insert(Instr);
5457           continue;
5458         }
5459 
5460         // Overwrite previous end points.
5461         EndPoint[Instr] = IdxToInstr.size();
5462         Ends.insert(Instr);
5463       }
5464     }
5465   }
5466 
5467   // Saves the list of intervals that end with the index in 'key'.
5468   using InstrList = SmallVector<Instruction *, 2>;
5469   DenseMap<unsigned, InstrList> TransposeEnds;
5470 
5471   // Transpose the EndPoints to a list of values that end at each index.
5472   for (auto &Interval : EndPoint)
5473     TransposeEnds[Interval.second].push_back(Interval.first);
5474 
5475   SmallPtrSet<Instruction *, 8> OpenIntervals;
5476 
5477   // Get the size of the widest register.
5478   unsigned MaxSafeDepDist = -1U;
5479   if (Legal->getMaxSafeDepDistBytes() != -1U)
5480     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5481   unsigned WidestRegister =
5482       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5483   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5484 
5485   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5486   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5487 
5488   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5489 
5490   // A lambda that gets the register usage for the given type and VF.
5491   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5492     if (Ty->isTokenTy())
5493       return 0U;
5494     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5495     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5496   };
5497 
5498   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5499     Instruction *I = IdxToInstr[i];
5500 
5501     // Remove all of the instructions that end at this location.
5502     InstrList &List = TransposeEnds[i];
5503     for (Instruction *ToRemove : List)
5504       OpenIntervals.erase(ToRemove);
5505 
5506     // Ignore instructions that are never used within the loop.
5507     if (Ends.find(I) == Ends.end())
5508       continue;
5509 
5510     // Skip ignored values.
5511     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5512       continue;
5513 
5514     // For each VF find the maximum usage of registers.
5515     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5516       // Count the number of live intervals.
5517       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5518 
5519       if (VFs[j] == 1) {
5520         for (auto Inst : OpenIntervals) {
5521           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5522           if (RegUsage.find(ClassID) == RegUsage.end())
5523             RegUsage[ClassID] = 1;
5524           else
5525             RegUsage[ClassID] += 1;
5526         }
5527       } else {
5528         collectUniformsAndScalars(VFs[j]);
5529         for (auto Inst : OpenIntervals) {
5530           // Skip ignored values for VF > 1.
5531           if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5532             continue;
5533           if (isScalarAfterVectorization(Inst, VFs[j])) {
5534             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5535             if (RegUsage.find(ClassID) == RegUsage.end())
5536               RegUsage[ClassID] = 1;
5537             else
5538               RegUsage[ClassID] += 1;
5539           } else {
5540             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5541             if (RegUsage.find(ClassID) == RegUsage.end())
5542               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5543             else
5544               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5545           }
5546         }
5547       }
5548 
5549       for (auto& pair : RegUsage) {
5550         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5551           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5552         else
5553           MaxUsages[j][pair.first] = pair.second;
5554       }
5555     }
5556 
5557     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5558                       << OpenIntervals.size() << '\n');
5559 
5560     // Add the current instruction to the list of open intervals.
5561     OpenIntervals.insert(I);
5562   }
5563 
5564   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5565     SmallMapVector<unsigned, unsigned, 4> Invariant;
5566 
5567     for (auto Inst : LoopInvariants) {
5568       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5569       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5570       if (Invariant.find(ClassID) == Invariant.end())
5571         Invariant[ClassID] = Usage;
5572       else
5573         Invariant[ClassID] += Usage;
5574     }
5575 
5576     LLVM_DEBUG({
5577       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5578       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5579              << " item\n";
5580       for (const auto &pair : MaxUsages[i]) {
5581         dbgs() << "LV(REG): RegisterClass: "
5582                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5583                << " registers\n";
5584       }
5585       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5586              << " item\n";
5587       for (const auto &pair : Invariant) {
5588         dbgs() << "LV(REG): RegisterClass: "
5589                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5590                << " registers\n";
5591       }
5592     });
5593 
5594     RU.LoopInvariantRegs = Invariant;
5595     RU.MaxLocalUsers = MaxUsages[i];
5596     RUs[i] = RU;
5597   }
5598 
5599   return RUs;
5600 }
5601 
5602 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5603   // TODO: Cost model for emulated masked load/store is completely
5604   // broken. This hack guides the cost model to use an artificially
5605   // high enough value to practically disable vectorization with such
5606   // operations, except where previously deployed legality hack allowed
5607   // using very low cost values. This is to avoid regressions coming simply
5608   // from moving "masked load/store" check from legality to cost model.
5609   // Masked Load/Gather emulation was previously never allowed.
5610   // Limited number of Masked Store/Scatter emulation was allowed.
5611   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5612   return isa<LoadInst>(I) ||
5613          (isa<StoreInst>(I) &&
5614           NumPredStores > NumberOfStoresToPredicate);
5615 }
5616 
5617 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5618   // If we aren't vectorizing the loop, or if we've already collected the
5619   // instructions to scalarize, there's nothing to do. Collection may already
5620   // have occurred if we have a user-selected VF and are now computing the
5621   // expected cost for interleaving.
5622   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5623     return;
5624 
5625   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5626   // not profitable to scalarize any instructions, the presence of VF in the
5627   // map will indicate that we've analyzed it already.
5628   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5629 
5630   // Find all the instructions that are scalar with predication in the loop and
5631   // determine if it would be better to not if-convert the blocks they are in.
5632   // If so, we also record the instructions to scalarize.
5633   for (BasicBlock *BB : TheLoop->blocks()) {
5634     if (!blockNeedsPredication(BB))
5635       continue;
5636     for (Instruction &I : *BB)
5637       if (isScalarWithPredication(&I)) {
5638         ScalarCostsTy ScalarCosts;
5639         // Do not apply discount logic if hacked cost is needed
5640         // for emulated masked memrefs.
5641         if (!useEmulatedMaskMemRefHack(&I) &&
5642             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5643           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5644         // Remember that BB will remain after vectorization.
5645         PredicatedBBsAfterVectorization.insert(BB);
5646       }
5647   }
5648 }
5649 
5650 int LoopVectorizationCostModel::computePredInstDiscount(
5651     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5652     unsigned VF) {
5653   assert(!isUniformAfterVectorization(PredInst, VF) &&
5654          "Instruction marked uniform-after-vectorization will be predicated");
5655 
5656   // Initialize the discount to zero, meaning that the scalar version and the
5657   // vector version cost the same.
5658   int Discount = 0;
5659 
5660   // Holds instructions to analyze. The instructions we visit are mapped in
5661   // ScalarCosts. Those instructions are the ones that would be scalarized if
5662   // we find that the scalar version costs less.
5663   SmallVector<Instruction *, 8> Worklist;
5664 
5665   // Returns true if the given instruction can be scalarized.
5666   auto canBeScalarized = [&](Instruction *I) -> bool {
5667     // We only attempt to scalarize instructions forming a single-use chain
5668     // from the original predicated block that would otherwise be vectorized.
5669     // Although not strictly necessary, we give up on instructions we know will
5670     // already be scalar to avoid traversing chains that are unlikely to be
5671     // beneficial.
5672     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5673         isScalarAfterVectorization(I, VF))
5674       return false;
5675 
5676     // If the instruction is scalar with predication, it will be analyzed
5677     // separately. We ignore it within the context of PredInst.
5678     if (isScalarWithPredication(I))
5679       return false;
5680 
5681     // If any of the instruction's operands are uniform after vectorization,
5682     // the instruction cannot be scalarized. This prevents, for example, a
5683     // masked load from being scalarized.
5684     //
5685     // We assume we will only emit a value for lane zero of an instruction
5686     // marked uniform after vectorization, rather than VF identical values.
5687     // Thus, if we scalarize an instruction that uses a uniform, we would
5688     // create uses of values corresponding to the lanes we aren't emitting code
5689     // for. This behavior can be changed by allowing getScalarValue to clone
5690     // the lane zero values for uniforms rather than asserting.
5691     for (Use &U : I->operands())
5692       if (auto *J = dyn_cast<Instruction>(U.get()))
5693         if (isUniformAfterVectorization(J, VF))
5694           return false;
5695 
5696     // Otherwise, we can scalarize the instruction.
5697     return true;
5698   };
5699 
5700   // Compute the expected cost discount from scalarizing the entire expression
5701   // feeding the predicated instruction. We currently only consider expressions
5702   // that are single-use instruction chains.
5703   Worklist.push_back(PredInst);
5704   while (!Worklist.empty()) {
5705     Instruction *I = Worklist.pop_back_val();
5706 
5707     // If we've already analyzed the instruction, there's nothing to do.
5708     if (ScalarCosts.find(I) != ScalarCosts.end())
5709       continue;
5710 
5711     // Compute the cost of the vector instruction. Note that this cost already
5712     // includes the scalarization overhead of the predicated instruction.
5713     unsigned VectorCost = getInstructionCost(I, VF).first;
5714 
5715     // Compute the cost of the scalarized instruction. This cost is the cost of
5716     // the instruction as if it wasn't if-converted and instead remained in the
5717     // predicated block. We will scale this cost by block probability after
5718     // computing the scalarization overhead.
5719     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5720 
5721     // Compute the scalarization overhead of needed insertelement instructions
5722     // and phi nodes.
5723     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5724       ScalarCost += TTI.getScalarizationOverhead(
5725           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5726           APInt::getAllOnesValue(VF), true, false);
5727       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5728     }
5729 
5730     // Compute the scalarization overhead of needed extractelement
5731     // instructions. For each of the instruction's operands, if the operand can
5732     // be scalarized, add it to the worklist; otherwise, account for the
5733     // overhead.
5734     for (Use &U : I->operands())
5735       if (auto *J = dyn_cast<Instruction>(U.get())) {
5736         assert(VectorType::isValidElementType(J->getType()) &&
5737                "Instruction has non-scalar type");
5738         if (canBeScalarized(J))
5739           Worklist.push_back(J);
5740         else if (needsExtract(J, VF))
5741           ScalarCost += TTI.getScalarizationOverhead(
5742               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5743               APInt::getAllOnesValue(VF), false, true);
5744       }
5745 
5746     // Scale the total scalar cost by block probability.
5747     ScalarCost /= getReciprocalPredBlockProb();
5748 
5749     // Compute the discount. A non-negative discount means the vector version
5750     // of the instruction costs more, and scalarizing would be beneficial.
5751     Discount += VectorCost - ScalarCost;
5752     ScalarCosts[I] = ScalarCost;
5753   }
5754 
5755   return Discount;
5756 }
5757 
5758 LoopVectorizationCostModel::VectorizationCostTy
5759 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5760   VectorizationCostTy Cost;
5761 
5762   // For each block.
5763   for (BasicBlock *BB : TheLoop->blocks()) {
5764     VectorizationCostTy BlockCost;
5765 
5766     // For each instruction in the old loop.
5767     for (Instruction &I : BB->instructionsWithoutDebug()) {
5768       // Skip ignored values.
5769       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5770           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5771         continue;
5772 
5773       VectorizationCostTy C = getInstructionCost(&I, VF);
5774 
5775       // Check if we should override the cost.
5776       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5777         C.first = ForceTargetInstructionCost;
5778 
5779       BlockCost.first += C.first;
5780       BlockCost.second |= C.second;
5781       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5782                         << " for VF " << VF << " For instruction: " << I
5783                         << '\n');
5784     }
5785 
5786     // If we are vectorizing a predicated block, it will have been
5787     // if-converted. This means that the block's instructions (aside from
5788     // stores and instructions that may divide by zero) will now be
5789     // unconditionally executed. For the scalar case, we may not always execute
5790     // the predicated block. Thus, scale the block's cost by the probability of
5791     // executing it.
5792     if (VF == 1 && blockNeedsPredication(BB))
5793       BlockCost.first /= getReciprocalPredBlockProb();
5794 
5795     Cost.first += BlockCost.first;
5796     Cost.second |= BlockCost.second;
5797   }
5798 
5799   return Cost;
5800 }
5801 
5802 /// Gets Address Access SCEV after verifying that the access pattern
5803 /// is loop invariant except the induction variable dependence.
5804 ///
5805 /// This SCEV can be sent to the Target in order to estimate the address
5806 /// calculation cost.
5807 static const SCEV *getAddressAccessSCEV(
5808               Value *Ptr,
5809               LoopVectorizationLegality *Legal,
5810               PredicatedScalarEvolution &PSE,
5811               const Loop *TheLoop) {
5812 
5813   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5814   if (!Gep)
5815     return nullptr;
5816 
5817   // We are looking for a gep with all loop invariant indices except for one
5818   // which should be an induction variable.
5819   auto SE = PSE.getSE();
5820   unsigned NumOperands = Gep->getNumOperands();
5821   for (unsigned i = 1; i < NumOperands; ++i) {
5822     Value *Opd = Gep->getOperand(i);
5823     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5824         !Legal->isInductionVariable(Opd))
5825       return nullptr;
5826   }
5827 
5828   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5829   return PSE.getSCEV(Ptr);
5830 }
5831 
5832 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5833   return Legal->hasStride(I->getOperand(0)) ||
5834          Legal->hasStride(I->getOperand(1));
5835 }
5836 
5837 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5838                                                                  unsigned VF) {
5839   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5840   Type *ValTy = getMemInstValueType(I);
5841   auto SE = PSE.getSE();
5842 
5843   unsigned AS = getLoadStoreAddressSpace(I);
5844   Value *Ptr = getLoadStorePointerOperand(I);
5845   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5846 
5847   // Figure out whether the access is strided and get the stride value
5848   // if it's known in compile time
5849   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5850 
5851   // Get the cost of the scalar memory instruction and address computation.
5852   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5853 
5854   // Don't pass *I here, since it is scalar but will actually be part of a
5855   // vectorized loop where the user of it is a vectorized instruction.
5856   const Align Alignment = getLoadStoreAlignment(I);
5857   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5858                                    Alignment, AS,
5859                                    TTI::TCK_RecipThroughput);
5860 
5861   // Get the overhead of the extractelement and insertelement instructions
5862   // we might create due to scalarization.
5863   Cost += getScalarizationOverhead(I, VF);
5864 
5865   // If we have a predicated store, it may not be executed for each vector
5866   // lane. Scale the cost by the probability of executing the predicated
5867   // block.
5868   if (isPredicatedInst(I)) {
5869     Cost /= getReciprocalPredBlockProb();
5870 
5871     if (useEmulatedMaskMemRefHack(I))
5872       // Artificially setting to a high enough value to practically disable
5873       // vectorization with such operations.
5874       Cost = 3000000;
5875   }
5876 
5877   return Cost;
5878 }
5879 
5880 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5881                                                              unsigned VF) {
5882   Type *ValTy = getMemInstValueType(I);
5883   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5884   Value *Ptr = getLoadStorePointerOperand(I);
5885   unsigned AS = getLoadStoreAddressSpace(I);
5886   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5887   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5888 
5889   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5890          "Stride should be 1 or -1 for consecutive memory access");
5891   const Align Alignment = getLoadStoreAlignment(I);
5892   unsigned Cost = 0;
5893   if (Legal->isMaskRequired(I))
5894     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5895                                       Alignment.value(), AS, CostKind);
5896   else
5897     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5898                                 CostKind, I);
5899 
5900   bool Reverse = ConsecutiveStride < 0;
5901   if (Reverse)
5902     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5903   return Cost;
5904 }
5905 
5906 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5907                                                          unsigned VF) {
5908   Type *ValTy = getMemInstValueType(I);
5909   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5910   const Align Alignment = getLoadStoreAlignment(I);
5911   unsigned AS = getLoadStoreAddressSpace(I);
5912   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5913   if (isa<LoadInst>(I)) {
5914     return TTI.getAddressComputationCost(ValTy) +
5915            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5916                                CostKind) +
5917            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5918   }
5919   StoreInst *SI = cast<StoreInst>(I);
5920 
5921   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5922   return TTI.getAddressComputationCost(ValTy) +
5923          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5924                              CostKind) +
5925          (isLoopInvariantStoreValue
5926               ? 0
5927               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5928                                        VF - 1));
5929 }
5930 
5931 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5932                                                           unsigned VF) {
5933   Type *ValTy = getMemInstValueType(I);
5934   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5935   const Align Alignment = getLoadStoreAlignment(I);
5936   Value *Ptr = getLoadStorePointerOperand(I);
5937 
5938   return TTI.getAddressComputationCost(VectorTy) +
5939          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5940                                     Legal->isMaskRequired(I), Alignment.value(),
5941                                     TargetTransformInfo::TCK_RecipThroughput,
5942                                     I);
5943 }
5944 
5945 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5946                                                             unsigned VF) {
5947   Type *ValTy = getMemInstValueType(I);
5948   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5949   unsigned AS = getLoadStoreAddressSpace(I);
5950 
5951   auto Group = getInterleavedAccessGroup(I);
5952   assert(Group && "Fail to get an interleaved access group.");
5953 
5954   unsigned InterleaveFactor = Group->getFactor();
5955   auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor);
5956 
5957   // Holds the indices of existing members in an interleaved load group.
5958   // An interleaved store group doesn't need this as it doesn't allow gaps.
5959   SmallVector<unsigned, 4> Indices;
5960   if (isa<LoadInst>(I)) {
5961     for (unsigned i = 0; i < InterleaveFactor; i++)
5962       if (Group->getMember(i))
5963         Indices.push_back(i);
5964   }
5965 
5966   // Calculate the cost of the whole interleaved group.
5967   bool UseMaskForGaps =
5968       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5969   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970       I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5971       Group->getAlign().value(), AS, TTI::TCK_RecipThroughput,
5972       Legal->isMaskRequired(I), UseMaskForGaps);
5973 
5974   if (Group->isReverse()) {
5975     // TODO: Add support for reversed masked interleaved access.
5976     assert(!Legal->isMaskRequired(I) &&
5977            "Reverse masked interleaved access not supported.");
5978     Cost += Group->getNumMembers() *
5979             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5980   }
5981   return Cost;
5982 }
5983 
5984 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5985                                                               unsigned VF) {
5986   // Calculate scalar cost only. Vectorization cost should be ready at this
5987   // moment.
5988   if (VF == 1) {
5989     Type *ValTy = getMemInstValueType(I);
5990     const Align Alignment = getLoadStoreAlignment(I);
5991     unsigned AS = getLoadStoreAddressSpace(I);
5992 
5993     return TTI.getAddressComputationCost(ValTy) +
5994            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5995                                TTI::TCK_RecipThroughput, I);
5996   }
5997   return getWideningCost(I, VF);
5998 }
5999 
6000 LoopVectorizationCostModel::VectorizationCostTy
6001 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6002   // If we know that this instruction will remain uniform, check the cost of
6003   // the scalar version.
6004   if (isUniformAfterVectorization(I, VF))
6005     VF = 1;
6006 
6007   if (VF > 1 && isProfitableToScalarize(I, VF))
6008     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6009 
6010   // Forced scalars do not have any scalarization overhead.
6011   auto ForcedScalar = ForcedScalars.find(VF);
6012   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6013     auto InstSet = ForcedScalar->second;
6014     if (InstSet.find(I) != InstSet.end())
6015       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6016   }
6017 
6018   Type *VectorTy;
6019   unsigned C = getInstructionCost(I, VF, VectorTy);
6020 
6021   bool TypeNotScalarized =
6022       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6023   return VectorizationCostTy(C, TypeNotScalarized);
6024 }
6025 
6026 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6027                                                               unsigned VF) {
6028 
6029   if (VF == 1)
6030     return 0;
6031 
6032   unsigned Cost = 0;
6033   Type *RetTy = ToVectorTy(I->getType(), VF);
6034   if (!RetTy->isVoidTy() &&
6035       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6036     Cost += TTI.getScalarizationOverhead(
6037         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6038 
6039   // Some targets keep addresses scalar.
6040   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6041     return Cost;
6042 
6043   // Some targets support efficient element stores.
6044   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6045     return Cost;
6046 
6047   // Collect operands to consider.
6048   CallInst *CI = dyn_cast<CallInst>(I);
6049   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6050 
6051   // Skip operands that do not require extraction/scalarization and do not incur
6052   // any overhead.
6053   return Cost + TTI.getOperandsScalarizationOverhead(
6054                     filterExtractingOperands(Ops, VF), VF);
6055 }
6056 
6057 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6058   if (VF == 1)
6059     return;
6060   NumPredStores = 0;
6061   for (BasicBlock *BB : TheLoop->blocks()) {
6062     // For each instruction in the old loop.
6063     for (Instruction &I : *BB) {
6064       Value *Ptr =  getLoadStorePointerOperand(&I);
6065       if (!Ptr)
6066         continue;
6067 
6068       // TODO: We should generate better code and update the cost model for
6069       // predicated uniform stores. Today they are treated as any other
6070       // predicated store (see added test cases in
6071       // invariant-store-vectorization.ll).
6072       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6073         NumPredStores++;
6074 
6075       if (Legal->isUniform(Ptr) &&
6076           // Conditional loads and stores should be scalarized and predicated.
6077           // isScalarWithPredication cannot be used here since masked
6078           // gather/scatters are not considered scalar with predication.
6079           !Legal->blockNeedsPredication(I.getParent())) {
6080         // TODO: Avoid replicating loads and stores instead of
6081         // relying on instcombine to remove them.
6082         // Load: Scalar load + broadcast
6083         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6084         unsigned Cost = getUniformMemOpCost(&I, VF);
6085         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6086         continue;
6087       }
6088 
6089       // We assume that widening is the best solution when possible.
6090       if (memoryInstructionCanBeWidened(&I, VF)) {
6091         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6092         int ConsecutiveStride =
6093                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6094         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6095                "Expected consecutive stride.");
6096         InstWidening Decision =
6097             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6098         setWideningDecision(&I, VF, Decision, Cost);
6099         continue;
6100       }
6101 
6102       // Choose between Interleaving, Gather/Scatter or Scalarization.
6103       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6104       unsigned NumAccesses = 1;
6105       if (isAccessInterleaved(&I)) {
6106         auto Group = getInterleavedAccessGroup(&I);
6107         assert(Group && "Fail to get an interleaved access group.");
6108 
6109         // Make one decision for the whole group.
6110         if (getWideningDecision(&I, VF) != CM_Unknown)
6111           continue;
6112 
6113         NumAccesses = Group->getNumMembers();
6114         if (interleavedAccessCanBeWidened(&I, VF))
6115           InterleaveCost = getInterleaveGroupCost(&I, VF);
6116       }
6117 
6118       unsigned GatherScatterCost =
6119           isLegalGatherOrScatter(&I)
6120               ? getGatherScatterCost(&I, VF) * NumAccesses
6121               : std::numeric_limits<unsigned>::max();
6122 
6123       unsigned ScalarizationCost =
6124           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6125 
6126       // Choose better solution for the current VF,
6127       // write down this decision and use it during vectorization.
6128       unsigned Cost;
6129       InstWidening Decision;
6130       if (InterleaveCost <= GatherScatterCost &&
6131           InterleaveCost < ScalarizationCost) {
6132         Decision = CM_Interleave;
6133         Cost = InterleaveCost;
6134       } else if (GatherScatterCost < ScalarizationCost) {
6135         Decision = CM_GatherScatter;
6136         Cost = GatherScatterCost;
6137       } else {
6138         Decision = CM_Scalarize;
6139         Cost = ScalarizationCost;
6140       }
6141       // If the instructions belongs to an interleave group, the whole group
6142       // receives the same decision. The whole group receives the cost, but
6143       // the cost will actually be assigned to one instruction.
6144       if (auto Group = getInterleavedAccessGroup(&I))
6145         setWideningDecision(Group, VF, Decision, Cost);
6146       else
6147         setWideningDecision(&I, VF, Decision, Cost);
6148     }
6149   }
6150 
6151   // Make sure that any load of address and any other address computation
6152   // remains scalar unless there is gather/scatter support. This avoids
6153   // inevitable extracts into address registers, and also has the benefit of
6154   // activating LSR more, since that pass can't optimize vectorized
6155   // addresses.
6156   if (TTI.prefersVectorizedAddressing())
6157     return;
6158 
6159   // Start with all scalar pointer uses.
6160   SmallPtrSet<Instruction *, 8> AddrDefs;
6161   for (BasicBlock *BB : TheLoop->blocks())
6162     for (Instruction &I : *BB) {
6163       Instruction *PtrDef =
6164         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6165       if (PtrDef && TheLoop->contains(PtrDef) &&
6166           getWideningDecision(&I, VF) != CM_GatherScatter)
6167         AddrDefs.insert(PtrDef);
6168     }
6169 
6170   // Add all instructions used to generate the addresses.
6171   SmallVector<Instruction *, 4> Worklist;
6172   for (auto *I : AddrDefs)
6173     Worklist.push_back(I);
6174   while (!Worklist.empty()) {
6175     Instruction *I = Worklist.pop_back_val();
6176     for (auto &Op : I->operands())
6177       if (auto *InstOp = dyn_cast<Instruction>(Op))
6178         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6179             AddrDefs.insert(InstOp).second)
6180           Worklist.push_back(InstOp);
6181   }
6182 
6183   for (auto *I : AddrDefs) {
6184     if (isa<LoadInst>(I)) {
6185       // Setting the desired widening decision should ideally be handled in
6186       // by cost functions, but since this involves the task of finding out
6187       // if the loaded register is involved in an address computation, it is
6188       // instead changed here when we know this is the case.
6189       InstWidening Decision = getWideningDecision(I, VF);
6190       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6191         // Scalarize a widened load of address.
6192         setWideningDecision(I, VF, CM_Scalarize,
6193                             (VF * getMemoryInstructionCost(I, 1)));
6194       else if (auto Group = getInterleavedAccessGroup(I)) {
6195         // Scalarize an interleave group of address loads.
6196         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6197           if (Instruction *Member = Group->getMember(I))
6198             setWideningDecision(Member, VF, CM_Scalarize,
6199                                 (VF * getMemoryInstructionCost(Member, 1)));
6200         }
6201       }
6202     } else
6203       // Make sure I gets scalarized and a cost estimate without
6204       // scalarization overhead.
6205       ForcedScalars[VF].insert(I);
6206   }
6207 }
6208 
6209 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6210                                                         unsigned VF,
6211                                                         Type *&VectorTy) {
6212   Type *RetTy = I->getType();
6213   if (canTruncateToMinimalBitwidth(I, VF))
6214     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6215   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6216   auto SE = PSE.getSE();
6217   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6218 
6219   // TODO: We need to estimate the cost of intrinsic calls.
6220   switch (I->getOpcode()) {
6221   case Instruction::GetElementPtr:
6222     // We mark this instruction as zero-cost because the cost of GEPs in
6223     // vectorized code depends on whether the corresponding memory instruction
6224     // is scalarized or not. Therefore, we handle GEPs with the memory
6225     // instruction cost.
6226     return 0;
6227   case Instruction::Br: {
6228     // In cases of scalarized and predicated instructions, there will be VF
6229     // predicated blocks in the vectorized loop. Each branch around these
6230     // blocks requires also an extract of its vector compare i1 element.
6231     bool ScalarPredicatedBB = false;
6232     BranchInst *BI = cast<BranchInst>(I);
6233     if (VF > 1 && BI->isConditional() &&
6234         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6235              PredicatedBBsAfterVectorization.end() ||
6236          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6237              PredicatedBBsAfterVectorization.end()))
6238       ScalarPredicatedBB = true;
6239 
6240     if (ScalarPredicatedBB) {
6241       // Return cost for branches around scalarized and predicated blocks.
6242       VectorType *Vec_i1Ty =
6243           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6244       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6245                                            false, true) +
6246               (TTI.getCFInstrCost(Instruction::Br) * VF));
6247     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6248       // The back-edge branch will remain, as will all scalar branches.
6249       return TTI.getCFInstrCost(Instruction::Br);
6250     else
6251       // This branch will be eliminated by if-conversion.
6252       return 0;
6253     // Note: We currently assume zero cost for an unconditional branch inside
6254     // a predicated block since it will become a fall-through, although we
6255     // may decide in the future to call TTI for all branches.
6256   }
6257   case Instruction::PHI: {
6258     auto *Phi = cast<PHINode>(I);
6259 
6260     // First-order recurrences are replaced by vector shuffles inside the loop.
6261     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6262     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6263       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6264                                 cast<VectorType>(VectorTy), VF - 1,
6265                                 VectorType::get(RetTy, 1));
6266 
6267     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6268     // converted into select instructions. We require N - 1 selects per phi
6269     // node, where N is the number of incoming values.
6270     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6271       return (Phi->getNumIncomingValues() - 1) *
6272              TTI.getCmpSelInstrCost(
6273                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6274                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6275                  CostKind);
6276 
6277     return TTI.getCFInstrCost(Instruction::PHI);
6278   }
6279   case Instruction::UDiv:
6280   case Instruction::SDiv:
6281   case Instruction::URem:
6282   case Instruction::SRem:
6283     // If we have a predicated instruction, it may not be executed for each
6284     // vector lane. Get the scalarization cost and scale this amount by the
6285     // probability of executing the predicated block. If the instruction is not
6286     // predicated, we fall through to the next case.
6287     if (VF > 1 && isScalarWithPredication(I)) {
6288       unsigned Cost = 0;
6289 
6290       // These instructions have a non-void type, so account for the phi nodes
6291       // that we will create. This cost is likely to be zero. The phi node
6292       // cost, if any, should be scaled by the block probability because it
6293       // models a copy at the end of each predicated block.
6294       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6295 
6296       // The cost of the non-predicated instruction.
6297       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6298 
6299       // The cost of insertelement and extractelement instructions needed for
6300       // scalarization.
6301       Cost += getScalarizationOverhead(I, VF);
6302 
6303       // Scale the cost by the probability of executing the predicated blocks.
6304       // This assumes the predicated block for each vector lane is equally
6305       // likely.
6306       return Cost / getReciprocalPredBlockProb();
6307     }
6308     LLVM_FALLTHROUGH;
6309   case Instruction::Add:
6310   case Instruction::FAdd:
6311   case Instruction::Sub:
6312   case Instruction::FSub:
6313   case Instruction::Mul:
6314   case Instruction::FMul:
6315   case Instruction::FDiv:
6316   case Instruction::FRem:
6317   case Instruction::Shl:
6318   case Instruction::LShr:
6319   case Instruction::AShr:
6320   case Instruction::And:
6321   case Instruction::Or:
6322   case Instruction::Xor: {
6323     // Since we will replace the stride by 1 the multiplication should go away.
6324     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6325       return 0;
6326     // Certain instructions can be cheaper to vectorize if they have a constant
6327     // second vector operand. One example of this are shifts on x86.
6328     Value *Op2 = I->getOperand(1);
6329     TargetTransformInfo::OperandValueProperties Op2VP;
6330     TargetTransformInfo::OperandValueKind Op2VK =
6331         TTI.getOperandInfo(Op2, Op2VP);
6332     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6333       Op2VK = TargetTransformInfo::OK_UniformValue;
6334 
6335     SmallVector<const Value *, 4> Operands(I->operand_values());
6336     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6337     return N * TTI.getArithmeticInstrCost(
6338                    I->getOpcode(), VectorTy, CostKind,
6339                    TargetTransformInfo::OK_AnyValue,
6340                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6341   }
6342   case Instruction::FNeg: {
6343     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6344     return N * TTI.getArithmeticInstrCost(
6345                    I->getOpcode(), VectorTy, CostKind,
6346                    TargetTransformInfo::OK_AnyValue,
6347                    TargetTransformInfo::OK_AnyValue,
6348                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6349                    I->getOperand(0), I);
6350   }
6351   case Instruction::Select: {
6352     SelectInst *SI = cast<SelectInst>(I);
6353     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6354     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6355     Type *CondTy = SI->getCondition()->getType();
6356     if (!ScalarCond)
6357       CondTy = FixedVectorType::get(CondTy, VF);
6358 
6359     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6360                                   CostKind, I);
6361   }
6362   case Instruction::ICmp:
6363   case Instruction::FCmp: {
6364     Type *ValTy = I->getOperand(0)->getType();
6365     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6366     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6367       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6368     VectorTy = ToVectorTy(ValTy, VF);
6369     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6370                                   I);
6371   }
6372   case Instruction::Store:
6373   case Instruction::Load: {
6374     unsigned Width = VF;
6375     if (Width > 1) {
6376       InstWidening Decision = getWideningDecision(I, Width);
6377       assert(Decision != CM_Unknown &&
6378              "CM decision should be taken at this point");
6379       if (Decision == CM_Scalarize)
6380         Width = 1;
6381     }
6382     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6383     return getMemoryInstructionCost(I, VF);
6384   }
6385   case Instruction::ZExt:
6386   case Instruction::SExt:
6387   case Instruction::FPToUI:
6388   case Instruction::FPToSI:
6389   case Instruction::FPExt:
6390   case Instruction::PtrToInt:
6391   case Instruction::IntToPtr:
6392   case Instruction::SIToFP:
6393   case Instruction::UIToFP:
6394   case Instruction::Trunc:
6395   case Instruction::FPTrunc:
6396   case Instruction::BitCast: {
6397     // We optimize the truncation of induction variables having constant
6398     // integer steps. The cost of these truncations is the same as the scalar
6399     // operation.
6400     if (isOptimizableIVTruncate(I, VF)) {
6401       auto *Trunc = cast<TruncInst>(I);
6402       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6403                                   Trunc->getSrcTy(), CostKind, Trunc);
6404     }
6405 
6406     Type *SrcScalarTy = I->getOperand(0)->getType();
6407     Type *SrcVecTy =
6408         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6409     if (canTruncateToMinimalBitwidth(I, VF)) {
6410       // This cast is going to be shrunk. This may remove the cast or it might
6411       // turn it into slightly different cast. For example, if MinBW == 16,
6412       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6413       //
6414       // Calculate the modified src and dest types.
6415       Type *MinVecTy = VectorTy;
6416       if (I->getOpcode() == Instruction::Trunc) {
6417         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6418         VectorTy =
6419             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6420       } else if (I->getOpcode() == Instruction::ZExt ||
6421                  I->getOpcode() == Instruction::SExt) {
6422         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6423         VectorTy =
6424             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6425       }
6426     }
6427 
6428     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6429     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6430                                     CostKind, I);
6431   }
6432   case Instruction::Call: {
6433     bool NeedToScalarize;
6434     CallInst *CI = cast<CallInst>(I);
6435     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6436     if (getVectorIntrinsicIDForCall(CI, TLI))
6437       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6438     return CallCost;
6439   }
6440   default:
6441     // The cost of executing VF copies of the scalar instruction. This opcode
6442     // is unknown. Assume that it is the same as 'mul'.
6443     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6444                                            CostKind) +
6445            getScalarizationOverhead(I, VF);
6446   } // end of switch.
6447 }
6448 
6449 char LoopVectorize::ID = 0;
6450 
6451 static const char lv_name[] = "Loop Vectorization";
6452 
6453 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6454 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6455 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6456 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6457 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6458 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6459 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6460 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6461 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6463 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6464 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6465 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6466 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6467 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6468 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6469 
6470 namespace llvm {
6471 
6472 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6473 
6474 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6475                               bool VectorizeOnlyWhenForced) {
6476   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6477 }
6478 
6479 } // end namespace llvm
6480 
6481 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6482   // Check if the pointer operand of a load or store instruction is
6483   // consecutive.
6484   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6485     return Legal->isConsecutivePtr(Ptr);
6486   return false;
6487 }
6488 
6489 void LoopVectorizationCostModel::collectValuesToIgnore() {
6490   // Ignore ephemeral values.
6491   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6492 
6493   // Ignore type-promoting instructions we identified during reduction
6494   // detection.
6495   for (auto &Reduction : Legal->getReductionVars()) {
6496     RecurrenceDescriptor &RedDes = Reduction.second;
6497     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6498     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6499   }
6500   // Ignore type-casting instructions we identified during induction
6501   // detection.
6502   for (auto &Induction : Legal->getInductionVars()) {
6503     InductionDescriptor &IndDes = Induction.second;
6504     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6505     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6506   }
6507 }
6508 
6509 // TODO: we could return a pair of values that specify the max VF and
6510 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6511 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6512 // doesn't have a cost model that can choose which plan to execute if
6513 // more than one is generated.
6514 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6515                                  LoopVectorizationCostModel &CM) {
6516   unsigned WidestType;
6517   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6518   return WidestVectorRegBits / WidestType;
6519 }
6520 
6521 VectorizationFactor
6522 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6523   unsigned VF = UserVF;
6524   // Outer loop handling: They may require CFG and instruction level
6525   // transformations before even evaluating whether vectorization is profitable.
6526   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6527   // the vectorization pipeline.
6528   if (!OrigLoop->empty()) {
6529     // If the user doesn't provide a vectorization factor, determine a
6530     // reasonable one.
6531     if (!UserVF) {
6532       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6533       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6534 
6535       // Make sure we have a VF > 1 for stress testing.
6536       if (VPlanBuildStressTest && VF < 2) {
6537         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6538                           << "overriding computed VF.\n");
6539         VF = 4;
6540       }
6541     }
6542     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6543     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6544     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6545                       << " to build VPlans.\n");
6546     buildVPlans(VF, VF);
6547 
6548     // For VPlan build stress testing, we bail out after VPlan construction.
6549     if (VPlanBuildStressTest)
6550       return VectorizationFactor::Disabled();
6551 
6552     return {VF, 0};
6553   }
6554 
6555   LLVM_DEBUG(
6556       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6557                 "VPlan-native path.\n");
6558   return VectorizationFactor::Disabled();
6559 }
6560 
6561 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF,
6562                                                              unsigned UserIC) {
6563   assert(OrigLoop->empty() && "Inner loop expected.");
6564   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6565   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6566     return None;
6567 
6568   // Invalidate interleave groups if all blocks of loop will be predicated.
6569   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6570       !useMaskedInterleavedAccesses(*TTI)) {
6571     LLVM_DEBUG(
6572         dbgs()
6573         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6574            "which requires masked-interleaved support.\n");
6575     if (CM.InterleaveInfo.invalidateGroups())
6576       // Invalidating interleave groups also requires invalidating all decisions
6577       // based on them, which includes widening decisions and uniform and scalar
6578       // values.
6579       CM.invalidateCostModelingDecisions();
6580   }
6581 
6582   if (UserVF) {
6583     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6584     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6585     // Collect the instructions (and their associated costs) that will be more
6586     // profitable to scalarize.
6587     CM.selectUserVectorizationFactor(UserVF);
6588     buildVPlansWithVPRecipes(UserVF, UserVF);
6589     LLVM_DEBUG(printPlans(dbgs()));
6590     return {{UserVF, 0}};
6591   }
6592 
6593   unsigned MaxVF = MaybeMaxVF.getValue();
6594   assert(MaxVF != 0 && "MaxVF is zero.");
6595 
6596   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6597     // Collect Uniform and Scalar instructions after vectorization with VF.
6598     CM.collectUniformsAndScalars(VF);
6599 
6600     // Collect the instructions (and their associated costs) that will be more
6601     // profitable to scalarize.
6602     if (VF > 1)
6603       CM.collectInstsToScalarize(VF);
6604   }
6605 
6606   buildVPlansWithVPRecipes(1, MaxVF);
6607   LLVM_DEBUG(printPlans(dbgs()));
6608   if (MaxVF == 1)
6609     return VectorizationFactor::Disabled();
6610 
6611   // Select the optimal vectorization factor.
6612   return CM.selectVectorizationFactor(MaxVF);
6613 }
6614 
6615 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6616   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6617                     << '\n');
6618   BestVF = VF;
6619   BestUF = UF;
6620 
6621   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6622     return !Plan->hasVF(VF);
6623   });
6624   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6625 }
6626 
6627 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6628                                            DominatorTree *DT) {
6629   // Perform the actual loop transformation.
6630 
6631   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6632   VPCallbackILV CallbackILV(ILV);
6633 
6634   VPTransformState State{BestVF, BestUF,      LI,
6635                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6636                          &ILV,   CallbackILV};
6637   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6638   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6639   State.CanonicalIV = ILV.Induction;
6640 
6641   //===------------------------------------------------===//
6642   //
6643   // Notice: any optimization or new instruction that go
6644   // into the code below should also be implemented in
6645   // the cost-model.
6646   //
6647   //===------------------------------------------------===//
6648 
6649   // 2. Copy and widen instructions from the old loop into the new loop.
6650   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6651   VPlans.front()->execute(&State);
6652 
6653   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6654   //    predication, updating analyses.
6655   ILV.fixVectorizedLoop();
6656 }
6657 
6658 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6659     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6660   BasicBlock *Latch = OrigLoop->getLoopLatch();
6661 
6662   // We create new control-flow for the vectorized loop, so the original
6663   // condition will be dead after vectorization if it's only used by the
6664   // branch.
6665   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6666   if (Cmp && Cmp->hasOneUse())
6667     DeadInstructions.insert(Cmp);
6668 
6669   // We create new "steps" for induction variable updates to which the original
6670   // induction variables map. An original update instruction will be dead if
6671   // all its users except the induction variable are dead.
6672   for (auto &Induction : Legal->getInductionVars()) {
6673     PHINode *Ind = Induction.first;
6674     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6675     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6676           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6677                                  DeadInstructions.end();
6678         }))
6679       DeadInstructions.insert(IndUpdate);
6680 
6681     // We record as "Dead" also the type-casting instructions we had identified
6682     // during induction analysis. We don't need any handling for them in the
6683     // vectorized loop because we have proven that, under a proper runtime
6684     // test guarding the vectorized loop, the value of the phi, and the casted
6685     // value of the phi, are the same. The last instruction in this casting chain
6686     // will get its scalar/vector/widened def from the scalar/vector/widened def
6687     // of the respective phi node. Any other casts in the induction def-use chain
6688     // have no other uses outside the phi update chain, and will be ignored.
6689     InductionDescriptor &IndDes = Induction.second;
6690     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6691     DeadInstructions.insert(Casts.begin(), Casts.end());
6692   }
6693 }
6694 
6695 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6696 
6697 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6698 
6699 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6700                                         Instruction::BinaryOps BinOp) {
6701   // When unrolling and the VF is 1, we only need to add a simple scalar.
6702   Type *Ty = Val->getType();
6703   assert(!Ty->isVectorTy() && "Val must be a scalar");
6704 
6705   if (Ty->isFloatingPointTy()) {
6706     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6707 
6708     // Floating point operations had to be 'fast' to enable the unrolling.
6709     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6710     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6711   }
6712   Constant *C = ConstantInt::get(Ty, StartIdx);
6713   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6714 }
6715 
6716 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6717   SmallVector<Metadata *, 4> MDs;
6718   // Reserve first location for self reference to the LoopID metadata node.
6719   MDs.push_back(nullptr);
6720   bool IsUnrollMetadata = false;
6721   MDNode *LoopID = L->getLoopID();
6722   if (LoopID) {
6723     // First find existing loop unrolling disable metadata.
6724     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6725       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6726       if (MD) {
6727         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6728         IsUnrollMetadata =
6729             S && S->getString().startswith("llvm.loop.unroll.disable");
6730       }
6731       MDs.push_back(LoopID->getOperand(i));
6732     }
6733   }
6734 
6735   if (!IsUnrollMetadata) {
6736     // Add runtime unroll disable metadata.
6737     LLVMContext &Context = L->getHeader()->getContext();
6738     SmallVector<Metadata *, 1> DisableOperands;
6739     DisableOperands.push_back(
6740         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6741     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6742     MDs.push_back(DisableNode);
6743     MDNode *NewLoopID = MDNode::get(Context, MDs);
6744     // Set operand 0 to refer to the loop id itself.
6745     NewLoopID->replaceOperandWith(0, NewLoopID);
6746     L->setLoopID(NewLoopID);
6747   }
6748 }
6749 
6750 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6751     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6752   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6753   bool PredicateAtRangeStart = Predicate(Range.Start);
6754 
6755   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6756     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6757       Range.End = TmpVF;
6758       break;
6759     }
6760 
6761   return PredicateAtRangeStart;
6762 }
6763 
6764 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6765 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6766 /// of VF's starting at a given VF and extending it as much as possible. Each
6767 /// vectorization decision can potentially shorten this sub-range during
6768 /// buildVPlan().
6769 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6770   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6771     VFRange SubRange = {VF, MaxVF + 1};
6772     VPlans.push_back(buildVPlan(SubRange));
6773     VF = SubRange.End;
6774   }
6775 }
6776 
6777 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6778                                          VPlanPtr &Plan) {
6779   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6780 
6781   // Look for cached value.
6782   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6783   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6784   if (ECEntryIt != EdgeMaskCache.end())
6785     return ECEntryIt->second;
6786 
6787   VPValue *SrcMask = createBlockInMask(Src, Plan);
6788 
6789   // The terminator has to be a branch inst!
6790   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6791   assert(BI && "Unexpected terminator found");
6792 
6793   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6794     return EdgeMaskCache[Edge] = SrcMask;
6795 
6796   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6797   assert(EdgeMask && "No Edge Mask found for condition");
6798 
6799   if (BI->getSuccessor(0) != Dst)
6800     EdgeMask = Builder.createNot(EdgeMask);
6801 
6802   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6803     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6804 
6805   return EdgeMaskCache[Edge] = EdgeMask;
6806 }
6807 
6808 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6809   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6810 
6811   // Look for cached value.
6812   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6813   if (BCEntryIt != BlockMaskCache.end())
6814     return BCEntryIt->second;
6815 
6816   // All-one mask is modelled as no-mask following the convention for masked
6817   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6818   VPValue *BlockMask = nullptr;
6819 
6820   if (OrigLoop->getHeader() == BB) {
6821     if (!CM.blockNeedsPredication(BB))
6822       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6823 
6824     // Introduce the early-exit compare IV <= BTC to form header block mask.
6825     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6826     // Start by constructing the desired canonical IV.
6827     VPValue *IV = nullptr;
6828     if (Legal->getPrimaryInduction())
6829       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6830     else {
6831       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6832       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6833       IV = IVRecipe->getVPValue();
6834     }
6835     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6836     BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6837     return BlockMaskCache[BB] = BlockMask;
6838   }
6839 
6840   // This is the block mask. We OR all incoming edges.
6841   for (auto *Predecessor : predecessors(BB)) {
6842     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6843     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6844       return BlockMaskCache[BB] = EdgeMask;
6845 
6846     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6847       BlockMask = EdgeMask;
6848       continue;
6849     }
6850 
6851     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6852   }
6853 
6854   return BlockMaskCache[BB] = BlockMask;
6855 }
6856 
6857 VPWidenMemoryInstructionRecipe *
6858 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6859                                   VPlanPtr &Plan) {
6860   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6861          "Must be called with either a load or store");
6862 
6863   auto willWiden = [&](unsigned VF) -> bool {
6864     if (VF == 1)
6865       return false;
6866     LoopVectorizationCostModel::InstWidening Decision =
6867         CM.getWideningDecision(I, VF);
6868     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6869            "CM decision should be taken at this point.");
6870     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6871       return true;
6872     if (CM.isScalarAfterVectorization(I, VF) ||
6873         CM.isProfitableToScalarize(I, VF))
6874       return false;
6875     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6876   };
6877 
6878   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6879     return nullptr;
6880 
6881   VPValue *Mask = nullptr;
6882   if (Legal->isMaskRequired(I))
6883     Mask = createBlockInMask(I->getParent(), Plan);
6884 
6885   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6886   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6887     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6888 
6889   StoreInst *Store = cast<StoreInst>(I);
6890   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6891   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6892 }
6893 
6894 VPWidenIntOrFpInductionRecipe *
6895 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6896   // Check if this is an integer or fp induction. If so, build the recipe that
6897   // produces its scalar and vector values.
6898   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6899   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6900       II.getKind() == InductionDescriptor::IK_FpInduction)
6901     return new VPWidenIntOrFpInductionRecipe(Phi);
6902 
6903   return nullptr;
6904 }
6905 
6906 VPWidenIntOrFpInductionRecipe *
6907 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6908                                                 VFRange &Range) const {
6909   // Optimize the special case where the source is a constant integer
6910   // induction variable. Notice that we can only optimize the 'trunc' case
6911   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6912   // (c) other casts depend on pointer size.
6913 
6914   // Determine whether \p K is a truncation based on an induction variable that
6915   // can be optimized.
6916   auto isOptimizableIVTruncate =
6917       [&](Instruction *K) -> std::function<bool(unsigned)> {
6918     return
6919         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6920   };
6921 
6922   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6923           isOptimizableIVTruncate(I), Range))
6924     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6925                                              I);
6926   return nullptr;
6927 }
6928 
6929 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6930   // We know that all PHIs in non-header blocks are converted into selects, so
6931   // we don't have to worry about the insertion order and we can just use the
6932   // builder. At this point we generate the predication tree. There may be
6933   // duplications since this is a simple recursive scan, but future
6934   // optimizations will clean it up.
6935 
6936   SmallVector<VPValue *, 2> Operands;
6937   unsigned NumIncoming = Phi->getNumIncomingValues();
6938   for (unsigned In = 0; In < NumIncoming; In++) {
6939     VPValue *EdgeMask =
6940       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6941     assert((EdgeMask || NumIncoming == 1) &&
6942            "Multiple predecessors with one having a full mask");
6943     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6944     if (EdgeMask)
6945       Operands.push_back(EdgeMask);
6946   }
6947   return new VPBlendRecipe(Phi, Operands);
6948 }
6949 
6950 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6951                                                    VPlan &Plan) const {
6952 
6953   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6954       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6955       Range);
6956 
6957   if (IsPredicated)
6958     return nullptr;
6959 
6960   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6961   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6962              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6963     return nullptr;
6964 
6965   auto willWiden = [&](unsigned VF) -> bool {
6966     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6967     // The following case may be scalarized depending on the VF.
6968     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6969     // version of the instruction.
6970     // Is it beneficial to perform intrinsic call compared to lib call?
6971     bool NeedToScalarize = false;
6972     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6973     bool UseVectorIntrinsic =
6974         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6975     return UseVectorIntrinsic || !NeedToScalarize;
6976   };
6977 
6978   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6979     return nullptr;
6980 
6981   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6982 }
6983 
6984 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6985   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6986          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6987   // Instruction should be widened, unless it is scalar after vectorization,
6988   // scalarization is profitable or it is predicated.
6989   auto WillScalarize = [this, I](unsigned VF) -> bool {
6990     return CM.isScalarAfterVectorization(I, VF) ||
6991            CM.isProfitableToScalarize(I, VF) ||
6992            CM.isScalarWithPredication(I, VF);
6993   };
6994   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6995                                                              Range);
6996 }
6997 
6998 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6999   auto IsVectorizableOpcode = [](unsigned Opcode) {
7000     switch (Opcode) {
7001     case Instruction::Add:
7002     case Instruction::And:
7003     case Instruction::AShr:
7004     case Instruction::BitCast:
7005     case Instruction::FAdd:
7006     case Instruction::FCmp:
7007     case Instruction::FDiv:
7008     case Instruction::FMul:
7009     case Instruction::FNeg:
7010     case Instruction::FPExt:
7011     case Instruction::FPToSI:
7012     case Instruction::FPToUI:
7013     case Instruction::FPTrunc:
7014     case Instruction::FRem:
7015     case Instruction::FSub:
7016     case Instruction::ICmp:
7017     case Instruction::IntToPtr:
7018     case Instruction::LShr:
7019     case Instruction::Mul:
7020     case Instruction::Or:
7021     case Instruction::PtrToInt:
7022     case Instruction::SDiv:
7023     case Instruction::Select:
7024     case Instruction::SExt:
7025     case Instruction::Shl:
7026     case Instruction::SIToFP:
7027     case Instruction::SRem:
7028     case Instruction::Sub:
7029     case Instruction::Trunc:
7030     case Instruction::UDiv:
7031     case Instruction::UIToFP:
7032     case Instruction::URem:
7033     case Instruction::Xor:
7034     case Instruction::ZExt:
7035       return true;
7036     }
7037     return false;
7038   };
7039 
7040   if (!IsVectorizableOpcode(I->getOpcode()))
7041     return nullptr;
7042 
7043   // Success: widen this instruction.
7044   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7045 }
7046 
7047 VPBasicBlock *VPRecipeBuilder::handleReplication(
7048     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7049     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7050     VPlanPtr &Plan) {
7051   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7052       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7053       Range);
7054 
7055   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7056       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7057 
7058   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7059                                        IsUniform, IsPredicated);
7060   setRecipe(I, Recipe);
7061 
7062   // Find if I uses a predicated instruction. If so, it will use its scalar
7063   // value. Avoid hoisting the insert-element which packs the scalar value into
7064   // a vector value, as that happens iff all users use the vector value.
7065   for (auto &Op : I->operands())
7066     if (auto *PredInst = dyn_cast<Instruction>(Op))
7067       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7068         PredInst2Recipe[PredInst]->setAlsoPack(false);
7069 
7070   // Finalize the recipe for Instr, first if it is not predicated.
7071   if (!IsPredicated) {
7072     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7073     VPBB->appendRecipe(Recipe);
7074     return VPBB;
7075   }
7076   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7077   assert(VPBB->getSuccessors().empty() &&
7078          "VPBB has successors when handling predicated replication.");
7079   // Record predicated instructions for above packing optimizations.
7080   PredInst2Recipe[I] = Recipe;
7081   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7082   VPBlockUtils::insertBlockAfter(Region, VPBB);
7083   auto *RegSucc = new VPBasicBlock();
7084   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7085   return RegSucc;
7086 }
7087 
7088 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7089                                                       VPRecipeBase *PredRecipe,
7090                                                       VPlanPtr &Plan) {
7091   // Instructions marked for predication are replicated and placed under an
7092   // if-then construct to prevent side-effects.
7093 
7094   // Generate recipes to compute the block mask for this region.
7095   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7096 
7097   // Build the triangular if-then region.
7098   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7099   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7100   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7101   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7102   auto *PHIRecipe =
7103       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7104   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7105   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7106   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7107 
7108   // Note: first set Entry as region entry and then connect successors starting
7109   // from it in order, to propagate the "parent" of each VPBasicBlock.
7110   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7111   VPBlockUtils::connectBlocks(Pred, Exit);
7112 
7113   return Region;
7114 }
7115 
7116 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7117                                                       VFRange &Range,
7118                                                       VPlanPtr &Plan) {
7119   // First, check for specific widening recipes that deal with calls, memory
7120   // operations, inductions and Phi nodes.
7121   if (auto *CI = dyn_cast<CallInst>(Instr))
7122     return tryToWidenCall(CI, Range, *Plan);
7123 
7124   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7125     return tryToWidenMemory(Instr, Range, Plan);
7126 
7127   VPRecipeBase *Recipe;
7128   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7129     if (Phi->getParent() != OrigLoop->getHeader())
7130       return tryToBlend(Phi, Plan);
7131     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7132       return Recipe;
7133     return new VPWidenPHIRecipe(Phi);
7134   }
7135 
7136   if (isa<TruncInst>(Instr) &&
7137       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7138     return Recipe;
7139 
7140   if (!shouldWiden(Instr, Range))
7141     return nullptr;
7142 
7143   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7144     return new VPWidenGEPRecipe(GEP, OrigLoop);
7145 
7146   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7147     bool InvariantCond =
7148         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7149     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7150                                    InvariantCond);
7151   }
7152 
7153   return tryToWiden(Instr, *Plan);
7154 }
7155 
7156 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7157                                                         unsigned MaxVF) {
7158   assert(OrigLoop->empty() && "Inner loop expected.");
7159 
7160   // Collect conditions feeding internal conditional branches; they need to be
7161   // represented in VPlan for it to model masking.
7162   SmallPtrSet<Value *, 1> NeedDef;
7163 
7164   auto *Latch = OrigLoop->getLoopLatch();
7165   for (BasicBlock *BB : OrigLoop->blocks()) {
7166     if (BB == Latch)
7167       continue;
7168     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7169     if (Branch && Branch->isConditional())
7170       NeedDef.insert(Branch->getCondition());
7171   }
7172 
7173   // If the tail is to be folded by masking, the primary induction variable, if
7174   // exists needs to be represented in VPlan for it to model early-exit masking.
7175   // Also, both the Phi and the live-out instruction of each reduction are
7176   // required in order to introduce a select between them in VPlan.
7177   if (CM.foldTailByMasking()) {
7178     if (Legal->getPrimaryInduction())
7179       NeedDef.insert(Legal->getPrimaryInduction());
7180     for (auto &Reduction : Legal->getReductionVars()) {
7181       NeedDef.insert(Reduction.first);
7182       NeedDef.insert(Reduction.second.getLoopExitInstr());
7183     }
7184   }
7185 
7186   // Collect instructions from the original loop that will become trivially dead
7187   // in the vectorized loop. We don't need to vectorize these instructions. For
7188   // example, original induction update instructions can become dead because we
7189   // separately emit induction "steps" when generating code for the new loop.
7190   // Similarly, we create a new latch condition when setting up the structure
7191   // of the new loop, so the old one can become dead.
7192   SmallPtrSet<Instruction *, 4> DeadInstructions;
7193   collectTriviallyDeadInstructions(DeadInstructions);
7194 
7195   // Add assume instructions we need to drop to DeadInstructions, to prevent
7196   // them from being added to the VPlan.
7197   // TODO: We only need to drop assumes in blocks that get flattend. If the
7198   // control flow is preserved, we should keep them.
7199   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7200   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7201 
7202   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7203   // Dead instructions do not need sinking. Remove them from SinkAfter.
7204   for (Instruction *I : DeadInstructions)
7205     SinkAfter.erase(I);
7206 
7207   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7208     VFRange SubRange = {VF, MaxVF + 1};
7209     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7210                                              DeadInstructions, SinkAfter));
7211     VF = SubRange.End;
7212   }
7213 }
7214 
7215 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7216     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7217     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7218     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7219 
7220   // Hold a mapping from predicated instructions to their recipes, in order to
7221   // fix their AlsoPack behavior if a user is determined to replicate and use a
7222   // scalar instead of vector value.
7223   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7224 
7225   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7226 
7227   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7228 
7229   // ---------------------------------------------------------------------------
7230   // Pre-construction: record ingredients whose recipes we'll need to further
7231   // process after constructing the initial VPlan.
7232   // ---------------------------------------------------------------------------
7233 
7234   // Mark instructions we'll need to sink later and their targets as
7235   // ingredients whose recipe we'll need to record.
7236   for (auto &Entry : SinkAfter) {
7237     RecipeBuilder.recordRecipeOf(Entry.first);
7238     RecipeBuilder.recordRecipeOf(Entry.second);
7239   }
7240 
7241   // For each interleave group which is relevant for this (possibly trimmed)
7242   // Range, add it to the set of groups to be later applied to the VPlan and add
7243   // placeholders for its members' Recipes which we'll be replacing with a
7244   // single VPInterleaveRecipe.
7245   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7246     auto applyIG = [IG, this](unsigned VF) -> bool {
7247       return (VF >= 2 && // Query is illegal for VF == 1
7248               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7249                   LoopVectorizationCostModel::CM_Interleave);
7250     };
7251     if (!getDecisionAndClampRange(applyIG, Range))
7252       continue;
7253     InterleaveGroups.insert(IG);
7254     for (unsigned i = 0; i < IG->getFactor(); i++)
7255       if (Instruction *Member = IG->getMember(i))
7256         RecipeBuilder.recordRecipeOf(Member);
7257   };
7258 
7259   // ---------------------------------------------------------------------------
7260   // Build initial VPlan: Scan the body of the loop in a topological order to
7261   // visit each basic block after having visited its predecessor basic blocks.
7262   // ---------------------------------------------------------------------------
7263 
7264   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7265   auto Plan = std::make_unique<VPlan>();
7266   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7267   Plan->setEntry(VPBB);
7268 
7269   // Represent values that will have defs inside VPlan.
7270   for (Value *V : NeedDef)
7271     Plan->addVPValue(V);
7272 
7273   // Scan the body of the loop in a topological order to visit each basic block
7274   // after having visited its predecessor basic blocks.
7275   LoopBlocksDFS DFS(OrigLoop);
7276   DFS.perform(LI);
7277 
7278   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7279     // Relevant instructions from basic block BB will be grouped into VPRecipe
7280     // ingredients and fill a new VPBasicBlock.
7281     unsigned VPBBsForBB = 0;
7282     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7283     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7284     VPBB = FirstVPBBForBB;
7285     Builder.setInsertPoint(VPBB);
7286 
7287     // Introduce each ingredient into VPlan.
7288     // TODO: Model and preserve debug instrinsics in VPlan.
7289     for (Instruction &I : BB->instructionsWithoutDebug()) {
7290       Instruction *Instr = &I;
7291 
7292       // First filter out irrelevant instructions, to ensure no recipes are
7293       // built for them.
7294       if (isa<BranchInst>(Instr) ||
7295           DeadInstructions.find(Instr) != DeadInstructions.end())
7296         continue;
7297 
7298       if (auto Recipe =
7299               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7300         RecipeBuilder.setRecipe(Instr, Recipe);
7301         VPBB->appendRecipe(Recipe);
7302         continue;
7303       }
7304 
7305       // Otherwise, if all widening options failed, Instruction is to be
7306       // replicated. This may create a successor for VPBB.
7307       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7308           Instr, Range, VPBB, PredInst2Recipe, Plan);
7309       if (NextVPBB != VPBB) {
7310         VPBB = NextVPBB;
7311         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7312                                     : "");
7313       }
7314     }
7315   }
7316 
7317   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7318   // may also be empty, such as the last one VPBB, reflecting original
7319   // basic-blocks with no recipes.
7320   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7321   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7322   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7323   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7324   delete PreEntry;
7325 
7326   // ---------------------------------------------------------------------------
7327   // Transform initial VPlan: Apply previously taken decisions, in order, to
7328   // bring the VPlan to its final state.
7329   // ---------------------------------------------------------------------------
7330 
7331   // Apply Sink-After legal constraints.
7332   for (auto &Entry : SinkAfter) {
7333     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7334     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7335     Sink->moveAfter(Target);
7336   }
7337 
7338   // Interleave memory: for each Interleave Group we marked earlier as relevant
7339   // for this VPlan, replace the Recipes widening its memory instructions with a
7340   // single VPInterleaveRecipe at its insertion point.
7341   for (auto IG : InterleaveGroups) {
7342     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7343         RecipeBuilder.getRecipe(IG->getInsertPos()));
7344     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7345         ->insertBefore(Recipe);
7346 
7347     for (unsigned i = 0; i < IG->getFactor(); ++i)
7348       if (Instruction *Member = IG->getMember(i)) {
7349         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7350       }
7351   }
7352 
7353   // Finally, if tail is folded by masking, introduce selects between the phi
7354   // and the live-out instruction of each reduction, at the end of the latch.
7355   if (CM.foldTailByMasking()) {
7356     Builder.setInsertPoint(VPBB);
7357     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7358     for (auto &Reduction : Legal->getReductionVars()) {
7359       VPValue *Phi = Plan->getVPValue(Reduction.first);
7360       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7361       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7362     }
7363   }
7364 
7365   std::string PlanName;
7366   raw_string_ostream RSO(PlanName);
7367   unsigned VF = Range.Start;
7368   Plan->addVF(VF);
7369   RSO << "Initial VPlan for VF={" << VF;
7370   for (VF *= 2; VF < Range.End; VF *= 2) {
7371     Plan->addVF(VF);
7372     RSO << "," << VF;
7373   }
7374   RSO << "},UF>=1";
7375   RSO.flush();
7376   Plan->setName(PlanName);
7377 
7378   return Plan;
7379 }
7380 
7381 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7382   // Outer loop handling: They may require CFG and instruction level
7383   // transformations before even evaluating whether vectorization is profitable.
7384   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7385   // the vectorization pipeline.
7386   assert(!OrigLoop->empty());
7387   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7388 
7389   // Create new empty VPlan
7390   auto Plan = std::make_unique<VPlan>();
7391 
7392   // Build hierarchical CFG
7393   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7394   HCFGBuilder.buildHierarchicalCFG();
7395 
7396   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7397     Plan->addVF(VF);
7398 
7399   if (EnableVPlanPredication) {
7400     VPlanPredicator VPP(*Plan);
7401     VPP.predicate();
7402 
7403     // Avoid running transformation to recipes until masked code generation in
7404     // VPlan-native path is in place.
7405     return Plan;
7406   }
7407 
7408   SmallPtrSet<Instruction *, 1> DeadInstructions;
7409   VPlanTransforms::VPInstructionsToVPRecipes(
7410       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7411   return Plan;
7412 }
7413 
7414 Value* LoopVectorizationPlanner::VPCallbackILV::
7415 getOrCreateVectorValues(Value *V, unsigned Part) {
7416       return ILV.getOrCreateVectorValue(V, Part);
7417 }
7418 
7419 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7420     Value *V, const VPIteration &Instance) {
7421   return ILV.getOrCreateScalarValue(V, Instance);
7422 }
7423 
7424 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7425                                VPSlotTracker &SlotTracker) const {
7426   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7427   IG->getInsertPos()->printAsOperand(O, false);
7428   O << ", ";
7429   getAddr()->printAsOperand(O, SlotTracker);
7430   VPValue *Mask = getMask();
7431   if (Mask) {
7432     O << ", ";
7433     Mask->printAsOperand(O, SlotTracker);
7434   }
7435   for (unsigned i = 0; i < IG->getFactor(); ++i)
7436     if (Instruction *I = IG->getMember(i))
7437       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7438 }
7439 
7440 void VPWidenCallRecipe::execute(VPTransformState &State) {
7441   State.ILV->widenCallInstruction(Ingredient, User, State);
7442 }
7443 
7444 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7445   State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State);
7446 }
7447 
7448 void VPWidenRecipe::execute(VPTransformState &State) {
7449   State.ILV->widenInstruction(Ingredient, User, State);
7450 }
7451 
7452 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7453   State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7454                       IsIndexLoopInvariant);
7455 }
7456 
7457 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7458   assert(!State.Instance && "Int or FP induction being replicated.");
7459   State.ILV->widenIntOrFpInduction(IV, Trunc);
7460 }
7461 
7462 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7463   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7464 }
7465 
7466 void VPBlendRecipe::execute(VPTransformState &State) {
7467   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7468   // We know that all PHIs in non-header blocks are converted into
7469   // selects, so we don't have to worry about the insertion order and we
7470   // can just use the builder.
7471   // At this point we generate the predication tree. There may be
7472   // duplications since this is a simple recursive scan, but future
7473   // optimizations will clean it up.
7474 
7475   unsigned NumIncoming = getNumIncomingValues();
7476 
7477   // Generate a sequence of selects of the form:
7478   // SELECT(Mask3, In3,
7479   //        SELECT(Mask2, In2,
7480   //               SELECT(Mask1, In1,
7481   //                      In0)))
7482   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7483   // are essentially undef are taken from In0.
7484   InnerLoopVectorizer::VectorParts Entry(State.UF);
7485   for (unsigned In = 0; In < NumIncoming; ++In) {
7486     for (unsigned Part = 0; Part < State.UF; ++Part) {
7487       // We might have single edge PHIs (blocks) - use an identity
7488       // 'select' for the first PHI operand.
7489       Value *In0 = State.get(getIncomingValue(In), Part);
7490       if (In == 0)
7491         Entry[Part] = In0; // Initialize with the first incoming value.
7492       else {
7493         // Select between the current value and the previous incoming edge
7494         // based on the incoming mask.
7495         Value *Cond = State.get(getMask(In), Part);
7496         Entry[Part] =
7497             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7498       }
7499     }
7500   }
7501   for (unsigned Part = 0; Part < State.UF; ++Part)
7502     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7503 }
7504 
7505 void VPInterleaveRecipe::execute(VPTransformState &State) {
7506   assert(!State.Instance && "Interleave group being replicated.");
7507   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7508 }
7509 
7510 void VPReplicateRecipe::execute(VPTransformState &State) {
7511   if (State.Instance) { // Generate a single instance.
7512     State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance,
7513                                     IsPredicated, State);
7514     // Insert scalar instance packing it into a vector.
7515     if (AlsoPack && State.VF > 1) {
7516       // If we're constructing lane 0, initialize to start from undef.
7517       if (State.Instance->Lane == 0) {
7518         Value *Undef = UndefValue::get(
7519             FixedVectorType::get(Ingredient->getType(), State.VF));
7520         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7521       }
7522       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7523     }
7524     return;
7525   }
7526 
7527   // Generate scalar instances for all VF lanes of all UF parts, unless the
7528   // instruction is uniform inwhich case generate only the first lane for each
7529   // of the UF parts.
7530   unsigned EndLane = IsUniform ? 1 : State.VF;
7531   for (unsigned Part = 0; Part < State.UF; ++Part)
7532     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7533       State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane},
7534                                       IsPredicated, State);
7535 }
7536 
7537 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7538   assert(State.Instance && "Branch on Mask works only on single instance.");
7539 
7540   unsigned Part = State.Instance->Part;
7541   unsigned Lane = State.Instance->Lane;
7542 
7543   Value *ConditionBit = nullptr;
7544   VPValue *BlockInMask = getMask();
7545   if (BlockInMask) {
7546     ConditionBit = State.get(BlockInMask, Part);
7547     if (ConditionBit->getType()->isVectorTy())
7548       ConditionBit = State.Builder.CreateExtractElement(
7549           ConditionBit, State.Builder.getInt32(Lane));
7550   } else // Block in mask is all-one.
7551     ConditionBit = State.Builder.getTrue();
7552 
7553   // Replace the temporary unreachable terminator with a new conditional branch,
7554   // whose two destinations will be set later when they are created.
7555   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7556   assert(isa<UnreachableInst>(CurrentTerminator) &&
7557          "Expected to replace unreachable terminator with conditional branch.");
7558   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7559   CondBr->setSuccessor(0, nullptr);
7560   ReplaceInstWithInst(CurrentTerminator, CondBr);
7561 }
7562 
7563 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7564   assert(State.Instance && "Predicated instruction PHI works per instance.");
7565   Instruction *ScalarPredInst = cast<Instruction>(
7566       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7567   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7568   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7569   assert(PredicatingBB && "Predicated block has no single predecessor.");
7570 
7571   // By current pack/unpack logic we need to generate only a single phi node: if
7572   // a vector value for the predicated instruction exists at this point it means
7573   // the instruction has vector users only, and a phi for the vector value is
7574   // needed. In this case the recipe of the predicated instruction is marked to
7575   // also do that packing, thereby "hoisting" the insert-element sequence.
7576   // Otherwise, a phi node for the scalar value is needed.
7577   unsigned Part = State.Instance->Part;
7578   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7579     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7580     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7581     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7582     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7583     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7584     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7585   } else {
7586     Type *PredInstType = PredInst->getType();
7587     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7588     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7589     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7590     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7591   }
7592 }
7593 
7594 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7595   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7596   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7597                                         getMask());
7598 }
7599 
7600 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7601 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7602 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7603 // for predication.
7604 static ScalarEpilogueLowering getScalarEpilogueLowering(
7605     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7606     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7607     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7608     LoopVectorizationLegality &LVL) {
7609   bool OptSize =
7610       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7611                                                      PGSOQueryType::IRPass);
7612   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7613   // don't look at hints or options, and don't request a scalar epilogue.
7614   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7615     return CM_ScalarEpilogueNotAllowedOptSize;
7616 
7617   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7618                               !PreferPredicateOverEpilog;
7619 
7620   // 2) Next, if disabling predication is requested on the command line, honour
7621   // this and request a scalar epilogue.
7622   if (PredicateOptDisabled)
7623     return CM_ScalarEpilogueAllowed;
7624 
7625   // 3) and 4) look if enabling predication is requested on the command line,
7626   // with a loop hint, or if the TTI hook indicates this is profitable, request
7627   // predication .
7628   if (PreferPredicateOverEpilog ||
7629       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7630       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7631                                         LVL.getLAI()) &&
7632        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7633     return CM_ScalarEpilogueNotNeededUsePredicate;
7634 
7635   return CM_ScalarEpilogueAllowed;
7636 }
7637 
7638 // Process the loop in the VPlan-native vectorization path. This path builds
7639 // VPlan upfront in the vectorization pipeline, which allows to apply
7640 // VPlan-to-VPlan transformations from the very beginning without modifying the
7641 // input LLVM IR.
7642 static bool processLoopInVPlanNativePath(
7643     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7644     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7645     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7646     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7647     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7648 
7649   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7650   Function *F = L->getHeader()->getParent();
7651   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7652 
7653   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7654       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7655 
7656   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7657                                 &Hints, IAI);
7658   // Use the planner for outer loop vectorization.
7659   // TODO: CM is not used at this point inside the planner. Turn CM into an
7660   // optional argument if we don't need it in the future.
7661   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7662 
7663   // Get user vectorization factor.
7664   const unsigned UserVF = Hints.getWidth();
7665 
7666   // Plan how to best vectorize, return the best VF and its cost.
7667   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7668 
7669   // If we are stress testing VPlan builds, do not attempt to generate vector
7670   // code. Masked vector code generation support will follow soon.
7671   // Also, do not attempt to vectorize if no vector code will be produced.
7672   if (VPlanBuildStressTest || EnableVPlanPredication ||
7673       VectorizationFactor::Disabled() == VF)
7674     return false;
7675 
7676   LVP.setBestPlan(VF.Width, 1);
7677 
7678   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7679                          &CM);
7680   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7681                     << L->getHeader()->getParent()->getName() << "\"\n");
7682   LVP.executePlan(LB, DT);
7683 
7684   // Mark the loop as already vectorized to avoid vectorizing again.
7685   Hints.setAlreadyVectorized();
7686 
7687   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7688   return true;
7689 }
7690 
7691 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7692     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7693                                !EnableLoopInterleaving),
7694       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7695                               !EnableLoopVectorization) {}
7696 
7697 bool LoopVectorizePass::processLoop(Loop *L) {
7698   assert((EnableVPlanNativePath || L->empty()) &&
7699          "VPlan-native path is not enabled. Only process inner loops.");
7700 
7701 #ifndef NDEBUG
7702   const std::string DebugLocStr = getDebugLocString(L);
7703 #endif /* NDEBUG */
7704 
7705   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7706                     << L->getHeader()->getParent()->getName() << "\" from "
7707                     << DebugLocStr << "\n");
7708 
7709   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7710 
7711   LLVM_DEBUG(
7712       dbgs() << "LV: Loop hints:"
7713              << " force="
7714              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7715                      ? "disabled"
7716                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7717                             ? "enabled"
7718                             : "?"))
7719              << " width=" << Hints.getWidth()
7720              << " unroll=" << Hints.getInterleave() << "\n");
7721 
7722   // Function containing loop
7723   Function *F = L->getHeader()->getParent();
7724 
7725   // Looking at the diagnostic output is the only way to determine if a loop
7726   // was vectorized (other than looking at the IR or machine code), so it
7727   // is important to generate an optimization remark for each loop. Most of
7728   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7729   // generated as OptimizationRemark and OptimizationRemarkMissed are
7730   // less verbose reporting vectorized loops and unvectorized loops that may
7731   // benefit from vectorization, respectively.
7732 
7733   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7734     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7735     return false;
7736   }
7737 
7738   PredicatedScalarEvolution PSE(*SE, *L);
7739 
7740   // Check if it is legal to vectorize the loop.
7741   LoopVectorizationRequirements Requirements(*ORE);
7742   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7743                                 &Requirements, &Hints, DB, AC);
7744   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7745     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7746     Hints.emitRemarkWithHints();
7747     return false;
7748   }
7749 
7750   // Check the function attributes and profiles to find out if this function
7751   // should be optimized for size.
7752   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7753       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7754 
7755   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7756   // here. They may require CFG and instruction level transformations before
7757   // even evaluating whether vectorization is profitable. Since we cannot modify
7758   // the incoming IR, we need to build VPlan upfront in the vectorization
7759   // pipeline.
7760   if (!L->empty())
7761     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7762                                         ORE, BFI, PSI, Hints);
7763 
7764   assert(L->empty() && "Inner loop expected.");
7765 
7766   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7767   // count by optimizing for size, to minimize overheads.
7768   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7769   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7770     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7771                       << "This loop is worth vectorizing only if no scalar "
7772                       << "iteration overheads are incurred.");
7773     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7774       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7775     else {
7776       LLVM_DEBUG(dbgs() << "\n");
7777       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7778     }
7779   }
7780 
7781   // Check the function attributes to see if implicit floats are allowed.
7782   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7783   // an integer loop and the vector instructions selected are purely integer
7784   // vector instructions?
7785   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7786     reportVectorizationFailure(
7787         "Can't vectorize when the NoImplicitFloat attribute is used",
7788         "loop not vectorized due to NoImplicitFloat attribute",
7789         "NoImplicitFloat", ORE, L);
7790     Hints.emitRemarkWithHints();
7791     return false;
7792   }
7793 
7794   // Check if the target supports potentially unsafe FP vectorization.
7795   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7796   // for the target we're vectorizing for, to make sure none of the
7797   // additional fp-math flags can help.
7798   if (Hints.isPotentiallyUnsafe() &&
7799       TTI->isFPVectorizationPotentiallyUnsafe()) {
7800     reportVectorizationFailure(
7801         "Potentially unsafe FP op prevents vectorization",
7802         "loop not vectorized due to unsafe FP support.",
7803         "UnsafeFP", ORE, L);
7804     Hints.emitRemarkWithHints();
7805     return false;
7806   }
7807 
7808   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7809   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7810 
7811   // If an override option has been passed in for interleaved accesses, use it.
7812   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7813     UseInterleaved = EnableInterleavedMemAccesses;
7814 
7815   // Analyze interleaved memory accesses.
7816   if (UseInterleaved) {
7817     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7818   }
7819 
7820   // Use the cost model.
7821   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7822                                 F, &Hints, IAI);
7823   CM.collectValuesToIgnore();
7824 
7825   // Use the planner for vectorization.
7826   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7827 
7828   // Get user vectorization factor and interleave count.
7829   unsigned UserVF = Hints.getWidth();
7830   unsigned UserIC = Hints.getInterleave();
7831 
7832   // Plan how to best vectorize, return the best VF and its cost.
7833   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
7834 
7835   VectorizationFactor VF = VectorizationFactor::Disabled();
7836   unsigned IC = 1;
7837 
7838   if (MaybeVF) {
7839     VF = *MaybeVF;
7840     // Select the interleave count.
7841     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7842   }
7843 
7844   // Identify the diagnostic messages that should be produced.
7845   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7846   bool VectorizeLoop = true, InterleaveLoop = true;
7847   if (Requirements.doesNotMeet(F, L, Hints)) {
7848     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7849                          "requirements.\n");
7850     Hints.emitRemarkWithHints();
7851     return false;
7852   }
7853 
7854   if (VF.Width == 1) {
7855     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7856     VecDiagMsg = std::make_pair(
7857         "VectorizationNotBeneficial",
7858         "the cost-model indicates that vectorization is not beneficial");
7859     VectorizeLoop = false;
7860   }
7861 
7862   if (!MaybeVF && UserIC > 1) {
7863     // Tell the user interleaving was avoided up-front, despite being explicitly
7864     // requested.
7865     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7866                          "interleaving should be avoided up front\n");
7867     IntDiagMsg = std::make_pair(
7868         "InterleavingAvoided",
7869         "Ignoring UserIC, because interleaving was avoided up front");
7870     InterleaveLoop = false;
7871   } else if (IC == 1 && UserIC <= 1) {
7872     // Tell the user interleaving is not beneficial.
7873     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7874     IntDiagMsg = std::make_pair(
7875         "InterleavingNotBeneficial",
7876         "the cost-model indicates that interleaving is not beneficial");
7877     InterleaveLoop = false;
7878     if (UserIC == 1) {
7879       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7880       IntDiagMsg.second +=
7881           " and is explicitly disabled or interleave count is set to 1";
7882     }
7883   } else if (IC > 1 && UserIC == 1) {
7884     // Tell the user interleaving is beneficial, but it explicitly disabled.
7885     LLVM_DEBUG(
7886         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7887     IntDiagMsg = std::make_pair(
7888         "InterleavingBeneficialButDisabled",
7889         "the cost-model indicates that interleaving is beneficial "
7890         "but is explicitly disabled or interleave count is set to 1");
7891     InterleaveLoop = false;
7892   }
7893 
7894   // Override IC if user provided an interleave count.
7895   IC = UserIC > 0 ? UserIC : IC;
7896 
7897   // Emit diagnostic messages, if any.
7898   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7899   if (!VectorizeLoop && !InterleaveLoop) {
7900     // Do not vectorize or interleaving the loop.
7901     ORE->emit([&]() {
7902       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7903                                       L->getStartLoc(), L->getHeader())
7904              << VecDiagMsg.second;
7905     });
7906     ORE->emit([&]() {
7907       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7908                                       L->getStartLoc(), L->getHeader())
7909              << IntDiagMsg.second;
7910     });
7911     return false;
7912   } else if (!VectorizeLoop && InterleaveLoop) {
7913     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7914     ORE->emit([&]() {
7915       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7916                                         L->getStartLoc(), L->getHeader())
7917              << VecDiagMsg.second;
7918     });
7919   } else if (VectorizeLoop && !InterleaveLoop) {
7920     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7921                       << ") in " << DebugLocStr << '\n');
7922     ORE->emit([&]() {
7923       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7924                                         L->getStartLoc(), L->getHeader())
7925              << IntDiagMsg.second;
7926     });
7927   } else if (VectorizeLoop && InterleaveLoop) {
7928     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7929                       << ") in " << DebugLocStr << '\n');
7930     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7931   }
7932 
7933   LVP.setBestPlan(VF.Width, IC);
7934 
7935   using namespace ore;
7936   bool DisableRuntimeUnroll = false;
7937   MDNode *OrigLoopID = L->getLoopID();
7938 
7939   if (!VectorizeLoop) {
7940     assert(IC > 1 && "interleave count should not be 1 or 0");
7941     // If we decided that it is not legal to vectorize the loop, then
7942     // interleave it.
7943     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7944                                &CM);
7945     LVP.executePlan(Unroller, DT);
7946 
7947     ORE->emit([&]() {
7948       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7949                                 L->getHeader())
7950              << "interleaved loop (interleaved count: "
7951              << NV("InterleaveCount", IC) << ")";
7952     });
7953   } else {
7954     // If we decided that it is *legal* to vectorize the loop, then do it.
7955     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7956                            &LVL, &CM);
7957     LVP.executePlan(LB, DT);
7958     ++LoopsVectorized;
7959 
7960     // Add metadata to disable runtime unrolling a scalar loop when there are
7961     // no runtime checks about strides and memory. A scalar loop that is
7962     // rarely used is not worth unrolling.
7963     if (!LB.areSafetyChecksAdded())
7964       DisableRuntimeUnroll = true;
7965 
7966     // Report the vectorization decision.
7967     ORE->emit([&]() {
7968       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7969                                 L->getHeader())
7970              << "vectorized loop (vectorization width: "
7971              << NV("VectorizationFactor", VF.Width)
7972              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7973     });
7974   }
7975 
7976   Optional<MDNode *> RemainderLoopID =
7977       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7978                                       LLVMLoopVectorizeFollowupEpilogue});
7979   if (RemainderLoopID.hasValue()) {
7980     L->setLoopID(RemainderLoopID.getValue());
7981   } else {
7982     if (DisableRuntimeUnroll)
7983       AddRuntimeUnrollDisableMetaData(L);
7984 
7985     // Mark the loop as already vectorized to avoid vectorizing again.
7986     Hints.setAlreadyVectorized();
7987   }
7988 
7989   assert(!verifyFunction(*L->getHeader()->getParent()));
7990   return true;
7991 }
7992 
7993 LoopVectorizeResult LoopVectorizePass::runImpl(
7994     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7995     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7996     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7997     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7998     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7999   SE = &SE_;
8000   LI = &LI_;
8001   TTI = &TTI_;
8002   DT = &DT_;
8003   BFI = &BFI_;
8004   TLI = TLI_;
8005   AA = &AA_;
8006   AC = &AC_;
8007   GetLAA = &GetLAA_;
8008   DB = &DB_;
8009   ORE = &ORE_;
8010   PSI = PSI_;
8011 
8012   // Don't attempt if
8013   // 1. the target claims to have no vector registers, and
8014   // 2. interleaving won't help ILP.
8015   //
8016   // The second condition is necessary because, even if the target has no
8017   // vector registers, loop vectorization may still enable scalar
8018   // interleaving.
8019   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8020       TTI->getMaxInterleaveFactor(1) < 2)
8021     return LoopVectorizeResult(false, false);
8022 
8023   bool Changed = false, CFGChanged = false;
8024 
8025   // The vectorizer requires loops to be in simplified form.
8026   // Since simplification may add new inner loops, it has to run before the
8027   // legality and profitability checks. This means running the loop vectorizer
8028   // will simplify all loops, regardless of whether anything end up being
8029   // vectorized.
8030   for (auto &L : *LI)
8031     Changed |= CFGChanged |=
8032         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8033 
8034   // Build up a worklist of inner-loops to vectorize. This is necessary as
8035   // the act of vectorizing or partially unrolling a loop creates new loops
8036   // and can invalidate iterators across the loops.
8037   SmallVector<Loop *, 8> Worklist;
8038 
8039   for (Loop *L : *LI)
8040     collectSupportedLoops(*L, LI, ORE, Worklist);
8041 
8042   LoopsAnalyzed += Worklist.size();
8043 
8044   // Now walk the identified inner loops.
8045   while (!Worklist.empty()) {
8046     Loop *L = Worklist.pop_back_val();
8047 
8048     // For the inner loops we actually process, form LCSSA to simplify the
8049     // transform.
8050     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8051 
8052     Changed |= CFGChanged |= processLoop(L);
8053   }
8054 
8055   // Process each loop nest in the function.
8056   return LoopVectorizeResult(Changed, CFGChanged);
8057 }
8058 
8059 PreservedAnalyses LoopVectorizePass::run(Function &F,
8060                                          FunctionAnalysisManager &AM) {
8061     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8062     auto &LI = AM.getResult<LoopAnalysis>(F);
8063     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8064     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8065     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8066     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8067     auto &AA = AM.getResult<AAManager>(F);
8068     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8069     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8070     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8071     MemorySSA *MSSA = EnableMSSALoopDependency
8072                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8073                           : nullptr;
8074 
8075     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8076     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8077         [&](Loop &L) -> const LoopAccessInfo & {
8078       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8079       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8080     };
8081     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8082     ProfileSummaryInfo *PSI =
8083         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8084     LoopVectorizeResult Result =
8085         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8086     if (!Result.MadeAnyChange)
8087       return PreservedAnalyses::all();
8088     PreservedAnalyses PA;
8089 
8090     // We currently do not preserve loopinfo/dominator analyses with outer loop
8091     // vectorization. Until this is addressed, mark these analyses as preserved
8092     // only for non-VPlan-native path.
8093     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8094     if (!EnableVPlanNativePath) {
8095       PA.preserve<LoopAnalysis>();
8096       PA.preserve<DominatorTreeAnalysis>();
8097     }
8098     PA.preserve<BasicAA>();
8099     PA.preserve<GlobalsAA>();
8100     if (!Result.MadeCFGChange)
8101       PA.preserveSet<CFGAnalyses>();
8102     return PA;
8103 }
8104