1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *VectorTripCount, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 890 void printDebugTracesAtStart() override; 891 void printDebugTracesAtEnd() override; 892 }; 893 894 // A specialized derived class of inner loop vectorizer that performs 895 // vectorization of *epilogue* loops in the process of vectorizing loops and 896 // their epilogues. 897 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 898 public: 899 EpilogueVectorizerEpilogueLoop( 900 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 901 DominatorTree *DT, const TargetLibraryInfo *TLI, 902 const TargetTransformInfo *TTI, AssumptionCache *AC, 903 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 904 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 905 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 906 GeneratedRTChecks &Checks) 907 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 908 EPI, LVL, CM, BFI, PSI, Checks) { 909 TripCount = EPI.TripCount; 910 } 911 /// Implements the interface for creating a vectorized skeleton using the 912 /// *epilogue loop* strategy (ie the second pass of vplan execution). 913 std::pair<BasicBlock *, Value *> 914 createEpilogueVectorizedLoopSkeleton() final override; 915 916 protected: 917 /// Emits an iteration count bypass check after the main vector loop has 918 /// finished to see if there are any iterations left to execute by either 919 /// the vector epilogue or the scalar epilogue. 920 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 921 BasicBlock *Bypass, 922 BasicBlock *Insert); 923 void printDebugTracesAtStart() override; 924 void printDebugTracesAtEnd() override; 925 }; 926 } // end namespace llvm 927 928 /// Look for a meaningful debug location on the instruction or it's 929 /// operands. 930 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 931 if (!I) 932 return I; 933 934 DebugLoc Empty; 935 if (I->getDebugLoc() != Empty) 936 return I; 937 938 for (Use &Op : I->operands()) { 939 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 940 if (OpInst->getDebugLoc() != Empty) 941 return OpInst; 942 } 943 944 return I; 945 } 946 947 void InnerLoopVectorizer::setDebugLocFromInst( 948 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 949 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 950 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 951 const DILocation *DIL = Inst->getDebugLoc(); 952 953 // When a FSDiscriminator is enabled, we don't need to add the multiply 954 // factors to the discriminators. 955 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 956 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 957 // FIXME: For scalable vectors, assume vscale=1. 958 auto NewDIL = 959 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 960 if (NewDIL) 961 B->SetCurrentDebugLocation(NewDIL.getValue()); 962 else 963 LLVM_DEBUG(dbgs() 964 << "Failed to create new discriminator: " 965 << DIL->getFilename() << " Line: " << DIL->getLine()); 966 } else 967 B->SetCurrentDebugLocation(DIL); 968 } else 969 B->SetCurrentDebugLocation(DebugLoc()); 970 } 971 972 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 973 /// is passed, the message relates to that particular instruction. 974 #ifndef NDEBUG 975 static void debugVectorizationMessage(const StringRef Prefix, 976 const StringRef DebugMsg, 977 Instruction *I) { 978 dbgs() << "LV: " << Prefix << DebugMsg; 979 if (I != nullptr) 980 dbgs() << " " << *I; 981 else 982 dbgs() << '.'; 983 dbgs() << '\n'; 984 } 985 #endif 986 987 /// Create an analysis remark that explains why vectorization failed 988 /// 989 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 990 /// RemarkName is the identifier for the remark. If \p I is passed it is an 991 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 992 /// the location of the remark. \return the remark object that can be 993 /// streamed to. 994 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 995 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 996 Value *CodeRegion = TheLoop->getHeader(); 997 DebugLoc DL = TheLoop->getStartLoc(); 998 999 if (I) { 1000 CodeRegion = I->getParent(); 1001 // If there is no debug location attached to the instruction, revert back to 1002 // using the loop's. 1003 if (I->getDebugLoc()) 1004 DL = I->getDebugLoc(); 1005 } 1006 1007 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1008 } 1009 1010 namespace llvm { 1011 1012 /// Return a value for Step multiplied by VF. 1013 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1014 int64_t Step) { 1015 assert(Ty->isIntegerTy() && "Expected an integer step"); 1016 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1017 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1018 } 1019 1020 /// Return the runtime value for VF. 1021 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1022 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1023 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1024 } 1025 1026 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1027 ElementCount VF) { 1028 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1029 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1030 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1031 return B.CreateUIToFP(RuntimeVF, FTy); 1032 } 1033 1034 void reportVectorizationFailure(const StringRef DebugMsg, 1035 const StringRef OREMsg, const StringRef ORETag, 1036 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1037 Instruction *I) { 1038 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1039 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1040 ORE->emit( 1041 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1042 << "loop not vectorized: " << OREMsg); 1043 } 1044 1045 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1046 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1047 Instruction *I) { 1048 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1049 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1050 ORE->emit( 1051 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1052 << Msg); 1053 } 1054 1055 } // end namespace llvm 1056 1057 #ifndef NDEBUG 1058 /// \return string containing a file name and a line # for the given loop. 1059 static std::string getDebugLocString(const Loop *L) { 1060 std::string Result; 1061 if (L) { 1062 raw_string_ostream OS(Result); 1063 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1064 LoopDbgLoc.print(OS); 1065 else 1066 // Just print the module name. 1067 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1068 OS.flush(); 1069 } 1070 return Result; 1071 } 1072 #endif 1073 1074 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1075 const Instruction *Orig) { 1076 // If the loop was versioned with memchecks, add the corresponding no-alias 1077 // metadata. 1078 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1079 LVer->annotateInstWithNoAlias(To, Orig); 1080 } 1081 1082 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1083 VPTransformState &State) { 1084 1085 // Collect recipes in the backward slice of `Root` that may generate a poison 1086 // value that is used after vectorization. 1087 SmallPtrSet<VPRecipeBase *, 16> Visited; 1088 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1089 SmallVector<VPRecipeBase *, 16> Worklist; 1090 Worklist.push_back(Root); 1091 1092 // Traverse the backward slice of Root through its use-def chain. 1093 while (!Worklist.empty()) { 1094 VPRecipeBase *CurRec = Worklist.back(); 1095 Worklist.pop_back(); 1096 1097 if (!Visited.insert(CurRec).second) 1098 continue; 1099 1100 // Prune search if we find another recipe generating a widen memory 1101 // instruction. Widen memory instructions involved in address computation 1102 // will lead to gather/scatter instructions, which don't need to be 1103 // handled. 1104 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1105 isa<VPInterleaveRecipe>(CurRec) || 1106 isa<VPScalarIVStepsRecipe>(CurRec) || 1107 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1108 continue; 1109 1110 // This recipe contributes to the address computation of a widen 1111 // load/store. Collect recipe if its underlying instruction has 1112 // poison-generating flags. 1113 Instruction *Instr = CurRec->getUnderlyingInstr(); 1114 if (Instr && Instr->hasPoisonGeneratingFlags()) 1115 State.MayGeneratePoisonRecipes.insert(CurRec); 1116 1117 // Add new definitions to the worklist. 1118 for (VPValue *operand : CurRec->operands()) 1119 if (VPDef *OpDef = operand->getDef()) 1120 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1121 } 1122 }); 1123 1124 // Traverse all the recipes in the VPlan and collect the poison-generating 1125 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1126 // VPInterleaveRecipe. 1127 auto Iter = depth_first( 1128 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1129 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1130 for (VPRecipeBase &Recipe : *VPBB) { 1131 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1132 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1133 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1134 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1135 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1136 collectPoisonGeneratingInstrsInBackwardSlice( 1137 cast<VPRecipeBase>(AddrDef)); 1138 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1139 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1140 if (AddrDef) { 1141 // Check if any member of the interleave group needs predication. 1142 const InterleaveGroup<Instruction> *InterGroup = 1143 InterleaveRec->getInterleaveGroup(); 1144 bool NeedPredication = false; 1145 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1146 I < NumMembers; ++I) { 1147 Instruction *Member = InterGroup->getMember(I); 1148 if (Member) 1149 NeedPredication |= 1150 Legal->blockNeedsPredication(Member->getParent()); 1151 } 1152 1153 if (NeedPredication) 1154 collectPoisonGeneratingInstrsInBackwardSlice( 1155 cast<VPRecipeBase>(AddrDef)); 1156 } 1157 } 1158 } 1159 } 1160 } 1161 1162 void InnerLoopVectorizer::addMetadata(Instruction *To, 1163 Instruction *From) { 1164 propagateMetadata(To, From); 1165 addNewMetadata(To, From); 1166 } 1167 1168 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1169 Instruction *From) { 1170 for (Value *V : To) { 1171 if (Instruction *I = dyn_cast<Instruction>(V)) 1172 addMetadata(I, From); 1173 } 1174 } 1175 1176 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1177 const RecurrenceDescriptor &RdxDesc) { 1178 auto It = ReductionResumeValues.find(&RdxDesc); 1179 assert(It != ReductionResumeValues.end() && 1180 "Expected to find a resume value for the reduction."); 1181 return It->second; 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(DataType, Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V, 1509 ElementCount VF = ElementCount::getFixed(1)) { 1510 bool LI = isa<LoadInst>(V); 1511 bool SI = isa<StoreInst>(V); 1512 if (!LI && !SI) 1513 return false; 1514 auto *Ty = getLoadStoreType(V); 1515 Align Align = getLoadStoreAlignment(V); 1516 if (VF.isVector()) 1517 Ty = VectorType::get(Ty, VF); 1518 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1519 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1520 } 1521 1522 /// Returns true if the target machine supports all of the reduction 1523 /// variables found for the given VF. 1524 bool canVectorizeReductions(ElementCount VF) const { 1525 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1526 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1527 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1528 })); 1529 } 1530 1531 /// Returns true if \p I is an instruction that will be scalarized with 1532 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1533 /// instructions include conditional stores and instructions that may divide 1534 /// by zero. 1535 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1536 1537 // Returns true if \p I is an instruction that will be predicated either 1538 // through scalar predication or masked load/store or masked gather/scatter. 1539 // \p VF is the vectorization factor that will be used to vectorize \p I. 1540 // Superset of instructions that return true for isScalarWithPredication. 1541 bool isPredicatedInst(Instruction *I, ElementCount VF, 1542 bool IsKnownUniform = false) { 1543 // When we know the load is uniform and the original scalar loop was not 1544 // predicated we don't need to mark it as a predicated instruction. Any 1545 // vectorised blocks created when tail-folding are something artificial we 1546 // have introduced and we know there is always at least one active lane. 1547 // That's why we call Legal->blockNeedsPredication here because it doesn't 1548 // query tail-folding. 1549 if (IsKnownUniform && isa<LoadInst>(I) && 1550 !Legal->blockNeedsPredication(I->getParent())) 1551 return false; 1552 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1553 return false; 1554 // Loads and stores that need some form of masked operation are predicated 1555 // instructions. 1556 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1557 return Legal->isMaskRequired(I); 1558 return isScalarWithPredication(I, VF); 1559 } 1560 1561 /// Returns true if \p I is a memory instruction with consecutive memory 1562 /// access that can be widened. 1563 bool 1564 memoryInstructionCanBeWidened(Instruction *I, 1565 ElementCount VF = ElementCount::getFixed(1)); 1566 1567 /// Returns true if \p I is a memory instruction in an interleaved-group 1568 /// of memory accesses that can be vectorized with wide vector loads/stores 1569 /// and shuffles. 1570 bool 1571 interleavedAccessCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Check if \p Instr belongs to any interleaved access group. 1575 bool isAccessInterleaved(Instruction *Instr) { 1576 return InterleaveInfo.isInterleaved(Instr); 1577 } 1578 1579 /// Get the interleaved access group that \p Instr belongs to. 1580 const InterleaveGroup<Instruction> * 1581 getInterleavedAccessGroup(Instruction *Instr) { 1582 return InterleaveInfo.getInterleaveGroup(Instr); 1583 } 1584 1585 /// Returns true if we're required to use a scalar epilogue for at least 1586 /// the final iteration of the original loop. 1587 bool requiresScalarEpilogue(ElementCount VF) const { 1588 if (!isScalarEpilogueAllowed()) 1589 return false; 1590 // If we might exit from anywhere but the latch, must run the exiting 1591 // iteration in scalar form. 1592 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1593 return true; 1594 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1595 } 1596 1597 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1598 /// loop hint annotation. 1599 bool isScalarEpilogueAllowed() const { 1600 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1601 } 1602 1603 /// Returns true if all loop blocks should be masked to fold tail loop. 1604 bool foldTailByMasking() const { return FoldTailByMasking; } 1605 1606 /// Returns true if the instructions in this block requires predication 1607 /// for any reason, e.g. because tail folding now requires a predicate 1608 /// or because the block in the original loop was predicated. 1609 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1610 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1611 } 1612 1613 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1614 /// nodes to the chain of instructions representing the reductions. Uses a 1615 /// MapVector to ensure deterministic iteration order. 1616 using ReductionChainMap = 1617 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1618 1619 /// Return the chain of instructions representing an inloop reduction. 1620 const ReductionChainMap &getInLoopReductionChains() const { 1621 return InLoopReductionChains; 1622 } 1623 1624 /// Returns true if the Phi is part of an inloop reduction. 1625 bool isInLoopReduction(PHINode *Phi) const { 1626 return InLoopReductionChains.count(Phi); 1627 } 1628 1629 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1630 /// with factor VF. Return the cost of the instruction, including 1631 /// scalarization overhead if it's needed. 1632 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1633 1634 /// Estimate cost of a call instruction CI if it were vectorized with factor 1635 /// VF. Return the cost of the instruction, including scalarization overhead 1636 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1637 /// scalarized - 1638 /// i.e. either vector version isn't available, or is too expensive. 1639 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1640 bool &NeedToScalarize) const; 1641 1642 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1643 /// that of B. 1644 bool isMoreProfitable(const VectorizationFactor &A, 1645 const VectorizationFactor &B) const; 1646 1647 /// Invalidates decisions already taken by the cost model. 1648 void invalidateCostModelingDecisions() { 1649 WideningDecisions.clear(); 1650 Uniforms.clear(); 1651 Scalars.clear(); 1652 } 1653 1654 private: 1655 unsigned NumPredStores = 0; 1656 1657 /// Convenience function that returns the value of vscale_range iff 1658 /// vscale_range.min == vscale_range.max or otherwise returns the value 1659 /// returned by the corresponding TLI method. 1660 Optional<unsigned> getVScaleForTuning() const; 1661 1662 /// \return An upper bound for the vectorization factors for both 1663 /// fixed and scalable vectorization, where the minimum-known number of 1664 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1665 /// disabled or unsupported, then the scalable part will be equal to 1666 /// ElementCount::getScalable(0). 1667 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1668 ElementCount UserVF, 1669 bool FoldTailByMasking); 1670 1671 /// \return the maximized element count based on the targets vector 1672 /// registers and the loop trip-count, but limited to a maximum safe VF. 1673 /// This is a helper function of computeFeasibleMaxVF. 1674 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1675 /// issue that occurred on one of the buildbots which cannot be reproduced 1676 /// without having access to the properietary compiler (see comments on 1677 /// D98509). The issue is currently under investigation and this workaround 1678 /// will be removed as soon as possible. 1679 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1680 unsigned SmallestType, 1681 unsigned WidestType, 1682 const ElementCount &MaxSafeVF, 1683 bool FoldTailByMasking); 1684 1685 /// \return the maximum legal scalable VF, based on the safe max number 1686 /// of elements. 1687 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1688 1689 /// The vectorization cost is a combination of the cost itself and a boolean 1690 /// indicating whether any of the contributing operations will actually 1691 /// operate on vector values after type legalization in the backend. If this 1692 /// latter value is false, then all operations will be scalarized (i.e. no 1693 /// vectorization has actually taken place). 1694 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1695 1696 /// Returns the expected execution cost. The unit of the cost does 1697 /// not matter because we use the 'cost' units to compare different 1698 /// vector widths. The cost that is returned is *not* normalized by 1699 /// the factor width. If \p Invalid is not nullptr, this function 1700 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1701 /// each instruction that has an Invalid cost for the given VF. 1702 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1703 VectorizationCostTy 1704 expectedCost(ElementCount VF, 1705 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1706 1707 /// Returns the execution time cost of an instruction for a given vector 1708 /// width. Vector width of one means scalar. 1709 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost-computation logic from getInstructionCost which provides 1712 /// the vector type as an output parameter. 1713 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1714 Type *&VectorTy); 1715 1716 /// Return the cost of instructions in an inloop reduction pattern, if I is 1717 /// part of that pattern. 1718 Optional<InstructionCost> 1719 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1720 TTI::TargetCostKind CostKind); 1721 1722 /// Calculate vectorization cost of memory instruction \p I. 1723 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1724 1725 /// The cost computation for scalarized memory instruction. 1726 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1727 1728 /// The cost computation for interleaving group of memory instructions. 1729 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1730 1731 /// The cost computation for Gather/Scatter instruction. 1732 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1733 1734 /// The cost computation for widening instruction \p I with consecutive 1735 /// memory access. 1736 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1739 /// Load: scalar load + broadcast. 1740 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1741 /// element) 1742 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1743 1744 /// Estimate the overhead of scalarizing an instruction. This is a 1745 /// convenience wrapper for the type-based getScalarizationOverhead API. 1746 InstructionCost getScalarizationOverhead(Instruction *I, 1747 ElementCount VF) const; 1748 1749 /// Returns whether the instruction is a load or store and will be a emitted 1750 /// as a vector operation. 1751 bool isConsecutiveLoadOrStore(Instruction *I); 1752 1753 /// Returns true if an artificially high cost for emulated masked memrefs 1754 /// should be used. 1755 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1756 1757 /// Map of scalar integer values to the smallest bitwidth they can be legally 1758 /// represented as. The vector equivalents of these values should be truncated 1759 /// to this type. 1760 MapVector<Instruction *, uint64_t> MinBWs; 1761 1762 /// A type representing the costs for instructions if they were to be 1763 /// scalarized rather than vectorized. The entries are Instruction-Cost 1764 /// pairs. 1765 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1766 1767 /// A set containing all BasicBlocks that are known to present after 1768 /// vectorization as a predicated block. 1769 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1770 1771 /// Records whether it is allowed to have the original scalar loop execute at 1772 /// least once. This may be needed as a fallback loop in case runtime 1773 /// aliasing/dependence checks fail, or to handle the tail/remainder 1774 /// iterations when the trip count is unknown or doesn't divide by the VF, 1775 /// or as a peel-loop to handle gaps in interleave-groups. 1776 /// Under optsize and when the trip count is very small we don't allow any 1777 /// iterations to execute in the scalar loop. 1778 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1779 1780 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1781 bool FoldTailByMasking = false; 1782 1783 /// A map holding scalar costs for different vectorization factors. The 1784 /// presence of a cost for an instruction in the mapping indicates that the 1785 /// instruction will be scalarized when vectorizing with the associated 1786 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1787 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1788 1789 /// Holds the instructions known to be uniform after vectorization. 1790 /// The data is collected per VF. 1791 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1792 1793 /// Holds the instructions known to be scalar after vectorization. 1794 /// The data is collected per VF. 1795 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1796 1797 /// Holds the instructions (address computations) that are forced to be 1798 /// scalarized. 1799 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1800 1801 /// PHINodes of the reductions that should be expanded in-loop along with 1802 /// their associated chains of reduction operations, in program order from top 1803 /// (PHI) to bottom 1804 ReductionChainMap InLoopReductionChains; 1805 1806 /// A Map of inloop reduction operations and their immediate chain operand. 1807 /// FIXME: This can be removed once reductions can be costed correctly in 1808 /// vplan. This was added to allow quick lookup to the inloop operations, 1809 /// without having to loop through InLoopReductionChains. 1810 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1811 1812 /// Returns the expected difference in cost from scalarizing the expression 1813 /// feeding a predicated instruction \p PredInst. The instructions to 1814 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1815 /// non-negative return value implies the expression will be scalarized. 1816 /// Currently, only single-use chains are considered for scalarization. 1817 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1818 ElementCount VF); 1819 1820 /// Collect the instructions that are uniform after vectorization. An 1821 /// instruction is uniform if we represent it with a single scalar value in 1822 /// the vectorized loop corresponding to each vector iteration. Examples of 1823 /// uniform instructions include pointer operands of consecutive or 1824 /// interleaved memory accesses. Note that although uniformity implies an 1825 /// instruction will be scalar, the reverse is not true. In general, a 1826 /// scalarized instruction will be represented by VF scalar values in the 1827 /// vectorized loop, each corresponding to an iteration of the original 1828 /// scalar loop. 1829 void collectLoopUniforms(ElementCount VF); 1830 1831 /// Collect the instructions that are scalar after vectorization. An 1832 /// instruction is scalar if it is known to be uniform or will be scalarized 1833 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1834 /// to the list if they are used by a load/store instruction that is marked as 1835 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1836 /// VF values in the vectorized loop, each corresponding to an iteration of 1837 /// the original scalar loop. 1838 void collectLoopScalars(ElementCount VF); 1839 1840 /// Keeps cost model vectorization decision and cost for instructions. 1841 /// Right now it is used for memory instructions only. 1842 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1843 std::pair<InstWidening, InstructionCost>>; 1844 1845 DecisionList WideningDecisions; 1846 1847 /// Returns true if \p V is expected to be vectorized and it needs to be 1848 /// extracted. 1849 bool needsExtract(Value *V, ElementCount VF) const { 1850 Instruction *I = dyn_cast<Instruction>(V); 1851 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1852 TheLoop->isLoopInvariant(I)) 1853 return false; 1854 1855 // Assume we can vectorize V (and hence we need extraction) if the 1856 // scalars are not computed yet. This can happen, because it is called 1857 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1858 // the scalars are collected. That should be a safe assumption in most 1859 // cases, because we check if the operands have vectorizable types 1860 // beforehand in LoopVectorizationLegality. 1861 return Scalars.find(VF) == Scalars.end() || 1862 !isScalarAfterVectorization(I, VF); 1863 }; 1864 1865 /// Returns a range containing only operands needing to be extracted. 1866 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1867 ElementCount VF) const { 1868 return SmallVector<Value *, 4>(make_filter_range( 1869 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1870 } 1871 1872 /// Determines if we have the infrastructure to vectorize loop \p L and its 1873 /// epilogue, assuming the main loop is vectorized by \p VF. 1874 bool isCandidateForEpilogueVectorization(const Loop &L, 1875 const ElementCount VF) const; 1876 1877 /// Returns true if epilogue vectorization is considered profitable, and 1878 /// false otherwise. 1879 /// \p VF is the vectorization factor chosen for the original loop. 1880 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1881 1882 public: 1883 /// The loop that we evaluate. 1884 Loop *TheLoop; 1885 1886 /// Predicated scalar evolution analysis. 1887 PredicatedScalarEvolution &PSE; 1888 1889 /// Loop Info analysis. 1890 LoopInfo *LI; 1891 1892 /// Vectorization legality. 1893 LoopVectorizationLegality *Legal; 1894 1895 /// Vector target information. 1896 const TargetTransformInfo &TTI; 1897 1898 /// Target Library Info. 1899 const TargetLibraryInfo *TLI; 1900 1901 /// Demanded bits analysis. 1902 DemandedBits *DB; 1903 1904 /// Assumption cache. 1905 AssumptionCache *AC; 1906 1907 /// Interface to emit optimization remarks. 1908 OptimizationRemarkEmitter *ORE; 1909 1910 const Function *TheFunction; 1911 1912 /// Loop Vectorize Hint. 1913 const LoopVectorizeHints *Hints; 1914 1915 /// The interleave access information contains groups of interleaved accesses 1916 /// with the same stride and close to each other. 1917 InterleavedAccessInfo &InterleaveInfo; 1918 1919 /// Values to ignore in the cost model. 1920 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1921 1922 /// Values to ignore in the cost model when VF > 1. 1923 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1924 1925 /// All element types found in the loop. 1926 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1927 1928 /// Profitable vector factors. 1929 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1930 }; 1931 } // end namespace llvm 1932 1933 /// Helper struct to manage generating runtime checks for vectorization. 1934 /// 1935 /// The runtime checks are created up-front in temporary blocks to allow better 1936 /// estimating the cost and un-linked from the existing IR. After deciding to 1937 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1938 /// temporary blocks are completely removed. 1939 class GeneratedRTChecks { 1940 /// Basic block which contains the generated SCEV checks, if any. 1941 BasicBlock *SCEVCheckBlock = nullptr; 1942 1943 /// The value representing the result of the generated SCEV checks. If it is 1944 /// nullptr, either no SCEV checks have been generated or they have been used. 1945 Value *SCEVCheckCond = nullptr; 1946 1947 /// Basic block which contains the generated memory runtime checks, if any. 1948 BasicBlock *MemCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated memory runtime checks. 1951 /// If it is nullptr, either no memory runtime checks have been generated or 1952 /// they have been used. 1953 Value *MemRuntimeCheckCond = nullptr; 1954 1955 DominatorTree *DT; 1956 LoopInfo *LI; 1957 1958 SCEVExpander SCEVExp; 1959 SCEVExpander MemCheckExp; 1960 1961 public: 1962 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1963 const DataLayout &DL) 1964 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1965 MemCheckExp(SE, DL, "scev.check") {} 1966 1967 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1968 /// accurately estimate the cost of the runtime checks. The blocks are 1969 /// un-linked from the IR and is added back during vector code generation. If 1970 /// there is no vector code generation, the check blocks are removed 1971 /// completely. 1972 void Create(Loop *L, const LoopAccessInfo &LAI, 1973 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1974 1975 BasicBlock *LoopHeader = L->getHeader(); 1976 BasicBlock *Preheader = L->getLoopPreheader(); 1977 1978 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1979 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1980 // may be used by SCEVExpander. The blocks will be un-linked from their 1981 // predecessors and removed from LI & DT at the end of the function. 1982 if (!UnionPred.isAlwaysTrue()) { 1983 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1984 nullptr, "vector.scevcheck"); 1985 1986 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1987 &UnionPred, SCEVCheckBlock->getTerminator()); 1988 } 1989 1990 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1991 if (RtPtrChecking.Need) { 1992 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1993 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1994 "vector.memcheck"); 1995 1996 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1997 if (DiffChecks) { 1998 MemRuntimeCheckCond = addDiffRuntimeChecks( 1999 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 2000 [VF](IRBuilderBase &B, unsigned Bits) { 2001 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 2002 }, 2003 IC); 2004 } else { 2005 MemRuntimeCheckCond = 2006 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2007 RtPtrChecking.getChecks(), MemCheckExp); 2008 } 2009 assert(MemRuntimeCheckCond && 2010 "no RT checks generated although RtPtrChecking " 2011 "claimed checks are required"); 2012 } 2013 2014 if (!MemCheckBlock && !SCEVCheckBlock) 2015 return; 2016 2017 // Unhook the temporary block with the checks, update various places 2018 // accordingly. 2019 if (SCEVCheckBlock) 2020 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2021 if (MemCheckBlock) 2022 MemCheckBlock->replaceAllUsesWith(Preheader); 2023 2024 if (SCEVCheckBlock) { 2025 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2026 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2027 Preheader->getTerminator()->eraseFromParent(); 2028 } 2029 if (MemCheckBlock) { 2030 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2031 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2032 Preheader->getTerminator()->eraseFromParent(); 2033 } 2034 2035 DT->changeImmediateDominator(LoopHeader, Preheader); 2036 if (MemCheckBlock) { 2037 DT->eraseNode(MemCheckBlock); 2038 LI->removeBlock(MemCheckBlock); 2039 } 2040 if (SCEVCheckBlock) { 2041 DT->eraseNode(SCEVCheckBlock); 2042 LI->removeBlock(SCEVCheckBlock); 2043 } 2044 } 2045 2046 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2047 /// unused. 2048 ~GeneratedRTChecks() { 2049 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2050 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2051 if (!SCEVCheckCond) 2052 SCEVCleaner.markResultUsed(); 2053 2054 if (!MemRuntimeCheckCond) 2055 MemCheckCleaner.markResultUsed(); 2056 2057 if (MemRuntimeCheckCond) { 2058 auto &SE = *MemCheckExp.getSE(); 2059 // Memory runtime check generation creates compares that use expanded 2060 // values. Remove them before running the SCEVExpanderCleaners. 2061 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2062 if (MemCheckExp.isInsertedInstruction(&I)) 2063 continue; 2064 SE.forgetValue(&I); 2065 I.eraseFromParent(); 2066 } 2067 } 2068 MemCheckCleaner.cleanup(); 2069 SCEVCleaner.cleanup(); 2070 2071 if (SCEVCheckCond) 2072 SCEVCheckBlock->eraseFromParent(); 2073 if (MemRuntimeCheckCond) 2074 MemCheckBlock->eraseFromParent(); 2075 } 2076 2077 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2078 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2079 /// depending on the generated condition. 2080 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2081 BasicBlock *LoopVectorPreHeader, 2082 BasicBlock *LoopExitBlock) { 2083 if (!SCEVCheckCond) 2084 return nullptr; 2085 2086 Value *Cond = SCEVCheckCond; 2087 // Mark the check as used, to prevent it from being removed during cleanup. 2088 SCEVCheckCond = nullptr; 2089 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2090 if (C->isZero()) 2091 return nullptr; 2092 2093 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2094 2095 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2096 // Create new preheader for vector loop. 2097 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2098 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2099 2100 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2101 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2102 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2103 SCEVCheckBlock); 2104 2105 DT->addNewBlock(SCEVCheckBlock, Pred); 2106 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2107 2108 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2109 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2110 return SCEVCheckBlock; 2111 } 2112 2113 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2114 /// the branches to branch to the vector preheader or \p Bypass, depending on 2115 /// the generated condition. 2116 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2117 BasicBlock *LoopVectorPreHeader) { 2118 // Check if we generated code that checks in runtime if arrays overlap. 2119 if (!MemRuntimeCheckCond) 2120 return nullptr; 2121 2122 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2123 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2124 MemCheckBlock); 2125 2126 DT->addNewBlock(MemCheckBlock, Pred); 2127 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2128 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2129 2130 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2131 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2132 2133 ReplaceInstWithInst( 2134 MemCheckBlock->getTerminator(), 2135 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2136 MemCheckBlock->getTerminator()->setDebugLoc( 2137 Pred->getTerminator()->getDebugLoc()); 2138 2139 // Mark the check as used, to prevent it from being removed during cleanup. 2140 MemRuntimeCheckCond = nullptr; 2141 return MemCheckBlock; 2142 } 2143 }; 2144 2145 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2146 // vectorization. The loop needs to be annotated with #pragma omp simd 2147 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2148 // vector length information is not provided, vectorization is not considered 2149 // explicit. Interleave hints are not allowed either. These limitations will be 2150 // relaxed in the future. 2151 // Please, note that we are currently forced to abuse the pragma 'clang 2152 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2153 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2154 // provides *explicit vectorization hints* (LV can bypass legal checks and 2155 // assume that vectorization is legal). However, both hints are implemented 2156 // using the same metadata (llvm.loop.vectorize, processed by 2157 // LoopVectorizeHints). This will be fixed in the future when the native IR 2158 // representation for pragma 'omp simd' is introduced. 2159 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2160 OptimizationRemarkEmitter *ORE) { 2161 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2162 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2163 2164 // Only outer loops with an explicit vectorization hint are supported. 2165 // Unannotated outer loops are ignored. 2166 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2167 return false; 2168 2169 Function *Fn = OuterLp->getHeader()->getParent(); 2170 if (!Hints.allowVectorization(Fn, OuterLp, 2171 true /*VectorizeOnlyWhenForced*/)) { 2172 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2173 return false; 2174 } 2175 2176 if (Hints.getInterleave() > 1) { 2177 // TODO: Interleave support is future work. 2178 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2179 "outer loops.\n"); 2180 Hints.emitRemarkWithHints(); 2181 return false; 2182 } 2183 2184 return true; 2185 } 2186 2187 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2188 OptimizationRemarkEmitter *ORE, 2189 SmallVectorImpl<Loop *> &V) { 2190 // Collect inner loops and outer loops without irreducible control flow. For 2191 // now, only collect outer loops that have explicit vectorization hints. If we 2192 // are stress testing the VPlan H-CFG construction, we collect the outermost 2193 // loop of every loop nest. 2194 if (L.isInnermost() || VPlanBuildStressTest || 2195 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2196 LoopBlocksRPO RPOT(&L); 2197 RPOT.perform(LI); 2198 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2199 V.push_back(&L); 2200 // TODO: Collect inner loops inside marked outer loops in case 2201 // vectorization fails for the outer loop. Do not invoke 2202 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2203 // already known to be reducible. We can use an inherited attribute for 2204 // that. 2205 return; 2206 } 2207 } 2208 for (Loop *InnerL : L) 2209 collectSupportedLoops(*InnerL, LI, ORE, V); 2210 } 2211 2212 namespace { 2213 2214 /// The LoopVectorize Pass. 2215 struct LoopVectorize : public FunctionPass { 2216 /// Pass identification, replacement for typeid 2217 static char ID; 2218 2219 LoopVectorizePass Impl; 2220 2221 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2222 bool VectorizeOnlyWhenForced = false) 2223 : FunctionPass(ID), 2224 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2225 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2226 } 2227 2228 bool runOnFunction(Function &F) override { 2229 if (skipFunction(F)) 2230 return false; 2231 2232 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2233 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2234 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2235 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2236 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2237 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2238 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2239 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2240 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2241 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2242 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2243 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2244 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2245 2246 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2247 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2248 2249 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2250 GetLAA, *ORE, PSI).MadeAnyChange; 2251 } 2252 2253 void getAnalysisUsage(AnalysisUsage &AU) const override { 2254 AU.addRequired<AssumptionCacheTracker>(); 2255 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2256 AU.addRequired<DominatorTreeWrapperPass>(); 2257 AU.addRequired<LoopInfoWrapperPass>(); 2258 AU.addRequired<ScalarEvolutionWrapperPass>(); 2259 AU.addRequired<TargetTransformInfoWrapperPass>(); 2260 AU.addRequired<AAResultsWrapperPass>(); 2261 AU.addRequired<LoopAccessLegacyAnalysis>(); 2262 AU.addRequired<DemandedBitsWrapperPass>(); 2263 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2264 AU.addRequired<InjectTLIMappingsLegacy>(); 2265 2266 // We currently do not preserve loopinfo/dominator analyses with outer loop 2267 // vectorization. Until this is addressed, mark these analyses as preserved 2268 // only for non-VPlan-native path. 2269 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2270 if (!EnableVPlanNativePath) { 2271 AU.addPreserved<LoopInfoWrapperPass>(); 2272 AU.addPreserved<DominatorTreeWrapperPass>(); 2273 } 2274 2275 AU.addPreserved<BasicAAWrapperPass>(); 2276 AU.addPreserved<GlobalsAAWrapperPass>(); 2277 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2278 } 2279 }; 2280 2281 } // end anonymous namespace 2282 2283 //===----------------------------------------------------------------------===// 2284 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2285 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2286 //===----------------------------------------------------------------------===// 2287 2288 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2289 // We need to place the broadcast of invariant variables outside the loop, 2290 // but only if it's proven safe to do so. Else, broadcast will be inside 2291 // vector loop body. 2292 Instruction *Instr = dyn_cast<Instruction>(V); 2293 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2294 (!Instr || 2295 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2296 // Place the code for broadcasting invariant variables in the new preheader. 2297 IRBuilder<>::InsertPointGuard Guard(Builder); 2298 if (SafeToHoist) 2299 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2300 2301 // Broadcast the scalar into all locations in the vector. 2302 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2303 2304 return Shuf; 2305 } 2306 2307 /// This function adds 2308 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2309 /// to each vector element of Val. The sequence starts at StartIndex. 2310 /// \p Opcode is relevant for FP induction variable. 2311 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2312 Instruction::BinaryOps BinOp, ElementCount VF, 2313 IRBuilderBase &Builder) { 2314 assert(VF.isVector() && "only vector VFs are supported"); 2315 2316 // Create and check the types. 2317 auto *ValVTy = cast<VectorType>(Val->getType()); 2318 ElementCount VLen = ValVTy->getElementCount(); 2319 2320 Type *STy = Val->getType()->getScalarType(); 2321 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2322 "Induction Step must be an integer or FP"); 2323 assert(Step->getType() == STy && "Step has wrong type"); 2324 2325 SmallVector<Constant *, 8> Indices; 2326 2327 // Create a vector of consecutive numbers from zero to VF. 2328 VectorType *InitVecValVTy = ValVTy; 2329 if (STy->isFloatingPointTy()) { 2330 Type *InitVecValSTy = 2331 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2332 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2333 } 2334 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2335 2336 // Splat the StartIdx 2337 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2338 2339 if (STy->isIntegerTy()) { 2340 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2341 Step = Builder.CreateVectorSplat(VLen, Step); 2342 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2343 // FIXME: The newly created binary instructions should contain nsw/nuw 2344 // flags, which can be found from the original scalar operations. 2345 Step = Builder.CreateMul(InitVec, Step); 2346 return Builder.CreateAdd(Val, Step, "induction"); 2347 } 2348 2349 // Floating point induction. 2350 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2351 "Binary Opcode should be specified for FP induction"); 2352 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2353 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2354 2355 Step = Builder.CreateVectorSplat(VLen, Step); 2356 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2357 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2358 } 2359 2360 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2361 /// variable on which to base the steps, \p Step is the size of the step. 2362 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2363 const InductionDescriptor &ID, VPValue *Def, 2364 VPTransformState &State) { 2365 IRBuilderBase &Builder = State.Builder; 2366 // We shouldn't have to build scalar steps if we aren't vectorizing. 2367 assert(State.VF.isVector() && "VF should be greater than one"); 2368 // Get the value type and ensure it and the step have the same integer type. 2369 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2370 assert(ScalarIVTy == Step->getType() && 2371 "Val and Step should have the same type"); 2372 2373 // We build scalar steps for both integer and floating-point induction 2374 // variables. Here, we determine the kind of arithmetic we will perform. 2375 Instruction::BinaryOps AddOp; 2376 Instruction::BinaryOps MulOp; 2377 if (ScalarIVTy->isIntegerTy()) { 2378 AddOp = Instruction::Add; 2379 MulOp = Instruction::Mul; 2380 } else { 2381 AddOp = ID.getInductionOpcode(); 2382 MulOp = Instruction::FMul; 2383 } 2384 2385 // Determine the number of scalars we need to generate for each unroll 2386 // iteration. 2387 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2388 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2389 // Compute the scalar steps and save the results in State. 2390 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2391 ScalarIVTy->getScalarSizeInBits()); 2392 Type *VecIVTy = nullptr; 2393 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2394 if (!FirstLaneOnly && State.VF.isScalable()) { 2395 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2396 UnitStepVec = 2397 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2398 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2399 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2400 } 2401 2402 for (unsigned Part = 0; Part < State.UF; ++Part) { 2403 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2404 2405 if (!FirstLaneOnly && State.VF.isScalable()) { 2406 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2407 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2410 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2411 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2412 State.set(Def, Add, Part); 2413 // It's useful to record the lane values too for the known minimum number 2414 // of elements so we do those below. This improves the code quality when 2415 // trying to extract the first element, for example. 2416 } 2417 2418 if (ScalarIVTy->isFloatingPointTy()) 2419 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2420 2421 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2422 Value *StartIdx = Builder.CreateBinOp( 2423 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2424 // The step returned by `createStepForVF` is a runtime-evaluated value 2425 // when VF is scalable. Otherwise, it should be folded into a Constant. 2426 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2427 "Expected StartIdx to be folded to a constant when VF is not " 2428 "scalable"); 2429 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2430 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2431 State.set(Def, Add, VPIteration(Part, Lane)); 2432 } 2433 } 2434 } 2435 2436 // Generate code for the induction step. Note that induction steps are 2437 // required to be loop-invariant 2438 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2439 Instruction *InsertBefore, 2440 Loop *OrigLoop = nullptr) { 2441 const DataLayout &DL = SE.getDataLayout(); 2442 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2443 "Induction step should be loop invariant"); 2444 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2445 return E->getValue(); 2446 2447 SCEVExpander Exp(SE, DL, "induction"); 2448 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2449 } 2450 2451 /// Compute the transformed value of Index at offset StartValue using step 2452 /// StepValue. 2453 /// For integer induction, returns StartValue + Index * StepValue. 2454 /// For pointer induction, returns StartValue[Index * StepValue]. 2455 /// FIXME: The newly created binary instructions should contain nsw/nuw 2456 /// flags, which can be found from the original scalar operations. 2457 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2458 Value *StartValue, Value *Step, 2459 const InductionDescriptor &ID) { 2460 assert(Index->getType()->getScalarType() == Step->getType() && 2461 "Index scalar type does not match StepValue type"); 2462 2463 // Note: the IR at this point is broken. We cannot use SE to create any new 2464 // SCEV and then expand it, hoping that SCEV's simplification will give us 2465 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2466 // lead to various SCEV crashes. So all we can do is to use builder and rely 2467 // on InstCombine for future simplifications. Here we handle some trivial 2468 // cases only. 2469 auto CreateAdd = [&B](Value *X, Value *Y) { 2470 assert(X->getType() == Y->getType() && "Types don't match!"); 2471 if (auto *CX = dyn_cast<ConstantInt>(X)) 2472 if (CX->isZero()) 2473 return Y; 2474 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2475 if (CY->isZero()) 2476 return X; 2477 return B.CreateAdd(X, Y); 2478 }; 2479 2480 // We allow X to be a vector type, in which case Y will potentially be 2481 // splatted into a vector with the same element count. 2482 auto CreateMul = [&B](Value *X, Value *Y) { 2483 assert(X->getType()->getScalarType() == Y->getType() && 2484 "Types don't match!"); 2485 if (auto *CX = dyn_cast<ConstantInt>(X)) 2486 if (CX->isOne()) 2487 return Y; 2488 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2489 if (CY->isOne()) 2490 return X; 2491 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2492 if (XVTy && !isa<VectorType>(Y->getType())) 2493 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2494 return B.CreateMul(X, Y); 2495 }; 2496 2497 switch (ID.getKind()) { 2498 case InductionDescriptor::IK_IntInduction: { 2499 assert(!isa<VectorType>(Index->getType()) && 2500 "Vector indices not supported for integer inductions yet"); 2501 assert(Index->getType() == StartValue->getType() && 2502 "Index type does not match StartValue type"); 2503 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2504 return B.CreateSub(StartValue, Index); 2505 auto *Offset = CreateMul(Index, Step); 2506 return CreateAdd(StartValue, Offset); 2507 } 2508 case InductionDescriptor::IK_PtrInduction: { 2509 assert(isa<Constant>(Step) && 2510 "Expected constant step for pointer induction"); 2511 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2512 } 2513 case InductionDescriptor::IK_FpInduction: { 2514 assert(!isa<VectorType>(Index->getType()) && 2515 "Vector indices not supported for FP inductions yet"); 2516 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2517 auto InductionBinOp = ID.getInductionBinOp(); 2518 assert(InductionBinOp && 2519 (InductionBinOp->getOpcode() == Instruction::FAdd || 2520 InductionBinOp->getOpcode() == Instruction::FSub) && 2521 "Original bin op should be defined for FP induction"); 2522 2523 Value *MulExp = B.CreateFMul(Step, Index); 2524 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2525 "induction"); 2526 } 2527 case InductionDescriptor::IK_NoInduction: 2528 return nullptr; 2529 } 2530 llvm_unreachable("invalid enum"); 2531 } 2532 2533 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2534 const VPIteration &Instance, 2535 VPTransformState &State) { 2536 Value *ScalarInst = State.get(Def, Instance); 2537 Value *VectorValue = State.get(Def, Instance.Part); 2538 VectorValue = Builder.CreateInsertElement( 2539 VectorValue, ScalarInst, 2540 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2541 State.set(Def, VectorValue, Instance.Part); 2542 } 2543 2544 // Return whether we allow using masked interleave-groups (for dealing with 2545 // strided loads/stores that reside in predicated blocks, or for dealing 2546 // with gaps). 2547 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2548 // If an override option has been passed in for interleaved accesses, use it. 2549 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2550 return EnableMaskedInterleavedMemAccesses; 2551 2552 return TTI.enableMaskedInterleavedAccessVectorization(); 2553 } 2554 2555 // Try to vectorize the interleave group that \p Instr belongs to. 2556 // 2557 // E.g. Translate following interleaved load group (factor = 3): 2558 // for (i = 0; i < N; i+=3) { 2559 // R = Pic[i]; // Member of index 0 2560 // G = Pic[i+1]; // Member of index 1 2561 // B = Pic[i+2]; // Member of index 2 2562 // ... // do something to R, G, B 2563 // } 2564 // To: 2565 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2566 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2567 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2568 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2569 // 2570 // Or translate following interleaved store group (factor = 3): 2571 // for (i = 0; i < N; i+=3) { 2572 // ... do something to R, G, B 2573 // Pic[i] = R; // Member of index 0 2574 // Pic[i+1] = G; // Member of index 1 2575 // Pic[i+2] = B; // Member of index 2 2576 // } 2577 // To: 2578 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2579 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2580 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2581 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2582 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2583 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2584 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2585 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2586 VPValue *BlockInMask) { 2587 Instruction *Instr = Group->getInsertPos(); 2588 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2589 2590 // Prepare for the vector type of the interleaved load/store. 2591 Type *ScalarTy = getLoadStoreType(Instr); 2592 unsigned InterleaveFactor = Group->getFactor(); 2593 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2594 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2595 2596 // Prepare for the new pointers. 2597 SmallVector<Value *, 2> AddrParts; 2598 unsigned Index = Group->getIndex(Instr); 2599 2600 // TODO: extend the masked interleaved-group support to reversed access. 2601 assert((!BlockInMask || !Group->isReverse()) && 2602 "Reversed masked interleave-group not supported."); 2603 2604 // If the group is reverse, adjust the index to refer to the last vector lane 2605 // instead of the first. We adjust the index from the first vector lane, 2606 // rather than directly getting the pointer for lane VF - 1, because the 2607 // pointer operand of the interleaved access is supposed to be uniform. For 2608 // uniform instructions, we're only required to generate a value for the 2609 // first vector lane in each unroll iteration. 2610 if (Group->isReverse()) 2611 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2612 2613 for (unsigned Part = 0; Part < UF; Part++) { 2614 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2615 setDebugLocFromInst(AddrPart); 2616 2617 // Notice current instruction could be any index. Need to adjust the address 2618 // to the member of index 0. 2619 // 2620 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2621 // b = A[i]; // Member of index 0 2622 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2623 // 2624 // E.g. A[i+1] = a; // Member of index 1 2625 // A[i] = b; // Member of index 0 2626 // A[i+2] = c; // Member of index 2 (Current instruction) 2627 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2628 2629 bool InBounds = false; 2630 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2631 InBounds = gep->isInBounds(); 2632 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2633 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2634 2635 // Cast to the vector pointer type. 2636 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2637 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2638 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2639 } 2640 2641 setDebugLocFromInst(Instr); 2642 Value *PoisonVec = PoisonValue::get(VecTy); 2643 2644 Value *MaskForGaps = nullptr; 2645 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2646 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2647 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2648 } 2649 2650 // Vectorize the interleaved load group. 2651 if (isa<LoadInst>(Instr)) { 2652 // For each unroll part, create a wide load for the group. 2653 SmallVector<Value *, 2> NewLoads; 2654 for (unsigned Part = 0; Part < UF; Part++) { 2655 Instruction *NewLoad; 2656 if (BlockInMask || MaskForGaps) { 2657 assert(useMaskedInterleavedAccesses(*TTI) && 2658 "masked interleaved groups are not allowed."); 2659 Value *GroupMask = MaskForGaps; 2660 if (BlockInMask) { 2661 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2662 Value *ShuffledMask = Builder.CreateShuffleVector( 2663 BlockInMaskPart, 2664 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2665 "interleaved.mask"); 2666 GroupMask = MaskForGaps 2667 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2668 MaskForGaps) 2669 : ShuffledMask; 2670 } 2671 NewLoad = 2672 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2673 GroupMask, PoisonVec, "wide.masked.vec"); 2674 } 2675 else 2676 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2677 Group->getAlign(), "wide.vec"); 2678 Group->addMetadata(NewLoad); 2679 NewLoads.push_back(NewLoad); 2680 } 2681 2682 // For each member in the group, shuffle out the appropriate data from the 2683 // wide loads. 2684 unsigned J = 0; 2685 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2686 Instruction *Member = Group->getMember(I); 2687 2688 // Skip the gaps in the group. 2689 if (!Member) 2690 continue; 2691 2692 auto StrideMask = 2693 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2694 for (unsigned Part = 0; Part < UF; Part++) { 2695 Value *StridedVec = Builder.CreateShuffleVector( 2696 NewLoads[Part], StrideMask, "strided.vec"); 2697 2698 // If this member has different type, cast the result type. 2699 if (Member->getType() != ScalarTy) { 2700 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2701 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2702 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2703 } 2704 2705 if (Group->isReverse()) 2706 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2707 2708 State.set(VPDefs[J], StridedVec, Part); 2709 } 2710 ++J; 2711 } 2712 return; 2713 } 2714 2715 // The sub vector type for current instruction. 2716 auto *SubVT = VectorType::get(ScalarTy, VF); 2717 2718 // Vectorize the interleaved store group. 2719 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2720 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2721 "masked interleaved groups are not allowed."); 2722 assert((!MaskForGaps || !VF.isScalable()) && 2723 "masking gaps for scalable vectors is not yet supported."); 2724 for (unsigned Part = 0; Part < UF; Part++) { 2725 // Collect the stored vector from each member. 2726 SmallVector<Value *, 4> StoredVecs; 2727 for (unsigned i = 0; i < InterleaveFactor; i++) { 2728 assert((Group->getMember(i) || MaskForGaps) && 2729 "Fail to get a member from an interleaved store group"); 2730 Instruction *Member = Group->getMember(i); 2731 2732 // Skip the gaps in the group. 2733 if (!Member) { 2734 Value *Undef = PoisonValue::get(SubVT); 2735 StoredVecs.push_back(Undef); 2736 continue; 2737 } 2738 2739 Value *StoredVec = State.get(StoredValues[i], Part); 2740 2741 if (Group->isReverse()) 2742 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2743 2744 // If this member has different type, cast it to a unified type. 2745 2746 if (StoredVec->getType() != SubVT) 2747 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2748 2749 StoredVecs.push_back(StoredVec); 2750 } 2751 2752 // Concatenate all vectors into a wide vector. 2753 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2754 2755 // Interleave the elements in the wide vector. 2756 Value *IVec = Builder.CreateShuffleVector( 2757 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2758 "interleaved.vec"); 2759 2760 Instruction *NewStoreInstr; 2761 if (BlockInMask || MaskForGaps) { 2762 Value *GroupMask = MaskForGaps; 2763 if (BlockInMask) { 2764 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2765 Value *ShuffledMask = Builder.CreateShuffleVector( 2766 BlockInMaskPart, 2767 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2768 "interleaved.mask"); 2769 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2770 ShuffledMask, MaskForGaps) 2771 : ShuffledMask; 2772 } 2773 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2774 Group->getAlign(), GroupMask); 2775 } else 2776 NewStoreInstr = 2777 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2778 2779 Group->addMetadata(NewStoreInstr); 2780 } 2781 } 2782 2783 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2784 VPReplicateRecipe *RepRecipe, 2785 const VPIteration &Instance, 2786 bool IfPredicateInstr, 2787 VPTransformState &State) { 2788 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2789 2790 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2791 // the first lane and part. 2792 if (isa<NoAliasScopeDeclInst>(Instr)) 2793 if (!Instance.isFirstIteration()) 2794 return; 2795 2796 // Does this instruction return a value ? 2797 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2798 2799 Instruction *Cloned = Instr->clone(); 2800 if (!IsVoidRetTy) 2801 Cloned->setName(Instr->getName() + ".cloned"); 2802 2803 // If the scalarized instruction contributes to the address computation of a 2804 // widen masked load/store which was in a basic block that needed predication 2805 // and is not predicated after vectorization, we can't propagate 2806 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2807 // instruction could feed a poison value to the base address of the widen 2808 // load/store. 2809 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2810 Cloned->dropPoisonGeneratingFlags(); 2811 2812 if (Instr->getDebugLoc()) 2813 setDebugLocFromInst(Instr); 2814 2815 // Replace the operands of the cloned instructions with their scalar 2816 // equivalents in the new loop. 2817 for (auto &I : enumerate(RepRecipe->operands())) { 2818 auto InputInstance = Instance; 2819 VPValue *Operand = I.value(); 2820 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2821 if (OperandR && OperandR->isUniform()) 2822 InputInstance.Lane = VPLane::getFirstLane(); 2823 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2824 } 2825 addNewMetadata(Cloned, Instr); 2826 2827 // Place the cloned scalar in the new loop. 2828 State.Builder.Insert(Cloned); 2829 2830 State.set(RepRecipe, Cloned, Instance); 2831 2832 // If we just cloned a new assumption, add it the assumption cache. 2833 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2834 AC->registerAssumption(II); 2835 2836 // End if-block. 2837 if (IfPredicateInstr) 2838 PredicatedInstructions.push_back(Cloned); 2839 } 2840 2841 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2842 if (TripCount) 2843 return TripCount; 2844 2845 assert(InsertBlock); 2846 IRBuilder<> Builder(InsertBlock->getTerminator()); 2847 // Find the loop boundaries. 2848 ScalarEvolution *SE = PSE.getSE(); 2849 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2850 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2851 "Invalid loop count"); 2852 2853 Type *IdxTy = Legal->getWidestInductionType(); 2854 assert(IdxTy && "No type for induction"); 2855 2856 // The exit count might have the type of i64 while the phi is i32. This can 2857 // happen if we have an induction variable that is sign extended before the 2858 // compare. The only way that we get a backedge taken count is that the 2859 // induction variable was signed and as such will not overflow. In such a case 2860 // truncation is legal. 2861 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2862 IdxTy->getPrimitiveSizeInBits()) 2863 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2864 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2865 2866 // Get the total trip count from the count by adding 1. 2867 const SCEV *ExitCount = SE->getAddExpr( 2868 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2869 2870 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2871 2872 // Expand the trip count and place the new instructions in the preheader. 2873 // Notice that the pre-header does not change, only the loop body. 2874 SCEVExpander Exp(*SE, DL, "induction"); 2875 2876 // Count holds the overall loop count (N). 2877 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2878 InsertBlock->getTerminator()); 2879 2880 if (TripCount->getType()->isPointerTy()) 2881 TripCount = 2882 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2883 InsertBlock->getTerminator()); 2884 2885 return TripCount; 2886 } 2887 2888 Value * 2889 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2890 if (VectorTripCount) 2891 return VectorTripCount; 2892 2893 Value *TC = getOrCreateTripCount(InsertBlock); 2894 IRBuilder<> Builder(InsertBlock->getTerminator()); 2895 2896 Type *Ty = TC->getType(); 2897 // This is where we can make the step a runtime constant. 2898 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2899 2900 // If the tail is to be folded by masking, round the number of iterations N 2901 // up to a multiple of Step instead of rounding down. This is done by first 2902 // adding Step-1 and then rounding down. Note that it's ok if this addition 2903 // overflows: the vector induction variable will eventually wrap to zero given 2904 // that it starts at zero and its Step is a power of two; the loop will then 2905 // exit, with the last early-exit vector comparison also producing all-true. 2906 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2907 // is accounted for in emitIterationCountCheck that adds an overflow check. 2908 if (Cost->foldTailByMasking()) { 2909 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2910 "VF*UF must be a power of 2 when folding tail by masking"); 2911 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2912 TC = Builder.CreateAdd( 2913 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2914 } 2915 2916 // Now we need to generate the expression for the part of the loop that the 2917 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2918 // iterations are not required for correctness, or N - Step, otherwise. Step 2919 // is equal to the vectorization factor (number of SIMD elements) times the 2920 // unroll factor (number of SIMD instructions). 2921 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2922 2923 // There are cases where we *must* run at least one iteration in the remainder 2924 // loop. See the cost model for when this can happen. If the step evenly 2925 // divides the trip count, we set the remainder to be equal to the step. If 2926 // the step does not evenly divide the trip count, no adjustment is necessary 2927 // since there will already be scalar iterations. Note that the minimum 2928 // iterations check ensures that N >= Step. 2929 if (Cost->requiresScalarEpilogue(VF)) { 2930 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2931 R = Builder.CreateSelect(IsZero, Step, R); 2932 } 2933 2934 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2935 2936 return VectorTripCount; 2937 } 2938 2939 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2940 const DataLayout &DL) { 2941 // Verify that V is a vector type with same number of elements as DstVTy. 2942 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2943 unsigned VF = DstFVTy->getNumElements(); 2944 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2945 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2946 Type *SrcElemTy = SrcVecTy->getElementType(); 2947 Type *DstElemTy = DstFVTy->getElementType(); 2948 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2949 "Vector elements must have same size"); 2950 2951 // Do a direct cast if element types are castable. 2952 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2953 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2954 } 2955 // V cannot be directly casted to desired vector type. 2956 // May happen when V is a floating point vector but DstVTy is a vector of 2957 // pointers or vice-versa. Handle this using a two-step bitcast using an 2958 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2959 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2960 "Only one type should be a pointer type"); 2961 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2962 "Only one type should be a floating point type"); 2963 Type *IntTy = 2964 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2965 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2966 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2967 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2968 } 2969 2970 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2971 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2972 // Reuse existing vector loop preheader for TC checks. 2973 // Note that new preheader block is generated for vector loop. 2974 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2975 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2976 2977 // Generate code to check if the loop's trip count is less than VF * UF, or 2978 // equal to it in case a scalar epilogue is required; this implies that the 2979 // vector trip count is zero. This check also covers the case where adding one 2980 // to the backedge-taken count overflowed leading to an incorrect trip count 2981 // of zero. In this case we will also jump to the scalar loop. 2982 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2983 : ICmpInst::ICMP_ULT; 2984 2985 // If tail is to be folded, vector loop takes care of all iterations. 2986 Type *CountTy = Count->getType(); 2987 Value *CheckMinIters = Builder.getFalse(); 2988 Value *Step = createStepForVF(Builder, CountTy, VF, UF); 2989 if (!Cost->foldTailByMasking()) 2990 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2991 else if (VF.isScalable()) { 2992 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2993 // an overflow to zero when updating induction variables and so an 2994 // additional overflow check is required before entering the vector loop. 2995 2996 // Get the maximum unsigned value for the type. 2997 Value *MaxUIntTripCount = 2998 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2999 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 3000 3001 // Don't execute the vector loop if (UMax - n) < (VF * UF). 3002 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step); 3003 } 3004 // Create new preheader for vector loop. 3005 LoopVectorPreHeader = 3006 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3007 "vector.ph"); 3008 3009 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3010 DT->getNode(Bypass)->getIDom()) && 3011 "TC check is expected to dominate Bypass"); 3012 3013 // Update dominator for Bypass & LoopExit (if needed). 3014 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3015 if (!Cost->requiresScalarEpilogue(VF)) 3016 // If there is an epilogue which must run, there's no edge from the 3017 // middle block to exit blocks and thus no need to update the immediate 3018 // dominator of the exit blocks. 3019 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3020 3021 ReplaceInstWithInst( 3022 TCCheckBlock->getTerminator(), 3023 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3024 LoopBypassBlocks.push_back(TCCheckBlock); 3025 } 3026 3027 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3028 3029 BasicBlock *const SCEVCheckBlock = 3030 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3031 if (!SCEVCheckBlock) 3032 return nullptr; 3033 3034 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3035 (OptForSizeBasedOnProfile && 3036 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3037 "Cannot SCEV check stride or overflow when optimizing for size"); 3038 3039 3040 // Update dominator only if this is first RT check. 3041 if (LoopBypassBlocks.empty()) { 3042 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3043 if (!Cost->requiresScalarEpilogue(VF)) 3044 // If there is an epilogue which must run, there's no edge from the 3045 // middle block to exit blocks and thus no need to update the immediate 3046 // dominator of the exit blocks. 3047 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3048 } 3049 3050 LoopBypassBlocks.push_back(SCEVCheckBlock); 3051 AddedSafetyChecks = true; 3052 return SCEVCheckBlock; 3053 } 3054 3055 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3056 // VPlan-native path does not do any analysis for runtime checks currently. 3057 if (EnableVPlanNativePath) 3058 return nullptr; 3059 3060 BasicBlock *const MemCheckBlock = 3061 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3062 3063 // Check if we generated code that checks in runtime if arrays overlap. We put 3064 // the checks into a separate block to make the more common case of few 3065 // elements faster. 3066 if (!MemCheckBlock) 3067 return nullptr; 3068 3069 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3070 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3071 "Cannot emit memory checks when optimizing for size, unless forced " 3072 "to vectorize."); 3073 ORE->emit([&]() { 3074 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3075 OrigLoop->getStartLoc(), 3076 OrigLoop->getHeader()) 3077 << "Code-size may be reduced by not forcing " 3078 "vectorization, or by source-code modifications " 3079 "eliminating the need for runtime checks " 3080 "(e.g., adding 'restrict')."; 3081 }); 3082 } 3083 3084 LoopBypassBlocks.push_back(MemCheckBlock); 3085 3086 AddedSafetyChecks = true; 3087 3088 // Only use noalias metadata when using memory checks guaranteeing no overlap 3089 // across all iterations. 3090 if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) { 3091 // We currently don't use LoopVersioning for the actual loop cloning but we 3092 // still use it to add the noalias metadata. 3093 LVer = std::make_unique<LoopVersioning>( 3094 *Legal->getLAI(), 3095 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3096 DT, PSE.getSE()); 3097 LVer->prepareNoAliasMetadata(); 3098 } 3099 return MemCheckBlock; 3100 } 3101 3102 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3103 LoopScalarBody = OrigLoop->getHeader(); 3104 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3105 assert(LoopVectorPreHeader && "Invalid loop structure"); 3106 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3107 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3108 "multiple exit loop without required epilogue?"); 3109 3110 LoopMiddleBlock = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 LI, nullptr, Twine(Prefix) + "middle.block"); 3113 LoopScalarPreHeader = 3114 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3115 nullptr, Twine(Prefix) + "scalar.ph"); 3116 3117 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3118 3119 // Set up the middle block terminator. Two cases: 3120 // 1) If we know that we must execute the scalar epilogue, emit an 3121 // unconditional branch. 3122 // 2) Otherwise, we must have a single unique exit block (due to how we 3123 // implement the multiple exit case). In this case, set up a conditonal 3124 // branch from the middle block to the loop scalar preheader, and the 3125 // exit block. completeLoopSkeleton will update the condition to use an 3126 // iteration check, if required to decide whether to execute the remainder. 3127 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3128 BranchInst::Create(LoopScalarPreHeader) : 3129 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3130 Builder.getTrue()); 3131 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3132 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3133 3134 // Update dominator for loop exit. During skeleton creation, only the vector 3135 // pre-header and the middle block are created. The vector loop is entirely 3136 // created during VPlan exection. 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3142 } 3143 3144 void InnerLoopVectorizer::createInductionResumeValues( 3145 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3146 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3147 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3148 "Inconsistent information about additional bypass."); 3149 3150 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3151 assert(VectorTripCount && "Expected valid arguments"); 3152 // We are going to resume the execution of the scalar loop. 3153 // Go over all of the induction variables that we found and fix the 3154 // PHIs that are left in the scalar version of the loop. 3155 // The starting values of PHI nodes depend on the counter of the last 3156 // iteration in the vectorized loop. 3157 // If we come from a bypass edge then we need to start from the original 3158 // start value. 3159 Instruction *OldInduction = Legal->getPrimaryInduction(); 3160 for (auto &InductionEntry : Legal->getInductionVars()) { 3161 PHINode *OrigPhi = InductionEntry.first; 3162 InductionDescriptor II = InductionEntry.second; 3163 3164 // Create phi nodes to merge from the backedge-taken check block. 3165 PHINode *BCResumeVal = 3166 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3167 LoopScalarPreHeader->getTerminator()); 3168 // Copy original phi DL over to the new one. 3169 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3170 Value *&EndValue = IVEndValues[OrigPhi]; 3171 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3172 if (OrigPhi == OldInduction) { 3173 // We know what the end value is. 3174 EndValue = VectorTripCount; 3175 } else { 3176 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3177 3178 // Fast-math-flags propagate from the original induction instruction. 3179 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3180 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3181 3182 Type *StepType = II.getStep()->getType(); 3183 Instruction::CastOps CastOp = 3184 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3185 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3186 Value *Step = 3187 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3188 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3189 EndValue->setName("ind.end"); 3190 3191 // Compute the end value for the additional bypass (if applicable). 3192 if (AdditionalBypass.first) { 3193 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3194 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3195 StepType, true); 3196 Value *Step = 3197 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3198 VTC = 3199 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3200 EndValueFromAdditionalBypass = 3201 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3202 EndValueFromAdditionalBypass->setName("ind.end"); 3203 } 3204 } 3205 // The new PHI merges the original incoming value, in case of a bypass, 3206 // or the value at the end of the vectorized loop. 3207 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3208 3209 // Fix the scalar body counter (PHI node). 3210 // The old induction's phi node in the scalar body needs the truncated 3211 // value. 3212 for (BasicBlock *BB : LoopBypassBlocks) 3213 BCResumeVal->addIncoming(II.getStartValue(), BB); 3214 3215 if (AdditionalBypass.first) 3216 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3217 EndValueFromAdditionalBypass); 3218 3219 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3220 } 3221 } 3222 3223 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3224 // The trip counts should be cached by now. 3225 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3226 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3227 3228 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3229 3230 // Add a check in the middle block to see if we have completed 3231 // all of the iterations in the first vector loop. Three cases: 3232 // 1) If we require a scalar epilogue, there is no conditional branch as 3233 // we unconditionally branch to the scalar preheader. Do nothing. 3234 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3235 // Thus if tail is to be folded, we know we don't need to run the 3236 // remainder and we can use the previous value for the condition (true). 3237 // 3) Otherwise, construct a runtime check. 3238 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3239 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3240 Count, VectorTripCount, "cmp.n", 3241 LoopMiddleBlock->getTerminator()); 3242 3243 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3244 // of the corresponding compare because they may have ended up with 3245 // different line numbers and we want to avoid awkward line stepping while 3246 // debugging. Eg. if the compare has got a line number inside the loop. 3247 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3248 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3249 } 3250 3251 #ifdef EXPENSIVE_CHECKS 3252 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3253 #endif 3254 3255 return LoopVectorPreHeader; 3256 } 3257 3258 std::pair<BasicBlock *, Value *> 3259 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3260 /* 3261 In this function we generate a new loop. The new loop will contain 3262 the vectorized instructions while the old loop will continue to run the 3263 scalar remainder. 3264 3265 [ ] <-- loop iteration number check. 3266 / | 3267 / v 3268 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3269 | / | 3270 | / v 3271 || [ ] <-- vector pre header. 3272 |/ | 3273 | v 3274 | [ ] \ 3275 | [ ]_| <-- vector loop (created during VPlan execution). 3276 | | 3277 | v 3278 \ -[ ] <--- middle-block. 3279 \/ | 3280 /\ v 3281 | ->[ ] <--- new preheader. 3282 | | 3283 (opt) v <-- edge from middle to exit iff epilogue is not required. 3284 | [ ] \ 3285 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3286 \ | 3287 \ v 3288 >[ ] <-- exit block(s). 3289 ... 3290 */ 3291 3292 // Get the metadata of the original loop before it gets modified. 3293 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3294 3295 // Workaround! Compute the trip count of the original loop and cache it 3296 // before we start modifying the CFG. This code has a systemic problem 3297 // wherein it tries to run analysis over partially constructed IR; this is 3298 // wrong, and not simply for SCEV. The trip count of the original loop 3299 // simply happens to be prone to hitting this in practice. In theory, we 3300 // can hit the same issue for any SCEV, or ValueTracking query done during 3301 // mutation. See PR49900. 3302 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3303 3304 // Create an empty vector loop, and prepare basic blocks for the runtime 3305 // checks. 3306 createVectorLoopSkeleton(""); 3307 3308 // Now, compare the new count to zero. If it is zero skip the vector loop and 3309 // jump to the scalar loop. This check also covers the case where the 3310 // backedge-taken count is uint##_max: adding one to it will overflow leading 3311 // to an incorrect trip count of zero. In this (rare) case we will also jump 3312 // to the scalar loop. 3313 emitIterationCountCheck(LoopScalarPreHeader); 3314 3315 // Generate the code to check any assumptions that we've made for SCEV 3316 // expressions. 3317 emitSCEVChecks(LoopScalarPreHeader); 3318 3319 // Generate the code that checks in runtime if arrays overlap. We put the 3320 // checks into a separate block to make the more common case of few elements 3321 // faster. 3322 emitMemRuntimeChecks(LoopScalarPreHeader); 3323 3324 // Emit phis for the new starting index of the scalar loop. 3325 createInductionResumeValues(); 3326 3327 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3328 } 3329 3330 // Fix up external users of the induction variable. At this point, we are 3331 // in LCSSA form, with all external PHIs that use the IV having one input value, 3332 // coming from the remainder loop. We need those PHIs to also have a correct 3333 // value for the IV when arriving directly from the middle block. 3334 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3335 const InductionDescriptor &II, 3336 Value *VectorTripCount, Value *EndValue, 3337 BasicBlock *MiddleBlock, 3338 BasicBlock *VectorHeader) { 3339 // There are two kinds of external IV usages - those that use the value 3340 // computed in the last iteration (the PHI) and those that use the penultimate 3341 // value (the value that feeds into the phi from the loop latch). 3342 // We allow both, but they, obviously, have different values. 3343 3344 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3345 3346 DenseMap<Value *, Value *> MissingVals; 3347 3348 // An external user of the last iteration's value should see the value that 3349 // the remainder loop uses to initialize its own IV. 3350 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3351 for (User *U : PostInc->users()) { 3352 Instruction *UI = cast<Instruction>(U); 3353 if (!OrigLoop->contains(UI)) { 3354 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3355 MissingVals[UI] = EndValue; 3356 } 3357 } 3358 3359 // An external user of the penultimate value need to see EndValue - Step. 3360 // The simplest way to get this is to recompute it from the constituent SCEVs, 3361 // that is Start + (Step * (CRD - 1)). 3362 for (User *U : OrigPhi->users()) { 3363 auto *UI = cast<Instruction>(U); 3364 if (!OrigLoop->contains(UI)) { 3365 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3366 3367 IRBuilder<> B(MiddleBlock->getTerminator()); 3368 3369 // Fast-math-flags propagate from the original induction instruction. 3370 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3371 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3372 3373 Value *CountMinusOne = B.CreateSub( 3374 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3375 Value *CMO = 3376 !II.getStep()->getType()->isIntegerTy() 3377 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3378 II.getStep()->getType()) 3379 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3380 CMO->setName("cast.cmo"); 3381 3382 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3383 VectorHeader->getTerminator()); 3384 Value *Escape = 3385 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3386 Escape->setName("ind.escape"); 3387 MissingVals[UI] = Escape; 3388 } 3389 } 3390 3391 for (auto &I : MissingVals) { 3392 PHINode *PHI = cast<PHINode>(I.first); 3393 // One corner case we have to handle is two IVs "chasing" each-other, 3394 // that is %IV2 = phi [...], [ %IV1, %latch ] 3395 // In this case, if IV1 has an external use, we need to avoid adding both 3396 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3397 // don't already have an incoming value for the middle block. 3398 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3399 PHI->addIncoming(I.second, MiddleBlock); 3400 } 3401 } 3402 3403 namespace { 3404 3405 struct CSEDenseMapInfo { 3406 static bool canHandle(const Instruction *I) { 3407 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3408 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3409 } 3410 3411 static inline Instruction *getEmptyKey() { 3412 return DenseMapInfo<Instruction *>::getEmptyKey(); 3413 } 3414 3415 static inline Instruction *getTombstoneKey() { 3416 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3417 } 3418 3419 static unsigned getHashValue(const Instruction *I) { 3420 assert(canHandle(I) && "Unknown instruction!"); 3421 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3422 I->value_op_end())); 3423 } 3424 3425 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3426 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3427 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3428 return LHS == RHS; 3429 return LHS->isIdenticalTo(RHS); 3430 } 3431 }; 3432 3433 } // end anonymous namespace 3434 3435 ///Perform cse of induction variable instructions. 3436 static void cse(BasicBlock *BB) { 3437 // Perform simple cse. 3438 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3439 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3440 if (!CSEDenseMapInfo::canHandle(&In)) 3441 continue; 3442 3443 // Check if we can replace this instruction with any of the 3444 // visited instructions. 3445 if (Instruction *V = CSEMap.lookup(&In)) { 3446 In.replaceAllUsesWith(V); 3447 In.eraseFromParent(); 3448 continue; 3449 } 3450 3451 CSEMap[&In] = &In; 3452 } 3453 } 3454 3455 InstructionCost 3456 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3457 bool &NeedToScalarize) const { 3458 Function *F = CI->getCalledFunction(); 3459 Type *ScalarRetTy = CI->getType(); 3460 SmallVector<Type *, 4> Tys, ScalarTys; 3461 for (auto &ArgOp : CI->args()) 3462 ScalarTys.push_back(ArgOp->getType()); 3463 3464 // Estimate cost of scalarized vector call. The source operands are assumed 3465 // to be vectors, so we need to extract individual elements from there, 3466 // execute VF scalar calls, and then gather the result into the vector return 3467 // value. 3468 InstructionCost ScalarCallCost = 3469 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3470 if (VF.isScalar()) 3471 return ScalarCallCost; 3472 3473 // Compute corresponding vector type for return value and arguments. 3474 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3475 for (Type *ScalarTy : ScalarTys) 3476 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3477 3478 // Compute costs of unpacking argument values for the scalar calls and 3479 // packing the return values to a vector. 3480 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3481 3482 InstructionCost Cost = 3483 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3484 3485 // If we can't emit a vector call for this function, then the currently found 3486 // cost is the cost we need to return. 3487 NeedToScalarize = true; 3488 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3489 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3490 3491 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3492 return Cost; 3493 3494 // If the corresponding vector cost is cheaper, return its cost. 3495 InstructionCost VectorCallCost = 3496 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3497 if (VectorCallCost < Cost) { 3498 NeedToScalarize = false; 3499 Cost = VectorCallCost; 3500 } 3501 return Cost; 3502 } 3503 3504 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3505 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3506 return Elt; 3507 return VectorType::get(Elt, VF); 3508 } 3509 3510 InstructionCost 3511 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3512 ElementCount VF) const { 3513 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3514 assert(ID && "Expected intrinsic call!"); 3515 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3516 FastMathFlags FMF; 3517 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3518 FMF = FPMO->getFastMathFlags(); 3519 3520 SmallVector<const Value *> Arguments(CI->args()); 3521 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3522 SmallVector<Type *> ParamTys; 3523 std::transform(FTy->param_begin(), FTy->param_end(), 3524 std::back_inserter(ParamTys), 3525 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3526 3527 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3528 dyn_cast<IntrinsicInst>(CI)); 3529 return TTI.getIntrinsicInstrCost(CostAttrs, 3530 TargetTransformInfo::TCK_RecipThroughput); 3531 } 3532 3533 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3534 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3535 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3536 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3537 } 3538 3539 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3540 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3541 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3542 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3543 } 3544 3545 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3546 // For every instruction `I` in MinBWs, truncate the operands, create a 3547 // truncated version of `I` and reextend its result. InstCombine runs 3548 // later and will remove any ext/trunc pairs. 3549 SmallPtrSet<Value *, 4> Erased; 3550 for (const auto &KV : Cost->getMinimalBitwidths()) { 3551 // If the value wasn't vectorized, we must maintain the original scalar 3552 // type. The absence of the value from State indicates that it 3553 // wasn't vectorized. 3554 // FIXME: Should not rely on getVPValue at this point. 3555 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3556 if (!State.hasAnyVectorValue(Def)) 3557 continue; 3558 for (unsigned Part = 0; Part < UF; ++Part) { 3559 Value *I = State.get(Def, Part); 3560 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3561 continue; 3562 Type *OriginalTy = I->getType(); 3563 Type *ScalarTruncatedTy = 3564 IntegerType::get(OriginalTy->getContext(), KV.second); 3565 auto *TruncatedTy = VectorType::get( 3566 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3567 if (TruncatedTy == OriginalTy) 3568 continue; 3569 3570 IRBuilder<> B(cast<Instruction>(I)); 3571 auto ShrinkOperand = [&](Value *V) -> Value * { 3572 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3573 if (ZI->getSrcTy() == TruncatedTy) 3574 return ZI->getOperand(0); 3575 return B.CreateZExtOrTrunc(V, TruncatedTy); 3576 }; 3577 3578 // The actual instruction modification depends on the instruction type, 3579 // unfortunately. 3580 Value *NewI = nullptr; 3581 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3582 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3583 ShrinkOperand(BO->getOperand(1))); 3584 3585 // Any wrapping introduced by shrinking this operation shouldn't be 3586 // considered undefined behavior. So, we can't unconditionally copy 3587 // arithmetic wrapping flags to NewI. 3588 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3589 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3590 NewI = 3591 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3592 ShrinkOperand(CI->getOperand(1))); 3593 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3594 NewI = B.CreateSelect(SI->getCondition(), 3595 ShrinkOperand(SI->getTrueValue()), 3596 ShrinkOperand(SI->getFalseValue())); 3597 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3598 switch (CI->getOpcode()) { 3599 default: 3600 llvm_unreachable("Unhandled cast!"); 3601 case Instruction::Trunc: 3602 NewI = ShrinkOperand(CI->getOperand(0)); 3603 break; 3604 case Instruction::SExt: 3605 NewI = B.CreateSExtOrTrunc( 3606 CI->getOperand(0), 3607 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3608 break; 3609 case Instruction::ZExt: 3610 NewI = B.CreateZExtOrTrunc( 3611 CI->getOperand(0), 3612 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3613 break; 3614 } 3615 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3616 auto Elements0 = 3617 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3618 auto *O0 = B.CreateZExtOrTrunc( 3619 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3620 auto Elements1 = 3621 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3622 auto *O1 = B.CreateZExtOrTrunc( 3623 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3624 3625 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3626 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3627 // Don't do anything with the operands, just extend the result. 3628 continue; 3629 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3630 auto Elements = 3631 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3632 auto *O0 = B.CreateZExtOrTrunc( 3633 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3634 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3635 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3636 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3637 auto Elements = 3638 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3639 auto *O0 = B.CreateZExtOrTrunc( 3640 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3641 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3642 } else { 3643 // If we don't know what to do, be conservative and don't do anything. 3644 continue; 3645 } 3646 3647 // Lastly, extend the result. 3648 NewI->takeName(cast<Instruction>(I)); 3649 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3650 I->replaceAllUsesWith(Res); 3651 cast<Instruction>(I)->eraseFromParent(); 3652 Erased.insert(I); 3653 State.reset(Def, Res, Part); 3654 } 3655 } 3656 3657 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3658 for (const auto &KV : Cost->getMinimalBitwidths()) { 3659 // If the value wasn't vectorized, we must maintain the original scalar 3660 // type. The absence of the value from State indicates that it 3661 // wasn't vectorized. 3662 // FIXME: Should not rely on getVPValue at this point. 3663 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3664 if (!State.hasAnyVectorValue(Def)) 3665 continue; 3666 for (unsigned Part = 0; Part < UF; ++Part) { 3667 Value *I = State.get(Def, Part); 3668 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3669 if (Inst && Inst->use_empty()) { 3670 Value *NewI = Inst->getOperand(0); 3671 Inst->eraseFromParent(); 3672 State.reset(Def, NewI, Part); 3673 } 3674 } 3675 } 3676 } 3677 3678 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3679 VPlan &Plan) { 3680 // Insert truncates and extends for any truncated instructions as hints to 3681 // InstCombine. 3682 if (VF.isVector()) 3683 truncateToMinimalBitwidths(State); 3684 3685 // Fix widened non-induction PHIs by setting up the PHI operands. 3686 if (OrigPHIsToFix.size()) { 3687 assert(EnableVPlanNativePath && 3688 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3689 fixNonInductionPHIs(State); 3690 } 3691 3692 // At this point every instruction in the original loop is widened to a 3693 // vector form. Now we need to fix the recurrences in the loop. These PHI 3694 // nodes are currently empty because we did not want to introduce cycles. 3695 // This is the second stage of vectorizing recurrences. 3696 fixCrossIterationPHIs(State); 3697 3698 // Forget the original basic block. 3699 PSE.getSE()->forgetLoop(OrigLoop); 3700 3701 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock(); 3702 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3703 // If we inserted an edge from the middle block to the unique exit block, 3704 // update uses outside the loop (phis) to account for the newly inserted 3705 // edge. 3706 if (!Cost->requiresScalarEpilogue(VF)) { 3707 // Fix-up external users of the induction variables. 3708 for (auto &Entry : Legal->getInductionVars()) 3709 fixupIVUsers(Entry.first, Entry.second, 3710 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3711 IVEndValues[Entry.first], LoopMiddleBlock, 3712 VectorLoop->getHeader()); 3713 3714 fixLCSSAPHIs(State); 3715 } 3716 3717 for (Instruction *PI : PredicatedInstructions) 3718 sinkScalarOperands(&*PI); 3719 3720 // Remove redundant induction instructions. 3721 cse(VectorLoop->getHeader()); 3722 3723 // Set/update profile weights for the vector and remainder loops as original 3724 // loop iterations are now distributed among them. Note that original loop 3725 // represented by LoopScalarBody becomes remainder loop after vectorization. 3726 // 3727 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3728 // end up getting slightly roughened result but that should be OK since 3729 // profile is not inherently precise anyway. Note also possible bypass of 3730 // vector code caused by legality checks is ignored, assigning all the weight 3731 // to the vector loop, optimistically. 3732 // 3733 // For scalable vectorization we can't know at compile time how many iterations 3734 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3735 // vscale of '1'. 3736 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3737 LI->getLoopFor(LoopScalarBody), 3738 VF.getKnownMinValue() * UF); 3739 } 3740 3741 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3742 // In order to support recurrences we need to be able to vectorize Phi nodes. 3743 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3744 // stage #2: We now need to fix the recurrences by adding incoming edges to 3745 // the currently empty PHI nodes. At this point every instruction in the 3746 // original loop is widened to a vector form so we can use them to construct 3747 // the incoming edges. 3748 VPBasicBlock *Header = 3749 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3750 for (VPRecipeBase &R : Header->phis()) { 3751 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3752 fixReduction(ReductionPhi, State); 3753 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3754 fixFirstOrderRecurrence(FOR, State); 3755 } 3756 } 3757 3758 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3759 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3760 // This is the second phase of vectorizing first-order recurrences. An 3761 // overview of the transformation is described below. Suppose we have the 3762 // following loop. 3763 // 3764 // for (int i = 0; i < n; ++i) 3765 // b[i] = a[i] - a[i - 1]; 3766 // 3767 // There is a first-order recurrence on "a". For this loop, the shorthand 3768 // scalar IR looks like: 3769 // 3770 // scalar.ph: 3771 // s_init = a[-1] 3772 // br scalar.body 3773 // 3774 // scalar.body: 3775 // i = phi [0, scalar.ph], [i+1, scalar.body] 3776 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3777 // s2 = a[i] 3778 // b[i] = s2 - s1 3779 // br cond, scalar.body, ... 3780 // 3781 // In this example, s1 is a recurrence because it's value depends on the 3782 // previous iteration. In the first phase of vectorization, we created a 3783 // vector phi v1 for s1. We now complete the vectorization and produce the 3784 // shorthand vector IR shown below (for VF = 4, UF = 1). 3785 // 3786 // vector.ph: 3787 // v_init = vector(..., ..., ..., a[-1]) 3788 // br vector.body 3789 // 3790 // vector.body 3791 // i = phi [0, vector.ph], [i+4, vector.body] 3792 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3793 // v2 = a[i, i+1, i+2, i+3]; 3794 // v3 = vector(v1(3), v2(0, 1, 2)) 3795 // b[i, i+1, i+2, i+3] = v2 - v3 3796 // br cond, vector.body, middle.block 3797 // 3798 // middle.block: 3799 // x = v2(3) 3800 // br scalar.ph 3801 // 3802 // scalar.ph: 3803 // s_init = phi [x, middle.block], [a[-1], otherwise] 3804 // br scalar.body 3805 // 3806 // After execution completes the vector loop, we extract the next value of 3807 // the recurrence (x) to use as the initial value in the scalar loop. 3808 3809 // Extract the last vector element in the middle block. This will be the 3810 // initial value for the recurrence when jumping to the scalar loop. 3811 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3812 Value *Incoming = State.get(PreviousDef, UF - 1); 3813 auto *ExtractForScalar = Incoming; 3814 auto *IdxTy = Builder.getInt32Ty(); 3815 if (VF.isVector()) { 3816 auto *One = ConstantInt::get(IdxTy, 1); 3817 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3818 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3819 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3820 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3821 "vector.recur.extract"); 3822 } 3823 // Extract the second last element in the middle block if the 3824 // Phi is used outside the loop. We need to extract the phi itself 3825 // and not the last element (the phi update in the current iteration). This 3826 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3827 // when the scalar loop is not run at all. 3828 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3829 if (VF.isVector()) { 3830 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3831 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3832 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3833 Incoming, Idx, "vector.recur.extract.for.phi"); 3834 } else if (UF > 1) 3835 // When loop is unrolled without vectorizing, initialize 3836 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3837 // of `Incoming`. This is analogous to the vectorized case above: extracting 3838 // the second last element when VF > 1. 3839 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3840 3841 // Fix the initial value of the original recurrence in the scalar loop. 3842 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3843 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3844 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3845 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3846 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3847 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3848 Start->addIncoming(Incoming, BB); 3849 } 3850 3851 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3852 Phi->setName("scalar.recur"); 3853 3854 // Finally, fix users of the recurrence outside the loop. The users will need 3855 // either the last value of the scalar recurrence or the last value of the 3856 // vector recurrence we extracted in the middle block. Since the loop is in 3857 // LCSSA form, we just need to find all the phi nodes for the original scalar 3858 // recurrence in the exit block, and then add an edge for the middle block. 3859 // Note that LCSSA does not imply single entry when the original scalar loop 3860 // had multiple exiting edges (as we always run the last iteration in the 3861 // scalar epilogue); in that case, there is no edge from middle to exit and 3862 // and thus no phis which needed updated. 3863 if (!Cost->requiresScalarEpilogue(VF)) 3864 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3865 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3866 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3867 } 3868 3869 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3870 VPTransformState &State) { 3871 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3872 // Get it's reduction variable descriptor. 3873 assert(Legal->isReductionVariable(OrigPhi) && 3874 "Unable to find the reduction variable"); 3875 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3876 3877 RecurKind RK = RdxDesc.getRecurrenceKind(); 3878 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3879 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3880 setDebugLocFromInst(ReductionStartValue); 3881 3882 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3883 // This is the vector-clone of the value that leaves the loop. 3884 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3885 3886 // Wrap flags are in general invalid after vectorization, clear them. 3887 clearReductionWrapFlags(RdxDesc, State); 3888 3889 // Before each round, move the insertion point right between 3890 // the PHIs and the values we are going to write. 3891 // This allows us to write both PHINodes and the extractelement 3892 // instructions. 3893 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3894 3895 setDebugLocFromInst(LoopExitInst); 3896 3897 Type *PhiTy = OrigPhi->getType(); 3898 3899 VPBasicBlock *LatchVPBB = 3900 PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock(); 3901 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3902 // If tail is folded by masking, the vector value to leave the loop should be 3903 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3904 // instead of the former. For an inloop reduction the reduction will already 3905 // be predicated, and does not need to be handled here. 3906 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3907 for (unsigned Part = 0; Part < UF; ++Part) { 3908 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3909 Value *Sel = nullptr; 3910 for (User *U : VecLoopExitInst->users()) { 3911 if (isa<SelectInst>(U)) { 3912 assert(!Sel && "Reduction exit feeding two selects"); 3913 Sel = U; 3914 } else 3915 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3916 } 3917 assert(Sel && "Reduction exit feeds no select"); 3918 State.reset(LoopExitInstDef, Sel, Part); 3919 3920 // If the target can create a predicated operator for the reduction at no 3921 // extra cost in the loop (for example a predicated vadd), it can be 3922 // cheaper for the select to remain in the loop than be sunk out of it, 3923 // and so use the select value for the phi instead of the old 3924 // LoopExitValue. 3925 if (PreferPredicatedReductionSelect || 3926 TTI->preferPredicatedReductionSelect( 3927 RdxDesc.getOpcode(), PhiTy, 3928 TargetTransformInfo::ReductionFlags())) { 3929 auto *VecRdxPhi = 3930 cast<PHINode>(State.get(PhiR, Part)); 3931 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3932 } 3933 } 3934 } 3935 3936 // If the vector reduction can be performed in a smaller type, we truncate 3937 // then extend the loop exit value to enable InstCombine to evaluate the 3938 // entire expression in the smaller type. 3939 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3940 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3941 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3942 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3943 VectorParts RdxParts(UF); 3944 for (unsigned Part = 0; Part < UF; ++Part) { 3945 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3946 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3947 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3948 : Builder.CreateZExt(Trunc, VecTy); 3949 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3950 if (U != Trunc) { 3951 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3952 RdxParts[Part] = Extnd; 3953 } 3954 } 3955 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3956 for (unsigned Part = 0; Part < UF; ++Part) { 3957 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3958 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3959 } 3960 } 3961 3962 // Reduce all of the unrolled parts into a single vector. 3963 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3964 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3965 3966 // The middle block terminator has already been assigned a DebugLoc here (the 3967 // OrigLoop's single latch terminator). We want the whole middle block to 3968 // appear to execute on this line because: (a) it is all compiler generated, 3969 // (b) these instructions are always executed after evaluating the latch 3970 // conditional branch, and (c) other passes may add new predecessors which 3971 // terminate on this line. This is the easiest way to ensure we don't 3972 // accidentally cause an extra step back into the loop while debugging. 3973 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3974 if (PhiR->isOrdered()) 3975 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3976 else { 3977 // Floating-point operations should have some FMF to enable the reduction. 3978 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3979 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3980 for (unsigned Part = 1; Part < UF; ++Part) { 3981 Value *RdxPart = State.get(LoopExitInstDef, Part); 3982 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3983 ReducedPartRdx = Builder.CreateBinOp( 3984 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3985 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3986 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3987 ReducedPartRdx, RdxPart); 3988 else 3989 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3990 } 3991 } 3992 3993 // Create the reduction after the loop. Note that inloop reductions create the 3994 // target reduction in the loop using a Reduction recipe. 3995 if (VF.isVector() && !PhiR->isInLoop()) { 3996 ReducedPartRdx = 3997 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3998 // If the reduction can be performed in a smaller type, we need to extend 3999 // the reduction to the wider type before we branch to the original loop. 4000 if (PhiTy != RdxDesc.getRecurrenceType()) 4001 ReducedPartRdx = RdxDesc.isSigned() 4002 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4003 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4004 } 4005 4006 PHINode *ResumePhi = 4007 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4008 4009 // Create a phi node that merges control-flow from the backedge-taken check 4010 // block and the middle block. 4011 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4012 LoopScalarPreHeader->getTerminator()); 4013 4014 // If we are fixing reductions in the epilogue loop then we should already 4015 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4016 // we carry over the incoming values correctly. 4017 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4018 if (Incoming == LoopMiddleBlock) 4019 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4020 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4021 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4022 Incoming); 4023 else 4024 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4025 } 4026 4027 // Set the resume value for this reduction 4028 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4029 4030 // If there were stores of the reduction value to a uniform memory address 4031 // inside the loop, create the final store here. 4032 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4033 StoreInst *NewSI = 4034 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4035 propagateMetadata(NewSI, SI); 4036 4037 // If the reduction value is used in other places, 4038 // then let the code below create PHI's for that. 4039 } 4040 4041 // Now, we need to fix the users of the reduction variable 4042 // inside and outside of the scalar remainder loop. 4043 4044 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4045 // in the exit blocks. See comment on analogous loop in 4046 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4047 if (!Cost->requiresScalarEpilogue(VF)) 4048 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4049 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4050 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4051 4052 // Fix the scalar loop reduction variable with the incoming reduction sum 4053 // from the vector body and from the backedge value. 4054 int IncomingEdgeBlockIdx = 4055 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4056 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4057 // Pick the other block. 4058 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4059 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4060 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4061 } 4062 4063 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4064 VPTransformState &State) { 4065 RecurKind RK = RdxDesc.getRecurrenceKind(); 4066 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4067 return; 4068 4069 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4070 assert(LoopExitInstr && "null loop exit instruction"); 4071 SmallVector<Instruction *, 8> Worklist; 4072 SmallPtrSet<Instruction *, 8> Visited; 4073 Worklist.push_back(LoopExitInstr); 4074 Visited.insert(LoopExitInstr); 4075 4076 while (!Worklist.empty()) { 4077 Instruction *Cur = Worklist.pop_back_val(); 4078 if (isa<OverflowingBinaryOperator>(Cur)) 4079 for (unsigned Part = 0; Part < UF; ++Part) { 4080 // FIXME: Should not rely on getVPValue at this point. 4081 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4082 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4083 } 4084 4085 for (User *U : Cur->users()) { 4086 Instruction *UI = cast<Instruction>(U); 4087 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4088 Visited.insert(UI).second) 4089 Worklist.push_back(UI); 4090 } 4091 } 4092 } 4093 4094 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4095 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4096 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4097 // Some phis were already hand updated by the reduction and recurrence 4098 // code above, leave them alone. 4099 continue; 4100 4101 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4102 // Non-instruction incoming values will have only one value. 4103 4104 VPLane Lane = VPLane::getFirstLane(); 4105 if (isa<Instruction>(IncomingValue) && 4106 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4107 VF)) 4108 Lane = VPLane::getLastLaneForVF(VF); 4109 4110 // Can be a loop invariant incoming value or the last scalar value to be 4111 // extracted from the vectorized loop. 4112 // FIXME: Should not rely on getVPValue at this point. 4113 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4114 Value *lastIncomingValue = 4115 OrigLoop->isLoopInvariant(IncomingValue) 4116 ? IncomingValue 4117 : State.get(State.Plan->getVPValue(IncomingValue, true), 4118 VPIteration(UF - 1, Lane)); 4119 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4120 } 4121 } 4122 4123 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4124 // The basic block and loop containing the predicated instruction. 4125 auto *PredBB = PredInst->getParent(); 4126 auto *VectorLoop = LI->getLoopFor(PredBB); 4127 4128 // Initialize a worklist with the operands of the predicated instruction. 4129 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4130 4131 // Holds instructions that we need to analyze again. An instruction may be 4132 // reanalyzed if we don't yet know if we can sink it or not. 4133 SmallVector<Instruction *, 8> InstsToReanalyze; 4134 4135 // Returns true if a given use occurs in the predicated block. Phi nodes use 4136 // their operands in their corresponding predecessor blocks. 4137 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4138 auto *I = cast<Instruction>(U.getUser()); 4139 BasicBlock *BB = I->getParent(); 4140 if (auto *Phi = dyn_cast<PHINode>(I)) 4141 BB = Phi->getIncomingBlock( 4142 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4143 return BB == PredBB; 4144 }; 4145 4146 // Iteratively sink the scalarized operands of the predicated instruction 4147 // into the block we created for it. When an instruction is sunk, it's 4148 // operands are then added to the worklist. The algorithm ends after one pass 4149 // through the worklist doesn't sink a single instruction. 4150 bool Changed; 4151 do { 4152 // Add the instructions that need to be reanalyzed to the worklist, and 4153 // reset the changed indicator. 4154 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4155 InstsToReanalyze.clear(); 4156 Changed = false; 4157 4158 while (!Worklist.empty()) { 4159 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4160 4161 // We can't sink an instruction if it is a phi node, is not in the loop, 4162 // or may have side effects. 4163 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4164 I->mayHaveSideEffects()) 4165 continue; 4166 4167 // If the instruction is already in PredBB, check if we can sink its 4168 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4169 // sinking the scalar instruction I, hence it appears in PredBB; but it 4170 // may have failed to sink I's operands (recursively), which we try 4171 // (again) here. 4172 if (I->getParent() == PredBB) { 4173 Worklist.insert(I->op_begin(), I->op_end()); 4174 continue; 4175 } 4176 4177 // It's legal to sink the instruction if all its uses occur in the 4178 // predicated block. Otherwise, there's nothing to do yet, and we may 4179 // need to reanalyze the instruction. 4180 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4181 InstsToReanalyze.push_back(I); 4182 continue; 4183 } 4184 4185 // Move the instruction to the beginning of the predicated block, and add 4186 // it's operands to the worklist. 4187 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4188 Worklist.insert(I->op_begin(), I->op_end()); 4189 4190 // The sinking may have enabled other instructions to be sunk, so we will 4191 // need to iterate. 4192 Changed = true; 4193 } 4194 } while (Changed); 4195 } 4196 4197 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4198 for (PHINode *OrigPhi : OrigPHIsToFix) { 4199 VPWidenPHIRecipe *VPPhi = 4200 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4201 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4202 // Make sure the builder has a valid insert point. 4203 Builder.SetInsertPoint(NewPhi); 4204 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4205 VPValue *Inc = VPPhi->getIncomingValue(i); 4206 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4207 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4208 } 4209 } 4210 } 4211 4212 bool InnerLoopVectorizer::useOrderedReductions( 4213 const RecurrenceDescriptor &RdxDesc) { 4214 return Cost->useOrderedReductions(RdxDesc); 4215 } 4216 4217 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4218 VPWidenPHIRecipe *PhiR, 4219 VPTransformState &State) { 4220 assert(EnableVPlanNativePath && 4221 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4222 // Currently we enter here in the VPlan-native path for non-induction 4223 // PHIs where all control flow is uniform. We simply widen these PHIs. 4224 // Create a vector phi with no operands - the vector phi operands will be 4225 // set at the end of vector code generation. 4226 Type *VecTy = (State.VF.isScalar()) 4227 ? PN->getType() 4228 : VectorType::get(PN->getType(), State.VF); 4229 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4230 State.set(PhiR, VecPhi, 0); 4231 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4232 } 4233 4234 /// A helper function for checking whether an integer division-related 4235 /// instruction may divide by zero (in which case it must be predicated if 4236 /// executed conditionally in the scalar code). 4237 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4238 /// Non-zero divisors that are non compile-time constants will not be 4239 /// converted into multiplication, so we will still end up scalarizing 4240 /// the division, but can do so w/o predication. 4241 static bool mayDivideByZero(Instruction &I) { 4242 assert((I.getOpcode() == Instruction::UDiv || 4243 I.getOpcode() == Instruction::SDiv || 4244 I.getOpcode() == Instruction::URem || 4245 I.getOpcode() == Instruction::SRem) && 4246 "Unexpected instruction"); 4247 Value *Divisor = I.getOperand(1); 4248 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4249 return !CInt || CInt->isZero(); 4250 } 4251 4252 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4253 VPUser &ArgOperands, 4254 VPTransformState &State) { 4255 assert(!isa<DbgInfoIntrinsic>(I) && 4256 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4257 setDebugLocFromInst(&I); 4258 4259 Module *M = I.getParent()->getParent()->getParent(); 4260 auto *CI = cast<CallInst>(&I); 4261 4262 SmallVector<Type *, 4> Tys; 4263 for (Value *ArgOperand : CI->args()) 4264 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4265 4266 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4267 4268 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4269 // version of the instruction. 4270 // Is it beneficial to perform intrinsic call compared to lib call? 4271 bool NeedToScalarize = false; 4272 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4273 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4274 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4275 assert((UseVectorIntrinsic || !NeedToScalarize) && 4276 "Instruction should be scalarized elsewhere."); 4277 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4278 "Either the intrinsic cost or vector call cost must be valid"); 4279 4280 for (unsigned Part = 0; Part < UF; ++Part) { 4281 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4282 SmallVector<Value *, 4> Args; 4283 for (auto &I : enumerate(ArgOperands.operands())) { 4284 // Some intrinsics have a scalar argument - don't replace it with a 4285 // vector. 4286 Value *Arg; 4287 if (!UseVectorIntrinsic || 4288 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4289 Arg = State.get(I.value(), Part); 4290 else 4291 Arg = State.get(I.value(), VPIteration(0, 0)); 4292 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4293 TysForDecl.push_back(Arg->getType()); 4294 Args.push_back(Arg); 4295 } 4296 4297 Function *VectorF; 4298 if (UseVectorIntrinsic) { 4299 // Use vector version of the intrinsic. 4300 if (VF.isVector()) 4301 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4302 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4303 assert(VectorF && "Can't retrieve vector intrinsic."); 4304 } else { 4305 // Use vector version of the function call. 4306 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4307 #ifndef NDEBUG 4308 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4309 "Can't create vector function."); 4310 #endif 4311 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4312 } 4313 SmallVector<OperandBundleDef, 1> OpBundles; 4314 CI->getOperandBundlesAsDefs(OpBundles); 4315 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4316 4317 if (isa<FPMathOperator>(V)) 4318 V->copyFastMathFlags(CI); 4319 4320 State.set(Def, V, Part); 4321 addMetadata(V, &I); 4322 } 4323 } 4324 4325 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4326 // We should not collect Scalars more than once per VF. Right now, this 4327 // function is called from collectUniformsAndScalars(), which already does 4328 // this check. Collecting Scalars for VF=1 does not make any sense. 4329 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4330 "This function should not be visited twice for the same VF"); 4331 4332 // This avoids any chances of creating a REPLICATE recipe during planning 4333 // since that would result in generation of scalarized code during execution, 4334 // which is not supported for scalable vectors. 4335 if (VF.isScalable()) { 4336 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4337 return; 4338 } 4339 4340 SmallSetVector<Instruction *, 8> Worklist; 4341 4342 // These sets are used to seed the analysis with pointers used by memory 4343 // accesses that will remain scalar. 4344 SmallSetVector<Instruction *, 8> ScalarPtrs; 4345 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4346 auto *Latch = TheLoop->getLoopLatch(); 4347 4348 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4349 // The pointer operands of loads and stores will be scalar as long as the 4350 // memory access is not a gather or scatter operation. The value operand of a 4351 // store will remain scalar if the store is scalarized. 4352 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4353 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4354 assert(WideningDecision != CM_Unknown && 4355 "Widening decision should be ready at this moment"); 4356 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4357 if (Ptr == Store->getValueOperand()) 4358 return WideningDecision == CM_Scalarize; 4359 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4360 "Ptr is neither a value or pointer operand"); 4361 return WideningDecision != CM_GatherScatter; 4362 }; 4363 4364 // A helper that returns true if the given value is a bitcast or 4365 // getelementptr instruction contained in the loop. 4366 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4367 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4368 isa<GetElementPtrInst>(V)) && 4369 !TheLoop->isLoopInvariant(V); 4370 }; 4371 4372 // A helper that evaluates a memory access's use of a pointer. If the use will 4373 // be a scalar use and the pointer is only used by memory accesses, we place 4374 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4375 // PossibleNonScalarPtrs. 4376 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4377 // We only care about bitcast and getelementptr instructions contained in 4378 // the loop. 4379 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4380 return; 4381 4382 // If the pointer has already been identified as scalar (e.g., if it was 4383 // also identified as uniform), there's nothing to do. 4384 auto *I = cast<Instruction>(Ptr); 4385 if (Worklist.count(I)) 4386 return; 4387 4388 // If the use of the pointer will be a scalar use, and all users of the 4389 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4390 // place the pointer in PossibleNonScalarPtrs. 4391 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4392 return isa<LoadInst>(U) || isa<StoreInst>(U); 4393 })) 4394 ScalarPtrs.insert(I); 4395 else 4396 PossibleNonScalarPtrs.insert(I); 4397 }; 4398 4399 // We seed the scalars analysis with three classes of instructions: (1) 4400 // instructions marked uniform-after-vectorization and (2) bitcast, 4401 // getelementptr and (pointer) phi instructions used by memory accesses 4402 // requiring a scalar use. 4403 // 4404 // (1) Add to the worklist all instructions that have been identified as 4405 // uniform-after-vectorization. 4406 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4407 4408 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4409 // memory accesses requiring a scalar use. The pointer operands of loads and 4410 // stores will be scalar as long as the memory accesses is not a gather or 4411 // scatter operation. The value operand of a store will remain scalar if the 4412 // store is scalarized. 4413 for (auto *BB : TheLoop->blocks()) 4414 for (auto &I : *BB) { 4415 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4416 evaluatePtrUse(Load, Load->getPointerOperand()); 4417 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4418 evaluatePtrUse(Store, Store->getPointerOperand()); 4419 evaluatePtrUse(Store, Store->getValueOperand()); 4420 } 4421 } 4422 for (auto *I : ScalarPtrs) 4423 if (!PossibleNonScalarPtrs.count(I)) { 4424 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4425 Worklist.insert(I); 4426 } 4427 4428 // Insert the forced scalars. 4429 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4430 // induction variable when the PHI user is scalarized. 4431 auto ForcedScalar = ForcedScalars.find(VF); 4432 if (ForcedScalar != ForcedScalars.end()) 4433 for (auto *I : ForcedScalar->second) 4434 Worklist.insert(I); 4435 4436 // Expand the worklist by looking through any bitcasts and getelementptr 4437 // instructions we've already identified as scalar. This is similar to the 4438 // expansion step in collectLoopUniforms(); however, here we're only 4439 // expanding to include additional bitcasts and getelementptr instructions. 4440 unsigned Idx = 0; 4441 while (Idx != Worklist.size()) { 4442 Instruction *Dst = Worklist[Idx++]; 4443 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4444 continue; 4445 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4446 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4447 auto *J = cast<Instruction>(U); 4448 return !TheLoop->contains(J) || Worklist.count(J) || 4449 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4450 isScalarUse(J, Src)); 4451 })) { 4452 Worklist.insert(Src); 4453 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4454 } 4455 } 4456 4457 // An induction variable will remain scalar if all users of the induction 4458 // variable and induction variable update remain scalar. 4459 for (auto &Induction : Legal->getInductionVars()) { 4460 auto *Ind = Induction.first; 4461 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4462 4463 // If tail-folding is applied, the primary induction variable will be used 4464 // to feed a vector compare. 4465 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4466 continue; 4467 4468 // Returns true if \p Indvar is a pointer induction that is used directly by 4469 // load/store instruction \p I. 4470 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4471 Instruction *I) { 4472 return Induction.second.getKind() == 4473 InductionDescriptor::IK_PtrInduction && 4474 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4475 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4476 }; 4477 4478 // Determine if all users of the induction variable are scalar after 4479 // vectorization. 4480 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4481 auto *I = cast<Instruction>(U); 4482 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4483 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4484 }); 4485 if (!ScalarInd) 4486 continue; 4487 4488 // Determine if all users of the induction variable update instruction are 4489 // scalar after vectorization. 4490 auto ScalarIndUpdate = 4491 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4492 auto *I = cast<Instruction>(U); 4493 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4494 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4495 }); 4496 if (!ScalarIndUpdate) 4497 continue; 4498 4499 // The induction variable and its update instruction will remain scalar. 4500 Worklist.insert(Ind); 4501 Worklist.insert(IndUpdate); 4502 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4503 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4504 << "\n"); 4505 } 4506 4507 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4508 } 4509 4510 bool LoopVectorizationCostModel::isScalarWithPredication( 4511 Instruction *I, ElementCount VF) const { 4512 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4513 return false; 4514 switch(I->getOpcode()) { 4515 default: 4516 break; 4517 case Instruction::Load: 4518 case Instruction::Store: { 4519 if (!Legal->isMaskRequired(I)) 4520 return false; 4521 auto *Ptr = getLoadStorePointerOperand(I); 4522 auto *Ty = getLoadStoreType(I); 4523 Type *VTy = Ty; 4524 if (VF.isVector()) 4525 VTy = VectorType::get(Ty, VF); 4526 const Align Alignment = getLoadStoreAlignment(I); 4527 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4528 TTI.isLegalMaskedGather(VTy, Alignment)) 4529 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4530 TTI.isLegalMaskedScatter(VTy, Alignment)); 4531 } 4532 case Instruction::UDiv: 4533 case Instruction::SDiv: 4534 case Instruction::SRem: 4535 case Instruction::URem: 4536 return mayDivideByZero(*I); 4537 } 4538 return false; 4539 } 4540 4541 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4542 Instruction *I, ElementCount VF) { 4543 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4544 assert(getWideningDecision(I, VF) == CM_Unknown && 4545 "Decision should not be set yet."); 4546 auto *Group = getInterleavedAccessGroup(I); 4547 assert(Group && "Must have a group."); 4548 4549 // If the instruction's allocated size doesn't equal it's type size, it 4550 // requires padding and will be scalarized. 4551 auto &DL = I->getModule()->getDataLayout(); 4552 auto *ScalarTy = getLoadStoreType(I); 4553 if (hasIrregularType(ScalarTy, DL)) 4554 return false; 4555 4556 // If the group involves a non-integral pointer, we may not be able to 4557 // losslessly cast all values to a common type. 4558 unsigned InterleaveFactor = Group->getFactor(); 4559 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4560 for (unsigned i = 0; i < InterleaveFactor; i++) { 4561 Instruction *Member = Group->getMember(i); 4562 if (!Member) 4563 continue; 4564 auto *MemberTy = getLoadStoreType(Member); 4565 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4566 // Don't coerce non-integral pointers to integers or vice versa. 4567 if (MemberNI != ScalarNI) { 4568 // TODO: Consider adding special nullptr value case here 4569 return false; 4570 } else if (MemberNI && ScalarNI && 4571 ScalarTy->getPointerAddressSpace() != 4572 MemberTy->getPointerAddressSpace()) { 4573 return false; 4574 } 4575 } 4576 4577 // Check if masking is required. 4578 // A Group may need masking for one of two reasons: it resides in a block that 4579 // needs predication, or it was decided to use masking to deal with gaps 4580 // (either a gap at the end of a load-access that may result in a speculative 4581 // load, or any gaps in a store-access). 4582 bool PredicatedAccessRequiresMasking = 4583 blockNeedsPredicationForAnyReason(I->getParent()) && 4584 Legal->isMaskRequired(I); 4585 bool LoadAccessWithGapsRequiresEpilogMasking = 4586 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4587 !isScalarEpilogueAllowed(); 4588 bool StoreAccessWithGapsRequiresMasking = 4589 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4590 if (!PredicatedAccessRequiresMasking && 4591 !LoadAccessWithGapsRequiresEpilogMasking && 4592 !StoreAccessWithGapsRequiresMasking) 4593 return true; 4594 4595 // If masked interleaving is required, we expect that the user/target had 4596 // enabled it, because otherwise it either wouldn't have been created or 4597 // it should have been invalidated by the CostModel. 4598 assert(useMaskedInterleavedAccesses(TTI) && 4599 "Masked interleave-groups for predicated accesses are not enabled."); 4600 4601 if (Group->isReverse()) 4602 return false; 4603 4604 auto *Ty = getLoadStoreType(I); 4605 const Align Alignment = getLoadStoreAlignment(I); 4606 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4607 : TTI.isLegalMaskedStore(Ty, Alignment); 4608 } 4609 4610 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4611 Instruction *I, ElementCount VF) { 4612 // Get and ensure we have a valid memory instruction. 4613 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4614 4615 auto *Ptr = getLoadStorePointerOperand(I); 4616 auto *ScalarTy = getLoadStoreType(I); 4617 4618 // In order to be widened, the pointer should be consecutive, first of all. 4619 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4620 return false; 4621 4622 // If the instruction is a store located in a predicated block, it will be 4623 // scalarized. 4624 if (isScalarWithPredication(I, VF)) 4625 return false; 4626 4627 // If the instruction's allocated size doesn't equal it's type size, it 4628 // requires padding and will be scalarized. 4629 auto &DL = I->getModule()->getDataLayout(); 4630 if (hasIrregularType(ScalarTy, DL)) 4631 return false; 4632 4633 return true; 4634 } 4635 4636 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4637 // We should not collect Uniforms more than once per VF. Right now, 4638 // this function is called from collectUniformsAndScalars(), which 4639 // already does this check. Collecting Uniforms for VF=1 does not make any 4640 // sense. 4641 4642 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4643 "This function should not be visited twice for the same VF"); 4644 4645 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4646 // not analyze again. Uniforms.count(VF) will return 1. 4647 Uniforms[VF].clear(); 4648 4649 // We now know that the loop is vectorizable! 4650 // Collect instructions inside the loop that will remain uniform after 4651 // vectorization. 4652 4653 // Global values, params and instructions outside of current loop are out of 4654 // scope. 4655 auto isOutOfScope = [&](Value *V) -> bool { 4656 Instruction *I = dyn_cast<Instruction>(V); 4657 return (!I || !TheLoop->contains(I)); 4658 }; 4659 4660 // Worklist containing uniform instructions demanding lane 0. 4661 SetVector<Instruction *> Worklist; 4662 BasicBlock *Latch = TheLoop->getLoopLatch(); 4663 4664 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4665 // that are scalar with predication must not be considered uniform after 4666 // vectorization, because that would create an erroneous replicating region 4667 // where only a single instance out of VF should be formed. 4668 // TODO: optimize such seldom cases if found important, see PR40816. 4669 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4670 if (isOutOfScope(I)) { 4671 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4672 << *I << "\n"); 4673 return; 4674 } 4675 if (isScalarWithPredication(I, VF)) { 4676 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4677 << *I << "\n"); 4678 return; 4679 } 4680 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4681 Worklist.insert(I); 4682 }; 4683 4684 // Start with the conditional branch. If the branch condition is an 4685 // instruction contained in the loop that is only used by the branch, it is 4686 // uniform. 4687 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4688 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4689 addToWorklistIfAllowed(Cmp); 4690 4691 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4692 InstWidening WideningDecision = getWideningDecision(I, VF); 4693 assert(WideningDecision != CM_Unknown && 4694 "Widening decision should be ready at this moment"); 4695 4696 // A uniform memory op is itself uniform. We exclude uniform stores 4697 // here as they demand the last lane, not the first one. 4698 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4699 assert(WideningDecision == CM_Scalarize); 4700 return true; 4701 } 4702 4703 return (WideningDecision == CM_Widen || 4704 WideningDecision == CM_Widen_Reverse || 4705 WideningDecision == CM_Interleave); 4706 }; 4707 4708 4709 // Returns true if Ptr is the pointer operand of a memory access instruction 4710 // I, and I is known to not require scalarization. 4711 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4712 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4713 }; 4714 4715 // Holds a list of values which are known to have at least one uniform use. 4716 // Note that there may be other uses which aren't uniform. A "uniform use" 4717 // here is something which only demands lane 0 of the unrolled iterations; 4718 // it does not imply that all lanes produce the same value (e.g. this is not 4719 // the usual meaning of uniform) 4720 SetVector<Value *> HasUniformUse; 4721 4722 // Scan the loop for instructions which are either a) known to have only 4723 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4724 for (auto *BB : TheLoop->blocks()) 4725 for (auto &I : *BB) { 4726 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4727 switch (II->getIntrinsicID()) { 4728 case Intrinsic::sideeffect: 4729 case Intrinsic::experimental_noalias_scope_decl: 4730 case Intrinsic::assume: 4731 case Intrinsic::lifetime_start: 4732 case Intrinsic::lifetime_end: 4733 if (TheLoop->hasLoopInvariantOperands(&I)) 4734 addToWorklistIfAllowed(&I); 4735 break; 4736 default: 4737 break; 4738 } 4739 } 4740 4741 // ExtractValue instructions must be uniform, because the operands are 4742 // known to be loop-invariant. 4743 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4744 assert(isOutOfScope(EVI->getAggregateOperand()) && 4745 "Expected aggregate value to be loop invariant"); 4746 addToWorklistIfAllowed(EVI); 4747 continue; 4748 } 4749 4750 // If there's no pointer operand, there's nothing to do. 4751 auto *Ptr = getLoadStorePointerOperand(&I); 4752 if (!Ptr) 4753 continue; 4754 4755 // A uniform memory op is itself uniform. We exclude uniform stores 4756 // here as they demand the last lane, not the first one. 4757 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4758 addToWorklistIfAllowed(&I); 4759 4760 if (isUniformDecision(&I, VF)) { 4761 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4762 HasUniformUse.insert(Ptr); 4763 } 4764 } 4765 4766 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4767 // demanding) users. Since loops are assumed to be in LCSSA form, this 4768 // disallows uses outside the loop as well. 4769 for (auto *V : HasUniformUse) { 4770 if (isOutOfScope(V)) 4771 continue; 4772 auto *I = cast<Instruction>(V); 4773 auto UsersAreMemAccesses = 4774 llvm::all_of(I->users(), [&](User *U) -> bool { 4775 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4776 }); 4777 if (UsersAreMemAccesses) 4778 addToWorklistIfAllowed(I); 4779 } 4780 4781 // Expand Worklist in topological order: whenever a new instruction 4782 // is added , its users should be already inside Worklist. It ensures 4783 // a uniform instruction will only be used by uniform instructions. 4784 unsigned idx = 0; 4785 while (idx != Worklist.size()) { 4786 Instruction *I = Worklist[idx++]; 4787 4788 for (auto OV : I->operand_values()) { 4789 // isOutOfScope operands cannot be uniform instructions. 4790 if (isOutOfScope(OV)) 4791 continue; 4792 // First order recurrence Phi's should typically be considered 4793 // non-uniform. 4794 auto *OP = dyn_cast<PHINode>(OV); 4795 if (OP && Legal->isFirstOrderRecurrence(OP)) 4796 continue; 4797 // If all the users of the operand are uniform, then add the 4798 // operand into the uniform worklist. 4799 auto *OI = cast<Instruction>(OV); 4800 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4801 auto *J = cast<Instruction>(U); 4802 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4803 })) 4804 addToWorklistIfAllowed(OI); 4805 } 4806 } 4807 4808 // For an instruction to be added into Worklist above, all its users inside 4809 // the loop should also be in Worklist. However, this condition cannot be 4810 // true for phi nodes that form a cyclic dependence. We must process phi 4811 // nodes separately. An induction variable will remain uniform if all users 4812 // of the induction variable and induction variable update remain uniform. 4813 // The code below handles both pointer and non-pointer induction variables. 4814 for (auto &Induction : Legal->getInductionVars()) { 4815 auto *Ind = Induction.first; 4816 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4817 4818 // Determine if all users of the induction variable are uniform after 4819 // vectorization. 4820 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4821 auto *I = cast<Instruction>(U); 4822 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4823 isVectorizedMemAccessUse(I, Ind); 4824 }); 4825 if (!UniformInd) 4826 continue; 4827 4828 // Determine if all users of the induction variable update instruction are 4829 // uniform after vectorization. 4830 auto UniformIndUpdate = 4831 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4832 auto *I = cast<Instruction>(U); 4833 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4834 isVectorizedMemAccessUse(I, IndUpdate); 4835 }); 4836 if (!UniformIndUpdate) 4837 continue; 4838 4839 // The induction variable and its update instruction will remain uniform. 4840 addToWorklistIfAllowed(Ind); 4841 addToWorklistIfAllowed(IndUpdate); 4842 } 4843 4844 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4845 } 4846 4847 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4848 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4849 4850 if (Legal->getRuntimePointerChecking()->Need) { 4851 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4852 "runtime pointer checks needed. Enable vectorization of this " 4853 "loop with '#pragma clang loop vectorize(enable)' when " 4854 "compiling with -Os/-Oz", 4855 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4856 return true; 4857 } 4858 4859 if (!PSE.getPredicate().isAlwaysTrue()) { 4860 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4861 "runtime SCEV checks needed. Enable vectorization of this " 4862 "loop with '#pragma clang loop vectorize(enable)' when " 4863 "compiling with -Os/-Oz", 4864 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4865 return true; 4866 } 4867 4868 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4869 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4870 reportVectorizationFailure("Runtime stride check for small trip count", 4871 "runtime stride == 1 checks needed. Enable vectorization of " 4872 "this loop without such check by compiling with -Os/-Oz", 4873 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4874 return true; 4875 } 4876 4877 return false; 4878 } 4879 4880 ElementCount 4881 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4882 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4883 return ElementCount::getScalable(0); 4884 4885 if (Hints->isScalableVectorizationDisabled()) { 4886 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4887 "ScalableVectorizationDisabled", ORE, TheLoop); 4888 return ElementCount::getScalable(0); 4889 } 4890 4891 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4892 4893 auto MaxScalableVF = ElementCount::getScalable( 4894 std::numeric_limits<ElementCount::ScalarTy>::max()); 4895 4896 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4897 // FIXME: While for scalable vectors this is currently sufficient, this should 4898 // be replaced by a more detailed mechanism that filters out specific VFs, 4899 // instead of invalidating vectorization for a whole set of VFs based on the 4900 // MaxVF. 4901 4902 // Disable scalable vectorization if the loop contains unsupported reductions. 4903 if (!canVectorizeReductions(MaxScalableVF)) { 4904 reportVectorizationInfo( 4905 "Scalable vectorization not supported for the reduction " 4906 "operations found in this loop.", 4907 "ScalableVFUnfeasible", ORE, TheLoop); 4908 return ElementCount::getScalable(0); 4909 } 4910 4911 // Disable scalable vectorization if the loop contains any instructions 4912 // with element types not supported for scalable vectors. 4913 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4914 return !Ty->isVoidTy() && 4915 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4916 })) { 4917 reportVectorizationInfo("Scalable vectorization is not supported " 4918 "for all element types found in this loop.", 4919 "ScalableVFUnfeasible", ORE, TheLoop); 4920 return ElementCount::getScalable(0); 4921 } 4922 4923 if (Legal->isSafeForAnyVectorWidth()) 4924 return MaxScalableVF; 4925 4926 // Limit MaxScalableVF by the maximum safe dependence distance. 4927 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4928 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4929 MaxVScale = 4930 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4931 MaxScalableVF = ElementCount::getScalable( 4932 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4933 if (!MaxScalableVF) 4934 reportVectorizationInfo( 4935 "Max legal vector width too small, scalable vectorization " 4936 "unfeasible.", 4937 "ScalableVFUnfeasible", ORE, TheLoop); 4938 4939 return MaxScalableVF; 4940 } 4941 4942 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4943 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4944 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4945 unsigned SmallestType, WidestType; 4946 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4947 4948 // Get the maximum safe dependence distance in bits computed by LAA. 4949 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4950 // the memory accesses that is most restrictive (involved in the smallest 4951 // dependence distance). 4952 unsigned MaxSafeElements = 4953 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4954 4955 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4956 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4957 4958 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4959 << ".\n"); 4960 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4961 << ".\n"); 4962 4963 // First analyze the UserVF, fall back if the UserVF should be ignored. 4964 if (UserVF) { 4965 auto MaxSafeUserVF = 4966 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4967 4968 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4969 // If `VF=vscale x N` is safe, then so is `VF=N` 4970 if (UserVF.isScalable()) 4971 return FixedScalableVFPair( 4972 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4973 else 4974 return UserVF; 4975 } 4976 4977 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4978 4979 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4980 // is better to ignore the hint and let the compiler choose a suitable VF. 4981 if (!UserVF.isScalable()) { 4982 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4983 << " is unsafe, clamping to max safe VF=" 4984 << MaxSafeFixedVF << ".\n"); 4985 ORE->emit([&]() { 4986 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4987 TheLoop->getStartLoc(), 4988 TheLoop->getHeader()) 4989 << "User-specified vectorization factor " 4990 << ore::NV("UserVectorizationFactor", UserVF) 4991 << " is unsafe, clamping to maximum safe vectorization factor " 4992 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4993 }); 4994 return MaxSafeFixedVF; 4995 } 4996 4997 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4998 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4999 << " is ignored because scalable vectors are not " 5000 "available.\n"); 5001 ORE->emit([&]() { 5002 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5003 TheLoop->getStartLoc(), 5004 TheLoop->getHeader()) 5005 << "User-specified vectorization factor " 5006 << ore::NV("UserVectorizationFactor", UserVF) 5007 << " is ignored because the target does not support scalable " 5008 "vectors. The compiler will pick a more suitable value."; 5009 }); 5010 } else { 5011 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5012 << " is unsafe. Ignoring scalable UserVF.\n"); 5013 ORE->emit([&]() { 5014 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5015 TheLoop->getStartLoc(), 5016 TheLoop->getHeader()) 5017 << "User-specified vectorization factor " 5018 << ore::NV("UserVectorizationFactor", UserVF) 5019 << " is unsafe. Ignoring the hint to let the compiler pick a " 5020 "more suitable value."; 5021 }); 5022 } 5023 } 5024 5025 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5026 << " / " << WidestType << " bits.\n"); 5027 5028 FixedScalableVFPair Result(ElementCount::getFixed(1), 5029 ElementCount::getScalable(0)); 5030 if (auto MaxVF = 5031 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5032 MaxSafeFixedVF, FoldTailByMasking)) 5033 Result.FixedVF = MaxVF; 5034 5035 if (auto MaxVF = 5036 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5037 MaxSafeScalableVF, FoldTailByMasking)) 5038 if (MaxVF.isScalable()) { 5039 Result.ScalableVF = MaxVF; 5040 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5041 << "\n"); 5042 } 5043 5044 return Result; 5045 } 5046 5047 FixedScalableVFPair 5048 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5049 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5050 // TODO: It may by useful to do since it's still likely to be dynamically 5051 // uniform if the target can skip. 5052 reportVectorizationFailure( 5053 "Not inserting runtime ptr check for divergent target", 5054 "runtime pointer checks needed. Not enabled for divergent target", 5055 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5056 return FixedScalableVFPair::getNone(); 5057 } 5058 5059 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5060 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5061 if (TC == 1) { 5062 reportVectorizationFailure("Single iteration (non) loop", 5063 "loop trip count is one, irrelevant for vectorization", 5064 "SingleIterationLoop", ORE, TheLoop); 5065 return FixedScalableVFPair::getNone(); 5066 } 5067 5068 switch (ScalarEpilogueStatus) { 5069 case CM_ScalarEpilogueAllowed: 5070 return computeFeasibleMaxVF(TC, UserVF, false); 5071 case CM_ScalarEpilogueNotAllowedUsePredicate: 5072 LLVM_FALLTHROUGH; 5073 case CM_ScalarEpilogueNotNeededUsePredicate: 5074 LLVM_DEBUG( 5075 dbgs() << "LV: vector predicate hint/switch found.\n" 5076 << "LV: Not allowing scalar epilogue, creating predicated " 5077 << "vector loop.\n"); 5078 break; 5079 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5080 // fallthrough as a special case of OptForSize 5081 case CM_ScalarEpilogueNotAllowedOptSize: 5082 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5083 LLVM_DEBUG( 5084 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5085 else 5086 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5087 << "count.\n"); 5088 5089 // Bail if runtime checks are required, which are not good when optimising 5090 // for size. 5091 if (runtimeChecksRequired()) 5092 return FixedScalableVFPair::getNone(); 5093 5094 break; 5095 } 5096 5097 // The only loops we can vectorize without a scalar epilogue, are loops with 5098 // a bottom-test and a single exiting block. We'd have to handle the fact 5099 // that not every instruction executes on the last iteration. This will 5100 // require a lane mask which varies through the vector loop body. (TODO) 5101 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5102 // If there was a tail-folding hint/switch, but we can't fold the tail by 5103 // masking, fallback to a vectorization with a scalar epilogue. 5104 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5105 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5106 "scalar epilogue instead.\n"); 5107 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5108 return computeFeasibleMaxVF(TC, UserVF, false); 5109 } 5110 return FixedScalableVFPair::getNone(); 5111 } 5112 5113 // Now try the tail folding 5114 5115 // Invalidate interleave groups that require an epilogue if we can't mask 5116 // the interleave-group. 5117 if (!useMaskedInterleavedAccesses(TTI)) { 5118 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5119 "No decisions should have been taken at this point"); 5120 // Note: There is no need to invalidate any cost modeling decisions here, as 5121 // non where taken so far. 5122 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5123 } 5124 5125 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5126 // Avoid tail folding if the trip count is known to be a multiple of any VF 5127 // we chose. 5128 // FIXME: The condition below pessimises the case for fixed-width vectors, 5129 // when scalable VFs are also candidates for vectorization. 5130 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5131 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5132 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5133 "MaxFixedVF must be a power of 2"); 5134 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5135 : MaxFixedVF.getFixedValue(); 5136 ScalarEvolution *SE = PSE.getSE(); 5137 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5138 const SCEV *ExitCount = SE->getAddExpr( 5139 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5140 const SCEV *Rem = SE->getURemExpr( 5141 SE->applyLoopGuards(ExitCount, TheLoop), 5142 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5143 if (Rem->isZero()) { 5144 // Accept MaxFixedVF if we do not have a tail. 5145 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5146 return MaxFactors; 5147 } 5148 } 5149 5150 // If we don't know the precise trip count, or if the trip count that we 5151 // found modulo the vectorization factor is not zero, try to fold the tail 5152 // by masking. 5153 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5154 if (Legal->prepareToFoldTailByMasking()) { 5155 FoldTailByMasking = true; 5156 return MaxFactors; 5157 } 5158 5159 // If there was a tail-folding hint/switch, but we can't fold the tail by 5160 // masking, fallback to a vectorization with a scalar epilogue. 5161 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5162 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5163 "scalar epilogue instead.\n"); 5164 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5165 return MaxFactors; 5166 } 5167 5168 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5169 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5170 return FixedScalableVFPair::getNone(); 5171 } 5172 5173 if (TC == 0) { 5174 reportVectorizationFailure( 5175 "Unable to calculate the loop count due to complex control flow", 5176 "unable to calculate the loop count due to complex control flow", 5177 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5178 return FixedScalableVFPair::getNone(); 5179 } 5180 5181 reportVectorizationFailure( 5182 "Cannot optimize for size and vectorize at the same time.", 5183 "cannot optimize for size and vectorize at the same time. " 5184 "Enable vectorization of this loop with '#pragma clang loop " 5185 "vectorize(enable)' when compiling with -Os/-Oz", 5186 "NoTailLoopWithOptForSize", ORE, TheLoop); 5187 return FixedScalableVFPair::getNone(); 5188 } 5189 5190 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5191 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5192 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5193 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5194 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5195 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5196 : TargetTransformInfo::RGK_FixedWidthVector); 5197 5198 // Convenience function to return the minimum of two ElementCounts. 5199 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5200 assert((LHS.isScalable() == RHS.isScalable()) && 5201 "Scalable flags must match"); 5202 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5203 }; 5204 5205 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5206 // Note that both WidestRegister and WidestType may not be a powers of 2. 5207 auto MaxVectorElementCount = ElementCount::get( 5208 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5209 ComputeScalableMaxVF); 5210 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5211 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5212 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5213 5214 if (!MaxVectorElementCount) { 5215 LLVM_DEBUG(dbgs() << "LV: The target has no " 5216 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5217 << " vector registers.\n"); 5218 return ElementCount::getFixed(1); 5219 } 5220 5221 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5222 if (ConstTripCount && 5223 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5224 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5225 // If loop trip count (TC) is known at compile time there is no point in 5226 // choosing VF greater than TC (as done in the loop below). Select maximum 5227 // power of two which doesn't exceed TC. 5228 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5229 // when the TC is less than or equal to the known number of lanes. 5230 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5231 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5232 "exceeding the constant trip count: " 5233 << ClampedConstTripCount << "\n"); 5234 return ElementCount::getFixed(ClampedConstTripCount); 5235 } 5236 5237 ElementCount MaxVF = MaxVectorElementCount; 5238 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5239 TTI.shouldMaximizeVectorBandwidth())) { 5240 auto MaxVectorElementCountMaxBW = ElementCount::get( 5241 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5242 ComputeScalableMaxVF); 5243 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5244 5245 // Collect all viable vectorization factors larger than the default MaxVF 5246 // (i.e. MaxVectorElementCount). 5247 SmallVector<ElementCount, 8> VFs; 5248 for (ElementCount VS = MaxVectorElementCount * 2; 5249 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5250 VFs.push_back(VS); 5251 5252 // For each VF calculate its register usage. 5253 auto RUs = calculateRegisterUsage(VFs); 5254 5255 // Select the largest VF which doesn't require more registers than existing 5256 // ones. 5257 for (int i = RUs.size() - 1; i >= 0; --i) { 5258 bool Selected = true; 5259 for (auto &pair : RUs[i].MaxLocalUsers) { 5260 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5261 if (pair.second > TargetNumRegisters) 5262 Selected = false; 5263 } 5264 if (Selected) { 5265 MaxVF = VFs[i]; 5266 break; 5267 } 5268 } 5269 if (ElementCount MinVF = 5270 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5271 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5272 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5273 << ") with target's minimum: " << MinVF << '\n'); 5274 MaxVF = MinVF; 5275 } 5276 } 5277 5278 // Invalidate any widening decisions we might have made, in case the loop 5279 // requires prediction (decided later), but we have already made some 5280 // load/store widening decisions. 5281 invalidateCostModelingDecisions(); 5282 } 5283 return MaxVF; 5284 } 5285 5286 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5287 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5288 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5289 auto Min = Attr.getVScaleRangeMin(); 5290 auto Max = Attr.getVScaleRangeMax(); 5291 if (Max && Min == Max) 5292 return Max; 5293 } 5294 5295 return TTI.getVScaleForTuning(); 5296 } 5297 5298 bool LoopVectorizationCostModel::isMoreProfitable( 5299 const VectorizationFactor &A, const VectorizationFactor &B) const { 5300 InstructionCost CostA = A.Cost; 5301 InstructionCost CostB = B.Cost; 5302 5303 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5304 5305 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5306 MaxTripCount) { 5307 // If we are folding the tail and the trip count is a known (possibly small) 5308 // constant, the trip count will be rounded up to an integer number of 5309 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5310 // which we compare directly. When not folding the tail, the total cost will 5311 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5312 // approximated with the per-lane cost below instead of using the tripcount 5313 // as here. 5314 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5315 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5316 return RTCostA < RTCostB; 5317 } 5318 5319 // Improve estimate for the vector width if it is scalable. 5320 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5321 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5322 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5323 if (A.Width.isScalable()) 5324 EstimatedWidthA *= VScale.getValue(); 5325 if (B.Width.isScalable()) 5326 EstimatedWidthB *= VScale.getValue(); 5327 } 5328 5329 // Assume vscale may be larger than 1 (or the value being tuned for), 5330 // so that scalable vectorization is slightly favorable over fixed-width 5331 // vectorization. 5332 if (A.Width.isScalable() && !B.Width.isScalable()) 5333 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5334 5335 // To avoid the need for FP division: 5336 // (CostA / A.Width) < (CostB / B.Width) 5337 // <=> (CostA * B.Width) < (CostB * A.Width) 5338 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5339 } 5340 5341 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5342 const ElementCountSet &VFCandidates) { 5343 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5344 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5345 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5346 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5347 "Expected Scalar VF to be a candidate"); 5348 5349 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5350 VectorizationFactor ChosenFactor = ScalarCost; 5351 5352 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5353 if (ForceVectorization && VFCandidates.size() > 1) { 5354 // Ignore scalar width, because the user explicitly wants vectorization. 5355 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5356 // evaluation. 5357 ChosenFactor.Cost = InstructionCost::getMax(); 5358 } 5359 5360 SmallVector<InstructionVFPair> InvalidCosts; 5361 for (const auto &i : VFCandidates) { 5362 // The cost for scalar VF=1 is already calculated, so ignore it. 5363 if (i.isScalar()) 5364 continue; 5365 5366 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5367 VectorizationFactor Candidate(i, C.first); 5368 5369 #ifndef NDEBUG 5370 unsigned AssumedMinimumVscale = 1; 5371 if (Optional<unsigned> VScale = getVScaleForTuning()) 5372 AssumedMinimumVscale = VScale.getValue(); 5373 unsigned Width = 5374 Candidate.Width.isScalable() 5375 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5376 : Candidate.Width.getFixedValue(); 5377 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5378 << " costs: " << (Candidate.Cost / Width)); 5379 if (i.isScalable()) 5380 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5381 << AssumedMinimumVscale << ")"); 5382 LLVM_DEBUG(dbgs() << ".\n"); 5383 #endif 5384 5385 if (!C.second && !ForceVectorization) { 5386 LLVM_DEBUG( 5387 dbgs() << "LV: Not considering vector loop of width " << i 5388 << " because it will not generate any vector instructions.\n"); 5389 continue; 5390 } 5391 5392 // If profitable add it to ProfitableVF list. 5393 if (isMoreProfitable(Candidate, ScalarCost)) 5394 ProfitableVFs.push_back(Candidate); 5395 5396 if (isMoreProfitable(Candidate, ChosenFactor)) 5397 ChosenFactor = Candidate; 5398 } 5399 5400 // Emit a report of VFs with invalid costs in the loop. 5401 if (!InvalidCosts.empty()) { 5402 // Group the remarks per instruction, keeping the instruction order from 5403 // InvalidCosts. 5404 std::map<Instruction *, unsigned> Numbering; 5405 unsigned I = 0; 5406 for (auto &Pair : InvalidCosts) 5407 if (!Numbering.count(Pair.first)) 5408 Numbering[Pair.first] = I++; 5409 5410 // Sort the list, first on instruction(number) then on VF. 5411 llvm::sort(InvalidCosts, 5412 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5413 if (Numbering[A.first] != Numbering[B.first]) 5414 return Numbering[A.first] < Numbering[B.first]; 5415 ElementCountComparator ECC; 5416 return ECC(A.second, B.second); 5417 }); 5418 5419 // For a list of ordered instruction-vf pairs: 5420 // [(load, vf1), (load, vf2), (store, vf1)] 5421 // Group the instructions together to emit separate remarks for: 5422 // load (vf1, vf2) 5423 // store (vf1) 5424 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5425 auto Subset = ArrayRef<InstructionVFPair>(); 5426 do { 5427 if (Subset.empty()) 5428 Subset = Tail.take_front(1); 5429 5430 Instruction *I = Subset.front().first; 5431 5432 // If the next instruction is different, or if there are no other pairs, 5433 // emit a remark for the collated subset. e.g. 5434 // [(load, vf1), (load, vf2))] 5435 // to emit: 5436 // remark: invalid costs for 'load' at VF=(vf, vf2) 5437 if (Subset == Tail || Tail[Subset.size()].first != I) { 5438 std::string OutString; 5439 raw_string_ostream OS(OutString); 5440 assert(!Subset.empty() && "Unexpected empty range"); 5441 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5442 for (auto &Pair : Subset) 5443 OS << (Pair.second == Subset.front().second ? "" : ", ") 5444 << Pair.second; 5445 OS << "):"; 5446 if (auto *CI = dyn_cast<CallInst>(I)) 5447 OS << " call to " << CI->getCalledFunction()->getName(); 5448 else 5449 OS << " " << I->getOpcodeName(); 5450 OS.flush(); 5451 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5452 Tail = Tail.drop_front(Subset.size()); 5453 Subset = {}; 5454 } else 5455 // Grow the subset by one element 5456 Subset = Tail.take_front(Subset.size() + 1); 5457 } while (!Tail.empty()); 5458 } 5459 5460 if (!EnableCondStoresVectorization && NumPredStores) { 5461 reportVectorizationFailure("There are conditional stores.", 5462 "store that is conditionally executed prevents vectorization", 5463 "ConditionalStore", ORE, TheLoop); 5464 ChosenFactor = ScalarCost; 5465 } 5466 5467 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5468 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5469 << "LV: Vectorization seems to be not beneficial, " 5470 << "but was forced by a user.\n"); 5471 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5472 return ChosenFactor; 5473 } 5474 5475 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5476 const Loop &L, ElementCount VF) const { 5477 // Cross iteration phis such as reductions need special handling and are 5478 // currently unsupported. 5479 if (any_of(L.getHeader()->phis(), 5480 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5481 return false; 5482 5483 // Phis with uses outside of the loop require special handling and are 5484 // currently unsupported. 5485 for (auto &Entry : Legal->getInductionVars()) { 5486 // Look for uses of the value of the induction at the last iteration. 5487 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5488 for (User *U : PostInc->users()) 5489 if (!L.contains(cast<Instruction>(U))) 5490 return false; 5491 // Look for uses of penultimate value of the induction. 5492 for (User *U : Entry.first->users()) 5493 if (!L.contains(cast<Instruction>(U))) 5494 return false; 5495 } 5496 5497 // Induction variables that are widened require special handling that is 5498 // currently not supported. 5499 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5500 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5501 this->isProfitableToScalarize(Entry.first, VF)); 5502 })) 5503 return false; 5504 5505 // Epilogue vectorization code has not been auditted to ensure it handles 5506 // non-latch exits properly. It may be fine, but it needs auditted and 5507 // tested. 5508 if (L.getExitingBlock() != L.getLoopLatch()) 5509 return false; 5510 5511 return true; 5512 } 5513 5514 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5515 const ElementCount VF) const { 5516 // FIXME: We need a much better cost-model to take different parameters such 5517 // as register pressure, code size increase and cost of extra branches into 5518 // account. For now we apply a very crude heuristic and only consider loops 5519 // with vectorization factors larger than a certain value. 5520 // We also consider epilogue vectorization unprofitable for targets that don't 5521 // consider interleaving beneficial (eg. MVE). 5522 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5523 return false; 5524 // FIXME: We should consider changing the threshold for scalable 5525 // vectors to take VScaleForTuning into account. 5526 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5527 return true; 5528 return false; 5529 } 5530 5531 VectorizationFactor 5532 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5533 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5534 VectorizationFactor Result = VectorizationFactor::Disabled(); 5535 if (!EnableEpilogueVectorization) { 5536 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5537 return Result; 5538 } 5539 5540 if (!isScalarEpilogueAllowed()) { 5541 LLVM_DEBUG( 5542 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5543 "allowed.\n";); 5544 return Result; 5545 } 5546 5547 // Not really a cost consideration, but check for unsupported cases here to 5548 // simplify the logic. 5549 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5550 LLVM_DEBUG( 5551 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5552 "not a supported candidate.\n";); 5553 return Result; 5554 } 5555 5556 if (EpilogueVectorizationForceVF > 1) { 5557 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5558 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5559 if (LVP.hasPlanWithVF(ForcedEC)) 5560 return {ForcedEC, 0}; 5561 else { 5562 LLVM_DEBUG( 5563 dbgs() 5564 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5565 return Result; 5566 } 5567 } 5568 5569 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5570 TheLoop->getHeader()->getParent()->hasMinSize()) { 5571 LLVM_DEBUG( 5572 dbgs() 5573 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5574 return Result; 5575 } 5576 5577 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5578 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5579 "this loop\n"); 5580 return Result; 5581 } 5582 5583 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5584 // the main loop handles 8 lanes per iteration. We could still benefit from 5585 // vectorizing the epilogue loop with VF=4. 5586 ElementCount EstimatedRuntimeVF = MainLoopVF; 5587 if (MainLoopVF.isScalable()) { 5588 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5589 if (Optional<unsigned> VScale = getVScaleForTuning()) 5590 EstimatedRuntimeVF *= VScale.getValue(); 5591 } 5592 5593 for (auto &NextVF : ProfitableVFs) 5594 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5595 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5596 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5597 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5598 LVP.hasPlanWithVF(NextVF.Width)) 5599 Result = NextVF; 5600 5601 if (Result != VectorizationFactor::Disabled()) 5602 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5603 << Result.Width << "\n";); 5604 return Result; 5605 } 5606 5607 std::pair<unsigned, unsigned> 5608 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5609 unsigned MinWidth = -1U; 5610 unsigned MaxWidth = 8; 5611 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5612 // For in-loop reductions, no element types are added to ElementTypesInLoop 5613 // if there are no loads/stores in the loop. In this case, check through the 5614 // reduction variables to determine the maximum width. 5615 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5616 // Reset MaxWidth so that we can find the smallest type used by recurrences 5617 // in the loop. 5618 MaxWidth = -1U; 5619 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5620 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5621 // When finding the min width used by the recurrence we need to account 5622 // for casts on the input operands of the recurrence. 5623 MaxWidth = std::min<unsigned>( 5624 MaxWidth, std::min<unsigned>( 5625 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5626 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5627 } 5628 } else { 5629 for (Type *T : ElementTypesInLoop) { 5630 MinWidth = std::min<unsigned>( 5631 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5632 MaxWidth = std::max<unsigned>( 5633 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5634 } 5635 } 5636 return {MinWidth, MaxWidth}; 5637 } 5638 5639 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5640 ElementTypesInLoop.clear(); 5641 // For each block. 5642 for (BasicBlock *BB : TheLoop->blocks()) { 5643 // For each instruction in the loop. 5644 for (Instruction &I : BB->instructionsWithoutDebug()) { 5645 Type *T = I.getType(); 5646 5647 // Skip ignored values. 5648 if (ValuesToIgnore.count(&I)) 5649 continue; 5650 5651 // Only examine Loads, Stores and PHINodes. 5652 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5653 continue; 5654 5655 // Examine PHI nodes that are reduction variables. Update the type to 5656 // account for the recurrence type. 5657 if (auto *PN = dyn_cast<PHINode>(&I)) { 5658 if (!Legal->isReductionVariable(PN)) 5659 continue; 5660 const RecurrenceDescriptor &RdxDesc = 5661 Legal->getReductionVars().find(PN)->second; 5662 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5663 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5664 RdxDesc.getRecurrenceType(), 5665 TargetTransformInfo::ReductionFlags())) 5666 continue; 5667 T = RdxDesc.getRecurrenceType(); 5668 } 5669 5670 // Examine the stored values. 5671 if (auto *ST = dyn_cast<StoreInst>(&I)) 5672 T = ST->getValueOperand()->getType(); 5673 5674 assert(T->isSized() && 5675 "Expected the load/store/recurrence type to be sized"); 5676 5677 ElementTypesInLoop.insert(T); 5678 } 5679 } 5680 } 5681 5682 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5683 unsigned LoopCost) { 5684 // -- The interleave heuristics -- 5685 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5686 // There are many micro-architectural considerations that we can't predict 5687 // at this level. For example, frontend pressure (on decode or fetch) due to 5688 // code size, or the number and capabilities of the execution ports. 5689 // 5690 // We use the following heuristics to select the interleave count: 5691 // 1. If the code has reductions, then we interleave to break the cross 5692 // iteration dependency. 5693 // 2. If the loop is really small, then we interleave to reduce the loop 5694 // overhead. 5695 // 3. We don't interleave if we think that we will spill registers to memory 5696 // due to the increased register pressure. 5697 5698 if (!isScalarEpilogueAllowed()) 5699 return 1; 5700 5701 // We used the distance for the interleave count. 5702 if (Legal->getMaxSafeDepDistBytes() != -1U) 5703 return 1; 5704 5705 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5706 const bool HasReductions = !Legal->getReductionVars().empty(); 5707 // Do not interleave loops with a relatively small known or estimated trip 5708 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5709 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5710 // because with the above conditions interleaving can expose ILP and break 5711 // cross iteration dependences for reductions. 5712 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5713 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5714 return 1; 5715 5716 // If we did not calculate the cost for VF (because the user selected the VF) 5717 // then we calculate the cost of VF here. 5718 if (LoopCost == 0) { 5719 InstructionCost C = expectedCost(VF).first; 5720 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5721 LoopCost = *C.getValue(); 5722 5723 // Loop body is free and there is no need for interleaving. 5724 if (LoopCost == 0) 5725 return 1; 5726 } 5727 5728 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5729 // We divide by these constants so assume that we have at least one 5730 // instruction that uses at least one register. 5731 for (auto& pair : R.MaxLocalUsers) { 5732 pair.second = std::max(pair.second, 1U); 5733 } 5734 5735 // We calculate the interleave count using the following formula. 5736 // Subtract the number of loop invariants from the number of available 5737 // registers. These registers are used by all of the interleaved instances. 5738 // Next, divide the remaining registers by the number of registers that is 5739 // required by the loop, in order to estimate how many parallel instances 5740 // fit without causing spills. All of this is rounded down if necessary to be 5741 // a power of two. We want power of two interleave count to simplify any 5742 // addressing operations or alignment considerations. 5743 // We also want power of two interleave counts to ensure that the induction 5744 // variable of the vector loop wraps to zero, when tail is folded by masking; 5745 // this currently happens when OptForSize, in which case IC is set to 1 above. 5746 unsigned IC = UINT_MAX; 5747 5748 for (auto& pair : R.MaxLocalUsers) { 5749 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5750 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5751 << " registers of " 5752 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5753 if (VF.isScalar()) { 5754 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5755 TargetNumRegisters = ForceTargetNumScalarRegs; 5756 } else { 5757 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5758 TargetNumRegisters = ForceTargetNumVectorRegs; 5759 } 5760 unsigned MaxLocalUsers = pair.second; 5761 unsigned LoopInvariantRegs = 0; 5762 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5763 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5764 5765 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5766 // Don't count the induction variable as interleaved. 5767 if (EnableIndVarRegisterHeur) { 5768 TmpIC = 5769 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5770 std::max(1U, (MaxLocalUsers - 1))); 5771 } 5772 5773 IC = std::min(IC, TmpIC); 5774 } 5775 5776 // Clamp the interleave ranges to reasonable counts. 5777 unsigned MaxInterleaveCount = 5778 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5779 5780 // Check if the user has overridden the max. 5781 if (VF.isScalar()) { 5782 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5783 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5784 } else { 5785 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5786 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5787 } 5788 5789 // If trip count is known or estimated compile time constant, limit the 5790 // interleave count to be less than the trip count divided by VF, provided it 5791 // is at least 1. 5792 // 5793 // For scalable vectors we can't know if interleaving is beneficial. It may 5794 // not be beneficial for small loops if none of the lanes in the second vector 5795 // iterations is enabled. However, for larger loops, there is likely to be a 5796 // similar benefit as for fixed-width vectors. For now, we choose to leave 5797 // the InterleaveCount as if vscale is '1', although if some information about 5798 // the vector is known (e.g. min vector size), we can make a better decision. 5799 if (BestKnownTC) { 5800 MaxInterleaveCount = 5801 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5802 // Make sure MaxInterleaveCount is greater than 0. 5803 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5804 } 5805 5806 assert(MaxInterleaveCount > 0 && 5807 "Maximum interleave count must be greater than 0"); 5808 5809 // Clamp the calculated IC to be between the 1 and the max interleave count 5810 // that the target and trip count allows. 5811 if (IC > MaxInterleaveCount) 5812 IC = MaxInterleaveCount; 5813 else 5814 // Make sure IC is greater than 0. 5815 IC = std::max(1u, IC); 5816 5817 assert(IC > 0 && "Interleave count must be greater than 0."); 5818 5819 // Interleave if we vectorized this loop and there is a reduction that could 5820 // benefit from interleaving. 5821 if (VF.isVector() && HasReductions) { 5822 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5823 return IC; 5824 } 5825 5826 // For any scalar loop that either requires runtime checks or predication we 5827 // are better off leaving this to the unroller. Note that if we've already 5828 // vectorized the loop we will have done the runtime check and so interleaving 5829 // won't require further checks. 5830 bool ScalarInterleavingRequiresPredication = 5831 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5832 return Legal->blockNeedsPredication(BB); 5833 })); 5834 bool ScalarInterleavingRequiresRuntimePointerCheck = 5835 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5836 5837 // We want to interleave small loops in order to reduce the loop overhead and 5838 // potentially expose ILP opportunities. 5839 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5840 << "LV: IC is " << IC << '\n' 5841 << "LV: VF is " << VF << '\n'); 5842 const bool AggressivelyInterleaveReductions = 5843 TTI.enableAggressiveInterleaving(HasReductions); 5844 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5845 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5846 // We assume that the cost overhead is 1 and we use the cost model 5847 // to estimate the cost of the loop and interleave until the cost of the 5848 // loop overhead is about 5% of the cost of the loop. 5849 unsigned SmallIC = 5850 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5851 5852 // Interleave until store/load ports (estimated by max interleave count) are 5853 // saturated. 5854 unsigned NumStores = Legal->getNumStores(); 5855 unsigned NumLoads = Legal->getNumLoads(); 5856 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5857 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5858 5859 // There is little point in interleaving for reductions containing selects 5860 // and compares when VF=1 since it may just create more overhead than it's 5861 // worth for loops with small trip counts. This is because we still have to 5862 // do the final reduction after the loop. 5863 bool HasSelectCmpReductions = 5864 HasReductions && 5865 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5866 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5867 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5868 RdxDesc.getRecurrenceKind()); 5869 }); 5870 if (HasSelectCmpReductions) { 5871 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5872 return 1; 5873 } 5874 5875 // If we have a scalar reduction (vector reductions are already dealt with 5876 // by this point), we can increase the critical path length if the loop 5877 // we're interleaving is inside another loop. For tree-wise reductions 5878 // set the limit to 2, and for ordered reductions it's best to disable 5879 // interleaving entirely. 5880 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5881 bool HasOrderedReductions = 5882 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5883 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5884 return RdxDesc.isOrdered(); 5885 }); 5886 if (HasOrderedReductions) { 5887 LLVM_DEBUG( 5888 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5889 return 1; 5890 } 5891 5892 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5893 SmallIC = std::min(SmallIC, F); 5894 StoresIC = std::min(StoresIC, F); 5895 LoadsIC = std::min(LoadsIC, F); 5896 } 5897 5898 if (EnableLoadStoreRuntimeInterleave && 5899 std::max(StoresIC, LoadsIC) > SmallIC) { 5900 LLVM_DEBUG( 5901 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5902 return std::max(StoresIC, LoadsIC); 5903 } 5904 5905 // If there are scalar reductions and TTI has enabled aggressive 5906 // interleaving for reductions, we will interleave to expose ILP. 5907 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5908 AggressivelyInterleaveReductions) { 5909 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5910 // Interleave no less than SmallIC but not as aggressive as the normal IC 5911 // to satisfy the rare situation when resources are too limited. 5912 return std::max(IC / 2, SmallIC); 5913 } else { 5914 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5915 return SmallIC; 5916 } 5917 } 5918 5919 // Interleave if this is a large loop (small loops are already dealt with by 5920 // this point) that could benefit from interleaving. 5921 if (AggressivelyInterleaveReductions) { 5922 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5923 return IC; 5924 } 5925 5926 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5927 return 1; 5928 } 5929 5930 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5931 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5932 // This function calculates the register usage by measuring the highest number 5933 // of values that are alive at a single location. Obviously, this is a very 5934 // rough estimation. We scan the loop in a topological order in order and 5935 // assign a number to each instruction. We use RPO to ensure that defs are 5936 // met before their users. We assume that each instruction that has in-loop 5937 // users starts an interval. We record every time that an in-loop value is 5938 // used, so we have a list of the first and last occurrences of each 5939 // instruction. Next, we transpose this data structure into a multi map that 5940 // holds the list of intervals that *end* at a specific location. This multi 5941 // map allows us to perform a linear search. We scan the instructions linearly 5942 // and record each time that a new interval starts, by placing it in a set. 5943 // If we find this value in the multi-map then we remove it from the set. 5944 // The max register usage is the maximum size of the set. 5945 // We also search for instructions that are defined outside the loop, but are 5946 // used inside the loop. We need this number separately from the max-interval 5947 // usage number because when we unroll, loop-invariant values do not take 5948 // more register. 5949 LoopBlocksDFS DFS(TheLoop); 5950 DFS.perform(LI); 5951 5952 RegisterUsage RU; 5953 5954 // Each 'key' in the map opens a new interval. The values 5955 // of the map are the index of the 'last seen' usage of the 5956 // instruction that is the key. 5957 using IntervalMap = DenseMap<Instruction *, unsigned>; 5958 5959 // Maps instruction to its index. 5960 SmallVector<Instruction *, 64> IdxToInstr; 5961 // Marks the end of each interval. 5962 IntervalMap EndPoint; 5963 // Saves the list of instruction indices that are used in the loop. 5964 SmallPtrSet<Instruction *, 8> Ends; 5965 // Saves the list of values that are used in the loop but are 5966 // defined outside the loop, such as arguments and constants. 5967 SmallPtrSet<Value *, 8> LoopInvariants; 5968 5969 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5970 for (Instruction &I : BB->instructionsWithoutDebug()) { 5971 IdxToInstr.push_back(&I); 5972 5973 // Save the end location of each USE. 5974 for (Value *U : I.operands()) { 5975 auto *Instr = dyn_cast<Instruction>(U); 5976 5977 // Ignore non-instruction values such as arguments, constants, etc. 5978 if (!Instr) 5979 continue; 5980 5981 // If this instruction is outside the loop then record it and continue. 5982 if (!TheLoop->contains(Instr)) { 5983 LoopInvariants.insert(Instr); 5984 continue; 5985 } 5986 5987 // Overwrite previous end points. 5988 EndPoint[Instr] = IdxToInstr.size(); 5989 Ends.insert(Instr); 5990 } 5991 } 5992 } 5993 5994 // Saves the list of intervals that end with the index in 'key'. 5995 using InstrList = SmallVector<Instruction *, 2>; 5996 DenseMap<unsigned, InstrList> TransposeEnds; 5997 5998 // Transpose the EndPoints to a list of values that end at each index. 5999 for (auto &Interval : EndPoint) 6000 TransposeEnds[Interval.second].push_back(Interval.first); 6001 6002 SmallPtrSet<Instruction *, 8> OpenIntervals; 6003 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6004 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6005 6006 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6007 6008 // A lambda that gets the register usage for the given type and VF. 6009 const auto &TTICapture = TTI; 6010 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6011 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6012 return 0; 6013 InstructionCost::CostType RegUsage = 6014 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6015 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6016 "Nonsensical values for register usage."); 6017 return RegUsage; 6018 }; 6019 6020 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6021 Instruction *I = IdxToInstr[i]; 6022 6023 // Remove all of the instructions that end at this location. 6024 InstrList &List = TransposeEnds[i]; 6025 for (Instruction *ToRemove : List) 6026 OpenIntervals.erase(ToRemove); 6027 6028 // Ignore instructions that are never used within the loop. 6029 if (!Ends.count(I)) 6030 continue; 6031 6032 // Skip ignored values. 6033 if (ValuesToIgnore.count(I)) 6034 continue; 6035 6036 // For each VF find the maximum usage of registers. 6037 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6038 // Count the number of live intervals. 6039 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6040 6041 if (VFs[j].isScalar()) { 6042 for (auto Inst : OpenIntervals) { 6043 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6044 if (RegUsage.find(ClassID) == RegUsage.end()) 6045 RegUsage[ClassID] = 1; 6046 else 6047 RegUsage[ClassID] += 1; 6048 } 6049 } else { 6050 collectUniformsAndScalars(VFs[j]); 6051 for (auto Inst : OpenIntervals) { 6052 // Skip ignored values for VF > 1. 6053 if (VecValuesToIgnore.count(Inst)) 6054 continue; 6055 if (isScalarAfterVectorization(Inst, VFs[j])) { 6056 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6057 if (RegUsage.find(ClassID) == RegUsage.end()) 6058 RegUsage[ClassID] = 1; 6059 else 6060 RegUsage[ClassID] += 1; 6061 } else { 6062 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6063 if (RegUsage.find(ClassID) == RegUsage.end()) 6064 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6065 else 6066 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6067 } 6068 } 6069 } 6070 6071 for (auto& pair : RegUsage) { 6072 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6073 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6074 else 6075 MaxUsages[j][pair.first] = pair.second; 6076 } 6077 } 6078 6079 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6080 << OpenIntervals.size() << '\n'); 6081 6082 // Add the current instruction to the list of open intervals. 6083 OpenIntervals.insert(I); 6084 } 6085 6086 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6087 SmallMapVector<unsigned, unsigned, 4> Invariant; 6088 6089 for (auto Inst : LoopInvariants) { 6090 unsigned Usage = 6091 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6092 unsigned ClassID = 6093 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6094 if (Invariant.find(ClassID) == Invariant.end()) 6095 Invariant[ClassID] = Usage; 6096 else 6097 Invariant[ClassID] += Usage; 6098 } 6099 6100 LLVM_DEBUG({ 6101 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6102 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6103 << " item\n"; 6104 for (const auto &pair : MaxUsages[i]) { 6105 dbgs() << "LV(REG): RegisterClass: " 6106 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6107 << " registers\n"; 6108 } 6109 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6110 << " item\n"; 6111 for (const auto &pair : Invariant) { 6112 dbgs() << "LV(REG): RegisterClass: " 6113 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6114 << " registers\n"; 6115 } 6116 }); 6117 6118 RU.LoopInvariantRegs = Invariant; 6119 RU.MaxLocalUsers = MaxUsages[i]; 6120 RUs[i] = RU; 6121 } 6122 6123 return RUs; 6124 } 6125 6126 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6127 ElementCount VF) { 6128 // TODO: Cost model for emulated masked load/store is completely 6129 // broken. This hack guides the cost model to use an artificially 6130 // high enough value to practically disable vectorization with such 6131 // operations, except where previously deployed legality hack allowed 6132 // using very low cost values. This is to avoid regressions coming simply 6133 // from moving "masked load/store" check from legality to cost model. 6134 // Masked Load/Gather emulation was previously never allowed. 6135 // Limited number of Masked Store/Scatter emulation was allowed. 6136 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6137 return isa<LoadInst>(I) || 6138 (isa<StoreInst>(I) && 6139 NumPredStores > NumberOfStoresToPredicate); 6140 } 6141 6142 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6143 // If we aren't vectorizing the loop, or if we've already collected the 6144 // instructions to scalarize, there's nothing to do. Collection may already 6145 // have occurred if we have a user-selected VF and are now computing the 6146 // expected cost for interleaving. 6147 if (VF.isScalar() || VF.isZero() || 6148 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6149 return; 6150 6151 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6152 // not profitable to scalarize any instructions, the presence of VF in the 6153 // map will indicate that we've analyzed it already. 6154 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6155 6156 // Find all the instructions that are scalar with predication in the loop and 6157 // determine if it would be better to not if-convert the blocks they are in. 6158 // If so, we also record the instructions to scalarize. 6159 for (BasicBlock *BB : TheLoop->blocks()) { 6160 if (!blockNeedsPredicationForAnyReason(BB)) 6161 continue; 6162 for (Instruction &I : *BB) 6163 if (isScalarWithPredication(&I, VF)) { 6164 ScalarCostsTy ScalarCosts; 6165 // Do not apply discount if scalable, because that would lead to 6166 // invalid scalarization costs. 6167 // Do not apply discount logic if hacked cost is needed 6168 // for emulated masked memrefs. 6169 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6170 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6171 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6172 // Remember that BB will remain after vectorization. 6173 PredicatedBBsAfterVectorization.insert(BB); 6174 } 6175 } 6176 } 6177 6178 int LoopVectorizationCostModel::computePredInstDiscount( 6179 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6180 assert(!isUniformAfterVectorization(PredInst, VF) && 6181 "Instruction marked uniform-after-vectorization will be predicated"); 6182 6183 // Initialize the discount to zero, meaning that the scalar version and the 6184 // vector version cost the same. 6185 InstructionCost Discount = 0; 6186 6187 // Holds instructions to analyze. The instructions we visit are mapped in 6188 // ScalarCosts. Those instructions are the ones that would be scalarized if 6189 // we find that the scalar version costs less. 6190 SmallVector<Instruction *, 8> Worklist; 6191 6192 // Returns true if the given instruction can be scalarized. 6193 auto canBeScalarized = [&](Instruction *I) -> bool { 6194 // We only attempt to scalarize instructions forming a single-use chain 6195 // from the original predicated block that would otherwise be vectorized. 6196 // Although not strictly necessary, we give up on instructions we know will 6197 // already be scalar to avoid traversing chains that are unlikely to be 6198 // beneficial. 6199 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6200 isScalarAfterVectorization(I, VF)) 6201 return false; 6202 6203 // If the instruction is scalar with predication, it will be analyzed 6204 // separately. We ignore it within the context of PredInst. 6205 if (isScalarWithPredication(I, VF)) 6206 return false; 6207 6208 // If any of the instruction's operands are uniform after vectorization, 6209 // the instruction cannot be scalarized. This prevents, for example, a 6210 // masked load from being scalarized. 6211 // 6212 // We assume we will only emit a value for lane zero of an instruction 6213 // marked uniform after vectorization, rather than VF identical values. 6214 // Thus, if we scalarize an instruction that uses a uniform, we would 6215 // create uses of values corresponding to the lanes we aren't emitting code 6216 // for. This behavior can be changed by allowing getScalarValue to clone 6217 // the lane zero values for uniforms rather than asserting. 6218 for (Use &U : I->operands()) 6219 if (auto *J = dyn_cast<Instruction>(U.get())) 6220 if (isUniformAfterVectorization(J, VF)) 6221 return false; 6222 6223 // Otherwise, we can scalarize the instruction. 6224 return true; 6225 }; 6226 6227 // Compute the expected cost discount from scalarizing the entire expression 6228 // feeding the predicated instruction. We currently only consider expressions 6229 // that are single-use instruction chains. 6230 Worklist.push_back(PredInst); 6231 while (!Worklist.empty()) { 6232 Instruction *I = Worklist.pop_back_val(); 6233 6234 // If we've already analyzed the instruction, there's nothing to do. 6235 if (ScalarCosts.find(I) != ScalarCosts.end()) 6236 continue; 6237 6238 // Compute the cost of the vector instruction. Note that this cost already 6239 // includes the scalarization overhead of the predicated instruction. 6240 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6241 6242 // Compute the cost of the scalarized instruction. This cost is the cost of 6243 // the instruction as if it wasn't if-converted and instead remained in the 6244 // predicated block. We will scale this cost by block probability after 6245 // computing the scalarization overhead. 6246 InstructionCost ScalarCost = 6247 VF.getFixedValue() * 6248 getInstructionCost(I, ElementCount::getFixed(1)).first; 6249 6250 // Compute the scalarization overhead of needed insertelement instructions 6251 // and phi nodes. 6252 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6253 ScalarCost += TTI.getScalarizationOverhead( 6254 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6255 APInt::getAllOnes(VF.getFixedValue()), true, false); 6256 ScalarCost += 6257 VF.getFixedValue() * 6258 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6259 } 6260 6261 // Compute the scalarization overhead of needed extractelement 6262 // instructions. For each of the instruction's operands, if the operand can 6263 // be scalarized, add it to the worklist; otherwise, account for the 6264 // overhead. 6265 for (Use &U : I->operands()) 6266 if (auto *J = dyn_cast<Instruction>(U.get())) { 6267 assert(VectorType::isValidElementType(J->getType()) && 6268 "Instruction has non-scalar type"); 6269 if (canBeScalarized(J)) 6270 Worklist.push_back(J); 6271 else if (needsExtract(J, VF)) { 6272 ScalarCost += TTI.getScalarizationOverhead( 6273 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6274 APInt::getAllOnes(VF.getFixedValue()), false, true); 6275 } 6276 } 6277 6278 // Scale the total scalar cost by block probability. 6279 ScalarCost /= getReciprocalPredBlockProb(); 6280 6281 // Compute the discount. A non-negative discount means the vector version 6282 // of the instruction costs more, and scalarizing would be beneficial. 6283 Discount += VectorCost - ScalarCost; 6284 ScalarCosts[I] = ScalarCost; 6285 } 6286 6287 return *Discount.getValue(); 6288 } 6289 6290 LoopVectorizationCostModel::VectorizationCostTy 6291 LoopVectorizationCostModel::expectedCost( 6292 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6293 VectorizationCostTy Cost; 6294 6295 // For each block. 6296 for (BasicBlock *BB : TheLoop->blocks()) { 6297 VectorizationCostTy BlockCost; 6298 6299 // For each instruction in the old loop. 6300 for (Instruction &I : BB->instructionsWithoutDebug()) { 6301 // Skip ignored values. 6302 if (ValuesToIgnore.count(&I) || 6303 (VF.isVector() && VecValuesToIgnore.count(&I))) 6304 continue; 6305 6306 VectorizationCostTy C = getInstructionCost(&I, VF); 6307 6308 // Check if we should override the cost. 6309 if (C.first.isValid() && 6310 ForceTargetInstructionCost.getNumOccurrences() > 0) 6311 C.first = InstructionCost(ForceTargetInstructionCost); 6312 6313 // Keep a list of instructions with invalid costs. 6314 if (Invalid && !C.first.isValid()) 6315 Invalid->emplace_back(&I, VF); 6316 6317 BlockCost.first += C.first; 6318 BlockCost.second |= C.second; 6319 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6320 << " for VF " << VF << " For instruction: " << I 6321 << '\n'); 6322 } 6323 6324 // If we are vectorizing a predicated block, it will have been 6325 // if-converted. This means that the block's instructions (aside from 6326 // stores and instructions that may divide by zero) will now be 6327 // unconditionally executed. For the scalar case, we may not always execute 6328 // the predicated block, if it is an if-else block. Thus, scale the block's 6329 // cost by the probability of executing it. blockNeedsPredication from 6330 // Legal is used so as to not include all blocks in tail folded loops. 6331 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6332 BlockCost.first /= getReciprocalPredBlockProb(); 6333 6334 Cost.first += BlockCost.first; 6335 Cost.second |= BlockCost.second; 6336 } 6337 6338 return Cost; 6339 } 6340 6341 /// Gets Address Access SCEV after verifying that the access pattern 6342 /// is loop invariant except the induction variable dependence. 6343 /// 6344 /// This SCEV can be sent to the Target in order to estimate the address 6345 /// calculation cost. 6346 static const SCEV *getAddressAccessSCEV( 6347 Value *Ptr, 6348 LoopVectorizationLegality *Legal, 6349 PredicatedScalarEvolution &PSE, 6350 const Loop *TheLoop) { 6351 6352 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6353 if (!Gep) 6354 return nullptr; 6355 6356 // We are looking for a gep with all loop invariant indices except for one 6357 // which should be an induction variable. 6358 auto SE = PSE.getSE(); 6359 unsigned NumOperands = Gep->getNumOperands(); 6360 for (unsigned i = 1; i < NumOperands; ++i) { 6361 Value *Opd = Gep->getOperand(i); 6362 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6363 !Legal->isInductionVariable(Opd)) 6364 return nullptr; 6365 } 6366 6367 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6368 return PSE.getSCEV(Ptr); 6369 } 6370 6371 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6372 return Legal->hasStride(I->getOperand(0)) || 6373 Legal->hasStride(I->getOperand(1)); 6374 } 6375 6376 InstructionCost 6377 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6378 ElementCount VF) { 6379 assert(VF.isVector() && 6380 "Scalarization cost of instruction implies vectorization."); 6381 if (VF.isScalable()) 6382 return InstructionCost::getInvalid(); 6383 6384 Type *ValTy = getLoadStoreType(I); 6385 auto SE = PSE.getSE(); 6386 6387 unsigned AS = getLoadStoreAddressSpace(I); 6388 Value *Ptr = getLoadStorePointerOperand(I); 6389 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6390 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6391 // that it is being called from this specific place. 6392 6393 // Figure out whether the access is strided and get the stride value 6394 // if it's known in compile time 6395 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6396 6397 // Get the cost of the scalar memory instruction and address computation. 6398 InstructionCost Cost = 6399 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6400 6401 // Don't pass *I here, since it is scalar but will actually be part of a 6402 // vectorized loop where the user of it is a vectorized instruction. 6403 const Align Alignment = getLoadStoreAlignment(I); 6404 Cost += VF.getKnownMinValue() * 6405 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6406 AS, TTI::TCK_RecipThroughput); 6407 6408 // Get the overhead of the extractelement and insertelement instructions 6409 // we might create due to scalarization. 6410 Cost += getScalarizationOverhead(I, VF); 6411 6412 // If we have a predicated load/store, it will need extra i1 extracts and 6413 // conditional branches, but may not be executed for each vector lane. Scale 6414 // the cost by the probability of executing the predicated block. 6415 if (isPredicatedInst(I, VF)) { 6416 Cost /= getReciprocalPredBlockProb(); 6417 6418 // Add the cost of an i1 extract and a branch 6419 auto *Vec_i1Ty = 6420 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6421 Cost += TTI.getScalarizationOverhead( 6422 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6423 /*Insert=*/false, /*Extract=*/true); 6424 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6425 6426 if (useEmulatedMaskMemRefHack(I, VF)) 6427 // Artificially setting to a high enough value to practically disable 6428 // vectorization with such operations. 6429 Cost = 3000000; 6430 } 6431 6432 return Cost; 6433 } 6434 6435 InstructionCost 6436 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6437 ElementCount VF) { 6438 Type *ValTy = getLoadStoreType(I); 6439 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6440 Value *Ptr = getLoadStorePointerOperand(I); 6441 unsigned AS = getLoadStoreAddressSpace(I); 6442 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6443 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6444 6445 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6446 "Stride should be 1 or -1 for consecutive memory access"); 6447 const Align Alignment = getLoadStoreAlignment(I); 6448 InstructionCost Cost = 0; 6449 if (Legal->isMaskRequired(I)) 6450 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6451 CostKind); 6452 else 6453 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6454 CostKind, I); 6455 6456 bool Reverse = ConsecutiveStride < 0; 6457 if (Reverse) 6458 Cost += 6459 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6460 return Cost; 6461 } 6462 6463 InstructionCost 6464 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6465 ElementCount VF) { 6466 assert(Legal->isUniformMemOp(*I)); 6467 6468 Type *ValTy = getLoadStoreType(I); 6469 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6470 const Align Alignment = getLoadStoreAlignment(I); 6471 unsigned AS = getLoadStoreAddressSpace(I); 6472 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6473 if (isa<LoadInst>(I)) { 6474 return TTI.getAddressComputationCost(ValTy) + 6475 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6476 CostKind) + 6477 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6478 } 6479 StoreInst *SI = cast<StoreInst>(I); 6480 6481 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6482 return TTI.getAddressComputationCost(ValTy) + 6483 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6484 CostKind) + 6485 (isLoopInvariantStoreValue 6486 ? 0 6487 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6488 VF.getKnownMinValue() - 1)); 6489 } 6490 6491 InstructionCost 6492 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6493 ElementCount VF) { 6494 Type *ValTy = getLoadStoreType(I); 6495 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6496 const Align Alignment = getLoadStoreAlignment(I); 6497 const Value *Ptr = getLoadStorePointerOperand(I); 6498 6499 return TTI.getAddressComputationCost(VectorTy) + 6500 TTI.getGatherScatterOpCost( 6501 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6502 TargetTransformInfo::TCK_RecipThroughput, I); 6503 } 6504 6505 InstructionCost 6506 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6507 ElementCount VF) { 6508 // TODO: Once we have support for interleaving with scalable vectors 6509 // we can calculate the cost properly here. 6510 if (VF.isScalable()) 6511 return InstructionCost::getInvalid(); 6512 6513 Type *ValTy = getLoadStoreType(I); 6514 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6515 unsigned AS = getLoadStoreAddressSpace(I); 6516 6517 auto Group = getInterleavedAccessGroup(I); 6518 assert(Group && "Fail to get an interleaved access group."); 6519 6520 unsigned InterleaveFactor = Group->getFactor(); 6521 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6522 6523 // Holds the indices of existing members in the interleaved group. 6524 SmallVector<unsigned, 4> Indices; 6525 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6526 if (Group->getMember(IF)) 6527 Indices.push_back(IF); 6528 6529 // Calculate the cost of the whole interleaved group. 6530 bool UseMaskForGaps = 6531 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6532 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6533 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6534 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6535 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6536 6537 if (Group->isReverse()) { 6538 // TODO: Add support for reversed masked interleaved access. 6539 assert(!Legal->isMaskRequired(I) && 6540 "Reverse masked interleaved access not supported."); 6541 Cost += 6542 Group->getNumMembers() * 6543 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6544 } 6545 return Cost; 6546 } 6547 6548 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6549 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6550 using namespace llvm::PatternMatch; 6551 // Early exit for no inloop reductions 6552 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6553 return None; 6554 auto *VectorTy = cast<VectorType>(Ty); 6555 6556 // We are looking for a pattern of, and finding the minimal acceptable cost: 6557 // reduce(mul(ext(A), ext(B))) or 6558 // reduce(mul(A, B)) or 6559 // reduce(ext(A)) or 6560 // reduce(A). 6561 // The basic idea is that we walk down the tree to do that, finding the root 6562 // reduction instruction in InLoopReductionImmediateChains. From there we find 6563 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6564 // of the components. If the reduction cost is lower then we return it for the 6565 // reduction instruction and 0 for the other instructions in the pattern. If 6566 // it is not we return an invalid cost specifying the orignal cost method 6567 // should be used. 6568 Instruction *RetI = I; 6569 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6570 if (!RetI->hasOneUser()) 6571 return None; 6572 RetI = RetI->user_back(); 6573 } 6574 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6575 RetI->user_back()->getOpcode() == Instruction::Add) { 6576 if (!RetI->hasOneUser()) 6577 return None; 6578 RetI = RetI->user_back(); 6579 } 6580 6581 // Test if the found instruction is a reduction, and if not return an invalid 6582 // cost specifying the parent to use the original cost modelling. 6583 if (!InLoopReductionImmediateChains.count(RetI)) 6584 return None; 6585 6586 // Find the reduction this chain is a part of and calculate the basic cost of 6587 // the reduction on its own. 6588 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6589 Instruction *ReductionPhi = LastChain; 6590 while (!isa<PHINode>(ReductionPhi)) 6591 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6592 6593 const RecurrenceDescriptor &RdxDesc = 6594 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6595 6596 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6597 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6598 6599 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6600 // normal fmul instruction to the cost of the fadd reduction. 6601 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6602 BaseCost += 6603 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6604 6605 // If we're using ordered reductions then we can just return the base cost 6606 // here, since getArithmeticReductionCost calculates the full ordered 6607 // reduction cost when FP reassociation is not allowed. 6608 if (useOrderedReductions(RdxDesc)) 6609 return BaseCost; 6610 6611 // Get the operand that was not the reduction chain and match it to one of the 6612 // patterns, returning the better cost if it is found. 6613 Instruction *RedOp = RetI->getOperand(1) == LastChain 6614 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6615 : dyn_cast<Instruction>(RetI->getOperand(1)); 6616 6617 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6618 6619 Instruction *Op0, *Op1; 6620 if (RedOp && 6621 match(RedOp, 6622 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6623 match(Op0, m_ZExtOrSExt(m_Value())) && 6624 Op0->getOpcode() == Op1->getOpcode() && 6625 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6626 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6627 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6628 6629 // Matched reduce(ext(mul(ext(A), ext(B))) 6630 // Note that the extend opcodes need to all match, or if A==B they will have 6631 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6632 // which is equally fine. 6633 bool IsUnsigned = isa<ZExtInst>(Op0); 6634 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6635 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6636 6637 InstructionCost ExtCost = 6638 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6639 TTI::CastContextHint::None, CostKind, Op0); 6640 InstructionCost MulCost = 6641 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6642 InstructionCost Ext2Cost = 6643 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6644 TTI::CastContextHint::None, CostKind, RedOp); 6645 6646 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6647 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6648 CostKind); 6649 6650 if (RedCost.isValid() && 6651 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6652 return I == RetI ? RedCost : 0; 6653 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6654 !TheLoop->isLoopInvariant(RedOp)) { 6655 // Matched reduce(ext(A)) 6656 bool IsUnsigned = isa<ZExtInst>(RedOp); 6657 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6658 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6659 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6660 CostKind); 6661 6662 InstructionCost ExtCost = 6663 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6664 TTI::CastContextHint::None, CostKind, RedOp); 6665 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6666 return I == RetI ? RedCost : 0; 6667 } else if (RedOp && 6668 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6669 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6670 Op0->getOpcode() == Op1->getOpcode() && 6671 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6672 bool IsUnsigned = isa<ZExtInst>(Op0); 6673 Type *Op0Ty = Op0->getOperand(0)->getType(); 6674 Type *Op1Ty = Op1->getOperand(0)->getType(); 6675 Type *LargestOpTy = 6676 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6677 : Op0Ty; 6678 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6679 6680 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6681 // different sizes. We take the largest type as the ext to reduce, and add 6682 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6683 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6684 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6685 TTI::CastContextHint::None, CostKind, Op0); 6686 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6687 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6688 TTI::CastContextHint::None, CostKind, Op1); 6689 InstructionCost MulCost = 6690 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6691 6692 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6693 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6694 CostKind); 6695 InstructionCost ExtraExtCost = 0; 6696 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6697 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6698 ExtraExtCost = TTI.getCastInstrCost( 6699 ExtraExtOp->getOpcode(), ExtType, 6700 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6701 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6702 } 6703 6704 if (RedCost.isValid() && 6705 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6706 return I == RetI ? RedCost : 0; 6707 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6708 // Matched reduce(mul()) 6709 InstructionCost MulCost = 6710 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6711 6712 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6713 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6714 CostKind); 6715 6716 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6717 return I == RetI ? RedCost : 0; 6718 } 6719 } 6720 6721 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6722 } 6723 6724 InstructionCost 6725 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6726 ElementCount VF) { 6727 // Calculate scalar cost only. Vectorization cost should be ready at this 6728 // moment. 6729 if (VF.isScalar()) { 6730 Type *ValTy = getLoadStoreType(I); 6731 const Align Alignment = getLoadStoreAlignment(I); 6732 unsigned AS = getLoadStoreAddressSpace(I); 6733 6734 return TTI.getAddressComputationCost(ValTy) + 6735 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6736 TTI::TCK_RecipThroughput, I); 6737 } 6738 return getWideningCost(I, VF); 6739 } 6740 6741 LoopVectorizationCostModel::VectorizationCostTy 6742 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6743 ElementCount VF) { 6744 // If we know that this instruction will remain uniform, check the cost of 6745 // the scalar version. 6746 if (isUniformAfterVectorization(I, VF)) 6747 VF = ElementCount::getFixed(1); 6748 6749 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6750 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6751 6752 // Forced scalars do not have any scalarization overhead. 6753 auto ForcedScalar = ForcedScalars.find(VF); 6754 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6755 auto InstSet = ForcedScalar->second; 6756 if (InstSet.count(I)) 6757 return VectorizationCostTy( 6758 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6759 VF.getKnownMinValue()), 6760 false); 6761 } 6762 6763 Type *VectorTy; 6764 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6765 6766 bool TypeNotScalarized = false; 6767 if (VF.isVector() && VectorTy->isVectorTy()) { 6768 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6769 if (NumParts) 6770 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6771 else 6772 C = InstructionCost::getInvalid(); 6773 } 6774 return VectorizationCostTy(C, TypeNotScalarized); 6775 } 6776 6777 InstructionCost 6778 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6779 ElementCount VF) const { 6780 6781 // There is no mechanism yet to create a scalable scalarization loop, 6782 // so this is currently Invalid. 6783 if (VF.isScalable()) 6784 return InstructionCost::getInvalid(); 6785 6786 if (VF.isScalar()) 6787 return 0; 6788 6789 InstructionCost Cost = 0; 6790 Type *RetTy = ToVectorTy(I->getType(), VF); 6791 if (!RetTy->isVoidTy() && 6792 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6793 Cost += TTI.getScalarizationOverhead( 6794 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6795 false); 6796 6797 // Some targets keep addresses scalar. 6798 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6799 return Cost; 6800 6801 // Some targets support efficient element stores. 6802 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6803 return Cost; 6804 6805 // Collect operands to consider. 6806 CallInst *CI = dyn_cast<CallInst>(I); 6807 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6808 6809 // Skip operands that do not require extraction/scalarization and do not incur 6810 // any overhead. 6811 SmallVector<Type *> Tys; 6812 for (auto *V : filterExtractingOperands(Ops, VF)) 6813 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6814 return Cost + TTI.getOperandsScalarizationOverhead( 6815 filterExtractingOperands(Ops, VF), Tys); 6816 } 6817 6818 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6819 if (VF.isScalar()) 6820 return; 6821 NumPredStores = 0; 6822 for (BasicBlock *BB : TheLoop->blocks()) { 6823 // For each instruction in the old loop. 6824 for (Instruction &I : *BB) { 6825 Value *Ptr = getLoadStorePointerOperand(&I); 6826 if (!Ptr) 6827 continue; 6828 6829 // TODO: We should generate better code and update the cost model for 6830 // predicated uniform stores. Today they are treated as any other 6831 // predicated store (see added test cases in 6832 // invariant-store-vectorization.ll). 6833 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6834 NumPredStores++; 6835 6836 if (Legal->isUniformMemOp(I)) { 6837 // TODO: Avoid replicating loads and stores instead of 6838 // relying on instcombine to remove them. 6839 // Load: Scalar load + broadcast 6840 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6841 InstructionCost Cost; 6842 if (isa<StoreInst>(&I) && VF.isScalable() && 6843 isLegalGatherOrScatter(&I, VF)) { 6844 Cost = getGatherScatterCost(&I, VF); 6845 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6846 } else { 6847 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6848 "Cannot yet scalarize uniform stores"); 6849 Cost = getUniformMemOpCost(&I, VF); 6850 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6851 } 6852 continue; 6853 } 6854 6855 // We assume that widening is the best solution when possible. 6856 if (memoryInstructionCanBeWidened(&I, VF)) { 6857 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6858 int ConsecutiveStride = Legal->isConsecutivePtr( 6859 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6860 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6861 "Expected consecutive stride."); 6862 InstWidening Decision = 6863 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6864 setWideningDecision(&I, VF, Decision, Cost); 6865 continue; 6866 } 6867 6868 // Choose between Interleaving, Gather/Scatter or Scalarization. 6869 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6870 unsigned NumAccesses = 1; 6871 if (isAccessInterleaved(&I)) { 6872 auto Group = getInterleavedAccessGroup(&I); 6873 assert(Group && "Fail to get an interleaved access group."); 6874 6875 // Make one decision for the whole group. 6876 if (getWideningDecision(&I, VF) != CM_Unknown) 6877 continue; 6878 6879 NumAccesses = Group->getNumMembers(); 6880 if (interleavedAccessCanBeWidened(&I, VF)) 6881 InterleaveCost = getInterleaveGroupCost(&I, VF); 6882 } 6883 6884 InstructionCost GatherScatterCost = 6885 isLegalGatherOrScatter(&I, VF) 6886 ? getGatherScatterCost(&I, VF) * NumAccesses 6887 : InstructionCost::getInvalid(); 6888 6889 InstructionCost ScalarizationCost = 6890 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6891 6892 // Choose better solution for the current VF, 6893 // write down this decision and use it during vectorization. 6894 InstructionCost Cost; 6895 InstWidening Decision; 6896 if (InterleaveCost <= GatherScatterCost && 6897 InterleaveCost < ScalarizationCost) { 6898 Decision = CM_Interleave; 6899 Cost = InterleaveCost; 6900 } else if (GatherScatterCost < ScalarizationCost) { 6901 Decision = CM_GatherScatter; 6902 Cost = GatherScatterCost; 6903 } else { 6904 Decision = CM_Scalarize; 6905 Cost = ScalarizationCost; 6906 } 6907 // If the instructions belongs to an interleave group, the whole group 6908 // receives the same decision. The whole group receives the cost, but 6909 // the cost will actually be assigned to one instruction. 6910 if (auto Group = getInterleavedAccessGroup(&I)) 6911 setWideningDecision(Group, VF, Decision, Cost); 6912 else 6913 setWideningDecision(&I, VF, Decision, Cost); 6914 } 6915 } 6916 6917 // Make sure that any load of address and any other address computation 6918 // remains scalar unless there is gather/scatter support. This avoids 6919 // inevitable extracts into address registers, and also has the benefit of 6920 // activating LSR more, since that pass can't optimize vectorized 6921 // addresses. 6922 if (TTI.prefersVectorizedAddressing()) 6923 return; 6924 6925 // Start with all scalar pointer uses. 6926 SmallPtrSet<Instruction *, 8> AddrDefs; 6927 for (BasicBlock *BB : TheLoop->blocks()) 6928 for (Instruction &I : *BB) { 6929 Instruction *PtrDef = 6930 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6931 if (PtrDef && TheLoop->contains(PtrDef) && 6932 getWideningDecision(&I, VF) != CM_GatherScatter) 6933 AddrDefs.insert(PtrDef); 6934 } 6935 6936 // Add all instructions used to generate the addresses. 6937 SmallVector<Instruction *, 4> Worklist; 6938 append_range(Worklist, AddrDefs); 6939 while (!Worklist.empty()) { 6940 Instruction *I = Worklist.pop_back_val(); 6941 for (auto &Op : I->operands()) 6942 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6943 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6944 AddrDefs.insert(InstOp).second) 6945 Worklist.push_back(InstOp); 6946 } 6947 6948 for (auto *I : AddrDefs) { 6949 if (isa<LoadInst>(I)) { 6950 // Setting the desired widening decision should ideally be handled in 6951 // by cost functions, but since this involves the task of finding out 6952 // if the loaded register is involved in an address computation, it is 6953 // instead changed here when we know this is the case. 6954 InstWidening Decision = getWideningDecision(I, VF); 6955 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6956 // Scalarize a widened load of address. 6957 setWideningDecision( 6958 I, VF, CM_Scalarize, 6959 (VF.getKnownMinValue() * 6960 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6961 else if (auto Group = getInterleavedAccessGroup(I)) { 6962 // Scalarize an interleave group of address loads. 6963 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6964 if (Instruction *Member = Group->getMember(I)) 6965 setWideningDecision( 6966 Member, VF, CM_Scalarize, 6967 (VF.getKnownMinValue() * 6968 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6969 } 6970 } 6971 } else 6972 // Make sure I gets scalarized and a cost estimate without 6973 // scalarization overhead. 6974 ForcedScalars[VF].insert(I); 6975 } 6976 } 6977 6978 InstructionCost 6979 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6980 Type *&VectorTy) { 6981 Type *RetTy = I->getType(); 6982 if (canTruncateToMinimalBitwidth(I, VF)) 6983 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6984 auto SE = PSE.getSE(); 6985 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6986 6987 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6988 ElementCount VF) -> bool { 6989 if (VF.isScalar()) 6990 return true; 6991 6992 auto Scalarized = InstsToScalarize.find(VF); 6993 assert(Scalarized != InstsToScalarize.end() && 6994 "VF not yet analyzed for scalarization profitability"); 6995 return !Scalarized->second.count(I) && 6996 llvm::all_of(I->users(), [&](User *U) { 6997 auto *UI = cast<Instruction>(U); 6998 return !Scalarized->second.count(UI); 6999 }); 7000 }; 7001 (void) hasSingleCopyAfterVectorization; 7002 7003 if (isScalarAfterVectorization(I, VF)) { 7004 // With the exception of GEPs and PHIs, after scalarization there should 7005 // only be one copy of the instruction generated in the loop. This is 7006 // because the VF is either 1, or any instructions that need scalarizing 7007 // have already been dealt with by the the time we get here. As a result, 7008 // it means we don't have to multiply the instruction cost by VF. 7009 assert(I->getOpcode() == Instruction::GetElementPtr || 7010 I->getOpcode() == Instruction::PHI || 7011 (I->getOpcode() == Instruction::BitCast && 7012 I->getType()->isPointerTy()) || 7013 hasSingleCopyAfterVectorization(I, VF)); 7014 VectorTy = RetTy; 7015 } else 7016 VectorTy = ToVectorTy(RetTy, VF); 7017 7018 // TODO: We need to estimate the cost of intrinsic calls. 7019 switch (I->getOpcode()) { 7020 case Instruction::GetElementPtr: 7021 // We mark this instruction as zero-cost because the cost of GEPs in 7022 // vectorized code depends on whether the corresponding memory instruction 7023 // is scalarized or not. Therefore, we handle GEPs with the memory 7024 // instruction cost. 7025 return 0; 7026 case Instruction::Br: { 7027 // In cases of scalarized and predicated instructions, there will be VF 7028 // predicated blocks in the vectorized loop. Each branch around these 7029 // blocks requires also an extract of its vector compare i1 element. 7030 bool ScalarPredicatedBB = false; 7031 BranchInst *BI = cast<BranchInst>(I); 7032 if (VF.isVector() && BI->isConditional() && 7033 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7034 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7035 ScalarPredicatedBB = true; 7036 7037 if (ScalarPredicatedBB) { 7038 // Not possible to scalarize scalable vector with predicated instructions. 7039 if (VF.isScalable()) 7040 return InstructionCost::getInvalid(); 7041 // Return cost for branches around scalarized and predicated blocks. 7042 auto *Vec_i1Ty = 7043 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7044 return ( 7045 TTI.getScalarizationOverhead( 7046 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7047 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7048 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7049 // The back-edge branch will remain, as will all scalar branches. 7050 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7051 else 7052 // This branch will be eliminated by if-conversion. 7053 return 0; 7054 // Note: We currently assume zero cost for an unconditional branch inside 7055 // a predicated block since it will become a fall-through, although we 7056 // may decide in the future to call TTI for all branches. 7057 } 7058 case Instruction::PHI: { 7059 auto *Phi = cast<PHINode>(I); 7060 7061 // First-order recurrences are replaced by vector shuffles inside the loop. 7062 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7063 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7064 return TTI.getShuffleCost( 7065 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7066 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7067 7068 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7069 // converted into select instructions. We require N - 1 selects per phi 7070 // node, where N is the number of incoming values. 7071 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7072 return (Phi->getNumIncomingValues() - 1) * 7073 TTI.getCmpSelInstrCost( 7074 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7075 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7076 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7077 7078 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7079 } 7080 case Instruction::UDiv: 7081 case Instruction::SDiv: 7082 case Instruction::URem: 7083 case Instruction::SRem: 7084 // If we have a predicated instruction, it may not be executed for each 7085 // vector lane. Get the scalarization cost and scale this amount by the 7086 // probability of executing the predicated block. If the instruction is not 7087 // predicated, we fall through to the next case. 7088 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7089 InstructionCost Cost = 0; 7090 7091 // These instructions have a non-void type, so account for the phi nodes 7092 // that we will create. This cost is likely to be zero. The phi node 7093 // cost, if any, should be scaled by the block probability because it 7094 // models a copy at the end of each predicated block. 7095 Cost += VF.getKnownMinValue() * 7096 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7097 7098 // The cost of the non-predicated instruction. 7099 Cost += VF.getKnownMinValue() * 7100 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7101 7102 // The cost of insertelement and extractelement instructions needed for 7103 // scalarization. 7104 Cost += getScalarizationOverhead(I, VF); 7105 7106 // Scale the cost by the probability of executing the predicated blocks. 7107 // This assumes the predicated block for each vector lane is equally 7108 // likely. 7109 return Cost / getReciprocalPredBlockProb(); 7110 } 7111 LLVM_FALLTHROUGH; 7112 case Instruction::Add: 7113 case Instruction::FAdd: 7114 case Instruction::Sub: 7115 case Instruction::FSub: 7116 case Instruction::Mul: 7117 case Instruction::FMul: 7118 case Instruction::FDiv: 7119 case Instruction::FRem: 7120 case Instruction::Shl: 7121 case Instruction::LShr: 7122 case Instruction::AShr: 7123 case Instruction::And: 7124 case Instruction::Or: 7125 case Instruction::Xor: { 7126 // Since we will replace the stride by 1 the multiplication should go away. 7127 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7128 return 0; 7129 7130 // Detect reduction patterns 7131 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7132 return *RedCost; 7133 7134 // Certain instructions can be cheaper to vectorize if they have a constant 7135 // second vector operand. One example of this are shifts on x86. 7136 Value *Op2 = I->getOperand(1); 7137 TargetTransformInfo::OperandValueProperties Op2VP; 7138 TargetTransformInfo::OperandValueKind Op2VK = 7139 TTI.getOperandInfo(Op2, Op2VP); 7140 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7141 Op2VK = TargetTransformInfo::OK_UniformValue; 7142 7143 SmallVector<const Value *, 4> Operands(I->operand_values()); 7144 return TTI.getArithmeticInstrCost( 7145 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7146 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7147 } 7148 case Instruction::FNeg: { 7149 return TTI.getArithmeticInstrCost( 7150 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7151 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7152 TargetTransformInfo::OP_None, I->getOperand(0), I); 7153 } 7154 case Instruction::Select: { 7155 SelectInst *SI = cast<SelectInst>(I); 7156 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7157 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7158 7159 const Value *Op0, *Op1; 7160 using namespace llvm::PatternMatch; 7161 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7162 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7163 // select x, y, false --> x & y 7164 // select x, true, y --> x | y 7165 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7166 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7167 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7168 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7169 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7170 Op1->getType()->getScalarSizeInBits() == 1); 7171 7172 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7173 return TTI.getArithmeticInstrCost( 7174 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7175 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7176 } 7177 7178 Type *CondTy = SI->getCondition()->getType(); 7179 if (!ScalarCond) 7180 CondTy = VectorType::get(CondTy, VF); 7181 7182 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7183 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7184 Pred = Cmp->getPredicate(); 7185 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7186 CostKind, I); 7187 } 7188 case Instruction::ICmp: 7189 case Instruction::FCmp: { 7190 Type *ValTy = I->getOperand(0)->getType(); 7191 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7192 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7193 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7194 VectorTy = ToVectorTy(ValTy, VF); 7195 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7196 cast<CmpInst>(I)->getPredicate(), CostKind, 7197 I); 7198 } 7199 case Instruction::Store: 7200 case Instruction::Load: { 7201 ElementCount Width = VF; 7202 if (Width.isVector()) { 7203 InstWidening Decision = getWideningDecision(I, Width); 7204 assert(Decision != CM_Unknown && 7205 "CM decision should be taken at this point"); 7206 if (Decision == CM_Scalarize) 7207 Width = ElementCount::getFixed(1); 7208 } 7209 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7210 return getMemoryInstructionCost(I, VF); 7211 } 7212 case Instruction::BitCast: 7213 if (I->getType()->isPointerTy()) 7214 return 0; 7215 LLVM_FALLTHROUGH; 7216 case Instruction::ZExt: 7217 case Instruction::SExt: 7218 case Instruction::FPToUI: 7219 case Instruction::FPToSI: 7220 case Instruction::FPExt: 7221 case Instruction::PtrToInt: 7222 case Instruction::IntToPtr: 7223 case Instruction::SIToFP: 7224 case Instruction::UIToFP: 7225 case Instruction::Trunc: 7226 case Instruction::FPTrunc: { 7227 // Computes the CastContextHint from a Load/Store instruction. 7228 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7229 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7230 "Expected a load or a store!"); 7231 7232 if (VF.isScalar() || !TheLoop->contains(I)) 7233 return TTI::CastContextHint::Normal; 7234 7235 switch (getWideningDecision(I, VF)) { 7236 case LoopVectorizationCostModel::CM_GatherScatter: 7237 return TTI::CastContextHint::GatherScatter; 7238 case LoopVectorizationCostModel::CM_Interleave: 7239 return TTI::CastContextHint::Interleave; 7240 case LoopVectorizationCostModel::CM_Scalarize: 7241 case LoopVectorizationCostModel::CM_Widen: 7242 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7243 : TTI::CastContextHint::Normal; 7244 case LoopVectorizationCostModel::CM_Widen_Reverse: 7245 return TTI::CastContextHint::Reversed; 7246 case LoopVectorizationCostModel::CM_Unknown: 7247 llvm_unreachable("Instr did not go through cost modelling?"); 7248 } 7249 7250 llvm_unreachable("Unhandled case!"); 7251 }; 7252 7253 unsigned Opcode = I->getOpcode(); 7254 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7255 // For Trunc, the context is the only user, which must be a StoreInst. 7256 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7257 if (I->hasOneUse()) 7258 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7259 CCH = ComputeCCH(Store); 7260 } 7261 // For Z/Sext, the context is the operand, which must be a LoadInst. 7262 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7263 Opcode == Instruction::FPExt) { 7264 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7265 CCH = ComputeCCH(Load); 7266 } 7267 7268 // We optimize the truncation of induction variables having constant 7269 // integer steps. The cost of these truncations is the same as the scalar 7270 // operation. 7271 if (isOptimizableIVTruncate(I, VF)) { 7272 auto *Trunc = cast<TruncInst>(I); 7273 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7274 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7275 } 7276 7277 // Detect reduction patterns 7278 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7279 return *RedCost; 7280 7281 Type *SrcScalarTy = I->getOperand(0)->getType(); 7282 Type *SrcVecTy = 7283 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7284 if (canTruncateToMinimalBitwidth(I, VF)) { 7285 // This cast is going to be shrunk. This may remove the cast or it might 7286 // turn it into slightly different cast. For example, if MinBW == 16, 7287 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7288 // 7289 // Calculate the modified src and dest types. 7290 Type *MinVecTy = VectorTy; 7291 if (Opcode == Instruction::Trunc) { 7292 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7293 VectorTy = 7294 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7295 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7296 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7297 VectorTy = 7298 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7299 } 7300 } 7301 7302 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7303 } 7304 case Instruction::Call: { 7305 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7306 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7307 return *RedCost; 7308 bool NeedToScalarize; 7309 CallInst *CI = cast<CallInst>(I); 7310 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7311 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7312 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7313 return std::min(CallCost, IntrinsicCost); 7314 } 7315 return CallCost; 7316 } 7317 case Instruction::ExtractValue: 7318 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7319 case Instruction::Alloca: 7320 // We cannot easily widen alloca to a scalable alloca, as 7321 // the result would need to be a vector of pointers. 7322 if (VF.isScalable()) 7323 return InstructionCost::getInvalid(); 7324 LLVM_FALLTHROUGH; 7325 default: 7326 // This opcode is unknown. Assume that it is the same as 'mul'. 7327 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7328 } // end of switch. 7329 } 7330 7331 char LoopVectorize::ID = 0; 7332 7333 static const char lv_name[] = "Loop Vectorization"; 7334 7335 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7336 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7337 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7338 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7339 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7340 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7341 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7342 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7343 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7344 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7345 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7346 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7347 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7348 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7349 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7350 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7351 7352 namespace llvm { 7353 7354 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7355 7356 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7357 bool VectorizeOnlyWhenForced) { 7358 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7359 } 7360 7361 } // end namespace llvm 7362 7363 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7364 // Check if the pointer operand of a load or store instruction is 7365 // consecutive. 7366 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7367 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7368 return false; 7369 } 7370 7371 void LoopVectorizationCostModel::collectValuesToIgnore() { 7372 // Ignore ephemeral values. 7373 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7374 7375 // Find all stores to invariant variables. Since they are going to sink 7376 // outside the loop we do not need calculate cost for them. 7377 for (BasicBlock *BB : TheLoop->blocks()) 7378 for (Instruction &I : *BB) { 7379 StoreInst *SI; 7380 if ((SI = dyn_cast<StoreInst>(&I)) && 7381 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7382 ValuesToIgnore.insert(&I); 7383 } 7384 7385 // Ignore type-promoting instructions we identified during reduction 7386 // detection. 7387 for (auto &Reduction : Legal->getReductionVars()) { 7388 const RecurrenceDescriptor &RedDes = Reduction.second; 7389 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7390 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7391 } 7392 // Ignore type-casting instructions we identified during induction 7393 // detection. 7394 for (auto &Induction : Legal->getInductionVars()) { 7395 const InductionDescriptor &IndDes = Induction.second; 7396 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7397 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7398 } 7399 } 7400 7401 void LoopVectorizationCostModel::collectInLoopReductions() { 7402 for (auto &Reduction : Legal->getReductionVars()) { 7403 PHINode *Phi = Reduction.first; 7404 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7405 7406 // We don't collect reductions that are type promoted (yet). 7407 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7408 continue; 7409 7410 // If the target would prefer this reduction to happen "in-loop", then we 7411 // want to record it as such. 7412 unsigned Opcode = RdxDesc.getOpcode(); 7413 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7414 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7415 TargetTransformInfo::ReductionFlags())) 7416 continue; 7417 7418 // Check that we can correctly put the reductions into the loop, by 7419 // finding the chain of operations that leads from the phi to the loop 7420 // exit value. 7421 SmallVector<Instruction *, 4> ReductionOperations = 7422 RdxDesc.getReductionOpChain(Phi, TheLoop); 7423 bool InLoop = !ReductionOperations.empty(); 7424 if (InLoop) { 7425 InLoopReductionChains[Phi] = ReductionOperations; 7426 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7427 Instruction *LastChain = Phi; 7428 for (auto *I : ReductionOperations) { 7429 InLoopReductionImmediateChains[I] = LastChain; 7430 LastChain = I; 7431 } 7432 } 7433 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7434 << " reduction for phi: " << *Phi << "\n"); 7435 } 7436 } 7437 7438 // TODO: we could return a pair of values that specify the max VF and 7439 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7440 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7441 // doesn't have a cost model that can choose which plan to execute if 7442 // more than one is generated. 7443 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7444 LoopVectorizationCostModel &CM) { 7445 unsigned WidestType; 7446 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7447 return WidestVectorRegBits / WidestType; 7448 } 7449 7450 VectorizationFactor 7451 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7452 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7453 ElementCount VF = UserVF; 7454 // Outer loop handling: They may require CFG and instruction level 7455 // transformations before even evaluating whether vectorization is profitable. 7456 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7457 // the vectorization pipeline. 7458 if (!OrigLoop->isInnermost()) { 7459 // If the user doesn't provide a vectorization factor, determine a 7460 // reasonable one. 7461 if (UserVF.isZero()) { 7462 VF = ElementCount::getFixed(determineVPlanVF( 7463 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7464 .getFixedSize(), 7465 CM)); 7466 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7467 7468 // Make sure we have a VF > 1 for stress testing. 7469 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7470 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7471 << "overriding computed VF.\n"); 7472 VF = ElementCount::getFixed(4); 7473 } 7474 } 7475 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7476 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7477 "VF needs to be a power of two"); 7478 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7479 << "VF " << VF << " to build VPlans.\n"); 7480 buildVPlans(VF, VF); 7481 7482 // For VPlan build stress testing, we bail out after VPlan construction. 7483 if (VPlanBuildStressTest) 7484 return VectorizationFactor::Disabled(); 7485 7486 return {VF, 0 /*Cost*/}; 7487 } 7488 7489 LLVM_DEBUG( 7490 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7491 "VPlan-native path.\n"); 7492 return VectorizationFactor::Disabled(); 7493 } 7494 7495 Optional<VectorizationFactor> 7496 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7497 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7498 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7499 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7500 return None; 7501 7502 // Invalidate interleave groups if all blocks of loop will be predicated. 7503 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7504 !useMaskedInterleavedAccesses(*TTI)) { 7505 LLVM_DEBUG( 7506 dbgs() 7507 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7508 "which requires masked-interleaved support.\n"); 7509 if (CM.InterleaveInfo.invalidateGroups()) 7510 // Invalidating interleave groups also requires invalidating all decisions 7511 // based on them, which includes widening decisions and uniform and scalar 7512 // values. 7513 CM.invalidateCostModelingDecisions(); 7514 } 7515 7516 ElementCount MaxUserVF = 7517 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7518 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7519 if (!UserVF.isZero() && UserVFIsLegal) { 7520 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7521 "VF needs to be a power of two"); 7522 // Collect the instructions (and their associated costs) that will be more 7523 // profitable to scalarize. 7524 if (CM.selectUserVectorizationFactor(UserVF)) { 7525 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7526 CM.collectInLoopReductions(); 7527 buildVPlansWithVPRecipes(UserVF, UserVF); 7528 LLVM_DEBUG(printPlans(dbgs())); 7529 return {{UserVF, 0}}; 7530 } else 7531 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7532 "InvalidCost", ORE, OrigLoop); 7533 } 7534 7535 // Populate the set of Vectorization Factor Candidates. 7536 ElementCountSet VFCandidates; 7537 for (auto VF = ElementCount::getFixed(1); 7538 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7539 VFCandidates.insert(VF); 7540 for (auto VF = ElementCount::getScalable(1); 7541 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7542 VFCandidates.insert(VF); 7543 7544 for (const auto &VF : VFCandidates) { 7545 // Collect Uniform and Scalar instructions after vectorization with VF. 7546 CM.collectUniformsAndScalars(VF); 7547 7548 // Collect the instructions (and their associated costs) that will be more 7549 // profitable to scalarize. 7550 if (VF.isVector()) 7551 CM.collectInstsToScalarize(VF); 7552 } 7553 7554 CM.collectInLoopReductions(); 7555 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7556 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7557 7558 LLVM_DEBUG(printPlans(dbgs())); 7559 if (!MaxFactors.hasVector()) 7560 return VectorizationFactor::Disabled(); 7561 7562 // Select the optimal vectorization factor. 7563 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7564 7565 // Check if it is profitable to vectorize with runtime checks. 7566 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7567 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7568 bool PragmaThresholdReached = 7569 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7570 bool ThresholdReached = 7571 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7572 if ((ThresholdReached && !Hints.allowReordering()) || 7573 PragmaThresholdReached) { 7574 ORE->emit([&]() { 7575 return OptimizationRemarkAnalysisAliasing( 7576 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7577 OrigLoop->getHeader()) 7578 << "loop not vectorized: cannot prove it is safe to reorder " 7579 "memory operations"; 7580 }); 7581 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7582 Hints.emitRemarkWithHints(); 7583 return VectorizationFactor::Disabled(); 7584 } 7585 } 7586 return SelectedVF; 7587 } 7588 7589 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7590 assert(count_if(VPlans, 7591 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7592 1 && 7593 "Best VF has not a single VPlan."); 7594 7595 for (const VPlanPtr &Plan : VPlans) { 7596 if (Plan->hasVF(VF)) 7597 return *Plan.get(); 7598 } 7599 llvm_unreachable("No plan found!"); 7600 } 7601 7602 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7603 SmallVector<Metadata *, 4> MDs; 7604 // Reserve first location for self reference to the LoopID metadata node. 7605 MDs.push_back(nullptr); 7606 bool IsUnrollMetadata = false; 7607 MDNode *LoopID = L->getLoopID(); 7608 if (LoopID) { 7609 // First find existing loop unrolling disable metadata. 7610 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7611 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7612 if (MD) { 7613 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7614 IsUnrollMetadata = 7615 S && S->getString().startswith("llvm.loop.unroll.disable"); 7616 } 7617 MDs.push_back(LoopID->getOperand(i)); 7618 } 7619 } 7620 7621 if (!IsUnrollMetadata) { 7622 // Add runtime unroll disable metadata. 7623 LLVMContext &Context = L->getHeader()->getContext(); 7624 SmallVector<Metadata *, 1> DisableOperands; 7625 DisableOperands.push_back( 7626 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7627 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7628 MDs.push_back(DisableNode); 7629 MDNode *NewLoopID = MDNode::get(Context, MDs); 7630 // Set operand 0 to refer to the loop id itself. 7631 NewLoopID->replaceOperandWith(0, NewLoopID); 7632 L->setLoopID(NewLoopID); 7633 } 7634 } 7635 7636 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7637 VPlan &BestVPlan, 7638 InnerLoopVectorizer &ILV, 7639 DominatorTree *DT) { 7640 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7641 << '\n'); 7642 7643 // Perform the actual loop transformation. 7644 7645 // 1. Set up the skeleton for vectorization, including vector pre-header and 7646 // middle block. The vector loop is created during VPlan execution. 7647 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7648 Value *CanonicalIVStartValue; 7649 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7650 ILV.createVectorizedLoopSkeleton(); 7651 ILV.collectPoisonGeneratingRecipes(State); 7652 7653 ILV.printDebugTracesAtStart(); 7654 7655 //===------------------------------------------------===// 7656 // 7657 // Notice: any optimization or new instruction that go 7658 // into the code below should also be implemented in 7659 // the cost-model. 7660 // 7661 //===------------------------------------------------===// 7662 7663 // 2. Copy and widen instructions from the old loop into the new loop. 7664 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7665 ILV.getOrCreateVectorTripCount(nullptr), 7666 CanonicalIVStartValue, State); 7667 BestVPlan.execute(&State); 7668 7669 // Keep all loop hints from the original loop on the vector loop (we'll 7670 // replace the vectorizer-specific hints below). 7671 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7672 7673 Optional<MDNode *> VectorizedLoopID = 7674 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7675 LLVMLoopVectorizeFollowupVectorized}); 7676 7677 VPBasicBlock *HeaderVPBB = 7678 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7679 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7680 if (VectorizedLoopID.hasValue()) 7681 L->setLoopID(VectorizedLoopID.getValue()); 7682 else { 7683 // Keep all loop hints from the original loop on the vector loop (we'll 7684 // replace the vectorizer-specific hints below). 7685 if (MDNode *LID = OrigLoop->getLoopID()) 7686 L->setLoopID(LID); 7687 7688 LoopVectorizeHints Hints(L, true, *ORE); 7689 Hints.setAlreadyVectorized(); 7690 } 7691 // Disable runtime unrolling when vectorizing the epilogue loop. 7692 if (CanonicalIVStartValue) 7693 AddRuntimeUnrollDisableMetaData(L); 7694 7695 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7696 // predication, updating analyses. 7697 ILV.fixVectorizedLoop(State, BestVPlan); 7698 7699 ILV.printDebugTracesAtEnd(); 7700 } 7701 7702 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7703 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7704 for (const auto &Plan : VPlans) 7705 if (PrintVPlansInDotFormat) 7706 Plan->printDOT(O); 7707 else 7708 Plan->print(O); 7709 } 7710 #endif 7711 7712 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7713 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7714 7715 // We create new control-flow for the vectorized loop, so the original exit 7716 // conditions will be dead after vectorization if it's only used by the 7717 // terminator 7718 SmallVector<BasicBlock*> ExitingBlocks; 7719 OrigLoop->getExitingBlocks(ExitingBlocks); 7720 for (auto *BB : ExitingBlocks) { 7721 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7722 if (!Cmp || !Cmp->hasOneUse()) 7723 continue; 7724 7725 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7726 if (!DeadInstructions.insert(Cmp).second) 7727 continue; 7728 7729 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7730 // TODO: can recurse through operands in general 7731 for (Value *Op : Cmp->operands()) { 7732 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7733 DeadInstructions.insert(cast<Instruction>(Op)); 7734 } 7735 } 7736 7737 // We create new "steps" for induction variable updates to which the original 7738 // induction variables map. An original update instruction will be dead if 7739 // all its users except the induction variable are dead. 7740 auto *Latch = OrigLoop->getLoopLatch(); 7741 for (auto &Induction : Legal->getInductionVars()) { 7742 PHINode *Ind = Induction.first; 7743 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7744 7745 // If the tail is to be folded by masking, the primary induction variable, 7746 // if exists, isn't dead: it will be used for masking. Don't kill it. 7747 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7748 continue; 7749 7750 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7751 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7752 })) 7753 DeadInstructions.insert(IndUpdate); 7754 } 7755 } 7756 7757 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7758 7759 //===--------------------------------------------------------------------===// 7760 // EpilogueVectorizerMainLoop 7761 //===--------------------------------------------------------------------===// 7762 7763 /// This function is partially responsible for generating the control flow 7764 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7765 std::pair<BasicBlock *, Value *> 7766 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7767 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7768 7769 // Workaround! Compute the trip count of the original loop and cache it 7770 // before we start modifying the CFG. This code has a systemic problem 7771 // wherein it tries to run analysis over partially constructed IR; this is 7772 // wrong, and not simply for SCEV. The trip count of the original loop 7773 // simply happens to be prone to hitting this in practice. In theory, we 7774 // can hit the same issue for any SCEV, or ValueTracking query done during 7775 // mutation. See PR49900. 7776 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7777 createVectorLoopSkeleton(""); 7778 7779 // Generate the code to check the minimum iteration count of the vector 7780 // epilogue (see below). 7781 EPI.EpilogueIterationCountCheck = 7782 emitIterationCountCheck(LoopScalarPreHeader, true); 7783 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7784 7785 // Generate the code to check any assumptions that we've made for SCEV 7786 // expressions. 7787 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7788 7789 // Generate the code that checks at runtime if arrays overlap. We put the 7790 // checks into a separate block to make the more common case of few elements 7791 // faster. 7792 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7793 7794 // Generate the iteration count check for the main loop, *after* the check 7795 // for the epilogue loop, so that the path-length is shorter for the case 7796 // that goes directly through the vector epilogue. The longer-path length for 7797 // the main loop is compensated for, by the gain from vectorizing the larger 7798 // trip count. Note: the branch will get updated later on when we vectorize 7799 // the epilogue. 7800 EPI.MainLoopIterationCountCheck = 7801 emitIterationCountCheck(LoopScalarPreHeader, false); 7802 7803 // Generate the induction variable. 7804 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7805 7806 // Skip induction resume value creation here because they will be created in 7807 // the second pass. If we created them here, they wouldn't be used anyway, 7808 // because the vplan in the second pass still contains the inductions from the 7809 // original loop. 7810 7811 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7812 } 7813 7814 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7815 LLVM_DEBUG({ 7816 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7817 << "Main Loop VF:" << EPI.MainLoopVF 7818 << ", Main Loop UF:" << EPI.MainLoopUF 7819 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7820 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7821 }); 7822 } 7823 7824 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7825 DEBUG_WITH_TYPE(VerboseDebug, { 7826 dbgs() << "intermediate fn:\n" 7827 << *OrigLoop->getHeader()->getParent() << "\n"; 7828 }); 7829 } 7830 7831 BasicBlock * 7832 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7833 bool ForEpilogue) { 7834 assert(Bypass && "Expected valid bypass basic block."); 7835 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7836 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7837 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7838 // Reuse existing vector loop preheader for TC checks. 7839 // Note that new preheader block is generated for vector loop. 7840 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7841 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7842 7843 // Generate code to check if the loop's trip count is less than VF * UF of the 7844 // main vector loop. 7845 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7846 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7847 7848 Value *CheckMinIters = Builder.CreateICmp( 7849 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7850 "min.iters.check"); 7851 7852 if (!ForEpilogue) 7853 TCCheckBlock->setName("vector.main.loop.iter.check"); 7854 7855 // Create new preheader for vector loop. 7856 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7857 DT, LI, nullptr, "vector.ph"); 7858 7859 if (ForEpilogue) { 7860 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7861 DT->getNode(Bypass)->getIDom()) && 7862 "TC check is expected to dominate Bypass"); 7863 7864 // Update dominator for Bypass & LoopExit. 7865 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7866 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7867 // For loops with multiple exits, there's no edge from the middle block 7868 // to exit blocks (as the epilogue must run) and thus no need to update 7869 // the immediate dominator of the exit blocks. 7870 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7871 7872 LoopBypassBlocks.push_back(TCCheckBlock); 7873 7874 // Save the trip count so we don't have to regenerate it in the 7875 // vec.epilog.iter.check. This is safe to do because the trip count 7876 // generated here dominates the vector epilog iter check. 7877 EPI.TripCount = Count; 7878 } 7879 7880 ReplaceInstWithInst( 7881 TCCheckBlock->getTerminator(), 7882 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7883 7884 return TCCheckBlock; 7885 } 7886 7887 //===--------------------------------------------------------------------===// 7888 // EpilogueVectorizerEpilogueLoop 7889 //===--------------------------------------------------------------------===// 7890 7891 /// This function is partially responsible for generating the control flow 7892 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7893 std::pair<BasicBlock *, Value *> 7894 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7895 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7896 createVectorLoopSkeleton("vec.epilog."); 7897 7898 // Now, compare the remaining count and if there aren't enough iterations to 7899 // execute the vectorized epilogue skip to the scalar part. 7900 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7901 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7902 LoopVectorPreHeader = 7903 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7904 LI, nullptr, "vec.epilog.ph"); 7905 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7906 VecEpilogueIterationCountCheck); 7907 7908 // Adjust the control flow taking the state info from the main loop 7909 // vectorization into account. 7910 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7911 "expected this to be saved from the previous pass."); 7912 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7913 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7914 7915 DT->changeImmediateDominator(LoopVectorPreHeader, 7916 EPI.MainLoopIterationCountCheck); 7917 7918 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7919 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7920 7921 if (EPI.SCEVSafetyCheck) 7922 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7923 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7924 if (EPI.MemSafetyCheck) 7925 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7926 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7927 7928 DT->changeImmediateDominator( 7929 VecEpilogueIterationCountCheck, 7930 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7931 7932 DT->changeImmediateDominator(LoopScalarPreHeader, 7933 EPI.EpilogueIterationCountCheck); 7934 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7935 // If there is an epilogue which must run, there's no edge from the 7936 // middle block to exit blocks and thus no need to update the immediate 7937 // dominator of the exit blocks. 7938 DT->changeImmediateDominator(LoopExitBlock, 7939 EPI.EpilogueIterationCountCheck); 7940 7941 // Keep track of bypass blocks, as they feed start values to the induction 7942 // phis in the scalar loop preheader. 7943 if (EPI.SCEVSafetyCheck) 7944 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7945 if (EPI.MemSafetyCheck) 7946 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7947 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7948 7949 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7950 // merge control-flow from the latch block and the middle block. Update the 7951 // incoming values here and move the Phi into the preheader. 7952 SmallVector<PHINode *, 4> PhisInBlock; 7953 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7954 PhisInBlock.push_back(&Phi); 7955 7956 for (PHINode *Phi : PhisInBlock) { 7957 Phi->replaceIncomingBlockWith( 7958 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7959 VecEpilogueIterationCountCheck); 7960 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7961 if (EPI.SCEVSafetyCheck) 7962 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7963 if (EPI.MemSafetyCheck) 7964 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7965 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7966 } 7967 7968 // Generate a resume induction for the vector epilogue and put it in the 7969 // vector epilogue preheader 7970 Type *IdxTy = Legal->getWidestInductionType(); 7971 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7972 LoopVectorPreHeader->getFirstNonPHI()); 7973 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7974 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7975 EPI.MainLoopIterationCountCheck); 7976 7977 // Generate induction resume values. These variables save the new starting 7978 // indexes for the scalar loop. They are used to test if there are any tail 7979 // iterations left once the vector loop has completed. 7980 // Note that when the vectorized epilogue is skipped due to iteration count 7981 // check, then the resume value for the induction variable comes from 7982 // the trip count of the main vector loop, hence passing the AdditionalBypass 7983 // argument. 7984 createInductionResumeValues({VecEpilogueIterationCountCheck, 7985 EPI.VectorTripCount} /* AdditionalBypass */); 7986 7987 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7988 } 7989 7990 BasicBlock * 7991 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7992 BasicBlock *Bypass, BasicBlock *Insert) { 7993 7994 assert(EPI.TripCount && 7995 "Expected trip count to have been safed in the first pass."); 7996 assert( 7997 (!isa<Instruction>(EPI.TripCount) || 7998 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7999 "saved trip count does not dominate insertion point."); 8000 Value *TC = EPI.TripCount; 8001 IRBuilder<> Builder(Insert->getTerminator()); 8002 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8003 8004 // Generate code to check if the loop's trip count is less than VF * UF of the 8005 // vector epilogue loop. 8006 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8007 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8008 8009 Value *CheckMinIters = 8010 Builder.CreateICmp(P, Count, 8011 createStepForVF(Builder, Count->getType(), 8012 EPI.EpilogueVF, EPI.EpilogueUF), 8013 "min.epilog.iters.check"); 8014 8015 ReplaceInstWithInst( 8016 Insert->getTerminator(), 8017 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8018 8019 LoopBypassBlocks.push_back(Insert); 8020 return Insert; 8021 } 8022 8023 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8024 LLVM_DEBUG({ 8025 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8026 << "Epilogue Loop VF:" << EPI.EpilogueVF 8027 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8028 }); 8029 } 8030 8031 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8032 DEBUG_WITH_TYPE(VerboseDebug, { 8033 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8034 }); 8035 } 8036 8037 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8038 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8039 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8040 bool PredicateAtRangeStart = Predicate(Range.Start); 8041 8042 for (ElementCount TmpVF = Range.Start * 2; 8043 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8044 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8045 Range.End = TmpVF; 8046 break; 8047 } 8048 8049 return PredicateAtRangeStart; 8050 } 8051 8052 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8053 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8054 /// of VF's starting at a given VF and extending it as much as possible. Each 8055 /// vectorization decision can potentially shorten this sub-range during 8056 /// buildVPlan(). 8057 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8058 ElementCount MaxVF) { 8059 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8060 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8061 VFRange SubRange = {VF, MaxVFPlusOne}; 8062 VPlans.push_back(buildVPlan(SubRange)); 8063 VF = SubRange.End; 8064 } 8065 } 8066 8067 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8068 VPlanPtr &Plan) { 8069 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8070 8071 // Look for cached value. 8072 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8073 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8074 if (ECEntryIt != EdgeMaskCache.end()) 8075 return ECEntryIt->second; 8076 8077 VPValue *SrcMask = createBlockInMask(Src, Plan); 8078 8079 // The terminator has to be a branch inst! 8080 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8081 assert(BI && "Unexpected terminator found"); 8082 8083 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8084 return EdgeMaskCache[Edge] = SrcMask; 8085 8086 // If source is an exiting block, we know the exit edge is dynamically dead 8087 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8088 // adding uses of an otherwise potentially dead instruction. 8089 if (OrigLoop->isLoopExiting(Src)) 8090 return EdgeMaskCache[Edge] = SrcMask; 8091 8092 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8093 assert(EdgeMask && "No Edge Mask found for condition"); 8094 8095 if (BI->getSuccessor(0) != Dst) 8096 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8097 8098 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8099 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8100 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8101 // The select version does not introduce new UB if SrcMask is false and 8102 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8103 VPValue *False = Plan->getOrAddVPValue( 8104 ConstantInt::getFalse(BI->getCondition()->getType())); 8105 EdgeMask = 8106 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8107 } 8108 8109 return EdgeMaskCache[Edge] = EdgeMask; 8110 } 8111 8112 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8113 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8114 8115 // Look for cached value. 8116 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8117 if (BCEntryIt != BlockMaskCache.end()) 8118 return BCEntryIt->second; 8119 8120 // All-one mask is modelled as no-mask following the convention for masked 8121 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8122 VPValue *BlockMask = nullptr; 8123 8124 if (OrigLoop->getHeader() == BB) { 8125 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8126 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8127 8128 // Introduce the early-exit compare IV <= BTC to form header block mask. 8129 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8130 // constructing the desired canonical IV in the header block as its first 8131 // non-phi instructions. 8132 assert(CM.foldTailByMasking() && "must fold the tail"); 8133 VPBasicBlock *HeaderVPBB = 8134 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8135 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8136 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8137 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8138 8139 VPBuilder::InsertPointGuard Guard(Builder); 8140 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8141 if (CM.TTI.emitGetActiveLaneMask()) { 8142 VPValue *TC = Plan->getOrCreateTripCount(); 8143 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8144 } else { 8145 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8146 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8147 } 8148 return BlockMaskCache[BB] = BlockMask; 8149 } 8150 8151 // This is the block mask. We OR all incoming edges. 8152 for (auto *Predecessor : predecessors(BB)) { 8153 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8154 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8155 return BlockMaskCache[BB] = EdgeMask; 8156 8157 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8158 BlockMask = EdgeMask; 8159 continue; 8160 } 8161 8162 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8163 } 8164 8165 return BlockMaskCache[BB] = BlockMask; 8166 } 8167 8168 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8169 ArrayRef<VPValue *> Operands, 8170 VFRange &Range, 8171 VPlanPtr &Plan) { 8172 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8173 "Must be called with either a load or store"); 8174 8175 auto willWiden = [&](ElementCount VF) -> bool { 8176 if (VF.isScalar()) 8177 return false; 8178 LoopVectorizationCostModel::InstWidening Decision = 8179 CM.getWideningDecision(I, VF); 8180 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8181 "CM decision should be taken at this point."); 8182 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8183 return true; 8184 if (CM.isScalarAfterVectorization(I, VF) || 8185 CM.isProfitableToScalarize(I, VF)) 8186 return false; 8187 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8188 }; 8189 8190 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8191 return nullptr; 8192 8193 VPValue *Mask = nullptr; 8194 if (Legal->isMaskRequired(I)) 8195 Mask = createBlockInMask(I->getParent(), Plan); 8196 8197 // Determine if the pointer operand of the access is either consecutive or 8198 // reverse consecutive. 8199 LoopVectorizationCostModel::InstWidening Decision = 8200 CM.getWideningDecision(I, Range.Start); 8201 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8202 bool Consecutive = 8203 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8204 8205 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8206 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8207 Consecutive, Reverse); 8208 8209 StoreInst *Store = cast<StoreInst>(I); 8210 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8211 Mask, Consecutive, Reverse); 8212 } 8213 8214 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8215 /// insert a recipe to expand the step for the induction recipe. 8216 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8217 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8218 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8219 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8220 // Returns true if an instruction \p I should be scalarized instead of 8221 // vectorized for the chosen vectorization factor. 8222 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8223 return CM.isScalarAfterVectorization(I, VF) || 8224 CM.isProfitableToScalarize(I, VF); 8225 }; 8226 8227 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8228 [&](ElementCount VF) { 8229 // Returns true if we should generate a scalar version of \p IV. 8230 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8231 return true; 8232 auto isScalarInst = [&](User *U) -> bool { 8233 auto *I = cast<Instruction>(U); 8234 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8235 }; 8236 return any_of(PhiOrTrunc->users(), isScalarInst); 8237 }, 8238 Range); 8239 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8240 [&](ElementCount VF) { 8241 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8242 }, 8243 Range); 8244 assert(IndDesc.getStartValue() == 8245 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8246 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8247 "step must be loop invariant"); 8248 8249 VPValue *Step = 8250 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8251 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8252 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8253 NeedsScalarIV, !NeedsScalarIVOnly); 8254 } 8255 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8256 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8257 NeedsScalarIV, !NeedsScalarIVOnly); 8258 } 8259 8260 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8261 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8262 8263 // Check if this is an integer or fp induction. If so, build the recipe that 8264 // produces its scalar and vector values. 8265 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8266 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8267 *PSE.getSE(), *OrigLoop, Range); 8268 8269 // Check if this is pointer induction. If so, build the recipe for it. 8270 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8271 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8272 *PSE.getSE()); 8273 return nullptr; 8274 } 8275 8276 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8277 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8278 // Optimize the special case where the source is a constant integer 8279 // induction variable. Notice that we can only optimize the 'trunc' case 8280 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8281 // (c) other casts depend on pointer size. 8282 8283 // Determine whether \p K is a truncation based on an induction variable that 8284 // can be optimized. 8285 auto isOptimizableIVTruncate = 8286 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8287 return [=](ElementCount VF) -> bool { 8288 return CM.isOptimizableIVTruncate(K, VF); 8289 }; 8290 }; 8291 8292 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8293 isOptimizableIVTruncate(I), Range)) { 8294 8295 auto *Phi = cast<PHINode>(I->getOperand(0)); 8296 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8297 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8298 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8299 *PSE.getSE(), *OrigLoop, Range); 8300 } 8301 return nullptr; 8302 } 8303 8304 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8305 ArrayRef<VPValue *> Operands, 8306 VPlanPtr &Plan) { 8307 // If all incoming values are equal, the incoming VPValue can be used directly 8308 // instead of creating a new VPBlendRecipe. 8309 VPValue *FirstIncoming = Operands[0]; 8310 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8311 return FirstIncoming == Inc; 8312 })) { 8313 return Operands[0]; 8314 } 8315 8316 unsigned NumIncoming = Phi->getNumIncomingValues(); 8317 // For in-loop reductions, we do not need to create an additional select. 8318 VPValue *InLoopVal = nullptr; 8319 for (unsigned In = 0; In < NumIncoming; In++) { 8320 PHINode *PhiOp = 8321 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8322 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8323 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8324 InLoopVal = Operands[In]; 8325 } 8326 } 8327 8328 assert((!InLoopVal || NumIncoming == 2) && 8329 "Found an in-loop reduction for PHI with unexpected number of " 8330 "incoming values"); 8331 if (InLoopVal) 8332 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8333 8334 // We know that all PHIs in non-header blocks are converted into selects, so 8335 // we don't have to worry about the insertion order and we can just use the 8336 // builder. At this point we generate the predication tree. There may be 8337 // duplications since this is a simple recursive scan, but future 8338 // optimizations will clean it up. 8339 SmallVector<VPValue *, 2> OperandsWithMask; 8340 8341 for (unsigned In = 0; In < NumIncoming; In++) { 8342 VPValue *EdgeMask = 8343 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8344 assert((EdgeMask || NumIncoming == 1) && 8345 "Multiple predecessors with one having a full mask"); 8346 OperandsWithMask.push_back(Operands[In]); 8347 if (EdgeMask) 8348 OperandsWithMask.push_back(EdgeMask); 8349 } 8350 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8351 } 8352 8353 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8354 ArrayRef<VPValue *> Operands, 8355 VFRange &Range) const { 8356 8357 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8358 [this, CI](ElementCount VF) { 8359 return CM.isScalarWithPredication(CI, VF); 8360 }, 8361 Range); 8362 8363 if (IsPredicated) 8364 return nullptr; 8365 8366 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8367 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8368 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8369 ID == Intrinsic::pseudoprobe || 8370 ID == Intrinsic::experimental_noalias_scope_decl)) 8371 return nullptr; 8372 8373 auto willWiden = [&](ElementCount VF) -> bool { 8374 if (VF.isScalar()) 8375 return false; 8376 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8377 // The following case may be scalarized depending on the VF. 8378 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8379 // version of the instruction. 8380 // Is it beneficial to perform intrinsic call compared to lib call? 8381 bool NeedToScalarize = false; 8382 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8383 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8384 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8385 return UseVectorIntrinsic || !NeedToScalarize; 8386 }; 8387 8388 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8389 return nullptr; 8390 8391 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8392 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8393 } 8394 8395 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8396 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8397 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8398 // Instruction should be widened, unless it is scalar after vectorization, 8399 // scalarization is profitable or it is predicated. 8400 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8401 return CM.isScalarAfterVectorization(I, VF) || 8402 CM.isProfitableToScalarize(I, VF) || 8403 CM.isScalarWithPredication(I, VF); 8404 }; 8405 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8406 Range); 8407 } 8408 8409 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8410 ArrayRef<VPValue *> Operands) const { 8411 auto IsVectorizableOpcode = [](unsigned Opcode) { 8412 switch (Opcode) { 8413 case Instruction::Add: 8414 case Instruction::And: 8415 case Instruction::AShr: 8416 case Instruction::BitCast: 8417 case Instruction::FAdd: 8418 case Instruction::FCmp: 8419 case Instruction::FDiv: 8420 case Instruction::FMul: 8421 case Instruction::FNeg: 8422 case Instruction::FPExt: 8423 case Instruction::FPToSI: 8424 case Instruction::FPToUI: 8425 case Instruction::FPTrunc: 8426 case Instruction::FRem: 8427 case Instruction::FSub: 8428 case Instruction::ICmp: 8429 case Instruction::IntToPtr: 8430 case Instruction::LShr: 8431 case Instruction::Mul: 8432 case Instruction::Or: 8433 case Instruction::PtrToInt: 8434 case Instruction::SDiv: 8435 case Instruction::Select: 8436 case Instruction::SExt: 8437 case Instruction::Shl: 8438 case Instruction::SIToFP: 8439 case Instruction::SRem: 8440 case Instruction::Sub: 8441 case Instruction::Trunc: 8442 case Instruction::UDiv: 8443 case Instruction::UIToFP: 8444 case Instruction::URem: 8445 case Instruction::Xor: 8446 case Instruction::ZExt: 8447 case Instruction::Freeze: 8448 return true; 8449 } 8450 return false; 8451 }; 8452 8453 if (!IsVectorizableOpcode(I->getOpcode())) 8454 return nullptr; 8455 8456 // Success: widen this instruction. 8457 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8458 } 8459 8460 void VPRecipeBuilder::fixHeaderPhis() { 8461 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8462 for (VPHeaderPHIRecipe *R : PhisToFix) { 8463 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8464 VPRecipeBase *IncR = 8465 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8466 R->addOperand(IncR->getVPSingleValue()); 8467 } 8468 } 8469 8470 VPBasicBlock *VPRecipeBuilder::handleReplication( 8471 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8472 VPlanPtr &Plan) { 8473 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8474 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8475 Range); 8476 8477 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8478 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8479 Range); 8480 8481 // Even if the instruction is not marked as uniform, there are certain 8482 // intrinsic calls that can be effectively treated as such, so we check for 8483 // them here. Conservatively, we only do this for scalable vectors, since 8484 // for fixed-width VFs we can always fall back on full scalarization. 8485 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8486 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8487 case Intrinsic::assume: 8488 case Intrinsic::lifetime_start: 8489 case Intrinsic::lifetime_end: 8490 // For scalable vectors if one of the operands is variant then we still 8491 // want to mark as uniform, which will generate one instruction for just 8492 // the first lane of the vector. We can't scalarize the call in the same 8493 // way as for fixed-width vectors because we don't know how many lanes 8494 // there are. 8495 // 8496 // The reasons for doing it this way for scalable vectors are: 8497 // 1. For the assume intrinsic generating the instruction for the first 8498 // lane is still be better than not generating any at all. For 8499 // example, the input may be a splat across all lanes. 8500 // 2. For the lifetime start/end intrinsics the pointer operand only 8501 // does anything useful when the input comes from a stack object, 8502 // which suggests it should always be uniform. For non-stack objects 8503 // the effect is to poison the object, which still allows us to 8504 // remove the call. 8505 IsUniform = true; 8506 break; 8507 default: 8508 break; 8509 } 8510 } 8511 8512 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8513 IsUniform, IsPredicated); 8514 setRecipe(I, Recipe); 8515 Plan->addVPValue(I, Recipe); 8516 8517 // Find if I uses a predicated instruction. If so, it will use its scalar 8518 // value. Avoid hoisting the insert-element which packs the scalar value into 8519 // a vector value, as that happens iff all users use the vector value. 8520 for (VPValue *Op : Recipe->operands()) { 8521 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8522 if (!PredR) 8523 continue; 8524 auto *RepR = 8525 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8526 assert(RepR->isPredicated() && 8527 "expected Replicate recipe to be predicated"); 8528 RepR->setAlsoPack(false); 8529 } 8530 8531 // Finalize the recipe for Instr, first if it is not predicated. 8532 if (!IsPredicated) { 8533 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8534 VPBB->appendRecipe(Recipe); 8535 return VPBB; 8536 } 8537 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8538 8539 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8540 assert(SingleSucc && "VPBB must have a single successor when handling " 8541 "predicated replication."); 8542 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8543 // Record predicated instructions for above packing optimizations. 8544 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8545 VPBlockUtils::insertBlockAfter(Region, VPBB); 8546 auto *RegSucc = new VPBasicBlock(); 8547 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8548 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8549 return RegSucc; 8550 } 8551 8552 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8553 VPRecipeBase *PredRecipe, 8554 VPlanPtr &Plan) { 8555 // Instructions marked for predication are replicated and placed under an 8556 // if-then construct to prevent side-effects. 8557 8558 // Generate recipes to compute the block mask for this region. 8559 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8560 8561 // Build the triangular if-then region. 8562 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8563 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8564 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8565 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8566 auto *PHIRecipe = Instr->getType()->isVoidTy() 8567 ? nullptr 8568 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8569 if (PHIRecipe) { 8570 Plan->removeVPValueFor(Instr); 8571 Plan->addVPValue(Instr, PHIRecipe); 8572 } 8573 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8574 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8575 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8576 8577 // Note: first set Entry as region entry and then connect successors starting 8578 // from it in order, to propagate the "parent" of each VPBasicBlock. 8579 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8580 VPBlockUtils::connectBlocks(Pred, Exit); 8581 8582 return Region; 8583 } 8584 8585 VPRecipeOrVPValueTy 8586 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8587 ArrayRef<VPValue *> Operands, 8588 VFRange &Range, VPlanPtr &Plan) { 8589 // First, check for specific widening recipes that deal with calls, memory 8590 // operations, inductions and Phi nodes. 8591 if (auto *CI = dyn_cast<CallInst>(Instr)) 8592 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8593 8594 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8595 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8596 8597 VPRecipeBase *Recipe; 8598 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8599 if (Phi->getParent() != OrigLoop->getHeader()) 8600 return tryToBlend(Phi, Operands, Plan); 8601 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8602 return toVPRecipeResult(Recipe); 8603 8604 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8605 assert((Legal->isReductionVariable(Phi) || 8606 Legal->isFirstOrderRecurrence(Phi)) && 8607 "can only widen reductions and first-order recurrences here"); 8608 VPValue *StartV = Operands[0]; 8609 if (Legal->isReductionVariable(Phi)) { 8610 const RecurrenceDescriptor &RdxDesc = 8611 Legal->getReductionVars().find(Phi)->second; 8612 assert(RdxDesc.getRecurrenceStartValue() == 8613 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8614 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8615 CM.isInLoopReduction(Phi), 8616 CM.useOrderedReductions(RdxDesc)); 8617 } else { 8618 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8619 } 8620 8621 // Record the incoming value from the backedge, so we can add the incoming 8622 // value from the backedge after all recipes have been created. 8623 recordRecipeOf(cast<Instruction>( 8624 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8625 PhisToFix.push_back(PhiRecipe); 8626 return toVPRecipeResult(PhiRecipe); 8627 } 8628 8629 if (isa<TruncInst>(Instr) && 8630 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8631 Range, *Plan))) 8632 return toVPRecipeResult(Recipe); 8633 8634 if (!shouldWiden(Instr, Range)) 8635 return nullptr; 8636 8637 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8638 return toVPRecipeResult(new VPWidenGEPRecipe( 8639 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8640 8641 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8642 bool InvariantCond = 8643 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8644 return toVPRecipeResult(new VPWidenSelectRecipe( 8645 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8646 } 8647 8648 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8649 } 8650 8651 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8652 ElementCount MaxVF) { 8653 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8654 8655 // Collect instructions from the original loop that will become trivially dead 8656 // in the vectorized loop. We don't need to vectorize these instructions. For 8657 // example, original induction update instructions can become dead because we 8658 // separately emit induction "steps" when generating code for the new loop. 8659 // Similarly, we create a new latch condition when setting up the structure 8660 // of the new loop, so the old one can become dead. 8661 SmallPtrSet<Instruction *, 4> DeadInstructions; 8662 collectTriviallyDeadInstructions(DeadInstructions); 8663 8664 // Add assume instructions we need to drop to DeadInstructions, to prevent 8665 // them from being added to the VPlan. 8666 // TODO: We only need to drop assumes in blocks that get flattend. If the 8667 // control flow is preserved, we should keep them. 8668 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8669 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8670 8671 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8672 // Dead instructions do not need sinking. Remove them from SinkAfter. 8673 for (Instruction *I : DeadInstructions) 8674 SinkAfter.erase(I); 8675 8676 // Cannot sink instructions after dead instructions (there won't be any 8677 // recipes for them). Instead, find the first non-dead previous instruction. 8678 for (auto &P : Legal->getSinkAfter()) { 8679 Instruction *SinkTarget = P.second; 8680 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8681 (void)FirstInst; 8682 while (DeadInstructions.contains(SinkTarget)) { 8683 assert( 8684 SinkTarget != FirstInst && 8685 "Must find a live instruction (at least the one feeding the " 8686 "first-order recurrence PHI) before reaching beginning of the block"); 8687 SinkTarget = SinkTarget->getPrevNode(); 8688 assert(SinkTarget != P.first && 8689 "sink source equals target, no sinking required"); 8690 } 8691 P.second = SinkTarget; 8692 } 8693 8694 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8695 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8696 VFRange SubRange = {VF, MaxVFPlusOne}; 8697 VPlans.push_back( 8698 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8699 VF = SubRange.End; 8700 } 8701 } 8702 8703 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8704 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8705 // BranchOnCount VPInstruction to the latch. 8706 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8707 bool HasNUW, bool IsVPlanNative) { 8708 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8709 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8710 8711 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8712 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8713 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8714 Header->insert(CanonicalIVPHI, Header->begin()); 8715 8716 auto *CanonicalIVIncrement = 8717 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8718 : VPInstruction::CanonicalIVIncrement, 8719 {CanonicalIVPHI}, DL); 8720 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8721 8722 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8723 if (IsVPlanNative) 8724 EB->setCondBit(nullptr); 8725 EB->appendRecipe(CanonicalIVIncrement); 8726 8727 auto *BranchOnCount = 8728 new VPInstruction(VPInstruction::BranchOnCount, 8729 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8730 EB->appendRecipe(BranchOnCount); 8731 } 8732 8733 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8734 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8735 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8736 8737 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8738 8739 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8740 8741 // --------------------------------------------------------------------------- 8742 // Pre-construction: record ingredients whose recipes we'll need to further 8743 // process after constructing the initial VPlan. 8744 // --------------------------------------------------------------------------- 8745 8746 // Mark instructions we'll need to sink later and their targets as 8747 // ingredients whose recipe we'll need to record. 8748 for (auto &Entry : SinkAfter) { 8749 RecipeBuilder.recordRecipeOf(Entry.first); 8750 RecipeBuilder.recordRecipeOf(Entry.second); 8751 } 8752 for (auto &Reduction : CM.getInLoopReductionChains()) { 8753 PHINode *Phi = Reduction.first; 8754 RecurKind Kind = 8755 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8756 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8757 8758 RecipeBuilder.recordRecipeOf(Phi); 8759 for (auto &R : ReductionOperations) { 8760 RecipeBuilder.recordRecipeOf(R); 8761 // For min/max reductions, where we have a pair of icmp/select, we also 8762 // need to record the ICmp recipe, so it can be removed later. 8763 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8764 "Only min/max recurrences allowed for inloop reductions"); 8765 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8766 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8767 } 8768 } 8769 8770 // For each interleave group which is relevant for this (possibly trimmed) 8771 // Range, add it to the set of groups to be later applied to the VPlan and add 8772 // placeholders for its members' Recipes which we'll be replacing with a 8773 // single VPInterleaveRecipe. 8774 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8775 auto applyIG = [IG, this](ElementCount VF) -> bool { 8776 return (VF.isVector() && // Query is illegal for VF == 1 8777 CM.getWideningDecision(IG->getInsertPos(), VF) == 8778 LoopVectorizationCostModel::CM_Interleave); 8779 }; 8780 if (!getDecisionAndClampRange(applyIG, Range)) 8781 continue; 8782 InterleaveGroups.insert(IG); 8783 for (unsigned i = 0; i < IG->getFactor(); i++) 8784 if (Instruction *Member = IG->getMember(i)) 8785 RecipeBuilder.recordRecipeOf(Member); 8786 }; 8787 8788 // --------------------------------------------------------------------------- 8789 // Build initial VPlan: Scan the body of the loop in a topological order to 8790 // visit each basic block after having visited its predecessor basic blocks. 8791 // --------------------------------------------------------------------------- 8792 8793 // Create initial VPlan skeleton, starting with a block for the pre-header, 8794 // followed by a region for the vector loop, followed by the middle block. The 8795 // skeleton vector loop region contains a header and latch block. 8796 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8797 auto Plan = std::make_unique<VPlan>(Preheader); 8798 8799 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8800 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8801 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8802 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8803 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8804 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8805 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8806 8807 Instruction *DLInst = 8808 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8809 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8810 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8811 !CM.foldTailByMasking(), false); 8812 8813 // Scan the body of the loop in a topological order to visit each basic block 8814 // after having visited its predecessor basic blocks. 8815 LoopBlocksDFS DFS(OrigLoop); 8816 DFS.perform(LI); 8817 8818 VPBasicBlock *VPBB = HeaderVPBB; 8819 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8820 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8821 // Relevant instructions from basic block BB will be grouped into VPRecipe 8822 // ingredients and fill a new VPBasicBlock. 8823 unsigned VPBBsForBB = 0; 8824 if (VPBB != HeaderVPBB) 8825 VPBB->setName(BB->getName()); 8826 Builder.setInsertPoint(VPBB); 8827 8828 // Introduce each ingredient into VPlan. 8829 // TODO: Model and preserve debug intrinsics in VPlan. 8830 for (Instruction &I : BB->instructionsWithoutDebug()) { 8831 Instruction *Instr = &I; 8832 8833 // First filter out irrelevant instructions, to ensure no recipes are 8834 // built for them. 8835 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8836 continue; 8837 8838 SmallVector<VPValue *, 4> Operands; 8839 auto *Phi = dyn_cast<PHINode>(Instr); 8840 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8841 Operands.push_back(Plan->getOrAddVPValue( 8842 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8843 } else { 8844 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8845 Operands = {OpRange.begin(), OpRange.end()}; 8846 } 8847 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8848 Instr, Operands, Range, Plan)) { 8849 // If Instr can be simplified to an existing VPValue, use it. 8850 if (RecipeOrValue.is<VPValue *>()) { 8851 auto *VPV = RecipeOrValue.get<VPValue *>(); 8852 Plan->addVPValue(Instr, VPV); 8853 // If the re-used value is a recipe, register the recipe for the 8854 // instruction, in case the recipe for Instr needs to be recorded. 8855 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8856 RecipeBuilder.setRecipe(Instr, R); 8857 continue; 8858 } 8859 // Otherwise, add the new recipe. 8860 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8861 for (auto *Def : Recipe->definedValues()) { 8862 auto *UV = Def->getUnderlyingValue(); 8863 Plan->addVPValue(UV, Def); 8864 } 8865 8866 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8867 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8868 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8869 // of the header block. That can happen for truncates of induction 8870 // variables. Those recipes are moved to the phi section of the header 8871 // block after applying SinkAfter, which relies on the original 8872 // position of the trunc. 8873 assert(isa<TruncInst>(Instr)); 8874 InductionsToMove.push_back( 8875 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8876 } 8877 RecipeBuilder.setRecipe(Instr, Recipe); 8878 VPBB->appendRecipe(Recipe); 8879 continue; 8880 } 8881 8882 // Invariant stores inside loop will be deleted and a single store 8883 // with the final reduction value will be added to the exit block 8884 StoreInst *SI; 8885 if ((SI = dyn_cast<StoreInst>(&I)) && 8886 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8887 continue; 8888 8889 // Otherwise, if all widening options failed, Instruction is to be 8890 // replicated. This may create a successor for VPBB. 8891 VPBasicBlock *NextVPBB = 8892 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8893 if (NextVPBB != VPBB) { 8894 VPBB = NextVPBB; 8895 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8896 : ""); 8897 } 8898 } 8899 8900 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8901 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8902 } 8903 8904 HeaderVPBB->setName("vector.body"); 8905 8906 // Fold the last, empty block into its predecessor. 8907 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8908 assert(VPBB && "expected to fold last (empty) block"); 8909 // After here, VPBB should not be used. 8910 VPBB = nullptr; 8911 8912 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8913 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8914 "entry block must be set to a VPRegionBlock having a non-empty entry " 8915 "VPBasicBlock"); 8916 RecipeBuilder.fixHeaderPhis(); 8917 8918 // --------------------------------------------------------------------------- 8919 // Transform initial VPlan: Apply previously taken decisions, in order, to 8920 // bring the VPlan to its final state. 8921 // --------------------------------------------------------------------------- 8922 8923 // Apply Sink-After legal constraints. 8924 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8925 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8926 if (Region && Region->isReplicator()) { 8927 assert(Region->getNumSuccessors() == 1 && 8928 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8929 assert(R->getParent()->size() == 1 && 8930 "A recipe in an original replicator region must be the only " 8931 "recipe in its block"); 8932 return Region; 8933 } 8934 return nullptr; 8935 }; 8936 for (auto &Entry : SinkAfter) { 8937 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8938 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8939 8940 auto *TargetRegion = GetReplicateRegion(Target); 8941 auto *SinkRegion = GetReplicateRegion(Sink); 8942 if (!SinkRegion) { 8943 // If the sink source is not a replicate region, sink the recipe directly. 8944 if (TargetRegion) { 8945 // The target is in a replication region, make sure to move Sink to 8946 // the block after it, not into the replication region itself. 8947 VPBasicBlock *NextBlock = 8948 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8949 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8950 } else 8951 Sink->moveAfter(Target); 8952 continue; 8953 } 8954 8955 // The sink source is in a replicate region. Unhook the region from the CFG. 8956 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8957 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8958 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8959 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8960 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8961 8962 if (TargetRegion) { 8963 // The target recipe is also in a replicate region, move the sink region 8964 // after the target region. 8965 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8966 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8967 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8968 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8969 } else { 8970 // The sink source is in a replicate region, we need to move the whole 8971 // replicate region, which should only contain a single recipe in the 8972 // main block. 8973 auto *SplitBlock = 8974 Target->getParent()->splitAt(std::next(Target->getIterator())); 8975 8976 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8977 8978 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8979 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8980 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8981 } 8982 } 8983 8984 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8985 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8986 8987 // Now that sink-after is done, move induction recipes for optimized truncates 8988 // to the phi section of the header block. 8989 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8990 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8991 8992 // Adjust the recipes for any inloop reductions. 8993 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8994 RecipeBuilder, Range.Start); 8995 8996 // Introduce a recipe to combine the incoming and previous values of a 8997 // first-order recurrence. 8998 for (VPRecipeBase &R : 8999 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9000 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9001 if (!RecurPhi) 9002 continue; 9003 9004 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9005 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9006 auto *Region = GetReplicateRegion(PrevRecipe); 9007 if (Region) 9008 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9009 if (Region || PrevRecipe->isPhi()) 9010 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9011 else 9012 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9013 9014 auto *RecurSplice = cast<VPInstruction>( 9015 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9016 {RecurPhi, RecurPhi->getBackedgeValue()})); 9017 9018 RecurPhi->replaceAllUsesWith(RecurSplice); 9019 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9020 // all users. 9021 RecurSplice->setOperand(0, RecurPhi); 9022 } 9023 9024 // Interleave memory: for each Interleave Group we marked earlier as relevant 9025 // for this VPlan, replace the Recipes widening its memory instructions with a 9026 // single VPInterleaveRecipe at its insertion point. 9027 for (auto IG : InterleaveGroups) { 9028 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9029 RecipeBuilder.getRecipe(IG->getInsertPos())); 9030 SmallVector<VPValue *, 4> StoredValues; 9031 for (unsigned i = 0; i < IG->getFactor(); ++i) 9032 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9033 auto *StoreR = 9034 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9035 StoredValues.push_back(StoreR->getStoredValue()); 9036 } 9037 9038 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9039 Recipe->getMask()); 9040 VPIG->insertBefore(Recipe); 9041 unsigned J = 0; 9042 for (unsigned i = 0; i < IG->getFactor(); ++i) 9043 if (Instruction *Member = IG->getMember(i)) { 9044 if (!Member->getType()->isVoidTy()) { 9045 VPValue *OriginalV = Plan->getVPValue(Member); 9046 Plan->removeVPValueFor(Member); 9047 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9048 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9049 J++; 9050 } 9051 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9052 } 9053 } 9054 9055 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9056 // in ways that accessing values using original IR values is incorrect. 9057 Plan->disableValue2VPValue(); 9058 9059 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9060 VPlanTransforms::sinkScalarOperands(*Plan); 9061 VPlanTransforms::mergeReplicateRegions(*Plan); 9062 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9063 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9064 9065 std::string PlanName; 9066 raw_string_ostream RSO(PlanName); 9067 ElementCount VF = Range.Start; 9068 Plan->addVF(VF); 9069 RSO << "Initial VPlan for VF={" << VF; 9070 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9071 Plan->addVF(VF); 9072 RSO << "," << VF; 9073 } 9074 RSO << "},UF>=1"; 9075 RSO.flush(); 9076 Plan->setName(PlanName); 9077 9078 // Fold Exit block into its predecessor if possible. 9079 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9080 // VPBasicBlock as exit. 9081 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9082 9083 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9084 return Plan; 9085 } 9086 9087 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9088 // Outer loop handling: They may require CFG and instruction level 9089 // transformations before even evaluating whether vectorization is profitable. 9090 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9091 // the vectorization pipeline. 9092 assert(!OrigLoop->isInnermost()); 9093 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9094 9095 // Create new empty VPlan 9096 auto Plan = std::make_unique<VPlan>(); 9097 9098 // Build hierarchical CFG 9099 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9100 HCFGBuilder.buildHierarchicalCFG(); 9101 9102 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9103 VF *= 2) 9104 Plan->addVF(VF); 9105 9106 if (EnableVPlanPredication) { 9107 VPlanPredicator VPP(*Plan); 9108 VPP.predicate(); 9109 9110 // Avoid running transformation to recipes until masked code generation in 9111 // VPlan-native path is in place. 9112 return Plan; 9113 } 9114 9115 SmallPtrSet<Instruction *, 1> DeadInstructions; 9116 VPlanTransforms::VPInstructionsToVPRecipes( 9117 OrigLoop, Plan, 9118 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9119 DeadInstructions, *PSE.getSE()); 9120 9121 // Update plan to be compatible with the inner loop vectorizer for 9122 // code-generation. 9123 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion(); 9124 VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock(); 9125 VPBasicBlock *Exit = LoopRegion->getExitBasicBlock(); 9126 VPBlockBase *Latch = Exit->getSinglePredecessor(); 9127 VPBlockBase *Header = Preheader->getSingleSuccessor(); 9128 9129 // 1. Move preheader block out of main vector loop. 9130 Preheader->setParent(LoopRegion->getParent()); 9131 VPBlockUtils::disconnectBlocks(Preheader, Header); 9132 VPBlockUtils::connectBlocks(Preheader, LoopRegion); 9133 Plan->setEntry(Preheader); 9134 9135 // 2. Disconnect backedge and exit block. 9136 VPBlockUtils::disconnectBlocks(Latch, Header); 9137 VPBlockUtils::disconnectBlocks(Latch, Exit); 9138 9139 // 3. Update entry and exit of main vector loop region. 9140 LoopRegion->setEntry(Header); 9141 LoopRegion->setExit(Latch); 9142 9143 // 4. Remove exit block. 9144 delete Exit; 9145 9146 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9147 true, true); 9148 return Plan; 9149 } 9150 9151 // Adjust the recipes for reductions. For in-loop reductions the chain of 9152 // instructions leading from the loop exit instr to the phi need to be converted 9153 // to reductions, with one operand being vector and the other being the scalar 9154 // reduction chain. For other reductions, a select is introduced between the phi 9155 // and live-out recipes when folding the tail. 9156 void LoopVectorizationPlanner::adjustRecipesForReductions( 9157 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9158 ElementCount MinVF) { 9159 for (auto &Reduction : CM.getInLoopReductionChains()) { 9160 PHINode *Phi = Reduction.first; 9161 const RecurrenceDescriptor &RdxDesc = 9162 Legal->getReductionVars().find(Phi)->second; 9163 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9164 9165 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9166 continue; 9167 9168 // ReductionOperations are orders top-down from the phi's use to the 9169 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9170 // which of the two operands will remain scalar and which will be reduced. 9171 // For minmax the chain will be the select instructions. 9172 Instruction *Chain = Phi; 9173 for (Instruction *R : ReductionOperations) { 9174 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9175 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9176 9177 VPValue *ChainOp = Plan->getVPValue(Chain); 9178 unsigned FirstOpId; 9179 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9180 "Only min/max recurrences allowed for inloop reductions"); 9181 // Recognize a call to the llvm.fmuladd intrinsic. 9182 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9183 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9184 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9185 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9186 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9187 "Expected to replace a VPWidenSelectSC"); 9188 FirstOpId = 1; 9189 } else { 9190 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9191 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9192 "Expected to replace a VPWidenSC"); 9193 FirstOpId = 0; 9194 } 9195 unsigned VecOpId = 9196 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9197 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9198 9199 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9200 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9201 : nullptr; 9202 9203 if (IsFMulAdd) { 9204 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9205 // need to create an fmul recipe to use as the vector operand for the 9206 // fadd reduction. 9207 VPInstruction *FMulRecipe = new VPInstruction( 9208 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9209 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9210 WidenRecipe->getParent()->insert(FMulRecipe, 9211 WidenRecipe->getIterator()); 9212 VecOp = FMulRecipe; 9213 } 9214 VPReductionRecipe *RedRecipe = 9215 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9216 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9217 Plan->removeVPValueFor(R); 9218 Plan->addVPValue(R, RedRecipe); 9219 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9220 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9221 WidenRecipe->eraseFromParent(); 9222 9223 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9224 VPRecipeBase *CompareRecipe = 9225 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9226 assert(isa<VPWidenRecipe>(CompareRecipe) && 9227 "Expected to replace a VPWidenSC"); 9228 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9229 "Expected no remaining users"); 9230 CompareRecipe->eraseFromParent(); 9231 } 9232 Chain = R; 9233 } 9234 } 9235 9236 // If tail is folded by masking, introduce selects between the phi 9237 // and the live-out instruction of each reduction, at the beginning of the 9238 // dedicated latch block. 9239 if (CM.foldTailByMasking()) { 9240 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9241 for (VPRecipeBase &R : 9242 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9243 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9244 if (!PhiR || PhiR->isInLoop()) 9245 continue; 9246 VPValue *Cond = 9247 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9248 VPValue *Red = PhiR->getBackedgeValue(); 9249 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9250 "reduction recipe must be defined before latch"); 9251 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9252 } 9253 } 9254 } 9255 9256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9257 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9258 VPSlotTracker &SlotTracker) const { 9259 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9260 IG->getInsertPos()->printAsOperand(O, false); 9261 O << ", "; 9262 getAddr()->printAsOperand(O, SlotTracker); 9263 VPValue *Mask = getMask(); 9264 if (Mask) { 9265 O << ", "; 9266 Mask->printAsOperand(O, SlotTracker); 9267 } 9268 9269 unsigned OpIdx = 0; 9270 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9271 if (!IG->getMember(i)) 9272 continue; 9273 if (getNumStoreOperands() > 0) { 9274 O << "\n" << Indent << " store "; 9275 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9276 O << " to index " << i; 9277 } else { 9278 O << "\n" << Indent << " "; 9279 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9280 O << " = load from index " << i; 9281 } 9282 ++OpIdx; 9283 } 9284 } 9285 #endif 9286 9287 void VPWidenCallRecipe::execute(VPTransformState &State) { 9288 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9289 *this, State); 9290 } 9291 9292 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9293 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9294 State.ILV->setDebugLocFromInst(&I); 9295 9296 // The condition can be loop invariant but still defined inside the 9297 // loop. This means that we can't just use the original 'cond' value. 9298 // We have to take the 'vectorized' value and pick the first lane. 9299 // Instcombine will make this a no-op. 9300 auto *InvarCond = 9301 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9302 9303 for (unsigned Part = 0; Part < State.UF; ++Part) { 9304 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9305 Value *Op0 = State.get(getOperand(1), Part); 9306 Value *Op1 = State.get(getOperand(2), Part); 9307 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9308 State.set(this, Sel, Part); 9309 State.ILV->addMetadata(Sel, &I); 9310 } 9311 } 9312 9313 void VPWidenRecipe::execute(VPTransformState &State) { 9314 auto &I = *cast<Instruction>(getUnderlyingValue()); 9315 auto &Builder = State.Builder; 9316 switch (I.getOpcode()) { 9317 case Instruction::Call: 9318 case Instruction::Br: 9319 case Instruction::PHI: 9320 case Instruction::GetElementPtr: 9321 case Instruction::Select: 9322 llvm_unreachable("This instruction is handled by a different recipe."); 9323 case Instruction::UDiv: 9324 case Instruction::SDiv: 9325 case Instruction::SRem: 9326 case Instruction::URem: 9327 case Instruction::Add: 9328 case Instruction::FAdd: 9329 case Instruction::Sub: 9330 case Instruction::FSub: 9331 case Instruction::FNeg: 9332 case Instruction::Mul: 9333 case Instruction::FMul: 9334 case Instruction::FDiv: 9335 case Instruction::FRem: 9336 case Instruction::Shl: 9337 case Instruction::LShr: 9338 case Instruction::AShr: 9339 case Instruction::And: 9340 case Instruction::Or: 9341 case Instruction::Xor: { 9342 // Just widen unops and binops. 9343 State.ILV->setDebugLocFromInst(&I); 9344 9345 for (unsigned Part = 0; Part < State.UF; ++Part) { 9346 SmallVector<Value *, 2> Ops; 9347 for (VPValue *VPOp : operands()) 9348 Ops.push_back(State.get(VPOp, Part)); 9349 9350 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9351 9352 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9353 VecOp->copyIRFlags(&I); 9354 9355 // If the instruction is vectorized and was in a basic block that needed 9356 // predication, we can't propagate poison-generating flags (nuw/nsw, 9357 // exact, etc.). The control flow has been linearized and the 9358 // instruction is no longer guarded by the predicate, which could make 9359 // the flag properties to no longer hold. 9360 if (State.MayGeneratePoisonRecipes.contains(this)) 9361 VecOp->dropPoisonGeneratingFlags(); 9362 } 9363 9364 // Use this vector value for all users of the original instruction. 9365 State.set(this, V, Part); 9366 State.ILV->addMetadata(V, &I); 9367 } 9368 9369 break; 9370 } 9371 case Instruction::Freeze: { 9372 State.ILV->setDebugLocFromInst(&I); 9373 9374 for (unsigned Part = 0; Part < State.UF; ++Part) { 9375 Value *Op = State.get(getOperand(0), Part); 9376 9377 Value *Freeze = Builder.CreateFreeze(Op); 9378 State.set(this, Freeze, Part); 9379 } 9380 break; 9381 } 9382 case Instruction::ICmp: 9383 case Instruction::FCmp: { 9384 // Widen compares. Generate vector compares. 9385 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9386 auto *Cmp = cast<CmpInst>(&I); 9387 State.ILV->setDebugLocFromInst(Cmp); 9388 for (unsigned Part = 0; Part < State.UF; ++Part) { 9389 Value *A = State.get(getOperand(0), Part); 9390 Value *B = State.get(getOperand(1), Part); 9391 Value *C = nullptr; 9392 if (FCmp) { 9393 // Propagate fast math flags. 9394 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9395 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9396 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9397 } else { 9398 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9399 } 9400 State.set(this, C, Part); 9401 State.ILV->addMetadata(C, &I); 9402 } 9403 9404 break; 9405 } 9406 9407 case Instruction::ZExt: 9408 case Instruction::SExt: 9409 case Instruction::FPToUI: 9410 case Instruction::FPToSI: 9411 case Instruction::FPExt: 9412 case Instruction::PtrToInt: 9413 case Instruction::IntToPtr: 9414 case Instruction::SIToFP: 9415 case Instruction::UIToFP: 9416 case Instruction::Trunc: 9417 case Instruction::FPTrunc: 9418 case Instruction::BitCast: { 9419 auto *CI = cast<CastInst>(&I); 9420 State.ILV->setDebugLocFromInst(CI); 9421 9422 /// Vectorize casts. 9423 Type *DestTy = (State.VF.isScalar()) 9424 ? CI->getType() 9425 : VectorType::get(CI->getType(), State.VF); 9426 9427 for (unsigned Part = 0; Part < State.UF; ++Part) { 9428 Value *A = State.get(getOperand(0), Part); 9429 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9430 State.set(this, Cast, Part); 9431 State.ILV->addMetadata(Cast, &I); 9432 } 9433 break; 9434 } 9435 default: 9436 // This instruction is not vectorized by simple widening. 9437 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9438 llvm_unreachable("Unhandled instruction!"); 9439 } // end of switch. 9440 } 9441 9442 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9443 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9444 // Construct a vector GEP by widening the operands of the scalar GEP as 9445 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9446 // results in a vector of pointers when at least one operand of the GEP 9447 // is vector-typed. Thus, to keep the representation compact, we only use 9448 // vector-typed operands for loop-varying values. 9449 9450 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9451 // If we are vectorizing, but the GEP has only loop-invariant operands, 9452 // the GEP we build (by only using vector-typed operands for 9453 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9454 // produce a vector of pointers, we need to either arbitrarily pick an 9455 // operand to broadcast, or broadcast a clone of the original GEP. 9456 // Here, we broadcast a clone of the original. 9457 // 9458 // TODO: If at some point we decide to scalarize instructions having 9459 // loop-invariant operands, this special case will no longer be 9460 // required. We would add the scalarization decision to 9461 // collectLoopScalars() and teach getVectorValue() to broadcast 9462 // the lane-zero scalar value. 9463 auto *Clone = State.Builder.Insert(GEP->clone()); 9464 for (unsigned Part = 0; Part < State.UF; ++Part) { 9465 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9466 State.set(this, EntryPart, Part); 9467 State.ILV->addMetadata(EntryPart, GEP); 9468 } 9469 } else { 9470 // If the GEP has at least one loop-varying operand, we are sure to 9471 // produce a vector of pointers. But if we are only unrolling, we want 9472 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9473 // produce with the code below will be scalar (if VF == 1) or vector 9474 // (otherwise). Note that for the unroll-only case, we still maintain 9475 // values in the vector mapping with initVector, as we do for other 9476 // instructions. 9477 for (unsigned Part = 0; Part < State.UF; ++Part) { 9478 // The pointer operand of the new GEP. If it's loop-invariant, we 9479 // won't broadcast it. 9480 auto *Ptr = IsPtrLoopInvariant 9481 ? State.get(getOperand(0), VPIteration(0, 0)) 9482 : State.get(getOperand(0), Part); 9483 9484 // Collect all the indices for the new GEP. If any index is 9485 // loop-invariant, we won't broadcast it. 9486 SmallVector<Value *, 4> Indices; 9487 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9488 VPValue *Operand = getOperand(I); 9489 if (IsIndexLoopInvariant[I - 1]) 9490 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9491 else 9492 Indices.push_back(State.get(Operand, Part)); 9493 } 9494 9495 // If the GEP instruction is vectorized and was in a basic block that 9496 // needed predication, we can't propagate the poison-generating 'inbounds' 9497 // flag. The control flow has been linearized and the GEP is no longer 9498 // guarded by the predicate, which could make the 'inbounds' properties to 9499 // no longer hold. 9500 bool IsInBounds = 9501 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9502 9503 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9504 // but it should be a vector, otherwise. 9505 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr, 9506 Indices, "", IsInBounds); 9507 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9508 "NewGEP is not a pointer vector"); 9509 State.set(this, NewGEP, Part); 9510 State.ILV->addMetadata(NewGEP, GEP); 9511 } 9512 } 9513 } 9514 9515 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9516 assert(!State.Instance && "Int or FP induction being replicated."); 9517 9518 Value *Start = getStartValue()->getLiveInIRValue(); 9519 const InductionDescriptor &ID = getInductionDescriptor(); 9520 TruncInst *Trunc = getTruncInst(); 9521 IRBuilderBase &Builder = State.Builder; 9522 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9523 assert(State.VF.isVector() && "must have vector VF"); 9524 9525 // The value from the original loop to which we are mapping the new induction 9526 // variable. 9527 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9528 9529 // Fast-math-flags propagate from the original induction instruction. 9530 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9531 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9532 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9533 9534 // Now do the actual transformations, and start with fetching the step value. 9535 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9536 9537 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9538 "Expected either an induction phi-node or a truncate of it!"); 9539 9540 // Construct the initial value of the vector IV in the vector loop preheader 9541 auto CurrIP = Builder.saveIP(); 9542 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9543 Builder.SetInsertPoint(VectorPH->getTerminator()); 9544 if (isa<TruncInst>(EntryVal)) { 9545 assert(Start->getType()->isIntegerTy() && 9546 "Truncation requires an integer type"); 9547 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9548 Step = Builder.CreateTrunc(Step, TruncType); 9549 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9550 } 9551 9552 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9553 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9554 Value *SteppedStart = getStepVector( 9555 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9556 9557 // We create vector phi nodes for both integer and floating-point induction 9558 // variables. Here, we determine the kind of arithmetic we will perform. 9559 Instruction::BinaryOps AddOp; 9560 Instruction::BinaryOps MulOp; 9561 if (Step->getType()->isIntegerTy()) { 9562 AddOp = Instruction::Add; 9563 MulOp = Instruction::Mul; 9564 } else { 9565 AddOp = ID.getInductionOpcode(); 9566 MulOp = Instruction::FMul; 9567 } 9568 9569 // Multiply the vectorization factor by the step using integer or 9570 // floating-point arithmetic as appropriate. 9571 Type *StepType = Step->getType(); 9572 Value *RuntimeVF; 9573 if (Step->getType()->isFloatingPointTy()) 9574 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9575 else 9576 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9577 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9578 9579 // Create a vector splat to use in the induction update. 9580 // 9581 // FIXME: If the step is non-constant, we create the vector splat with 9582 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9583 // handle a constant vector splat. 9584 Value *SplatVF = isa<Constant>(Mul) 9585 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9586 : Builder.CreateVectorSplat(State.VF, Mul); 9587 Builder.restoreIP(CurrIP); 9588 9589 // We may need to add the step a number of times, depending on the unroll 9590 // factor. The last of those goes into the PHI. 9591 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9592 &*State.CFG.PrevBB->getFirstInsertionPt()); 9593 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9594 Instruction *LastInduction = VecInd; 9595 for (unsigned Part = 0; Part < State.UF; ++Part) { 9596 State.set(this, LastInduction, Part); 9597 9598 if (isa<TruncInst>(EntryVal)) 9599 State.ILV->addMetadata(LastInduction, EntryVal); 9600 9601 LastInduction = cast<Instruction>( 9602 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9603 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9604 } 9605 9606 LastInduction->setName("vec.ind.next"); 9607 VecInd->addIncoming(SteppedStart, VectorPH); 9608 // Add induction update using an incorrect block temporarily. The phi node 9609 // will be fixed after VPlan execution. Note that at this point the latch 9610 // block cannot be used, as it does not exist yet. 9611 // TODO: Model increment value in VPlan, by turning the recipe into a 9612 // multi-def and a subclass of VPHeaderPHIRecipe. 9613 VecInd->addIncoming(LastInduction, VectorPH); 9614 } 9615 9616 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9617 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9618 "Not a pointer induction according to InductionDescriptor!"); 9619 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9620 "Unexpected type."); 9621 9622 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9623 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9624 9625 if (all_of(users(), 9626 [this](const VPUser *U) { return U->usesScalars(this); })) { 9627 // This is the normalized GEP that starts counting at zero. 9628 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9629 CanonicalIV, IndDesc.getStep()->getType()); 9630 // Determine the number of scalars we need to generate for each unroll 9631 // iteration. If the instruction is uniform, we only need to generate the 9632 // first lane. Otherwise, we generate all VF values. 9633 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9634 assert((IsUniform || !State.VF.isScalable()) && 9635 "Cannot scalarize a scalable VF"); 9636 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9637 9638 for (unsigned Part = 0; Part < State.UF; ++Part) { 9639 Value *PartStart = 9640 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9641 9642 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9643 Value *Idx = State.Builder.CreateAdd( 9644 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9645 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9646 9647 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9648 State.CFG.PrevBB->getTerminator()); 9649 Value *SclrGep = emitTransformedIndex( 9650 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9651 SclrGep->setName("next.gep"); 9652 State.set(this, SclrGep, VPIteration(Part, Lane)); 9653 } 9654 } 9655 return; 9656 } 9657 9658 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9659 "Induction step not a SCEV constant!"); 9660 Type *PhiType = IndDesc.getStep()->getType(); 9661 9662 // Build a pointer phi 9663 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9664 Type *ScStValueType = ScalarStartValue->getType(); 9665 PHINode *NewPointerPhi = 9666 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9667 9668 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9669 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9670 9671 // A pointer induction, performed by using a gep 9672 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9673 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9674 9675 const SCEV *ScalarStep = IndDesc.getStep(); 9676 SCEVExpander Exp(SE, DL, "induction"); 9677 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9678 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9679 Value *NumUnrolledElems = 9680 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9681 Value *InductionGEP = GetElementPtrInst::Create( 9682 IndDesc.getElementType(), NewPointerPhi, 9683 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9684 InductionLoc); 9685 // Add induction update using an incorrect block temporarily. The phi node 9686 // will be fixed after VPlan execution. Note that at this point the latch 9687 // block cannot be used, as it does not exist yet. 9688 // TODO: Model increment value in VPlan, by turning the recipe into a 9689 // multi-def and a subclass of VPHeaderPHIRecipe. 9690 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9691 9692 // Create UF many actual address geps that use the pointer 9693 // phi as base and a vectorized version of the step value 9694 // (<step*0, ..., step*N>) as offset. 9695 for (unsigned Part = 0; Part < State.UF; ++Part) { 9696 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9697 Value *StartOffsetScalar = 9698 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9699 Value *StartOffset = 9700 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9701 // Create a vector of consecutive numbers from zero to VF. 9702 StartOffset = State.Builder.CreateAdd( 9703 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9704 9705 Value *GEP = State.Builder.CreateGEP( 9706 IndDesc.getElementType(), NewPointerPhi, 9707 State.Builder.CreateMul( 9708 StartOffset, 9709 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9710 "vector.gep")); 9711 State.set(this, GEP, Part); 9712 } 9713 } 9714 9715 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9716 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9717 9718 // Fast-math-flags propagate from the original induction instruction. 9719 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9720 if (IndDesc.getInductionBinOp() && 9721 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9722 State.Builder.setFastMathFlags( 9723 IndDesc.getInductionBinOp()->getFastMathFlags()); 9724 9725 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9726 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9727 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9728 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9729 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9730 ScalarIV = 9731 Ty->isIntegerTy() 9732 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9733 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9734 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9735 getStartValue()->getLiveInIRValue(), Step, 9736 IndDesc); 9737 ScalarIV->setName("offset.idx"); 9738 } 9739 if (TruncToTy) { 9740 assert(Step->getType()->isIntegerTy() && 9741 "Truncation requires an integer step"); 9742 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9743 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9744 } 9745 return ScalarIV; 9746 }; 9747 9748 Value *ScalarIV = CreateScalarIV(Step); 9749 if (State.VF.isVector()) { 9750 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9751 return; 9752 } 9753 9754 for (unsigned Part = 0; Part < State.UF; ++Part) { 9755 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9756 Value *EntryPart; 9757 if (Step->getType()->isFloatingPointTy()) { 9758 Value *StartIdx = 9759 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9760 // Floating-point operations inherit FMF via the builder's flags. 9761 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9762 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9763 ScalarIV, MulOp); 9764 } else { 9765 Value *StartIdx = 9766 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9767 EntryPart = State.Builder.CreateAdd( 9768 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9769 } 9770 State.set(this, EntryPart, Part); 9771 } 9772 } 9773 9774 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9775 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9776 State); 9777 } 9778 9779 void VPBlendRecipe::execute(VPTransformState &State) { 9780 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9781 // We know that all PHIs in non-header blocks are converted into 9782 // selects, so we don't have to worry about the insertion order and we 9783 // can just use the builder. 9784 // At this point we generate the predication tree. There may be 9785 // duplications since this is a simple recursive scan, but future 9786 // optimizations will clean it up. 9787 9788 unsigned NumIncoming = getNumIncomingValues(); 9789 9790 // Generate a sequence of selects of the form: 9791 // SELECT(Mask3, In3, 9792 // SELECT(Mask2, In2, 9793 // SELECT(Mask1, In1, 9794 // In0))) 9795 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9796 // are essentially undef are taken from In0. 9797 InnerLoopVectorizer::VectorParts Entry(State.UF); 9798 for (unsigned In = 0; In < NumIncoming; ++In) { 9799 for (unsigned Part = 0; Part < State.UF; ++Part) { 9800 // We might have single edge PHIs (blocks) - use an identity 9801 // 'select' for the first PHI operand. 9802 Value *In0 = State.get(getIncomingValue(In), Part); 9803 if (In == 0) 9804 Entry[Part] = In0; // Initialize with the first incoming value. 9805 else { 9806 // Select between the current value and the previous incoming edge 9807 // based on the incoming mask. 9808 Value *Cond = State.get(getMask(In), Part); 9809 Entry[Part] = 9810 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9811 } 9812 } 9813 } 9814 for (unsigned Part = 0; Part < State.UF; ++Part) 9815 State.set(this, Entry[Part], Part); 9816 } 9817 9818 void VPInterleaveRecipe::execute(VPTransformState &State) { 9819 assert(!State.Instance && "Interleave group being replicated."); 9820 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9821 getStoredValues(), getMask()); 9822 } 9823 9824 void VPReductionRecipe::execute(VPTransformState &State) { 9825 assert(!State.Instance && "Reduction being replicated."); 9826 Value *PrevInChain = State.get(getChainOp(), 0); 9827 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9828 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9829 // Propagate the fast-math flags carried by the underlying instruction. 9830 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9831 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9832 for (unsigned Part = 0; Part < State.UF; ++Part) { 9833 Value *NewVecOp = State.get(getVecOp(), Part); 9834 if (VPValue *Cond = getCondOp()) { 9835 Value *NewCond = State.get(Cond, Part); 9836 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9837 Value *Iden = RdxDesc->getRecurrenceIdentity( 9838 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9839 Value *IdenVec = 9840 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9841 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9842 NewVecOp = Select; 9843 } 9844 Value *NewRed; 9845 Value *NextInChain; 9846 if (IsOrdered) { 9847 if (State.VF.isVector()) 9848 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9849 PrevInChain); 9850 else 9851 NewRed = State.Builder.CreateBinOp( 9852 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9853 NewVecOp); 9854 PrevInChain = NewRed; 9855 } else { 9856 PrevInChain = State.get(getChainOp(), Part); 9857 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9858 } 9859 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9860 NextInChain = 9861 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9862 NewRed, PrevInChain); 9863 } else if (IsOrdered) 9864 NextInChain = NewRed; 9865 else 9866 NextInChain = State.Builder.CreateBinOp( 9867 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9868 PrevInChain); 9869 State.set(this, NextInChain, Part); 9870 } 9871 } 9872 9873 void VPReplicateRecipe::execute(VPTransformState &State) { 9874 if (State.Instance) { // Generate a single instance. 9875 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9876 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9877 IsPredicated, State); 9878 // Insert scalar instance packing it into a vector. 9879 if (AlsoPack && State.VF.isVector()) { 9880 // If we're constructing lane 0, initialize to start from poison. 9881 if (State.Instance->Lane.isFirstLane()) { 9882 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9883 Value *Poison = PoisonValue::get( 9884 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9885 State.set(this, Poison, State.Instance->Part); 9886 } 9887 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9888 } 9889 return; 9890 } 9891 9892 // Generate scalar instances for all VF lanes of all UF parts, unless the 9893 // instruction is uniform inwhich case generate only the first lane for each 9894 // of the UF parts. 9895 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9896 assert((!State.VF.isScalable() || IsUniform) && 9897 "Can't scalarize a scalable vector"); 9898 for (unsigned Part = 0; Part < State.UF; ++Part) 9899 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9900 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9901 VPIteration(Part, Lane), IsPredicated, 9902 State); 9903 } 9904 9905 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9906 assert(State.Instance && "Branch on Mask works only on single instance."); 9907 9908 unsigned Part = State.Instance->Part; 9909 unsigned Lane = State.Instance->Lane.getKnownLane(); 9910 9911 Value *ConditionBit = nullptr; 9912 VPValue *BlockInMask = getMask(); 9913 if (BlockInMask) { 9914 ConditionBit = State.get(BlockInMask, Part); 9915 if (ConditionBit->getType()->isVectorTy()) 9916 ConditionBit = State.Builder.CreateExtractElement( 9917 ConditionBit, State.Builder.getInt32(Lane)); 9918 } else // Block in mask is all-one. 9919 ConditionBit = State.Builder.getTrue(); 9920 9921 // Replace the temporary unreachable terminator with a new conditional branch, 9922 // whose two destinations will be set later when they are created. 9923 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9924 assert(isa<UnreachableInst>(CurrentTerminator) && 9925 "Expected to replace unreachable terminator with conditional branch."); 9926 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9927 CondBr->setSuccessor(0, nullptr); 9928 ReplaceInstWithInst(CurrentTerminator, CondBr); 9929 } 9930 9931 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9932 assert(State.Instance && "Predicated instruction PHI works per instance."); 9933 Instruction *ScalarPredInst = 9934 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9935 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9936 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9937 assert(PredicatingBB && "Predicated block has no single predecessor."); 9938 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9939 "operand must be VPReplicateRecipe"); 9940 9941 // By current pack/unpack logic we need to generate only a single phi node: if 9942 // a vector value for the predicated instruction exists at this point it means 9943 // the instruction has vector users only, and a phi for the vector value is 9944 // needed. In this case the recipe of the predicated instruction is marked to 9945 // also do that packing, thereby "hoisting" the insert-element sequence. 9946 // Otherwise, a phi node for the scalar value is needed. 9947 unsigned Part = State.Instance->Part; 9948 if (State.hasVectorValue(getOperand(0), Part)) { 9949 Value *VectorValue = State.get(getOperand(0), Part); 9950 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9951 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9952 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9953 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9954 if (State.hasVectorValue(this, Part)) 9955 State.reset(this, VPhi, Part); 9956 else 9957 State.set(this, VPhi, Part); 9958 // NOTE: Currently we need to update the value of the operand, so the next 9959 // predicated iteration inserts its generated value in the correct vector. 9960 State.reset(getOperand(0), VPhi, Part); 9961 } else { 9962 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9963 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9964 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9965 PredicatingBB); 9966 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9967 if (State.hasScalarValue(this, *State.Instance)) 9968 State.reset(this, Phi, *State.Instance); 9969 else 9970 State.set(this, Phi, *State.Instance); 9971 // NOTE: Currently we need to update the value of the operand, so the next 9972 // predicated iteration inserts its generated value in the correct vector. 9973 State.reset(getOperand(0), Phi, *State.Instance); 9974 } 9975 } 9976 9977 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9978 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9979 9980 // Attempt to issue a wide load. 9981 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9982 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9983 9984 assert((LI || SI) && "Invalid Load/Store instruction"); 9985 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9986 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9987 9988 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9989 9990 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9991 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9992 bool CreateGatherScatter = !Consecutive; 9993 9994 auto &Builder = State.Builder; 9995 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9996 bool isMaskRequired = getMask(); 9997 if (isMaskRequired) 9998 for (unsigned Part = 0; Part < State.UF; ++Part) 9999 BlockInMaskParts[Part] = State.get(getMask(), Part); 10000 10001 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 10002 // Calculate the pointer for the specific unroll-part. 10003 GetElementPtrInst *PartPtr = nullptr; 10004 10005 bool InBounds = false; 10006 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 10007 InBounds = gep->isInBounds(); 10008 if (Reverse) { 10009 // If the address is consecutive but reversed, then the 10010 // wide store needs to start at the last vector element. 10011 // RunTimeVF = VScale * VF.getKnownMinValue() 10012 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 10013 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 10014 // NumElt = -Part * RunTimeVF 10015 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 10016 // LastLane = 1 - RunTimeVF 10017 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 10018 PartPtr = 10019 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 10020 PartPtr->setIsInBounds(InBounds); 10021 PartPtr = cast<GetElementPtrInst>( 10022 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 10023 PartPtr->setIsInBounds(InBounds); 10024 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 10025 BlockInMaskParts[Part] = 10026 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 10027 } else { 10028 Value *Increment = 10029 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10030 PartPtr = cast<GetElementPtrInst>( 10031 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10032 PartPtr->setIsInBounds(InBounds); 10033 } 10034 10035 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10036 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10037 }; 10038 10039 // Handle Stores: 10040 if (SI) { 10041 State.ILV->setDebugLocFromInst(SI); 10042 10043 for (unsigned Part = 0; Part < State.UF; ++Part) { 10044 Instruction *NewSI = nullptr; 10045 Value *StoredVal = State.get(StoredValue, Part); 10046 if (CreateGatherScatter) { 10047 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10048 Value *VectorGep = State.get(getAddr(), Part); 10049 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10050 MaskPart); 10051 } else { 10052 if (Reverse) { 10053 // If we store to reverse consecutive memory locations, then we need 10054 // to reverse the order of elements in the stored value. 10055 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10056 // We don't want to update the value in the map as it might be used in 10057 // another expression. So don't call resetVectorValue(StoredVal). 10058 } 10059 auto *VecPtr = 10060 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10061 if (isMaskRequired) 10062 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10063 BlockInMaskParts[Part]); 10064 else 10065 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10066 } 10067 State.ILV->addMetadata(NewSI, SI); 10068 } 10069 return; 10070 } 10071 10072 // Handle loads. 10073 assert(LI && "Must have a load instruction"); 10074 State.ILV->setDebugLocFromInst(LI); 10075 for (unsigned Part = 0; Part < State.UF; ++Part) { 10076 Value *NewLI; 10077 if (CreateGatherScatter) { 10078 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10079 Value *VectorGep = State.get(getAddr(), Part); 10080 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10081 nullptr, "wide.masked.gather"); 10082 State.ILV->addMetadata(NewLI, LI); 10083 } else { 10084 auto *VecPtr = 10085 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10086 if (isMaskRequired) 10087 NewLI = Builder.CreateMaskedLoad( 10088 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10089 PoisonValue::get(DataTy), "wide.masked.load"); 10090 else 10091 NewLI = 10092 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10093 10094 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10095 State.ILV->addMetadata(NewLI, LI); 10096 if (Reverse) 10097 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10098 } 10099 10100 State.set(this, NewLI, Part); 10101 } 10102 } 10103 10104 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10105 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10106 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10107 // for predication. 10108 static ScalarEpilogueLowering getScalarEpilogueLowering( 10109 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10110 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10111 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10112 LoopVectorizationLegality &LVL) { 10113 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10114 // don't look at hints or options, and don't request a scalar epilogue. 10115 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10116 // LoopAccessInfo (due to code dependency and not being able to reliably get 10117 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10118 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10119 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10120 // back to the old way and vectorize with versioning when forced. See D81345.) 10121 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10122 PGSOQueryType::IRPass) && 10123 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10124 return CM_ScalarEpilogueNotAllowedOptSize; 10125 10126 // 2) If set, obey the directives 10127 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10128 switch (PreferPredicateOverEpilogue) { 10129 case PreferPredicateTy::ScalarEpilogue: 10130 return CM_ScalarEpilogueAllowed; 10131 case PreferPredicateTy::PredicateElseScalarEpilogue: 10132 return CM_ScalarEpilogueNotNeededUsePredicate; 10133 case PreferPredicateTy::PredicateOrDontVectorize: 10134 return CM_ScalarEpilogueNotAllowedUsePredicate; 10135 }; 10136 } 10137 10138 // 3) If set, obey the hints 10139 switch (Hints.getPredicate()) { 10140 case LoopVectorizeHints::FK_Enabled: 10141 return CM_ScalarEpilogueNotNeededUsePredicate; 10142 case LoopVectorizeHints::FK_Disabled: 10143 return CM_ScalarEpilogueAllowed; 10144 }; 10145 10146 // 4) if the TTI hook indicates this is profitable, request predication. 10147 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10148 LVL.getLAI())) 10149 return CM_ScalarEpilogueNotNeededUsePredicate; 10150 10151 return CM_ScalarEpilogueAllowed; 10152 } 10153 10154 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10155 // If Values have been set for this Def return the one relevant for \p Part. 10156 if (hasVectorValue(Def, Part)) 10157 return Data.PerPartOutput[Def][Part]; 10158 10159 if (!hasScalarValue(Def, {Part, 0})) { 10160 Value *IRV = Def->getLiveInIRValue(); 10161 Value *B = ILV->getBroadcastInstrs(IRV); 10162 set(Def, B, Part); 10163 return B; 10164 } 10165 10166 Value *ScalarValue = get(Def, {Part, 0}); 10167 // If we aren't vectorizing, we can just copy the scalar map values over 10168 // to the vector map. 10169 if (VF.isScalar()) { 10170 set(Def, ScalarValue, Part); 10171 return ScalarValue; 10172 } 10173 10174 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10175 bool IsUniform = RepR && RepR->isUniform(); 10176 10177 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10178 // Check if there is a scalar value for the selected lane. 10179 if (!hasScalarValue(Def, {Part, LastLane})) { 10180 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10181 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10182 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10183 "unexpected recipe found to be invariant"); 10184 IsUniform = true; 10185 LastLane = 0; 10186 } 10187 10188 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10189 // Set the insert point after the last scalarized instruction or after the 10190 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10191 // will directly follow the scalar definitions. 10192 auto OldIP = Builder.saveIP(); 10193 auto NewIP = 10194 isa<PHINode>(LastInst) 10195 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10196 : std::next(BasicBlock::iterator(LastInst)); 10197 Builder.SetInsertPoint(&*NewIP); 10198 10199 // However, if we are vectorizing, we need to construct the vector values. 10200 // If the value is known to be uniform after vectorization, we can just 10201 // broadcast the scalar value corresponding to lane zero for each unroll 10202 // iteration. Otherwise, we construct the vector values using 10203 // insertelement instructions. Since the resulting vectors are stored in 10204 // State, we will only generate the insertelements once. 10205 Value *VectorValue = nullptr; 10206 if (IsUniform) { 10207 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10208 set(Def, VectorValue, Part); 10209 } else { 10210 // Initialize packing with insertelements to start from undef. 10211 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10212 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10213 set(Def, Undef, Part); 10214 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10215 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10216 VectorValue = get(Def, Part); 10217 } 10218 Builder.restoreIP(OldIP); 10219 return VectorValue; 10220 } 10221 10222 // Process the loop in the VPlan-native vectorization path. This path builds 10223 // VPlan upfront in the vectorization pipeline, which allows to apply 10224 // VPlan-to-VPlan transformations from the very beginning without modifying the 10225 // input LLVM IR. 10226 static bool processLoopInVPlanNativePath( 10227 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10228 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10229 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10230 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10231 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10232 LoopVectorizationRequirements &Requirements) { 10233 10234 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10235 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10236 return false; 10237 } 10238 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10239 Function *F = L->getHeader()->getParent(); 10240 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10241 10242 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10243 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10244 10245 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10246 &Hints, IAI); 10247 // Use the planner for outer loop vectorization. 10248 // TODO: CM is not used at this point inside the planner. Turn CM into an 10249 // optional argument if we don't need it in the future. 10250 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10251 Requirements, ORE); 10252 10253 // Get user vectorization factor. 10254 ElementCount UserVF = Hints.getWidth(); 10255 10256 CM.collectElementTypesForWidening(); 10257 10258 // Plan how to best vectorize, return the best VF and its cost. 10259 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10260 10261 // If we are stress testing VPlan builds, do not attempt to generate vector 10262 // code. Masked vector code generation support will follow soon. 10263 // Also, do not attempt to vectorize if no vector code will be produced. 10264 if (VPlanBuildStressTest || EnableVPlanPredication || 10265 VectorizationFactor::Disabled() == VF) 10266 return false; 10267 10268 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10269 10270 { 10271 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10272 F->getParent()->getDataLayout()); 10273 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10274 &CM, BFI, PSI, Checks); 10275 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10276 << L->getHeader()->getParent()->getName() << "\"\n"); 10277 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10278 } 10279 10280 // Mark the loop as already vectorized to avoid vectorizing again. 10281 Hints.setAlreadyVectorized(); 10282 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10283 return true; 10284 } 10285 10286 // Emit a remark if there are stores to floats that required a floating point 10287 // extension. If the vectorized loop was generated with floating point there 10288 // will be a performance penalty from the conversion overhead and the change in 10289 // the vector width. 10290 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10291 SmallVector<Instruction *, 4> Worklist; 10292 for (BasicBlock *BB : L->getBlocks()) { 10293 for (Instruction &Inst : *BB) { 10294 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10295 if (S->getValueOperand()->getType()->isFloatTy()) 10296 Worklist.push_back(S); 10297 } 10298 } 10299 } 10300 10301 // Traverse the floating point stores upwards searching, for floating point 10302 // conversions. 10303 SmallPtrSet<const Instruction *, 4> Visited; 10304 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10305 while (!Worklist.empty()) { 10306 auto *I = Worklist.pop_back_val(); 10307 if (!L->contains(I)) 10308 continue; 10309 if (!Visited.insert(I).second) 10310 continue; 10311 10312 // Emit a remark if the floating point store required a floating 10313 // point conversion. 10314 // TODO: More work could be done to identify the root cause such as a 10315 // constant or a function return type and point the user to it. 10316 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10317 ORE->emit([&]() { 10318 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10319 I->getDebugLoc(), L->getHeader()) 10320 << "floating point conversion changes vector width. " 10321 << "Mixed floating point precision requires an up/down " 10322 << "cast that will negatively impact performance."; 10323 }); 10324 10325 for (Use &Op : I->operands()) 10326 if (auto *OpI = dyn_cast<Instruction>(Op)) 10327 Worklist.push_back(OpI); 10328 } 10329 } 10330 10331 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10332 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10333 !EnableLoopInterleaving), 10334 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10335 !EnableLoopVectorization) {} 10336 10337 bool LoopVectorizePass::processLoop(Loop *L) { 10338 assert((EnableVPlanNativePath || L->isInnermost()) && 10339 "VPlan-native path is not enabled. Only process inner loops."); 10340 10341 #ifndef NDEBUG 10342 const std::string DebugLocStr = getDebugLocString(L); 10343 #endif /* NDEBUG */ 10344 10345 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10346 << L->getHeader()->getParent()->getName() << "' from " 10347 << DebugLocStr << "\n"); 10348 10349 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10350 10351 LLVM_DEBUG( 10352 dbgs() << "LV: Loop hints:" 10353 << " force=" 10354 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10355 ? "disabled" 10356 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10357 ? "enabled" 10358 : "?")) 10359 << " width=" << Hints.getWidth() 10360 << " interleave=" << Hints.getInterleave() << "\n"); 10361 10362 // Function containing loop 10363 Function *F = L->getHeader()->getParent(); 10364 10365 // Looking at the diagnostic output is the only way to determine if a loop 10366 // was vectorized (other than looking at the IR or machine code), so it 10367 // is important to generate an optimization remark for each loop. Most of 10368 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10369 // generated as OptimizationRemark and OptimizationRemarkMissed are 10370 // less verbose reporting vectorized loops and unvectorized loops that may 10371 // benefit from vectorization, respectively. 10372 10373 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10374 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10375 return false; 10376 } 10377 10378 PredicatedScalarEvolution PSE(*SE, *L); 10379 10380 // Check if it is legal to vectorize the loop. 10381 LoopVectorizationRequirements Requirements; 10382 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10383 &Requirements, &Hints, DB, AC, BFI, PSI); 10384 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10385 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10386 Hints.emitRemarkWithHints(); 10387 return false; 10388 } 10389 10390 // Check the function attributes and profiles to find out if this function 10391 // should be optimized for size. 10392 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10393 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10394 10395 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10396 // here. They may require CFG and instruction level transformations before 10397 // even evaluating whether vectorization is profitable. Since we cannot modify 10398 // the incoming IR, we need to build VPlan upfront in the vectorization 10399 // pipeline. 10400 if (!L->isInnermost()) 10401 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10402 ORE, BFI, PSI, Hints, Requirements); 10403 10404 assert(L->isInnermost() && "Inner loop expected."); 10405 10406 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10407 // count by optimizing for size, to minimize overheads. 10408 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10409 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10410 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10411 << "This loop is worth vectorizing only if no scalar " 10412 << "iteration overheads are incurred."); 10413 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10414 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10415 else { 10416 LLVM_DEBUG(dbgs() << "\n"); 10417 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10418 } 10419 } 10420 10421 // Check the function attributes to see if implicit floats are allowed. 10422 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10423 // an integer loop and the vector instructions selected are purely integer 10424 // vector instructions? 10425 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10426 reportVectorizationFailure( 10427 "Can't vectorize when the NoImplicitFloat attribute is used", 10428 "loop not vectorized due to NoImplicitFloat attribute", 10429 "NoImplicitFloat", ORE, L); 10430 Hints.emitRemarkWithHints(); 10431 return false; 10432 } 10433 10434 // Check if the target supports potentially unsafe FP vectorization. 10435 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10436 // for the target we're vectorizing for, to make sure none of the 10437 // additional fp-math flags can help. 10438 if (Hints.isPotentiallyUnsafe() && 10439 TTI->isFPVectorizationPotentiallyUnsafe()) { 10440 reportVectorizationFailure( 10441 "Potentially unsafe FP op prevents vectorization", 10442 "loop not vectorized due to unsafe FP support.", 10443 "UnsafeFP", ORE, L); 10444 Hints.emitRemarkWithHints(); 10445 return false; 10446 } 10447 10448 bool AllowOrderedReductions; 10449 // If the flag is set, use that instead and override the TTI behaviour. 10450 if (ForceOrderedReductions.getNumOccurrences() > 0) 10451 AllowOrderedReductions = ForceOrderedReductions; 10452 else 10453 AllowOrderedReductions = TTI->enableOrderedReductions(); 10454 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10455 ORE->emit([&]() { 10456 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10457 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10458 ExactFPMathInst->getDebugLoc(), 10459 ExactFPMathInst->getParent()) 10460 << "loop not vectorized: cannot prove it is safe to reorder " 10461 "floating-point operations"; 10462 }); 10463 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10464 "reorder floating-point operations\n"); 10465 Hints.emitRemarkWithHints(); 10466 return false; 10467 } 10468 10469 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10470 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10471 10472 // If an override option has been passed in for interleaved accesses, use it. 10473 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10474 UseInterleaved = EnableInterleavedMemAccesses; 10475 10476 // Analyze interleaved memory accesses. 10477 if (UseInterleaved) { 10478 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10479 } 10480 10481 // Use the cost model. 10482 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10483 F, &Hints, IAI); 10484 CM.collectValuesToIgnore(); 10485 CM.collectElementTypesForWidening(); 10486 10487 // Use the planner for vectorization. 10488 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10489 Requirements, ORE); 10490 10491 // Get user vectorization factor and interleave count. 10492 ElementCount UserVF = Hints.getWidth(); 10493 unsigned UserIC = Hints.getInterleave(); 10494 10495 // Plan how to best vectorize, return the best VF and its cost. 10496 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10497 10498 VectorizationFactor VF = VectorizationFactor::Disabled(); 10499 unsigned IC = 1; 10500 10501 if (MaybeVF) { 10502 VF = *MaybeVF; 10503 // Select the interleave count. 10504 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10505 } 10506 10507 // Identify the diagnostic messages that should be produced. 10508 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10509 bool VectorizeLoop = true, InterleaveLoop = true; 10510 if (VF.Width.isScalar()) { 10511 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10512 VecDiagMsg = std::make_pair( 10513 "VectorizationNotBeneficial", 10514 "the cost-model indicates that vectorization is not beneficial"); 10515 VectorizeLoop = false; 10516 } 10517 10518 if (!MaybeVF && UserIC > 1) { 10519 // Tell the user interleaving was avoided up-front, despite being explicitly 10520 // requested. 10521 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10522 "interleaving should be avoided up front\n"); 10523 IntDiagMsg = std::make_pair( 10524 "InterleavingAvoided", 10525 "Ignoring UserIC, because interleaving was avoided up front"); 10526 InterleaveLoop = false; 10527 } else if (IC == 1 && UserIC <= 1) { 10528 // Tell the user interleaving is not beneficial. 10529 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10530 IntDiagMsg = std::make_pair( 10531 "InterleavingNotBeneficial", 10532 "the cost-model indicates that interleaving is not beneficial"); 10533 InterleaveLoop = false; 10534 if (UserIC == 1) { 10535 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10536 IntDiagMsg.second += 10537 " and is explicitly disabled or interleave count is set to 1"; 10538 } 10539 } else if (IC > 1 && UserIC == 1) { 10540 // Tell the user interleaving is beneficial, but it explicitly disabled. 10541 LLVM_DEBUG( 10542 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10543 IntDiagMsg = std::make_pair( 10544 "InterleavingBeneficialButDisabled", 10545 "the cost-model indicates that interleaving is beneficial " 10546 "but is explicitly disabled or interleave count is set to 1"); 10547 InterleaveLoop = false; 10548 } 10549 10550 // Override IC if user provided an interleave count. 10551 IC = UserIC > 0 ? UserIC : IC; 10552 10553 // Emit diagnostic messages, if any. 10554 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10555 if (!VectorizeLoop && !InterleaveLoop) { 10556 // Do not vectorize or interleaving the loop. 10557 ORE->emit([&]() { 10558 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10559 L->getStartLoc(), L->getHeader()) 10560 << VecDiagMsg.second; 10561 }); 10562 ORE->emit([&]() { 10563 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10564 L->getStartLoc(), L->getHeader()) 10565 << IntDiagMsg.second; 10566 }); 10567 return false; 10568 } else if (!VectorizeLoop && InterleaveLoop) { 10569 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10570 ORE->emit([&]() { 10571 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10572 L->getStartLoc(), L->getHeader()) 10573 << VecDiagMsg.second; 10574 }); 10575 } else if (VectorizeLoop && !InterleaveLoop) { 10576 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10577 << ") in " << DebugLocStr << '\n'); 10578 ORE->emit([&]() { 10579 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10580 L->getStartLoc(), L->getHeader()) 10581 << IntDiagMsg.second; 10582 }); 10583 } else if (VectorizeLoop && InterleaveLoop) { 10584 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10585 << ") in " << DebugLocStr << '\n'); 10586 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10587 } 10588 10589 bool DisableRuntimeUnroll = false; 10590 MDNode *OrigLoopID = L->getLoopID(); 10591 { 10592 // Optimistically generate runtime checks. Drop them if they turn out to not 10593 // be profitable. Limit the scope of Checks, so the cleanup happens 10594 // immediately after vector codegeneration is done. 10595 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10596 F->getParent()->getDataLayout()); 10597 if (!VF.Width.isScalar() || IC > 1) 10598 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC); 10599 10600 using namespace ore; 10601 if (!VectorizeLoop) { 10602 assert(IC > 1 && "interleave count should not be 1 or 0"); 10603 // If we decided that it is not legal to vectorize the loop, then 10604 // interleave it. 10605 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10606 &CM, BFI, PSI, Checks); 10607 10608 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10609 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10610 10611 ORE->emit([&]() { 10612 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10613 L->getHeader()) 10614 << "interleaved loop (interleaved count: " 10615 << NV("InterleaveCount", IC) << ")"; 10616 }); 10617 } else { 10618 // If we decided that it is *legal* to vectorize the loop, then do it. 10619 10620 // Consider vectorizing the epilogue too if it's profitable. 10621 VectorizationFactor EpilogueVF = 10622 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10623 if (EpilogueVF.Width.isVector()) { 10624 10625 // The first pass vectorizes the main loop and creates a scalar epilogue 10626 // to be vectorized by executing the plan (potentially with a different 10627 // factor) again shortly afterwards. 10628 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10629 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10630 EPI, &LVL, &CM, BFI, PSI, Checks); 10631 10632 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10633 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10634 DT); 10635 ++LoopsVectorized; 10636 10637 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10638 formLCSSARecursively(*L, *DT, LI, SE); 10639 10640 // Second pass vectorizes the epilogue and adjusts the control flow 10641 // edges from the first pass. 10642 EPI.MainLoopVF = EPI.EpilogueVF; 10643 EPI.MainLoopUF = EPI.EpilogueUF; 10644 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10645 ORE, EPI, &LVL, &CM, BFI, PSI, 10646 Checks); 10647 10648 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10649 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10650 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10651 Header->setName("vec.epilog.vector.body"); 10652 10653 // Ensure that the start values for any VPReductionPHIRecipes are 10654 // updated before vectorising the epilogue loop. 10655 for (VPRecipeBase &R : Header->phis()) { 10656 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10657 if (auto *Resume = MainILV.getReductionResumeValue( 10658 ReductionPhi->getRecurrenceDescriptor())) { 10659 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10660 ReductionPhi->setOperand(0, StartVal); 10661 } 10662 } 10663 } 10664 10665 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10666 DT); 10667 ++LoopsEpilogueVectorized; 10668 10669 if (!MainILV.areSafetyChecksAdded()) 10670 DisableRuntimeUnroll = true; 10671 } else { 10672 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10673 &LVL, &CM, BFI, PSI, Checks); 10674 10675 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10676 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10677 ++LoopsVectorized; 10678 10679 // Add metadata to disable runtime unrolling a scalar loop when there 10680 // are no runtime checks about strides and memory. A scalar loop that is 10681 // rarely used is not worth unrolling. 10682 if (!LB.areSafetyChecksAdded()) 10683 DisableRuntimeUnroll = true; 10684 } 10685 // Report the vectorization decision. 10686 ORE->emit([&]() { 10687 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10688 L->getHeader()) 10689 << "vectorized loop (vectorization width: " 10690 << NV("VectorizationFactor", VF.Width) 10691 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10692 }); 10693 } 10694 10695 if (ORE->allowExtraAnalysis(LV_NAME)) 10696 checkMixedPrecision(L, ORE); 10697 } 10698 10699 Optional<MDNode *> RemainderLoopID = 10700 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10701 LLVMLoopVectorizeFollowupEpilogue}); 10702 if (RemainderLoopID.hasValue()) { 10703 L->setLoopID(RemainderLoopID.getValue()); 10704 } else { 10705 if (DisableRuntimeUnroll) 10706 AddRuntimeUnrollDisableMetaData(L); 10707 10708 // Mark the loop as already vectorized to avoid vectorizing again. 10709 Hints.setAlreadyVectorized(); 10710 } 10711 10712 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10713 return true; 10714 } 10715 10716 LoopVectorizeResult LoopVectorizePass::runImpl( 10717 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10718 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10719 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10720 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10721 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10722 SE = &SE_; 10723 LI = &LI_; 10724 TTI = &TTI_; 10725 DT = &DT_; 10726 BFI = &BFI_; 10727 TLI = TLI_; 10728 AA = &AA_; 10729 AC = &AC_; 10730 GetLAA = &GetLAA_; 10731 DB = &DB_; 10732 ORE = &ORE_; 10733 PSI = PSI_; 10734 10735 // Don't attempt if 10736 // 1. the target claims to have no vector registers, and 10737 // 2. interleaving won't help ILP. 10738 // 10739 // The second condition is necessary because, even if the target has no 10740 // vector registers, loop vectorization may still enable scalar 10741 // interleaving. 10742 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10743 TTI->getMaxInterleaveFactor(1) < 2) 10744 return LoopVectorizeResult(false, false); 10745 10746 bool Changed = false, CFGChanged = false; 10747 10748 // The vectorizer requires loops to be in simplified form. 10749 // Since simplification may add new inner loops, it has to run before the 10750 // legality and profitability checks. This means running the loop vectorizer 10751 // will simplify all loops, regardless of whether anything end up being 10752 // vectorized. 10753 for (auto &L : *LI) 10754 Changed |= CFGChanged |= 10755 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10756 10757 // Build up a worklist of inner-loops to vectorize. This is necessary as 10758 // the act of vectorizing or partially unrolling a loop creates new loops 10759 // and can invalidate iterators across the loops. 10760 SmallVector<Loop *, 8> Worklist; 10761 10762 for (Loop *L : *LI) 10763 collectSupportedLoops(*L, LI, ORE, Worklist); 10764 10765 LoopsAnalyzed += Worklist.size(); 10766 10767 // Now walk the identified inner loops. 10768 while (!Worklist.empty()) { 10769 Loop *L = Worklist.pop_back_val(); 10770 10771 // For the inner loops we actually process, form LCSSA to simplify the 10772 // transform. 10773 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10774 10775 Changed |= CFGChanged |= processLoop(L); 10776 } 10777 10778 // Process each loop nest in the function. 10779 return LoopVectorizeResult(Changed, CFGChanged); 10780 } 10781 10782 PreservedAnalyses LoopVectorizePass::run(Function &F, 10783 FunctionAnalysisManager &AM) { 10784 auto &LI = AM.getResult<LoopAnalysis>(F); 10785 // There are no loops in the function. Return before computing other expensive 10786 // analyses. 10787 if (LI.empty()) 10788 return PreservedAnalyses::all(); 10789 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10790 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10791 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10792 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10793 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10794 auto &AA = AM.getResult<AAManager>(F); 10795 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10796 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10797 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10798 10799 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10800 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10801 [&](Loop &L) -> const LoopAccessInfo & { 10802 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10803 TLI, TTI, nullptr, nullptr, nullptr}; 10804 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10805 }; 10806 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10807 ProfileSummaryInfo *PSI = 10808 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10809 LoopVectorizeResult Result = 10810 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10811 if (!Result.MadeAnyChange) 10812 return PreservedAnalyses::all(); 10813 PreservedAnalyses PA; 10814 10815 // We currently do not preserve loopinfo/dominator analyses with outer loop 10816 // vectorization. Until this is addressed, mark these analyses as preserved 10817 // only for non-VPlan-native path. 10818 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10819 if (!EnableVPlanNativePath) { 10820 PA.preserve<LoopAnalysis>(); 10821 PA.preserve<DominatorTreeAnalysis>(); 10822 } 10823 10824 if (Result.MadeCFGChange) { 10825 // Making CFG changes likely means a loop got vectorized. Indicate that 10826 // extra simplification passes should be run. 10827 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10828 // be run if runtime checks have been added. 10829 AM.getResult<ShouldRunExtraVectorPasses>(F); 10830 PA.preserve<ShouldRunExtraVectorPasses>(); 10831 } else { 10832 PA.preserveSet<CFGAnalyses>(); 10833 } 10834 return PA; 10835 } 10836 10837 void LoopVectorizePass::printPipeline( 10838 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10839 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10840 OS, MapClassName2PassName); 10841 10842 OS << "<"; 10843 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10844 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10845 OS << ">"; 10846 } 10847