1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, const InductionDescriptor &ID,
514                              Value *Start, TruncInst *Trunc, VPValue *Def,
515                              VPTransformState &State, Value *CanonicalIV);
516 
517   /// Construct the vector value of a scalarized value \p V one lane at a time.
518   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
519                                  VPTransformState &State);
520 
521   /// Try to vectorize interleaved access group \p Group with the base address
522   /// given in \p Addr, optionally masking the vector operations if \p
523   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
524   /// values in the vectorized loop.
525   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
526                                 ArrayRef<VPValue *> VPDefs,
527                                 VPTransformState &State, VPValue *Addr,
528                                 ArrayRef<VPValue *> StoredValues,
529                                 VPValue *BlockInMask = nullptr);
530 
531   /// Set the debug location in the builder \p Ptr using the debug location in
532   /// \p V. If \p Ptr is None then it uses the class member's Builder.
533   void setDebugLocFromInst(const Value *V,
534                            Optional<IRBuilder<> *> CustomBuilder = None);
535 
536   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
537   void fixNonInductionPHIs(VPTransformState &State);
538 
539   /// Returns true if the reordering of FP operations is not allowed, but we are
540   /// able to vectorize with strict in-order reductions for the given RdxDesc.
541   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
542 
543   /// Create a broadcast instruction. This method generates a broadcast
544   /// instruction (shuffle) for loop invariant values and for the induction
545   /// value. If this is the induction variable then we extend it to N, N+1, ...
546   /// this is needed because each iteration in the loop corresponds to a SIMD
547   /// element.
548   virtual Value *getBroadcastInstrs(Value *V);
549 
550   /// Add metadata from one instruction to another.
551   ///
552   /// This includes both the original MDs from \p From and additional ones (\see
553   /// addNewMetadata).  Use this for *newly created* instructions in the vector
554   /// loop.
555   void addMetadata(Instruction *To, Instruction *From);
556 
557   /// Similar to the previous function but it adds the metadata to a
558   /// vector of instructions.
559   void addMetadata(ArrayRef<Value *> To, Instruction *From);
560 
561 protected:
562   friend class LoopVectorizationPlanner;
563 
564   /// A small list of PHINodes.
565   using PhiVector = SmallVector<PHINode *, 4>;
566 
567   /// A type for scalarized values in the new loop. Each value from the
568   /// original loop, when scalarized, is represented by UF x VF scalar values
569   /// in the new unrolled loop, where UF is the unroll factor and VF is the
570   /// vectorization factor.
571   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
572 
573   /// Set up the values of the IVs correctly when exiting the vector loop.
574   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
575                     Value *CountRoundDown, Value *EndValue,
576                     BasicBlock *MiddleBlock);
577 
578   /// Introduce a conditional branch (on true, condition to be set later) at the
579   /// end of the header=latch connecting it to itself (across the backedge) and
580   /// to the exit block of \p L.
581   void createHeaderBranch(Loop *L);
582 
583   /// Handle all cross-iteration phis in the header.
584   void fixCrossIterationPHIs(VPTransformState &State);
585 
586   /// Create the exit value of first order recurrences in the middle block and
587   /// update their users.
588   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
589                                VPTransformState &State);
590 
591   /// Create code for the loop exit value of the reduction.
592   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
593 
594   /// Clear NSW/NUW flags from reduction instructions if necessary.
595   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
596                                VPTransformState &State);
597 
598   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
599   /// means we need to add the appropriate incoming value from the middle
600   /// block as exiting edges from the scalar epilogue loop (if present) are
601   /// already in place, and we exit the vector loop exclusively to the middle
602   /// block.
603   void fixLCSSAPHIs(VPTransformState &State);
604 
605   /// Iteratively sink the scalarized operands of a predicated instruction into
606   /// the block that was created for it.
607   void sinkScalarOperands(Instruction *PredInst);
608 
609   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
610   /// represented as.
611   void truncateToMinimalBitwidths(VPTransformState &State);
612 
613   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
614   /// variable on which to base the steps, \p Step is the size of the step, and
615   /// \p EntryVal is the value from the original loop that maps to the steps.
616   /// Note that \p EntryVal doesn't have to be an induction variable - it
617   /// can also be a truncate instruction.
618   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
619                         const InductionDescriptor &ID, VPValue *Def,
620                         VPTransformState &State);
621 
622   /// Create a vector induction phi node based on an existing scalar one. \p
623   /// EntryVal is the value from the original loop that maps to the vector phi
624   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
625   /// truncate instruction, instead of widening the original IV, we widen a
626   /// version of the IV truncated to \p EntryVal's type.
627   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
628                                        Value *Step, Value *Start,
629                                        Instruction *EntryVal, VPValue *Def,
630                                        VPTransformState &State);
631 
632   /// Returns true if an instruction \p I should be scalarized instead of
633   /// vectorized for the chosen vectorization factor.
634   bool shouldScalarizeInstruction(Instruction *I) const;
635 
636   /// Returns true if we should generate a scalar version of \p IV.
637   bool needsScalarInduction(Instruction *IV) const;
638 
639   /// Returns (and creates if needed) the original loop trip count.
640   Value *getOrCreateTripCount(Loop *NewLoop);
641 
642   /// Returns (and creates if needed) the trip count of the widened loop.
643   Value *getOrCreateVectorTripCount(Loop *NewLoop);
644 
645   /// Returns a bitcasted value to the requested vector type.
646   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
647   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
648                                 const DataLayout &DL);
649 
650   /// Emit a bypass check to see if the vector trip count is zero, including if
651   /// it overflows.
652   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
653 
654   /// Emit a bypass check to see if all of the SCEV assumptions we've
655   /// had to make are correct. Returns the block containing the checks or
656   /// nullptr if no checks have been added.
657   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
658 
659   /// Emit bypass checks to check any memory assumptions we may have made.
660   /// Returns the block containing the checks or nullptr if no checks have been
661   /// added.
662   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
663 
664   /// Compute the transformed value of Index at offset StartValue using step
665   /// StepValue.
666   /// For integer induction, returns StartValue + Index * StepValue.
667   /// For pointer induction, returns StartValue[Index * StepValue].
668   /// FIXME: The newly created binary instructions should contain nsw/nuw
669   /// flags, which can be found from the original scalar operations.
670   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
671                               const DataLayout &DL,
672                               const InductionDescriptor &ID,
673                               BasicBlock *VectorHeader) const;
674 
675   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
676   /// vector loop preheader, middle block and scalar preheader. Also
677   /// allocate a loop object for the new vector loop and return it.
678   Loop *createVectorLoopSkeleton(StringRef Prefix);
679 
680   /// Create new phi nodes for the induction variables to resume iteration count
681   /// in the scalar epilogue, from where the vectorized loop left off.
682   /// In cases where the loop skeleton is more complicated (eg. epilogue
683   /// vectorization) and the resume values can come from an additional bypass
684   /// block, the \p AdditionalBypass pair provides information about the bypass
685   /// block and the end value on the edge from bypass to this loop.
686   void createInductionResumeValues(
687       Loop *L,
688       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
689 
690   /// Complete the loop skeleton by adding debug MDs, creating appropriate
691   /// conditional branches in the middle block, preparing the builder and
692   /// running the verifier. Take in the vector loop \p L as argument, and return
693   /// the preheader of the completed vector loop.
694   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
695 
696   /// Add additional metadata to \p To that was not present on \p Orig.
697   ///
698   /// Currently this is used to add the noalias annotations based on the
699   /// inserted memchecks.  Use this for instructions that are *cloned* into the
700   /// vector loop.
701   void addNewMetadata(Instruction *To, const Instruction *Orig);
702 
703   /// Collect poison-generating recipes that may generate a poison value that is
704   /// used after vectorization, even when their operands are not poison. Those
705   /// recipes meet the following conditions:
706   ///  * Contribute to the address computation of a recipe generating a widen
707   ///    memory load/store (VPWidenMemoryInstructionRecipe or
708   ///    VPInterleaveRecipe).
709   ///  * Such a widen memory load/store has at least one underlying Instruction
710   ///    that is in a basic block that needs predication and after vectorization
711   ///    the generated instruction won't be predicated.
712   void collectPoisonGeneratingRecipes(VPTransformState &State);
713 
714   /// Allow subclasses to override and print debug traces before/after vplan
715   /// execution, when trace information is requested.
716   virtual void printDebugTracesAtStart(){};
717   virtual void printDebugTracesAtEnd(){};
718 
719   /// The original loop.
720   Loop *OrigLoop;
721 
722   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
723   /// dynamic knowledge to simplify SCEV expressions and converts them to a
724   /// more usable form.
725   PredicatedScalarEvolution &PSE;
726 
727   /// Loop Info.
728   LoopInfo *LI;
729 
730   /// Dominator Tree.
731   DominatorTree *DT;
732 
733   /// Alias Analysis.
734   AAResults *AA;
735 
736   /// Target Library Info.
737   const TargetLibraryInfo *TLI;
738 
739   /// Target Transform Info.
740   const TargetTransformInfo *TTI;
741 
742   /// Assumption Cache.
743   AssumptionCache *AC;
744 
745   /// Interface to emit optimization remarks.
746   OptimizationRemarkEmitter *ORE;
747 
748   /// LoopVersioning.  It's only set up (non-null) if memchecks were
749   /// used.
750   ///
751   /// This is currently only used to add no-alias metadata based on the
752   /// memchecks.  The actually versioning is performed manually.
753   std::unique_ptr<LoopVersioning> LVer;
754 
755   /// The vectorization SIMD factor to use. Each vector will have this many
756   /// vector elements.
757   ElementCount VF;
758 
759   /// The vectorization unroll factor to use. Each scalar is vectorized to this
760   /// many different vector instructions.
761   unsigned UF;
762 
763   /// The builder that we use
764   IRBuilder<> Builder;
765 
766   // --- Vectorization state ---
767 
768   /// The vector-loop preheader.
769   BasicBlock *LoopVectorPreHeader;
770 
771   /// The scalar-loop preheader.
772   BasicBlock *LoopScalarPreHeader;
773 
774   /// Middle Block between the vector and the scalar.
775   BasicBlock *LoopMiddleBlock;
776 
777   /// The unique ExitBlock of the scalar loop if one exists.  Note that
778   /// there can be multiple exiting edges reaching this block.
779   BasicBlock *LoopExitBlock;
780 
781   /// The vector loop body.
782   BasicBlock *LoopVectorBody;
783 
784   /// The scalar loop body.
785   BasicBlock *LoopScalarBody;
786 
787   /// A list of all bypass blocks. The first block is the entry of the loop.
788   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
789 
790   /// Store instructions that were predicated.
791   SmallVector<Instruction *, 4> PredicatedInstructions;
792 
793   /// Trip count of the original loop.
794   Value *TripCount = nullptr;
795 
796   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
797   Value *VectorTripCount = nullptr;
798 
799   /// The legality analysis.
800   LoopVectorizationLegality *Legal;
801 
802   /// The profitablity analysis.
803   LoopVectorizationCostModel *Cost;
804 
805   // Record whether runtime checks are added.
806   bool AddedSafetyChecks = false;
807 
808   // Holds the end values for each induction variable. We save the end values
809   // so we can later fix-up the external users of the induction variables.
810   DenseMap<PHINode *, Value *> IVEndValues;
811 
812   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
813   // fixed up at the end of vector code generation.
814   SmallVector<PHINode *, 8> OrigPHIsToFix;
815 
816   /// BFI and PSI are used to check for profile guided size optimizations.
817   BlockFrequencyInfo *BFI;
818   ProfileSummaryInfo *PSI;
819 
820   // Whether this loop should be optimized for size based on profile guided size
821   // optimizatios.
822   bool OptForSizeBasedOnProfile;
823 
824   /// Structure to hold information about generated runtime checks, responsible
825   /// for cleaning the checks, if vectorization turns out unprofitable.
826   GeneratedRTChecks &RTChecks;
827 };
828 
829 class InnerLoopUnroller : public InnerLoopVectorizer {
830 public:
831   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
832                     LoopInfo *LI, DominatorTree *DT,
833                     const TargetLibraryInfo *TLI,
834                     const TargetTransformInfo *TTI, AssumptionCache *AC,
835                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
836                     LoopVectorizationLegality *LVL,
837                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
838                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
839       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
840                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
841                             BFI, PSI, Check) {}
842 
843 private:
844   Value *getBroadcastInstrs(Value *V) override;
845 };
846 
847 /// Encapsulate information regarding vectorization of a loop and its epilogue.
848 /// This information is meant to be updated and used across two stages of
849 /// epilogue vectorization.
850 struct EpilogueLoopVectorizationInfo {
851   ElementCount MainLoopVF = ElementCount::getFixed(0);
852   unsigned MainLoopUF = 0;
853   ElementCount EpilogueVF = ElementCount::getFixed(0);
854   unsigned EpilogueUF = 0;
855   BasicBlock *MainLoopIterationCountCheck = nullptr;
856   BasicBlock *EpilogueIterationCountCheck = nullptr;
857   BasicBlock *SCEVSafetyCheck = nullptr;
858   BasicBlock *MemSafetyCheck = nullptr;
859   Value *TripCount = nullptr;
860   Value *VectorTripCount = nullptr;
861 
862   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
863                                 ElementCount EVF, unsigned EUF)
864       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
865     assert(EUF == 1 &&
866            "A high UF for the epilogue loop is likely not beneficial.");
867   }
868 };
869 
870 /// An extension of the inner loop vectorizer that creates a skeleton for a
871 /// vectorized loop that has its epilogue (residual) also vectorized.
872 /// The idea is to run the vplan on a given loop twice, firstly to setup the
873 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
874 /// from the first step and vectorize the epilogue.  This is achieved by
875 /// deriving two concrete strategy classes from this base class and invoking
876 /// them in succession from the loop vectorizer planner.
877 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
878 public:
879   InnerLoopAndEpilogueVectorizer(
880       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
881       DominatorTree *DT, const TargetLibraryInfo *TLI,
882       const TargetTransformInfo *TTI, AssumptionCache *AC,
883       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
884       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
885       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
886       GeneratedRTChecks &Checks)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
889                             Checks),
890         EPI(EPI) {}
891 
892   // Override this function to handle the more complex control flow around the
893   // three loops.
894   std::pair<BasicBlock *, Value *>
895   createVectorizedLoopSkeleton() final override {
896     return createEpilogueVectorizedLoopSkeleton();
897   }
898 
899   /// The interface for creating a vectorized skeleton using one of two
900   /// different strategies, each corresponding to one execution of the vplan
901   /// as described above.
902   virtual std::pair<BasicBlock *, Value *>
903   createEpilogueVectorizedLoopSkeleton() = 0;
904 
905   /// Holds and updates state information required to vectorize the main loop
906   /// and its epilogue in two separate passes. This setup helps us avoid
907   /// regenerating and recomputing runtime safety checks. It also helps us to
908   /// shorten the iteration-count-check path length for the cases where the
909   /// iteration count of the loop is so small that the main vector loop is
910   /// completely skipped.
911   EpilogueLoopVectorizationInfo &EPI;
912 };
913 
914 /// A specialized derived class of inner loop vectorizer that performs
915 /// vectorization of *main* loops in the process of vectorizing loops and their
916 /// epilogues.
917 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
918 public:
919   EpilogueVectorizerMainLoop(
920       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
921       DominatorTree *DT, const TargetLibraryInfo *TLI,
922       const TargetTransformInfo *TTI, AssumptionCache *AC,
923       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
924       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
925       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
926       GeneratedRTChecks &Check)
927       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
928                                        EPI, LVL, CM, BFI, PSI, Check) {}
929   /// Implements the interface for creating a vectorized skeleton using the
930   /// *main loop* strategy (ie the first pass of vplan execution).
931   std::pair<BasicBlock *, Value *>
932   createEpilogueVectorizedLoopSkeleton() final override;
933 
934 protected:
935   /// Emits an iteration count bypass check once for the main loop (when \p
936   /// ForEpilogue is false) and once for the epilogue loop (when \p
937   /// ForEpilogue is true).
938   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
939                                              bool ForEpilogue);
940   void printDebugTracesAtStart() override;
941   void printDebugTracesAtEnd() override;
942 };
943 
944 // A specialized derived class of inner loop vectorizer that performs
945 // vectorization of *epilogue* loops in the process of vectorizing loops and
946 // their epilogues.
947 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
948 public:
949   EpilogueVectorizerEpilogueLoop(
950       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
951       DominatorTree *DT, const TargetLibraryInfo *TLI,
952       const TargetTransformInfo *TTI, AssumptionCache *AC,
953       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
954       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
955       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
956       GeneratedRTChecks &Checks)
957       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
958                                        EPI, LVL, CM, BFI, PSI, Checks) {}
959   /// Implements the interface for creating a vectorized skeleton using the
960   /// *epilogue loop* strategy (ie the second pass of vplan execution).
961   std::pair<BasicBlock *, Value *>
962   createEpilogueVectorizedLoopSkeleton() final override;
963 
964 protected:
965   /// Emits an iteration count bypass check after the main vector loop has
966   /// finished to see if there are any iterations left to execute by either
967   /// the vector epilogue or the scalar epilogue.
968   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
969                                                       BasicBlock *Bypass,
970                                                       BasicBlock *Insert);
971   void printDebugTracesAtStart() override;
972   void printDebugTracesAtEnd() override;
973 };
974 } // end namespace llvm
975 
976 /// Look for a meaningful debug location on the instruction or it's
977 /// operands.
978 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
979   if (!I)
980     return I;
981 
982   DebugLoc Empty;
983   if (I->getDebugLoc() != Empty)
984     return I;
985 
986   for (Use &Op : I->operands()) {
987     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
988       if (OpInst->getDebugLoc() != Empty)
989         return OpInst;
990   }
991 
992   return I;
993 }
994 
995 void InnerLoopVectorizer::setDebugLocFromInst(
996     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
997   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
998   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
999     const DILocation *DIL = Inst->getDebugLoc();
1000 
1001     // When a FSDiscriminator is enabled, we don't need to add the multiply
1002     // factors to the discriminators.
1003     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1004         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1005       // FIXME: For scalable vectors, assume vscale=1.
1006       auto NewDIL =
1007           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1008       if (NewDIL)
1009         B->SetCurrentDebugLocation(NewDIL.getValue());
1010       else
1011         LLVM_DEBUG(dbgs()
1012                    << "Failed to create new discriminator: "
1013                    << DIL->getFilename() << " Line: " << DIL->getLine());
1014     } else
1015       B->SetCurrentDebugLocation(DIL);
1016   } else
1017     B->SetCurrentDebugLocation(DebugLoc());
1018 }
1019 
1020 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1021 /// is passed, the message relates to that particular instruction.
1022 #ifndef NDEBUG
1023 static void debugVectorizationMessage(const StringRef Prefix,
1024                                       const StringRef DebugMsg,
1025                                       Instruction *I) {
1026   dbgs() << "LV: " << Prefix << DebugMsg;
1027   if (I != nullptr)
1028     dbgs() << " " << *I;
1029   else
1030     dbgs() << '.';
1031   dbgs() << '\n';
1032 }
1033 #endif
1034 
1035 /// Create an analysis remark that explains why vectorization failed
1036 ///
1037 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1038 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1039 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1040 /// the location of the remark.  \return the remark object that can be
1041 /// streamed to.
1042 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1043     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1044   Value *CodeRegion = TheLoop->getHeader();
1045   DebugLoc DL = TheLoop->getStartLoc();
1046 
1047   if (I) {
1048     CodeRegion = I->getParent();
1049     // If there is no debug location attached to the instruction, revert back to
1050     // using the loop's.
1051     if (I->getDebugLoc())
1052       DL = I->getDebugLoc();
1053   }
1054 
1055   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1056 }
1057 
1058 namespace llvm {
1059 
1060 /// Return a value for Step multiplied by VF.
1061 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1062                        int64_t Step) {
1063   assert(Ty->isIntegerTy() && "Expected an integer step");
1064   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1065   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1066 }
1067 
1068 /// Return the runtime value for VF.
1069 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1070   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1071   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1072 }
1073 
1074 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1075   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1076   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1077   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1078   return B.CreateUIToFP(RuntimeVF, FTy);
1079 }
1080 
1081 void reportVectorizationFailure(const StringRef DebugMsg,
1082                                 const StringRef OREMsg, const StringRef ORETag,
1083                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1084                                 Instruction *I) {
1085   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1086   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1087   ORE->emit(
1088       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1089       << "loop not vectorized: " << OREMsg);
1090 }
1091 
1092 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1093                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1094                              Instruction *I) {
1095   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1096   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1097   ORE->emit(
1098       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1099       << Msg);
1100 }
1101 
1102 } // end namespace llvm
1103 
1104 #ifndef NDEBUG
1105 /// \return string containing a file name and a line # for the given loop.
1106 static std::string getDebugLocString(const Loop *L) {
1107   std::string Result;
1108   if (L) {
1109     raw_string_ostream OS(Result);
1110     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1111       LoopDbgLoc.print(OS);
1112     else
1113       // Just print the module name.
1114       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1115     OS.flush();
1116   }
1117   return Result;
1118 }
1119 #endif
1120 
1121 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1122                                          const Instruction *Orig) {
1123   // If the loop was versioned with memchecks, add the corresponding no-alias
1124   // metadata.
1125   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1126     LVer->annotateInstWithNoAlias(To, Orig);
1127 }
1128 
1129 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1130     VPTransformState &State) {
1131 
1132   // Collect recipes in the backward slice of `Root` that may generate a poison
1133   // value that is used after vectorization.
1134   SmallPtrSet<VPRecipeBase *, 16> Visited;
1135   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1136     SmallVector<VPRecipeBase *, 16> Worklist;
1137     Worklist.push_back(Root);
1138 
1139     // Traverse the backward slice of Root through its use-def chain.
1140     while (!Worklist.empty()) {
1141       VPRecipeBase *CurRec = Worklist.back();
1142       Worklist.pop_back();
1143 
1144       if (!Visited.insert(CurRec).second)
1145         continue;
1146 
1147       // Prune search if we find another recipe generating a widen memory
1148       // instruction. Widen memory instructions involved in address computation
1149       // will lead to gather/scatter instructions, which don't need to be
1150       // handled.
1151       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1152           isa<VPInterleaveRecipe>(CurRec) ||
1153           isa<VPCanonicalIVPHIRecipe>(CurRec))
1154         continue;
1155 
1156       // This recipe contributes to the address computation of a widen
1157       // load/store. Collect recipe if its underlying instruction has
1158       // poison-generating flags.
1159       Instruction *Instr = CurRec->getUnderlyingInstr();
1160       if (Instr && Instr->hasPoisonGeneratingFlags())
1161         State.MayGeneratePoisonRecipes.insert(CurRec);
1162 
1163       // Add new definitions to the worklist.
1164       for (VPValue *operand : CurRec->operands())
1165         if (VPDef *OpDef = operand->getDef())
1166           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1167     }
1168   });
1169 
1170   // Traverse all the recipes in the VPlan and collect the poison-generating
1171   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1172   // VPInterleaveRecipe.
1173   auto Iter = depth_first(
1174       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1175   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1176     for (VPRecipeBase &Recipe : *VPBB) {
1177       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1178         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1179         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1180         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1181             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1182           collectPoisonGeneratingInstrsInBackwardSlice(
1183               cast<VPRecipeBase>(AddrDef));
1184       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1185         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1186         if (AddrDef) {
1187           // Check if any member of the interleave group needs predication.
1188           const InterleaveGroup<Instruction> *InterGroup =
1189               InterleaveRec->getInterleaveGroup();
1190           bool NeedPredication = false;
1191           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1192                I < NumMembers; ++I) {
1193             Instruction *Member = InterGroup->getMember(I);
1194             if (Member)
1195               NeedPredication |=
1196                   Legal->blockNeedsPredication(Member->getParent());
1197           }
1198 
1199           if (NeedPredication)
1200             collectPoisonGeneratingInstrsInBackwardSlice(
1201                 cast<VPRecipeBase>(AddrDef));
1202         }
1203       }
1204     }
1205   }
1206 }
1207 
1208 void InnerLoopVectorizer::addMetadata(Instruction *To,
1209                                       Instruction *From) {
1210   propagateMetadata(To, From);
1211   addNewMetadata(To, From);
1212 }
1213 
1214 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1215                                       Instruction *From) {
1216   for (Value *V : To) {
1217     if (Instruction *I = dyn_cast<Instruction>(V))
1218       addMetadata(I, From);
1219   }
1220 }
1221 
1222 namespace llvm {
1223 
1224 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1225 // lowered.
1226 enum ScalarEpilogueLowering {
1227 
1228   // The default: allowing scalar epilogues.
1229   CM_ScalarEpilogueAllowed,
1230 
1231   // Vectorization with OptForSize: don't allow epilogues.
1232   CM_ScalarEpilogueNotAllowedOptSize,
1233 
1234   // A special case of vectorisation with OptForSize: loops with a very small
1235   // trip count are considered for vectorization under OptForSize, thereby
1236   // making sure the cost of their loop body is dominant, free of runtime
1237   // guards and scalar iteration overheads.
1238   CM_ScalarEpilogueNotAllowedLowTripLoop,
1239 
1240   // Loop hint predicate indicating an epilogue is undesired.
1241   CM_ScalarEpilogueNotNeededUsePredicate,
1242 
1243   // Directive indicating we must either tail fold or not vectorize
1244   CM_ScalarEpilogueNotAllowedUsePredicate
1245 };
1246 
1247 /// ElementCountComparator creates a total ordering for ElementCount
1248 /// for the purposes of using it in a set structure.
1249 struct ElementCountComparator {
1250   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1251     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1252            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1253   }
1254 };
1255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1256 
1257 /// LoopVectorizationCostModel - estimates the expected speedups due to
1258 /// vectorization.
1259 /// In many cases vectorization is not profitable. This can happen because of
1260 /// a number of reasons. In this class we mainly attempt to predict the
1261 /// expected speedup/slowdowns due to the supported instruction set. We use the
1262 /// TargetTransformInfo to query the different backends for the cost of
1263 /// different operations.
1264 class LoopVectorizationCostModel {
1265 public:
1266   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1267                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1268                              LoopVectorizationLegality *Legal,
1269                              const TargetTransformInfo &TTI,
1270                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1271                              AssumptionCache *AC,
1272                              OptimizationRemarkEmitter *ORE, const Function *F,
1273                              const LoopVectorizeHints *Hints,
1274                              InterleavedAccessInfo &IAI)
1275       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1276         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1277         Hints(Hints), InterleaveInfo(IAI) {}
1278 
1279   /// \return An upper bound for the vectorization factors (both fixed and
1280   /// scalable). If the factors are 0, vectorization and interleaving should be
1281   /// avoided up front.
1282   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1283 
1284   /// \return True if runtime checks are required for vectorization, and false
1285   /// otherwise.
1286   bool runtimeChecksRequired();
1287 
1288   /// \return The most profitable vectorization factor and the cost of that VF.
1289   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1290   /// then this vectorization factor will be selected if vectorization is
1291   /// possible.
1292   VectorizationFactor
1293   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1294 
1295   VectorizationFactor
1296   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1297                                     const LoopVectorizationPlanner &LVP);
1298 
1299   /// Setup cost-based decisions for user vectorization factor.
1300   /// \return true if the UserVF is a feasible VF to be chosen.
1301   bool selectUserVectorizationFactor(ElementCount UserVF) {
1302     collectUniformsAndScalars(UserVF);
1303     collectInstsToScalarize(UserVF);
1304     return expectedCost(UserVF).first.isValid();
1305   }
1306 
1307   /// \return The size (in bits) of the smallest and widest types in the code
1308   /// that needs to be vectorized. We ignore values that remain scalar such as
1309   /// 64 bit loop indices.
1310   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1311 
1312   /// \return The desired interleave count.
1313   /// If interleave count has been specified by metadata it will be returned.
1314   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1315   /// are the selected vectorization factor and the cost of the selected VF.
1316   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1317 
1318   /// Memory access instruction may be vectorized in more than one way.
1319   /// Form of instruction after vectorization depends on cost.
1320   /// This function takes cost-based decisions for Load/Store instructions
1321   /// and collects them in a map. This decisions map is used for building
1322   /// the lists of loop-uniform and loop-scalar instructions.
1323   /// The calculated cost is saved with widening decision in order to
1324   /// avoid redundant calculations.
1325   void setCostBasedWideningDecision(ElementCount VF);
1326 
1327   /// A struct that represents some properties of the register usage
1328   /// of a loop.
1329   struct RegisterUsage {
1330     /// Holds the number of loop invariant values that are used in the loop.
1331     /// The key is ClassID of target-provided register class.
1332     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1333     /// Holds the maximum number of concurrent live intervals in the loop.
1334     /// The key is ClassID of target-provided register class.
1335     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1336   };
1337 
1338   /// \return Returns information about the register usages of the loop for the
1339   /// given vectorization factors.
1340   SmallVector<RegisterUsage, 8>
1341   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1342 
1343   /// Collect values we want to ignore in the cost model.
1344   void collectValuesToIgnore();
1345 
1346   /// Collect all element types in the loop for which widening is needed.
1347   void collectElementTypesForWidening();
1348 
1349   /// Split reductions into those that happen in the loop, and those that happen
1350   /// outside. In loop reductions are collected into InLoopReductionChains.
1351   void collectInLoopReductions();
1352 
1353   /// Returns true if we should use strict in-order reductions for the given
1354   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1355   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1356   /// of FP operations.
1357   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1358     return !Hints->allowReordering() && RdxDesc.isOrdered();
1359   }
1360 
1361   /// \returns The smallest bitwidth each instruction can be represented with.
1362   /// The vector equivalents of these instructions should be truncated to this
1363   /// type.
1364   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1365     return MinBWs;
1366   }
1367 
1368   /// \returns True if it is more profitable to scalarize instruction \p I for
1369   /// vectorization factor \p VF.
1370   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1371     assert(VF.isVector() &&
1372            "Profitable to scalarize relevant only for VF > 1.");
1373 
1374     // Cost model is not run in the VPlan-native path - return conservative
1375     // result until this changes.
1376     if (EnableVPlanNativePath)
1377       return false;
1378 
1379     auto Scalars = InstsToScalarize.find(VF);
1380     assert(Scalars != InstsToScalarize.end() &&
1381            "VF not yet analyzed for scalarization profitability");
1382     return Scalars->second.find(I) != Scalars->second.end();
1383   }
1384 
1385   /// Returns true if \p I is known to be uniform after vectorization.
1386   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1387     if (VF.isScalar())
1388       return true;
1389 
1390     // Cost model is not run in the VPlan-native path - return conservative
1391     // result until this changes.
1392     if (EnableVPlanNativePath)
1393       return false;
1394 
1395     auto UniformsPerVF = Uniforms.find(VF);
1396     assert(UniformsPerVF != Uniforms.end() &&
1397            "VF not yet analyzed for uniformity");
1398     return UniformsPerVF->second.count(I);
1399   }
1400 
1401   /// Returns true if \p I is known to be scalar after vectorization.
1402   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1403     if (VF.isScalar())
1404       return true;
1405 
1406     // Cost model is not run in the VPlan-native path - return conservative
1407     // result until this changes.
1408     if (EnableVPlanNativePath)
1409       return false;
1410 
1411     auto ScalarsPerVF = Scalars.find(VF);
1412     assert(ScalarsPerVF != Scalars.end() &&
1413            "Scalar values are not calculated for VF");
1414     return ScalarsPerVF->second.count(I);
1415   }
1416 
1417   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1418   /// for vectorization factor \p VF.
1419   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1420     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1421            !isProfitableToScalarize(I, VF) &&
1422            !isScalarAfterVectorization(I, VF);
1423   }
1424 
1425   /// Decision that was taken during cost calculation for memory instruction.
1426   enum InstWidening {
1427     CM_Unknown,
1428     CM_Widen,         // For consecutive accesses with stride +1.
1429     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1430     CM_Interleave,
1431     CM_GatherScatter,
1432     CM_Scalarize
1433   };
1434 
1435   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1436   /// instruction \p I and vector width \p VF.
1437   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1438                            InstructionCost Cost) {
1439     assert(VF.isVector() && "Expected VF >=2");
1440     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1441   }
1442 
1443   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1444   /// interleaving group \p Grp and vector width \p VF.
1445   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1446                            ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     /// Broadcast this decicion to all instructions inside the group.
1450     /// But the cost will be assigned to one instruction only.
1451     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1452       if (auto *I = Grp->getMember(i)) {
1453         if (Grp->getInsertPos() == I)
1454           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1455         else
1456           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1457       }
1458     }
1459   }
1460 
1461   /// Return the cost model decision for the given instruction \p I and vector
1462   /// width \p VF. Return CM_Unknown if this instruction did not pass
1463   /// through the cost modeling.
1464   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1465     assert(VF.isVector() && "Expected VF to be a vector VF");
1466     // Cost model is not run in the VPlan-native path - return conservative
1467     // result until this changes.
1468     if (EnableVPlanNativePath)
1469       return CM_GatherScatter;
1470 
1471     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1472     auto Itr = WideningDecisions.find(InstOnVF);
1473     if (Itr == WideningDecisions.end())
1474       return CM_Unknown;
1475     return Itr->second.first;
1476   }
1477 
1478   /// Return the vectorization cost for the given instruction \p I and vector
1479   /// width \p VF.
1480   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1481     assert(VF.isVector() && "Expected VF >=2");
1482     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1483     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1484            "The cost is not calculated");
1485     return WideningDecisions[InstOnVF].second;
1486   }
1487 
1488   /// Return True if instruction \p I is an optimizable truncate whose operand
1489   /// is an induction variable. Such a truncate will be removed by adding a new
1490   /// induction variable with the destination type.
1491   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1492     // If the instruction is not a truncate, return false.
1493     auto *Trunc = dyn_cast<TruncInst>(I);
1494     if (!Trunc)
1495       return false;
1496 
1497     // Get the source and destination types of the truncate.
1498     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1499     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1500 
1501     // If the truncate is free for the given types, return false. Replacing a
1502     // free truncate with an induction variable would add an induction variable
1503     // update instruction to each iteration of the loop. We exclude from this
1504     // check the primary induction variable since it will need an update
1505     // instruction regardless.
1506     Value *Op = Trunc->getOperand(0);
1507     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1508       return false;
1509 
1510     // If the truncated value is not an induction variable, return false.
1511     return Legal->isInductionPhi(Op);
1512   }
1513 
1514   /// Collects the instructions to scalarize for each predicated instruction in
1515   /// the loop.
1516   void collectInstsToScalarize(ElementCount VF);
1517 
1518   /// Collect Uniform and Scalar values for the given \p VF.
1519   /// The sets depend on CM decision for Load/Store instructions
1520   /// that may be vectorized as interleave, gather-scatter or scalarized.
1521   void collectUniformsAndScalars(ElementCount VF) {
1522     // Do the analysis once.
1523     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1524       return;
1525     setCostBasedWideningDecision(VF);
1526     collectLoopUniforms(VF);
1527     collectLoopScalars(VF);
1528   }
1529 
1530   /// Returns true if the target machine supports masked store operation
1531   /// for the given \p DataType and kind of access to \p Ptr.
1532   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1533     return Legal->isConsecutivePtr(DataType, Ptr) &&
1534            TTI.isLegalMaskedStore(DataType, Alignment);
1535   }
1536 
1537   /// Returns true if the target machine supports masked load operation
1538   /// for the given \p DataType and kind of access to \p Ptr.
1539   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1540     return Legal->isConsecutivePtr(DataType, Ptr) &&
1541            TTI.isLegalMaskedLoad(DataType, Alignment);
1542   }
1543 
1544   /// Returns true if the target machine can represent \p V as a masked gather
1545   /// or scatter operation.
1546   bool isLegalGatherOrScatter(Value *V) {
1547     bool LI = isa<LoadInst>(V);
1548     bool SI = isa<StoreInst>(V);
1549     if (!LI && !SI)
1550       return false;
1551     auto *Ty = getLoadStoreType(V);
1552     Align Align = getLoadStoreAlignment(V);
1553     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1554            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1555   }
1556 
1557   /// Returns true if the target machine supports all of the reduction
1558   /// variables found for the given VF.
1559   bool canVectorizeReductions(ElementCount VF) const {
1560     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1561       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1562       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1563     }));
1564   }
1565 
1566   /// Returns true if \p I is an instruction that will be scalarized with
1567   /// predication. Such instructions include conditional stores and
1568   /// instructions that may divide by zero.
1569   /// If a non-zero VF has been calculated, we check if I will be scalarized
1570   /// predication for that VF.
1571   bool isScalarWithPredication(Instruction *I) const;
1572 
1573   // Returns true if \p I is an instruction that will be predicated either
1574   // through scalar predication or masked load/store or masked gather/scatter.
1575   // Superset of instructions that return true for isScalarWithPredication.
1576   bool isPredicatedInst(Instruction *I, bool IsKnownUniform = false) {
1577     // When we know the load is uniform and the original scalar loop was not
1578     // predicated we don't need to mark it as a predicated instruction. Any
1579     // vectorised blocks created when tail-folding are something artificial we
1580     // have introduced and we know there is always at least one active lane.
1581     // That's why we call Legal->blockNeedsPredication here because it doesn't
1582     // query tail-folding.
1583     if (IsKnownUniform && isa<LoadInst>(I) &&
1584         !Legal->blockNeedsPredication(I->getParent()))
1585       return false;
1586     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1587       return false;
1588     // Loads and stores that need some form of masked operation are predicated
1589     // instructions.
1590     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1591       return Legal->isMaskRequired(I);
1592     return isScalarWithPredication(I);
1593   }
1594 
1595   /// Returns true if \p I is a memory instruction with consecutive memory
1596   /// access that can be widened.
1597   bool
1598   memoryInstructionCanBeWidened(Instruction *I,
1599                                 ElementCount VF = ElementCount::getFixed(1));
1600 
1601   /// Returns true if \p I is a memory instruction in an interleaved-group
1602   /// of memory accesses that can be vectorized with wide vector loads/stores
1603   /// and shuffles.
1604   bool
1605   interleavedAccessCanBeWidened(Instruction *I,
1606                                 ElementCount VF = ElementCount::getFixed(1));
1607 
1608   /// Check if \p Instr belongs to any interleaved access group.
1609   bool isAccessInterleaved(Instruction *Instr) {
1610     return InterleaveInfo.isInterleaved(Instr);
1611   }
1612 
1613   /// Get the interleaved access group that \p Instr belongs to.
1614   const InterleaveGroup<Instruction> *
1615   getInterleavedAccessGroup(Instruction *Instr) {
1616     return InterleaveInfo.getInterleaveGroup(Instr);
1617   }
1618 
1619   /// Returns true if we're required to use a scalar epilogue for at least
1620   /// the final iteration of the original loop.
1621   bool requiresScalarEpilogue(ElementCount VF) const {
1622     if (!isScalarEpilogueAllowed())
1623       return false;
1624     // If we might exit from anywhere but the latch, must run the exiting
1625     // iteration in scalar form.
1626     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1627       return true;
1628     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1629   }
1630 
1631   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1632   /// loop hint annotation.
1633   bool isScalarEpilogueAllowed() const {
1634     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1635   }
1636 
1637   /// Returns true if all loop blocks should be masked to fold tail loop.
1638   bool foldTailByMasking() const { return FoldTailByMasking; }
1639 
1640   /// Returns true if the instructions in this block requires predication
1641   /// for any reason, e.g. because tail folding now requires a predicate
1642   /// or because the block in the original loop was predicated.
1643   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1644     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1645   }
1646 
1647   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1648   /// nodes to the chain of instructions representing the reductions. Uses a
1649   /// MapVector to ensure deterministic iteration order.
1650   using ReductionChainMap =
1651       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1652 
1653   /// Return the chain of instructions representing an inloop reduction.
1654   const ReductionChainMap &getInLoopReductionChains() const {
1655     return InLoopReductionChains;
1656   }
1657 
1658   /// Returns true if the Phi is part of an inloop reduction.
1659   bool isInLoopReduction(PHINode *Phi) const {
1660     return InLoopReductionChains.count(Phi);
1661   }
1662 
1663   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1664   /// with factor VF.  Return the cost of the instruction, including
1665   /// scalarization overhead if it's needed.
1666   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1667 
1668   /// Estimate cost of a call instruction CI if it were vectorized with factor
1669   /// VF. Return the cost of the instruction, including scalarization overhead
1670   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1671   /// scalarized -
1672   /// i.e. either vector version isn't available, or is too expensive.
1673   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1674                                     bool &NeedToScalarize) const;
1675 
1676   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1677   /// that of B.
1678   bool isMoreProfitable(const VectorizationFactor &A,
1679                         const VectorizationFactor &B) const;
1680 
1681   /// Invalidates decisions already taken by the cost model.
1682   void invalidateCostModelingDecisions() {
1683     WideningDecisions.clear();
1684     Uniforms.clear();
1685     Scalars.clear();
1686   }
1687 
1688 private:
1689   unsigned NumPredStores = 0;
1690 
1691   /// \return An upper bound for the vectorization factors for both
1692   /// fixed and scalable vectorization, where the minimum-known number of
1693   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1694   /// disabled or unsupported, then the scalable part will be equal to
1695   /// ElementCount::getScalable(0).
1696   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1697                                            ElementCount UserVF,
1698                                            bool FoldTailByMasking);
1699 
1700   /// \return the maximized element count based on the targets vector
1701   /// registers and the loop trip-count, but limited to a maximum safe VF.
1702   /// This is a helper function of computeFeasibleMaxVF.
1703   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1704   /// issue that occurred on one of the buildbots which cannot be reproduced
1705   /// without having access to the properietary compiler (see comments on
1706   /// D98509). The issue is currently under investigation and this workaround
1707   /// will be removed as soon as possible.
1708   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1709                                        unsigned SmallestType,
1710                                        unsigned WidestType,
1711                                        const ElementCount &MaxSafeVF,
1712                                        bool FoldTailByMasking);
1713 
1714   /// \return the maximum legal scalable VF, based on the safe max number
1715   /// of elements.
1716   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1717 
1718   /// The vectorization cost is a combination of the cost itself and a boolean
1719   /// indicating whether any of the contributing operations will actually
1720   /// operate on vector values after type legalization in the backend. If this
1721   /// latter value is false, then all operations will be scalarized (i.e. no
1722   /// vectorization has actually taken place).
1723   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1724 
1725   /// Returns the expected execution cost. The unit of the cost does
1726   /// not matter because we use the 'cost' units to compare different
1727   /// vector widths. The cost that is returned is *not* normalized by
1728   /// the factor width. If \p Invalid is not nullptr, this function
1729   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1730   /// each instruction that has an Invalid cost for the given VF.
1731   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1732   VectorizationCostTy
1733   expectedCost(ElementCount VF,
1734                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1735 
1736   /// Returns the execution time cost of an instruction for a given vector
1737   /// width. Vector width of one means scalar.
1738   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1739 
1740   /// The cost-computation logic from getInstructionCost which provides
1741   /// the vector type as an output parameter.
1742   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1743                                      Type *&VectorTy);
1744 
1745   /// Return the cost of instructions in an inloop reduction pattern, if I is
1746   /// part of that pattern.
1747   Optional<InstructionCost>
1748   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1749                           TTI::TargetCostKind CostKind);
1750 
1751   /// Calculate vectorization cost of memory instruction \p I.
1752   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1753 
1754   /// The cost computation for scalarized memory instruction.
1755   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1756 
1757   /// The cost computation for interleaving group of memory instructions.
1758   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1759 
1760   /// The cost computation for Gather/Scatter instruction.
1761   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1762 
1763   /// The cost computation for widening instruction \p I with consecutive
1764   /// memory access.
1765   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1766 
1767   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1768   /// Load: scalar load + broadcast.
1769   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1770   /// element)
1771   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1772 
1773   /// Estimate the overhead of scalarizing an instruction. This is a
1774   /// convenience wrapper for the type-based getScalarizationOverhead API.
1775   InstructionCost getScalarizationOverhead(Instruction *I,
1776                                            ElementCount VF) const;
1777 
1778   /// Returns whether the instruction is a load or store and will be a emitted
1779   /// as a vector operation.
1780   bool isConsecutiveLoadOrStore(Instruction *I);
1781 
1782   /// Returns true if an artificially high cost for emulated masked memrefs
1783   /// should be used.
1784   bool useEmulatedMaskMemRefHack(Instruction *I);
1785 
1786   /// Map of scalar integer values to the smallest bitwidth they can be legally
1787   /// represented as. The vector equivalents of these values should be truncated
1788   /// to this type.
1789   MapVector<Instruction *, uint64_t> MinBWs;
1790 
1791   /// A type representing the costs for instructions if they were to be
1792   /// scalarized rather than vectorized. The entries are Instruction-Cost
1793   /// pairs.
1794   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1795 
1796   /// A set containing all BasicBlocks that are known to present after
1797   /// vectorization as a predicated block.
1798   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1799 
1800   /// Records whether it is allowed to have the original scalar loop execute at
1801   /// least once. This may be needed as a fallback loop in case runtime
1802   /// aliasing/dependence checks fail, or to handle the tail/remainder
1803   /// iterations when the trip count is unknown or doesn't divide by the VF,
1804   /// or as a peel-loop to handle gaps in interleave-groups.
1805   /// Under optsize and when the trip count is very small we don't allow any
1806   /// iterations to execute in the scalar loop.
1807   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1808 
1809   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1810   bool FoldTailByMasking = false;
1811 
1812   /// A map holding scalar costs for different vectorization factors. The
1813   /// presence of a cost for an instruction in the mapping indicates that the
1814   /// instruction will be scalarized when vectorizing with the associated
1815   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1816   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1817 
1818   /// Holds the instructions known to be uniform after vectorization.
1819   /// The data is collected per VF.
1820   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1821 
1822   /// Holds the instructions known to be scalar after vectorization.
1823   /// The data is collected per VF.
1824   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1825 
1826   /// Holds the instructions (address computations) that are forced to be
1827   /// scalarized.
1828   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1829 
1830   /// PHINodes of the reductions that should be expanded in-loop along with
1831   /// their associated chains of reduction operations, in program order from top
1832   /// (PHI) to bottom
1833   ReductionChainMap InLoopReductionChains;
1834 
1835   /// A Map of inloop reduction operations and their immediate chain operand.
1836   /// FIXME: This can be removed once reductions can be costed correctly in
1837   /// vplan. This was added to allow quick lookup to the inloop operations,
1838   /// without having to loop through InLoopReductionChains.
1839   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1840 
1841   /// Returns the expected difference in cost from scalarizing the expression
1842   /// feeding a predicated instruction \p PredInst. The instructions to
1843   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1844   /// non-negative return value implies the expression will be scalarized.
1845   /// Currently, only single-use chains are considered for scalarization.
1846   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1847                               ElementCount VF);
1848 
1849   /// Collect the instructions that are uniform after vectorization. An
1850   /// instruction is uniform if we represent it with a single scalar value in
1851   /// the vectorized loop corresponding to each vector iteration. Examples of
1852   /// uniform instructions include pointer operands of consecutive or
1853   /// interleaved memory accesses. Note that although uniformity implies an
1854   /// instruction will be scalar, the reverse is not true. In general, a
1855   /// scalarized instruction will be represented by VF scalar values in the
1856   /// vectorized loop, each corresponding to an iteration of the original
1857   /// scalar loop.
1858   void collectLoopUniforms(ElementCount VF);
1859 
1860   /// Collect the instructions that are scalar after vectorization. An
1861   /// instruction is scalar if it is known to be uniform or will be scalarized
1862   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1863   /// to the list if they are used by a load/store instruction that is marked as
1864   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1865   /// VF values in the vectorized loop, each corresponding to an iteration of
1866   /// the original scalar loop.
1867   void collectLoopScalars(ElementCount VF);
1868 
1869   /// Keeps cost model vectorization decision and cost for instructions.
1870   /// Right now it is used for memory instructions only.
1871   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1872                                 std::pair<InstWidening, InstructionCost>>;
1873 
1874   DecisionList WideningDecisions;
1875 
1876   /// Returns true if \p V is expected to be vectorized and it needs to be
1877   /// extracted.
1878   bool needsExtract(Value *V, ElementCount VF) const {
1879     Instruction *I = dyn_cast<Instruction>(V);
1880     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1881         TheLoop->isLoopInvariant(I))
1882       return false;
1883 
1884     // Assume we can vectorize V (and hence we need extraction) if the
1885     // scalars are not computed yet. This can happen, because it is called
1886     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1887     // the scalars are collected. That should be a safe assumption in most
1888     // cases, because we check if the operands have vectorizable types
1889     // beforehand in LoopVectorizationLegality.
1890     return Scalars.find(VF) == Scalars.end() ||
1891            !isScalarAfterVectorization(I, VF);
1892   };
1893 
1894   /// Returns a range containing only operands needing to be extracted.
1895   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1896                                                    ElementCount VF) const {
1897     return SmallVector<Value *, 4>(make_filter_range(
1898         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1899   }
1900 
1901   /// Determines if we have the infrastructure to vectorize loop \p L and its
1902   /// epilogue, assuming the main loop is vectorized by \p VF.
1903   bool isCandidateForEpilogueVectorization(const Loop &L,
1904                                            const ElementCount VF) const;
1905 
1906   /// Returns true if epilogue vectorization is considered profitable, and
1907   /// false otherwise.
1908   /// \p VF is the vectorization factor chosen for the original loop.
1909   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1910 
1911 public:
1912   /// The loop that we evaluate.
1913   Loop *TheLoop;
1914 
1915   /// Predicated scalar evolution analysis.
1916   PredicatedScalarEvolution &PSE;
1917 
1918   /// Loop Info analysis.
1919   LoopInfo *LI;
1920 
1921   /// Vectorization legality.
1922   LoopVectorizationLegality *Legal;
1923 
1924   /// Vector target information.
1925   const TargetTransformInfo &TTI;
1926 
1927   /// Target Library Info.
1928   const TargetLibraryInfo *TLI;
1929 
1930   /// Demanded bits analysis.
1931   DemandedBits *DB;
1932 
1933   /// Assumption cache.
1934   AssumptionCache *AC;
1935 
1936   /// Interface to emit optimization remarks.
1937   OptimizationRemarkEmitter *ORE;
1938 
1939   const Function *TheFunction;
1940 
1941   /// Loop Vectorize Hint.
1942   const LoopVectorizeHints *Hints;
1943 
1944   /// The interleave access information contains groups of interleaved accesses
1945   /// with the same stride and close to each other.
1946   InterleavedAccessInfo &InterleaveInfo;
1947 
1948   /// Values to ignore in the cost model.
1949   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1950 
1951   /// Values to ignore in the cost model when VF > 1.
1952   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1953 
1954   /// All element types found in the loop.
1955   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1956 
1957   /// Profitable vector factors.
1958   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1959 };
1960 } // end namespace llvm
1961 
1962 /// Helper struct to manage generating runtime checks for vectorization.
1963 ///
1964 /// The runtime checks are created up-front in temporary blocks to allow better
1965 /// estimating the cost and un-linked from the existing IR. After deciding to
1966 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1967 /// temporary blocks are completely removed.
1968 class GeneratedRTChecks {
1969   /// Basic block which contains the generated SCEV checks, if any.
1970   BasicBlock *SCEVCheckBlock = nullptr;
1971 
1972   /// The value representing the result of the generated SCEV checks. If it is
1973   /// nullptr, either no SCEV checks have been generated or they have been used.
1974   Value *SCEVCheckCond = nullptr;
1975 
1976   /// Basic block which contains the generated memory runtime checks, if any.
1977   BasicBlock *MemCheckBlock = nullptr;
1978 
1979   /// The value representing the result of the generated memory runtime checks.
1980   /// If it is nullptr, either no memory runtime checks have been generated or
1981   /// they have been used.
1982   Value *MemRuntimeCheckCond = nullptr;
1983 
1984   DominatorTree *DT;
1985   LoopInfo *LI;
1986 
1987   SCEVExpander SCEVExp;
1988   SCEVExpander MemCheckExp;
1989 
1990 public:
1991   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1992                     const DataLayout &DL)
1993       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1994         MemCheckExp(SE, DL, "scev.check") {}
1995 
1996   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1997   /// accurately estimate the cost of the runtime checks. The blocks are
1998   /// un-linked from the IR and is added back during vector code generation. If
1999   /// there is no vector code generation, the check blocks are removed
2000   /// completely.
2001   void Create(Loop *L, const LoopAccessInfo &LAI,
2002               const SCEVUnionPredicate &UnionPred) {
2003 
2004     BasicBlock *LoopHeader = L->getHeader();
2005     BasicBlock *Preheader = L->getLoopPreheader();
2006 
2007     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2008     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2009     // may be used by SCEVExpander. The blocks will be un-linked from their
2010     // predecessors and removed from LI & DT at the end of the function.
2011     if (!UnionPred.isAlwaysTrue()) {
2012       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2013                                   nullptr, "vector.scevcheck");
2014 
2015       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2016           &UnionPred, SCEVCheckBlock->getTerminator());
2017     }
2018 
2019     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2020     if (RtPtrChecking.Need) {
2021       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2022       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2023                                  "vector.memcheck");
2024 
2025       MemRuntimeCheckCond =
2026           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2027                            RtPtrChecking.getChecks(), MemCheckExp);
2028       assert(MemRuntimeCheckCond &&
2029              "no RT checks generated although RtPtrChecking "
2030              "claimed checks are required");
2031     }
2032 
2033     if (!MemCheckBlock && !SCEVCheckBlock)
2034       return;
2035 
2036     // Unhook the temporary block with the checks, update various places
2037     // accordingly.
2038     if (SCEVCheckBlock)
2039       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2040     if (MemCheckBlock)
2041       MemCheckBlock->replaceAllUsesWith(Preheader);
2042 
2043     if (SCEVCheckBlock) {
2044       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2045       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2046       Preheader->getTerminator()->eraseFromParent();
2047     }
2048     if (MemCheckBlock) {
2049       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2050       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2051       Preheader->getTerminator()->eraseFromParent();
2052     }
2053 
2054     DT->changeImmediateDominator(LoopHeader, Preheader);
2055     if (MemCheckBlock) {
2056       DT->eraseNode(MemCheckBlock);
2057       LI->removeBlock(MemCheckBlock);
2058     }
2059     if (SCEVCheckBlock) {
2060       DT->eraseNode(SCEVCheckBlock);
2061       LI->removeBlock(SCEVCheckBlock);
2062     }
2063   }
2064 
2065   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2066   /// unused.
2067   ~GeneratedRTChecks() {
2068     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2069     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2070     if (!SCEVCheckCond)
2071       SCEVCleaner.markResultUsed();
2072 
2073     if (!MemRuntimeCheckCond)
2074       MemCheckCleaner.markResultUsed();
2075 
2076     if (MemRuntimeCheckCond) {
2077       auto &SE = *MemCheckExp.getSE();
2078       // Memory runtime check generation creates compares that use expanded
2079       // values. Remove them before running the SCEVExpanderCleaners.
2080       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2081         if (MemCheckExp.isInsertedInstruction(&I))
2082           continue;
2083         SE.forgetValue(&I);
2084         I.eraseFromParent();
2085       }
2086     }
2087     MemCheckCleaner.cleanup();
2088     SCEVCleaner.cleanup();
2089 
2090     if (SCEVCheckCond)
2091       SCEVCheckBlock->eraseFromParent();
2092     if (MemRuntimeCheckCond)
2093       MemCheckBlock->eraseFromParent();
2094   }
2095 
2096   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2097   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2098   /// depending on the generated condition.
2099   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2100                              BasicBlock *LoopVectorPreHeader,
2101                              BasicBlock *LoopExitBlock) {
2102     if (!SCEVCheckCond)
2103       return nullptr;
2104     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2105       if (C->isZero())
2106         return nullptr;
2107 
2108     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2109 
2110     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2111     // Create new preheader for vector loop.
2112     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2113       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2114 
2115     SCEVCheckBlock->getTerminator()->eraseFromParent();
2116     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2117     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2118                                                 SCEVCheckBlock);
2119 
2120     DT->addNewBlock(SCEVCheckBlock, Pred);
2121     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2122 
2123     ReplaceInstWithInst(
2124         SCEVCheckBlock->getTerminator(),
2125         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2126     // Mark the check as used, to prevent it from being removed during cleanup.
2127     SCEVCheckCond = nullptr;
2128     return SCEVCheckBlock;
2129   }
2130 
2131   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2132   /// the branches to branch to the vector preheader or \p Bypass, depending on
2133   /// the generated condition.
2134   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2135                                    BasicBlock *LoopVectorPreHeader) {
2136     // Check if we generated code that checks in runtime if arrays overlap.
2137     if (!MemRuntimeCheckCond)
2138       return nullptr;
2139 
2140     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2141     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2142                                                 MemCheckBlock);
2143 
2144     DT->addNewBlock(MemCheckBlock, Pred);
2145     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2146     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2147 
2148     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2149       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2150 
2151     ReplaceInstWithInst(
2152         MemCheckBlock->getTerminator(),
2153         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2154     MemCheckBlock->getTerminator()->setDebugLoc(
2155         Pred->getTerminator()->getDebugLoc());
2156 
2157     // Mark the check as used, to prevent it from being removed during cleanup.
2158     MemRuntimeCheckCond = nullptr;
2159     return MemCheckBlock;
2160   }
2161 };
2162 
2163 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2164 // vectorization. The loop needs to be annotated with #pragma omp simd
2165 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2166 // vector length information is not provided, vectorization is not considered
2167 // explicit. Interleave hints are not allowed either. These limitations will be
2168 // relaxed in the future.
2169 // Please, note that we are currently forced to abuse the pragma 'clang
2170 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2171 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2172 // provides *explicit vectorization hints* (LV can bypass legal checks and
2173 // assume that vectorization is legal). However, both hints are implemented
2174 // using the same metadata (llvm.loop.vectorize, processed by
2175 // LoopVectorizeHints). This will be fixed in the future when the native IR
2176 // representation for pragma 'omp simd' is introduced.
2177 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2178                                    OptimizationRemarkEmitter *ORE) {
2179   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2180   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2181 
2182   // Only outer loops with an explicit vectorization hint are supported.
2183   // Unannotated outer loops are ignored.
2184   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2185     return false;
2186 
2187   Function *Fn = OuterLp->getHeader()->getParent();
2188   if (!Hints.allowVectorization(Fn, OuterLp,
2189                                 true /*VectorizeOnlyWhenForced*/)) {
2190     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2191     return false;
2192   }
2193 
2194   if (Hints.getInterleave() > 1) {
2195     // TODO: Interleave support is future work.
2196     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2197                          "outer loops.\n");
2198     Hints.emitRemarkWithHints();
2199     return false;
2200   }
2201 
2202   return true;
2203 }
2204 
2205 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2206                                   OptimizationRemarkEmitter *ORE,
2207                                   SmallVectorImpl<Loop *> &V) {
2208   // Collect inner loops and outer loops without irreducible control flow. For
2209   // now, only collect outer loops that have explicit vectorization hints. If we
2210   // are stress testing the VPlan H-CFG construction, we collect the outermost
2211   // loop of every loop nest.
2212   if (L.isInnermost() || VPlanBuildStressTest ||
2213       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2214     LoopBlocksRPO RPOT(&L);
2215     RPOT.perform(LI);
2216     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2217       V.push_back(&L);
2218       // TODO: Collect inner loops inside marked outer loops in case
2219       // vectorization fails for the outer loop. Do not invoke
2220       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2221       // already known to be reducible. We can use an inherited attribute for
2222       // that.
2223       return;
2224     }
2225   }
2226   for (Loop *InnerL : L)
2227     collectSupportedLoops(*InnerL, LI, ORE, V);
2228 }
2229 
2230 namespace {
2231 
2232 /// The LoopVectorize Pass.
2233 struct LoopVectorize : public FunctionPass {
2234   /// Pass identification, replacement for typeid
2235   static char ID;
2236 
2237   LoopVectorizePass Impl;
2238 
2239   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2240                          bool VectorizeOnlyWhenForced = false)
2241       : FunctionPass(ID),
2242         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2243     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2244   }
2245 
2246   bool runOnFunction(Function &F) override {
2247     if (skipFunction(F))
2248       return false;
2249 
2250     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2251     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2252     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2253     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2254     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2255     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2256     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2257     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2258     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2259     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2260     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2261     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2262     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2263 
2264     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2265         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2266 
2267     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2268                         GetLAA, *ORE, PSI).MadeAnyChange;
2269   }
2270 
2271   void getAnalysisUsage(AnalysisUsage &AU) const override {
2272     AU.addRequired<AssumptionCacheTracker>();
2273     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2274     AU.addRequired<DominatorTreeWrapperPass>();
2275     AU.addRequired<LoopInfoWrapperPass>();
2276     AU.addRequired<ScalarEvolutionWrapperPass>();
2277     AU.addRequired<TargetTransformInfoWrapperPass>();
2278     AU.addRequired<AAResultsWrapperPass>();
2279     AU.addRequired<LoopAccessLegacyAnalysis>();
2280     AU.addRequired<DemandedBitsWrapperPass>();
2281     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2282     AU.addRequired<InjectTLIMappingsLegacy>();
2283 
2284     // We currently do not preserve loopinfo/dominator analyses with outer loop
2285     // vectorization. Until this is addressed, mark these analyses as preserved
2286     // only for non-VPlan-native path.
2287     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2288     if (!EnableVPlanNativePath) {
2289       AU.addPreserved<LoopInfoWrapperPass>();
2290       AU.addPreserved<DominatorTreeWrapperPass>();
2291     }
2292 
2293     AU.addPreserved<BasicAAWrapperPass>();
2294     AU.addPreserved<GlobalsAAWrapperPass>();
2295     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2296   }
2297 };
2298 
2299 } // end anonymous namespace
2300 
2301 //===----------------------------------------------------------------------===//
2302 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2303 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2304 //===----------------------------------------------------------------------===//
2305 
2306 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2307   // We need to place the broadcast of invariant variables outside the loop,
2308   // but only if it's proven safe to do so. Else, broadcast will be inside
2309   // vector loop body.
2310   Instruction *Instr = dyn_cast<Instruction>(V);
2311   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2312                      (!Instr ||
2313                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2314   // Place the code for broadcasting invariant variables in the new preheader.
2315   IRBuilder<>::InsertPointGuard Guard(Builder);
2316   if (SafeToHoist)
2317     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2318 
2319   // Broadcast the scalar into all locations in the vector.
2320   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2321 
2322   return Shuf;
2323 }
2324 
2325 /// This function adds
2326 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2327 /// to each vector element of Val. The sequence starts at StartIndex.
2328 /// \p Opcode is relevant for FP induction variable.
2329 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2330                             Instruction::BinaryOps BinOp, ElementCount VF,
2331                             IRBuilder<> &Builder) {
2332   if (VF.isScalar()) {
2333     // When unrolling and the VF is 1, we only need to add a simple scalar.
2334     Type *Ty = Val->getType();
2335     assert(!Ty->isVectorTy() && "Val must be a scalar");
2336 
2337     if (Ty->isFloatingPointTy()) {
2338       // Floating-point operations inherit FMF via the builder's flags.
2339       Value *MulOp = Builder.CreateFMul(StartIdx, Step);
2340       return Builder.CreateBinOp(BinOp, Val, MulOp);
2341     }
2342     return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step),
2343                              "induction");
2344   }
2345 
2346   // Create and check the types.
2347   auto *ValVTy = cast<VectorType>(Val->getType());
2348   ElementCount VLen = ValVTy->getElementCount();
2349 
2350   Type *STy = Val->getType()->getScalarType();
2351   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2352          "Induction Step must be an integer or FP");
2353   assert(Step->getType() == STy && "Step has wrong type");
2354 
2355   SmallVector<Constant *, 8> Indices;
2356 
2357   // Create a vector of consecutive numbers from zero to VF.
2358   VectorType *InitVecValVTy = ValVTy;
2359   Type *InitVecValSTy = STy;
2360   if (STy->isFloatingPointTy()) {
2361     InitVecValSTy =
2362         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2363     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2364   }
2365   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2366 
2367   // Splat the StartIdx
2368   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2369 
2370   if (STy->isIntegerTy()) {
2371     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2372     Step = Builder.CreateVectorSplat(VLen, Step);
2373     assert(Step->getType() == Val->getType() && "Invalid step vec");
2374     // FIXME: The newly created binary instructions should contain nsw/nuw
2375     // flags, which can be found from the original scalar operations.
2376     Step = Builder.CreateMul(InitVec, Step);
2377     return Builder.CreateAdd(Val, Step, "induction");
2378   }
2379 
2380   // Floating point induction.
2381   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2382          "Binary Opcode should be specified for FP induction");
2383   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2384   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2385 
2386   Step = Builder.CreateVectorSplat(VLen, Step);
2387   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2388   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2389 }
2390 
2391 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2392     const InductionDescriptor &II, Value *Step, Value *Start,
2393     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2394   IRBuilder<> &Builder = State.Builder;
2395   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2396          "Expected either an induction phi-node or a truncate of it!");
2397 
2398   // Construct the initial value of the vector IV in the vector loop preheader
2399   auto CurrIP = Builder.saveIP();
2400   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2401   if (isa<TruncInst>(EntryVal)) {
2402     assert(Start->getType()->isIntegerTy() &&
2403            "Truncation requires an integer type");
2404     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2405     Step = Builder.CreateTrunc(Step, TruncType);
2406     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2407   }
2408 
2409   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2410   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2411   Value *SteppedStart = getStepVector(
2412       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2413 
2414   // We create vector phi nodes for both integer and floating-point induction
2415   // variables. Here, we determine the kind of arithmetic we will perform.
2416   Instruction::BinaryOps AddOp;
2417   Instruction::BinaryOps MulOp;
2418   if (Step->getType()->isIntegerTy()) {
2419     AddOp = Instruction::Add;
2420     MulOp = Instruction::Mul;
2421   } else {
2422     AddOp = II.getInductionOpcode();
2423     MulOp = Instruction::FMul;
2424   }
2425 
2426   // Multiply the vectorization factor by the step using integer or
2427   // floating-point arithmetic as appropriate.
2428   Type *StepType = Step->getType();
2429   Value *RuntimeVF;
2430   if (Step->getType()->isFloatingPointTy())
2431     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2432   else
2433     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2434   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2435 
2436   // Create a vector splat to use in the induction update.
2437   //
2438   // FIXME: If the step is non-constant, we create the vector splat with
2439   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2440   //        handle a constant vector splat.
2441   Value *SplatVF = isa<Constant>(Mul)
2442                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2443                        : Builder.CreateVectorSplat(State.VF, Mul);
2444   Builder.restoreIP(CurrIP);
2445 
2446   // We may need to add the step a number of times, depending on the unroll
2447   // factor. The last of those goes into the PHI.
2448   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2449                                     &*LoopVectorBody->getFirstInsertionPt());
2450   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2451   Instruction *LastInduction = VecInd;
2452   for (unsigned Part = 0; Part < UF; ++Part) {
2453     State.set(Def, LastInduction, Part);
2454 
2455     if (isa<TruncInst>(EntryVal))
2456       addMetadata(LastInduction, EntryVal);
2457 
2458     LastInduction = cast<Instruction>(
2459         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2460     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2461   }
2462 
2463   // Move the last step to the end of the latch block. This ensures consistent
2464   // placement of all induction updates.
2465   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2466   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2467   LastInduction->moveBefore(Br);
2468   LastInduction->setName("vec.ind.next");
2469 
2470   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2471   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2472 }
2473 
2474 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2475   return Cost->isScalarAfterVectorization(I, VF) ||
2476          Cost->isProfitableToScalarize(I, VF);
2477 }
2478 
2479 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2480   if (shouldScalarizeInstruction(IV))
2481     return true;
2482   auto isScalarInst = [&](User *U) -> bool {
2483     auto *I = cast<Instruction>(U);
2484     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2485   };
2486   return llvm::any_of(IV->users(), isScalarInst);
2487 }
2488 
2489 /// Returns true if \p ID starts at 0 and has a step of 1.
2490 static bool isCanonicalID(const InductionDescriptor &ID) {
2491   if (!ID.getConstIntStepValue() || !ID.getConstIntStepValue()->isOne())
2492     return false;
2493   auto *StartC = dyn_cast<ConstantInt>(ID.getStartValue());
2494   return StartC && StartC->isZero();
2495 }
2496 
2497 void InnerLoopVectorizer::widenIntOrFpInduction(
2498     PHINode *IV, const InductionDescriptor &ID, Value *Start, TruncInst *Trunc,
2499     VPValue *Def, VPTransformState &State, Value *CanonicalIV) {
2500   IRBuilder<> &Builder = State.Builder;
2501   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2502   assert(!State.VF.isZero() && "VF must be non-zero");
2503 
2504   // The value from the original loop to which we are mapping the new induction
2505   // variable.
2506   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2507 
2508   auto &DL = EntryVal->getModule()->getDataLayout();
2509 
2510   // Generate code for the induction step. Note that induction steps are
2511   // required to be loop-invariant
2512   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2513     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2514            "Induction step should be loop invariant");
2515     if (PSE.getSE()->isSCEVable(IV->getType())) {
2516       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2517       return Exp.expandCodeFor(Step, Step->getType(),
2518                                State.CFG.VectorPreHeader->getTerminator());
2519     }
2520     return cast<SCEVUnknown>(Step)->getValue();
2521   };
2522 
2523   // The scalar value to broadcast. This is derived from the canonical
2524   // induction variable. If a truncation type is given, truncate the canonical
2525   // induction variable and step. Otherwise, derive these values from the
2526   // induction descriptor.
2527   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2528     Value *ScalarIV = CanonicalIV;
2529     Type *NeededType = IV->getType();
2530     if (!isCanonicalID(ID) || ScalarIV->getType() != NeededType) {
2531       ScalarIV =
2532           NeededType->isIntegerTy()
2533               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2534               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2535       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2536                                       State.CFG.PrevBB);
2537       ScalarIV->setName("offset.idx");
2538     }
2539     if (Trunc) {
2540       auto *TruncType = cast<IntegerType>(Trunc->getType());
2541       assert(Step->getType()->isIntegerTy() &&
2542              "Truncation requires an integer step");
2543       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2544       Step = Builder.CreateTrunc(Step, TruncType);
2545     }
2546     return ScalarIV;
2547   };
2548 
2549   // Create the vector values from the scalar IV, in the absence of creating a
2550   // vector IV.
2551   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2552     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2553     for (unsigned Part = 0; Part < UF; ++Part) {
2554       Value *StartIdx;
2555       if (Step->getType()->isFloatingPointTy())
2556         StartIdx =
2557             getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part);
2558       else
2559         StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part);
2560 
2561       Value *EntryPart =
2562           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(),
2563                         State.VF, State.Builder);
2564       State.set(Def, EntryPart, Part);
2565       if (Trunc)
2566         addMetadata(EntryPart, Trunc);
2567     }
2568   };
2569 
2570   // Fast-math-flags propagate from the original induction instruction.
2571   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2572   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2573     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2574 
2575   // Now do the actual transformations, and start with creating the step value.
2576   Value *Step = CreateStepValue(ID.getStep());
2577   if (State.VF.isScalar()) {
2578     Value *ScalarIV = CreateScalarIV(Step);
2579     CreateSplatIV(ScalarIV, Step);
2580     return;
2581   }
2582 
2583   // Determine if we want a scalar version of the induction variable. This is
2584   // true if the induction variable itself is not widened, or if it has at
2585   // least one user in the loop that is not widened.
2586   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2587   if (!NeedsScalarIV) {
2588     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2589     return;
2590   }
2591 
2592   // Try to create a new independent vector induction variable. If we can't
2593   // create the phi node, we will splat the scalar induction variable in each
2594   // loop iteration.
2595   if (!shouldScalarizeInstruction(EntryVal)) {
2596     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2597     Value *ScalarIV = CreateScalarIV(Step);
2598     // Create scalar steps that can be used by instructions we will later
2599     // scalarize. Note that the addition of the scalar steps will not increase
2600     // the number of instructions in the loop in the common case prior to
2601     // InstCombine. We will be trading one vector extract for each scalar step.
2602     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2603     return;
2604   }
2605 
2606   // All IV users are scalar instructions, so only emit a scalar IV, not a
2607   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2608   // predicate used by the masked loads/stores.
2609   Value *ScalarIV = CreateScalarIV(Step);
2610   if (!Cost->isScalarEpilogueAllowed())
2611     CreateSplatIV(ScalarIV, Step);
2612   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2613 }
2614 
2615 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2616                                            Instruction *EntryVal,
2617                                            const InductionDescriptor &ID,
2618                                            VPValue *Def,
2619                                            VPTransformState &State) {
2620   IRBuilder<> &Builder = State.Builder;
2621   // We shouldn't have to build scalar steps if we aren't vectorizing.
2622   assert(State.VF.isVector() && "VF should be greater than one");
2623   // Get the value type and ensure it and the step have the same integer type.
2624   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2625   assert(ScalarIVTy == Step->getType() &&
2626          "Val and Step should have the same type");
2627 
2628   // We build scalar steps for both integer and floating-point induction
2629   // variables. Here, we determine the kind of arithmetic we will perform.
2630   Instruction::BinaryOps AddOp;
2631   Instruction::BinaryOps MulOp;
2632   if (ScalarIVTy->isIntegerTy()) {
2633     AddOp = Instruction::Add;
2634     MulOp = Instruction::Mul;
2635   } else {
2636     AddOp = ID.getInductionOpcode();
2637     MulOp = Instruction::FMul;
2638   }
2639 
2640   // Determine the number of scalars we need to generate for each unroll
2641   // iteration. If EntryVal is uniform, we only need to generate the first
2642   // lane. Otherwise, we generate all VF values.
2643   bool IsUniform =
2644       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF);
2645   unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
2646   // Compute the scalar steps and save the results in State.
2647   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2648                                      ScalarIVTy->getScalarSizeInBits());
2649   Type *VecIVTy = nullptr;
2650   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2651   if (!IsUniform && State.VF.isScalable()) {
2652     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2653     UnitStepVec =
2654         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2655     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2656     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2657   }
2658 
2659   for (unsigned Part = 0; Part < State.UF; ++Part) {
2660     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2661 
2662     if (!IsUniform && State.VF.isScalable()) {
2663       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2664       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2665       if (ScalarIVTy->isFloatingPointTy())
2666         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2667       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2668       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2669       State.set(Def, Add, Part);
2670       // It's useful to record the lane values too for the known minimum number
2671       // of elements so we do those below. This improves the code quality when
2672       // trying to extract the first element, for example.
2673     }
2674 
2675     if (ScalarIVTy->isFloatingPointTy())
2676       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2677 
2678     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2679       Value *StartIdx = Builder.CreateBinOp(
2680           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2681       // The step returned by `createStepForVF` is a runtime-evaluated value
2682       // when VF is scalable. Otherwise, it should be folded into a Constant.
2683       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2684              "Expected StartIdx to be folded to a constant when VF is not "
2685              "scalable");
2686       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2687       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2688       State.set(Def, Add, VPIteration(Part, Lane));
2689     }
2690   }
2691 }
2692 
2693 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2694                                                     const VPIteration &Instance,
2695                                                     VPTransformState &State) {
2696   Value *ScalarInst = State.get(Def, Instance);
2697   Value *VectorValue = State.get(Def, Instance.Part);
2698   VectorValue = Builder.CreateInsertElement(
2699       VectorValue, ScalarInst,
2700       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2701   State.set(Def, VectorValue, Instance.Part);
2702 }
2703 
2704 // Return whether we allow using masked interleave-groups (for dealing with
2705 // strided loads/stores that reside in predicated blocks, or for dealing
2706 // with gaps).
2707 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2708   // If an override option has been passed in for interleaved accesses, use it.
2709   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2710     return EnableMaskedInterleavedMemAccesses;
2711 
2712   return TTI.enableMaskedInterleavedAccessVectorization();
2713 }
2714 
2715 // Try to vectorize the interleave group that \p Instr belongs to.
2716 //
2717 // E.g. Translate following interleaved load group (factor = 3):
2718 //   for (i = 0; i < N; i+=3) {
2719 //     R = Pic[i];             // Member of index 0
2720 //     G = Pic[i+1];           // Member of index 1
2721 //     B = Pic[i+2];           // Member of index 2
2722 //     ... // do something to R, G, B
2723 //   }
2724 // To:
2725 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2726 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2727 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2728 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2729 //
2730 // Or translate following interleaved store group (factor = 3):
2731 //   for (i = 0; i < N; i+=3) {
2732 //     ... do something to R, G, B
2733 //     Pic[i]   = R;           // Member of index 0
2734 //     Pic[i+1] = G;           // Member of index 1
2735 //     Pic[i+2] = B;           // Member of index 2
2736 //   }
2737 // To:
2738 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2739 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2740 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2741 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2742 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2743 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2744     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2745     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2746     VPValue *BlockInMask) {
2747   Instruction *Instr = Group->getInsertPos();
2748   const DataLayout &DL = Instr->getModule()->getDataLayout();
2749 
2750   // Prepare for the vector type of the interleaved load/store.
2751   Type *ScalarTy = getLoadStoreType(Instr);
2752   unsigned InterleaveFactor = Group->getFactor();
2753   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2754   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2755 
2756   // Prepare for the new pointers.
2757   SmallVector<Value *, 2> AddrParts;
2758   unsigned Index = Group->getIndex(Instr);
2759 
2760   // TODO: extend the masked interleaved-group support to reversed access.
2761   assert((!BlockInMask || !Group->isReverse()) &&
2762          "Reversed masked interleave-group not supported.");
2763 
2764   // If the group is reverse, adjust the index to refer to the last vector lane
2765   // instead of the first. We adjust the index from the first vector lane,
2766   // rather than directly getting the pointer for lane VF - 1, because the
2767   // pointer operand of the interleaved access is supposed to be uniform. For
2768   // uniform instructions, we're only required to generate a value for the
2769   // first vector lane in each unroll iteration.
2770   if (Group->isReverse())
2771     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2772 
2773   for (unsigned Part = 0; Part < UF; Part++) {
2774     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2775     setDebugLocFromInst(AddrPart);
2776 
2777     // Notice current instruction could be any index. Need to adjust the address
2778     // to the member of index 0.
2779     //
2780     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2781     //       b = A[i];       // Member of index 0
2782     // Current pointer is pointed to A[i+1], adjust it to A[i].
2783     //
2784     // E.g.  A[i+1] = a;     // Member of index 1
2785     //       A[i]   = b;     // Member of index 0
2786     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2787     // Current pointer is pointed to A[i+2], adjust it to A[i].
2788 
2789     bool InBounds = false;
2790     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2791       InBounds = gep->isInBounds();
2792     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2793     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2794 
2795     // Cast to the vector pointer type.
2796     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2797     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2798     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2799   }
2800 
2801   setDebugLocFromInst(Instr);
2802   Value *PoisonVec = PoisonValue::get(VecTy);
2803 
2804   Value *MaskForGaps = nullptr;
2805   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2806     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2807     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2808   }
2809 
2810   // Vectorize the interleaved load group.
2811   if (isa<LoadInst>(Instr)) {
2812     // For each unroll part, create a wide load for the group.
2813     SmallVector<Value *, 2> NewLoads;
2814     for (unsigned Part = 0; Part < UF; Part++) {
2815       Instruction *NewLoad;
2816       if (BlockInMask || MaskForGaps) {
2817         assert(useMaskedInterleavedAccesses(*TTI) &&
2818                "masked interleaved groups are not allowed.");
2819         Value *GroupMask = MaskForGaps;
2820         if (BlockInMask) {
2821           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2822           Value *ShuffledMask = Builder.CreateShuffleVector(
2823               BlockInMaskPart,
2824               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2825               "interleaved.mask");
2826           GroupMask = MaskForGaps
2827                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2828                                                 MaskForGaps)
2829                           : ShuffledMask;
2830         }
2831         NewLoad =
2832             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2833                                      GroupMask, PoisonVec, "wide.masked.vec");
2834       }
2835       else
2836         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2837                                             Group->getAlign(), "wide.vec");
2838       Group->addMetadata(NewLoad);
2839       NewLoads.push_back(NewLoad);
2840     }
2841 
2842     // For each member in the group, shuffle out the appropriate data from the
2843     // wide loads.
2844     unsigned J = 0;
2845     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2846       Instruction *Member = Group->getMember(I);
2847 
2848       // Skip the gaps in the group.
2849       if (!Member)
2850         continue;
2851 
2852       auto StrideMask =
2853           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2854       for (unsigned Part = 0; Part < UF; Part++) {
2855         Value *StridedVec = Builder.CreateShuffleVector(
2856             NewLoads[Part], StrideMask, "strided.vec");
2857 
2858         // If this member has different type, cast the result type.
2859         if (Member->getType() != ScalarTy) {
2860           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2861           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2862           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2863         }
2864 
2865         if (Group->isReverse())
2866           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2867 
2868         State.set(VPDefs[J], StridedVec, Part);
2869       }
2870       ++J;
2871     }
2872     return;
2873   }
2874 
2875   // The sub vector type for current instruction.
2876   auto *SubVT = VectorType::get(ScalarTy, VF);
2877 
2878   // Vectorize the interleaved store group.
2879   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2880   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2881          "masked interleaved groups are not allowed.");
2882   assert((!MaskForGaps || !VF.isScalable()) &&
2883          "masking gaps for scalable vectors is not yet supported.");
2884   for (unsigned Part = 0; Part < UF; Part++) {
2885     // Collect the stored vector from each member.
2886     SmallVector<Value *, 4> StoredVecs;
2887     for (unsigned i = 0; i < InterleaveFactor; i++) {
2888       assert((Group->getMember(i) || MaskForGaps) &&
2889              "Fail to get a member from an interleaved store group");
2890       Instruction *Member = Group->getMember(i);
2891 
2892       // Skip the gaps in the group.
2893       if (!Member) {
2894         Value *Undef = PoisonValue::get(SubVT);
2895         StoredVecs.push_back(Undef);
2896         continue;
2897       }
2898 
2899       Value *StoredVec = State.get(StoredValues[i], Part);
2900 
2901       if (Group->isReverse())
2902         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2903 
2904       // If this member has different type, cast it to a unified type.
2905 
2906       if (StoredVec->getType() != SubVT)
2907         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2908 
2909       StoredVecs.push_back(StoredVec);
2910     }
2911 
2912     // Concatenate all vectors into a wide vector.
2913     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2914 
2915     // Interleave the elements in the wide vector.
2916     Value *IVec = Builder.CreateShuffleVector(
2917         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2918         "interleaved.vec");
2919 
2920     Instruction *NewStoreInstr;
2921     if (BlockInMask || MaskForGaps) {
2922       Value *GroupMask = MaskForGaps;
2923       if (BlockInMask) {
2924         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2925         Value *ShuffledMask = Builder.CreateShuffleVector(
2926             BlockInMaskPart,
2927             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2928             "interleaved.mask");
2929         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2930                                                       ShuffledMask, MaskForGaps)
2931                                 : ShuffledMask;
2932       }
2933       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2934                                                 Group->getAlign(), GroupMask);
2935     } else
2936       NewStoreInstr =
2937           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2938 
2939     Group->addMetadata(NewStoreInstr);
2940   }
2941 }
2942 
2943 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2944                                                VPReplicateRecipe *RepRecipe,
2945                                                const VPIteration &Instance,
2946                                                bool IfPredicateInstr,
2947                                                VPTransformState &State) {
2948   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2949 
2950   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2951   // the first lane and part.
2952   if (isa<NoAliasScopeDeclInst>(Instr))
2953     if (!Instance.isFirstIteration())
2954       return;
2955 
2956   setDebugLocFromInst(Instr);
2957 
2958   // Does this instruction return a value ?
2959   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2960 
2961   Instruction *Cloned = Instr->clone();
2962   if (!IsVoidRetTy)
2963     Cloned->setName(Instr->getName() + ".cloned");
2964 
2965   // If the scalarized instruction contributes to the address computation of a
2966   // widen masked load/store which was in a basic block that needed predication
2967   // and is not predicated after vectorization, we can't propagate
2968   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2969   // instruction could feed a poison value to the base address of the widen
2970   // load/store.
2971   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2972     Cloned->dropPoisonGeneratingFlags();
2973 
2974   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2975                                Builder.GetInsertPoint());
2976   // Replace the operands of the cloned instructions with their scalar
2977   // equivalents in the new loop.
2978   for (auto &I : enumerate(RepRecipe->operands())) {
2979     auto InputInstance = Instance;
2980     VPValue *Operand = I.value();
2981     if (State.Plan->isUniformAfterVectorization(Operand))
2982       InputInstance.Lane = VPLane::getFirstLane();
2983     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2984   }
2985   addNewMetadata(Cloned, Instr);
2986 
2987   // Place the cloned scalar in the new loop.
2988   Builder.Insert(Cloned);
2989 
2990   State.set(RepRecipe, Cloned, Instance);
2991 
2992   // If we just cloned a new assumption, add it the assumption cache.
2993   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2994     AC->registerAssumption(II);
2995 
2996   // End if-block.
2997   if (IfPredicateInstr)
2998     PredicatedInstructions.push_back(Cloned);
2999 }
3000 
3001 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
3002   BasicBlock *Header = L->getHeader();
3003   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
3004 
3005   IRBuilder<> B(Header->getTerminator());
3006   Instruction *OldInst =
3007       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
3008   setDebugLocFromInst(OldInst, &B);
3009 
3010   // Connect the header to the exit and header blocks and replace the old
3011   // terminator.
3012   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
3013 
3014   // Now we have two terminators. Remove the old one from the block.
3015   Header->getTerminator()->eraseFromParent();
3016 }
3017 
3018 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3019   if (TripCount)
3020     return TripCount;
3021 
3022   assert(L && "Create Trip Count for null loop.");
3023   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3024   // Find the loop boundaries.
3025   ScalarEvolution *SE = PSE.getSE();
3026   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3027   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3028          "Invalid loop count");
3029 
3030   Type *IdxTy = Legal->getWidestInductionType();
3031   assert(IdxTy && "No type for induction");
3032 
3033   // The exit count might have the type of i64 while the phi is i32. This can
3034   // happen if we have an induction variable that is sign extended before the
3035   // compare. The only way that we get a backedge taken count is that the
3036   // induction variable was signed and as such will not overflow. In such a case
3037   // truncation is legal.
3038   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3039       IdxTy->getPrimitiveSizeInBits())
3040     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3041   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3042 
3043   // Get the total trip count from the count by adding 1.
3044   const SCEV *ExitCount = SE->getAddExpr(
3045       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3046 
3047   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3048 
3049   // Expand the trip count and place the new instructions in the preheader.
3050   // Notice that the pre-header does not change, only the loop body.
3051   SCEVExpander Exp(*SE, DL, "induction");
3052 
3053   // Count holds the overall loop count (N).
3054   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3055                                 L->getLoopPreheader()->getTerminator());
3056 
3057   if (TripCount->getType()->isPointerTy())
3058     TripCount =
3059         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3060                                     L->getLoopPreheader()->getTerminator());
3061 
3062   return TripCount;
3063 }
3064 
3065 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3066   if (VectorTripCount)
3067     return VectorTripCount;
3068 
3069   Value *TC = getOrCreateTripCount(L);
3070   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3071 
3072   Type *Ty = TC->getType();
3073   // This is where we can make the step a runtime constant.
3074   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3075 
3076   // If the tail is to be folded by masking, round the number of iterations N
3077   // up to a multiple of Step instead of rounding down. This is done by first
3078   // adding Step-1 and then rounding down. Note that it's ok if this addition
3079   // overflows: the vector induction variable will eventually wrap to zero given
3080   // that it starts at zero and its Step is a power of two; the loop will then
3081   // exit, with the last early-exit vector comparison also producing all-true.
3082   if (Cost->foldTailByMasking()) {
3083     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3084            "VF*UF must be a power of 2 when folding tail by masking");
3085     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3086     TC = Builder.CreateAdd(
3087         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3088   }
3089 
3090   // Now we need to generate the expression for the part of the loop that the
3091   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3092   // iterations are not required for correctness, or N - Step, otherwise. Step
3093   // is equal to the vectorization factor (number of SIMD elements) times the
3094   // unroll factor (number of SIMD instructions).
3095   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3096 
3097   // There are cases where we *must* run at least one iteration in the remainder
3098   // loop.  See the cost model for when this can happen.  If the step evenly
3099   // divides the trip count, we set the remainder to be equal to the step. If
3100   // the step does not evenly divide the trip count, no adjustment is necessary
3101   // since there will already be scalar iterations. Note that the minimum
3102   // iterations check ensures that N >= Step.
3103   if (Cost->requiresScalarEpilogue(VF)) {
3104     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3105     R = Builder.CreateSelect(IsZero, Step, R);
3106   }
3107 
3108   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3109 
3110   return VectorTripCount;
3111 }
3112 
3113 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3114                                                    const DataLayout &DL) {
3115   // Verify that V is a vector type with same number of elements as DstVTy.
3116   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3117   unsigned VF = DstFVTy->getNumElements();
3118   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3119   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3120   Type *SrcElemTy = SrcVecTy->getElementType();
3121   Type *DstElemTy = DstFVTy->getElementType();
3122   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3123          "Vector elements must have same size");
3124 
3125   // Do a direct cast if element types are castable.
3126   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3127     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3128   }
3129   // V cannot be directly casted to desired vector type.
3130   // May happen when V is a floating point vector but DstVTy is a vector of
3131   // pointers or vice-versa. Handle this using a two-step bitcast using an
3132   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3133   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3134          "Only one type should be a pointer type");
3135   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3136          "Only one type should be a floating point type");
3137   Type *IntTy =
3138       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3139   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3140   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3141   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3142 }
3143 
3144 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3145                                                          BasicBlock *Bypass) {
3146   Value *Count = getOrCreateTripCount(L);
3147   // Reuse existing vector loop preheader for TC checks.
3148   // Note that new preheader block is generated for vector loop.
3149   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3150   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3151 
3152   // Generate code to check if the loop's trip count is less than VF * UF, or
3153   // equal to it in case a scalar epilogue is required; this implies that the
3154   // vector trip count is zero. This check also covers the case where adding one
3155   // to the backedge-taken count overflowed leading to an incorrect trip count
3156   // of zero. In this case we will also jump to the scalar loop.
3157   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3158                                             : ICmpInst::ICMP_ULT;
3159 
3160   // If tail is to be folded, vector loop takes care of all iterations.
3161   Value *CheckMinIters = Builder.getFalse();
3162   if (!Cost->foldTailByMasking()) {
3163     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3164     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3165   }
3166   // Create new preheader for vector loop.
3167   LoopVectorPreHeader =
3168       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3169                  "vector.ph");
3170 
3171   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3172                                DT->getNode(Bypass)->getIDom()) &&
3173          "TC check is expected to dominate Bypass");
3174 
3175   // Update dominator for Bypass & LoopExit (if needed).
3176   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3177   if (!Cost->requiresScalarEpilogue(VF))
3178     // If there is an epilogue which must run, there's no edge from the
3179     // middle block to exit blocks  and thus no need to update the immediate
3180     // dominator of the exit blocks.
3181     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3182 
3183   ReplaceInstWithInst(
3184       TCCheckBlock->getTerminator(),
3185       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3186   LoopBypassBlocks.push_back(TCCheckBlock);
3187 }
3188 
3189 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3190 
3191   BasicBlock *const SCEVCheckBlock =
3192       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3193   if (!SCEVCheckBlock)
3194     return nullptr;
3195 
3196   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3197            (OptForSizeBasedOnProfile &&
3198             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3199          "Cannot SCEV check stride or overflow when optimizing for size");
3200 
3201 
3202   // Update dominator only if this is first RT check.
3203   if (LoopBypassBlocks.empty()) {
3204     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3205     if (!Cost->requiresScalarEpilogue(VF))
3206       // If there is an epilogue which must run, there's no edge from the
3207       // middle block to exit blocks  and thus no need to update the immediate
3208       // dominator of the exit blocks.
3209       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3210   }
3211 
3212   LoopBypassBlocks.push_back(SCEVCheckBlock);
3213   AddedSafetyChecks = true;
3214   return SCEVCheckBlock;
3215 }
3216 
3217 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3218                                                       BasicBlock *Bypass) {
3219   // VPlan-native path does not do any analysis for runtime checks currently.
3220   if (EnableVPlanNativePath)
3221     return nullptr;
3222 
3223   BasicBlock *const MemCheckBlock =
3224       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3225 
3226   // Check if we generated code that checks in runtime if arrays overlap. We put
3227   // the checks into a separate block to make the more common case of few
3228   // elements faster.
3229   if (!MemCheckBlock)
3230     return nullptr;
3231 
3232   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3233     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3234            "Cannot emit memory checks when optimizing for size, unless forced "
3235            "to vectorize.");
3236     ORE->emit([&]() {
3237       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3238                                         L->getStartLoc(), L->getHeader())
3239              << "Code-size may be reduced by not forcing "
3240                 "vectorization, or by source-code modifications "
3241                 "eliminating the need for runtime checks "
3242                 "(e.g., adding 'restrict').";
3243     });
3244   }
3245 
3246   LoopBypassBlocks.push_back(MemCheckBlock);
3247 
3248   AddedSafetyChecks = true;
3249 
3250   // We currently don't use LoopVersioning for the actual loop cloning but we
3251   // still use it to add the noalias metadata.
3252   LVer = std::make_unique<LoopVersioning>(
3253       *Legal->getLAI(),
3254       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3255       DT, PSE.getSE());
3256   LVer->prepareNoAliasMetadata();
3257   return MemCheckBlock;
3258 }
3259 
3260 Value *InnerLoopVectorizer::emitTransformedIndex(
3261     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3262     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3263 
3264   SCEVExpander Exp(*SE, DL, "induction");
3265   auto Step = ID.getStep();
3266   auto StartValue = ID.getStartValue();
3267   assert(Index->getType()->getScalarType() == Step->getType() &&
3268          "Index scalar type does not match StepValue type");
3269 
3270   // Note: the IR at this point is broken. We cannot use SE to create any new
3271   // SCEV and then expand it, hoping that SCEV's simplification will give us
3272   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3273   // lead to various SCEV crashes. So all we can do is to use builder and rely
3274   // on InstCombine for future simplifications. Here we handle some trivial
3275   // cases only.
3276   auto CreateAdd = [&B](Value *X, Value *Y) {
3277     assert(X->getType() == Y->getType() && "Types don't match!");
3278     if (auto *CX = dyn_cast<ConstantInt>(X))
3279       if (CX->isZero())
3280         return Y;
3281     if (auto *CY = dyn_cast<ConstantInt>(Y))
3282       if (CY->isZero())
3283         return X;
3284     return B.CreateAdd(X, Y);
3285   };
3286 
3287   // We allow X to be a vector type, in which case Y will potentially be
3288   // splatted into a vector with the same element count.
3289   auto CreateMul = [&B](Value *X, Value *Y) {
3290     assert(X->getType()->getScalarType() == Y->getType() &&
3291            "Types don't match!");
3292     if (auto *CX = dyn_cast<ConstantInt>(X))
3293       if (CX->isOne())
3294         return Y;
3295     if (auto *CY = dyn_cast<ConstantInt>(Y))
3296       if (CY->isOne())
3297         return X;
3298     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3299     if (XVTy && !isa<VectorType>(Y->getType()))
3300       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3301     return B.CreateMul(X, Y);
3302   };
3303 
3304   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3305   // loop, choose the end of the vector loop header (=VectorHeader), because
3306   // the DomTree is not kept up-to-date for additional blocks generated in the
3307   // vector loop. By using the header as insertion point, we guarantee that the
3308   // expanded instructions dominate all their uses.
3309   auto GetInsertPoint = [this, &B, VectorHeader]() {
3310     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3311     if (InsertBB != LoopVectorBody &&
3312         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3313       return VectorHeader->getTerminator();
3314     return &*B.GetInsertPoint();
3315   };
3316 
3317   switch (ID.getKind()) {
3318   case InductionDescriptor::IK_IntInduction: {
3319     assert(!isa<VectorType>(Index->getType()) &&
3320            "Vector indices not supported for integer inductions yet");
3321     assert(Index->getType() == StartValue->getType() &&
3322            "Index type does not match StartValue type");
3323     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3324       return B.CreateSub(StartValue, Index);
3325     auto *Offset = CreateMul(
3326         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3327     return CreateAdd(StartValue, Offset);
3328   }
3329   case InductionDescriptor::IK_PtrInduction: {
3330     assert(isa<SCEVConstant>(Step) &&
3331            "Expected constant step for pointer induction");
3332     return B.CreateGEP(
3333         ID.getElementType(), StartValue,
3334         CreateMul(Index,
3335                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3336                                     GetInsertPoint())));
3337   }
3338   case InductionDescriptor::IK_FpInduction: {
3339     assert(!isa<VectorType>(Index->getType()) &&
3340            "Vector indices not supported for FP inductions yet");
3341     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3342     auto InductionBinOp = ID.getInductionBinOp();
3343     assert(InductionBinOp &&
3344            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3345             InductionBinOp->getOpcode() == Instruction::FSub) &&
3346            "Original bin op should be defined for FP induction");
3347 
3348     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3349     Value *MulExp = B.CreateFMul(StepValue, Index);
3350     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3351                          "induction");
3352   }
3353   case InductionDescriptor::IK_NoInduction:
3354     return nullptr;
3355   }
3356   llvm_unreachable("invalid enum");
3357 }
3358 
3359 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3360   LoopScalarBody = OrigLoop->getHeader();
3361   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3362   assert(LoopVectorPreHeader && "Invalid loop structure");
3363   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3364   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3365          "multiple exit loop without required epilogue?");
3366 
3367   LoopMiddleBlock =
3368       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3369                  LI, nullptr, Twine(Prefix) + "middle.block");
3370   LoopScalarPreHeader =
3371       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3372                  nullptr, Twine(Prefix) + "scalar.ph");
3373 
3374   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3375 
3376   // Set up the middle block terminator.  Two cases:
3377   // 1) If we know that we must execute the scalar epilogue, emit an
3378   //    unconditional branch.
3379   // 2) Otherwise, we must have a single unique exit block (due to how we
3380   //    implement the multiple exit case).  In this case, set up a conditonal
3381   //    branch from the middle block to the loop scalar preheader, and the
3382   //    exit block.  completeLoopSkeleton will update the condition to use an
3383   //    iteration check, if required to decide whether to execute the remainder.
3384   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3385     BranchInst::Create(LoopScalarPreHeader) :
3386     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3387                        Builder.getTrue());
3388   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3389   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3390 
3391   // We intentionally don't let SplitBlock to update LoopInfo since
3392   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3393   // LoopVectorBody is explicitly added to the correct place few lines later.
3394   LoopVectorBody =
3395       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3396                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3397 
3398   // Update dominator for loop exit.
3399   if (!Cost->requiresScalarEpilogue(VF))
3400     // If there is an epilogue which must run, there's no edge from the
3401     // middle block to exit blocks  and thus no need to update the immediate
3402     // dominator of the exit blocks.
3403     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3404 
3405   // Create and register the new vector loop.
3406   Loop *Lp = LI->AllocateLoop();
3407   Loop *ParentLoop = OrigLoop->getParentLoop();
3408 
3409   // Insert the new loop into the loop nest and register the new basic blocks
3410   // before calling any utilities such as SCEV that require valid LoopInfo.
3411   if (ParentLoop) {
3412     ParentLoop->addChildLoop(Lp);
3413   } else {
3414     LI->addTopLevelLoop(Lp);
3415   }
3416   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3417   return Lp;
3418 }
3419 
3420 void InnerLoopVectorizer::createInductionResumeValues(
3421     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3422   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3423           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3424          "Inconsistent information about additional bypass.");
3425 
3426   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3427   assert(VectorTripCount && L && "Expected valid arguments");
3428   // We are going to resume the execution of the scalar loop.
3429   // Go over all of the induction variables that we found and fix the
3430   // PHIs that are left in the scalar version of the loop.
3431   // The starting values of PHI nodes depend on the counter of the last
3432   // iteration in the vectorized loop.
3433   // If we come from a bypass edge then we need to start from the original
3434   // start value.
3435   Instruction *OldInduction = Legal->getPrimaryInduction();
3436   for (auto &InductionEntry : Legal->getInductionVars()) {
3437     PHINode *OrigPhi = InductionEntry.first;
3438     InductionDescriptor II = InductionEntry.second;
3439 
3440     // Create phi nodes to merge from the  backedge-taken check block.
3441     PHINode *BCResumeVal =
3442         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3443                         LoopScalarPreHeader->getTerminator());
3444     // Copy original phi DL over to the new one.
3445     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3446     Value *&EndValue = IVEndValues[OrigPhi];
3447     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3448     if (OrigPhi == OldInduction) {
3449       // We know what the end value is.
3450       EndValue = VectorTripCount;
3451     } else {
3452       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3453 
3454       // Fast-math-flags propagate from the original induction instruction.
3455       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3456         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3457 
3458       Type *StepType = II.getStep()->getType();
3459       Instruction::CastOps CastOp =
3460           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3461       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3462       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3463       EndValue =
3464           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3465       EndValue->setName("ind.end");
3466 
3467       // Compute the end value for the additional bypass (if applicable).
3468       if (AdditionalBypass.first) {
3469         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3470         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3471                                          StepType, true);
3472         CRD =
3473             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3474         EndValueFromAdditionalBypass =
3475             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3476         EndValueFromAdditionalBypass->setName("ind.end");
3477       }
3478     }
3479     // The new PHI merges the original incoming value, in case of a bypass,
3480     // or the value at the end of the vectorized loop.
3481     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3482 
3483     // Fix the scalar body counter (PHI node).
3484     // The old induction's phi node in the scalar body needs the truncated
3485     // value.
3486     for (BasicBlock *BB : LoopBypassBlocks)
3487       BCResumeVal->addIncoming(II.getStartValue(), BB);
3488 
3489     if (AdditionalBypass.first)
3490       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3491                                             EndValueFromAdditionalBypass);
3492 
3493     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3494   }
3495 }
3496 
3497 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3498                                                       MDNode *OrigLoopID) {
3499   assert(L && "Expected valid loop.");
3500 
3501   // The trip counts should be cached by now.
3502   Value *Count = getOrCreateTripCount(L);
3503   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3504 
3505   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3506 
3507   // Add a check in the middle block to see if we have completed
3508   // all of the iterations in the first vector loop.  Three cases:
3509   // 1) If we require a scalar epilogue, there is no conditional branch as
3510   //    we unconditionally branch to the scalar preheader.  Do nothing.
3511   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3512   //    Thus if tail is to be folded, we know we don't need to run the
3513   //    remainder and we can use the previous value for the condition (true).
3514   // 3) Otherwise, construct a runtime check.
3515   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3516     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3517                                         Count, VectorTripCount, "cmp.n",
3518                                         LoopMiddleBlock->getTerminator());
3519 
3520     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3521     // of the corresponding compare because they may have ended up with
3522     // different line numbers and we want to avoid awkward line stepping while
3523     // debugging. Eg. if the compare has got a line number inside the loop.
3524     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3525     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3526   }
3527 
3528   // Get ready to start creating new instructions into the vectorized body.
3529   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3530          "Inconsistent vector loop preheader");
3531   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3532 
3533 #ifdef EXPENSIVE_CHECKS
3534   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3535   LI->verify(*DT);
3536 #endif
3537 
3538   return LoopVectorPreHeader;
3539 }
3540 
3541 std::pair<BasicBlock *, Value *>
3542 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3543   /*
3544    In this function we generate a new loop. The new loop will contain
3545    the vectorized instructions while the old loop will continue to run the
3546    scalar remainder.
3547 
3548        [ ] <-- loop iteration number check.
3549     /   |
3550    /    v
3551   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3552   |  /  |
3553   | /   v
3554   ||   [ ]     <-- vector pre header.
3555   |/    |
3556   |     v
3557   |    [  ] \
3558   |    [  ]_|   <-- vector loop.
3559   |     |
3560   |     v
3561   \   -[ ]   <--- middle-block.
3562    \/   |
3563    /\   v
3564    | ->[ ]     <--- new preheader.
3565    |    |
3566  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3567    |   [ ] \
3568    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3569     \   |
3570      \  v
3571       >[ ]     <-- exit block(s).
3572    ...
3573    */
3574 
3575   // Get the metadata of the original loop before it gets modified.
3576   MDNode *OrigLoopID = OrigLoop->getLoopID();
3577 
3578   // Workaround!  Compute the trip count of the original loop and cache it
3579   // before we start modifying the CFG.  This code has a systemic problem
3580   // wherein it tries to run analysis over partially constructed IR; this is
3581   // wrong, and not simply for SCEV.  The trip count of the original loop
3582   // simply happens to be prone to hitting this in practice.  In theory, we
3583   // can hit the same issue for any SCEV, or ValueTracking query done during
3584   // mutation.  See PR49900.
3585   getOrCreateTripCount(OrigLoop);
3586 
3587   // Create an empty vector loop, and prepare basic blocks for the runtime
3588   // checks.
3589   Loop *Lp = createVectorLoopSkeleton("");
3590 
3591   // Now, compare the new count to zero. If it is zero skip the vector loop and
3592   // jump to the scalar loop. This check also covers the case where the
3593   // backedge-taken count is uint##_max: adding one to it will overflow leading
3594   // to an incorrect trip count of zero. In this (rare) case we will also jump
3595   // to the scalar loop.
3596   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3597 
3598   // Generate the code to check any assumptions that we've made for SCEV
3599   // expressions.
3600   emitSCEVChecks(Lp, LoopScalarPreHeader);
3601 
3602   // Generate the code that checks in runtime if arrays overlap. We put the
3603   // checks into a separate block to make the more common case of few elements
3604   // faster.
3605   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3606 
3607   createHeaderBranch(Lp);
3608 
3609   // Emit phis for the new starting index of the scalar loop.
3610   createInductionResumeValues(Lp);
3611 
3612   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3613 }
3614 
3615 // Fix up external users of the induction variable. At this point, we are
3616 // in LCSSA form, with all external PHIs that use the IV having one input value,
3617 // coming from the remainder loop. We need those PHIs to also have a correct
3618 // value for the IV when arriving directly from the middle block.
3619 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3620                                        const InductionDescriptor &II,
3621                                        Value *CountRoundDown, Value *EndValue,
3622                                        BasicBlock *MiddleBlock) {
3623   // There are two kinds of external IV usages - those that use the value
3624   // computed in the last iteration (the PHI) and those that use the penultimate
3625   // value (the value that feeds into the phi from the loop latch).
3626   // We allow both, but they, obviously, have different values.
3627 
3628   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3629 
3630   DenseMap<Value *, Value *> MissingVals;
3631 
3632   // An external user of the last iteration's value should see the value that
3633   // the remainder loop uses to initialize its own IV.
3634   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3635   for (User *U : PostInc->users()) {
3636     Instruction *UI = cast<Instruction>(U);
3637     if (!OrigLoop->contains(UI)) {
3638       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3639       MissingVals[UI] = EndValue;
3640     }
3641   }
3642 
3643   // An external user of the penultimate value need to see EndValue - Step.
3644   // The simplest way to get this is to recompute it from the constituent SCEVs,
3645   // that is Start + (Step * (CRD - 1)).
3646   for (User *U : OrigPhi->users()) {
3647     auto *UI = cast<Instruction>(U);
3648     if (!OrigLoop->contains(UI)) {
3649       const DataLayout &DL =
3650           OrigLoop->getHeader()->getModule()->getDataLayout();
3651       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3652 
3653       IRBuilder<> B(MiddleBlock->getTerminator());
3654 
3655       // Fast-math-flags propagate from the original induction instruction.
3656       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3657         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3658 
3659       Value *CountMinusOne = B.CreateSub(
3660           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3661       Value *CMO =
3662           !II.getStep()->getType()->isIntegerTy()
3663               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3664                              II.getStep()->getType())
3665               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3666       CMO->setName("cast.cmo");
3667       Value *Escape =
3668           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3669       Escape->setName("ind.escape");
3670       MissingVals[UI] = Escape;
3671     }
3672   }
3673 
3674   for (auto &I : MissingVals) {
3675     PHINode *PHI = cast<PHINode>(I.first);
3676     // One corner case we have to handle is two IVs "chasing" each-other,
3677     // that is %IV2 = phi [...], [ %IV1, %latch ]
3678     // In this case, if IV1 has an external use, we need to avoid adding both
3679     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3680     // don't already have an incoming value for the middle block.
3681     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3682       PHI->addIncoming(I.second, MiddleBlock);
3683   }
3684 }
3685 
3686 namespace {
3687 
3688 struct CSEDenseMapInfo {
3689   static bool canHandle(const Instruction *I) {
3690     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3691            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3692   }
3693 
3694   static inline Instruction *getEmptyKey() {
3695     return DenseMapInfo<Instruction *>::getEmptyKey();
3696   }
3697 
3698   static inline Instruction *getTombstoneKey() {
3699     return DenseMapInfo<Instruction *>::getTombstoneKey();
3700   }
3701 
3702   static unsigned getHashValue(const Instruction *I) {
3703     assert(canHandle(I) && "Unknown instruction!");
3704     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3705                                                            I->value_op_end()));
3706   }
3707 
3708   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3709     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3710         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3711       return LHS == RHS;
3712     return LHS->isIdenticalTo(RHS);
3713   }
3714 };
3715 
3716 } // end anonymous namespace
3717 
3718 ///Perform cse of induction variable instructions.
3719 static void cse(BasicBlock *BB) {
3720   // Perform simple cse.
3721   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3722   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3723     if (!CSEDenseMapInfo::canHandle(&In))
3724       continue;
3725 
3726     // Check if we can replace this instruction with any of the
3727     // visited instructions.
3728     if (Instruction *V = CSEMap.lookup(&In)) {
3729       In.replaceAllUsesWith(V);
3730       In.eraseFromParent();
3731       continue;
3732     }
3733 
3734     CSEMap[&In] = &In;
3735   }
3736 }
3737 
3738 InstructionCost
3739 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3740                                               bool &NeedToScalarize) const {
3741   Function *F = CI->getCalledFunction();
3742   Type *ScalarRetTy = CI->getType();
3743   SmallVector<Type *, 4> Tys, ScalarTys;
3744   for (auto &ArgOp : CI->args())
3745     ScalarTys.push_back(ArgOp->getType());
3746 
3747   // Estimate cost of scalarized vector call. The source operands are assumed
3748   // to be vectors, so we need to extract individual elements from there,
3749   // execute VF scalar calls, and then gather the result into the vector return
3750   // value.
3751   InstructionCost ScalarCallCost =
3752       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3753   if (VF.isScalar())
3754     return ScalarCallCost;
3755 
3756   // Compute corresponding vector type for return value and arguments.
3757   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3758   for (Type *ScalarTy : ScalarTys)
3759     Tys.push_back(ToVectorTy(ScalarTy, VF));
3760 
3761   // Compute costs of unpacking argument values for the scalar calls and
3762   // packing the return values to a vector.
3763   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3764 
3765   InstructionCost Cost =
3766       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3767 
3768   // If we can't emit a vector call for this function, then the currently found
3769   // cost is the cost we need to return.
3770   NeedToScalarize = true;
3771   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3772   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3773 
3774   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3775     return Cost;
3776 
3777   // If the corresponding vector cost is cheaper, return its cost.
3778   InstructionCost VectorCallCost =
3779       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3780   if (VectorCallCost < Cost) {
3781     NeedToScalarize = false;
3782     Cost = VectorCallCost;
3783   }
3784   return Cost;
3785 }
3786 
3787 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3788   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3789     return Elt;
3790   return VectorType::get(Elt, VF);
3791 }
3792 
3793 InstructionCost
3794 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3795                                                    ElementCount VF) const {
3796   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3797   assert(ID && "Expected intrinsic call!");
3798   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3799   FastMathFlags FMF;
3800   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3801     FMF = FPMO->getFastMathFlags();
3802 
3803   SmallVector<const Value *> Arguments(CI->args());
3804   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3805   SmallVector<Type *> ParamTys;
3806   std::transform(FTy->param_begin(), FTy->param_end(),
3807                  std::back_inserter(ParamTys),
3808                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3809 
3810   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3811                                     dyn_cast<IntrinsicInst>(CI));
3812   return TTI.getIntrinsicInstrCost(CostAttrs,
3813                                    TargetTransformInfo::TCK_RecipThroughput);
3814 }
3815 
3816 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3817   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3818   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3819   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3820 }
3821 
3822 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3823   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3824   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3825   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3826 }
3827 
3828 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3829   // For every instruction `I` in MinBWs, truncate the operands, create a
3830   // truncated version of `I` and reextend its result. InstCombine runs
3831   // later and will remove any ext/trunc pairs.
3832   SmallPtrSet<Value *, 4> Erased;
3833   for (const auto &KV : Cost->getMinimalBitwidths()) {
3834     // If the value wasn't vectorized, we must maintain the original scalar
3835     // type. The absence of the value from State indicates that it
3836     // wasn't vectorized.
3837     // FIXME: Should not rely on getVPValue at this point.
3838     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3839     if (!State.hasAnyVectorValue(Def))
3840       continue;
3841     for (unsigned Part = 0; Part < UF; ++Part) {
3842       Value *I = State.get(Def, Part);
3843       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3844         continue;
3845       Type *OriginalTy = I->getType();
3846       Type *ScalarTruncatedTy =
3847           IntegerType::get(OriginalTy->getContext(), KV.second);
3848       auto *TruncatedTy = VectorType::get(
3849           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3850       if (TruncatedTy == OriginalTy)
3851         continue;
3852 
3853       IRBuilder<> B(cast<Instruction>(I));
3854       auto ShrinkOperand = [&](Value *V) -> Value * {
3855         if (auto *ZI = dyn_cast<ZExtInst>(V))
3856           if (ZI->getSrcTy() == TruncatedTy)
3857             return ZI->getOperand(0);
3858         return B.CreateZExtOrTrunc(V, TruncatedTy);
3859       };
3860 
3861       // The actual instruction modification depends on the instruction type,
3862       // unfortunately.
3863       Value *NewI = nullptr;
3864       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3865         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3866                              ShrinkOperand(BO->getOperand(1)));
3867 
3868         // Any wrapping introduced by shrinking this operation shouldn't be
3869         // considered undefined behavior. So, we can't unconditionally copy
3870         // arithmetic wrapping flags to NewI.
3871         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3872       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3873         NewI =
3874             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3875                          ShrinkOperand(CI->getOperand(1)));
3876       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3877         NewI = B.CreateSelect(SI->getCondition(),
3878                               ShrinkOperand(SI->getTrueValue()),
3879                               ShrinkOperand(SI->getFalseValue()));
3880       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3881         switch (CI->getOpcode()) {
3882         default:
3883           llvm_unreachable("Unhandled cast!");
3884         case Instruction::Trunc:
3885           NewI = ShrinkOperand(CI->getOperand(0));
3886           break;
3887         case Instruction::SExt:
3888           NewI = B.CreateSExtOrTrunc(
3889               CI->getOperand(0),
3890               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3891           break;
3892         case Instruction::ZExt:
3893           NewI = B.CreateZExtOrTrunc(
3894               CI->getOperand(0),
3895               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3896           break;
3897         }
3898       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3899         auto Elements0 =
3900             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3901         auto *O0 = B.CreateZExtOrTrunc(
3902             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3903         auto Elements1 =
3904             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3905         auto *O1 = B.CreateZExtOrTrunc(
3906             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3907 
3908         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3909       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3910         // Don't do anything with the operands, just extend the result.
3911         continue;
3912       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3913         auto Elements =
3914             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3915         auto *O0 = B.CreateZExtOrTrunc(
3916             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3917         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3918         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3919       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3920         auto Elements =
3921             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3922         auto *O0 = B.CreateZExtOrTrunc(
3923             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3924         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3925       } else {
3926         // If we don't know what to do, be conservative and don't do anything.
3927         continue;
3928       }
3929 
3930       // Lastly, extend the result.
3931       NewI->takeName(cast<Instruction>(I));
3932       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3933       I->replaceAllUsesWith(Res);
3934       cast<Instruction>(I)->eraseFromParent();
3935       Erased.insert(I);
3936       State.reset(Def, Res, Part);
3937     }
3938   }
3939 
3940   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3941   for (const auto &KV : Cost->getMinimalBitwidths()) {
3942     // If the value wasn't vectorized, we must maintain the original scalar
3943     // type. The absence of the value from State indicates that it
3944     // wasn't vectorized.
3945     // FIXME: Should not rely on getVPValue at this point.
3946     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3947     if (!State.hasAnyVectorValue(Def))
3948       continue;
3949     for (unsigned Part = 0; Part < UF; ++Part) {
3950       Value *I = State.get(Def, Part);
3951       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3952       if (Inst && Inst->use_empty()) {
3953         Value *NewI = Inst->getOperand(0);
3954         Inst->eraseFromParent();
3955         State.reset(Def, NewI, Part);
3956       }
3957     }
3958   }
3959 }
3960 
3961 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3962   // Insert truncates and extends for any truncated instructions as hints to
3963   // InstCombine.
3964   if (VF.isVector())
3965     truncateToMinimalBitwidths(State);
3966 
3967   // Fix widened non-induction PHIs by setting up the PHI operands.
3968   if (OrigPHIsToFix.size()) {
3969     assert(EnableVPlanNativePath &&
3970            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3971     fixNonInductionPHIs(State);
3972   }
3973 
3974   // At this point every instruction in the original loop is widened to a
3975   // vector form. Now we need to fix the recurrences in the loop. These PHI
3976   // nodes are currently empty because we did not want to introduce cycles.
3977   // This is the second stage of vectorizing recurrences.
3978   fixCrossIterationPHIs(State);
3979 
3980   // Forget the original basic block.
3981   PSE.getSE()->forgetLoop(OrigLoop);
3982 
3983   // If we inserted an edge from the middle block to the unique exit block,
3984   // update uses outside the loop (phis) to account for the newly inserted
3985   // edge.
3986   if (!Cost->requiresScalarEpilogue(VF)) {
3987     // Fix-up external users of the induction variables.
3988     for (auto &Entry : Legal->getInductionVars())
3989       fixupIVUsers(Entry.first, Entry.second,
3990                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3991                    IVEndValues[Entry.first], LoopMiddleBlock);
3992 
3993     fixLCSSAPHIs(State);
3994   }
3995 
3996   for (Instruction *PI : PredicatedInstructions)
3997     sinkScalarOperands(&*PI);
3998 
3999   // Remove redundant induction instructions.
4000   cse(LoopVectorBody);
4001 
4002   // Set/update profile weights for the vector and remainder loops as original
4003   // loop iterations are now distributed among them. Note that original loop
4004   // represented by LoopScalarBody becomes remainder loop after vectorization.
4005   //
4006   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4007   // end up getting slightly roughened result but that should be OK since
4008   // profile is not inherently precise anyway. Note also possible bypass of
4009   // vector code caused by legality checks is ignored, assigning all the weight
4010   // to the vector loop, optimistically.
4011   //
4012   // For scalable vectorization we can't know at compile time how many iterations
4013   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4014   // vscale of '1'.
4015   setProfileInfoAfterUnrolling(
4016       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4017       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4018 }
4019 
4020 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4021   // In order to support recurrences we need to be able to vectorize Phi nodes.
4022   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4023   // stage #2: We now need to fix the recurrences by adding incoming edges to
4024   // the currently empty PHI nodes. At this point every instruction in the
4025   // original loop is widened to a vector form so we can use them to construct
4026   // the incoming edges.
4027   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4028   for (VPRecipeBase &R : Header->phis()) {
4029     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4030       fixReduction(ReductionPhi, State);
4031     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4032       fixFirstOrderRecurrence(FOR, State);
4033   }
4034 }
4035 
4036 void InnerLoopVectorizer::fixFirstOrderRecurrence(
4037     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4038   // This is the second phase of vectorizing first-order recurrences. An
4039   // overview of the transformation is described below. Suppose we have the
4040   // following loop.
4041   //
4042   //   for (int i = 0; i < n; ++i)
4043   //     b[i] = a[i] - a[i - 1];
4044   //
4045   // There is a first-order recurrence on "a". For this loop, the shorthand
4046   // scalar IR looks like:
4047   //
4048   //   scalar.ph:
4049   //     s_init = a[-1]
4050   //     br scalar.body
4051   //
4052   //   scalar.body:
4053   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4054   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4055   //     s2 = a[i]
4056   //     b[i] = s2 - s1
4057   //     br cond, scalar.body, ...
4058   //
4059   // In this example, s1 is a recurrence because it's value depends on the
4060   // previous iteration. In the first phase of vectorization, we created a
4061   // vector phi v1 for s1. We now complete the vectorization and produce the
4062   // shorthand vector IR shown below (for VF = 4, UF = 1).
4063   //
4064   //   vector.ph:
4065   //     v_init = vector(..., ..., ..., a[-1])
4066   //     br vector.body
4067   //
4068   //   vector.body
4069   //     i = phi [0, vector.ph], [i+4, vector.body]
4070   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4071   //     v2 = a[i, i+1, i+2, i+3];
4072   //     v3 = vector(v1(3), v2(0, 1, 2))
4073   //     b[i, i+1, i+2, i+3] = v2 - v3
4074   //     br cond, vector.body, middle.block
4075   //
4076   //   middle.block:
4077   //     x = v2(3)
4078   //     br scalar.ph
4079   //
4080   //   scalar.ph:
4081   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4082   //     br scalar.body
4083   //
4084   // After execution completes the vector loop, we extract the next value of
4085   // the recurrence (x) to use as the initial value in the scalar loop.
4086 
4087   // Extract the last vector element in the middle block. This will be the
4088   // initial value for the recurrence when jumping to the scalar loop.
4089   VPValue *PreviousDef = PhiR->getBackedgeValue();
4090   Value *Incoming = State.get(PreviousDef, UF - 1);
4091   auto *ExtractForScalar = Incoming;
4092   auto *IdxTy = Builder.getInt32Ty();
4093   if (VF.isVector()) {
4094     auto *One = ConstantInt::get(IdxTy, 1);
4095     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4096     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4097     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4098     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4099                                                     "vector.recur.extract");
4100   }
4101   // Extract the second last element in the middle block if the
4102   // Phi is used outside the loop. We need to extract the phi itself
4103   // and not the last element (the phi update in the current iteration). This
4104   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4105   // when the scalar loop is not run at all.
4106   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4107   if (VF.isVector()) {
4108     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4109     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4110     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4111         Incoming, Idx, "vector.recur.extract.for.phi");
4112   } else if (UF > 1)
4113     // When loop is unrolled without vectorizing, initialize
4114     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4115     // of `Incoming`. This is analogous to the vectorized case above: extracting
4116     // the second last element when VF > 1.
4117     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4118 
4119   // Fix the initial value of the original recurrence in the scalar loop.
4120   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4121   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4122   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4123   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4124   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4125     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4126     Start->addIncoming(Incoming, BB);
4127   }
4128 
4129   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4130   Phi->setName("scalar.recur");
4131 
4132   // Finally, fix users of the recurrence outside the loop. The users will need
4133   // either the last value of the scalar recurrence or the last value of the
4134   // vector recurrence we extracted in the middle block. Since the loop is in
4135   // LCSSA form, we just need to find all the phi nodes for the original scalar
4136   // recurrence in the exit block, and then add an edge for the middle block.
4137   // Note that LCSSA does not imply single entry when the original scalar loop
4138   // had multiple exiting edges (as we always run the last iteration in the
4139   // scalar epilogue); in that case, there is no edge from middle to exit and
4140   // and thus no phis which needed updated.
4141   if (!Cost->requiresScalarEpilogue(VF))
4142     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4143       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4144         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4145 }
4146 
4147 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4148                                        VPTransformState &State) {
4149   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4150   // Get it's reduction variable descriptor.
4151   assert(Legal->isReductionVariable(OrigPhi) &&
4152          "Unable to find the reduction variable");
4153   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4154 
4155   RecurKind RK = RdxDesc.getRecurrenceKind();
4156   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4157   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4158   setDebugLocFromInst(ReductionStartValue);
4159 
4160   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4161   // This is the vector-clone of the value that leaves the loop.
4162   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4163 
4164   // Wrap flags are in general invalid after vectorization, clear them.
4165   clearReductionWrapFlags(RdxDesc, State);
4166 
4167   // Before each round, move the insertion point right between
4168   // the PHIs and the values we are going to write.
4169   // This allows us to write both PHINodes and the extractelement
4170   // instructions.
4171   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4172 
4173   setDebugLocFromInst(LoopExitInst);
4174 
4175   Type *PhiTy = OrigPhi->getType();
4176   // If tail is folded by masking, the vector value to leave the loop should be
4177   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4178   // instead of the former. For an inloop reduction the reduction will already
4179   // be predicated, and does not need to be handled here.
4180   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4181     for (unsigned Part = 0; Part < UF; ++Part) {
4182       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4183       Value *Sel = nullptr;
4184       for (User *U : VecLoopExitInst->users()) {
4185         if (isa<SelectInst>(U)) {
4186           assert(!Sel && "Reduction exit feeding two selects");
4187           Sel = U;
4188         } else
4189           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4190       }
4191       assert(Sel && "Reduction exit feeds no select");
4192       State.reset(LoopExitInstDef, Sel, Part);
4193 
4194       // If the target can create a predicated operator for the reduction at no
4195       // extra cost in the loop (for example a predicated vadd), it can be
4196       // cheaper for the select to remain in the loop than be sunk out of it,
4197       // and so use the select value for the phi instead of the old
4198       // LoopExitValue.
4199       if (PreferPredicatedReductionSelect ||
4200           TTI->preferPredicatedReductionSelect(
4201               RdxDesc.getOpcode(), PhiTy,
4202               TargetTransformInfo::ReductionFlags())) {
4203         auto *VecRdxPhi =
4204             cast<PHINode>(State.get(PhiR, Part));
4205         VecRdxPhi->setIncomingValueForBlock(
4206             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4207       }
4208     }
4209   }
4210 
4211   // If the vector reduction can be performed in a smaller type, we truncate
4212   // then extend the loop exit value to enable InstCombine to evaluate the
4213   // entire expression in the smaller type.
4214   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4215     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4216     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4217     Builder.SetInsertPoint(
4218         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4219     VectorParts RdxParts(UF);
4220     for (unsigned Part = 0; Part < UF; ++Part) {
4221       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4222       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4223       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4224                                         : Builder.CreateZExt(Trunc, VecTy);
4225       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4226         if (U != Trunc) {
4227           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4228           RdxParts[Part] = Extnd;
4229         }
4230     }
4231     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4232     for (unsigned Part = 0; Part < UF; ++Part) {
4233       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4234       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4235     }
4236   }
4237 
4238   // Reduce all of the unrolled parts into a single vector.
4239   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4240   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4241 
4242   // The middle block terminator has already been assigned a DebugLoc here (the
4243   // OrigLoop's single latch terminator). We want the whole middle block to
4244   // appear to execute on this line because: (a) it is all compiler generated,
4245   // (b) these instructions are always executed after evaluating the latch
4246   // conditional branch, and (c) other passes may add new predecessors which
4247   // terminate on this line. This is the easiest way to ensure we don't
4248   // accidentally cause an extra step back into the loop while debugging.
4249   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4250   if (PhiR->isOrdered())
4251     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4252   else {
4253     // Floating-point operations should have some FMF to enable the reduction.
4254     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4255     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4256     for (unsigned Part = 1; Part < UF; ++Part) {
4257       Value *RdxPart = State.get(LoopExitInstDef, Part);
4258       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4259         ReducedPartRdx = Builder.CreateBinOp(
4260             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4261       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4262         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4263                                            ReducedPartRdx, RdxPart);
4264       else
4265         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4266     }
4267   }
4268 
4269   // Create the reduction after the loop. Note that inloop reductions create the
4270   // target reduction in the loop using a Reduction recipe.
4271   if (VF.isVector() && !PhiR->isInLoop()) {
4272     ReducedPartRdx =
4273         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4274     // If the reduction can be performed in a smaller type, we need to extend
4275     // the reduction to the wider type before we branch to the original loop.
4276     if (PhiTy != RdxDesc.getRecurrenceType())
4277       ReducedPartRdx = RdxDesc.isSigned()
4278                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4279                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4280   }
4281 
4282   // Create a phi node that merges control-flow from the backedge-taken check
4283   // block and the middle block.
4284   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4285                                         LoopScalarPreHeader->getTerminator());
4286   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4287     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4288   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4289 
4290   // Now, we need to fix the users of the reduction variable
4291   // inside and outside of the scalar remainder loop.
4292 
4293   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4294   // in the exit blocks.  See comment on analogous loop in
4295   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4296   if (!Cost->requiresScalarEpilogue(VF))
4297     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4298       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4299         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4300 
4301   // Fix the scalar loop reduction variable with the incoming reduction sum
4302   // from the vector body and from the backedge value.
4303   int IncomingEdgeBlockIdx =
4304       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4305   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4306   // Pick the other block.
4307   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4308   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4309   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4310 }
4311 
4312 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4313                                                   VPTransformState &State) {
4314   RecurKind RK = RdxDesc.getRecurrenceKind();
4315   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4316     return;
4317 
4318   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4319   assert(LoopExitInstr && "null loop exit instruction");
4320   SmallVector<Instruction *, 8> Worklist;
4321   SmallPtrSet<Instruction *, 8> Visited;
4322   Worklist.push_back(LoopExitInstr);
4323   Visited.insert(LoopExitInstr);
4324 
4325   while (!Worklist.empty()) {
4326     Instruction *Cur = Worklist.pop_back_val();
4327     if (isa<OverflowingBinaryOperator>(Cur))
4328       for (unsigned Part = 0; Part < UF; ++Part) {
4329         // FIXME: Should not rely on getVPValue at this point.
4330         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4331         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4332       }
4333 
4334     for (User *U : Cur->users()) {
4335       Instruction *UI = cast<Instruction>(U);
4336       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4337           Visited.insert(UI).second)
4338         Worklist.push_back(UI);
4339     }
4340   }
4341 }
4342 
4343 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4344   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4345     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4346       // Some phis were already hand updated by the reduction and recurrence
4347       // code above, leave them alone.
4348       continue;
4349 
4350     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4351     // Non-instruction incoming values will have only one value.
4352 
4353     VPLane Lane = VPLane::getFirstLane();
4354     if (isa<Instruction>(IncomingValue) &&
4355         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4356                                            VF))
4357       Lane = VPLane::getLastLaneForVF(VF);
4358 
4359     // Can be a loop invariant incoming value or the last scalar value to be
4360     // extracted from the vectorized loop.
4361     // FIXME: Should not rely on getVPValue at this point.
4362     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4363     Value *lastIncomingValue =
4364         OrigLoop->isLoopInvariant(IncomingValue)
4365             ? IncomingValue
4366             : State.get(State.Plan->getVPValue(IncomingValue, true),
4367                         VPIteration(UF - 1, Lane));
4368     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4369   }
4370 }
4371 
4372 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4373   // The basic block and loop containing the predicated instruction.
4374   auto *PredBB = PredInst->getParent();
4375   auto *VectorLoop = LI->getLoopFor(PredBB);
4376 
4377   // Initialize a worklist with the operands of the predicated instruction.
4378   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4379 
4380   // Holds instructions that we need to analyze again. An instruction may be
4381   // reanalyzed if we don't yet know if we can sink it or not.
4382   SmallVector<Instruction *, 8> InstsToReanalyze;
4383 
4384   // Returns true if a given use occurs in the predicated block. Phi nodes use
4385   // their operands in their corresponding predecessor blocks.
4386   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4387     auto *I = cast<Instruction>(U.getUser());
4388     BasicBlock *BB = I->getParent();
4389     if (auto *Phi = dyn_cast<PHINode>(I))
4390       BB = Phi->getIncomingBlock(
4391           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4392     return BB == PredBB;
4393   };
4394 
4395   // Iteratively sink the scalarized operands of the predicated instruction
4396   // into the block we created for it. When an instruction is sunk, it's
4397   // operands are then added to the worklist. The algorithm ends after one pass
4398   // through the worklist doesn't sink a single instruction.
4399   bool Changed;
4400   do {
4401     // Add the instructions that need to be reanalyzed to the worklist, and
4402     // reset the changed indicator.
4403     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4404     InstsToReanalyze.clear();
4405     Changed = false;
4406 
4407     while (!Worklist.empty()) {
4408       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4409 
4410       // We can't sink an instruction if it is a phi node, is not in the loop,
4411       // or may have side effects.
4412       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4413           I->mayHaveSideEffects())
4414         continue;
4415 
4416       // If the instruction is already in PredBB, check if we can sink its
4417       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4418       // sinking the scalar instruction I, hence it appears in PredBB; but it
4419       // may have failed to sink I's operands (recursively), which we try
4420       // (again) here.
4421       if (I->getParent() == PredBB) {
4422         Worklist.insert(I->op_begin(), I->op_end());
4423         continue;
4424       }
4425 
4426       // It's legal to sink the instruction if all its uses occur in the
4427       // predicated block. Otherwise, there's nothing to do yet, and we may
4428       // need to reanalyze the instruction.
4429       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4430         InstsToReanalyze.push_back(I);
4431         continue;
4432       }
4433 
4434       // Move the instruction to the beginning of the predicated block, and add
4435       // it's operands to the worklist.
4436       I->moveBefore(&*PredBB->getFirstInsertionPt());
4437       Worklist.insert(I->op_begin(), I->op_end());
4438 
4439       // The sinking may have enabled other instructions to be sunk, so we will
4440       // need to iterate.
4441       Changed = true;
4442     }
4443   } while (Changed);
4444 }
4445 
4446 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4447   for (PHINode *OrigPhi : OrigPHIsToFix) {
4448     VPWidenPHIRecipe *VPPhi =
4449         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4450     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4451     // Make sure the builder has a valid insert point.
4452     Builder.SetInsertPoint(NewPhi);
4453     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4454       VPValue *Inc = VPPhi->getIncomingValue(i);
4455       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4456       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4457     }
4458   }
4459 }
4460 
4461 bool InnerLoopVectorizer::useOrderedReductions(
4462     const RecurrenceDescriptor &RdxDesc) {
4463   return Cost->useOrderedReductions(RdxDesc);
4464 }
4465 
4466 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4467                                               VPWidenPHIRecipe *PhiR,
4468                                               VPTransformState &State) {
4469   PHINode *P = cast<PHINode>(PN);
4470   if (EnableVPlanNativePath) {
4471     // Currently we enter here in the VPlan-native path for non-induction
4472     // PHIs where all control flow is uniform. We simply widen these PHIs.
4473     // Create a vector phi with no operands - the vector phi operands will be
4474     // set at the end of vector code generation.
4475     Type *VecTy = (State.VF.isScalar())
4476                       ? PN->getType()
4477                       : VectorType::get(PN->getType(), State.VF);
4478     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4479     State.set(PhiR, VecPhi, 0);
4480     OrigPHIsToFix.push_back(P);
4481 
4482     return;
4483   }
4484 
4485   assert(PN->getParent() == OrigLoop->getHeader() &&
4486          "Non-header phis should have been handled elsewhere");
4487 
4488   // In order to support recurrences we need to be able to vectorize Phi nodes.
4489   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4490   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4491   // this value when we vectorize all of the instructions that use the PHI.
4492 
4493   assert(!Legal->isReductionVariable(P) &&
4494          "reductions should be handled elsewhere");
4495 
4496   setDebugLocFromInst(P);
4497 
4498   // This PHINode must be an induction variable.
4499   // Make sure that we know about it.
4500   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4501 
4502   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4503   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4504 
4505   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4506   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4507 
4508   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4509   // which can be found from the original scalar operations.
4510   switch (II.getKind()) {
4511   case InductionDescriptor::IK_NoInduction:
4512     llvm_unreachable("Unknown induction");
4513   case InductionDescriptor::IK_IntInduction:
4514   case InductionDescriptor::IK_FpInduction:
4515     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4516   case InductionDescriptor::IK_PtrInduction: {
4517     // Handle the pointer induction variable case.
4518     assert(P->getType()->isPointerTy() && "Unexpected type.");
4519 
4520     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4521       // This is the normalized GEP that starts counting at zero.
4522       Value *PtrInd =
4523           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4524       // Determine the number of scalars we need to generate for each unroll
4525       // iteration. If the instruction is uniform, we only need to generate the
4526       // first lane. Otherwise, we generate all VF values.
4527       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4528       assert((IsUniform || !State.VF.isScalable()) &&
4529              "Cannot scalarize a scalable VF");
4530       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4531 
4532       for (unsigned Part = 0; Part < UF; ++Part) {
4533         Value *PartStart =
4534             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4535 
4536         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4537           Value *Idx = Builder.CreateAdd(
4538               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4539           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4540           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4541                                                 DL, II, State.CFG.PrevBB);
4542           SclrGep->setName("next.gep");
4543           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4544         }
4545       }
4546       return;
4547     }
4548     assert(isa<SCEVConstant>(II.getStep()) &&
4549            "Induction step not a SCEV constant!");
4550     Type *PhiType = II.getStep()->getType();
4551 
4552     // Build a pointer phi
4553     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4554     Type *ScStValueType = ScalarStartValue->getType();
4555     PHINode *NewPointerPhi =
4556         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4557     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4558 
4559     // A pointer induction, performed by using a gep
4560     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4561     Instruction *InductionLoc = LoopLatch->getTerminator();
4562     const SCEV *ScalarStep = II.getStep();
4563     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4564     Value *ScalarStepValue =
4565         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4566     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4567     Value *NumUnrolledElems =
4568         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4569     Value *InductionGEP = GetElementPtrInst::Create(
4570         II.getElementType(), NewPointerPhi,
4571         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4572         InductionLoc);
4573     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4574 
4575     // Create UF many actual address geps that use the pointer
4576     // phi as base and a vectorized version of the step value
4577     // (<step*0, ..., step*N>) as offset.
4578     for (unsigned Part = 0; Part < State.UF; ++Part) {
4579       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4580       Value *StartOffsetScalar =
4581           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4582       Value *StartOffset =
4583           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4584       // Create a vector of consecutive numbers from zero to VF.
4585       StartOffset =
4586           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4587 
4588       Value *GEP = Builder.CreateGEP(
4589           II.getElementType(), NewPointerPhi,
4590           Builder.CreateMul(
4591               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4592               "vector.gep"));
4593       State.set(PhiR, GEP, Part);
4594     }
4595   }
4596   }
4597 }
4598 
4599 /// A helper function for checking whether an integer division-related
4600 /// instruction may divide by zero (in which case it must be predicated if
4601 /// executed conditionally in the scalar code).
4602 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4603 /// Non-zero divisors that are non compile-time constants will not be
4604 /// converted into multiplication, so we will still end up scalarizing
4605 /// the division, but can do so w/o predication.
4606 static bool mayDivideByZero(Instruction &I) {
4607   assert((I.getOpcode() == Instruction::UDiv ||
4608           I.getOpcode() == Instruction::SDiv ||
4609           I.getOpcode() == Instruction::URem ||
4610           I.getOpcode() == Instruction::SRem) &&
4611          "Unexpected instruction");
4612   Value *Divisor = I.getOperand(1);
4613   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4614   return !CInt || CInt->isZero();
4615 }
4616 
4617 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4618                                                VPUser &ArgOperands,
4619                                                VPTransformState &State) {
4620   assert(!isa<DbgInfoIntrinsic>(I) &&
4621          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4622   setDebugLocFromInst(&I);
4623 
4624   Module *M = I.getParent()->getParent()->getParent();
4625   auto *CI = cast<CallInst>(&I);
4626 
4627   SmallVector<Type *, 4> Tys;
4628   for (Value *ArgOperand : CI->args())
4629     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4630 
4631   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4632 
4633   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4634   // version of the instruction.
4635   // Is it beneficial to perform intrinsic call compared to lib call?
4636   bool NeedToScalarize = false;
4637   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4638   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4639   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4640   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4641          "Instruction should be scalarized elsewhere.");
4642   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4643          "Either the intrinsic cost or vector call cost must be valid");
4644 
4645   for (unsigned Part = 0; Part < UF; ++Part) {
4646     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4647     SmallVector<Value *, 4> Args;
4648     for (auto &I : enumerate(ArgOperands.operands())) {
4649       // Some intrinsics have a scalar argument - don't replace it with a
4650       // vector.
4651       Value *Arg;
4652       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4653         Arg = State.get(I.value(), Part);
4654       else {
4655         Arg = State.get(I.value(), VPIteration(0, 0));
4656         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4657           TysForDecl.push_back(Arg->getType());
4658       }
4659       Args.push_back(Arg);
4660     }
4661 
4662     Function *VectorF;
4663     if (UseVectorIntrinsic) {
4664       // Use vector version of the intrinsic.
4665       if (VF.isVector())
4666         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4667       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4668       assert(VectorF && "Can't retrieve vector intrinsic.");
4669     } else {
4670       // Use vector version of the function call.
4671       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4672 #ifndef NDEBUG
4673       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4674              "Can't create vector function.");
4675 #endif
4676         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4677     }
4678       SmallVector<OperandBundleDef, 1> OpBundles;
4679       CI->getOperandBundlesAsDefs(OpBundles);
4680       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4681 
4682       if (isa<FPMathOperator>(V))
4683         V->copyFastMathFlags(CI);
4684 
4685       State.set(Def, V, Part);
4686       addMetadata(V, &I);
4687   }
4688 }
4689 
4690 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4691   // We should not collect Scalars more than once per VF. Right now, this
4692   // function is called from collectUniformsAndScalars(), which already does
4693   // this check. Collecting Scalars for VF=1 does not make any sense.
4694   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4695          "This function should not be visited twice for the same VF");
4696 
4697   SmallSetVector<Instruction *, 8> Worklist;
4698 
4699   // These sets are used to seed the analysis with pointers used by memory
4700   // accesses that will remain scalar.
4701   SmallSetVector<Instruction *, 8> ScalarPtrs;
4702   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4703   auto *Latch = TheLoop->getLoopLatch();
4704 
4705   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4706   // The pointer operands of loads and stores will be scalar as long as the
4707   // memory access is not a gather or scatter operation. The value operand of a
4708   // store will remain scalar if the store is scalarized.
4709   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4710     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4711     assert(WideningDecision != CM_Unknown &&
4712            "Widening decision should be ready at this moment");
4713     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4714       if (Ptr == Store->getValueOperand())
4715         return WideningDecision == CM_Scalarize;
4716     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4717            "Ptr is neither a value or pointer operand");
4718     return WideningDecision != CM_GatherScatter;
4719   };
4720 
4721   // A helper that returns true if the given value is a bitcast or
4722   // getelementptr instruction contained in the loop.
4723   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4724     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4725             isa<GetElementPtrInst>(V)) &&
4726            !TheLoop->isLoopInvariant(V);
4727   };
4728 
4729   // A helper that evaluates a memory access's use of a pointer. If the use will
4730   // be a scalar use and the pointer is only used by memory accesses, we place
4731   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4732   // PossibleNonScalarPtrs.
4733   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4734     // We only care about bitcast and getelementptr instructions contained in
4735     // the loop.
4736     if (!isLoopVaryingBitCastOrGEP(Ptr))
4737       return;
4738 
4739     // If the pointer has already been identified as scalar (e.g., if it was
4740     // also identified as uniform), there's nothing to do.
4741     auto *I = cast<Instruction>(Ptr);
4742     if (Worklist.count(I))
4743       return;
4744 
4745     // If the use of the pointer will be a scalar use, and all users of the
4746     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4747     // place the pointer in PossibleNonScalarPtrs.
4748     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4749           return isa<LoadInst>(U) || isa<StoreInst>(U);
4750         }))
4751       ScalarPtrs.insert(I);
4752     else
4753       PossibleNonScalarPtrs.insert(I);
4754   };
4755 
4756   // We seed the scalars analysis with three classes of instructions: (1)
4757   // instructions marked uniform-after-vectorization and (2) bitcast,
4758   // getelementptr and (pointer) phi instructions used by memory accesses
4759   // requiring a scalar use.
4760   //
4761   // (1) Add to the worklist all instructions that have been identified as
4762   // uniform-after-vectorization.
4763   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4764 
4765   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4766   // memory accesses requiring a scalar use. The pointer operands of loads and
4767   // stores will be scalar as long as the memory accesses is not a gather or
4768   // scatter operation. The value operand of a store will remain scalar if the
4769   // store is scalarized.
4770   for (auto *BB : TheLoop->blocks())
4771     for (auto &I : *BB) {
4772       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4773         evaluatePtrUse(Load, Load->getPointerOperand());
4774       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4775         evaluatePtrUse(Store, Store->getPointerOperand());
4776         evaluatePtrUse(Store, Store->getValueOperand());
4777       }
4778     }
4779   for (auto *I : ScalarPtrs)
4780     if (!PossibleNonScalarPtrs.count(I)) {
4781       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4782       Worklist.insert(I);
4783     }
4784 
4785   // Insert the forced scalars.
4786   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4787   // induction variable when the PHI user is scalarized.
4788   auto ForcedScalar = ForcedScalars.find(VF);
4789   if (ForcedScalar != ForcedScalars.end())
4790     for (auto *I : ForcedScalar->second)
4791       Worklist.insert(I);
4792 
4793   // Expand the worklist by looking through any bitcasts and getelementptr
4794   // instructions we've already identified as scalar. This is similar to the
4795   // expansion step in collectLoopUniforms(); however, here we're only
4796   // expanding to include additional bitcasts and getelementptr instructions.
4797   unsigned Idx = 0;
4798   while (Idx != Worklist.size()) {
4799     Instruction *Dst = Worklist[Idx++];
4800     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4801       continue;
4802     auto *Src = cast<Instruction>(Dst->getOperand(0));
4803     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4804           auto *J = cast<Instruction>(U);
4805           return !TheLoop->contains(J) || Worklist.count(J) ||
4806                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4807                   isScalarUse(J, Src));
4808         })) {
4809       Worklist.insert(Src);
4810       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4811     }
4812   }
4813 
4814   // An induction variable will remain scalar if all users of the induction
4815   // variable and induction variable update remain scalar.
4816   for (auto &Induction : Legal->getInductionVars()) {
4817     auto *Ind = Induction.first;
4818     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4819 
4820     // If tail-folding is applied, the primary induction variable will be used
4821     // to feed a vector compare.
4822     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4823       continue;
4824 
4825     // Returns true if \p Indvar is a pointer induction that is used directly by
4826     // load/store instruction \p I.
4827     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4828                                               Instruction *I) {
4829       return Induction.second.getKind() ==
4830                  InductionDescriptor::IK_PtrInduction &&
4831              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4832              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4833     };
4834 
4835     // Determine if all users of the induction variable are scalar after
4836     // vectorization.
4837     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4838       auto *I = cast<Instruction>(U);
4839       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4840              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4841     });
4842     if (!ScalarInd)
4843       continue;
4844 
4845     // Determine if all users of the induction variable update instruction are
4846     // scalar after vectorization.
4847     auto ScalarIndUpdate =
4848         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4849           auto *I = cast<Instruction>(U);
4850           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4851                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4852         });
4853     if (!ScalarIndUpdate)
4854       continue;
4855 
4856     // The induction variable and its update instruction will remain scalar.
4857     Worklist.insert(Ind);
4858     Worklist.insert(IndUpdate);
4859     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4860     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4861                       << "\n");
4862   }
4863 
4864   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4865 }
4866 
4867 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
4868   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4869     return false;
4870   switch(I->getOpcode()) {
4871   default:
4872     break;
4873   case Instruction::Load:
4874   case Instruction::Store: {
4875     if (!Legal->isMaskRequired(I))
4876       return false;
4877     auto *Ptr = getLoadStorePointerOperand(I);
4878     auto *Ty = getLoadStoreType(I);
4879     const Align Alignment = getLoadStoreAlignment(I);
4880     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4881                                 TTI.isLegalMaskedGather(Ty, Alignment))
4882                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4883                                 TTI.isLegalMaskedScatter(Ty, Alignment));
4884   }
4885   case Instruction::UDiv:
4886   case Instruction::SDiv:
4887   case Instruction::SRem:
4888   case Instruction::URem:
4889     return mayDivideByZero(*I);
4890   }
4891   return false;
4892 }
4893 
4894 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4895     Instruction *I, ElementCount VF) {
4896   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4897   assert(getWideningDecision(I, VF) == CM_Unknown &&
4898          "Decision should not be set yet.");
4899   auto *Group = getInterleavedAccessGroup(I);
4900   assert(Group && "Must have a group.");
4901 
4902   // If the instruction's allocated size doesn't equal it's type size, it
4903   // requires padding and will be scalarized.
4904   auto &DL = I->getModule()->getDataLayout();
4905   auto *ScalarTy = getLoadStoreType(I);
4906   if (hasIrregularType(ScalarTy, DL))
4907     return false;
4908 
4909   // Check if masking is required.
4910   // A Group may need masking for one of two reasons: it resides in a block that
4911   // needs predication, or it was decided to use masking to deal with gaps
4912   // (either a gap at the end of a load-access that may result in a speculative
4913   // load, or any gaps in a store-access).
4914   bool PredicatedAccessRequiresMasking =
4915       blockNeedsPredicationForAnyReason(I->getParent()) &&
4916       Legal->isMaskRequired(I);
4917   bool LoadAccessWithGapsRequiresEpilogMasking =
4918       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4919       !isScalarEpilogueAllowed();
4920   bool StoreAccessWithGapsRequiresMasking =
4921       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4922   if (!PredicatedAccessRequiresMasking &&
4923       !LoadAccessWithGapsRequiresEpilogMasking &&
4924       !StoreAccessWithGapsRequiresMasking)
4925     return true;
4926 
4927   // If masked interleaving is required, we expect that the user/target had
4928   // enabled it, because otherwise it either wouldn't have been created or
4929   // it should have been invalidated by the CostModel.
4930   assert(useMaskedInterleavedAccesses(TTI) &&
4931          "Masked interleave-groups for predicated accesses are not enabled.");
4932 
4933   if (Group->isReverse())
4934     return false;
4935 
4936   auto *Ty = getLoadStoreType(I);
4937   const Align Alignment = getLoadStoreAlignment(I);
4938   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4939                           : TTI.isLegalMaskedStore(Ty, Alignment);
4940 }
4941 
4942 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4943     Instruction *I, ElementCount VF) {
4944   // Get and ensure we have a valid memory instruction.
4945   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4946 
4947   auto *Ptr = getLoadStorePointerOperand(I);
4948   auto *ScalarTy = getLoadStoreType(I);
4949 
4950   // In order to be widened, the pointer should be consecutive, first of all.
4951   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4952     return false;
4953 
4954   // If the instruction is a store located in a predicated block, it will be
4955   // scalarized.
4956   if (isScalarWithPredication(I))
4957     return false;
4958 
4959   // If the instruction's allocated size doesn't equal it's type size, it
4960   // requires padding and will be scalarized.
4961   auto &DL = I->getModule()->getDataLayout();
4962   if (hasIrregularType(ScalarTy, DL))
4963     return false;
4964 
4965   return true;
4966 }
4967 
4968 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4969   // We should not collect Uniforms more than once per VF. Right now,
4970   // this function is called from collectUniformsAndScalars(), which
4971   // already does this check. Collecting Uniforms for VF=1 does not make any
4972   // sense.
4973 
4974   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4975          "This function should not be visited twice for the same VF");
4976 
4977   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4978   // not analyze again.  Uniforms.count(VF) will return 1.
4979   Uniforms[VF].clear();
4980 
4981   // We now know that the loop is vectorizable!
4982   // Collect instructions inside the loop that will remain uniform after
4983   // vectorization.
4984 
4985   // Global values, params and instructions outside of current loop are out of
4986   // scope.
4987   auto isOutOfScope = [&](Value *V) -> bool {
4988     Instruction *I = dyn_cast<Instruction>(V);
4989     return (!I || !TheLoop->contains(I));
4990   };
4991 
4992   // Worklist containing uniform instructions demanding lane 0.
4993   SetVector<Instruction *> Worklist;
4994   BasicBlock *Latch = TheLoop->getLoopLatch();
4995 
4996   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4997   // that are scalar with predication must not be considered uniform after
4998   // vectorization, because that would create an erroneous replicating region
4999   // where only a single instance out of VF should be formed.
5000   // TODO: optimize such seldom cases if found important, see PR40816.
5001   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5002     if (isOutOfScope(I)) {
5003       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5004                         << *I << "\n");
5005       return;
5006     }
5007     if (isScalarWithPredication(I)) {
5008       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5009                         << *I << "\n");
5010       return;
5011     }
5012     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5013     Worklist.insert(I);
5014   };
5015 
5016   // Start with the conditional branch. If the branch condition is an
5017   // instruction contained in the loop that is only used by the branch, it is
5018   // uniform.
5019   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5020   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5021     addToWorklistIfAllowed(Cmp);
5022 
5023   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5024     InstWidening WideningDecision = getWideningDecision(I, VF);
5025     assert(WideningDecision != CM_Unknown &&
5026            "Widening decision should be ready at this moment");
5027 
5028     // A uniform memory op is itself uniform.  We exclude uniform stores
5029     // here as they demand the last lane, not the first one.
5030     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5031       assert(WideningDecision == CM_Scalarize);
5032       return true;
5033     }
5034 
5035     return (WideningDecision == CM_Widen ||
5036             WideningDecision == CM_Widen_Reverse ||
5037             WideningDecision == CM_Interleave);
5038   };
5039 
5040 
5041   // Returns true if Ptr is the pointer operand of a memory access instruction
5042   // I, and I is known to not require scalarization.
5043   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5044     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5045   };
5046 
5047   // Holds a list of values which are known to have at least one uniform use.
5048   // Note that there may be other uses which aren't uniform.  A "uniform use"
5049   // here is something which only demands lane 0 of the unrolled iterations;
5050   // it does not imply that all lanes produce the same value (e.g. this is not
5051   // the usual meaning of uniform)
5052   SetVector<Value *> HasUniformUse;
5053 
5054   // Scan the loop for instructions which are either a) known to have only
5055   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5056   for (auto *BB : TheLoop->blocks())
5057     for (auto &I : *BB) {
5058       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5059         switch (II->getIntrinsicID()) {
5060         case Intrinsic::sideeffect:
5061         case Intrinsic::experimental_noalias_scope_decl:
5062         case Intrinsic::assume:
5063         case Intrinsic::lifetime_start:
5064         case Intrinsic::lifetime_end:
5065           if (TheLoop->hasLoopInvariantOperands(&I))
5066             addToWorklistIfAllowed(&I);
5067           break;
5068         default:
5069           break;
5070         }
5071       }
5072 
5073       // ExtractValue instructions must be uniform, because the operands are
5074       // known to be loop-invariant.
5075       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5076         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5077                "Expected aggregate value to be loop invariant");
5078         addToWorklistIfAllowed(EVI);
5079         continue;
5080       }
5081 
5082       // If there's no pointer operand, there's nothing to do.
5083       auto *Ptr = getLoadStorePointerOperand(&I);
5084       if (!Ptr)
5085         continue;
5086 
5087       // A uniform memory op is itself uniform.  We exclude uniform stores
5088       // here as they demand the last lane, not the first one.
5089       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5090         addToWorklistIfAllowed(&I);
5091 
5092       if (isUniformDecision(&I, VF)) {
5093         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5094         HasUniformUse.insert(Ptr);
5095       }
5096     }
5097 
5098   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5099   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5100   // disallows uses outside the loop as well.
5101   for (auto *V : HasUniformUse) {
5102     if (isOutOfScope(V))
5103       continue;
5104     auto *I = cast<Instruction>(V);
5105     auto UsersAreMemAccesses =
5106       llvm::all_of(I->users(), [&](User *U) -> bool {
5107         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5108       });
5109     if (UsersAreMemAccesses)
5110       addToWorklistIfAllowed(I);
5111   }
5112 
5113   // Expand Worklist in topological order: whenever a new instruction
5114   // is added , its users should be already inside Worklist.  It ensures
5115   // a uniform instruction will only be used by uniform instructions.
5116   unsigned idx = 0;
5117   while (idx != Worklist.size()) {
5118     Instruction *I = Worklist[idx++];
5119 
5120     for (auto OV : I->operand_values()) {
5121       // isOutOfScope operands cannot be uniform instructions.
5122       if (isOutOfScope(OV))
5123         continue;
5124       // First order recurrence Phi's should typically be considered
5125       // non-uniform.
5126       auto *OP = dyn_cast<PHINode>(OV);
5127       if (OP && Legal->isFirstOrderRecurrence(OP))
5128         continue;
5129       // If all the users of the operand are uniform, then add the
5130       // operand into the uniform worklist.
5131       auto *OI = cast<Instruction>(OV);
5132       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5133             auto *J = cast<Instruction>(U);
5134             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5135           }))
5136         addToWorklistIfAllowed(OI);
5137     }
5138   }
5139 
5140   // For an instruction to be added into Worklist above, all its users inside
5141   // the loop should also be in Worklist. However, this condition cannot be
5142   // true for phi nodes that form a cyclic dependence. We must process phi
5143   // nodes separately. An induction variable will remain uniform if all users
5144   // of the induction variable and induction variable update remain uniform.
5145   // The code below handles both pointer and non-pointer induction variables.
5146   for (auto &Induction : Legal->getInductionVars()) {
5147     auto *Ind = Induction.first;
5148     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5149 
5150     // Determine if all users of the induction variable are uniform after
5151     // vectorization.
5152     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5153       auto *I = cast<Instruction>(U);
5154       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5155              isVectorizedMemAccessUse(I, Ind);
5156     });
5157     if (!UniformInd)
5158       continue;
5159 
5160     // Determine if all users of the induction variable update instruction are
5161     // uniform after vectorization.
5162     auto UniformIndUpdate =
5163         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5164           auto *I = cast<Instruction>(U);
5165           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5166                  isVectorizedMemAccessUse(I, IndUpdate);
5167         });
5168     if (!UniformIndUpdate)
5169       continue;
5170 
5171     // The induction variable and its update instruction will remain uniform.
5172     addToWorklistIfAllowed(Ind);
5173     addToWorklistIfAllowed(IndUpdate);
5174   }
5175 
5176   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5177 }
5178 
5179 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5180   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5181 
5182   if (Legal->getRuntimePointerChecking()->Need) {
5183     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5184         "runtime pointer checks needed. Enable vectorization of this "
5185         "loop with '#pragma clang loop vectorize(enable)' when "
5186         "compiling with -Os/-Oz",
5187         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5188     return true;
5189   }
5190 
5191   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5192     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5193         "runtime SCEV checks needed. Enable vectorization of this "
5194         "loop with '#pragma clang loop vectorize(enable)' when "
5195         "compiling with -Os/-Oz",
5196         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5197     return true;
5198   }
5199 
5200   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5201   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5202     reportVectorizationFailure("Runtime stride check for small trip count",
5203         "runtime stride == 1 checks needed. Enable vectorization of "
5204         "this loop without such check by compiling with -Os/-Oz",
5205         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5206     return true;
5207   }
5208 
5209   return false;
5210 }
5211 
5212 ElementCount
5213 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5214   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5215     return ElementCount::getScalable(0);
5216 
5217   if (Hints->isScalableVectorizationDisabled()) {
5218     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5219                             "ScalableVectorizationDisabled", ORE, TheLoop);
5220     return ElementCount::getScalable(0);
5221   }
5222 
5223   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5224 
5225   auto MaxScalableVF = ElementCount::getScalable(
5226       std::numeric_limits<ElementCount::ScalarTy>::max());
5227 
5228   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5229   // FIXME: While for scalable vectors this is currently sufficient, this should
5230   // be replaced by a more detailed mechanism that filters out specific VFs,
5231   // instead of invalidating vectorization for a whole set of VFs based on the
5232   // MaxVF.
5233 
5234   // Disable scalable vectorization if the loop contains unsupported reductions.
5235   if (!canVectorizeReductions(MaxScalableVF)) {
5236     reportVectorizationInfo(
5237         "Scalable vectorization not supported for the reduction "
5238         "operations found in this loop.",
5239         "ScalableVFUnfeasible", ORE, TheLoop);
5240     return ElementCount::getScalable(0);
5241   }
5242 
5243   // Disable scalable vectorization if the loop contains any instructions
5244   // with element types not supported for scalable vectors.
5245   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5246         return !Ty->isVoidTy() &&
5247                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5248       })) {
5249     reportVectorizationInfo("Scalable vectorization is not supported "
5250                             "for all element types found in this loop.",
5251                             "ScalableVFUnfeasible", ORE, TheLoop);
5252     return ElementCount::getScalable(0);
5253   }
5254 
5255   if (Legal->isSafeForAnyVectorWidth())
5256     return MaxScalableVF;
5257 
5258   // Limit MaxScalableVF by the maximum safe dependence distance.
5259   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5260   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5261     MaxVScale =
5262         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5263   MaxScalableVF = ElementCount::getScalable(
5264       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5265   if (!MaxScalableVF)
5266     reportVectorizationInfo(
5267         "Max legal vector width too small, scalable vectorization "
5268         "unfeasible.",
5269         "ScalableVFUnfeasible", ORE, TheLoop);
5270 
5271   return MaxScalableVF;
5272 }
5273 
5274 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5275     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5276   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5277   unsigned SmallestType, WidestType;
5278   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5279 
5280   // Get the maximum safe dependence distance in bits computed by LAA.
5281   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5282   // the memory accesses that is most restrictive (involved in the smallest
5283   // dependence distance).
5284   unsigned MaxSafeElements =
5285       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5286 
5287   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5288   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5289 
5290   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5291                     << ".\n");
5292   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5293                     << ".\n");
5294 
5295   // First analyze the UserVF, fall back if the UserVF should be ignored.
5296   if (UserVF) {
5297     auto MaxSafeUserVF =
5298         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5299 
5300     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5301       // If `VF=vscale x N` is safe, then so is `VF=N`
5302       if (UserVF.isScalable())
5303         return FixedScalableVFPair(
5304             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5305       else
5306         return UserVF;
5307     }
5308 
5309     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5310 
5311     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5312     // is better to ignore the hint and let the compiler choose a suitable VF.
5313     if (!UserVF.isScalable()) {
5314       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5315                         << " is unsafe, clamping to max safe VF="
5316                         << MaxSafeFixedVF << ".\n");
5317       ORE->emit([&]() {
5318         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5319                                           TheLoop->getStartLoc(),
5320                                           TheLoop->getHeader())
5321                << "User-specified vectorization factor "
5322                << ore::NV("UserVectorizationFactor", UserVF)
5323                << " is unsafe, clamping to maximum safe vectorization factor "
5324                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5325       });
5326       return MaxSafeFixedVF;
5327     }
5328 
5329     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5330       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5331                         << " is ignored because scalable vectors are not "
5332                            "available.\n");
5333       ORE->emit([&]() {
5334         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5335                                           TheLoop->getStartLoc(),
5336                                           TheLoop->getHeader())
5337                << "User-specified vectorization factor "
5338                << ore::NV("UserVectorizationFactor", UserVF)
5339                << " is ignored because the target does not support scalable "
5340                   "vectors. The compiler will pick a more suitable value.";
5341       });
5342     } else {
5343       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5344                         << " is unsafe. Ignoring scalable UserVF.\n");
5345       ORE->emit([&]() {
5346         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5347                                           TheLoop->getStartLoc(),
5348                                           TheLoop->getHeader())
5349                << "User-specified vectorization factor "
5350                << ore::NV("UserVectorizationFactor", UserVF)
5351                << " is unsafe. Ignoring the hint to let the compiler pick a "
5352                   "more suitable value.";
5353       });
5354     }
5355   }
5356 
5357   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5358                     << " / " << WidestType << " bits.\n");
5359 
5360   FixedScalableVFPair Result(ElementCount::getFixed(1),
5361                              ElementCount::getScalable(0));
5362   if (auto MaxVF =
5363           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5364                                   MaxSafeFixedVF, FoldTailByMasking))
5365     Result.FixedVF = MaxVF;
5366 
5367   if (auto MaxVF =
5368           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5369                                   MaxSafeScalableVF, FoldTailByMasking))
5370     if (MaxVF.isScalable()) {
5371       Result.ScalableVF = MaxVF;
5372       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5373                         << "\n");
5374     }
5375 
5376   return Result;
5377 }
5378 
5379 FixedScalableVFPair
5380 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5381   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5382     // TODO: It may by useful to do since it's still likely to be dynamically
5383     // uniform if the target can skip.
5384     reportVectorizationFailure(
5385         "Not inserting runtime ptr check for divergent target",
5386         "runtime pointer checks needed. Not enabled for divergent target",
5387         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5388     return FixedScalableVFPair::getNone();
5389   }
5390 
5391   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5392   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5393   if (TC == 1) {
5394     reportVectorizationFailure("Single iteration (non) loop",
5395         "loop trip count is one, irrelevant for vectorization",
5396         "SingleIterationLoop", ORE, TheLoop);
5397     return FixedScalableVFPair::getNone();
5398   }
5399 
5400   switch (ScalarEpilogueStatus) {
5401   case CM_ScalarEpilogueAllowed:
5402     return computeFeasibleMaxVF(TC, UserVF, false);
5403   case CM_ScalarEpilogueNotAllowedUsePredicate:
5404     LLVM_FALLTHROUGH;
5405   case CM_ScalarEpilogueNotNeededUsePredicate:
5406     LLVM_DEBUG(
5407         dbgs() << "LV: vector predicate hint/switch found.\n"
5408                << "LV: Not allowing scalar epilogue, creating predicated "
5409                << "vector loop.\n");
5410     break;
5411   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5412     // fallthrough as a special case of OptForSize
5413   case CM_ScalarEpilogueNotAllowedOptSize:
5414     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5415       LLVM_DEBUG(
5416           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5417     else
5418       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5419                         << "count.\n");
5420 
5421     // Bail if runtime checks are required, which are not good when optimising
5422     // for size.
5423     if (runtimeChecksRequired())
5424       return FixedScalableVFPair::getNone();
5425 
5426     break;
5427   }
5428 
5429   // The only loops we can vectorize without a scalar epilogue, are loops with
5430   // a bottom-test and a single exiting block. We'd have to handle the fact
5431   // that not every instruction executes on the last iteration.  This will
5432   // require a lane mask which varies through the vector loop body.  (TODO)
5433   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5434     // If there was a tail-folding hint/switch, but we can't fold the tail by
5435     // masking, fallback to a vectorization with a scalar epilogue.
5436     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5437       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5438                            "scalar epilogue instead.\n");
5439       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5440       return computeFeasibleMaxVF(TC, UserVF, false);
5441     }
5442     return FixedScalableVFPair::getNone();
5443   }
5444 
5445   // Now try the tail folding
5446 
5447   // Invalidate interleave groups that require an epilogue if we can't mask
5448   // the interleave-group.
5449   if (!useMaskedInterleavedAccesses(TTI)) {
5450     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5451            "No decisions should have been taken at this point");
5452     // Note: There is no need to invalidate any cost modeling decisions here, as
5453     // non where taken so far.
5454     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5455   }
5456 
5457   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5458   // Avoid tail folding if the trip count is known to be a multiple of any VF
5459   // we chose.
5460   // FIXME: The condition below pessimises the case for fixed-width vectors,
5461   // when scalable VFs are also candidates for vectorization.
5462   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5463     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5464     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5465            "MaxFixedVF must be a power of 2");
5466     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5467                                    : MaxFixedVF.getFixedValue();
5468     ScalarEvolution *SE = PSE.getSE();
5469     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5470     const SCEV *ExitCount = SE->getAddExpr(
5471         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5472     const SCEV *Rem = SE->getURemExpr(
5473         SE->applyLoopGuards(ExitCount, TheLoop),
5474         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5475     if (Rem->isZero()) {
5476       // Accept MaxFixedVF if we do not have a tail.
5477       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5478       return MaxFactors;
5479     }
5480   }
5481 
5482   // For scalable vectors don't use tail folding for low trip counts or
5483   // optimizing for code size. We only permit this if the user has explicitly
5484   // requested it.
5485   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5486       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5487       MaxFactors.ScalableVF.isVector())
5488     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5489 
5490   // If we don't know the precise trip count, or if the trip count that we
5491   // found modulo the vectorization factor is not zero, try to fold the tail
5492   // by masking.
5493   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5494   if (Legal->prepareToFoldTailByMasking()) {
5495     FoldTailByMasking = true;
5496     return MaxFactors;
5497   }
5498 
5499   // If there was a tail-folding hint/switch, but we can't fold the tail by
5500   // masking, fallback to a vectorization with a scalar epilogue.
5501   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5502     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5503                          "scalar epilogue instead.\n");
5504     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5505     return MaxFactors;
5506   }
5507 
5508   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5509     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5510     return FixedScalableVFPair::getNone();
5511   }
5512 
5513   if (TC == 0) {
5514     reportVectorizationFailure(
5515         "Unable to calculate the loop count due to complex control flow",
5516         "unable to calculate the loop count due to complex control flow",
5517         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5518     return FixedScalableVFPair::getNone();
5519   }
5520 
5521   reportVectorizationFailure(
5522       "Cannot optimize for size and vectorize at the same time.",
5523       "cannot optimize for size and vectorize at the same time. "
5524       "Enable vectorization of this loop with '#pragma clang loop "
5525       "vectorize(enable)' when compiling with -Os/-Oz",
5526       "NoTailLoopWithOptForSize", ORE, TheLoop);
5527   return FixedScalableVFPair::getNone();
5528 }
5529 
5530 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5531     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5532     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5533   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5534   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5535       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5536                            : TargetTransformInfo::RGK_FixedWidthVector);
5537 
5538   // Convenience function to return the minimum of two ElementCounts.
5539   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5540     assert((LHS.isScalable() == RHS.isScalable()) &&
5541            "Scalable flags must match");
5542     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5543   };
5544 
5545   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5546   // Note that both WidestRegister and WidestType may not be a powers of 2.
5547   auto MaxVectorElementCount = ElementCount::get(
5548       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5549       ComputeScalableMaxVF);
5550   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5551   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5552                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5553 
5554   if (!MaxVectorElementCount) {
5555     LLVM_DEBUG(dbgs() << "LV: The target has no "
5556                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5557                       << " vector registers.\n");
5558     return ElementCount::getFixed(1);
5559   }
5560 
5561   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5562   if (ConstTripCount &&
5563       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5564       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5565     // If loop trip count (TC) is known at compile time there is no point in
5566     // choosing VF greater than TC (as done in the loop below). Select maximum
5567     // power of two which doesn't exceed TC.
5568     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5569     // when the TC is less than or equal to the known number of lanes.
5570     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5571     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5572                          "exceeding the constant trip count: "
5573                       << ClampedConstTripCount << "\n");
5574     return ElementCount::getFixed(ClampedConstTripCount);
5575   }
5576 
5577   ElementCount MaxVF = MaxVectorElementCount;
5578   if (TTI.shouldMaximizeVectorBandwidth() ||
5579       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5580     auto MaxVectorElementCountMaxBW = ElementCount::get(
5581         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5582         ComputeScalableMaxVF);
5583     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5584 
5585     // Collect all viable vectorization factors larger than the default MaxVF
5586     // (i.e. MaxVectorElementCount).
5587     SmallVector<ElementCount, 8> VFs;
5588     for (ElementCount VS = MaxVectorElementCount * 2;
5589          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5590       VFs.push_back(VS);
5591 
5592     // For each VF calculate its register usage.
5593     auto RUs = calculateRegisterUsage(VFs);
5594 
5595     // Select the largest VF which doesn't require more registers than existing
5596     // ones.
5597     for (int i = RUs.size() - 1; i >= 0; --i) {
5598       bool Selected = true;
5599       for (auto &pair : RUs[i].MaxLocalUsers) {
5600         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5601         if (pair.second > TargetNumRegisters)
5602           Selected = false;
5603       }
5604       if (Selected) {
5605         MaxVF = VFs[i];
5606         break;
5607       }
5608     }
5609     if (ElementCount MinVF =
5610             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5611       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5612         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5613                           << ") with target's minimum: " << MinVF << '\n');
5614         MaxVF = MinVF;
5615       }
5616     }
5617   }
5618   return MaxVF;
5619 }
5620 
5621 bool LoopVectorizationCostModel::isMoreProfitable(
5622     const VectorizationFactor &A, const VectorizationFactor &B) const {
5623   InstructionCost CostA = A.Cost;
5624   InstructionCost CostB = B.Cost;
5625 
5626   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5627 
5628   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5629       MaxTripCount) {
5630     // If we are folding the tail and the trip count is a known (possibly small)
5631     // constant, the trip count will be rounded up to an integer number of
5632     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5633     // which we compare directly. When not folding the tail, the total cost will
5634     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5635     // approximated with the per-lane cost below instead of using the tripcount
5636     // as here.
5637     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5638     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5639     return RTCostA < RTCostB;
5640   }
5641 
5642   // Improve estimate for the vector width if it is scalable.
5643   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5644   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5645   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
5646     if (A.Width.isScalable())
5647       EstimatedWidthA *= VScale.getValue();
5648     if (B.Width.isScalable())
5649       EstimatedWidthB *= VScale.getValue();
5650   }
5651 
5652   // Assume vscale may be larger than 1 (or the value being tuned for),
5653   // so that scalable vectorization is slightly favorable over fixed-width
5654   // vectorization.
5655   if (A.Width.isScalable() && !B.Width.isScalable())
5656     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5657 
5658   // To avoid the need for FP division:
5659   //      (CostA / A.Width) < (CostB / B.Width)
5660   // <=>  (CostA * B.Width) < (CostB * A.Width)
5661   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5662 }
5663 
5664 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5665     const ElementCountSet &VFCandidates) {
5666   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5667   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5668   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5669   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5670          "Expected Scalar VF to be a candidate");
5671 
5672   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5673   VectorizationFactor ChosenFactor = ScalarCost;
5674 
5675   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5676   if (ForceVectorization && VFCandidates.size() > 1) {
5677     // Ignore scalar width, because the user explicitly wants vectorization.
5678     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5679     // evaluation.
5680     ChosenFactor.Cost = InstructionCost::getMax();
5681   }
5682 
5683   SmallVector<InstructionVFPair> InvalidCosts;
5684   for (const auto &i : VFCandidates) {
5685     // The cost for scalar VF=1 is already calculated, so ignore it.
5686     if (i.isScalar())
5687       continue;
5688 
5689     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5690     VectorizationFactor Candidate(i, C.first);
5691 
5692 #ifndef NDEBUG
5693     unsigned AssumedMinimumVscale = 1;
5694     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
5695       AssumedMinimumVscale = VScale.getValue();
5696     unsigned Width =
5697         Candidate.Width.isScalable()
5698             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5699             : Candidate.Width.getFixedValue();
5700     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5701                       << " costs: " << (Candidate.Cost / Width));
5702     if (i.isScalable())
5703       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5704                         << AssumedMinimumVscale << ")");
5705     LLVM_DEBUG(dbgs() << ".\n");
5706 #endif
5707 
5708     if (!C.second && !ForceVectorization) {
5709       LLVM_DEBUG(
5710           dbgs() << "LV: Not considering vector loop of width " << i
5711                  << " because it will not generate any vector instructions.\n");
5712       continue;
5713     }
5714 
5715     // If profitable add it to ProfitableVF list.
5716     if (isMoreProfitable(Candidate, ScalarCost))
5717       ProfitableVFs.push_back(Candidate);
5718 
5719     if (isMoreProfitable(Candidate, ChosenFactor))
5720       ChosenFactor = Candidate;
5721   }
5722 
5723   // Emit a report of VFs with invalid costs in the loop.
5724   if (!InvalidCosts.empty()) {
5725     // Group the remarks per instruction, keeping the instruction order from
5726     // InvalidCosts.
5727     std::map<Instruction *, unsigned> Numbering;
5728     unsigned I = 0;
5729     for (auto &Pair : InvalidCosts)
5730       if (!Numbering.count(Pair.first))
5731         Numbering[Pair.first] = I++;
5732 
5733     // Sort the list, first on instruction(number) then on VF.
5734     llvm::sort(InvalidCosts,
5735                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5736                  if (Numbering[A.first] != Numbering[B.first])
5737                    return Numbering[A.first] < Numbering[B.first];
5738                  ElementCountComparator ECC;
5739                  return ECC(A.second, B.second);
5740                });
5741 
5742     // For a list of ordered instruction-vf pairs:
5743     //   [(load, vf1), (load, vf2), (store, vf1)]
5744     // Group the instructions together to emit separate remarks for:
5745     //   load  (vf1, vf2)
5746     //   store (vf1)
5747     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5748     auto Subset = ArrayRef<InstructionVFPair>();
5749     do {
5750       if (Subset.empty())
5751         Subset = Tail.take_front(1);
5752 
5753       Instruction *I = Subset.front().first;
5754 
5755       // If the next instruction is different, or if there are no other pairs,
5756       // emit a remark for the collated subset. e.g.
5757       //   [(load, vf1), (load, vf2))]
5758       // to emit:
5759       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5760       if (Subset == Tail || Tail[Subset.size()].first != I) {
5761         std::string OutString;
5762         raw_string_ostream OS(OutString);
5763         assert(!Subset.empty() && "Unexpected empty range");
5764         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5765         for (auto &Pair : Subset)
5766           OS << (Pair.second == Subset.front().second ? "" : ", ")
5767              << Pair.second;
5768         OS << "):";
5769         if (auto *CI = dyn_cast<CallInst>(I))
5770           OS << " call to " << CI->getCalledFunction()->getName();
5771         else
5772           OS << " " << I->getOpcodeName();
5773         OS.flush();
5774         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5775         Tail = Tail.drop_front(Subset.size());
5776         Subset = {};
5777       } else
5778         // Grow the subset by one element
5779         Subset = Tail.take_front(Subset.size() + 1);
5780     } while (!Tail.empty());
5781   }
5782 
5783   if (!EnableCondStoresVectorization && NumPredStores) {
5784     reportVectorizationFailure("There are conditional stores.",
5785         "store that is conditionally executed prevents vectorization",
5786         "ConditionalStore", ORE, TheLoop);
5787     ChosenFactor = ScalarCost;
5788   }
5789 
5790   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5791                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5792              << "LV: Vectorization seems to be not beneficial, "
5793              << "but was forced by a user.\n");
5794   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5795   return ChosenFactor;
5796 }
5797 
5798 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5799     const Loop &L, ElementCount VF) const {
5800   // Cross iteration phis such as reductions need special handling and are
5801   // currently unsupported.
5802   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5803         return Legal->isFirstOrderRecurrence(&Phi) ||
5804                Legal->isReductionVariable(&Phi);
5805       }))
5806     return false;
5807 
5808   // Phis with uses outside of the loop require special handling and are
5809   // currently unsupported.
5810   for (auto &Entry : Legal->getInductionVars()) {
5811     // Look for uses of the value of the induction at the last iteration.
5812     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5813     for (User *U : PostInc->users())
5814       if (!L.contains(cast<Instruction>(U)))
5815         return false;
5816     // Look for uses of penultimate value of the induction.
5817     for (User *U : Entry.first->users())
5818       if (!L.contains(cast<Instruction>(U)))
5819         return false;
5820   }
5821 
5822   // Induction variables that are widened require special handling that is
5823   // currently not supported.
5824   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5825         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5826                  this->isProfitableToScalarize(Entry.first, VF));
5827       }))
5828     return false;
5829 
5830   // Epilogue vectorization code has not been auditted to ensure it handles
5831   // non-latch exits properly.  It may be fine, but it needs auditted and
5832   // tested.
5833   if (L.getExitingBlock() != L.getLoopLatch())
5834     return false;
5835 
5836   return true;
5837 }
5838 
5839 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5840     const ElementCount VF) const {
5841   // FIXME: We need a much better cost-model to take different parameters such
5842   // as register pressure, code size increase and cost of extra branches into
5843   // account. For now we apply a very crude heuristic and only consider loops
5844   // with vectorization factors larger than a certain value.
5845   // We also consider epilogue vectorization unprofitable for targets that don't
5846   // consider interleaving beneficial (eg. MVE).
5847   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5848     return false;
5849   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5850     return true;
5851   return false;
5852 }
5853 
5854 VectorizationFactor
5855 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5856     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5857   VectorizationFactor Result = VectorizationFactor::Disabled();
5858   if (!EnableEpilogueVectorization) {
5859     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5860     return Result;
5861   }
5862 
5863   if (!isScalarEpilogueAllowed()) {
5864     LLVM_DEBUG(
5865         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5866                   "allowed.\n";);
5867     return Result;
5868   }
5869 
5870   // Not really a cost consideration, but check for unsupported cases here to
5871   // simplify the logic.
5872   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5873     LLVM_DEBUG(
5874         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5875                   "not a supported candidate.\n";);
5876     return Result;
5877   }
5878 
5879   if (EpilogueVectorizationForceVF > 1) {
5880     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5881     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5882     if (LVP.hasPlanWithVF(ForcedEC))
5883       return {ForcedEC, 0};
5884     else {
5885       LLVM_DEBUG(
5886           dbgs()
5887               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5888       return Result;
5889     }
5890   }
5891 
5892   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5893       TheLoop->getHeader()->getParent()->hasMinSize()) {
5894     LLVM_DEBUG(
5895         dbgs()
5896             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5897     return Result;
5898   }
5899 
5900   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5901   if (MainLoopVF.isScalable())
5902     LLVM_DEBUG(
5903         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
5904                   "yet supported. Converting to fixed-width (VF="
5905                << FixedMainLoopVF << ") instead\n");
5906 
5907   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
5908     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5909                          "this loop\n");
5910     return Result;
5911   }
5912 
5913   for (auto &NextVF : ProfitableVFs)
5914     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
5915         (Result.Width.getFixedValue() == 1 ||
5916          isMoreProfitable(NextVF, Result)) &&
5917         LVP.hasPlanWithVF(NextVF.Width))
5918       Result = NextVF;
5919 
5920   if (Result != VectorizationFactor::Disabled())
5921     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5922                       << Result.Width.getFixedValue() << "\n";);
5923   return Result;
5924 }
5925 
5926 std::pair<unsigned, unsigned>
5927 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5928   unsigned MinWidth = -1U;
5929   unsigned MaxWidth = 8;
5930   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5931   // For in-loop reductions, no element types are added to ElementTypesInLoop
5932   // if there are no loads/stores in the loop. In this case, check through the
5933   // reduction variables to determine the maximum width.
5934   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5935     // Reset MaxWidth so that we can find the smallest type used by recurrences
5936     // in the loop.
5937     MaxWidth = -1U;
5938     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5939       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5940       // When finding the min width used by the recurrence we need to account
5941       // for casts on the input operands of the recurrence.
5942       MaxWidth = std::min<unsigned>(
5943           MaxWidth, std::min<unsigned>(
5944                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5945                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5946     }
5947   } else {
5948     for (Type *T : ElementTypesInLoop) {
5949       MinWidth = std::min<unsigned>(
5950           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5951       MaxWidth = std::max<unsigned>(
5952           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5953     }
5954   }
5955   return {MinWidth, MaxWidth};
5956 }
5957 
5958 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5959   ElementTypesInLoop.clear();
5960   // For each block.
5961   for (BasicBlock *BB : TheLoop->blocks()) {
5962     // For each instruction in the loop.
5963     for (Instruction &I : BB->instructionsWithoutDebug()) {
5964       Type *T = I.getType();
5965 
5966       // Skip ignored values.
5967       if (ValuesToIgnore.count(&I))
5968         continue;
5969 
5970       // Only examine Loads, Stores and PHINodes.
5971       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5972         continue;
5973 
5974       // Examine PHI nodes that are reduction variables. Update the type to
5975       // account for the recurrence type.
5976       if (auto *PN = dyn_cast<PHINode>(&I)) {
5977         if (!Legal->isReductionVariable(PN))
5978           continue;
5979         const RecurrenceDescriptor &RdxDesc =
5980             Legal->getReductionVars().find(PN)->second;
5981         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5982             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5983                                       RdxDesc.getRecurrenceType(),
5984                                       TargetTransformInfo::ReductionFlags()))
5985           continue;
5986         T = RdxDesc.getRecurrenceType();
5987       }
5988 
5989       // Examine the stored values.
5990       if (auto *ST = dyn_cast<StoreInst>(&I))
5991         T = ST->getValueOperand()->getType();
5992 
5993       assert(T->isSized() &&
5994              "Expected the load/store/recurrence type to be sized");
5995 
5996       ElementTypesInLoop.insert(T);
5997     }
5998   }
5999 }
6000 
6001 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6002                                                            unsigned LoopCost) {
6003   // -- The interleave heuristics --
6004   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6005   // There are many micro-architectural considerations that we can't predict
6006   // at this level. For example, frontend pressure (on decode or fetch) due to
6007   // code size, or the number and capabilities of the execution ports.
6008   //
6009   // We use the following heuristics to select the interleave count:
6010   // 1. If the code has reductions, then we interleave to break the cross
6011   // iteration dependency.
6012   // 2. If the loop is really small, then we interleave to reduce the loop
6013   // overhead.
6014   // 3. We don't interleave if we think that we will spill registers to memory
6015   // due to the increased register pressure.
6016 
6017   if (!isScalarEpilogueAllowed())
6018     return 1;
6019 
6020   // We used the distance for the interleave count.
6021   if (Legal->getMaxSafeDepDistBytes() != -1U)
6022     return 1;
6023 
6024   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6025   const bool HasReductions = !Legal->getReductionVars().empty();
6026   // Do not interleave loops with a relatively small known or estimated trip
6027   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6028   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6029   // because with the above conditions interleaving can expose ILP and break
6030   // cross iteration dependences for reductions.
6031   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6032       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6033     return 1;
6034 
6035   RegisterUsage R = calculateRegisterUsage({VF})[0];
6036   // We divide by these constants so assume that we have at least one
6037   // instruction that uses at least one register.
6038   for (auto& pair : R.MaxLocalUsers) {
6039     pair.second = std::max(pair.second, 1U);
6040   }
6041 
6042   // We calculate the interleave count using the following formula.
6043   // Subtract the number of loop invariants from the number of available
6044   // registers. These registers are used by all of the interleaved instances.
6045   // Next, divide the remaining registers by the number of registers that is
6046   // required by the loop, in order to estimate how many parallel instances
6047   // fit without causing spills. All of this is rounded down if necessary to be
6048   // a power of two. We want power of two interleave count to simplify any
6049   // addressing operations or alignment considerations.
6050   // We also want power of two interleave counts to ensure that the induction
6051   // variable of the vector loop wraps to zero, when tail is folded by masking;
6052   // this currently happens when OptForSize, in which case IC is set to 1 above.
6053   unsigned IC = UINT_MAX;
6054 
6055   for (auto& pair : R.MaxLocalUsers) {
6056     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6057     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6058                       << " registers of "
6059                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6060     if (VF.isScalar()) {
6061       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6062         TargetNumRegisters = ForceTargetNumScalarRegs;
6063     } else {
6064       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6065         TargetNumRegisters = ForceTargetNumVectorRegs;
6066     }
6067     unsigned MaxLocalUsers = pair.second;
6068     unsigned LoopInvariantRegs = 0;
6069     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6070       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6071 
6072     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6073     // Don't count the induction variable as interleaved.
6074     if (EnableIndVarRegisterHeur) {
6075       TmpIC =
6076           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6077                         std::max(1U, (MaxLocalUsers - 1)));
6078     }
6079 
6080     IC = std::min(IC, TmpIC);
6081   }
6082 
6083   // Clamp the interleave ranges to reasonable counts.
6084   unsigned MaxInterleaveCount =
6085       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6086 
6087   // Check if the user has overridden the max.
6088   if (VF.isScalar()) {
6089     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6090       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6091   } else {
6092     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6093       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6094   }
6095 
6096   // If trip count is known or estimated compile time constant, limit the
6097   // interleave count to be less than the trip count divided by VF, provided it
6098   // is at least 1.
6099   //
6100   // For scalable vectors we can't know if interleaving is beneficial. It may
6101   // not be beneficial for small loops if none of the lanes in the second vector
6102   // iterations is enabled. However, for larger loops, there is likely to be a
6103   // similar benefit as for fixed-width vectors. For now, we choose to leave
6104   // the InterleaveCount as if vscale is '1', although if some information about
6105   // the vector is known (e.g. min vector size), we can make a better decision.
6106   if (BestKnownTC) {
6107     MaxInterleaveCount =
6108         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6109     // Make sure MaxInterleaveCount is greater than 0.
6110     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6111   }
6112 
6113   assert(MaxInterleaveCount > 0 &&
6114          "Maximum interleave count must be greater than 0");
6115 
6116   // Clamp the calculated IC to be between the 1 and the max interleave count
6117   // that the target and trip count allows.
6118   if (IC > MaxInterleaveCount)
6119     IC = MaxInterleaveCount;
6120   else
6121     // Make sure IC is greater than 0.
6122     IC = std::max(1u, IC);
6123 
6124   assert(IC > 0 && "Interleave count must be greater than 0.");
6125 
6126   // If we did not calculate the cost for VF (because the user selected the VF)
6127   // then we calculate the cost of VF here.
6128   if (LoopCost == 0) {
6129     InstructionCost C = expectedCost(VF).first;
6130     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6131     LoopCost = *C.getValue();
6132   }
6133 
6134   assert(LoopCost && "Non-zero loop cost expected");
6135 
6136   // Interleave if we vectorized this loop and there is a reduction that could
6137   // benefit from interleaving.
6138   if (VF.isVector() && HasReductions) {
6139     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6140     return IC;
6141   }
6142 
6143   // Note that if we've already vectorized the loop we will have done the
6144   // runtime check and so interleaving won't require further checks.
6145   bool InterleavingRequiresRuntimePointerCheck =
6146       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6147 
6148   // We want to interleave small loops in order to reduce the loop overhead and
6149   // potentially expose ILP opportunities.
6150   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6151                     << "LV: IC is " << IC << '\n'
6152                     << "LV: VF is " << VF << '\n');
6153   const bool AggressivelyInterleaveReductions =
6154       TTI.enableAggressiveInterleaving(HasReductions);
6155   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6156     // We assume that the cost overhead is 1 and we use the cost model
6157     // to estimate the cost of the loop and interleave until the cost of the
6158     // loop overhead is about 5% of the cost of the loop.
6159     unsigned SmallIC =
6160         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6161 
6162     // Interleave until store/load ports (estimated by max interleave count) are
6163     // saturated.
6164     unsigned NumStores = Legal->getNumStores();
6165     unsigned NumLoads = Legal->getNumLoads();
6166     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6167     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6168 
6169     // There is little point in interleaving for reductions containing selects
6170     // and compares when VF=1 since it may just create more overhead than it's
6171     // worth for loops with small trip counts. This is because we still have to
6172     // do the final reduction after the loop.
6173     bool HasSelectCmpReductions =
6174         HasReductions &&
6175         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6176           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6177           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6178               RdxDesc.getRecurrenceKind());
6179         });
6180     if (HasSelectCmpReductions) {
6181       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6182       return 1;
6183     }
6184 
6185     // If we have a scalar reduction (vector reductions are already dealt with
6186     // by this point), we can increase the critical path length if the loop
6187     // we're interleaving is inside another loop. For tree-wise reductions
6188     // set the limit to 2, and for ordered reductions it's best to disable
6189     // interleaving entirely.
6190     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6191       bool HasOrderedReductions =
6192           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6193             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6194             return RdxDesc.isOrdered();
6195           });
6196       if (HasOrderedReductions) {
6197         LLVM_DEBUG(
6198             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6199         return 1;
6200       }
6201 
6202       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6203       SmallIC = std::min(SmallIC, F);
6204       StoresIC = std::min(StoresIC, F);
6205       LoadsIC = std::min(LoadsIC, F);
6206     }
6207 
6208     if (EnableLoadStoreRuntimeInterleave &&
6209         std::max(StoresIC, LoadsIC) > SmallIC) {
6210       LLVM_DEBUG(
6211           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6212       return std::max(StoresIC, LoadsIC);
6213     }
6214 
6215     // If there are scalar reductions and TTI has enabled aggressive
6216     // interleaving for reductions, we will interleave to expose ILP.
6217     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6218         AggressivelyInterleaveReductions) {
6219       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6220       // Interleave no less than SmallIC but not as aggressive as the normal IC
6221       // to satisfy the rare situation when resources are too limited.
6222       return std::max(IC / 2, SmallIC);
6223     } else {
6224       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6225       return SmallIC;
6226     }
6227   }
6228 
6229   // Interleave if this is a large loop (small loops are already dealt with by
6230   // this point) that could benefit from interleaving.
6231   if (AggressivelyInterleaveReductions) {
6232     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6233     return IC;
6234   }
6235 
6236   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6237   return 1;
6238 }
6239 
6240 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6241 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6242   // This function calculates the register usage by measuring the highest number
6243   // of values that are alive at a single location. Obviously, this is a very
6244   // rough estimation. We scan the loop in a topological order in order and
6245   // assign a number to each instruction. We use RPO to ensure that defs are
6246   // met before their users. We assume that each instruction that has in-loop
6247   // users starts an interval. We record every time that an in-loop value is
6248   // used, so we have a list of the first and last occurrences of each
6249   // instruction. Next, we transpose this data structure into a multi map that
6250   // holds the list of intervals that *end* at a specific location. This multi
6251   // map allows us to perform a linear search. We scan the instructions linearly
6252   // and record each time that a new interval starts, by placing it in a set.
6253   // If we find this value in the multi-map then we remove it from the set.
6254   // The max register usage is the maximum size of the set.
6255   // We also search for instructions that are defined outside the loop, but are
6256   // used inside the loop. We need this number separately from the max-interval
6257   // usage number because when we unroll, loop-invariant values do not take
6258   // more register.
6259   LoopBlocksDFS DFS(TheLoop);
6260   DFS.perform(LI);
6261 
6262   RegisterUsage RU;
6263 
6264   // Each 'key' in the map opens a new interval. The values
6265   // of the map are the index of the 'last seen' usage of the
6266   // instruction that is the key.
6267   using IntervalMap = DenseMap<Instruction *, unsigned>;
6268 
6269   // Maps instruction to its index.
6270   SmallVector<Instruction *, 64> IdxToInstr;
6271   // Marks the end of each interval.
6272   IntervalMap EndPoint;
6273   // Saves the list of instruction indices that are used in the loop.
6274   SmallPtrSet<Instruction *, 8> Ends;
6275   // Saves the list of values that are used in the loop but are
6276   // defined outside the loop, such as arguments and constants.
6277   SmallPtrSet<Value *, 8> LoopInvariants;
6278 
6279   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6280     for (Instruction &I : BB->instructionsWithoutDebug()) {
6281       IdxToInstr.push_back(&I);
6282 
6283       // Save the end location of each USE.
6284       for (Value *U : I.operands()) {
6285         auto *Instr = dyn_cast<Instruction>(U);
6286 
6287         // Ignore non-instruction values such as arguments, constants, etc.
6288         if (!Instr)
6289           continue;
6290 
6291         // If this instruction is outside the loop then record it and continue.
6292         if (!TheLoop->contains(Instr)) {
6293           LoopInvariants.insert(Instr);
6294           continue;
6295         }
6296 
6297         // Overwrite previous end points.
6298         EndPoint[Instr] = IdxToInstr.size();
6299         Ends.insert(Instr);
6300       }
6301     }
6302   }
6303 
6304   // Saves the list of intervals that end with the index in 'key'.
6305   using InstrList = SmallVector<Instruction *, 2>;
6306   DenseMap<unsigned, InstrList> TransposeEnds;
6307 
6308   // Transpose the EndPoints to a list of values that end at each index.
6309   for (auto &Interval : EndPoint)
6310     TransposeEnds[Interval.second].push_back(Interval.first);
6311 
6312   SmallPtrSet<Instruction *, 8> OpenIntervals;
6313   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6314   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6315 
6316   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6317 
6318   // A lambda that gets the register usage for the given type and VF.
6319   const auto &TTICapture = TTI;
6320   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6321     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6322       return 0;
6323     InstructionCost::CostType RegUsage =
6324         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6325     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6326            "Nonsensical values for register usage.");
6327     return RegUsage;
6328   };
6329 
6330   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6331     Instruction *I = IdxToInstr[i];
6332 
6333     // Remove all of the instructions that end at this location.
6334     InstrList &List = TransposeEnds[i];
6335     for (Instruction *ToRemove : List)
6336       OpenIntervals.erase(ToRemove);
6337 
6338     // Ignore instructions that are never used within the loop.
6339     if (!Ends.count(I))
6340       continue;
6341 
6342     // Skip ignored values.
6343     if (ValuesToIgnore.count(I))
6344       continue;
6345 
6346     // For each VF find the maximum usage of registers.
6347     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6348       // Count the number of live intervals.
6349       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6350 
6351       if (VFs[j].isScalar()) {
6352         for (auto Inst : OpenIntervals) {
6353           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6354           if (RegUsage.find(ClassID) == RegUsage.end())
6355             RegUsage[ClassID] = 1;
6356           else
6357             RegUsage[ClassID] += 1;
6358         }
6359       } else {
6360         collectUniformsAndScalars(VFs[j]);
6361         for (auto Inst : OpenIntervals) {
6362           // Skip ignored values for VF > 1.
6363           if (VecValuesToIgnore.count(Inst))
6364             continue;
6365           if (isScalarAfterVectorization(Inst, VFs[j])) {
6366             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6367             if (RegUsage.find(ClassID) == RegUsage.end())
6368               RegUsage[ClassID] = 1;
6369             else
6370               RegUsage[ClassID] += 1;
6371           } else {
6372             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6373             if (RegUsage.find(ClassID) == RegUsage.end())
6374               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6375             else
6376               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6377           }
6378         }
6379       }
6380 
6381       for (auto& pair : RegUsage) {
6382         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6383           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6384         else
6385           MaxUsages[j][pair.first] = pair.second;
6386       }
6387     }
6388 
6389     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6390                       << OpenIntervals.size() << '\n');
6391 
6392     // Add the current instruction to the list of open intervals.
6393     OpenIntervals.insert(I);
6394   }
6395 
6396   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6397     SmallMapVector<unsigned, unsigned, 4> Invariant;
6398 
6399     for (auto Inst : LoopInvariants) {
6400       unsigned Usage =
6401           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6402       unsigned ClassID =
6403           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6404       if (Invariant.find(ClassID) == Invariant.end())
6405         Invariant[ClassID] = Usage;
6406       else
6407         Invariant[ClassID] += Usage;
6408     }
6409 
6410     LLVM_DEBUG({
6411       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6412       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6413              << " item\n";
6414       for (const auto &pair : MaxUsages[i]) {
6415         dbgs() << "LV(REG): RegisterClass: "
6416                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6417                << " registers\n";
6418       }
6419       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6420              << " item\n";
6421       for (const auto &pair : Invariant) {
6422         dbgs() << "LV(REG): RegisterClass: "
6423                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6424                << " registers\n";
6425       }
6426     });
6427 
6428     RU.LoopInvariantRegs = Invariant;
6429     RU.MaxLocalUsers = MaxUsages[i];
6430     RUs[i] = RU;
6431   }
6432 
6433   return RUs;
6434 }
6435 
6436 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6437   // TODO: Cost model for emulated masked load/store is completely
6438   // broken. This hack guides the cost model to use an artificially
6439   // high enough value to practically disable vectorization with such
6440   // operations, except where previously deployed legality hack allowed
6441   // using very low cost values. This is to avoid regressions coming simply
6442   // from moving "masked load/store" check from legality to cost model.
6443   // Masked Load/Gather emulation was previously never allowed.
6444   // Limited number of Masked Store/Scatter emulation was allowed.
6445   assert(isPredicatedInst(I) &&
6446          "Expecting a scalar emulated instruction");
6447   return isa<LoadInst>(I) ||
6448          (isa<StoreInst>(I) &&
6449           NumPredStores > NumberOfStoresToPredicate);
6450 }
6451 
6452 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6453   // If we aren't vectorizing the loop, or if we've already collected the
6454   // instructions to scalarize, there's nothing to do. Collection may already
6455   // have occurred if we have a user-selected VF and are now computing the
6456   // expected cost for interleaving.
6457   if (VF.isScalar() || VF.isZero() ||
6458       InstsToScalarize.find(VF) != InstsToScalarize.end())
6459     return;
6460 
6461   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6462   // not profitable to scalarize any instructions, the presence of VF in the
6463   // map will indicate that we've analyzed it already.
6464   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6465 
6466   // Find all the instructions that are scalar with predication in the loop and
6467   // determine if it would be better to not if-convert the blocks they are in.
6468   // If so, we also record the instructions to scalarize.
6469   for (BasicBlock *BB : TheLoop->blocks()) {
6470     if (!blockNeedsPredicationForAnyReason(BB))
6471       continue;
6472     for (Instruction &I : *BB)
6473       if (isScalarWithPredication(&I)) {
6474         ScalarCostsTy ScalarCosts;
6475         // Do not apply discount if scalable, because that would lead to
6476         // invalid scalarization costs.
6477         // Do not apply discount logic if hacked cost is needed
6478         // for emulated masked memrefs.
6479         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6480             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6481           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6482         // Remember that BB will remain after vectorization.
6483         PredicatedBBsAfterVectorization.insert(BB);
6484       }
6485   }
6486 }
6487 
6488 int LoopVectorizationCostModel::computePredInstDiscount(
6489     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6490   assert(!isUniformAfterVectorization(PredInst, VF) &&
6491          "Instruction marked uniform-after-vectorization will be predicated");
6492 
6493   // Initialize the discount to zero, meaning that the scalar version and the
6494   // vector version cost the same.
6495   InstructionCost Discount = 0;
6496 
6497   // Holds instructions to analyze. The instructions we visit are mapped in
6498   // ScalarCosts. Those instructions are the ones that would be scalarized if
6499   // we find that the scalar version costs less.
6500   SmallVector<Instruction *, 8> Worklist;
6501 
6502   // Returns true if the given instruction can be scalarized.
6503   auto canBeScalarized = [&](Instruction *I) -> bool {
6504     // We only attempt to scalarize instructions forming a single-use chain
6505     // from the original predicated block that would otherwise be vectorized.
6506     // Although not strictly necessary, we give up on instructions we know will
6507     // already be scalar to avoid traversing chains that are unlikely to be
6508     // beneficial.
6509     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6510         isScalarAfterVectorization(I, VF))
6511       return false;
6512 
6513     // If the instruction is scalar with predication, it will be analyzed
6514     // separately. We ignore it within the context of PredInst.
6515     if (isScalarWithPredication(I))
6516       return false;
6517 
6518     // If any of the instruction's operands are uniform after vectorization,
6519     // the instruction cannot be scalarized. This prevents, for example, a
6520     // masked load from being scalarized.
6521     //
6522     // We assume we will only emit a value for lane zero of an instruction
6523     // marked uniform after vectorization, rather than VF identical values.
6524     // Thus, if we scalarize an instruction that uses a uniform, we would
6525     // create uses of values corresponding to the lanes we aren't emitting code
6526     // for. This behavior can be changed by allowing getScalarValue to clone
6527     // the lane zero values for uniforms rather than asserting.
6528     for (Use &U : I->operands())
6529       if (auto *J = dyn_cast<Instruction>(U.get()))
6530         if (isUniformAfterVectorization(J, VF))
6531           return false;
6532 
6533     // Otherwise, we can scalarize the instruction.
6534     return true;
6535   };
6536 
6537   // Compute the expected cost discount from scalarizing the entire expression
6538   // feeding the predicated instruction. We currently only consider expressions
6539   // that are single-use instruction chains.
6540   Worklist.push_back(PredInst);
6541   while (!Worklist.empty()) {
6542     Instruction *I = Worklist.pop_back_val();
6543 
6544     // If we've already analyzed the instruction, there's nothing to do.
6545     if (ScalarCosts.find(I) != ScalarCosts.end())
6546       continue;
6547 
6548     // Compute the cost of the vector instruction. Note that this cost already
6549     // includes the scalarization overhead of the predicated instruction.
6550     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6551 
6552     // Compute the cost of the scalarized instruction. This cost is the cost of
6553     // the instruction as if it wasn't if-converted and instead remained in the
6554     // predicated block. We will scale this cost by block probability after
6555     // computing the scalarization overhead.
6556     InstructionCost ScalarCost =
6557         VF.getFixedValue() *
6558         getInstructionCost(I, ElementCount::getFixed(1)).first;
6559 
6560     // Compute the scalarization overhead of needed insertelement instructions
6561     // and phi nodes.
6562     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6563       ScalarCost += TTI.getScalarizationOverhead(
6564           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6565           APInt::getAllOnes(VF.getFixedValue()), true, false);
6566       ScalarCost +=
6567           VF.getFixedValue() *
6568           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6569     }
6570 
6571     // Compute the scalarization overhead of needed extractelement
6572     // instructions. For each of the instruction's operands, if the operand can
6573     // be scalarized, add it to the worklist; otherwise, account for the
6574     // overhead.
6575     for (Use &U : I->operands())
6576       if (auto *J = dyn_cast<Instruction>(U.get())) {
6577         assert(VectorType::isValidElementType(J->getType()) &&
6578                "Instruction has non-scalar type");
6579         if (canBeScalarized(J))
6580           Worklist.push_back(J);
6581         else if (needsExtract(J, VF)) {
6582           ScalarCost += TTI.getScalarizationOverhead(
6583               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6584               APInt::getAllOnes(VF.getFixedValue()), false, true);
6585         }
6586       }
6587 
6588     // Scale the total scalar cost by block probability.
6589     ScalarCost /= getReciprocalPredBlockProb();
6590 
6591     // Compute the discount. A non-negative discount means the vector version
6592     // of the instruction costs more, and scalarizing would be beneficial.
6593     Discount += VectorCost - ScalarCost;
6594     ScalarCosts[I] = ScalarCost;
6595   }
6596 
6597   return *Discount.getValue();
6598 }
6599 
6600 LoopVectorizationCostModel::VectorizationCostTy
6601 LoopVectorizationCostModel::expectedCost(
6602     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6603   VectorizationCostTy Cost;
6604 
6605   // For each block.
6606   for (BasicBlock *BB : TheLoop->blocks()) {
6607     VectorizationCostTy BlockCost;
6608 
6609     // For each instruction in the old loop.
6610     for (Instruction &I : BB->instructionsWithoutDebug()) {
6611       // Skip ignored values.
6612       if (ValuesToIgnore.count(&I) ||
6613           (VF.isVector() && VecValuesToIgnore.count(&I)))
6614         continue;
6615 
6616       VectorizationCostTy C = getInstructionCost(&I, VF);
6617 
6618       // Check if we should override the cost.
6619       if (C.first.isValid() &&
6620           ForceTargetInstructionCost.getNumOccurrences() > 0)
6621         C.first = InstructionCost(ForceTargetInstructionCost);
6622 
6623       // Keep a list of instructions with invalid costs.
6624       if (Invalid && !C.first.isValid())
6625         Invalid->emplace_back(&I, VF);
6626 
6627       BlockCost.first += C.first;
6628       BlockCost.second |= C.second;
6629       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6630                         << " for VF " << VF << " For instruction: " << I
6631                         << '\n');
6632     }
6633 
6634     // If we are vectorizing a predicated block, it will have been
6635     // if-converted. This means that the block's instructions (aside from
6636     // stores and instructions that may divide by zero) will now be
6637     // unconditionally executed. For the scalar case, we may not always execute
6638     // the predicated block, if it is an if-else block. Thus, scale the block's
6639     // cost by the probability of executing it. blockNeedsPredication from
6640     // Legal is used so as to not include all blocks in tail folded loops.
6641     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6642       BlockCost.first /= getReciprocalPredBlockProb();
6643 
6644     Cost.first += BlockCost.first;
6645     Cost.second |= BlockCost.second;
6646   }
6647 
6648   return Cost;
6649 }
6650 
6651 /// Gets Address Access SCEV after verifying that the access pattern
6652 /// is loop invariant except the induction variable dependence.
6653 ///
6654 /// This SCEV can be sent to the Target in order to estimate the address
6655 /// calculation cost.
6656 static const SCEV *getAddressAccessSCEV(
6657               Value *Ptr,
6658               LoopVectorizationLegality *Legal,
6659               PredicatedScalarEvolution &PSE,
6660               const Loop *TheLoop) {
6661 
6662   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6663   if (!Gep)
6664     return nullptr;
6665 
6666   // We are looking for a gep with all loop invariant indices except for one
6667   // which should be an induction variable.
6668   auto SE = PSE.getSE();
6669   unsigned NumOperands = Gep->getNumOperands();
6670   for (unsigned i = 1; i < NumOperands; ++i) {
6671     Value *Opd = Gep->getOperand(i);
6672     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6673         !Legal->isInductionVariable(Opd))
6674       return nullptr;
6675   }
6676 
6677   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6678   return PSE.getSCEV(Ptr);
6679 }
6680 
6681 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6682   return Legal->hasStride(I->getOperand(0)) ||
6683          Legal->hasStride(I->getOperand(1));
6684 }
6685 
6686 InstructionCost
6687 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6688                                                         ElementCount VF) {
6689   assert(VF.isVector() &&
6690          "Scalarization cost of instruction implies vectorization.");
6691   if (VF.isScalable())
6692     return InstructionCost::getInvalid();
6693 
6694   Type *ValTy = getLoadStoreType(I);
6695   auto SE = PSE.getSE();
6696 
6697   unsigned AS = getLoadStoreAddressSpace(I);
6698   Value *Ptr = getLoadStorePointerOperand(I);
6699   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6700   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6701   //       that it is being called from this specific place.
6702 
6703   // Figure out whether the access is strided and get the stride value
6704   // if it's known in compile time
6705   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6706 
6707   // Get the cost of the scalar memory instruction and address computation.
6708   InstructionCost Cost =
6709       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6710 
6711   // Don't pass *I here, since it is scalar but will actually be part of a
6712   // vectorized loop where the user of it is a vectorized instruction.
6713   const Align Alignment = getLoadStoreAlignment(I);
6714   Cost += VF.getKnownMinValue() *
6715           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6716                               AS, TTI::TCK_RecipThroughput);
6717 
6718   // Get the overhead of the extractelement and insertelement instructions
6719   // we might create due to scalarization.
6720   Cost += getScalarizationOverhead(I, VF);
6721 
6722   // If we have a predicated load/store, it will need extra i1 extracts and
6723   // conditional branches, but may not be executed for each vector lane. Scale
6724   // the cost by the probability of executing the predicated block.
6725   if (isPredicatedInst(I)) {
6726     Cost /= getReciprocalPredBlockProb();
6727 
6728     // Add the cost of an i1 extract and a branch
6729     auto *Vec_i1Ty =
6730         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6731     Cost += TTI.getScalarizationOverhead(
6732         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6733         /*Insert=*/false, /*Extract=*/true);
6734     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6735 
6736     if (useEmulatedMaskMemRefHack(I))
6737       // Artificially setting to a high enough value to practically disable
6738       // vectorization with such operations.
6739       Cost = 3000000;
6740   }
6741 
6742   return Cost;
6743 }
6744 
6745 InstructionCost
6746 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6747                                                     ElementCount VF) {
6748   Type *ValTy = getLoadStoreType(I);
6749   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6750   Value *Ptr = getLoadStorePointerOperand(I);
6751   unsigned AS = getLoadStoreAddressSpace(I);
6752   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6753   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6754 
6755   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6756          "Stride should be 1 or -1 for consecutive memory access");
6757   const Align Alignment = getLoadStoreAlignment(I);
6758   InstructionCost Cost = 0;
6759   if (Legal->isMaskRequired(I))
6760     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6761                                       CostKind);
6762   else
6763     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6764                                 CostKind, I);
6765 
6766   bool Reverse = ConsecutiveStride < 0;
6767   if (Reverse)
6768     Cost +=
6769         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6770   return Cost;
6771 }
6772 
6773 InstructionCost
6774 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6775                                                 ElementCount VF) {
6776   assert(Legal->isUniformMemOp(*I));
6777 
6778   Type *ValTy = getLoadStoreType(I);
6779   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6780   const Align Alignment = getLoadStoreAlignment(I);
6781   unsigned AS = getLoadStoreAddressSpace(I);
6782   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6783   if (isa<LoadInst>(I)) {
6784     return TTI.getAddressComputationCost(ValTy) +
6785            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6786                                CostKind) +
6787            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6788   }
6789   StoreInst *SI = cast<StoreInst>(I);
6790 
6791   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6792   return TTI.getAddressComputationCost(ValTy) +
6793          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6794                              CostKind) +
6795          (isLoopInvariantStoreValue
6796               ? 0
6797               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6798                                        VF.getKnownMinValue() - 1));
6799 }
6800 
6801 InstructionCost
6802 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6803                                                  ElementCount VF) {
6804   Type *ValTy = getLoadStoreType(I);
6805   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6806   const Align Alignment = getLoadStoreAlignment(I);
6807   const Value *Ptr = getLoadStorePointerOperand(I);
6808 
6809   return TTI.getAddressComputationCost(VectorTy) +
6810          TTI.getGatherScatterOpCost(
6811              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6812              TargetTransformInfo::TCK_RecipThroughput, I);
6813 }
6814 
6815 InstructionCost
6816 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6817                                                    ElementCount VF) {
6818   // TODO: Once we have support for interleaving with scalable vectors
6819   // we can calculate the cost properly here.
6820   if (VF.isScalable())
6821     return InstructionCost::getInvalid();
6822 
6823   Type *ValTy = getLoadStoreType(I);
6824   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6825   unsigned AS = getLoadStoreAddressSpace(I);
6826 
6827   auto Group = getInterleavedAccessGroup(I);
6828   assert(Group && "Fail to get an interleaved access group.");
6829 
6830   unsigned InterleaveFactor = Group->getFactor();
6831   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6832 
6833   // Holds the indices of existing members in the interleaved group.
6834   SmallVector<unsigned, 4> Indices;
6835   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6836     if (Group->getMember(IF))
6837       Indices.push_back(IF);
6838 
6839   // Calculate the cost of the whole interleaved group.
6840   bool UseMaskForGaps =
6841       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6842       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6843   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6844       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6845       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6846 
6847   if (Group->isReverse()) {
6848     // TODO: Add support for reversed masked interleaved access.
6849     assert(!Legal->isMaskRequired(I) &&
6850            "Reverse masked interleaved access not supported.");
6851     Cost +=
6852         Group->getNumMembers() *
6853         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6854   }
6855   return Cost;
6856 }
6857 
6858 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6859     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6860   using namespace llvm::PatternMatch;
6861   // Early exit for no inloop reductions
6862   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6863     return None;
6864   auto *VectorTy = cast<VectorType>(Ty);
6865 
6866   // We are looking for a pattern of, and finding the minimal acceptable cost:
6867   //  reduce(mul(ext(A), ext(B))) or
6868   //  reduce(mul(A, B)) or
6869   //  reduce(ext(A)) or
6870   //  reduce(A).
6871   // The basic idea is that we walk down the tree to do that, finding the root
6872   // reduction instruction in InLoopReductionImmediateChains. From there we find
6873   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6874   // of the components. If the reduction cost is lower then we return it for the
6875   // reduction instruction and 0 for the other instructions in the pattern. If
6876   // it is not we return an invalid cost specifying the orignal cost method
6877   // should be used.
6878   Instruction *RetI = I;
6879   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6880     if (!RetI->hasOneUser())
6881       return None;
6882     RetI = RetI->user_back();
6883   }
6884   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6885       RetI->user_back()->getOpcode() == Instruction::Add) {
6886     if (!RetI->hasOneUser())
6887       return None;
6888     RetI = RetI->user_back();
6889   }
6890 
6891   // Test if the found instruction is a reduction, and if not return an invalid
6892   // cost specifying the parent to use the original cost modelling.
6893   if (!InLoopReductionImmediateChains.count(RetI))
6894     return None;
6895 
6896   // Find the reduction this chain is a part of and calculate the basic cost of
6897   // the reduction on its own.
6898   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6899   Instruction *ReductionPhi = LastChain;
6900   while (!isa<PHINode>(ReductionPhi))
6901     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6902 
6903   const RecurrenceDescriptor &RdxDesc =
6904       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6905 
6906   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6907       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6908 
6909   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6910   // normal fmul instruction to the cost of the fadd reduction.
6911   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6912     BaseCost +=
6913         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6914 
6915   // If we're using ordered reductions then we can just return the base cost
6916   // here, since getArithmeticReductionCost calculates the full ordered
6917   // reduction cost when FP reassociation is not allowed.
6918   if (useOrderedReductions(RdxDesc))
6919     return BaseCost;
6920 
6921   // Get the operand that was not the reduction chain and match it to one of the
6922   // patterns, returning the better cost if it is found.
6923   Instruction *RedOp = RetI->getOperand(1) == LastChain
6924                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6925                            : dyn_cast<Instruction>(RetI->getOperand(1));
6926 
6927   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6928 
6929   Instruction *Op0, *Op1;
6930   if (RedOp &&
6931       match(RedOp,
6932             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6933       match(Op0, m_ZExtOrSExt(m_Value())) &&
6934       Op0->getOpcode() == Op1->getOpcode() &&
6935       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6936       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6937       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6938 
6939     // Matched reduce(ext(mul(ext(A), ext(B)))
6940     // Note that the extend opcodes need to all match, or if A==B they will have
6941     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6942     // which is equally fine.
6943     bool IsUnsigned = isa<ZExtInst>(Op0);
6944     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6945     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6946 
6947     InstructionCost ExtCost =
6948         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6949                              TTI::CastContextHint::None, CostKind, Op0);
6950     InstructionCost MulCost =
6951         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6952     InstructionCost Ext2Cost =
6953         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6954                              TTI::CastContextHint::None, CostKind, RedOp);
6955 
6956     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6957         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6958         CostKind);
6959 
6960     if (RedCost.isValid() &&
6961         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6962       return I == RetI ? RedCost : 0;
6963   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6964              !TheLoop->isLoopInvariant(RedOp)) {
6965     // Matched reduce(ext(A))
6966     bool IsUnsigned = isa<ZExtInst>(RedOp);
6967     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6968     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6969         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6970         CostKind);
6971 
6972     InstructionCost ExtCost =
6973         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6974                              TTI::CastContextHint::None, CostKind, RedOp);
6975     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6976       return I == RetI ? RedCost : 0;
6977   } else if (RedOp &&
6978              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6979     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6980         Op0->getOpcode() == Op1->getOpcode() &&
6981         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6982       bool IsUnsigned = isa<ZExtInst>(Op0);
6983       Type *Op0Ty = Op0->getOperand(0)->getType();
6984       Type *Op1Ty = Op1->getOperand(0)->getType();
6985       Type *LargestOpTy =
6986           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6987                                                                     : Op0Ty;
6988       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6989 
6990       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6991       // different sizes. We take the largest type as the ext to reduce, and add
6992       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6993       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6994           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6995           TTI::CastContextHint::None, CostKind, Op0);
6996       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6997           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6998           TTI::CastContextHint::None, CostKind, Op1);
6999       InstructionCost MulCost =
7000           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7001 
7002       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7003           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7004           CostKind);
7005       InstructionCost ExtraExtCost = 0;
7006       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
7007         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
7008         ExtraExtCost = TTI.getCastInstrCost(
7009             ExtraExtOp->getOpcode(), ExtType,
7010             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
7011             TTI::CastContextHint::None, CostKind, ExtraExtOp);
7012       }
7013 
7014       if (RedCost.isValid() &&
7015           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
7016         return I == RetI ? RedCost : 0;
7017     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7018       // Matched reduce(mul())
7019       InstructionCost MulCost =
7020           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7021 
7022       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7023           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7024           CostKind);
7025 
7026       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7027         return I == RetI ? RedCost : 0;
7028     }
7029   }
7030 
7031   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7032 }
7033 
7034 InstructionCost
7035 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7036                                                      ElementCount VF) {
7037   // Calculate scalar cost only. Vectorization cost should be ready at this
7038   // moment.
7039   if (VF.isScalar()) {
7040     Type *ValTy = getLoadStoreType(I);
7041     const Align Alignment = getLoadStoreAlignment(I);
7042     unsigned AS = getLoadStoreAddressSpace(I);
7043 
7044     return TTI.getAddressComputationCost(ValTy) +
7045            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7046                                TTI::TCK_RecipThroughput, I);
7047   }
7048   return getWideningCost(I, VF);
7049 }
7050 
7051 LoopVectorizationCostModel::VectorizationCostTy
7052 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7053                                                ElementCount VF) {
7054   // If we know that this instruction will remain uniform, check the cost of
7055   // the scalar version.
7056   if (isUniformAfterVectorization(I, VF))
7057     VF = ElementCount::getFixed(1);
7058 
7059   if (VF.isVector() && isProfitableToScalarize(I, VF))
7060     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7061 
7062   // Forced scalars do not have any scalarization overhead.
7063   auto ForcedScalar = ForcedScalars.find(VF);
7064   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7065     auto InstSet = ForcedScalar->second;
7066     if (InstSet.count(I))
7067       return VectorizationCostTy(
7068           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7069            VF.getKnownMinValue()),
7070           false);
7071   }
7072 
7073   Type *VectorTy;
7074   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7075 
7076   bool TypeNotScalarized = false;
7077   if (VF.isVector() && VectorTy->isVectorTy()) {
7078     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7079     if (NumParts)
7080       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7081     else
7082       C = InstructionCost::getInvalid();
7083   }
7084   return VectorizationCostTy(C, TypeNotScalarized);
7085 }
7086 
7087 InstructionCost
7088 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7089                                                      ElementCount VF) const {
7090 
7091   // There is no mechanism yet to create a scalable scalarization loop,
7092   // so this is currently Invalid.
7093   if (VF.isScalable())
7094     return InstructionCost::getInvalid();
7095 
7096   if (VF.isScalar())
7097     return 0;
7098 
7099   InstructionCost Cost = 0;
7100   Type *RetTy = ToVectorTy(I->getType(), VF);
7101   if (!RetTy->isVoidTy() &&
7102       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7103     Cost += TTI.getScalarizationOverhead(
7104         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7105         false);
7106 
7107   // Some targets keep addresses scalar.
7108   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7109     return Cost;
7110 
7111   // Some targets support efficient element stores.
7112   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7113     return Cost;
7114 
7115   // Collect operands to consider.
7116   CallInst *CI = dyn_cast<CallInst>(I);
7117   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7118 
7119   // Skip operands that do not require extraction/scalarization and do not incur
7120   // any overhead.
7121   SmallVector<Type *> Tys;
7122   for (auto *V : filterExtractingOperands(Ops, VF))
7123     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7124   return Cost + TTI.getOperandsScalarizationOverhead(
7125                     filterExtractingOperands(Ops, VF), Tys);
7126 }
7127 
7128 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7129   if (VF.isScalar())
7130     return;
7131   NumPredStores = 0;
7132   for (BasicBlock *BB : TheLoop->blocks()) {
7133     // For each instruction in the old loop.
7134     for (Instruction &I : *BB) {
7135       Value *Ptr =  getLoadStorePointerOperand(&I);
7136       if (!Ptr)
7137         continue;
7138 
7139       // TODO: We should generate better code and update the cost model for
7140       // predicated uniform stores. Today they are treated as any other
7141       // predicated store (see added test cases in
7142       // invariant-store-vectorization.ll).
7143       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7144         NumPredStores++;
7145 
7146       if (Legal->isUniformMemOp(I)) {
7147         // TODO: Avoid replicating loads and stores instead of
7148         // relying on instcombine to remove them.
7149         // Load: Scalar load + broadcast
7150         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7151         InstructionCost Cost;
7152         if (isa<StoreInst>(&I) && VF.isScalable() &&
7153             isLegalGatherOrScatter(&I)) {
7154           Cost = getGatherScatterCost(&I, VF);
7155           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7156         } else {
7157           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7158                  "Cannot yet scalarize uniform stores");
7159           Cost = getUniformMemOpCost(&I, VF);
7160           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7161         }
7162         continue;
7163       }
7164 
7165       // We assume that widening is the best solution when possible.
7166       if (memoryInstructionCanBeWidened(&I, VF)) {
7167         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7168         int ConsecutiveStride = Legal->isConsecutivePtr(
7169             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7170         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7171                "Expected consecutive stride.");
7172         InstWidening Decision =
7173             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7174         setWideningDecision(&I, VF, Decision, Cost);
7175         continue;
7176       }
7177 
7178       // Choose between Interleaving, Gather/Scatter or Scalarization.
7179       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7180       unsigned NumAccesses = 1;
7181       if (isAccessInterleaved(&I)) {
7182         auto Group = getInterleavedAccessGroup(&I);
7183         assert(Group && "Fail to get an interleaved access group.");
7184 
7185         // Make one decision for the whole group.
7186         if (getWideningDecision(&I, VF) != CM_Unknown)
7187           continue;
7188 
7189         NumAccesses = Group->getNumMembers();
7190         if (interleavedAccessCanBeWidened(&I, VF))
7191           InterleaveCost = getInterleaveGroupCost(&I, VF);
7192       }
7193 
7194       InstructionCost GatherScatterCost =
7195           isLegalGatherOrScatter(&I)
7196               ? getGatherScatterCost(&I, VF) * NumAccesses
7197               : InstructionCost::getInvalid();
7198 
7199       InstructionCost ScalarizationCost =
7200           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7201 
7202       // Choose better solution for the current VF,
7203       // write down this decision and use it during vectorization.
7204       InstructionCost Cost;
7205       InstWidening Decision;
7206       if (InterleaveCost <= GatherScatterCost &&
7207           InterleaveCost < ScalarizationCost) {
7208         Decision = CM_Interleave;
7209         Cost = InterleaveCost;
7210       } else if (GatherScatterCost < ScalarizationCost) {
7211         Decision = CM_GatherScatter;
7212         Cost = GatherScatterCost;
7213       } else {
7214         Decision = CM_Scalarize;
7215         Cost = ScalarizationCost;
7216       }
7217       // If the instructions belongs to an interleave group, the whole group
7218       // receives the same decision. The whole group receives the cost, but
7219       // the cost will actually be assigned to one instruction.
7220       if (auto Group = getInterleavedAccessGroup(&I))
7221         setWideningDecision(Group, VF, Decision, Cost);
7222       else
7223         setWideningDecision(&I, VF, Decision, Cost);
7224     }
7225   }
7226 
7227   // Make sure that any load of address and any other address computation
7228   // remains scalar unless there is gather/scatter support. This avoids
7229   // inevitable extracts into address registers, and also has the benefit of
7230   // activating LSR more, since that pass can't optimize vectorized
7231   // addresses.
7232   if (TTI.prefersVectorizedAddressing())
7233     return;
7234 
7235   // Start with all scalar pointer uses.
7236   SmallPtrSet<Instruction *, 8> AddrDefs;
7237   for (BasicBlock *BB : TheLoop->blocks())
7238     for (Instruction &I : *BB) {
7239       Instruction *PtrDef =
7240         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7241       if (PtrDef && TheLoop->contains(PtrDef) &&
7242           getWideningDecision(&I, VF) != CM_GatherScatter)
7243         AddrDefs.insert(PtrDef);
7244     }
7245 
7246   // Add all instructions used to generate the addresses.
7247   SmallVector<Instruction *, 4> Worklist;
7248   append_range(Worklist, AddrDefs);
7249   while (!Worklist.empty()) {
7250     Instruction *I = Worklist.pop_back_val();
7251     for (auto &Op : I->operands())
7252       if (auto *InstOp = dyn_cast<Instruction>(Op))
7253         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7254             AddrDefs.insert(InstOp).second)
7255           Worklist.push_back(InstOp);
7256   }
7257 
7258   for (auto *I : AddrDefs) {
7259     if (isa<LoadInst>(I)) {
7260       // Setting the desired widening decision should ideally be handled in
7261       // by cost functions, but since this involves the task of finding out
7262       // if the loaded register is involved in an address computation, it is
7263       // instead changed here when we know this is the case.
7264       InstWidening Decision = getWideningDecision(I, VF);
7265       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7266         // Scalarize a widened load of address.
7267         setWideningDecision(
7268             I, VF, CM_Scalarize,
7269             (VF.getKnownMinValue() *
7270              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7271       else if (auto Group = getInterleavedAccessGroup(I)) {
7272         // Scalarize an interleave group of address loads.
7273         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7274           if (Instruction *Member = Group->getMember(I))
7275             setWideningDecision(
7276                 Member, VF, CM_Scalarize,
7277                 (VF.getKnownMinValue() *
7278                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7279         }
7280       }
7281     } else
7282       // Make sure I gets scalarized and a cost estimate without
7283       // scalarization overhead.
7284       ForcedScalars[VF].insert(I);
7285   }
7286 }
7287 
7288 InstructionCost
7289 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7290                                                Type *&VectorTy) {
7291   Type *RetTy = I->getType();
7292   if (canTruncateToMinimalBitwidth(I, VF))
7293     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7294   auto SE = PSE.getSE();
7295   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7296 
7297   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7298                                                 ElementCount VF) -> bool {
7299     if (VF.isScalar())
7300       return true;
7301 
7302     auto Scalarized = InstsToScalarize.find(VF);
7303     assert(Scalarized != InstsToScalarize.end() &&
7304            "VF not yet analyzed for scalarization profitability");
7305     return !Scalarized->second.count(I) &&
7306            llvm::all_of(I->users(), [&](User *U) {
7307              auto *UI = cast<Instruction>(U);
7308              return !Scalarized->second.count(UI);
7309            });
7310   };
7311   (void) hasSingleCopyAfterVectorization;
7312 
7313   if (isScalarAfterVectorization(I, VF)) {
7314     // With the exception of GEPs and PHIs, after scalarization there should
7315     // only be one copy of the instruction generated in the loop. This is
7316     // because the VF is either 1, or any instructions that need scalarizing
7317     // have already been dealt with by the the time we get here. As a result,
7318     // it means we don't have to multiply the instruction cost by VF.
7319     assert(I->getOpcode() == Instruction::GetElementPtr ||
7320            I->getOpcode() == Instruction::PHI ||
7321            (I->getOpcode() == Instruction::BitCast &&
7322             I->getType()->isPointerTy()) ||
7323            hasSingleCopyAfterVectorization(I, VF));
7324     VectorTy = RetTy;
7325   } else
7326     VectorTy = ToVectorTy(RetTy, VF);
7327 
7328   // TODO: We need to estimate the cost of intrinsic calls.
7329   switch (I->getOpcode()) {
7330   case Instruction::GetElementPtr:
7331     // We mark this instruction as zero-cost because the cost of GEPs in
7332     // vectorized code depends on whether the corresponding memory instruction
7333     // is scalarized or not. Therefore, we handle GEPs with the memory
7334     // instruction cost.
7335     return 0;
7336   case Instruction::Br: {
7337     // In cases of scalarized and predicated instructions, there will be VF
7338     // predicated blocks in the vectorized loop. Each branch around these
7339     // blocks requires also an extract of its vector compare i1 element.
7340     bool ScalarPredicatedBB = false;
7341     BranchInst *BI = cast<BranchInst>(I);
7342     if (VF.isVector() && BI->isConditional() &&
7343         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7344          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7345       ScalarPredicatedBB = true;
7346 
7347     if (ScalarPredicatedBB) {
7348       // Not possible to scalarize scalable vector with predicated instructions.
7349       if (VF.isScalable())
7350         return InstructionCost::getInvalid();
7351       // Return cost for branches around scalarized and predicated blocks.
7352       auto *Vec_i1Ty =
7353           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7354       return (
7355           TTI.getScalarizationOverhead(
7356               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7357           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7358     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7359       // The back-edge branch will remain, as will all scalar branches.
7360       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7361     else
7362       // This branch will be eliminated by if-conversion.
7363       return 0;
7364     // Note: We currently assume zero cost for an unconditional branch inside
7365     // a predicated block since it will become a fall-through, although we
7366     // may decide in the future to call TTI for all branches.
7367   }
7368   case Instruction::PHI: {
7369     auto *Phi = cast<PHINode>(I);
7370 
7371     // First-order recurrences are replaced by vector shuffles inside the loop.
7372     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7373     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7374       return TTI.getShuffleCost(
7375           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7376           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7377 
7378     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7379     // converted into select instructions. We require N - 1 selects per phi
7380     // node, where N is the number of incoming values.
7381     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7382       return (Phi->getNumIncomingValues() - 1) *
7383              TTI.getCmpSelInstrCost(
7384                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7385                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7386                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7387 
7388     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7389   }
7390   case Instruction::UDiv:
7391   case Instruction::SDiv:
7392   case Instruction::URem:
7393   case Instruction::SRem:
7394     // If we have a predicated instruction, it may not be executed for each
7395     // vector lane. Get the scalarization cost and scale this amount by the
7396     // probability of executing the predicated block. If the instruction is not
7397     // predicated, we fall through to the next case.
7398     if (VF.isVector() && isScalarWithPredication(I)) {
7399       InstructionCost Cost = 0;
7400 
7401       // These instructions have a non-void type, so account for the phi nodes
7402       // that we will create. This cost is likely to be zero. The phi node
7403       // cost, if any, should be scaled by the block probability because it
7404       // models a copy at the end of each predicated block.
7405       Cost += VF.getKnownMinValue() *
7406               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7407 
7408       // The cost of the non-predicated instruction.
7409       Cost += VF.getKnownMinValue() *
7410               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7411 
7412       // The cost of insertelement and extractelement instructions needed for
7413       // scalarization.
7414       Cost += getScalarizationOverhead(I, VF);
7415 
7416       // Scale the cost by the probability of executing the predicated blocks.
7417       // This assumes the predicated block for each vector lane is equally
7418       // likely.
7419       return Cost / getReciprocalPredBlockProb();
7420     }
7421     LLVM_FALLTHROUGH;
7422   case Instruction::Add:
7423   case Instruction::FAdd:
7424   case Instruction::Sub:
7425   case Instruction::FSub:
7426   case Instruction::Mul:
7427   case Instruction::FMul:
7428   case Instruction::FDiv:
7429   case Instruction::FRem:
7430   case Instruction::Shl:
7431   case Instruction::LShr:
7432   case Instruction::AShr:
7433   case Instruction::And:
7434   case Instruction::Or:
7435   case Instruction::Xor: {
7436     // Since we will replace the stride by 1 the multiplication should go away.
7437     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7438       return 0;
7439 
7440     // Detect reduction patterns
7441     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7442       return *RedCost;
7443 
7444     // Certain instructions can be cheaper to vectorize if they have a constant
7445     // second vector operand. One example of this are shifts on x86.
7446     Value *Op2 = I->getOperand(1);
7447     TargetTransformInfo::OperandValueProperties Op2VP;
7448     TargetTransformInfo::OperandValueKind Op2VK =
7449         TTI.getOperandInfo(Op2, Op2VP);
7450     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7451       Op2VK = TargetTransformInfo::OK_UniformValue;
7452 
7453     SmallVector<const Value *, 4> Operands(I->operand_values());
7454     return TTI.getArithmeticInstrCost(
7455         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7456         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7457   }
7458   case Instruction::FNeg: {
7459     return TTI.getArithmeticInstrCost(
7460         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7461         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7462         TargetTransformInfo::OP_None, I->getOperand(0), I);
7463   }
7464   case Instruction::Select: {
7465     SelectInst *SI = cast<SelectInst>(I);
7466     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7467     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7468 
7469     const Value *Op0, *Op1;
7470     using namespace llvm::PatternMatch;
7471     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7472                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7473       // select x, y, false --> x & y
7474       // select x, true, y --> x | y
7475       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7476       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7477       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7478       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7479       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7480               Op1->getType()->getScalarSizeInBits() == 1);
7481 
7482       SmallVector<const Value *, 2> Operands{Op0, Op1};
7483       return TTI.getArithmeticInstrCost(
7484           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7485           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7486     }
7487 
7488     Type *CondTy = SI->getCondition()->getType();
7489     if (!ScalarCond)
7490       CondTy = VectorType::get(CondTy, VF);
7491 
7492     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7493     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7494       Pred = Cmp->getPredicate();
7495     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7496                                   CostKind, I);
7497   }
7498   case Instruction::ICmp:
7499   case Instruction::FCmp: {
7500     Type *ValTy = I->getOperand(0)->getType();
7501     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7502     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7503       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7504     VectorTy = ToVectorTy(ValTy, VF);
7505     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7506                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7507                                   I);
7508   }
7509   case Instruction::Store:
7510   case Instruction::Load: {
7511     ElementCount Width = VF;
7512     if (Width.isVector()) {
7513       InstWidening Decision = getWideningDecision(I, Width);
7514       assert(Decision != CM_Unknown &&
7515              "CM decision should be taken at this point");
7516       if (Decision == CM_Scalarize)
7517         Width = ElementCount::getFixed(1);
7518     }
7519     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7520     return getMemoryInstructionCost(I, VF);
7521   }
7522   case Instruction::BitCast:
7523     if (I->getType()->isPointerTy())
7524       return 0;
7525     LLVM_FALLTHROUGH;
7526   case Instruction::ZExt:
7527   case Instruction::SExt:
7528   case Instruction::FPToUI:
7529   case Instruction::FPToSI:
7530   case Instruction::FPExt:
7531   case Instruction::PtrToInt:
7532   case Instruction::IntToPtr:
7533   case Instruction::SIToFP:
7534   case Instruction::UIToFP:
7535   case Instruction::Trunc:
7536   case Instruction::FPTrunc: {
7537     // Computes the CastContextHint from a Load/Store instruction.
7538     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7539       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7540              "Expected a load or a store!");
7541 
7542       if (VF.isScalar() || !TheLoop->contains(I))
7543         return TTI::CastContextHint::Normal;
7544 
7545       switch (getWideningDecision(I, VF)) {
7546       case LoopVectorizationCostModel::CM_GatherScatter:
7547         return TTI::CastContextHint::GatherScatter;
7548       case LoopVectorizationCostModel::CM_Interleave:
7549         return TTI::CastContextHint::Interleave;
7550       case LoopVectorizationCostModel::CM_Scalarize:
7551       case LoopVectorizationCostModel::CM_Widen:
7552         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7553                                         : TTI::CastContextHint::Normal;
7554       case LoopVectorizationCostModel::CM_Widen_Reverse:
7555         return TTI::CastContextHint::Reversed;
7556       case LoopVectorizationCostModel::CM_Unknown:
7557         llvm_unreachable("Instr did not go through cost modelling?");
7558       }
7559 
7560       llvm_unreachable("Unhandled case!");
7561     };
7562 
7563     unsigned Opcode = I->getOpcode();
7564     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7565     // For Trunc, the context is the only user, which must be a StoreInst.
7566     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7567       if (I->hasOneUse())
7568         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7569           CCH = ComputeCCH(Store);
7570     }
7571     // For Z/Sext, the context is the operand, which must be a LoadInst.
7572     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7573              Opcode == Instruction::FPExt) {
7574       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7575         CCH = ComputeCCH(Load);
7576     }
7577 
7578     // We optimize the truncation of induction variables having constant
7579     // integer steps. The cost of these truncations is the same as the scalar
7580     // operation.
7581     if (isOptimizableIVTruncate(I, VF)) {
7582       auto *Trunc = cast<TruncInst>(I);
7583       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7584                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7585     }
7586 
7587     // Detect reduction patterns
7588     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7589       return *RedCost;
7590 
7591     Type *SrcScalarTy = I->getOperand(0)->getType();
7592     Type *SrcVecTy =
7593         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7594     if (canTruncateToMinimalBitwidth(I, VF)) {
7595       // This cast is going to be shrunk. This may remove the cast or it might
7596       // turn it into slightly different cast. For example, if MinBW == 16,
7597       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7598       //
7599       // Calculate the modified src and dest types.
7600       Type *MinVecTy = VectorTy;
7601       if (Opcode == Instruction::Trunc) {
7602         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7603         VectorTy =
7604             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7605       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7606         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7607         VectorTy =
7608             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7609       }
7610     }
7611 
7612     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7613   }
7614   case Instruction::Call: {
7615     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7616       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7617         return *RedCost;
7618     bool NeedToScalarize;
7619     CallInst *CI = cast<CallInst>(I);
7620     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7621     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7622       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7623       return std::min(CallCost, IntrinsicCost);
7624     }
7625     return CallCost;
7626   }
7627   case Instruction::ExtractValue:
7628     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7629   case Instruction::Alloca:
7630     // We cannot easily widen alloca to a scalable alloca, as
7631     // the result would need to be a vector of pointers.
7632     if (VF.isScalable())
7633       return InstructionCost::getInvalid();
7634     LLVM_FALLTHROUGH;
7635   default:
7636     // This opcode is unknown. Assume that it is the same as 'mul'.
7637     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7638   } // end of switch.
7639 }
7640 
7641 char LoopVectorize::ID = 0;
7642 
7643 static const char lv_name[] = "Loop Vectorization";
7644 
7645 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7646 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7647 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7648 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7649 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7650 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7651 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7652 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7653 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7654 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7655 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7656 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7657 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7658 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7659 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7660 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7661 
7662 namespace llvm {
7663 
7664 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7665 
7666 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7667                               bool VectorizeOnlyWhenForced) {
7668   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7669 }
7670 
7671 } // end namespace llvm
7672 
7673 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7674   // Check if the pointer operand of a load or store instruction is
7675   // consecutive.
7676   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7677     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7678   return false;
7679 }
7680 
7681 void LoopVectorizationCostModel::collectValuesToIgnore() {
7682   // Ignore ephemeral values.
7683   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7684 
7685   // Ignore type-promoting instructions we identified during reduction
7686   // detection.
7687   for (auto &Reduction : Legal->getReductionVars()) {
7688     const RecurrenceDescriptor &RedDes = Reduction.second;
7689     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7690     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7691   }
7692   // Ignore type-casting instructions we identified during induction
7693   // detection.
7694   for (auto &Induction : Legal->getInductionVars()) {
7695     const InductionDescriptor &IndDes = Induction.second;
7696     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7697     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7698   }
7699 }
7700 
7701 void LoopVectorizationCostModel::collectInLoopReductions() {
7702   for (auto &Reduction : Legal->getReductionVars()) {
7703     PHINode *Phi = Reduction.first;
7704     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7705 
7706     // We don't collect reductions that are type promoted (yet).
7707     if (RdxDesc.getRecurrenceType() != Phi->getType())
7708       continue;
7709 
7710     // If the target would prefer this reduction to happen "in-loop", then we
7711     // want to record it as such.
7712     unsigned Opcode = RdxDesc.getOpcode();
7713     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7714         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7715                                    TargetTransformInfo::ReductionFlags()))
7716       continue;
7717 
7718     // Check that we can correctly put the reductions into the loop, by
7719     // finding the chain of operations that leads from the phi to the loop
7720     // exit value.
7721     SmallVector<Instruction *, 4> ReductionOperations =
7722         RdxDesc.getReductionOpChain(Phi, TheLoop);
7723     bool InLoop = !ReductionOperations.empty();
7724     if (InLoop) {
7725       InLoopReductionChains[Phi] = ReductionOperations;
7726       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7727       Instruction *LastChain = Phi;
7728       for (auto *I : ReductionOperations) {
7729         InLoopReductionImmediateChains[I] = LastChain;
7730         LastChain = I;
7731       }
7732     }
7733     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7734                       << " reduction for phi: " << *Phi << "\n");
7735   }
7736 }
7737 
7738 // TODO: we could return a pair of values that specify the max VF and
7739 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7740 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7741 // doesn't have a cost model that can choose which plan to execute if
7742 // more than one is generated.
7743 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7744                                  LoopVectorizationCostModel &CM) {
7745   unsigned WidestType;
7746   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7747   return WidestVectorRegBits / WidestType;
7748 }
7749 
7750 VectorizationFactor
7751 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7752   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7753   ElementCount VF = UserVF;
7754   // Outer loop handling: They may require CFG and instruction level
7755   // transformations before even evaluating whether vectorization is profitable.
7756   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7757   // the vectorization pipeline.
7758   if (!OrigLoop->isInnermost()) {
7759     // If the user doesn't provide a vectorization factor, determine a
7760     // reasonable one.
7761     if (UserVF.isZero()) {
7762       VF = ElementCount::getFixed(determineVPlanVF(
7763           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7764               .getFixedSize(),
7765           CM));
7766       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7767 
7768       // Make sure we have a VF > 1 for stress testing.
7769       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7770         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7771                           << "overriding computed VF.\n");
7772         VF = ElementCount::getFixed(4);
7773       }
7774     }
7775     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7776     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7777            "VF needs to be a power of two");
7778     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7779                       << "VF " << VF << " to build VPlans.\n");
7780     buildVPlans(VF, VF);
7781 
7782     // For VPlan build stress testing, we bail out after VPlan construction.
7783     if (VPlanBuildStressTest)
7784       return VectorizationFactor::Disabled();
7785 
7786     return {VF, 0 /*Cost*/};
7787   }
7788 
7789   LLVM_DEBUG(
7790       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7791                 "VPlan-native path.\n");
7792   return VectorizationFactor::Disabled();
7793 }
7794 
7795 Optional<VectorizationFactor>
7796 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7797   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7798   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7799   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7800     return None;
7801 
7802   // Invalidate interleave groups if all blocks of loop will be predicated.
7803   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7804       !useMaskedInterleavedAccesses(*TTI)) {
7805     LLVM_DEBUG(
7806         dbgs()
7807         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7808            "which requires masked-interleaved support.\n");
7809     if (CM.InterleaveInfo.invalidateGroups())
7810       // Invalidating interleave groups also requires invalidating all decisions
7811       // based on them, which includes widening decisions and uniform and scalar
7812       // values.
7813       CM.invalidateCostModelingDecisions();
7814   }
7815 
7816   ElementCount MaxUserVF =
7817       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7818   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7819   if (!UserVF.isZero() && UserVFIsLegal) {
7820     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7821            "VF needs to be a power of two");
7822     // Collect the instructions (and their associated costs) that will be more
7823     // profitable to scalarize.
7824     if (CM.selectUserVectorizationFactor(UserVF)) {
7825       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7826       CM.collectInLoopReductions();
7827       buildVPlansWithVPRecipes(UserVF, UserVF);
7828       LLVM_DEBUG(printPlans(dbgs()));
7829       return {{UserVF, 0}};
7830     } else
7831       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7832                               "InvalidCost", ORE, OrigLoop);
7833   }
7834 
7835   // Populate the set of Vectorization Factor Candidates.
7836   ElementCountSet VFCandidates;
7837   for (auto VF = ElementCount::getFixed(1);
7838        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7839     VFCandidates.insert(VF);
7840   for (auto VF = ElementCount::getScalable(1);
7841        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7842     VFCandidates.insert(VF);
7843 
7844   for (const auto &VF : VFCandidates) {
7845     // Collect Uniform and Scalar instructions after vectorization with VF.
7846     CM.collectUniformsAndScalars(VF);
7847 
7848     // Collect the instructions (and their associated costs) that will be more
7849     // profitable to scalarize.
7850     if (VF.isVector())
7851       CM.collectInstsToScalarize(VF);
7852   }
7853 
7854   CM.collectInLoopReductions();
7855   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7856   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7857 
7858   LLVM_DEBUG(printPlans(dbgs()));
7859   if (!MaxFactors.hasVector())
7860     return VectorizationFactor::Disabled();
7861 
7862   // Select the optimal vectorization factor.
7863   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7864 
7865   // Check if it is profitable to vectorize with runtime checks.
7866   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7867   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7868     bool PragmaThresholdReached =
7869         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7870     bool ThresholdReached =
7871         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7872     if ((ThresholdReached && !Hints.allowReordering()) ||
7873         PragmaThresholdReached) {
7874       ORE->emit([&]() {
7875         return OptimizationRemarkAnalysisAliasing(
7876                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7877                    OrigLoop->getHeader())
7878                << "loop not vectorized: cannot prove it is safe to reorder "
7879                   "memory operations";
7880       });
7881       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7882       Hints.emitRemarkWithHints();
7883       return VectorizationFactor::Disabled();
7884     }
7885   }
7886   return SelectedVF;
7887 }
7888 
7889 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7890   assert(count_if(VPlans,
7891                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7892              1 &&
7893          "Best VF has not a single VPlan.");
7894 
7895   for (const VPlanPtr &Plan : VPlans) {
7896     if (Plan->hasVF(VF))
7897       return *Plan.get();
7898   }
7899   llvm_unreachable("No plan found!");
7900 }
7901 
7902 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7903                                            VPlan &BestVPlan,
7904                                            InnerLoopVectorizer &ILV,
7905                                            DominatorTree *DT) {
7906   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7907                     << '\n');
7908 
7909   // Perform the actual loop transformation.
7910 
7911   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7912   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7913   Value *CanonicalIVStartValue;
7914   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7915       ILV.createVectorizedLoopSkeleton();
7916   ILV.collectPoisonGeneratingRecipes(State);
7917 
7918   ILV.printDebugTracesAtStart();
7919 
7920   //===------------------------------------------------===//
7921   //
7922   // Notice: any optimization or new instruction that go
7923   // into the code below should also be implemented in
7924   // the cost-model.
7925   //
7926   //===------------------------------------------------===//
7927 
7928   // 2. Copy and widen instructions from the old loop into the new loop.
7929   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7930                              ILV.getOrCreateVectorTripCount(nullptr),
7931                              CanonicalIVStartValue, State);
7932   BestVPlan.execute(&State);
7933 
7934   // Keep all loop hints from the original loop on the vector loop (we'll
7935   // replace the vectorizer-specific hints below).
7936   MDNode *OrigLoopID = OrigLoop->getLoopID();
7937 
7938   Optional<MDNode *> VectorizedLoopID =
7939       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7940                                       LLVMLoopVectorizeFollowupVectorized});
7941 
7942   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7943   if (VectorizedLoopID.hasValue())
7944     L->setLoopID(VectorizedLoopID.getValue());
7945   else {
7946     // Keep all loop hints from the original loop on the vector loop (we'll
7947     // replace the vectorizer-specific hints below).
7948     if (MDNode *LID = OrigLoop->getLoopID())
7949       L->setLoopID(LID);
7950 
7951     LoopVectorizeHints Hints(L, true, *ORE);
7952     Hints.setAlreadyVectorized();
7953   }
7954 
7955   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7956   //    predication, updating analyses.
7957   ILV.fixVectorizedLoop(State);
7958 
7959   ILV.printDebugTracesAtEnd();
7960 }
7961 
7962 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7963 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7964   for (const auto &Plan : VPlans)
7965     if (PrintVPlansInDotFormat)
7966       Plan->printDOT(O);
7967     else
7968       Plan->print(O);
7969 }
7970 #endif
7971 
7972 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7973     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7974 
7975   // We create new control-flow for the vectorized loop, so the original exit
7976   // conditions will be dead after vectorization if it's only used by the
7977   // terminator
7978   SmallVector<BasicBlock*> ExitingBlocks;
7979   OrigLoop->getExitingBlocks(ExitingBlocks);
7980   for (auto *BB : ExitingBlocks) {
7981     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7982     if (!Cmp || !Cmp->hasOneUse())
7983       continue;
7984 
7985     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7986     if (!DeadInstructions.insert(Cmp).second)
7987       continue;
7988 
7989     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7990     // TODO: can recurse through operands in general
7991     for (Value *Op : Cmp->operands()) {
7992       if (isa<TruncInst>(Op) && Op->hasOneUse())
7993           DeadInstructions.insert(cast<Instruction>(Op));
7994     }
7995   }
7996 
7997   // We create new "steps" for induction variable updates to which the original
7998   // induction variables map. An original update instruction will be dead if
7999   // all its users except the induction variable are dead.
8000   auto *Latch = OrigLoop->getLoopLatch();
8001   for (auto &Induction : Legal->getInductionVars()) {
8002     PHINode *Ind = Induction.first;
8003     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8004 
8005     // If the tail is to be folded by masking, the primary induction variable,
8006     // if exists, isn't dead: it will be used for masking. Don't kill it.
8007     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8008       continue;
8009 
8010     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8011           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8012         }))
8013       DeadInstructions.insert(IndUpdate);
8014   }
8015 }
8016 
8017 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8018 
8019 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8020   SmallVector<Metadata *, 4> MDs;
8021   // Reserve first location for self reference to the LoopID metadata node.
8022   MDs.push_back(nullptr);
8023   bool IsUnrollMetadata = false;
8024   MDNode *LoopID = L->getLoopID();
8025   if (LoopID) {
8026     // First find existing loop unrolling disable metadata.
8027     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8028       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8029       if (MD) {
8030         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8031         IsUnrollMetadata =
8032             S && S->getString().startswith("llvm.loop.unroll.disable");
8033       }
8034       MDs.push_back(LoopID->getOperand(i));
8035     }
8036   }
8037 
8038   if (!IsUnrollMetadata) {
8039     // Add runtime unroll disable metadata.
8040     LLVMContext &Context = L->getHeader()->getContext();
8041     SmallVector<Metadata *, 1> DisableOperands;
8042     DisableOperands.push_back(
8043         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8044     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8045     MDs.push_back(DisableNode);
8046     MDNode *NewLoopID = MDNode::get(Context, MDs);
8047     // Set operand 0 to refer to the loop id itself.
8048     NewLoopID->replaceOperandWith(0, NewLoopID);
8049     L->setLoopID(NewLoopID);
8050   }
8051 }
8052 
8053 //===--------------------------------------------------------------------===//
8054 // EpilogueVectorizerMainLoop
8055 //===--------------------------------------------------------------------===//
8056 
8057 /// This function is partially responsible for generating the control flow
8058 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8059 std::pair<BasicBlock *, Value *>
8060 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8061   MDNode *OrigLoopID = OrigLoop->getLoopID();
8062   Loop *Lp = createVectorLoopSkeleton("");
8063 
8064   // Generate the code to check the minimum iteration count of the vector
8065   // epilogue (see below).
8066   EPI.EpilogueIterationCountCheck =
8067       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8068   EPI.EpilogueIterationCountCheck->setName("iter.check");
8069 
8070   // Generate the code to check any assumptions that we've made for SCEV
8071   // expressions.
8072   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8073 
8074   // Generate the code that checks at runtime if arrays overlap. We put the
8075   // checks into a separate block to make the more common case of few elements
8076   // faster.
8077   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8078 
8079   // Generate the iteration count check for the main loop, *after* the check
8080   // for the epilogue loop, so that the path-length is shorter for the case
8081   // that goes directly through the vector epilogue. The longer-path length for
8082   // the main loop is compensated for, by the gain from vectorizing the larger
8083   // trip count. Note: the branch will get updated later on when we vectorize
8084   // the epilogue.
8085   EPI.MainLoopIterationCountCheck =
8086       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8087 
8088   // Generate the induction variable.
8089   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8090   EPI.VectorTripCount = CountRoundDown;
8091   createHeaderBranch(Lp);
8092 
8093   // Skip induction resume value creation here because they will be created in
8094   // the second pass. If we created them here, they wouldn't be used anyway,
8095   // because the vplan in the second pass still contains the inductions from the
8096   // original loop.
8097 
8098   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8099 }
8100 
8101 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8102   LLVM_DEBUG({
8103     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8104            << "Main Loop VF:" << EPI.MainLoopVF
8105            << ", Main Loop UF:" << EPI.MainLoopUF
8106            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8107            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8108   });
8109 }
8110 
8111 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8112   DEBUG_WITH_TYPE(VerboseDebug, {
8113     dbgs() << "intermediate fn:\n"
8114            << *OrigLoop->getHeader()->getParent() << "\n";
8115   });
8116 }
8117 
8118 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8119     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8120   assert(L && "Expected valid Loop.");
8121   assert(Bypass && "Expected valid bypass basic block.");
8122   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8123   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8124   Value *Count = getOrCreateTripCount(L);
8125   // Reuse existing vector loop preheader for TC checks.
8126   // Note that new preheader block is generated for vector loop.
8127   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8128   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8129 
8130   // Generate code to check if the loop's trip count is less than VF * UF of the
8131   // main vector loop.
8132   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8133       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8134 
8135   Value *CheckMinIters = Builder.CreateICmp(
8136       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8137       "min.iters.check");
8138 
8139   if (!ForEpilogue)
8140     TCCheckBlock->setName("vector.main.loop.iter.check");
8141 
8142   // Create new preheader for vector loop.
8143   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8144                                    DT, LI, nullptr, "vector.ph");
8145 
8146   if (ForEpilogue) {
8147     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8148                                  DT->getNode(Bypass)->getIDom()) &&
8149            "TC check is expected to dominate Bypass");
8150 
8151     // Update dominator for Bypass & LoopExit.
8152     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8153     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8154       // For loops with multiple exits, there's no edge from the middle block
8155       // to exit blocks (as the epilogue must run) and thus no need to update
8156       // the immediate dominator of the exit blocks.
8157       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8158 
8159     LoopBypassBlocks.push_back(TCCheckBlock);
8160 
8161     // Save the trip count so we don't have to regenerate it in the
8162     // vec.epilog.iter.check. This is safe to do because the trip count
8163     // generated here dominates the vector epilog iter check.
8164     EPI.TripCount = Count;
8165   }
8166 
8167   ReplaceInstWithInst(
8168       TCCheckBlock->getTerminator(),
8169       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8170 
8171   return TCCheckBlock;
8172 }
8173 
8174 //===--------------------------------------------------------------------===//
8175 // EpilogueVectorizerEpilogueLoop
8176 //===--------------------------------------------------------------------===//
8177 
8178 /// This function is partially responsible for generating the control flow
8179 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8180 std::pair<BasicBlock *, Value *>
8181 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8182   MDNode *OrigLoopID = OrigLoop->getLoopID();
8183   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8184 
8185   // Now, compare the remaining count and if there aren't enough iterations to
8186   // execute the vectorized epilogue skip to the scalar part.
8187   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8188   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8189   LoopVectorPreHeader =
8190       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8191                  LI, nullptr, "vec.epilog.ph");
8192   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8193                                           VecEpilogueIterationCountCheck);
8194 
8195   // Adjust the control flow taking the state info from the main loop
8196   // vectorization into account.
8197   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8198          "expected this to be saved from the previous pass.");
8199   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8200       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8201 
8202   DT->changeImmediateDominator(LoopVectorPreHeader,
8203                                EPI.MainLoopIterationCountCheck);
8204 
8205   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8206       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8207 
8208   if (EPI.SCEVSafetyCheck)
8209     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8210         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8211   if (EPI.MemSafetyCheck)
8212     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8213         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8214 
8215   DT->changeImmediateDominator(
8216       VecEpilogueIterationCountCheck,
8217       VecEpilogueIterationCountCheck->getSinglePredecessor());
8218 
8219   DT->changeImmediateDominator(LoopScalarPreHeader,
8220                                EPI.EpilogueIterationCountCheck);
8221   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8222     // If there is an epilogue which must run, there's no edge from the
8223     // middle block to exit blocks  and thus no need to update the immediate
8224     // dominator of the exit blocks.
8225     DT->changeImmediateDominator(LoopExitBlock,
8226                                  EPI.EpilogueIterationCountCheck);
8227 
8228   // Keep track of bypass blocks, as they feed start values to the induction
8229   // phis in the scalar loop preheader.
8230   if (EPI.SCEVSafetyCheck)
8231     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8232   if (EPI.MemSafetyCheck)
8233     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8234   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8235 
8236   // Generate a resume induction for the vector epilogue and put it in the
8237   // vector epilogue preheader
8238   Type *IdxTy = Legal->getWidestInductionType();
8239   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8240                                          LoopVectorPreHeader->getFirstNonPHI());
8241   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8242   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8243                            EPI.MainLoopIterationCountCheck);
8244 
8245   // Generate the induction variable.
8246   createHeaderBranch(Lp);
8247 
8248   // Generate induction resume values. These variables save the new starting
8249   // indexes for the scalar loop. They are used to test if there are any tail
8250   // iterations left once the vector loop has completed.
8251   // Note that when the vectorized epilogue is skipped due to iteration count
8252   // check, then the resume value for the induction variable comes from
8253   // the trip count of the main vector loop, hence passing the AdditionalBypass
8254   // argument.
8255   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8256                                    EPI.VectorTripCount} /* AdditionalBypass */);
8257 
8258   AddRuntimeUnrollDisableMetaData(Lp);
8259   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8260 }
8261 
8262 BasicBlock *
8263 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8264     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8265 
8266   assert(EPI.TripCount &&
8267          "Expected trip count to have been safed in the first pass.");
8268   assert(
8269       (!isa<Instruction>(EPI.TripCount) ||
8270        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8271       "saved trip count does not dominate insertion point.");
8272   Value *TC = EPI.TripCount;
8273   IRBuilder<> Builder(Insert->getTerminator());
8274   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8275 
8276   // Generate code to check if the loop's trip count is less than VF * UF of the
8277   // vector epilogue loop.
8278   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8279       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8280 
8281   Value *CheckMinIters =
8282       Builder.CreateICmp(P, Count,
8283                          createStepForVF(Builder, Count->getType(),
8284                                          EPI.EpilogueVF, EPI.EpilogueUF),
8285                          "min.epilog.iters.check");
8286 
8287   ReplaceInstWithInst(
8288       Insert->getTerminator(),
8289       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8290 
8291   LoopBypassBlocks.push_back(Insert);
8292   return Insert;
8293 }
8294 
8295 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8296   LLVM_DEBUG({
8297     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8298            << "Epilogue Loop VF:" << EPI.EpilogueVF
8299            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8300   });
8301 }
8302 
8303 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8304   DEBUG_WITH_TYPE(VerboseDebug, {
8305     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8306   });
8307 }
8308 
8309 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8310     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8311   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8312   bool PredicateAtRangeStart = Predicate(Range.Start);
8313 
8314   for (ElementCount TmpVF = Range.Start * 2;
8315        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8316     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8317       Range.End = TmpVF;
8318       break;
8319     }
8320 
8321   return PredicateAtRangeStart;
8322 }
8323 
8324 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8325 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8326 /// of VF's starting at a given VF and extending it as much as possible. Each
8327 /// vectorization decision can potentially shorten this sub-range during
8328 /// buildVPlan().
8329 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8330                                            ElementCount MaxVF) {
8331   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8332   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8333     VFRange SubRange = {VF, MaxVFPlusOne};
8334     VPlans.push_back(buildVPlan(SubRange));
8335     VF = SubRange.End;
8336   }
8337 }
8338 
8339 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8340                                          VPlanPtr &Plan) {
8341   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8342 
8343   // Look for cached value.
8344   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8345   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8346   if (ECEntryIt != EdgeMaskCache.end())
8347     return ECEntryIt->second;
8348 
8349   VPValue *SrcMask = createBlockInMask(Src, Plan);
8350 
8351   // The terminator has to be a branch inst!
8352   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8353   assert(BI && "Unexpected terminator found");
8354 
8355   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8356     return EdgeMaskCache[Edge] = SrcMask;
8357 
8358   // If source is an exiting block, we know the exit edge is dynamically dead
8359   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8360   // adding uses of an otherwise potentially dead instruction.
8361   if (OrigLoop->isLoopExiting(Src))
8362     return EdgeMaskCache[Edge] = SrcMask;
8363 
8364   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8365   assert(EdgeMask && "No Edge Mask found for condition");
8366 
8367   if (BI->getSuccessor(0) != Dst)
8368     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8369 
8370   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8371     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8372     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8373     // The select version does not introduce new UB if SrcMask is false and
8374     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8375     VPValue *False = Plan->getOrAddVPValue(
8376         ConstantInt::getFalse(BI->getCondition()->getType()));
8377     EdgeMask =
8378         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8379   }
8380 
8381   return EdgeMaskCache[Edge] = EdgeMask;
8382 }
8383 
8384 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8385   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8386 
8387   // Look for cached value.
8388   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8389   if (BCEntryIt != BlockMaskCache.end())
8390     return BCEntryIt->second;
8391 
8392   // All-one mask is modelled as no-mask following the convention for masked
8393   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8394   VPValue *BlockMask = nullptr;
8395 
8396   if (OrigLoop->getHeader() == BB) {
8397     if (!CM.blockNeedsPredicationForAnyReason(BB))
8398       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8399 
8400     // Introduce the early-exit compare IV <= BTC to form header block mask.
8401     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8402     // constructing the desired canonical IV in the header block as its first
8403     // non-phi instructions.
8404     assert(CM.foldTailByMasking() && "must fold the tail");
8405     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8406     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8407 
8408     VPValue *IV = nullptr;
8409     if (Legal->getPrimaryInduction())
8410       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8411     else {
8412       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8413       HeaderVPBB->insert(IVRecipe, NewInsertionPoint);
8414       IV = IVRecipe;
8415     }
8416 
8417     VPBuilder::InsertPointGuard Guard(Builder);
8418     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8419     if (CM.TTI.emitGetActiveLaneMask()) {
8420       VPValue *TC = Plan->getOrCreateTripCount();
8421       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8422     } else {
8423       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8424       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8425     }
8426     return BlockMaskCache[BB] = BlockMask;
8427   }
8428 
8429   // This is the block mask. We OR all incoming edges.
8430   for (auto *Predecessor : predecessors(BB)) {
8431     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8432     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8433       return BlockMaskCache[BB] = EdgeMask;
8434 
8435     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8436       BlockMask = EdgeMask;
8437       continue;
8438     }
8439 
8440     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8441   }
8442 
8443   return BlockMaskCache[BB] = BlockMask;
8444 }
8445 
8446 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8447                                                 ArrayRef<VPValue *> Operands,
8448                                                 VFRange &Range,
8449                                                 VPlanPtr &Plan) {
8450   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8451          "Must be called with either a load or store");
8452 
8453   auto willWiden = [&](ElementCount VF) -> bool {
8454     if (VF.isScalar())
8455       return false;
8456     LoopVectorizationCostModel::InstWidening Decision =
8457         CM.getWideningDecision(I, VF);
8458     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8459            "CM decision should be taken at this point.");
8460     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8461       return true;
8462     if (CM.isScalarAfterVectorization(I, VF) ||
8463         CM.isProfitableToScalarize(I, VF))
8464       return false;
8465     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8466   };
8467 
8468   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8469     return nullptr;
8470 
8471   VPValue *Mask = nullptr;
8472   if (Legal->isMaskRequired(I))
8473     Mask = createBlockInMask(I->getParent(), Plan);
8474 
8475   // Determine if the pointer operand of the access is either consecutive or
8476   // reverse consecutive.
8477   LoopVectorizationCostModel::InstWidening Decision =
8478       CM.getWideningDecision(I, Range.Start);
8479   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8480   bool Consecutive =
8481       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8482 
8483   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8484     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8485                                               Consecutive, Reverse);
8486 
8487   StoreInst *Store = cast<StoreInst>(I);
8488   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8489                                             Mask, Consecutive, Reverse);
8490 }
8491 
8492 VPWidenIntOrFpInductionRecipe *
8493 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8494                                            ArrayRef<VPValue *> Operands) const {
8495   // Check if this is an integer or fp induction. If so, build the recipe that
8496   // produces its scalar and vector values.
8497   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) {
8498     assert(II->getStartValue() ==
8499            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8500     return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II);
8501   }
8502 
8503   return nullptr;
8504 }
8505 
8506 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8507     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8508     VPlan &Plan) const {
8509   // Optimize the special case where the source is a constant integer
8510   // induction variable. Notice that we can only optimize the 'trunc' case
8511   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8512   // (c) other casts depend on pointer size.
8513 
8514   // Determine whether \p K is a truncation based on an induction variable that
8515   // can be optimized.
8516   auto isOptimizableIVTruncate =
8517       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8518     return [=](ElementCount VF) -> bool {
8519       return CM.isOptimizableIVTruncate(K, VF);
8520     };
8521   };
8522 
8523   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8524           isOptimizableIVTruncate(I), Range)) {
8525 
8526     auto *Phi = cast<PHINode>(I->getOperand(0));
8527     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8528     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8529     return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I);
8530   }
8531   return nullptr;
8532 }
8533 
8534 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8535                                                 ArrayRef<VPValue *> Operands,
8536                                                 VPlanPtr &Plan) {
8537   // If all incoming values are equal, the incoming VPValue can be used directly
8538   // instead of creating a new VPBlendRecipe.
8539   VPValue *FirstIncoming = Operands[0];
8540   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8541         return FirstIncoming == Inc;
8542       })) {
8543     return Operands[0];
8544   }
8545 
8546   // We know that all PHIs in non-header blocks are converted into selects, so
8547   // we don't have to worry about the insertion order and we can just use the
8548   // builder. At this point we generate the predication tree. There may be
8549   // duplications since this is a simple recursive scan, but future
8550   // optimizations will clean it up.
8551   SmallVector<VPValue *, 2> OperandsWithMask;
8552   unsigned NumIncoming = Phi->getNumIncomingValues();
8553 
8554   for (unsigned In = 0; In < NumIncoming; In++) {
8555     VPValue *EdgeMask =
8556       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8557     assert((EdgeMask || NumIncoming == 1) &&
8558            "Multiple predecessors with one having a full mask");
8559     OperandsWithMask.push_back(Operands[In]);
8560     if (EdgeMask)
8561       OperandsWithMask.push_back(EdgeMask);
8562   }
8563   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8564 }
8565 
8566 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8567                                                    ArrayRef<VPValue *> Operands,
8568                                                    VFRange &Range) const {
8569 
8570   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8571       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8572       Range);
8573 
8574   if (IsPredicated)
8575     return nullptr;
8576 
8577   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8578   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8579              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8580              ID == Intrinsic::pseudoprobe ||
8581              ID == Intrinsic::experimental_noalias_scope_decl))
8582     return nullptr;
8583 
8584   auto willWiden = [&](ElementCount VF) -> bool {
8585     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8586     // The following case may be scalarized depending on the VF.
8587     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8588     // version of the instruction.
8589     // Is it beneficial to perform intrinsic call compared to lib call?
8590     bool NeedToScalarize = false;
8591     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8592     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8593     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8594     return UseVectorIntrinsic || !NeedToScalarize;
8595   };
8596 
8597   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8598     return nullptr;
8599 
8600   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8601   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8602 }
8603 
8604 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8605   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8606          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8607   // Instruction should be widened, unless it is scalar after vectorization,
8608   // scalarization is profitable or it is predicated.
8609   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8610     return CM.isScalarAfterVectorization(I, VF) ||
8611            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8612   };
8613   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8614                                                              Range);
8615 }
8616 
8617 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8618                                            ArrayRef<VPValue *> Operands) const {
8619   auto IsVectorizableOpcode = [](unsigned Opcode) {
8620     switch (Opcode) {
8621     case Instruction::Add:
8622     case Instruction::And:
8623     case Instruction::AShr:
8624     case Instruction::BitCast:
8625     case Instruction::FAdd:
8626     case Instruction::FCmp:
8627     case Instruction::FDiv:
8628     case Instruction::FMul:
8629     case Instruction::FNeg:
8630     case Instruction::FPExt:
8631     case Instruction::FPToSI:
8632     case Instruction::FPToUI:
8633     case Instruction::FPTrunc:
8634     case Instruction::FRem:
8635     case Instruction::FSub:
8636     case Instruction::ICmp:
8637     case Instruction::IntToPtr:
8638     case Instruction::LShr:
8639     case Instruction::Mul:
8640     case Instruction::Or:
8641     case Instruction::PtrToInt:
8642     case Instruction::SDiv:
8643     case Instruction::Select:
8644     case Instruction::SExt:
8645     case Instruction::Shl:
8646     case Instruction::SIToFP:
8647     case Instruction::SRem:
8648     case Instruction::Sub:
8649     case Instruction::Trunc:
8650     case Instruction::UDiv:
8651     case Instruction::UIToFP:
8652     case Instruction::URem:
8653     case Instruction::Xor:
8654     case Instruction::ZExt:
8655       return true;
8656     }
8657     return false;
8658   };
8659 
8660   if (!IsVectorizableOpcode(I->getOpcode()))
8661     return nullptr;
8662 
8663   // Success: widen this instruction.
8664   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8665 }
8666 
8667 void VPRecipeBuilder::fixHeaderPhis() {
8668   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8669   for (VPHeaderPHIRecipe *R : PhisToFix) {
8670     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8671     VPRecipeBase *IncR =
8672         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8673     R->addOperand(IncR->getVPSingleValue());
8674   }
8675 }
8676 
8677 VPBasicBlock *VPRecipeBuilder::handleReplication(
8678     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8679     VPlanPtr &Plan) {
8680   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8681       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8682       Range);
8683 
8684   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8685       [&](ElementCount VF) { return CM.isPredicatedInst(I, IsUniform); },
8686       Range);
8687 
8688   // Even if the instruction is not marked as uniform, there are certain
8689   // intrinsic calls that can be effectively treated as such, so we check for
8690   // them here. Conservatively, we only do this for scalable vectors, since
8691   // for fixed-width VFs we can always fall back on full scalarization.
8692   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8693     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8694     case Intrinsic::assume:
8695     case Intrinsic::lifetime_start:
8696     case Intrinsic::lifetime_end:
8697       // For scalable vectors if one of the operands is variant then we still
8698       // want to mark as uniform, which will generate one instruction for just
8699       // the first lane of the vector. We can't scalarize the call in the same
8700       // way as for fixed-width vectors because we don't know how many lanes
8701       // there are.
8702       //
8703       // The reasons for doing it this way for scalable vectors are:
8704       //   1. For the assume intrinsic generating the instruction for the first
8705       //      lane is still be better than not generating any at all. For
8706       //      example, the input may be a splat across all lanes.
8707       //   2. For the lifetime start/end intrinsics the pointer operand only
8708       //      does anything useful when the input comes from a stack object,
8709       //      which suggests it should always be uniform. For non-stack objects
8710       //      the effect is to poison the object, which still allows us to
8711       //      remove the call.
8712       IsUniform = true;
8713       break;
8714     default:
8715       break;
8716     }
8717   }
8718 
8719   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8720                                        IsUniform, IsPredicated);
8721   setRecipe(I, Recipe);
8722   Plan->addVPValue(I, Recipe);
8723 
8724   // Find if I uses a predicated instruction. If so, it will use its scalar
8725   // value. Avoid hoisting the insert-element which packs the scalar value into
8726   // a vector value, as that happens iff all users use the vector value.
8727   for (VPValue *Op : Recipe->operands()) {
8728     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8729     if (!PredR)
8730       continue;
8731     auto *RepR =
8732         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8733     assert(RepR->isPredicated() &&
8734            "expected Replicate recipe to be predicated");
8735     RepR->setAlsoPack(false);
8736   }
8737 
8738   // Finalize the recipe for Instr, first if it is not predicated.
8739   if (!IsPredicated) {
8740     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8741     VPBB->appendRecipe(Recipe);
8742     return VPBB;
8743   }
8744   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8745 
8746   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8747   assert(SingleSucc && "VPBB must have a single successor when handling "
8748                        "predicated replication.");
8749   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8750   // Record predicated instructions for above packing optimizations.
8751   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8752   VPBlockUtils::insertBlockAfter(Region, VPBB);
8753   auto *RegSucc = new VPBasicBlock();
8754   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8755   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8756   return RegSucc;
8757 }
8758 
8759 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8760                                                       VPRecipeBase *PredRecipe,
8761                                                       VPlanPtr &Plan) {
8762   // Instructions marked for predication are replicated and placed under an
8763   // if-then construct to prevent side-effects.
8764 
8765   // Generate recipes to compute the block mask for this region.
8766   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8767 
8768   // Build the triangular if-then region.
8769   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8770   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8771   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8772   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8773   auto *PHIRecipe = Instr->getType()->isVoidTy()
8774                         ? nullptr
8775                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8776   if (PHIRecipe) {
8777     Plan->removeVPValueFor(Instr);
8778     Plan->addVPValue(Instr, PHIRecipe);
8779   }
8780   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8781   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8782   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8783 
8784   // Note: first set Entry as region entry and then connect successors starting
8785   // from it in order, to propagate the "parent" of each VPBasicBlock.
8786   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8787   VPBlockUtils::connectBlocks(Pred, Exit);
8788 
8789   return Region;
8790 }
8791 
8792 VPRecipeOrVPValueTy
8793 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8794                                         ArrayRef<VPValue *> Operands,
8795                                         VFRange &Range, VPlanPtr &Plan) {
8796   // First, check for specific widening recipes that deal with calls, memory
8797   // operations, inductions and Phi nodes.
8798   if (auto *CI = dyn_cast<CallInst>(Instr))
8799     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8800 
8801   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8802     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8803 
8804   VPRecipeBase *Recipe;
8805   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8806     if (Phi->getParent() != OrigLoop->getHeader())
8807       return tryToBlend(Phi, Operands, Plan);
8808     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8809       return toVPRecipeResult(Recipe);
8810 
8811     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8812     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8813       VPValue *StartV = Operands[0];
8814       if (Legal->isReductionVariable(Phi)) {
8815         const RecurrenceDescriptor &RdxDesc =
8816             Legal->getReductionVars().find(Phi)->second;
8817         assert(RdxDesc.getRecurrenceStartValue() ==
8818                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8819         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8820                                              CM.isInLoopReduction(Phi),
8821                                              CM.useOrderedReductions(RdxDesc));
8822       } else {
8823         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8824       }
8825 
8826       // Record the incoming value from the backedge, so we can add the incoming
8827       // value from the backedge after all recipes have been created.
8828       recordRecipeOf(cast<Instruction>(
8829           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8830       PhisToFix.push_back(PhiRecipe);
8831     } else {
8832       // TODO: record backedge value for remaining pointer induction phis.
8833       assert(Phi->getType()->isPointerTy() &&
8834              "only pointer phis should be handled here");
8835       assert(Legal->getInductionVars().count(Phi) &&
8836              "Not an induction variable");
8837       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8838       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8839       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8840     }
8841 
8842     return toVPRecipeResult(PhiRecipe);
8843   }
8844 
8845   if (isa<TruncInst>(Instr) &&
8846       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8847                                                Range, *Plan)))
8848     return toVPRecipeResult(Recipe);
8849 
8850   if (!shouldWiden(Instr, Range))
8851     return nullptr;
8852 
8853   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8854     return toVPRecipeResult(new VPWidenGEPRecipe(
8855         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8856 
8857   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8858     bool InvariantCond =
8859         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8860     return toVPRecipeResult(new VPWidenSelectRecipe(
8861         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8862   }
8863 
8864   return toVPRecipeResult(tryToWiden(Instr, Operands));
8865 }
8866 
8867 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8868                                                         ElementCount MaxVF) {
8869   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8870 
8871   // Collect instructions from the original loop that will become trivially dead
8872   // in the vectorized loop. We don't need to vectorize these instructions. For
8873   // example, original induction update instructions can become dead because we
8874   // separately emit induction "steps" when generating code for the new loop.
8875   // Similarly, we create a new latch condition when setting up the structure
8876   // of the new loop, so the old one can become dead.
8877   SmallPtrSet<Instruction *, 4> DeadInstructions;
8878   collectTriviallyDeadInstructions(DeadInstructions);
8879 
8880   // Add assume instructions we need to drop to DeadInstructions, to prevent
8881   // them from being added to the VPlan.
8882   // TODO: We only need to drop assumes in blocks that get flattend. If the
8883   // control flow is preserved, we should keep them.
8884   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8885   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8886 
8887   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8888   // Dead instructions do not need sinking. Remove them from SinkAfter.
8889   for (Instruction *I : DeadInstructions)
8890     SinkAfter.erase(I);
8891 
8892   // Cannot sink instructions after dead instructions (there won't be any
8893   // recipes for them). Instead, find the first non-dead previous instruction.
8894   for (auto &P : Legal->getSinkAfter()) {
8895     Instruction *SinkTarget = P.second;
8896     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8897     (void)FirstInst;
8898     while (DeadInstructions.contains(SinkTarget)) {
8899       assert(
8900           SinkTarget != FirstInst &&
8901           "Must find a live instruction (at least the one feeding the "
8902           "first-order recurrence PHI) before reaching beginning of the block");
8903       SinkTarget = SinkTarget->getPrevNode();
8904       assert(SinkTarget != P.first &&
8905              "sink source equals target, no sinking required");
8906     }
8907     P.second = SinkTarget;
8908   }
8909 
8910   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8911   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8912     VFRange SubRange = {VF, MaxVFPlusOne};
8913     VPlans.push_back(
8914         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8915     VF = SubRange.End;
8916   }
8917 }
8918 
8919 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header and a
8920 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF to the
8921 // latch.
8922 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8923                                   bool HasNUW, bool IsVPlanNative) {
8924   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8925   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8926 
8927   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8928   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8929   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8930   if (IsVPlanNative)
8931     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8932   Header->insert(CanonicalIVPHI, Header->begin());
8933 
8934   auto *CanonicalIVIncrement =
8935       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8936                                : VPInstruction::CanonicalIVIncrement,
8937                         {CanonicalIVPHI}, DL);
8938   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8939 
8940   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8941   if (IsVPlanNative)
8942     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8943   EB->appendRecipe(CanonicalIVIncrement);
8944 }
8945 
8946 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8947     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8948     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8949 
8950   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8951 
8952   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8953 
8954   // ---------------------------------------------------------------------------
8955   // Pre-construction: record ingredients whose recipes we'll need to further
8956   // process after constructing the initial VPlan.
8957   // ---------------------------------------------------------------------------
8958 
8959   // Mark instructions we'll need to sink later and their targets as
8960   // ingredients whose recipe we'll need to record.
8961   for (auto &Entry : SinkAfter) {
8962     RecipeBuilder.recordRecipeOf(Entry.first);
8963     RecipeBuilder.recordRecipeOf(Entry.second);
8964   }
8965   for (auto &Reduction : CM.getInLoopReductionChains()) {
8966     PHINode *Phi = Reduction.first;
8967     RecurKind Kind =
8968         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8969     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8970 
8971     RecipeBuilder.recordRecipeOf(Phi);
8972     for (auto &R : ReductionOperations) {
8973       RecipeBuilder.recordRecipeOf(R);
8974       // For min/max reducitons, where we have a pair of icmp/select, we also
8975       // need to record the ICmp recipe, so it can be removed later.
8976       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8977              "Only min/max recurrences allowed for inloop reductions");
8978       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8979         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8980     }
8981   }
8982 
8983   // For each interleave group which is relevant for this (possibly trimmed)
8984   // Range, add it to the set of groups to be later applied to the VPlan and add
8985   // placeholders for its members' Recipes which we'll be replacing with a
8986   // single VPInterleaveRecipe.
8987   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8988     auto applyIG = [IG, this](ElementCount VF) -> bool {
8989       return (VF.isVector() && // Query is illegal for VF == 1
8990               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8991                   LoopVectorizationCostModel::CM_Interleave);
8992     };
8993     if (!getDecisionAndClampRange(applyIG, Range))
8994       continue;
8995     InterleaveGroups.insert(IG);
8996     for (unsigned i = 0; i < IG->getFactor(); i++)
8997       if (Instruction *Member = IG->getMember(i))
8998         RecipeBuilder.recordRecipeOf(Member);
8999   };
9000 
9001   // ---------------------------------------------------------------------------
9002   // Build initial VPlan: Scan the body of the loop in a topological order to
9003   // visit each basic block after having visited its predecessor basic blocks.
9004   // ---------------------------------------------------------------------------
9005 
9006   // Create initial VPlan skeleton, with separate header and latch blocks.
9007   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9008   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9009   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9010   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9011   auto Plan = std::make_unique<VPlan>(TopRegion);
9012 
9013   Instruction *DLInst =
9014       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9015   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9016                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9017                         !CM.foldTailByMasking(), false);
9018 
9019   // Scan the body of the loop in a topological order to visit each basic block
9020   // after having visited its predecessor basic blocks.
9021   LoopBlocksDFS DFS(OrigLoop);
9022   DFS.perform(LI);
9023 
9024   VPBasicBlock *VPBB = HeaderVPBB;
9025   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9026   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9027     // Relevant instructions from basic block BB will be grouped into VPRecipe
9028     // ingredients and fill a new VPBasicBlock.
9029     unsigned VPBBsForBB = 0;
9030     VPBB->setName(BB->getName());
9031     Builder.setInsertPoint(VPBB);
9032 
9033     // Introduce each ingredient into VPlan.
9034     // TODO: Model and preserve debug instrinsics in VPlan.
9035     for (Instruction &I : BB->instructionsWithoutDebug()) {
9036       Instruction *Instr = &I;
9037 
9038       // First filter out irrelevant instructions, to ensure no recipes are
9039       // built for them.
9040       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9041         continue;
9042 
9043       SmallVector<VPValue *, 4> Operands;
9044       auto *Phi = dyn_cast<PHINode>(Instr);
9045       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9046         Operands.push_back(Plan->getOrAddVPValue(
9047             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9048       } else {
9049         auto OpRange = Plan->mapToVPValues(Instr->operands());
9050         Operands = {OpRange.begin(), OpRange.end()};
9051       }
9052       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9053               Instr, Operands, Range, Plan)) {
9054         // If Instr can be simplified to an existing VPValue, use it.
9055         if (RecipeOrValue.is<VPValue *>()) {
9056           auto *VPV = RecipeOrValue.get<VPValue *>();
9057           Plan->addVPValue(Instr, VPV);
9058           // If the re-used value is a recipe, register the recipe for the
9059           // instruction, in case the recipe for Instr needs to be recorded.
9060           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9061             RecipeBuilder.setRecipe(Instr, R);
9062           continue;
9063         }
9064         // Otherwise, add the new recipe.
9065         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9066         for (auto *Def : Recipe->definedValues()) {
9067           auto *UV = Def->getUnderlyingValue();
9068           Plan->addVPValue(UV, Def);
9069         }
9070 
9071         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9072             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9073           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9074           // of the header block. That can happen for truncates of induction
9075           // variables. Those recipes are moved to the phi section of the header
9076           // block after applying SinkAfter, which relies on the original
9077           // position of the trunc.
9078           assert(isa<TruncInst>(Instr));
9079           InductionsToMove.push_back(
9080               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9081         }
9082         RecipeBuilder.setRecipe(Instr, Recipe);
9083         VPBB->appendRecipe(Recipe);
9084         continue;
9085       }
9086 
9087       // Otherwise, if all widening options failed, Instruction is to be
9088       // replicated. This may create a successor for VPBB.
9089       VPBasicBlock *NextVPBB =
9090           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9091       if (NextVPBB != VPBB) {
9092         VPBB = NextVPBB;
9093         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9094                                     : "");
9095       }
9096     }
9097 
9098     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9099     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9100   }
9101 
9102   // Fold the last, empty block into its predecessor.
9103   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9104   assert(VPBB && "expected to fold last (empty) block");
9105   // After here, VPBB should not be used.
9106   VPBB = nullptr;
9107 
9108   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9109          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9110          "entry block must be set to a VPRegionBlock having a non-empty entry "
9111          "VPBasicBlock");
9112   RecipeBuilder.fixHeaderPhis();
9113 
9114   // ---------------------------------------------------------------------------
9115   // Transform initial VPlan: Apply previously taken decisions, in order, to
9116   // bring the VPlan to its final state.
9117   // ---------------------------------------------------------------------------
9118 
9119   // Apply Sink-After legal constraints.
9120   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9121     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9122     if (Region && Region->isReplicator()) {
9123       assert(Region->getNumSuccessors() == 1 &&
9124              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9125       assert(R->getParent()->size() == 1 &&
9126              "A recipe in an original replicator region must be the only "
9127              "recipe in its block");
9128       return Region;
9129     }
9130     return nullptr;
9131   };
9132   for (auto &Entry : SinkAfter) {
9133     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9134     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9135 
9136     auto *TargetRegion = GetReplicateRegion(Target);
9137     auto *SinkRegion = GetReplicateRegion(Sink);
9138     if (!SinkRegion) {
9139       // If the sink source is not a replicate region, sink the recipe directly.
9140       if (TargetRegion) {
9141         // The target is in a replication region, make sure to move Sink to
9142         // the block after it, not into the replication region itself.
9143         VPBasicBlock *NextBlock =
9144             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9145         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9146       } else
9147         Sink->moveAfter(Target);
9148       continue;
9149     }
9150 
9151     // The sink source is in a replicate region. Unhook the region from the CFG.
9152     auto *SinkPred = SinkRegion->getSinglePredecessor();
9153     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9154     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9155     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9156     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9157 
9158     if (TargetRegion) {
9159       // The target recipe is also in a replicate region, move the sink region
9160       // after the target region.
9161       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9162       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9163       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9164       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9165     } else {
9166       // The sink source is in a replicate region, we need to move the whole
9167       // replicate region, which should only contain a single recipe in the
9168       // main block.
9169       auto *SplitBlock =
9170           Target->getParent()->splitAt(std::next(Target->getIterator()));
9171 
9172       auto *SplitPred = SplitBlock->getSinglePredecessor();
9173 
9174       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9175       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9176       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9177     }
9178   }
9179 
9180   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9181 
9182   // Now that sink-after is done, move induction recipes for optimized truncates
9183   // to the phi section of the header block.
9184   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9185     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9186 
9187   // Adjust the recipes for any inloop reductions.
9188   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9189                              RecipeBuilder, Range.Start);
9190 
9191   // Introduce a recipe to combine the incoming and previous values of a
9192   // first-order recurrence.
9193   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9194     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9195     if (!RecurPhi)
9196       continue;
9197 
9198     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9199     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9200     auto *Region = GetReplicateRegion(PrevRecipe);
9201     if (Region)
9202       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9203     if (Region || PrevRecipe->isPhi())
9204       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9205     else
9206       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9207 
9208     auto *RecurSplice = cast<VPInstruction>(
9209         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9210                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9211 
9212     RecurPhi->replaceAllUsesWith(RecurSplice);
9213     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9214     // all users.
9215     RecurSplice->setOperand(0, RecurPhi);
9216   }
9217 
9218   // Interleave memory: for each Interleave Group we marked earlier as relevant
9219   // for this VPlan, replace the Recipes widening its memory instructions with a
9220   // single VPInterleaveRecipe at its insertion point.
9221   for (auto IG : InterleaveGroups) {
9222     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9223         RecipeBuilder.getRecipe(IG->getInsertPos()));
9224     SmallVector<VPValue *, 4> StoredValues;
9225     for (unsigned i = 0; i < IG->getFactor(); ++i)
9226       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9227         auto *StoreR =
9228             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9229         StoredValues.push_back(StoreR->getStoredValue());
9230       }
9231 
9232     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9233                                         Recipe->getMask());
9234     VPIG->insertBefore(Recipe);
9235     unsigned J = 0;
9236     for (unsigned i = 0; i < IG->getFactor(); ++i)
9237       if (Instruction *Member = IG->getMember(i)) {
9238         if (!Member->getType()->isVoidTy()) {
9239           VPValue *OriginalV = Plan->getVPValue(Member);
9240           Plan->removeVPValueFor(Member);
9241           Plan->addVPValue(Member, VPIG->getVPValue(J));
9242           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9243           J++;
9244         }
9245         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9246       }
9247   }
9248 
9249   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9250   // in ways that accessing values using original IR values is incorrect.
9251   Plan->disableValue2VPValue();
9252 
9253   VPlanTransforms::sinkScalarOperands(*Plan);
9254   VPlanTransforms::mergeReplicateRegions(*Plan);
9255 
9256   std::string PlanName;
9257   raw_string_ostream RSO(PlanName);
9258   ElementCount VF = Range.Start;
9259   Plan->addVF(VF);
9260   RSO << "Initial VPlan for VF={" << VF;
9261   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9262     Plan->addVF(VF);
9263     RSO << "," << VF;
9264   }
9265   RSO << "},UF>=1";
9266   RSO.flush();
9267   Plan->setName(PlanName);
9268 
9269   // Fold Exit block into its predecessor if possible.
9270   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9271   // VPBasicBlock as exit.
9272   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9273 
9274   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9275   return Plan;
9276 }
9277 
9278 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9279   // Outer loop handling: They may require CFG and instruction level
9280   // transformations before even evaluating whether vectorization is profitable.
9281   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9282   // the vectorization pipeline.
9283   assert(!OrigLoop->isInnermost());
9284   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9285 
9286   // Create new empty VPlan
9287   auto Plan = std::make_unique<VPlan>();
9288 
9289   // Build hierarchical CFG
9290   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9291   HCFGBuilder.buildHierarchicalCFG();
9292 
9293   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9294        VF *= 2)
9295     Plan->addVF(VF);
9296 
9297   if (EnableVPlanPredication) {
9298     VPlanPredicator VPP(*Plan);
9299     VPP.predicate();
9300 
9301     // Avoid running transformation to recipes until masked code generation in
9302     // VPlan-native path is in place.
9303     return Plan;
9304   }
9305 
9306   SmallPtrSet<Instruction *, 1> DeadInstructions;
9307   VPlanTransforms::VPInstructionsToVPRecipes(
9308       OrigLoop, Plan,
9309       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9310       DeadInstructions, *PSE.getSE());
9311 
9312   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9313                         true, true);
9314   return Plan;
9315 }
9316 
9317 // Adjust the recipes for reductions. For in-loop reductions the chain of
9318 // instructions leading from the loop exit instr to the phi need to be converted
9319 // to reductions, with one operand being vector and the other being the scalar
9320 // reduction chain. For other reductions, a select is introduced between the phi
9321 // and live-out recipes when folding the tail.
9322 void LoopVectorizationPlanner::adjustRecipesForReductions(
9323     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9324     ElementCount MinVF) {
9325   for (auto &Reduction : CM.getInLoopReductionChains()) {
9326     PHINode *Phi = Reduction.first;
9327     const RecurrenceDescriptor &RdxDesc =
9328         Legal->getReductionVars().find(Phi)->second;
9329     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9330 
9331     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9332       continue;
9333 
9334     // ReductionOperations are orders top-down from the phi's use to the
9335     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9336     // which of the two operands will remain scalar and which will be reduced.
9337     // For minmax the chain will be the select instructions.
9338     Instruction *Chain = Phi;
9339     for (Instruction *R : ReductionOperations) {
9340       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9341       RecurKind Kind = RdxDesc.getRecurrenceKind();
9342 
9343       VPValue *ChainOp = Plan->getVPValue(Chain);
9344       unsigned FirstOpId;
9345       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9346              "Only min/max recurrences allowed for inloop reductions");
9347       // Recognize a call to the llvm.fmuladd intrinsic.
9348       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9349       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9350              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9351       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9352         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9353                "Expected to replace a VPWidenSelectSC");
9354         FirstOpId = 1;
9355       } else {
9356         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9357                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9358                "Expected to replace a VPWidenSC");
9359         FirstOpId = 0;
9360       }
9361       unsigned VecOpId =
9362           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9363       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9364 
9365       auto *CondOp = CM.foldTailByMasking()
9366                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9367                          : nullptr;
9368 
9369       if (IsFMulAdd) {
9370         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9371         // need to create an fmul recipe to use as the vector operand for the
9372         // fadd reduction.
9373         VPInstruction *FMulRecipe = new VPInstruction(
9374             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9375         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9376         WidenRecipe->getParent()->insert(FMulRecipe,
9377                                          WidenRecipe->getIterator());
9378         VecOp = FMulRecipe;
9379       }
9380       VPReductionRecipe *RedRecipe =
9381           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9382       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9383       Plan->removeVPValueFor(R);
9384       Plan->addVPValue(R, RedRecipe);
9385       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9386       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9387       WidenRecipe->eraseFromParent();
9388 
9389       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9390         VPRecipeBase *CompareRecipe =
9391             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9392         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9393                "Expected to replace a VPWidenSC");
9394         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9395                "Expected no remaining users");
9396         CompareRecipe->eraseFromParent();
9397       }
9398       Chain = R;
9399     }
9400   }
9401 
9402   // If tail is folded by masking, introduce selects between the phi
9403   // and the live-out instruction of each reduction, at the end of the latch.
9404   if (CM.foldTailByMasking()) {
9405     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9406       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9407       if (!PhiR || PhiR->isInLoop())
9408         continue;
9409       Builder.setInsertPoint(LatchVPBB);
9410       VPValue *Cond =
9411           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9412       VPValue *Red = PhiR->getBackedgeValue();
9413       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9414     }
9415   }
9416 }
9417 
9418 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9419 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9420                                VPSlotTracker &SlotTracker) const {
9421   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9422   IG->getInsertPos()->printAsOperand(O, false);
9423   O << ", ";
9424   getAddr()->printAsOperand(O, SlotTracker);
9425   VPValue *Mask = getMask();
9426   if (Mask) {
9427     O << ", ";
9428     Mask->printAsOperand(O, SlotTracker);
9429   }
9430 
9431   unsigned OpIdx = 0;
9432   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9433     if (!IG->getMember(i))
9434       continue;
9435     if (getNumStoreOperands() > 0) {
9436       O << "\n" << Indent << "  store ";
9437       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9438       O << " to index " << i;
9439     } else {
9440       O << "\n" << Indent << "  ";
9441       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9442       O << " = load from index " << i;
9443     }
9444     ++OpIdx;
9445   }
9446 }
9447 #endif
9448 
9449 void VPWidenCallRecipe::execute(VPTransformState &State) {
9450   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9451                                   *this, State);
9452 }
9453 
9454 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9455   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9456   State.ILV->setDebugLocFromInst(&I);
9457 
9458   // The condition can be loop invariant  but still defined inside the
9459   // loop. This means that we can't just use the original 'cond' value.
9460   // We have to take the 'vectorized' value and pick the first lane.
9461   // Instcombine will make this a no-op.
9462   auto *InvarCond =
9463       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9464 
9465   for (unsigned Part = 0; Part < State.UF; ++Part) {
9466     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9467     Value *Op0 = State.get(getOperand(1), Part);
9468     Value *Op1 = State.get(getOperand(2), Part);
9469     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9470     State.set(this, Sel, Part);
9471     State.ILV->addMetadata(Sel, &I);
9472   }
9473 }
9474 
9475 void VPWidenRecipe::execute(VPTransformState &State) {
9476   auto &I = *cast<Instruction>(getUnderlyingValue());
9477   auto &Builder = State.Builder;
9478   switch (I.getOpcode()) {
9479   case Instruction::Call:
9480   case Instruction::Br:
9481   case Instruction::PHI:
9482   case Instruction::GetElementPtr:
9483   case Instruction::Select:
9484     llvm_unreachable("This instruction is handled by a different recipe.");
9485   case Instruction::UDiv:
9486   case Instruction::SDiv:
9487   case Instruction::SRem:
9488   case Instruction::URem:
9489   case Instruction::Add:
9490   case Instruction::FAdd:
9491   case Instruction::Sub:
9492   case Instruction::FSub:
9493   case Instruction::FNeg:
9494   case Instruction::Mul:
9495   case Instruction::FMul:
9496   case Instruction::FDiv:
9497   case Instruction::FRem:
9498   case Instruction::Shl:
9499   case Instruction::LShr:
9500   case Instruction::AShr:
9501   case Instruction::And:
9502   case Instruction::Or:
9503   case Instruction::Xor: {
9504     // Just widen unops and binops.
9505     State.ILV->setDebugLocFromInst(&I);
9506 
9507     for (unsigned Part = 0; Part < State.UF; ++Part) {
9508       SmallVector<Value *, 2> Ops;
9509       for (VPValue *VPOp : operands())
9510         Ops.push_back(State.get(VPOp, Part));
9511 
9512       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9513 
9514       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9515         VecOp->copyIRFlags(&I);
9516 
9517         // If the instruction is vectorized and was in a basic block that needed
9518         // predication, we can't propagate poison-generating flags (nuw/nsw,
9519         // exact, etc.). The control flow has been linearized and the
9520         // instruction is no longer guarded by the predicate, which could make
9521         // the flag properties to no longer hold.
9522         if (State.MayGeneratePoisonRecipes.contains(this))
9523           VecOp->dropPoisonGeneratingFlags();
9524       }
9525 
9526       // Use this vector value for all users of the original instruction.
9527       State.set(this, V, Part);
9528       State.ILV->addMetadata(V, &I);
9529     }
9530 
9531     break;
9532   }
9533   case Instruction::ICmp:
9534   case Instruction::FCmp: {
9535     // Widen compares. Generate vector compares.
9536     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9537     auto *Cmp = cast<CmpInst>(&I);
9538     State.ILV->setDebugLocFromInst(Cmp);
9539     for (unsigned Part = 0; Part < State.UF; ++Part) {
9540       Value *A = State.get(getOperand(0), Part);
9541       Value *B = State.get(getOperand(1), Part);
9542       Value *C = nullptr;
9543       if (FCmp) {
9544         // Propagate fast math flags.
9545         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9546         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9547         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9548       } else {
9549         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9550       }
9551       State.set(this, C, Part);
9552       State.ILV->addMetadata(C, &I);
9553     }
9554 
9555     break;
9556   }
9557 
9558   case Instruction::ZExt:
9559   case Instruction::SExt:
9560   case Instruction::FPToUI:
9561   case Instruction::FPToSI:
9562   case Instruction::FPExt:
9563   case Instruction::PtrToInt:
9564   case Instruction::IntToPtr:
9565   case Instruction::SIToFP:
9566   case Instruction::UIToFP:
9567   case Instruction::Trunc:
9568   case Instruction::FPTrunc:
9569   case Instruction::BitCast: {
9570     auto *CI = cast<CastInst>(&I);
9571     State.ILV->setDebugLocFromInst(CI);
9572 
9573     /// Vectorize casts.
9574     Type *DestTy = (State.VF.isScalar())
9575                        ? CI->getType()
9576                        : VectorType::get(CI->getType(), State.VF);
9577 
9578     for (unsigned Part = 0; Part < State.UF; ++Part) {
9579       Value *A = State.get(getOperand(0), Part);
9580       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9581       State.set(this, Cast, Part);
9582       State.ILV->addMetadata(Cast, &I);
9583     }
9584     break;
9585   }
9586   default:
9587     // This instruction is not vectorized by simple widening.
9588     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9589     llvm_unreachable("Unhandled instruction!");
9590   } // end of switch.
9591 }
9592 
9593 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9594   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9595   // Construct a vector GEP by widening the operands of the scalar GEP as
9596   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9597   // results in a vector of pointers when at least one operand of the GEP
9598   // is vector-typed. Thus, to keep the representation compact, we only use
9599   // vector-typed operands for loop-varying values.
9600 
9601   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9602     // If we are vectorizing, but the GEP has only loop-invariant operands,
9603     // the GEP we build (by only using vector-typed operands for
9604     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9605     // produce a vector of pointers, we need to either arbitrarily pick an
9606     // operand to broadcast, or broadcast a clone of the original GEP.
9607     // Here, we broadcast a clone of the original.
9608     //
9609     // TODO: If at some point we decide to scalarize instructions having
9610     //       loop-invariant operands, this special case will no longer be
9611     //       required. We would add the scalarization decision to
9612     //       collectLoopScalars() and teach getVectorValue() to broadcast
9613     //       the lane-zero scalar value.
9614     auto *Clone = State.Builder.Insert(GEP->clone());
9615     for (unsigned Part = 0; Part < State.UF; ++Part) {
9616       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9617       State.set(this, EntryPart, Part);
9618       State.ILV->addMetadata(EntryPart, GEP);
9619     }
9620   } else {
9621     // If the GEP has at least one loop-varying operand, we are sure to
9622     // produce a vector of pointers. But if we are only unrolling, we want
9623     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9624     // produce with the code below will be scalar (if VF == 1) or vector
9625     // (otherwise). Note that for the unroll-only case, we still maintain
9626     // values in the vector mapping with initVector, as we do for other
9627     // instructions.
9628     for (unsigned Part = 0; Part < State.UF; ++Part) {
9629       // The pointer operand of the new GEP. If it's loop-invariant, we
9630       // won't broadcast it.
9631       auto *Ptr = IsPtrLoopInvariant
9632                       ? State.get(getOperand(0), VPIteration(0, 0))
9633                       : State.get(getOperand(0), Part);
9634 
9635       // Collect all the indices for the new GEP. If any index is
9636       // loop-invariant, we won't broadcast it.
9637       SmallVector<Value *, 4> Indices;
9638       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9639         VPValue *Operand = getOperand(I);
9640         if (IsIndexLoopInvariant[I - 1])
9641           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9642         else
9643           Indices.push_back(State.get(Operand, Part));
9644       }
9645 
9646       // If the GEP instruction is vectorized and was in a basic block that
9647       // needed predication, we can't propagate the poison-generating 'inbounds'
9648       // flag. The control flow has been linearized and the GEP is no longer
9649       // guarded by the predicate, which could make the 'inbounds' properties to
9650       // no longer hold.
9651       bool IsInBounds =
9652           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9653 
9654       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9655       // but it should be a vector, otherwise.
9656       auto *NewGEP = IsInBounds
9657                          ? State.Builder.CreateInBoundsGEP(
9658                                GEP->getSourceElementType(), Ptr, Indices)
9659                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9660                                                    Ptr, Indices);
9661       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9662              "NewGEP is not a pointer vector");
9663       State.set(this, NewGEP, Part);
9664       State.ILV->addMetadata(NewGEP, GEP);
9665     }
9666   }
9667 }
9668 
9669 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9670   assert(!State.Instance && "Int or FP induction being replicated.");
9671   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9672   State.ILV->widenIntOrFpInduction(IV, getInductionDescriptor(),
9673                                    getStartValue()->getLiveInIRValue(),
9674                                    getTruncInst(), this, State, CanonicalIV);
9675 }
9676 
9677 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9678   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9679                                  State);
9680 }
9681 
9682 void VPBlendRecipe::execute(VPTransformState &State) {
9683   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9684   // We know that all PHIs in non-header blocks are converted into
9685   // selects, so we don't have to worry about the insertion order and we
9686   // can just use the builder.
9687   // At this point we generate the predication tree. There may be
9688   // duplications since this is a simple recursive scan, but future
9689   // optimizations will clean it up.
9690 
9691   unsigned NumIncoming = getNumIncomingValues();
9692 
9693   // Generate a sequence of selects of the form:
9694   // SELECT(Mask3, In3,
9695   //        SELECT(Mask2, In2,
9696   //               SELECT(Mask1, In1,
9697   //                      In0)))
9698   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9699   // are essentially undef are taken from In0.
9700   InnerLoopVectorizer::VectorParts Entry(State.UF);
9701   for (unsigned In = 0; In < NumIncoming; ++In) {
9702     for (unsigned Part = 0; Part < State.UF; ++Part) {
9703       // We might have single edge PHIs (blocks) - use an identity
9704       // 'select' for the first PHI operand.
9705       Value *In0 = State.get(getIncomingValue(In), Part);
9706       if (In == 0)
9707         Entry[Part] = In0; // Initialize with the first incoming value.
9708       else {
9709         // Select between the current value and the previous incoming edge
9710         // based on the incoming mask.
9711         Value *Cond = State.get(getMask(In), Part);
9712         Entry[Part] =
9713             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9714       }
9715     }
9716   }
9717   for (unsigned Part = 0; Part < State.UF; ++Part)
9718     State.set(this, Entry[Part], Part);
9719 }
9720 
9721 void VPInterleaveRecipe::execute(VPTransformState &State) {
9722   assert(!State.Instance && "Interleave group being replicated.");
9723   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9724                                       getStoredValues(), getMask());
9725 }
9726 
9727 void VPReductionRecipe::execute(VPTransformState &State) {
9728   assert(!State.Instance && "Reduction being replicated.");
9729   Value *PrevInChain = State.get(getChainOp(), 0);
9730   RecurKind Kind = RdxDesc->getRecurrenceKind();
9731   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9732   // Propagate the fast-math flags carried by the underlying instruction.
9733   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9734   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9735   for (unsigned Part = 0; Part < State.UF; ++Part) {
9736     Value *NewVecOp = State.get(getVecOp(), Part);
9737     if (VPValue *Cond = getCondOp()) {
9738       Value *NewCond = State.get(Cond, Part);
9739       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9740       Value *Iden = RdxDesc->getRecurrenceIdentity(
9741           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9742       Value *IdenVec =
9743           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9744       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9745       NewVecOp = Select;
9746     }
9747     Value *NewRed;
9748     Value *NextInChain;
9749     if (IsOrdered) {
9750       if (State.VF.isVector())
9751         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9752                                         PrevInChain);
9753       else
9754         NewRed = State.Builder.CreateBinOp(
9755             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9756             NewVecOp);
9757       PrevInChain = NewRed;
9758     } else {
9759       PrevInChain = State.get(getChainOp(), Part);
9760       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9761     }
9762     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9763       NextInChain =
9764           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9765                          NewRed, PrevInChain);
9766     } else if (IsOrdered)
9767       NextInChain = NewRed;
9768     else
9769       NextInChain = State.Builder.CreateBinOp(
9770           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9771           PrevInChain);
9772     State.set(this, NextInChain, Part);
9773   }
9774 }
9775 
9776 void VPReplicateRecipe::execute(VPTransformState &State) {
9777   if (State.Instance) { // Generate a single instance.
9778     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9779     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9780                                     IsPredicated, State);
9781     // Insert scalar instance packing it into a vector.
9782     if (AlsoPack && State.VF.isVector()) {
9783       // If we're constructing lane 0, initialize to start from poison.
9784       if (State.Instance->Lane.isFirstLane()) {
9785         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9786         Value *Poison = PoisonValue::get(
9787             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9788         State.set(this, Poison, State.Instance->Part);
9789       }
9790       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9791     }
9792     return;
9793   }
9794 
9795   // Generate scalar instances for all VF lanes of all UF parts, unless the
9796   // instruction is uniform inwhich case generate only the first lane for each
9797   // of the UF parts.
9798   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9799   assert((!State.VF.isScalable() || IsUniform) &&
9800          "Can't scalarize a scalable vector");
9801   for (unsigned Part = 0; Part < State.UF; ++Part)
9802     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9803       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9804                                       VPIteration(Part, Lane), IsPredicated,
9805                                       State);
9806 }
9807 
9808 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9809   assert(State.Instance && "Branch on Mask works only on single instance.");
9810 
9811   unsigned Part = State.Instance->Part;
9812   unsigned Lane = State.Instance->Lane.getKnownLane();
9813 
9814   Value *ConditionBit = nullptr;
9815   VPValue *BlockInMask = getMask();
9816   if (BlockInMask) {
9817     ConditionBit = State.get(BlockInMask, Part);
9818     if (ConditionBit->getType()->isVectorTy())
9819       ConditionBit = State.Builder.CreateExtractElement(
9820           ConditionBit, State.Builder.getInt32(Lane));
9821   } else // Block in mask is all-one.
9822     ConditionBit = State.Builder.getTrue();
9823 
9824   // Replace the temporary unreachable terminator with a new conditional branch,
9825   // whose two destinations will be set later when they are created.
9826   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9827   assert(isa<UnreachableInst>(CurrentTerminator) &&
9828          "Expected to replace unreachable terminator with conditional branch.");
9829   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9830   CondBr->setSuccessor(0, nullptr);
9831   ReplaceInstWithInst(CurrentTerminator, CondBr);
9832 }
9833 
9834 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9835   assert(State.Instance && "Predicated instruction PHI works per instance.");
9836   Instruction *ScalarPredInst =
9837       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9838   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9839   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9840   assert(PredicatingBB && "Predicated block has no single predecessor.");
9841   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9842          "operand must be VPReplicateRecipe");
9843 
9844   // By current pack/unpack logic we need to generate only a single phi node: if
9845   // a vector value for the predicated instruction exists at this point it means
9846   // the instruction has vector users only, and a phi for the vector value is
9847   // needed. In this case the recipe of the predicated instruction is marked to
9848   // also do that packing, thereby "hoisting" the insert-element sequence.
9849   // Otherwise, a phi node for the scalar value is needed.
9850   unsigned Part = State.Instance->Part;
9851   if (State.hasVectorValue(getOperand(0), Part)) {
9852     Value *VectorValue = State.get(getOperand(0), Part);
9853     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9854     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9855     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9856     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9857     if (State.hasVectorValue(this, Part))
9858       State.reset(this, VPhi, Part);
9859     else
9860       State.set(this, VPhi, Part);
9861     // NOTE: Currently we need to update the value of the operand, so the next
9862     // predicated iteration inserts its generated value in the correct vector.
9863     State.reset(getOperand(0), VPhi, Part);
9864   } else {
9865     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9866     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9867     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9868                      PredicatingBB);
9869     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9870     if (State.hasScalarValue(this, *State.Instance))
9871       State.reset(this, Phi, *State.Instance);
9872     else
9873       State.set(this, Phi, *State.Instance);
9874     // NOTE: Currently we need to update the value of the operand, so the next
9875     // predicated iteration inserts its generated value in the correct vector.
9876     State.reset(getOperand(0), Phi, *State.Instance);
9877   }
9878 }
9879 
9880 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9881   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9882 
9883   // Attempt to issue a wide load.
9884   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9885   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9886 
9887   assert((LI || SI) && "Invalid Load/Store instruction");
9888   assert((!SI || StoredValue) && "No stored value provided for widened store");
9889   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9890 
9891   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9892 
9893   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9894   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9895   bool CreateGatherScatter = !Consecutive;
9896 
9897   auto &Builder = State.Builder;
9898   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9899   bool isMaskRequired = getMask();
9900   if (isMaskRequired)
9901     for (unsigned Part = 0; Part < State.UF; ++Part)
9902       BlockInMaskParts[Part] = State.get(getMask(), Part);
9903 
9904   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9905     // Calculate the pointer for the specific unroll-part.
9906     GetElementPtrInst *PartPtr = nullptr;
9907 
9908     bool InBounds = false;
9909     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9910       InBounds = gep->isInBounds();
9911     if (Reverse) {
9912       // If the address is consecutive but reversed, then the
9913       // wide store needs to start at the last vector element.
9914       // RunTimeVF =  VScale * VF.getKnownMinValue()
9915       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9916       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9917       // NumElt = -Part * RunTimeVF
9918       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9919       // LastLane = 1 - RunTimeVF
9920       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9921       PartPtr =
9922           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9923       PartPtr->setIsInBounds(InBounds);
9924       PartPtr = cast<GetElementPtrInst>(
9925           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9926       PartPtr->setIsInBounds(InBounds);
9927       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9928         BlockInMaskParts[Part] =
9929             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9930     } else {
9931       Value *Increment =
9932           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9933       PartPtr = cast<GetElementPtrInst>(
9934           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9935       PartPtr->setIsInBounds(InBounds);
9936     }
9937 
9938     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9939     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9940   };
9941 
9942   // Handle Stores:
9943   if (SI) {
9944     State.ILV->setDebugLocFromInst(SI);
9945 
9946     for (unsigned Part = 0; Part < State.UF; ++Part) {
9947       Instruction *NewSI = nullptr;
9948       Value *StoredVal = State.get(StoredValue, Part);
9949       if (CreateGatherScatter) {
9950         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9951         Value *VectorGep = State.get(getAddr(), Part);
9952         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9953                                             MaskPart);
9954       } else {
9955         if (Reverse) {
9956           // If we store to reverse consecutive memory locations, then we need
9957           // to reverse the order of elements in the stored value.
9958           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9959           // We don't want to update the value in the map as it might be used in
9960           // another expression. So don't call resetVectorValue(StoredVal).
9961         }
9962         auto *VecPtr =
9963             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9964         if (isMaskRequired)
9965           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9966                                             BlockInMaskParts[Part]);
9967         else
9968           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9969       }
9970       State.ILV->addMetadata(NewSI, SI);
9971     }
9972     return;
9973   }
9974 
9975   // Handle loads.
9976   assert(LI && "Must have a load instruction");
9977   State.ILV->setDebugLocFromInst(LI);
9978   for (unsigned Part = 0; Part < State.UF; ++Part) {
9979     Value *NewLI;
9980     if (CreateGatherScatter) {
9981       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9982       Value *VectorGep = State.get(getAddr(), Part);
9983       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9984                                          nullptr, "wide.masked.gather");
9985       State.ILV->addMetadata(NewLI, LI);
9986     } else {
9987       auto *VecPtr =
9988           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9989       if (isMaskRequired)
9990         NewLI = Builder.CreateMaskedLoad(
9991             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
9992             PoisonValue::get(DataTy), "wide.masked.load");
9993       else
9994         NewLI =
9995             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
9996 
9997       // Add metadata to the load, but setVectorValue to the reverse shuffle.
9998       State.ILV->addMetadata(NewLI, LI);
9999       if (Reverse)
10000         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10001     }
10002 
10003     State.set(this, NewLI, Part);
10004   }
10005 }
10006 
10007 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10008 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10009 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10010 // for predication.
10011 static ScalarEpilogueLowering getScalarEpilogueLowering(
10012     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10013     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10014     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10015     LoopVectorizationLegality &LVL) {
10016   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10017   // don't look at hints or options, and don't request a scalar epilogue.
10018   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10019   // LoopAccessInfo (due to code dependency and not being able to reliably get
10020   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10021   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10022   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10023   // back to the old way and vectorize with versioning when forced. See D81345.)
10024   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10025                                                       PGSOQueryType::IRPass) &&
10026                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10027     return CM_ScalarEpilogueNotAllowedOptSize;
10028 
10029   // 2) If set, obey the directives
10030   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10031     switch (PreferPredicateOverEpilogue) {
10032     case PreferPredicateTy::ScalarEpilogue:
10033       return CM_ScalarEpilogueAllowed;
10034     case PreferPredicateTy::PredicateElseScalarEpilogue:
10035       return CM_ScalarEpilogueNotNeededUsePredicate;
10036     case PreferPredicateTy::PredicateOrDontVectorize:
10037       return CM_ScalarEpilogueNotAllowedUsePredicate;
10038     };
10039   }
10040 
10041   // 3) If set, obey the hints
10042   switch (Hints.getPredicate()) {
10043   case LoopVectorizeHints::FK_Enabled:
10044     return CM_ScalarEpilogueNotNeededUsePredicate;
10045   case LoopVectorizeHints::FK_Disabled:
10046     return CM_ScalarEpilogueAllowed;
10047   };
10048 
10049   // 4) if the TTI hook indicates this is profitable, request predication.
10050   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10051                                        LVL.getLAI()))
10052     return CM_ScalarEpilogueNotNeededUsePredicate;
10053 
10054   return CM_ScalarEpilogueAllowed;
10055 }
10056 
10057 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10058   // If Values have been set for this Def return the one relevant for \p Part.
10059   if (hasVectorValue(Def, Part))
10060     return Data.PerPartOutput[Def][Part];
10061 
10062   if (!hasScalarValue(Def, {Part, 0})) {
10063     Value *IRV = Def->getLiveInIRValue();
10064     Value *B = ILV->getBroadcastInstrs(IRV);
10065     set(Def, B, Part);
10066     return B;
10067   }
10068 
10069   Value *ScalarValue = get(Def, {Part, 0});
10070   // If we aren't vectorizing, we can just copy the scalar map values over
10071   // to the vector map.
10072   if (VF.isScalar()) {
10073     set(Def, ScalarValue, Part);
10074     return ScalarValue;
10075   }
10076 
10077   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10078   bool IsUniform = RepR && RepR->isUniform();
10079 
10080   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10081   // Check if there is a scalar value for the selected lane.
10082   if (!hasScalarValue(Def, {Part, LastLane})) {
10083     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10084     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10085            "unexpected recipe found to be invariant");
10086     IsUniform = true;
10087     LastLane = 0;
10088   }
10089 
10090   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10091   // Set the insert point after the last scalarized instruction or after the
10092   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10093   // will directly follow the scalar definitions.
10094   auto OldIP = Builder.saveIP();
10095   auto NewIP =
10096       isa<PHINode>(LastInst)
10097           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10098           : std::next(BasicBlock::iterator(LastInst));
10099   Builder.SetInsertPoint(&*NewIP);
10100 
10101   // However, if we are vectorizing, we need to construct the vector values.
10102   // If the value is known to be uniform after vectorization, we can just
10103   // broadcast the scalar value corresponding to lane zero for each unroll
10104   // iteration. Otherwise, we construct the vector values using
10105   // insertelement instructions. Since the resulting vectors are stored in
10106   // State, we will only generate the insertelements once.
10107   Value *VectorValue = nullptr;
10108   if (IsUniform) {
10109     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10110     set(Def, VectorValue, Part);
10111   } else {
10112     // Initialize packing with insertelements to start from undef.
10113     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10114     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10115     set(Def, Undef, Part);
10116     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10117       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10118     VectorValue = get(Def, Part);
10119   }
10120   Builder.restoreIP(OldIP);
10121   return VectorValue;
10122 }
10123 
10124 // Process the loop in the VPlan-native vectorization path. This path builds
10125 // VPlan upfront in the vectorization pipeline, which allows to apply
10126 // VPlan-to-VPlan transformations from the very beginning without modifying the
10127 // input LLVM IR.
10128 static bool processLoopInVPlanNativePath(
10129     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10130     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10131     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10132     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10133     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10134     LoopVectorizationRequirements &Requirements) {
10135 
10136   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10137     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10138     return false;
10139   }
10140   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10141   Function *F = L->getHeader()->getParent();
10142   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10143 
10144   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10145       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10146 
10147   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10148                                 &Hints, IAI);
10149   // Use the planner for outer loop vectorization.
10150   // TODO: CM is not used at this point inside the planner. Turn CM into an
10151   // optional argument if we don't need it in the future.
10152   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10153                                Requirements, ORE);
10154 
10155   // Get user vectorization factor.
10156   ElementCount UserVF = Hints.getWidth();
10157 
10158   CM.collectElementTypesForWidening();
10159 
10160   // Plan how to best vectorize, return the best VF and its cost.
10161   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10162 
10163   // If we are stress testing VPlan builds, do not attempt to generate vector
10164   // code. Masked vector code generation support will follow soon.
10165   // Also, do not attempt to vectorize if no vector code will be produced.
10166   if (VPlanBuildStressTest || EnableVPlanPredication ||
10167       VectorizationFactor::Disabled() == VF)
10168     return false;
10169 
10170   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10171 
10172   {
10173     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10174                              F->getParent()->getDataLayout());
10175     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10176                            &CM, BFI, PSI, Checks);
10177     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10178                       << L->getHeader()->getParent()->getName() << "\"\n");
10179     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10180   }
10181 
10182   // Mark the loop as already vectorized to avoid vectorizing again.
10183   Hints.setAlreadyVectorized();
10184   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10185   return true;
10186 }
10187 
10188 // Emit a remark if there are stores to floats that required a floating point
10189 // extension. If the vectorized loop was generated with floating point there
10190 // will be a performance penalty from the conversion overhead and the change in
10191 // the vector width.
10192 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10193   SmallVector<Instruction *, 4> Worklist;
10194   for (BasicBlock *BB : L->getBlocks()) {
10195     for (Instruction &Inst : *BB) {
10196       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10197         if (S->getValueOperand()->getType()->isFloatTy())
10198           Worklist.push_back(S);
10199       }
10200     }
10201   }
10202 
10203   // Traverse the floating point stores upwards searching, for floating point
10204   // conversions.
10205   SmallPtrSet<const Instruction *, 4> Visited;
10206   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10207   while (!Worklist.empty()) {
10208     auto *I = Worklist.pop_back_val();
10209     if (!L->contains(I))
10210       continue;
10211     if (!Visited.insert(I).second)
10212       continue;
10213 
10214     // Emit a remark if the floating point store required a floating
10215     // point conversion.
10216     // TODO: More work could be done to identify the root cause such as a
10217     // constant or a function return type and point the user to it.
10218     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10219       ORE->emit([&]() {
10220         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10221                                           I->getDebugLoc(), L->getHeader())
10222                << "floating point conversion changes vector width. "
10223                << "Mixed floating point precision requires an up/down "
10224                << "cast that will negatively impact performance.";
10225       });
10226 
10227     for (Use &Op : I->operands())
10228       if (auto *OpI = dyn_cast<Instruction>(Op))
10229         Worklist.push_back(OpI);
10230   }
10231 }
10232 
10233 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10234     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10235                                !EnableLoopInterleaving),
10236       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10237                               !EnableLoopVectorization) {}
10238 
10239 bool LoopVectorizePass::processLoop(Loop *L) {
10240   assert((EnableVPlanNativePath || L->isInnermost()) &&
10241          "VPlan-native path is not enabled. Only process inner loops.");
10242 
10243 #ifndef NDEBUG
10244   const std::string DebugLocStr = getDebugLocString(L);
10245 #endif /* NDEBUG */
10246 
10247   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10248                     << L->getHeader()->getParent()->getName() << "\" from "
10249                     << DebugLocStr << "\n");
10250 
10251   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10252 
10253   LLVM_DEBUG(
10254       dbgs() << "LV: Loop hints:"
10255              << " force="
10256              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10257                      ? "disabled"
10258                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10259                             ? "enabled"
10260                             : "?"))
10261              << " width=" << Hints.getWidth()
10262              << " interleave=" << Hints.getInterleave() << "\n");
10263 
10264   // Function containing loop
10265   Function *F = L->getHeader()->getParent();
10266 
10267   // Looking at the diagnostic output is the only way to determine if a loop
10268   // was vectorized (other than looking at the IR or machine code), so it
10269   // is important to generate an optimization remark for each loop. Most of
10270   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10271   // generated as OptimizationRemark and OptimizationRemarkMissed are
10272   // less verbose reporting vectorized loops and unvectorized loops that may
10273   // benefit from vectorization, respectively.
10274 
10275   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10276     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10277     return false;
10278   }
10279 
10280   PredicatedScalarEvolution PSE(*SE, *L);
10281 
10282   // Check if it is legal to vectorize the loop.
10283   LoopVectorizationRequirements Requirements;
10284   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10285                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10286   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10287     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10288     Hints.emitRemarkWithHints();
10289     return false;
10290   }
10291 
10292   // Check the function attributes and profiles to find out if this function
10293   // should be optimized for size.
10294   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10295       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10296 
10297   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10298   // here. They may require CFG and instruction level transformations before
10299   // even evaluating whether vectorization is profitable. Since we cannot modify
10300   // the incoming IR, we need to build VPlan upfront in the vectorization
10301   // pipeline.
10302   if (!L->isInnermost())
10303     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10304                                         ORE, BFI, PSI, Hints, Requirements);
10305 
10306   assert(L->isInnermost() && "Inner loop expected.");
10307 
10308   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10309   // count by optimizing for size, to minimize overheads.
10310   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10311   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10312     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10313                       << "This loop is worth vectorizing only if no scalar "
10314                       << "iteration overheads are incurred.");
10315     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10316       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10317     else {
10318       LLVM_DEBUG(dbgs() << "\n");
10319       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10320     }
10321   }
10322 
10323   // Check the function attributes to see if implicit floats are allowed.
10324   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10325   // an integer loop and the vector instructions selected are purely integer
10326   // vector instructions?
10327   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10328     reportVectorizationFailure(
10329         "Can't vectorize when the NoImplicitFloat attribute is used",
10330         "loop not vectorized due to NoImplicitFloat attribute",
10331         "NoImplicitFloat", ORE, L);
10332     Hints.emitRemarkWithHints();
10333     return false;
10334   }
10335 
10336   // Check if the target supports potentially unsafe FP vectorization.
10337   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10338   // for the target we're vectorizing for, to make sure none of the
10339   // additional fp-math flags can help.
10340   if (Hints.isPotentiallyUnsafe() &&
10341       TTI->isFPVectorizationPotentiallyUnsafe()) {
10342     reportVectorizationFailure(
10343         "Potentially unsafe FP op prevents vectorization",
10344         "loop not vectorized due to unsafe FP support.",
10345         "UnsafeFP", ORE, L);
10346     Hints.emitRemarkWithHints();
10347     return false;
10348   }
10349 
10350   bool AllowOrderedReductions;
10351   // If the flag is set, use that instead and override the TTI behaviour.
10352   if (ForceOrderedReductions.getNumOccurrences() > 0)
10353     AllowOrderedReductions = ForceOrderedReductions;
10354   else
10355     AllowOrderedReductions = TTI->enableOrderedReductions();
10356   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10357     ORE->emit([&]() {
10358       auto *ExactFPMathInst = Requirements.getExactFPInst();
10359       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10360                                                  ExactFPMathInst->getDebugLoc(),
10361                                                  ExactFPMathInst->getParent())
10362              << "loop not vectorized: cannot prove it is safe to reorder "
10363                 "floating-point operations";
10364     });
10365     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10366                          "reorder floating-point operations\n");
10367     Hints.emitRemarkWithHints();
10368     return false;
10369   }
10370 
10371   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10372   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10373 
10374   // If an override option has been passed in for interleaved accesses, use it.
10375   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10376     UseInterleaved = EnableInterleavedMemAccesses;
10377 
10378   // Analyze interleaved memory accesses.
10379   if (UseInterleaved) {
10380     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10381   }
10382 
10383   // Use the cost model.
10384   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10385                                 F, &Hints, IAI);
10386   CM.collectValuesToIgnore();
10387   CM.collectElementTypesForWidening();
10388 
10389   // Use the planner for vectorization.
10390   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10391                                Requirements, ORE);
10392 
10393   // Get user vectorization factor and interleave count.
10394   ElementCount UserVF = Hints.getWidth();
10395   unsigned UserIC = Hints.getInterleave();
10396 
10397   // Plan how to best vectorize, return the best VF and its cost.
10398   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10399 
10400   VectorizationFactor VF = VectorizationFactor::Disabled();
10401   unsigned IC = 1;
10402 
10403   if (MaybeVF) {
10404     VF = *MaybeVF;
10405     // Select the interleave count.
10406     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10407   }
10408 
10409   // Identify the diagnostic messages that should be produced.
10410   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10411   bool VectorizeLoop = true, InterleaveLoop = true;
10412   if (VF.Width.isScalar()) {
10413     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10414     VecDiagMsg = std::make_pair(
10415         "VectorizationNotBeneficial",
10416         "the cost-model indicates that vectorization is not beneficial");
10417     VectorizeLoop = false;
10418   }
10419 
10420   if (!MaybeVF && UserIC > 1) {
10421     // Tell the user interleaving was avoided up-front, despite being explicitly
10422     // requested.
10423     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10424                          "interleaving should be avoided up front\n");
10425     IntDiagMsg = std::make_pair(
10426         "InterleavingAvoided",
10427         "Ignoring UserIC, because interleaving was avoided up front");
10428     InterleaveLoop = false;
10429   } else if (IC == 1 && UserIC <= 1) {
10430     // Tell the user interleaving is not beneficial.
10431     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10432     IntDiagMsg = std::make_pair(
10433         "InterleavingNotBeneficial",
10434         "the cost-model indicates that interleaving is not beneficial");
10435     InterleaveLoop = false;
10436     if (UserIC == 1) {
10437       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10438       IntDiagMsg.second +=
10439           " and is explicitly disabled or interleave count is set to 1";
10440     }
10441   } else if (IC > 1 && UserIC == 1) {
10442     // Tell the user interleaving is beneficial, but it explicitly disabled.
10443     LLVM_DEBUG(
10444         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10445     IntDiagMsg = std::make_pair(
10446         "InterleavingBeneficialButDisabled",
10447         "the cost-model indicates that interleaving is beneficial "
10448         "but is explicitly disabled or interleave count is set to 1");
10449     InterleaveLoop = false;
10450   }
10451 
10452   // Override IC if user provided an interleave count.
10453   IC = UserIC > 0 ? UserIC : IC;
10454 
10455   // Emit diagnostic messages, if any.
10456   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10457   if (!VectorizeLoop && !InterleaveLoop) {
10458     // Do not vectorize or interleaving the loop.
10459     ORE->emit([&]() {
10460       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10461                                       L->getStartLoc(), L->getHeader())
10462              << VecDiagMsg.second;
10463     });
10464     ORE->emit([&]() {
10465       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10466                                       L->getStartLoc(), L->getHeader())
10467              << IntDiagMsg.second;
10468     });
10469     return false;
10470   } else if (!VectorizeLoop && InterleaveLoop) {
10471     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10472     ORE->emit([&]() {
10473       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10474                                         L->getStartLoc(), L->getHeader())
10475              << VecDiagMsg.second;
10476     });
10477   } else if (VectorizeLoop && !InterleaveLoop) {
10478     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10479                       << ") in " << DebugLocStr << '\n');
10480     ORE->emit([&]() {
10481       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10482                                         L->getStartLoc(), L->getHeader())
10483              << IntDiagMsg.second;
10484     });
10485   } else if (VectorizeLoop && InterleaveLoop) {
10486     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10487                       << ") in " << DebugLocStr << '\n');
10488     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10489   }
10490 
10491   bool DisableRuntimeUnroll = false;
10492   MDNode *OrigLoopID = L->getLoopID();
10493   {
10494     // Optimistically generate runtime checks. Drop them if they turn out to not
10495     // be profitable. Limit the scope of Checks, so the cleanup happens
10496     // immediately after vector codegeneration is done.
10497     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10498                              F->getParent()->getDataLayout());
10499     if (!VF.Width.isScalar() || IC > 1)
10500       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10501 
10502     using namespace ore;
10503     if (!VectorizeLoop) {
10504       assert(IC > 1 && "interleave count should not be 1 or 0");
10505       // If we decided that it is not legal to vectorize the loop, then
10506       // interleave it.
10507       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10508                                  &CM, BFI, PSI, Checks);
10509 
10510       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10511       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10512 
10513       ORE->emit([&]() {
10514         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10515                                   L->getHeader())
10516                << "interleaved loop (interleaved count: "
10517                << NV("InterleaveCount", IC) << ")";
10518       });
10519     } else {
10520       // If we decided that it is *legal* to vectorize the loop, then do it.
10521 
10522       // Consider vectorizing the epilogue too if it's profitable.
10523       VectorizationFactor EpilogueVF =
10524           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10525       if (EpilogueVF.Width.isVector()) {
10526 
10527         // The first pass vectorizes the main loop and creates a scalar epilogue
10528         // to be vectorized by executing the plan (potentially with a different
10529         // factor) again shortly afterwards.
10530         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10531         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10532                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10533 
10534         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10535         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10536                         DT);
10537         ++LoopsVectorized;
10538 
10539         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10540         formLCSSARecursively(*L, *DT, LI, SE);
10541 
10542         // Second pass vectorizes the epilogue and adjusts the control flow
10543         // edges from the first pass.
10544         EPI.MainLoopVF = EPI.EpilogueVF;
10545         EPI.MainLoopUF = EPI.EpilogueUF;
10546         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10547                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10548                                                  Checks);
10549 
10550         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10551         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10552                         DT);
10553         ++LoopsEpilogueVectorized;
10554 
10555         if (!MainILV.areSafetyChecksAdded())
10556           DisableRuntimeUnroll = true;
10557       } else {
10558         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10559                                &LVL, &CM, BFI, PSI, Checks);
10560 
10561         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10562         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10563         ++LoopsVectorized;
10564 
10565         // Add metadata to disable runtime unrolling a scalar loop when there
10566         // are no runtime checks about strides and memory. A scalar loop that is
10567         // rarely used is not worth unrolling.
10568         if (!LB.areSafetyChecksAdded())
10569           DisableRuntimeUnroll = true;
10570       }
10571       // Report the vectorization decision.
10572       ORE->emit([&]() {
10573         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10574                                   L->getHeader())
10575                << "vectorized loop (vectorization width: "
10576                << NV("VectorizationFactor", VF.Width)
10577                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10578       });
10579     }
10580 
10581     if (ORE->allowExtraAnalysis(LV_NAME))
10582       checkMixedPrecision(L, ORE);
10583   }
10584 
10585   Optional<MDNode *> RemainderLoopID =
10586       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10587                                       LLVMLoopVectorizeFollowupEpilogue});
10588   if (RemainderLoopID.hasValue()) {
10589     L->setLoopID(RemainderLoopID.getValue());
10590   } else {
10591     if (DisableRuntimeUnroll)
10592       AddRuntimeUnrollDisableMetaData(L);
10593 
10594     // Mark the loop as already vectorized to avoid vectorizing again.
10595     Hints.setAlreadyVectorized();
10596   }
10597 
10598   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10599   return true;
10600 }
10601 
10602 LoopVectorizeResult LoopVectorizePass::runImpl(
10603     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10604     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10605     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10606     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10607     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10608   SE = &SE_;
10609   LI = &LI_;
10610   TTI = &TTI_;
10611   DT = &DT_;
10612   BFI = &BFI_;
10613   TLI = TLI_;
10614   AA = &AA_;
10615   AC = &AC_;
10616   GetLAA = &GetLAA_;
10617   DB = &DB_;
10618   ORE = &ORE_;
10619   PSI = PSI_;
10620 
10621   // Don't attempt if
10622   // 1. the target claims to have no vector registers, and
10623   // 2. interleaving won't help ILP.
10624   //
10625   // The second condition is necessary because, even if the target has no
10626   // vector registers, loop vectorization may still enable scalar
10627   // interleaving.
10628   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10629       TTI->getMaxInterleaveFactor(1) < 2)
10630     return LoopVectorizeResult(false, false);
10631 
10632   bool Changed = false, CFGChanged = false;
10633 
10634   // The vectorizer requires loops to be in simplified form.
10635   // Since simplification may add new inner loops, it has to run before the
10636   // legality and profitability checks. This means running the loop vectorizer
10637   // will simplify all loops, regardless of whether anything end up being
10638   // vectorized.
10639   for (auto &L : *LI)
10640     Changed |= CFGChanged |=
10641         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10642 
10643   // Build up a worklist of inner-loops to vectorize. This is necessary as
10644   // the act of vectorizing or partially unrolling a loop creates new loops
10645   // and can invalidate iterators across the loops.
10646   SmallVector<Loop *, 8> Worklist;
10647 
10648   for (Loop *L : *LI)
10649     collectSupportedLoops(*L, LI, ORE, Worklist);
10650 
10651   LoopsAnalyzed += Worklist.size();
10652 
10653   // Now walk the identified inner loops.
10654   while (!Worklist.empty()) {
10655     Loop *L = Worklist.pop_back_val();
10656 
10657     // For the inner loops we actually process, form LCSSA to simplify the
10658     // transform.
10659     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10660 
10661     Changed |= CFGChanged |= processLoop(L);
10662   }
10663 
10664   // Process each loop nest in the function.
10665   return LoopVectorizeResult(Changed, CFGChanged);
10666 }
10667 
10668 PreservedAnalyses LoopVectorizePass::run(Function &F,
10669                                          FunctionAnalysisManager &AM) {
10670     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10671     auto &LI = AM.getResult<LoopAnalysis>(F);
10672     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10673     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10674     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10675     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10676     auto &AA = AM.getResult<AAManager>(F);
10677     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10678     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10679     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10680 
10681     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10682     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10683         [&](Loop &L) -> const LoopAccessInfo & {
10684       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10685                                         TLI, TTI, nullptr, nullptr, nullptr};
10686       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10687     };
10688     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10689     ProfileSummaryInfo *PSI =
10690         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10691     LoopVectorizeResult Result =
10692         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10693     if (!Result.MadeAnyChange)
10694       return PreservedAnalyses::all();
10695     PreservedAnalyses PA;
10696 
10697     // We currently do not preserve loopinfo/dominator analyses with outer loop
10698     // vectorization. Until this is addressed, mark these analyses as preserved
10699     // only for non-VPlan-native path.
10700     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10701     if (!EnableVPlanNativePath) {
10702       PA.preserve<LoopAnalysis>();
10703       PA.preserve<DominatorTreeAnalysis>();
10704     }
10705 
10706     if (Result.MadeCFGChange) {
10707       // Making CFG changes likely means a loop got vectorized. Indicate that
10708       // extra simplification passes should be run.
10709       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10710       // be run if runtime checks have been added.
10711       AM.getResult<ShouldRunExtraVectorPasses>(F);
10712       PA.preserve<ShouldRunExtraVectorPasses>();
10713     } else {
10714       PA.preserveSet<CFGAnalyses>();
10715     }
10716     return PA;
10717 }
10718 
10719 void LoopVectorizePass::printPipeline(
10720     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10721   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10722       OS, MapClassName2PassName);
10723 
10724   OS << "<";
10725   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10726   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10727   OS << ">";
10728 }
10729