1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpander.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/MathExtras.h" 132 #include "llvm/Support/raw_ostream.h" 133 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 134 #include "llvm/Transforms/Utils/LoopSimplify.h" 135 #include "llvm/Transforms/Utils/LoopUtils.h" 136 #include "llvm/Transforms/Utils/LoopVersioning.h" 137 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 138 #include <algorithm> 139 #include <cassert> 140 #include <cstdint> 141 #include <cstdlib> 142 #include <functional> 143 #include <iterator> 144 #include <limits> 145 #include <memory> 146 #include <string> 147 #include <tuple> 148 #include <utility> 149 #include <vector> 150 151 using namespace llvm; 152 153 #define LV_NAME "loop-vectorize" 154 #define DEBUG_TYPE LV_NAME 155 156 /// @{ 157 /// Metadata attribute names 158 static const char *const LLVMLoopVectorizeFollowupAll = 159 "llvm.loop.vectorize.followup_all"; 160 static const char *const LLVMLoopVectorizeFollowupVectorized = 161 "llvm.loop.vectorize.followup_vectorized"; 162 static const char *const LLVMLoopVectorizeFollowupEpilogue = 163 "llvm.loop.vectorize.followup_epilogue"; 164 /// @} 165 166 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 167 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 168 169 /// Loops with a known constant trip count below this number are vectorized only 170 /// if no scalar iteration overheads are incurred. 171 static cl::opt<unsigned> TinyTripCountVectorThreshold( 172 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 173 cl::desc("Loops with a constant trip count that is smaller than this " 174 "value are vectorized only if no scalar iteration overheads " 175 "are incurred.")); 176 177 static cl::opt<bool> MaximizeBandwidth( 178 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 179 cl::desc("Maximize bandwidth when selecting vectorization factor which " 180 "will be determined by the smallest type in loop.")); 181 182 static cl::opt<bool> EnableInterleavedMemAccesses( 183 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 184 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 185 186 /// An interleave-group may need masking if it resides in a block that needs 187 /// predication, or in order to mask away gaps. 188 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 189 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 190 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 191 192 /// We don't interleave loops with a known constant trip count below this 193 /// number. 194 static const unsigned TinyTripCountInterleaveThreshold = 128; 195 196 static cl::opt<unsigned> ForceTargetNumScalarRegs( 197 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 198 cl::desc("A flag that overrides the target's number of scalar registers.")); 199 200 static cl::opt<unsigned> ForceTargetNumVectorRegs( 201 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's number of vector registers.")); 203 204 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 205 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 206 cl::desc("A flag that overrides the target's max interleave factor for " 207 "scalar loops.")); 208 209 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 210 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's max interleave factor for " 212 "vectorized loops.")); 213 214 static cl::opt<unsigned> ForceTargetInstructionCost( 215 "force-target-instruction-cost", cl::init(0), cl::Hidden, 216 cl::desc("A flag that overrides the target's expected cost for " 217 "an instruction to a single constant value. Mostly " 218 "useful for getting consistent testing.")); 219 220 static cl::opt<unsigned> SmallLoopCost( 221 "small-loop-cost", cl::init(20), cl::Hidden, 222 cl::desc( 223 "The cost of a loop that is considered 'small' by the interleaver.")); 224 225 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 226 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 227 cl::desc("Enable the use of the block frequency analysis to access PGO " 228 "heuristics minimizing code growth in cold regions and being more " 229 "aggressive in hot regions.")); 230 231 // Runtime interleave loops for load/store throughput. 232 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 233 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 234 cl::desc( 235 "Enable runtime interleaving until load/store ports are saturated")); 236 237 /// The number of stores in a loop that are allowed to need predication. 238 static cl::opt<unsigned> NumberOfStoresToPredicate( 239 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 240 cl::desc("Max number of stores to be predicated behind an if.")); 241 242 static cl::opt<bool> EnableIndVarRegisterHeur( 243 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 244 cl::desc("Count the induction variable only once when interleaving")); 245 246 static cl::opt<bool> EnableCondStoresVectorization( 247 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 248 cl::desc("Enable if predication of stores during vectorization.")); 249 250 static cl::opt<unsigned> MaxNestedScalarReductionIC( 251 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 252 cl::desc("The maximum interleave count to use when interleaving a scalar " 253 "reduction in a nested loop.")); 254 255 cl::opt<bool> EnableVPlanNativePath( 256 "enable-vplan-native-path", cl::init(false), cl::Hidden, 257 cl::desc("Enable VPlan-native vectorization path with " 258 "support for outer loop vectorization.")); 259 260 // FIXME: Remove this switch once we have divergence analysis. Currently we 261 // assume divergent non-backedge branches when this switch is true. 262 cl::opt<bool> EnableVPlanPredication( 263 "enable-vplan-predication", cl::init(false), cl::Hidden, 264 cl::desc("Enable VPlan-native vectorization path predicator with " 265 "support for outer loop vectorization.")); 266 267 // This flag enables the stress testing of the VPlan H-CFG construction in the 268 // VPlan-native vectorization path. It must be used in conjuction with 269 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 270 // verification of the H-CFGs built. 271 static cl::opt<bool> VPlanBuildStressTest( 272 "vplan-build-stress-test", cl::init(false), cl::Hidden, 273 cl::desc( 274 "Build VPlan for every supported loop nest in the function and bail " 275 "out right after the build (stress test the VPlan H-CFG construction " 276 "in the VPlan-native vectorization path).")); 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 /// A helper function that returns the type of loaded or stored value. 288 static Type *getMemInstValueType(Value *I) { 289 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 290 "Expected Load or Store instruction"); 291 if (auto *LI = dyn_cast<LoadInst>(I)) 292 return LI->getType(); 293 return cast<StoreInst>(I)->getValueOperand()->getType(); 294 } 295 296 /// A helper function that returns true if the given type is irregular. The 297 /// type is irregular if its allocated size doesn't equal the store size of an 298 /// element of the corresponding vector type at the given vectorization factor. 299 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 300 // Determine if an array of VF elements of type Ty is "bitcast compatible" 301 // with a <VF x Ty> vector. 302 if (VF > 1) { 303 auto *VectorTy = VectorType::get(Ty, VF); 304 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 305 } 306 307 // If the vectorization factor is one, we just check if an array of type Ty 308 // requires padding between elements. 309 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 310 } 311 312 /// A helper function that returns the reciprocal of the block probability of 313 /// predicated blocks. If we return X, we are assuming the predicated block 314 /// will execute once for every X iterations of the loop header. 315 /// 316 /// TODO: We should use actual block probability here, if available. Currently, 317 /// we always assume predicated blocks have a 50% chance of executing. 318 static unsigned getReciprocalPredBlockProb() { return 2; } 319 320 /// A helper function that adds a 'fast' flag to floating-point operations. 321 static Value *addFastMathFlag(Value *V) { 322 if (isa<FPMathOperator>(V)) 323 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 324 return V; 325 } 326 327 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 328 if (isa<FPMathOperator>(V)) 329 cast<Instruction>(V)->setFastMathFlags(FMF); 330 return V; 331 } 332 333 /// A helper function that returns an integer or floating-point constant with 334 /// value C. 335 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 336 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 337 : ConstantFP::get(Ty, C); 338 } 339 340 namespace llvm { 341 342 /// InnerLoopVectorizer vectorizes loops which contain only one basic 343 /// block to a specified vectorization factor (VF). 344 /// This class performs the widening of scalars into vectors, or multiple 345 /// scalars. This class also implements the following features: 346 /// * It inserts an epilogue loop for handling loops that don't have iteration 347 /// counts that are known to be a multiple of the vectorization factor. 348 /// * It handles the code generation for reduction variables. 349 /// * Scalarization (implementation using scalars) of un-vectorizable 350 /// instructions. 351 /// InnerLoopVectorizer does not perform any vectorization-legality 352 /// checks, and relies on the caller to check for the different legality 353 /// aspects. The InnerLoopVectorizer relies on the 354 /// LoopVectorizationLegality class to provide information about the induction 355 /// and reduction variables that were found to a given vectorization factor. 356 class InnerLoopVectorizer { 357 public: 358 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 359 LoopInfo *LI, DominatorTree *DT, 360 const TargetLibraryInfo *TLI, 361 const TargetTransformInfo *TTI, AssumptionCache *AC, 362 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 363 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 364 LoopVectorizationCostModel *CM) 365 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 366 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 367 Builder(PSE.getSE()->getContext()), 368 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 369 virtual ~InnerLoopVectorizer() = default; 370 371 /// Create a new empty loop. Unlink the old loop and connect the new one. 372 /// Return the pre-header block of the new loop. 373 BasicBlock *createVectorizedLoopSkeleton(); 374 375 /// Widen a single instruction within the innermost loop. 376 void widenInstruction(Instruction &I); 377 378 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 379 void fixVectorizedLoop(); 380 381 // Return true if any runtime check is added. 382 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 383 384 /// A type for vectorized values in the new loop. Each value from the 385 /// original loop, when vectorized, is represented by UF vector values in the 386 /// new unrolled loop, where UF is the unroll factor. 387 using VectorParts = SmallVector<Value *, 2>; 388 389 /// Vectorize a single PHINode in a block. This method handles the induction 390 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 391 /// arbitrary length vectors. 392 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 393 394 /// A helper function to scalarize a single Instruction in the innermost loop. 395 /// Generates a sequence of scalar instances for each lane between \p MinLane 396 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 397 /// inclusive.. 398 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 399 bool IfPredicateInstr); 400 401 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 402 /// is provided, the integer induction variable will first be truncated to 403 /// the corresponding type. 404 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 405 406 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 407 /// vector or scalar value on-demand if one is not yet available. When 408 /// vectorizing a loop, we visit the definition of an instruction before its 409 /// uses. When visiting the definition, we either vectorize or scalarize the 410 /// instruction, creating an entry for it in the corresponding map. (In some 411 /// cases, such as induction variables, we will create both vector and scalar 412 /// entries.) Then, as we encounter uses of the definition, we derive values 413 /// for each scalar or vector use unless such a value is already available. 414 /// For example, if we scalarize a definition and one of its uses is vector, 415 /// we build the required vector on-demand with an insertelement sequence 416 /// when visiting the use. Otherwise, if the use is scalar, we can use the 417 /// existing scalar definition. 418 /// 419 /// Return a value in the new loop corresponding to \p V from the original 420 /// loop at unroll index \p Part. If the value has already been vectorized, 421 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 422 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 423 /// a new vector value on-demand by inserting the scalar values into a vector 424 /// with an insertelement sequence. If the value has been neither vectorized 425 /// nor scalarized, it must be loop invariant, so we simply broadcast the 426 /// value into a vector. 427 Value *getOrCreateVectorValue(Value *V, unsigned Part); 428 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll and vector indices \p Instance. If the value has been 431 /// vectorized but not scalarized, the necessary extractelement instruction 432 /// will be generated. 433 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 434 435 /// Construct the vector value of a scalarized value \p V one lane at a time. 436 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 437 438 /// Try to vectorize the interleaved access group that \p Instr belongs to, 439 /// optionally masking the vector operations if \p BlockInMask is non-null. 440 void vectorizeInterleaveGroup(Instruction *Instr, 441 VectorParts *BlockInMask = nullptr); 442 443 /// Vectorize Load and Store instructions, optionally masking the vector 444 /// operations if \p BlockInMask is non-null. 445 void vectorizeMemoryInstruction(Instruction *Instr, 446 VectorParts *BlockInMask = nullptr); 447 448 /// Set the debug location in the builder using the debug location in 449 /// the instruction. 450 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 451 452 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 453 void fixNonInductionPHIs(void); 454 455 protected: 456 friend class LoopVectorizationPlanner; 457 458 /// A small list of PHINodes. 459 using PhiVector = SmallVector<PHINode *, 4>; 460 461 /// A type for scalarized values in the new loop. Each value from the 462 /// original loop, when scalarized, is represented by UF x VF scalar values 463 /// in the new unrolled loop, where UF is the unroll factor and VF is the 464 /// vectorization factor. 465 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 466 467 /// Set up the values of the IVs correctly when exiting the vector loop. 468 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 469 Value *CountRoundDown, Value *EndValue, 470 BasicBlock *MiddleBlock); 471 472 /// Create a new induction variable inside L. 473 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 474 Value *Step, Instruction *DL); 475 476 /// Handle all cross-iteration phis in the header. 477 void fixCrossIterationPHIs(); 478 479 /// Fix a first-order recurrence. This is the second phase of vectorizing 480 /// this phi node. 481 void fixFirstOrderRecurrence(PHINode *Phi); 482 483 /// Fix a reduction cross-iteration phi. This is the second phase of 484 /// vectorizing this phi node. 485 void fixReduction(PHINode *Phi); 486 487 /// The Loop exit block may have single value PHI nodes with some 488 /// incoming value. While vectorizing we only handled real values 489 /// that were defined inside the loop and we should have one value for 490 /// each predecessor of its parent basic block. See PR14725. 491 void fixLCSSAPHIs(); 492 493 /// Iteratively sink the scalarized operands of a predicated instruction into 494 /// the block that was created for it. 495 void sinkScalarOperands(Instruction *PredInst); 496 497 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 498 /// represented as. 499 void truncateToMinimalBitwidths(); 500 501 /// Insert the new loop to the loop hierarchy and pass manager 502 /// and update the analysis passes. 503 void updateAnalysis(); 504 505 /// Create a broadcast instruction. This method generates a broadcast 506 /// instruction (shuffle) for loop invariant values and for the induction 507 /// value. If this is the induction variable then we extend it to N, N+1, ... 508 /// this is needed because each iteration in the loop corresponds to a SIMD 509 /// element. 510 virtual Value *getBroadcastInstrs(Value *V); 511 512 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 513 /// to each vector element of Val. The sequence starts at StartIndex. 514 /// \p Opcode is relevant for FP induction variable. 515 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 516 Instruction::BinaryOps Opcode = 517 Instruction::BinaryOpsEnd); 518 519 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 520 /// variable on which to base the steps, \p Step is the size of the step, and 521 /// \p EntryVal is the value from the original loop that maps to the steps. 522 /// Note that \p EntryVal doesn't have to be an induction variable - it 523 /// can also be a truncate instruction. 524 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 525 const InductionDescriptor &ID); 526 527 /// Create a vector induction phi node based on an existing scalar one. \p 528 /// EntryVal is the value from the original loop that maps to the vector phi 529 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 530 /// truncate instruction, instead of widening the original IV, we widen a 531 /// version of the IV truncated to \p EntryVal's type. 532 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 533 Value *Step, Instruction *EntryVal); 534 535 /// Returns true if an instruction \p I should be scalarized instead of 536 /// vectorized for the chosen vectorization factor. 537 bool shouldScalarizeInstruction(Instruction *I) const; 538 539 /// Returns true if we should generate a scalar version of \p IV. 540 bool needsScalarInduction(Instruction *IV) const; 541 542 /// If there is a cast involved in the induction variable \p ID, which should 543 /// be ignored in the vectorized loop body, this function records the 544 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 545 /// cast. We had already proved that the casted Phi is equal to the uncasted 546 /// Phi in the vectorized loop (under a runtime guard), and therefore 547 /// there is no need to vectorize the cast - the same value can be used in the 548 /// vector loop for both the Phi and the cast. 549 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 550 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 551 /// 552 /// \p EntryVal is the value from the original loop that maps to the vector 553 /// phi node and is used to distinguish what is the IV currently being 554 /// processed - original one (if \p EntryVal is a phi corresponding to the 555 /// original IV) or the "newly-created" one based on the proof mentioned above 556 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 557 /// latter case \p EntryVal is a TruncInst and we must not record anything for 558 /// that IV, but it's error-prone to expect callers of this routine to care 559 /// about that, hence this explicit parameter. 560 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 561 const Instruction *EntryVal, 562 Value *VectorLoopValue, 563 unsigned Part, 564 unsigned Lane = UINT_MAX); 565 566 /// Generate a shuffle sequence that will reverse the vector Vec. 567 virtual Value *reverseVector(Value *Vec); 568 569 /// Returns (and creates if needed) the original loop trip count. 570 Value *getOrCreateTripCount(Loop *NewLoop); 571 572 /// Returns (and creates if needed) the trip count of the widened loop. 573 Value *getOrCreateVectorTripCount(Loop *NewLoop); 574 575 /// Returns a bitcasted value to the requested vector type. 576 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 577 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 578 const DataLayout &DL); 579 580 /// Emit a bypass check to see if the vector trip count is zero, including if 581 /// it overflows. 582 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 583 584 /// Emit a bypass check to see if all of the SCEV assumptions we've 585 /// had to make are correct. 586 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 587 588 /// Emit bypass checks to check any memory assumptions we may have made. 589 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 590 591 /// Compute the transformed value of Index at offset StartValue using step 592 /// StepValue. 593 /// For integer induction, returns StartValue + Index * StepValue. 594 /// For pointer induction, returns StartValue[Index * StepValue]. 595 /// FIXME: The newly created binary instructions should contain nsw/nuw 596 /// flags, which can be found from the original scalar operations. 597 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 598 const DataLayout &DL, 599 const InductionDescriptor &ID) const; 600 601 /// Add additional metadata to \p To that was not present on \p Orig. 602 /// 603 /// Currently this is used to add the noalias annotations based on the 604 /// inserted memchecks. Use this for instructions that are *cloned* into the 605 /// vector loop. 606 void addNewMetadata(Instruction *To, const Instruction *Orig); 607 608 /// Add metadata from one instruction to another. 609 /// 610 /// This includes both the original MDs from \p From and additional ones (\see 611 /// addNewMetadata). Use this for *newly created* instructions in the vector 612 /// loop. 613 void addMetadata(Instruction *To, Instruction *From); 614 615 /// Similar to the previous function but it adds the metadata to a 616 /// vector of instructions. 617 void addMetadata(ArrayRef<Value *> To, Instruction *From); 618 619 /// The original loop. 620 Loop *OrigLoop; 621 622 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 623 /// dynamic knowledge to simplify SCEV expressions and converts them to a 624 /// more usable form. 625 PredicatedScalarEvolution &PSE; 626 627 /// Loop Info. 628 LoopInfo *LI; 629 630 /// Dominator Tree. 631 DominatorTree *DT; 632 633 /// Alias Analysis. 634 AliasAnalysis *AA; 635 636 /// Target Library Info. 637 const TargetLibraryInfo *TLI; 638 639 /// Target Transform Info. 640 const TargetTransformInfo *TTI; 641 642 /// Assumption Cache. 643 AssumptionCache *AC; 644 645 /// Interface to emit optimization remarks. 646 OptimizationRemarkEmitter *ORE; 647 648 /// LoopVersioning. It's only set up (non-null) if memchecks were 649 /// used. 650 /// 651 /// This is currently only used to add no-alias metadata based on the 652 /// memchecks. The actually versioning is performed manually. 653 std::unique_ptr<LoopVersioning> LVer; 654 655 /// The vectorization SIMD factor to use. Each vector will have this many 656 /// vector elements. 657 unsigned VF; 658 659 /// The vectorization unroll factor to use. Each scalar is vectorized to this 660 /// many different vector instructions. 661 unsigned UF; 662 663 /// The builder that we use 664 IRBuilder<> Builder; 665 666 // --- Vectorization state --- 667 668 /// The vector-loop preheader. 669 BasicBlock *LoopVectorPreHeader; 670 671 /// The scalar-loop preheader. 672 BasicBlock *LoopScalarPreHeader; 673 674 /// Middle Block between the vector and the scalar. 675 BasicBlock *LoopMiddleBlock; 676 677 /// The ExitBlock of the scalar loop. 678 BasicBlock *LoopExitBlock; 679 680 /// The vector loop body. 681 BasicBlock *LoopVectorBody; 682 683 /// The scalar loop body. 684 BasicBlock *LoopScalarBody; 685 686 /// A list of all bypass blocks. The first block is the entry of the loop. 687 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 688 689 /// The new Induction variable which was added to the new block. 690 PHINode *Induction = nullptr; 691 692 /// The induction variable of the old basic block. 693 PHINode *OldInduction = nullptr; 694 695 /// Maps values from the original loop to their corresponding values in the 696 /// vectorized loop. A key value can map to either vector values, scalar 697 /// values or both kinds of values, depending on whether the key was 698 /// vectorized and scalarized. 699 VectorizerValueMap VectorLoopValueMap; 700 701 /// Store instructions that were predicated. 702 SmallVector<Instruction *, 4> PredicatedInstructions; 703 704 /// Trip count of the original loop. 705 Value *TripCount = nullptr; 706 707 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 708 Value *VectorTripCount = nullptr; 709 710 /// The legality analysis. 711 LoopVectorizationLegality *Legal; 712 713 /// The profitablity analysis. 714 LoopVectorizationCostModel *Cost; 715 716 // Record whether runtime checks are added. 717 bool AddedSafetyChecks = false; 718 719 // Holds the end values for each induction variable. We save the end values 720 // so we can later fix-up the external users of the induction variables. 721 DenseMap<PHINode *, Value *> IVEndValues; 722 723 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 724 // fixed up at the end of vector code generation. 725 SmallVector<PHINode *, 8> OrigPHIsToFix; 726 }; 727 728 class InnerLoopUnroller : public InnerLoopVectorizer { 729 public: 730 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 731 LoopInfo *LI, DominatorTree *DT, 732 const TargetLibraryInfo *TLI, 733 const TargetTransformInfo *TTI, AssumptionCache *AC, 734 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 735 LoopVectorizationLegality *LVL, 736 LoopVectorizationCostModel *CM) 737 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 738 UnrollFactor, LVL, CM) {} 739 740 private: 741 Value *getBroadcastInstrs(Value *V) override; 742 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 743 Instruction::BinaryOps Opcode = 744 Instruction::BinaryOpsEnd) override; 745 Value *reverseVector(Value *Vec) override; 746 }; 747 748 } // end namespace llvm 749 750 /// Look for a meaningful debug location on the instruction or it's 751 /// operands. 752 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 753 if (!I) 754 return I; 755 756 DebugLoc Empty; 757 if (I->getDebugLoc() != Empty) 758 return I; 759 760 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 761 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 762 if (OpInst->getDebugLoc() != Empty) 763 return OpInst; 764 } 765 766 return I; 767 } 768 769 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 770 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 771 const DILocation *DIL = Inst->getDebugLoc(); 772 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 773 !isa<DbgInfoIntrinsic>(Inst)) { 774 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 775 if (NewDIL) 776 B.SetCurrentDebugLocation(NewDIL.getValue()); 777 else 778 LLVM_DEBUG(dbgs() 779 << "Failed to create new discriminator: " 780 << DIL->getFilename() << " Line: " << DIL->getLine()); 781 } 782 else 783 B.SetCurrentDebugLocation(DIL); 784 } else 785 B.SetCurrentDebugLocation(DebugLoc()); 786 } 787 788 #ifndef NDEBUG 789 /// \return string containing a file name and a line # for the given loop. 790 static std::string getDebugLocString(const Loop *L) { 791 std::string Result; 792 if (L) { 793 raw_string_ostream OS(Result); 794 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 795 LoopDbgLoc.print(OS); 796 else 797 // Just print the module name. 798 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 799 OS.flush(); 800 } 801 return Result; 802 } 803 #endif 804 805 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 806 const Instruction *Orig) { 807 // If the loop was versioned with memchecks, add the corresponding no-alias 808 // metadata. 809 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 810 LVer->annotateInstWithNoAlias(To, Orig); 811 } 812 813 void InnerLoopVectorizer::addMetadata(Instruction *To, 814 Instruction *From) { 815 propagateMetadata(To, From); 816 addNewMetadata(To, From); 817 } 818 819 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 820 Instruction *From) { 821 for (Value *V : To) { 822 if (Instruction *I = dyn_cast<Instruction>(V)) 823 addMetadata(I, From); 824 } 825 } 826 827 namespace llvm { 828 829 /// LoopVectorizationCostModel - estimates the expected speedups due to 830 /// vectorization. 831 /// In many cases vectorization is not profitable. This can happen because of 832 /// a number of reasons. In this class we mainly attempt to predict the 833 /// expected speedup/slowdowns due to the supported instruction set. We use the 834 /// TargetTransformInfo to query the different backends for the cost of 835 /// different operations. 836 class LoopVectorizationCostModel { 837 public: 838 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 839 LoopInfo *LI, LoopVectorizationLegality *Legal, 840 const TargetTransformInfo &TTI, 841 const TargetLibraryInfo *TLI, DemandedBits *DB, 842 AssumptionCache *AC, 843 OptimizationRemarkEmitter *ORE, const Function *F, 844 const LoopVectorizeHints *Hints, 845 InterleavedAccessInfo &IAI) 846 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 847 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 848 849 /// \return An upper bound for the vectorization factor, or None if 850 /// vectorization and interleaving should be avoided up front. 851 Optional<unsigned> computeMaxVF(bool OptForSize); 852 853 /// \return The most profitable vectorization factor and the cost of that VF. 854 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 855 /// then this vectorization factor will be selected if vectorization is 856 /// possible. 857 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 858 859 /// Setup cost-based decisions for user vectorization factor. 860 void selectUserVectorizationFactor(unsigned UserVF) { 861 collectUniformsAndScalars(UserVF); 862 collectInstsToScalarize(UserVF); 863 } 864 865 /// \return The size (in bits) of the smallest and widest types in the code 866 /// that needs to be vectorized. We ignore values that remain scalar such as 867 /// 64 bit loop indices. 868 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 869 870 /// \return The desired interleave count. 871 /// If interleave count has been specified by metadata it will be returned. 872 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 873 /// are the selected vectorization factor and the cost of the selected VF. 874 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 875 unsigned LoopCost); 876 877 /// Memory access instruction may be vectorized in more than one way. 878 /// Form of instruction after vectorization depends on cost. 879 /// This function takes cost-based decisions for Load/Store instructions 880 /// and collects them in a map. This decisions map is used for building 881 /// the lists of loop-uniform and loop-scalar instructions. 882 /// The calculated cost is saved with widening decision in order to 883 /// avoid redundant calculations. 884 void setCostBasedWideningDecision(unsigned VF); 885 886 /// A struct that represents some properties of the register usage 887 /// of a loop. 888 struct RegisterUsage { 889 /// Holds the number of loop invariant values that are used in the loop. 890 unsigned LoopInvariantRegs; 891 892 /// Holds the maximum number of concurrent live intervals in the loop. 893 unsigned MaxLocalUsers; 894 }; 895 896 /// \return Returns information about the register usages of the loop for the 897 /// given vectorization factors. 898 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 899 900 /// Collect values we want to ignore in the cost model. 901 void collectValuesToIgnore(); 902 903 /// \returns The smallest bitwidth each instruction can be represented with. 904 /// The vector equivalents of these instructions should be truncated to this 905 /// type. 906 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 907 return MinBWs; 908 } 909 910 /// \returns True if it is more profitable to scalarize instruction \p I for 911 /// vectorization factor \p VF. 912 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 913 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 914 915 // Cost model is not run in the VPlan-native path - return conservative 916 // result until this changes. 917 if (EnableVPlanNativePath) 918 return false; 919 920 auto Scalars = InstsToScalarize.find(VF); 921 assert(Scalars != InstsToScalarize.end() && 922 "VF not yet analyzed for scalarization profitability"); 923 return Scalars->second.find(I) != Scalars->second.end(); 924 } 925 926 /// Returns true if \p I is known to be uniform after vectorization. 927 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 928 if (VF == 1) 929 return true; 930 931 // Cost model is not run in the VPlan-native path - return conservative 932 // result until this changes. 933 if (EnableVPlanNativePath) 934 return false; 935 936 auto UniformsPerVF = Uniforms.find(VF); 937 assert(UniformsPerVF != Uniforms.end() && 938 "VF not yet analyzed for uniformity"); 939 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 940 } 941 942 /// Returns true if \p I is known to be scalar after vectorization. 943 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 944 if (VF == 1) 945 return true; 946 947 // Cost model is not run in the VPlan-native path - return conservative 948 // result until this changes. 949 if (EnableVPlanNativePath) 950 return false; 951 952 auto ScalarsPerVF = Scalars.find(VF); 953 assert(ScalarsPerVF != Scalars.end() && 954 "Scalar values are not calculated for VF"); 955 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 956 } 957 958 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 959 /// for vectorization factor \p VF. 960 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 961 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 962 !isProfitableToScalarize(I, VF) && 963 !isScalarAfterVectorization(I, VF); 964 } 965 966 /// Decision that was taken during cost calculation for memory instruction. 967 enum InstWidening { 968 CM_Unknown, 969 CM_Widen, // For consecutive accesses with stride +1. 970 CM_Widen_Reverse, // For consecutive accesses with stride -1. 971 CM_Interleave, 972 CM_GatherScatter, 973 CM_Scalarize 974 }; 975 976 /// Save vectorization decision \p W and \p Cost taken by the cost model for 977 /// instruction \p I and vector width \p VF. 978 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 979 unsigned Cost) { 980 assert(VF >= 2 && "Expected VF >=2"); 981 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 982 } 983 984 /// Save vectorization decision \p W and \p Cost taken by the cost model for 985 /// interleaving group \p Grp and vector width \p VF. 986 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 987 InstWidening W, unsigned Cost) { 988 assert(VF >= 2 && "Expected VF >=2"); 989 /// Broadcast this decicion to all instructions inside the group. 990 /// But the cost will be assigned to one instruction only. 991 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 992 if (auto *I = Grp->getMember(i)) { 993 if (Grp->getInsertPos() == I) 994 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 995 else 996 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 997 } 998 } 999 } 1000 1001 /// Return the cost model decision for the given instruction \p I and vector 1002 /// width \p VF. Return CM_Unknown if this instruction did not pass 1003 /// through the cost modeling. 1004 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1005 assert(VF >= 2 && "Expected VF >=2"); 1006 1007 // Cost model is not run in the VPlan-native path - return conservative 1008 // result until this changes. 1009 if (EnableVPlanNativePath) 1010 return CM_GatherScatter; 1011 1012 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1013 auto Itr = WideningDecisions.find(InstOnVF); 1014 if (Itr == WideningDecisions.end()) 1015 return CM_Unknown; 1016 return Itr->second.first; 1017 } 1018 1019 /// Return the vectorization cost for the given instruction \p I and vector 1020 /// width \p VF. 1021 unsigned getWideningCost(Instruction *I, unsigned VF) { 1022 assert(VF >= 2 && "Expected VF >=2"); 1023 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1024 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1025 "The cost is not calculated"); 1026 return WideningDecisions[InstOnVF].second; 1027 } 1028 1029 /// Return True if instruction \p I is an optimizable truncate whose operand 1030 /// is an induction variable. Such a truncate will be removed by adding a new 1031 /// induction variable with the destination type. 1032 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1033 // If the instruction is not a truncate, return false. 1034 auto *Trunc = dyn_cast<TruncInst>(I); 1035 if (!Trunc) 1036 return false; 1037 1038 // Get the source and destination types of the truncate. 1039 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1040 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1041 1042 // If the truncate is free for the given types, return false. Replacing a 1043 // free truncate with an induction variable would add an induction variable 1044 // update instruction to each iteration of the loop. We exclude from this 1045 // check the primary induction variable since it will need an update 1046 // instruction regardless. 1047 Value *Op = Trunc->getOperand(0); 1048 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1049 return false; 1050 1051 // If the truncated value is not an induction variable, return false. 1052 return Legal->isInductionPhi(Op); 1053 } 1054 1055 /// Collects the instructions to scalarize for each predicated instruction in 1056 /// the loop. 1057 void collectInstsToScalarize(unsigned VF); 1058 1059 /// Collect Uniform and Scalar values for the given \p VF. 1060 /// The sets depend on CM decision for Load/Store instructions 1061 /// that may be vectorized as interleave, gather-scatter or scalarized. 1062 void collectUniformsAndScalars(unsigned VF) { 1063 // Do the analysis once. 1064 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1065 return; 1066 setCostBasedWideningDecision(VF); 1067 collectLoopUniforms(VF); 1068 collectLoopScalars(VF); 1069 } 1070 1071 /// Returns true if the target machine supports masked store operation 1072 /// for the given \p DataType and kind of access to \p Ptr. 1073 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1074 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1075 } 1076 1077 /// Returns true if the target machine supports masked load operation 1078 /// for the given \p DataType and kind of access to \p Ptr. 1079 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1080 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1081 } 1082 1083 /// Returns true if the target machine supports masked scatter operation 1084 /// for the given \p DataType. 1085 bool isLegalMaskedScatter(Type *DataType) { 1086 return TTI.isLegalMaskedScatter(DataType); 1087 } 1088 1089 /// Returns true if the target machine supports masked gather operation 1090 /// for the given \p DataType. 1091 bool isLegalMaskedGather(Type *DataType) { 1092 return TTI.isLegalMaskedGather(DataType); 1093 } 1094 1095 /// Returns true if the target machine can represent \p V as a masked gather 1096 /// or scatter operation. 1097 bool isLegalGatherOrScatter(Value *V) { 1098 bool LI = isa<LoadInst>(V); 1099 bool SI = isa<StoreInst>(V); 1100 if (!LI && !SI) 1101 return false; 1102 auto *Ty = getMemInstValueType(V); 1103 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1104 } 1105 1106 /// Returns true if \p I is an instruction that will be scalarized with 1107 /// predication. Such instructions include conditional stores and 1108 /// instructions that may divide by zero. 1109 /// If a non-zero VF has been calculated, we check if I will be scalarized 1110 /// predication for that VF. 1111 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1112 1113 // Returns true if \p I is an instruction that will be predicated either 1114 // through scalar predication or masked load/store or masked gather/scatter. 1115 // Superset of instructions that return true for isScalarWithPredication. 1116 bool isPredicatedInst(Instruction *I) { 1117 if (!blockNeedsPredication(I->getParent())) 1118 return false; 1119 // Loads and stores that need some form of masked operation are predicated 1120 // instructions. 1121 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1122 return Legal->isMaskRequired(I); 1123 return isScalarWithPredication(I); 1124 } 1125 1126 /// Returns true if \p I is a memory instruction with consecutive memory 1127 /// access that can be widened. 1128 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1129 1130 /// Returns true if \p I is a memory instruction in an interleaved-group 1131 /// of memory accesses that can be vectorized with wide vector loads/stores 1132 /// and shuffles. 1133 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1134 1135 /// Check if \p Instr belongs to any interleaved access group. 1136 bool isAccessInterleaved(Instruction *Instr) { 1137 return InterleaveInfo.isInterleaved(Instr); 1138 } 1139 1140 /// Get the interleaved access group that \p Instr belongs to. 1141 const InterleaveGroup<Instruction> * 1142 getInterleavedAccessGroup(Instruction *Instr) { 1143 return InterleaveInfo.getInterleaveGroup(Instr); 1144 } 1145 1146 /// Returns true if an interleaved group requires a scalar iteration 1147 /// to handle accesses with gaps, and there is nothing preventing us from 1148 /// creating a scalar epilogue. 1149 bool requiresScalarEpilogue() const { 1150 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1151 } 1152 1153 /// Returns true if a scalar epilogue is not allowed due to optsize. 1154 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1155 1156 /// Returns true if all loop blocks should be masked to fold tail loop. 1157 bool foldTailByMasking() const { return FoldTailByMasking; } 1158 1159 bool blockNeedsPredication(BasicBlock *BB) { 1160 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1161 } 1162 1163 private: 1164 unsigned NumPredStores = 0; 1165 1166 /// \return An upper bound for the vectorization factor, larger than zero. 1167 /// One is returned if vectorization should best be avoided due to cost. 1168 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1169 1170 /// The vectorization cost is a combination of the cost itself and a boolean 1171 /// indicating whether any of the contributing operations will actually 1172 /// operate on 1173 /// vector values after type legalization in the backend. If this latter value 1174 /// is 1175 /// false, then all operations will be scalarized (i.e. no vectorization has 1176 /// actually taken place). 1177 using VectorizationCostTy = std::pair<unsigned, bool>; 1178 1179 /// Returns the expected execution cost. The unit of the cost does 1180 /// not matter because we use the 'cost' units to compare different 1181 /// vector widths. The cost that is returned is *not* normalized by 1182 /// the factor width. 1183 VectorizationCostTy expectedCost(unsigned VF); 1184 1185 /// Returns the execution time cost of an instruction for a given vector 1186 /// width. Vector width of one means scalar. 1187 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1188 1189 /// The cost-computation logic from getInstructionCost which provides 1190 /// the vector type as an output parameter. 1191 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1192 1193 /// Calculate vectorization cost of memory instruction \p I. 1194 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1195 1196 /// The cost computation for scalarized memory instruction. 1197 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1198 1199 /// The cost computation for interleaving group of memory instructions. 1200 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1201 1202 /// The cost computation for Gather/Scatter instruction. 1203 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1204 1205 /// The cost computation for widening instruction \p I with consecutive 1206 /// memory access. 1207 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1208 1209 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1210 /// Load: scalar load + broadcast. 1211 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1212 /// element) 1213 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1214 1215 /// Returns whether the instruction is a load or store and will be a emitted 1216 /// as a vector operation. 1217 bool isConsecutiveLoadOrStore(Instruction *I); 1218 1219 /// Returns true if an artificially high cost for emulated masked memrefs 1220 /// should be used. 1221 bool useEmulatedMaskMemRefHack(Instruction *I); 1222 1223 /// Create an analysis remark that explains why vectorization failed 1224 /// 1225 /// \p RemarkName is the identifier for the remark. \return the remark object 1226 /// that can be streamed to. 1227 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1228 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1229 RemarkName, TheLoop); 1230 } 1231 1232 /// Map of scalar integer values to the smallest bitwidth they can be legally 1233 /// represented as. The vector equivalents of these values should be truncated 1234 /// to this type. 1235 MapVector<Instruction *, uint64_t> MinBWs; 1236 1237 /// A type representing the costs for instructions if they were to be 1238 /// scalarized rather than vectorized. The entries are Instruction-Cost 1239 /// pairs. 1240 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1241 1242 /// A set containing all BasicBlocks that are known to present after 1243 /// vectorization as a predicated block. 1244 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1245 1246 /// Records whether it is allowed to have the original scalar loop execute at 1247 /// least once. This may be needed as a fallback loop in case runtime 1248 /// aliasing/dependence checks fail, or to handle the tail/remainder 1249 /// iterations when the trip count is unknown or doesn't divide by the VF, 1250 /// or as a peel-loop to handle gaps in interleave-groups. 1251 /// Under optsize and when the trip count is very small we don't allow any 1252 /// iterations to execute in the scalar loop. 1253 bool IsScalarEpilogueAllowed = true; 1254 1255 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1256 bool FoldTailByMasking = false; 1257 1258 /// A map holding scalar costs for different vectorization factors. The 1259 /// presence of a cost for an instruction in the mapping indicates that the 1260 /// instruction will be scalarized when vectorizing with the associated 1261 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1262 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1263 1264 /// Holds the instructions known to be uniform after vectorization. 1265 /// The data is collected per VF. 1266 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1267 1268 /// Holds the instructions known to be scalar after vectorization. 1269 /// The data is collected per VF. 1270 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1271 1272 /// Holds the instructions (address computations) that are forced to be 1273 /// scalarized. 1274 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1275 1276 /// Returns the expected difference in cost from scalarizing the expression 1277 /// feeding a predicated instruction \p PredInst. The instructions to 1278 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1279 /// non-negative return value implies the expression will be scalarized. 1280 /// Currently, only single-use chains are considered for scalarization. 1281 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1282 unsigned VF); 1283 1284 /// Collect the instructions that are uniform after vectorization. An 1285 /// instruction is uniform if we represent it with a single scalar value in 1286 /// the vectorized loop corresponding to each vector iteration. Examples of 1287 /// uniform instructions include pointer operands of consecutive or 1288 /// interleaved memory accesses. Note that although uniformity implies an 1289 /// instruction will be scalar, the reverse is not true. In general, a 1290 /// scalarized instruction will be represented by VF scalar values in the 1291 /// vectorized loop, each corresponding to an iteration of the original 1292 /// scalar loop. 1293 void collectLoopUniforms(unsigned VF); 1294 1295 /// Collect the instructions that are scalar after vectorization. An 1296 /// instruction is scalar if it is known to be uniform or will be scalarized 1297 /// during vectorization. Non-uniform scalarized instructions will be 1298 /// represented by VF values in the vectorized loop, each corresponding to an 1299 /// iteration of the original scalar loop. 1300 void collectLoopScalars(unsigned VF); 1301 1302 /// Keeps cost model vectorization decision and cost for instructions. 1303 /// Right now it is used for memory instructions only. 1304 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1305 std::pair<InstWidening, unsigned>>; 1306 1307 DecisionList WideningDecisions; 1308 1309 public: 1310 /// The loop that we evaluate. 1311 Loop *TheLoop; 1312 1313 /// Predicated scalar evolution analysis. 1314 PredicatedScalarEvolution &PSE; 1315 1316 /// Loop Info analysis. 1317 LoopInfo *LI; 1318 1319 /// Vectorization legality. 1320 LoopVectorizationLegality *Legal; 1321 1322 /// Vector target information. 1323 const TargetTransformInfo &TTI; 1324 1325 /// Target Library Info. 1326 const TargetLibraryInfo *TLI; 1327 1328 /// Demanded bits analysis. 1329 DemandedBits *DB; 1330 1331 /// Assumption cache. 1332 AssumptionCache *AC; 1333 1334 /// Interface to emit optimization remarks. 1335 OptimizationRemarkEmitter *ORE; 1336 1337 const Function *TheFunction; 1338 1339 /// Loop Vectorize Hint. 1340 const LoopVectorizeHints *Hints; 1341 1342 /// The interleave access information contains groups of interleaved accesses 1343 /// with the same stride and close to each other. 1344 InterleavedAccessInfo &InterleaveInfo; 1345 1346 /// Values to ignore in the cost model. 1347 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1348 1349 /// Values to ignore in the cost model when VF > 1. 1350 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1351 }; 1352 1353 } // end namespace llvm 1354 1355 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1356 // vectorization. The loop needs to be annotated with #pragma omp simd 1357 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1358 // vector length information is not provided, vectorization is not considered 1359 // explicit. Interleave hints are not allowed either. These limitations will be 1360 // relaxed in the future. 1361 // Please, note that we are currently forced to abuse the pragma 'clang 1362 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1363 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1364 // provides *explicit vectorization hints* (LV can bypass legal checks and 1365 // assume that vectorization is legal). However, both hints are implemented 1366 // using the same metadata (llvm.loop.vectorize, processed by 1367 // LoopVectorizeHints). This will be fixed in the future when the native IR 1368 // representation for pragma 'omp simd' is introduced. 1369 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1370 OptimizationRemarkEmitter *ORE) { 1371 assert(!OuterLp->empty() && "This is not an outer loop"); 1372 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1373 1374 // Only outer loops with an explicit vectorization hint are supported. 1375 // Unannotated outer loops are ignored. 1376 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1377 return false; 1378 1379 Function *Fn = OuterLp->getHeader()->getParent(); 1380 if (!Hints.allowVectorization(Fn, OuterLp, 1381 true /*VectorizeOnlyWhenForced*/)) { 1382 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1383 return false; 1384 } 1385 1386 if (Hints.getInterleave() > 1) { 1387 // TODO: Interleave support is future work. 1388 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1389 "outer loops.\n"); 1390 Hints.emitRemarkWithHints(); 1391 return false; 1392 } 1393 1394 return true; 1395 } 1396 1397 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1398 OptimizationRemarkEmitter *ORE, 1399 SmallVectorImpl<Loop *> &V) { 1400 // Collect inner loops and outer loops without irreducible control flow. For 1401 // now, only collect outer loops that have explicit vectorization hints. If we 1402 // are stress testing the VPlan H-CFG construction, we collect the outermost 1403 // loop of every loop nest. 1404 if (L.empty() || VPlanBuildStressTest || 1405 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1406 LoopBlocksRPO RPOT(&L); 1407 RPOT.perform(LI); 1408 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1409 V.push_back(&L); 1410 // TODO: Collect inner loops inside marked outer loops in case 1411 // vectorization fails for the outer loop. Do not invoke 1412 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1413 // already known to be reducible. We can use an inherited attribute for 1414 // that. 1415 return; 1416 } 1417 } 1418 for (Loop *InnerL : L) 1419 collectSupportedLoops(*InnerL, LI, ORE, V); 1420 } 1421 1422 namespace { 1423 1424 /// The LoopVectorize Pass. 1425 struct LoopVectorize : public FunctionPass { 1426 /// Pass identification, replacement for typeid 1427 static char ID; 1428 1429 LoopVectorizePass Impl; 1430 1431 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1432 bool VectorizeOnlyWhenForced = false) 1433 : FunctionPass(ID) { 1434 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1435 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1436 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1437 } 1438 1439 bool runOnFunction(Function &F) override { 1440 if (skipFunction(F)) 1441 return false; 1442 1443 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1444 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1445 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1446 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1447 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1448 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1449 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1450 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1451 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1452 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1453 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1454 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1455 1456 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1457 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1458 1459 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1460 GetLAA, *ORE); 1461 } 1462 1463 void getAnalysisUsage(AnalysisUsage &AU) const override { 1464 AU.addRequired<AssumptionCacheTracker>(); 1465 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1466 AU.addRequired<DominatorTreeWrapperPass>(); 1467 AU.addRequired<LoopInfoWrapperPass>(); 1468 AU.addRequired<ScalarEvolutionWrapperPass>(); 1469 AU.addRequired<TargetTransformInfoWrapperPass>(); 1470 AU.addRequired<AAResultsWrapperPass>(); 1471 AU.addRequired<LoopAccessLegacyAnalysis>(); 1472 AU.addRequired<DemandedBitsWrapperPass>(); 1473 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1474 1475 // We currently do not preserve loopinfo/dominator analyses with outer loop 1476 // vectorization. Until this is addressed, mark these analyses as preserved 1477 // only for non-VPlan-native path. 1478 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1479 if (!EnableVPlanNativePath) { 1480 AU.addPreserved<LoopInfoWrapperPass>(); 1481 AU.addPreserved<DominatorTreeWrapperPass>(); 1482 } 1483 1484 AU.addPreserved<BasicAAWrapperPass>(); 1485 AU.addPreserved<GlobalsAAWrapperPass>(); 1486 } 1487 }; 1488 1489 } // end anonymous namespace 1490 1491 //===----------------------------------------------------------------------===// 1492 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1493 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1494 //===----------------------------------------------------------------------===// 1495 1496 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1497 // We need to place the broadcast of invariant variables outside the loop, 1498 // but only if it's proven safe to do so. Else, broadcast will be inside 1499 // vector loop body. 1500 Instruction *Instr = dyn_cast<Instruction>(V); 1501 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1502 (!Instr || 1503 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1504 // Place the code for broadcasting invariant variables in the new preheader. 1505 IRBuilder<>::InsertPointGuard Guard(Builder); 1506 if (SafeToHoist) 1507 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1508 1509 // Broadcast the scalar into all locations in the vector. 1510 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1511 1512 return Shuf; 1513 } 1514 1515 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1516 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1517 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1518 "Expected either an induction phi-node or a truncate of it!"); 1519 Value *Start = II.getStartValue(); 1520 1521 // Construct the initial value of the vector IV in the vector loop preheader 1522 auto CurrIP = Builder.saveIP(); 1523 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1524 if (isa<TruncInst>(EntryVal)) { 1525 assert(Start->getType()->isIntegerTy() && 1526 "Truncation requires an integer type"); 1527 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1528 Step = Builder.CreateTrunc(Step, TruncType); 1529 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1530 } 1531 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1532 Value *SteppedStart = 1533 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1534 1535 // We create vector phi nodes for both integer and floating-point induction 1536 // variables. Here, we determine the kind of arithmetic we will perform. 1537 Instruction::BinaryOps AddOp; 1538 Instruction::BinaryOps MulOp; 1539 if (Step->getType()->isIntegerTy()) { 1540 AddOp = Instruction::Add; 1541 MulOp = Instruction::Mul; 1542 } else { 1543 AddOp = II.getInductionOpcode(); 1544 MulOp = Instruction::FMul; 1545 } 1546 1547 // Multiply the vectorization factor by the step using integer or 1548 // floating-point arithmetic as appropriate. 1549 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1550 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1551 1552 // Create a vector splat to use in the induction update. 1553 // 1554 // FIXME: If the step is non-constant, we create the vector splat with 1555 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1556 // handle a constant vector splat. 1557 Value *SplatVF = isa<Constant>(Mul) 1558 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1559 : Builder.CreateVectorSplat(VF, Mul); 1560 Builder.restoreIP(CurrIP); 1561 1562 // We may need to add the step a number of times, depending on the unroll 1563 // factor. The last of those goes into the PHI. 1564 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1565 &*LoopVectorBody->getFirstInsertionPt()); 1566 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1567 Instruction *LastInduction = VecInd; 1568 for (unsigned Part = 0; Part < UF; ++Part) { 1569 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1570 1571 if (isa<TruncInst>(EntryVal)) 1572 addMetadata(LastInduction, EntryVal); 1573 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1574 1575 LastInduction = cast<Instruction>(addFastMathFlag( 1576 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1577 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1578 } 1579 1580 // Move the last step to the end of the latch block. This ensures consistent 1581 // placement of all induction updates. 1582 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1583 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1584 auto *ICmp = cast<Instruction>(Br->getCondition()); 1585 LastInduction->moveBefore(ICmp); 1586 LastInduction->setName("vec.ind.next"); 1587 1588 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1589 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1590 } 1591 1592 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1593 return Cost->isScalarAfterVectorization(I, VF) || 1594 Cost->isProfitableToScalarize(I, VF); 1595 } 1596 1597 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1598 if (shouldScalarizeInstruction(IV)) 1599 return true; 1600 auto isScalarInst = [&](User *U) -> bool { 1601 auto *I = cast<Instruction>(U); 1602 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1603 }; 1604 return llvm::any_of(IV->users(), isScalarInst); 1605 } 1606 1607 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1608 const InductionDescriptor &ID, const Instruction *EntryVal, 1609 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1610 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1611 "Expected either an induction phi-node or a truncate of it!"); 1612 1613 // This induction variable is not the phi from the original loop but the 1614 // newly-created IV based on the proof that casted Phi is equal to the 1615 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1616 // re-uses the same InductionDescriptor that original IV uses but we don't 1617 // have to do any recording in this case - that is done when original IV is 1618 // processed. 1619 if (isa<TruncInst>(EntryVal)) 1620 return; 1621 1622 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1623 if (Casts.empty()) 1624 return; 1625 // Only the first Cast instruction in the Casts vector is of interest. 1626 // The rest of the Casts (if exist) have no uses outside the 1627 // induction update chain itself. 1628 Instruction *CastInst = *Casts.begin(); 1629 if (Lane < UINT_MAX) 1630 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1631 else 1632 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1633 } 1634 1635 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1636 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1637 "Primary induction variable must have an integer type"); 1638 1639 auto II = Legal->getInductionVars()->find(IV); 1640 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1641 1642 auto ID = II->second; 1643 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1644 1645 // The scalar value to broadcast. This will be derived from the canonical 1646 // induction variable. 1647 Value *ScalarIV = nullptr; 1648 1649 // The value from the original loop to which we are mapping the new induction 1650 // variable. 1651 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1652 1653 // True if we have vectorized the induction variable. 1654 auto VectorizedIV = false; 1655 1656 // Determine if we want a scalar version of the induction variable. This is 1657 // true if the induction variable itself is not widened, or if it has at 1658 // least one user in the loop that is not widened. 1659 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1660 1661 // Generate code for the induction step. Note that induction steps are 1662 // required to be loop-invariant 1663 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1664 "Induction step should be loop invariant"); 1665 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1666 Value *Step = nullptr; 1667 if (PSE.getSE()->isSCEVable(IV->getType())) { 1668 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1669 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1670 LoopVectorPreHeader->getTerminator()); 1671 } else { 1672 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1673 } 1674 1675 // Try to create a new independent vector induction variable. If we can't 1676 // create the phi node, we will splat the scalar induction variable in each 1677 // loop iteration. 1678 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1679 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1680 VectorizedIV = true; 1681 } 1682 1683 // If we haven't yet vectorized the induction variable, or if we will create 1684 // a scalar one, we need to define the scalar induction variable and step 1685 // values. If we were given a truncation type, truncate the canonical 1686 // induction variable and step. Otherwise, derive these values from the 1687 // induction descriptor. 1688 if (!VectorizedIV || NeedsScalarIV) { 1689 ScalarIV = Induction; 1690 if (IV != OldInduction) { 1691 ScalarIV = IV->getType()->isIntegerTy() 1692 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1693 : Builder.CreateCast(Instruction::SIToFP, Induction, 1694 IV->getType()); 1695 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1696 ScalarIV->setName("offset.idx"); 1697 } 1698 if (Trunc) { 1699 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1700 assert(Step->getType()->isIntegerTy() && 1701 "Truncation requires an integer step"); 1702 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1703 Step = Builder.CreateTrunc(Step, TruncType); 1704 } 1705 } 1706 1707 // If we haven't yet vectorized the induction variable, splat the scalar 1708 // induction variable, and build the necessary step vectors. 1709 // TODO: Don't do it unless the vectorized IV is really required. 1710 if (!VectorizedIV) { 1711 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1712 for (unsigned Part = 0; Part < UF; ++Part) { 1713 Value *EntryPart = 1714 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1715 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1716 if (Trunc) 1717 addMetadata(EntryPart, Trunc); 1718 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1719 } 1720 } 1721 1722 // If an induction variable is only used for counting loop iterations or 1723 // calculating addresses, it doesn't need to be widened. Create scalar steps 1724 // that can be used by instructions we will later scalarize. Note that the 1725 // addition of the scalar steps will not increase the number of instructions 1726 // in the loop in the common case prior to InstCombine. We will be trading 1727 // one vector extract for each scalar step. 1728 if (NeedsScalarIV) 1729 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1730 } 1731 1732 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1733 Instruction::BinaryOps BinOp) { 1734 // Create and check the types. 1735 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1736 int VLen = Val->getType()->getVectorNumElements(); 1737 1738 Type *STy = Val->getType()->getScalarType(); 1739 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1740 "Induction Step must be an integer or FP"); 1741 assert(Step->getType() == STy && "Step has wrong type"); 1742 1743 SmallVector<Constant *, 8> Indices; 1744 1745 if (STy->isIntegerTy()) { 1746 // Create a vector of consecutive numbers from zero to VF. 1747 for (int i = 0; i < VLen; ++i) 1748 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1749 1750 // Add the consecutive indices to the vector value. 1751 Constant *Cv = ConstantVector::get(Indices); 1752 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1753 Step = Builder.CreateVectorSplat(VLen, Step); 1754 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1755 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1756 // which can be found from the original scalar operations. 1757 Step = Builder.CreateMul(Cv, Step); 1758 return Builder.CreateAdd(Val, Step, "induction"); 1759 } 1760 1761 // Floating point induction. 1762 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1763 "Binary Opcode should be specified for FP induction"); 1764 // Create a vector of consecutive numbers from zero to VF. 1765 for (int i = 0; i < VLen; ++i) 1766 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1767 1768 // Add the consecutive indices to the vector value. 1769 Constant *Cv = ConstantVector::get(Indices); 1770 1771 Step = Builder.CreateVectorSplat(VLen, Step); 1772 1773 // Floating point operations had to be 'fast' to enable the induction. 1774 FastMathFlags Flags; 1775 Flags.setFast(); 1776 1777 Value *MulOp = Builder.CreateFMul(Cv, Step); 1778 if (isa<Instruction>(MulOp)) 1779 // Have to check, MulOp may be a constant 1780 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1781 1782 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1783 if (isa<Instruction>(BOp)) 1784 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1785 return BOp; 1786 } 1787 1788 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1789 Instruction *EntryVal, 1790 const InductionDescriptor &ID) { 1791 // We shouldn't have to build scalar steps if we aren't vectorizing. 1792 assert(VF > 1 && "VF should be greater than one"); 1793 1794 // Get the value type and ensure it and the step have the same integer type. 1795 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1796 assert(ScalarIVTy == Step->getType() && 1797 "Val and Step should have the same type"); 1798 1799 // We build scalar steps for both integer and floating-point induction 1800 // variables. Here, we determine the kind of arithmetic we will perform. 1801 Instruction::BinaryOps AddOp; 1802 Instruction::BinaryOps MulOp; 1803 if (ScalarIVTy->isIntegerTy()) { 1804 AddOp = Instruction::Add; 1805 MulOp = Instruction::Mul; 1806 } else { 1807 AddOp = ID.getInductionOpcode(); 1808 MulOp = Instruction::FMul; 1809 } 1810 1811 // Determine the number of scalars we need to generate for each unroll 1812 // iteration. If EntryVal is uniform, we only need to generate the first 1813 // lane. Otherwise, we generate all VF values. 1814 unsigned Lanes = 1815 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1816 : VF; 1817 // Compute the scalar steps and save the results in VectorLoopValueMap. 1818 for (unsigned Part = 0; Part < UF; ++Part) { 1819 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1820 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1821 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1822 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1823 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1824 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1825 } 1826 } 1827 } 1828 1829 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1830 assert(V != Induction && "The new induction variable should not be used."); 1831 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1832 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1833 1834 // If we have a stride that is replaced by one, do it here. Defer this for 1835 // the VPlan-native path until we start running Legal checks in that path. 1836 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1837 V = ConstantInt::get(V->getType(), 1); 1838 1839 // If we have a vector mapped to this value, return it. 1840 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1841 return VectorLoopValueMap.getVectorValue(V, Part); 1842 1843 // If the value has not been vectorized, check if it has been scalarized 1844 // instead. If it has been scalarized, and we actually need the value in 1845 // vector form, we will construct the vector values on demand. 1846 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1847 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1848 1849 // If we've scalarized a value, that value should be an instruction. 1850 auto *I = cast<Instruction>(V); 1851 1852 // If we aren't vectorizing, we can just copy the scalar map values over to 1853 // the vector map. 1854 if (VF == 1) { 1855 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1856 return ScalarValue; 1857 } 1858 1859 // Get the last scalar instruction we generated for V and Part. If the value 1860 // is known to be uniform after vectorization, this corresponds to lane zero 1861 // of the Part unroll iteration. Otherwise, the last instruction is the one 1862 // we created for the last vector lane of the Part unroll iteration. 1863 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1864 auto *LastInst = cast<Instruction>( 1865 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1866 1867 // Set the insert point after the last scalarized instruction. This ensures 1868 // the insertelement sequence will directly follow the scalar definitions. 1869 auto OldIP = Builder.saveIP(); 1870 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1871 Builder.SetInsertPoint(&*NewIP); 1872 1873 // However, if we are vectorizing, we need to construct the vector values. 1874 // If the value is known to be uniform after vectorization, we can just 1875 // broadcast the scalar value corresponding to lane zero for each unroll 1876 // iteration. Otherwise, we construct the vector values using insertelement 1877 // instructions. Since the resulting vectors are stored in 1878 // VectorLoopValueMap, we will only generate the insertelements once. 1879 Value *VectorValue = nullptr; 1880 if (Cost->isUniformAfterVectorization(I, VF)) { 1881 VectorValue = getBroadcastInstrs(ScalarValue); 1882 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1883 } else { 1884 // Initialize packing with insertelements to start from undef. 1885 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1886 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1887 for (unsigned Lane = 0; Lane < VF; ++Lane) 1888 packScalarIntoVectorValue(V, {Part, Lane}); 1889 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1890 } 1891 Builder.restoreIP(OldIP); 1892 return VectorValue; 1893 } 1894 1895 // If this scalar is unknown, assume that it is a constant or that it is 1896 // loop invariant. Broadcast V and save the value for future uses. 1897 Value *B = getBroadcastInstrs(V); 1898 VectorLoopValueMap.setVectorValue(V, Part, B); 1899 return B; 1900 } 1901 1902 Value * 1903 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1904 const VPIteration &Instance) { 1905 // If the value is not an instruction contained in the loop, it should 1906 // already be scalar. 1907 if (OrigLoop->isLoopInvariant(V)) 1908 return V; 1909 1910 assert(Instance.Lane > 0 1911 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1912 : true && "Uniform values only have lane zero"); 1913 1914 // If the value from the original loop has not been vectorized, it is 1915 // represented by UF x VF scalar values in the new loop. Return the requested 1916 // scalar value. 1917 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1918 return VectorLoopValueMap.getScalarValue(V, Instance); 1919 1920 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1921 // for the given unroll part. If this entry is not a vector type (i.e., the 1922 // vectorization factor is one), there is no need to generate an 1923 // extractelement instruction. 1924 auto *U = getOrCreateVectorValue(V, Instance.Part); 1925 if (!U->getType()->isVectorTy()) { 1926 assert(VF == 1 && "Value not scalarized has non-vector type"); 1927 return U; 1928 } 1929 1930 // Otherwise, the value from the original loop has been vectorized and is 1931 // represented by UF vector values. Extract and return the requested scalar 1932 // value from the appropriate vector lane. 1933 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1934 } 1935 1936 void InnerLoopVectorizer::packScalarIntoVectorValue( 1937 Value *V, const VPIteration &Instance) { 1938 assert(V != Induction && "The new induction variable should not be used."); 1939 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1940 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1941 1942 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1943 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1944 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1945 Builder.getInt32(Instance.Lane)); 1946 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1947 } 1948 1949 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1950 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1951 SmallVector<Constant *, 8> ShuffleMask; 1952 for (unsigned i = 0; i < VF; ++i) 1953 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1954 1955 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1956 ConstantVector::get(ShuffleMask), 1957 "reverse"); 1958 } 1959 1960 // Return whether we allow using masked interleave-groups (for dealing with 1961 // strided loads/stores that reside in predicated blocks, or for dealing 1962 // with gaps). 1963 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1964 // If an override option has been passed in for interleaved accesses, use it. 1965 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1966 return EnableMaskedInterleavedMemAccesses; 1967 1968 return TTI.enableMaskedInterleavedAccessVectorization(); 1969 } 1970 1971 // Try to vectorize the interleave group that \p Instr belongs to. 1972 // 1973 // E.g. Translate following interleaved load group (factor = 3): 1974 // for (i = 0; i < N; i+=3) { 1975 // R = Pic[i]; // Member of index 0 1976 // G = Pic[i+1]; // Member of index 1 1977 // B = Pic[i+2]; // Member of index 2 1978 // ... // do something to R, G, B 1979 // } 1980 // To: 1981 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1982 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1983 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1984 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1985 // 1986 // Or translate following interleaved store group (factor = 3): 1987 // for (i = 0; i < N; i+=3) { 1988 // ... do something to R, G, B 1989 // Pic[i] = R; // Member of index 0 1990 // Pic[i+1] = G; // Member of index 1 1991 // Pic[i+2] = B; // Member of index 2 1992 // } 1993 // To: 1994 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1995 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1996 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1997 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 1998 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 1999 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2000 VectorParts *BlockInMask) { 2001 const InterleaveGroup<Instruction> *Group = 2002 Cost->getInterleavedAccessGroup(Instr); 2003 assert(Group && "Fail to get an interleaved access group."); 2004 2005 // Skip if current instruction is not the insert position. 2006 if (Instr != Group->getInsertPos()) 2007 return; 2008 2009 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2010 Value *Ptr = getLoadStorePointerOperand(Instr); 2011 2012 // Prepare for the vector type of the interleaved load/store. 2013 Type *ScalarTy = getMemInstValueType(Instr); 2014 unsigned InterleaveFactor = Group->getFactor(); 2015 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2016 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2017 2018 // Prepare for the new pointers. 2019 setDebugLocFromInst(Builder, Ptr); 2020 SmallVector<Value *, 2> NewPtrs; 2021 unsigned Index = Group->getIndex(Instr); 2022 2023 VectorParts Mask; 2024 bool IsMaskForCondRequired = BlockInMask; 2025 if (IsMaskForCondRequired) { 2026 Mask = *BlockInMask; 2027 // TODO: extend the masked interleaved-group support to reversed access. 2028 assert(!Group->isReverse() && "Reversed masked interleave-group " 2029 "not supported."); 2030 } 2031 2032 // If the group is reverse, adjust the index to refer to the last vector lane 2033 // instead of the first. We adjust the index from the first vector lane, 2034 // rather than directly getting the pointer for lane VF - 1, because the 2035 // pointer operand of the interleaved access is supposed to be uniform. For 2036 // uniform instructions, we're only required to generate a value for the 2037 // first vector lane in each unroll iteration. 2038 if (Group->isReverse()) 2039 Index += (VF - 1) * Group->getFactor(); 2040 2041 bool InBounds = false; 2042 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2043 InBounds = gep->isInBounds(); 2044 2045 for (unsigned Part = 0; Part < UF; Part++) { 2046 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2047 2048 // Notice current instruction could be any index. Need to adjust the address 2049 // to the member of index 0. 2050 // 2051 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2052 // b = A[i]; // Member of index 0 2053 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2054 // 2055 // E.g. A[i+1] = a; // Member of index 1 2056 // A[i] = b; // Member of index 0 2057 // A[i+2] = c; // Member of index 2 (Current instruction) 2058 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2059 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2060 if (InBounds) 2061 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2062 2063 // Cast to the vector pointer type. 2064 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2065 } 2066 2067 setDebugLocFromInst(Builder, Instr); 2068 Value *UndefVec = UndefValue::get(VecTy); 2069 2070 Value *MaskForGaps = nullptr; 2071 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2072 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2073 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2074 } 2075 2076 // Vectorize the interleaved load group. 2077 if (isa<LoadInst>(Instr)) { 2078 // For each unroll part, create a wide load for the group. 2079 SmallVector<Value *, 2> NewLoads; 2080 for (unsigned Part = 0; Part < UF; Part++) { 2081 Instruction *NewLoad; 2082 if (IsMaskForCondRequired || MaskForGaps) { 2083 assert(useMaskedInterleavedAccesses(*TTI) && 2084 "masked interleaved groups are not allowed."); 2085 Value *GroupMask = MaskForGaps; 2086 if (IsMaskForCondRequired) { 2087 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2088 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2089 Value *ShuffledMask = Builder.CreateShuffleVector( 2090 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2091 GroupMask = MaskForGaps 2092 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2093 MaskForGaps) 2094 : ShuffledMask; 2095 } 2096 NewLoad = 2097 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2098 GroupMask, UndefVec, "wide.masked.vec"); 2099 } 2100 else 2101 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2102 Group->getAlignment(), "wide.vec"); 2103 Group->addMetadata(NewLoad); 2104 NewLoads.push_back(NewLoad); 2105 } 2106 2107 // For each member in the group, shuffle out the appropriate data from the 2108 // wide loads. 2109 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2110 Instruction *Member = Group->getMember(I); 2111 2112 // Skip the gaps in the group. 2113 if (!Member) 2114 continue; 2115 2116 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2117 for (unsigned Part = 0; Part < UF; Part++) { 2118 Value *StridedVec = Builder.CreateShuffleVector( 2119 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2120 2121 // If this member has different type, cast the result type. 2122 if (Member->getType() != ScalarTy) { 2123 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2124 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2125 } 2126 2127 if (Group->isReverse()) 2128 StridedVec = reverseVector(StridedVec); 2129 2130 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2131 } 2132 } 2133 return; 2134 } 2135 2136 // The sub vector type for current instruction. 2137 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2138 2139 // Vectorize the interleaved store group. 2140 for (unsigned Part = 0; Part < UF; Part++) { 2141 // Collect the stored vector from each member. 2142 SmallVector<Value *, 4> StoredVecs; 2143 for (unsigned i = 0; i < InterleaveFactor; i++) { 2144 // Interleaved store group doesn't allow a gap, so each index has a member 2145 Instruction *Member = Group->getMember(i); 2146 assert(Member && "Fail to get a member from an interleaved store group"); 2147 2148 Value *StoredVec = getOrCreateVectorValue( 2149 cast<StoreInst>(Member)->getValueOperand(), Part); 2150 if (Group->isReverse()) 2151 StoredVec = reverseVector(StoredVec); 2152 2153 // If this member has different type, cast it to a unified type. 2154 2155 if (StoredVec->getType() != SubVT) 2156 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2157 2158 StoredVecs.push_back(StoredVec); 2159 } 2160 2161 // Concatenate all vectors into a wide vector. 2162 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2163 2164 // Interleave the elements in the wide vector. 2165 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2166 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2167 "interleaved.vec"); 2168 2169 Instruction *NewStoreInstr; 2170 if (IsMaskForCondRequired) { 2171 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2172 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2173 Value *ShuffledMask = Builder.CreateShuffleVector( 2174 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2175 NewStoreInstr = Builder.CreateMaskedStore( 2176 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2177 } 2178 else 2179 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2180 Group->getAlignment()); 2181 2182 Group->addMetadata(NewStoreInstr); 2183 } 2184 } 2185 2186 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2187 VectorParts *BlockInMask) { 2188 // Attempt to issue a wide load. 2189 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2190 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2191 2192 assert((LI || SI) && "Invalid Load/Store instruction"); 2193 2194 LoopVectorizationCostModel::InstWidening Decision = 2195 Cost->getWideningDecision(Instr, VF); 2196 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2197 "CM decision should be taken at this point"); 2198 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2199 return vectorizeInterleaveGroup(Instr); 2200 2201 Type *ScalarDataTy = getMemInstValueType(Instr); 2202 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2203 Value *Ptr = getLoadStorePointerOperand(Instr); 2204 unsigned Alignment = getLoadStoreAlignment(Instr); 2205 // An alignment of 0 means target abi alignment. We need to use the scalar's 2206 // target abi alignment in such a case. 2207 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2208 if (!Alignment) 2209 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2210 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2211 2212 // Determine if the pointer operand of the access is either consecutive or 2213 // reverse consecutive. 2214 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2215 bool ConsecutiveStride = 2216 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2217 bool CreateGatherScatter = 2218 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2219 2220 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2221 // gather/scatter. Otherwise Decision should have been to Scalarize. 2222 assert((ConsecutiveStride || CreateGatherScatter) && 2223 "The instruction should be scalarized"); 2224 2225 // Handle consecutive loads/stores. 2226 if (ConsecutiveStride) 2227 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2228 2229 VectorParts Mask; 2230 bool isMaskRequired = BlockInMask; 2231 if (isMaskRequired) 2232 Mask = *BlockInMask; 2233 2234 bool InBounds = false; 2235 if (auto *gep = dyn_cast<GetElementPtrInst>( 2236 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2237 InBounds = gep->isInBounds(); 2238 2239 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2240 // Calculate the pointer for the specific unroll-part. 2241 GetElementPtrInst *PartPtr = nullptr; 2242 2243 if (Reverse) { 2244 // If the address is consecutive but reversed, then the 2245 // wide store needs to start at the last vector element. 2246 PartPtr = cast<GetElementPtrInst>( 2247 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2248 PartPtr->setIsInBounds(InBounds); 2249 PartPtr = cast<GetElementPtrInst>( 2250 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2251 PartPtr->setIsInBounds(InBounds); 2252 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2253 Mask[Part] = reverseVector(Mask[Part]); 2254 } else { 2255 PartPtr = cast<GetElementPtrInst>( 2256 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2257 PartPtr->setIsInBounds(InBounds); 2258 } 2259 2260 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2261 }; 2262 2263 // Handle Stores: 2264 if (SI) { 2265 setDebugLocFromInst(Builder, SI); 2266 2267 for (unsigned Part = 0; Part < UF; ++Part) { 2268 Instruction *NewSI = nullptr; 2269 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2270 if (CreateGatherScatter) { 2271 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2272 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2273 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2274 MaskPart); 2275 } else { 2276 if (Reverse) { 2277 // If we store to reverse consecutive memory locations, then we need 2278 // to reverse the order of elements in the stored value. 2279 StoredVal = reverseVector(StoredVal); 2280 // We don't want to update the value in the map as it might be used in 2281 // another expression. So don't call resetVectorValue(StoredVal). 2282 } 2283 auto *VecPtr = CreateVecPtr(Part, Ptr); 2284 if (isMaskRequired) 2285 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2286 Mask[Part]); 2287 else 2288 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2289 } 2290 addMetadata(NewSI, SI); 2291 } 2292 return; 2293 } 2294 2295 // Handle loads. 2296 assert(LI && "Must have a load instruction"); 2297 setDebugLocFromInst(Builder, LI); 2298 for (unsigned Part = 0; Part < UF; ++Part) { 2299 Value *NewLI; 2300 if (CreateGatherScatter) { 2301 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2302 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2303 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2304 nullptr, "wide.masked.gather"); 2305 addMetadata(NewLI, LI); 2306 } else { 2307 auto *VecPtr = CreateVecPtr(Part, Ptr); 2308 if (isMaskRequired) 2309 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2310 UndefValue::get(DataTy), 2311 "wide.masked.load"); 2312 else 2313 NewLI = 2314 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2315 2316 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2317 addMetadata(NewLI, LI); 2318 if (Reverse) 2319 NewLI = reverseVector(NewLI); 2320 } 2321 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2322 } 2323 } 2324 2325 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2326 const VPIteration &Instance, 2327 bool IfPredicateInstr) { 2328 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2329 2330 setDebugLocFromInst(Builder, Instr); 2331 2332 // Does this instruction return a value ? 2333 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2334 2335 Instruction *Cloned = Instr->clone(); 2336 if (!IsVoidRetTy) 2337 Cloned->setName(Instr->getName() + ".cloned"); 2338 2339 // Replace the operands of the cloned instructions with their scalar 2340 // equivalents in the new loop. 2341 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2342 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2343 Cloned->setOperand(op, NewOp); 2344 } 2345 addNewMetadata(Cloned, Instr); 2346 2347 // Place the cloned scalar in the new loop. 2348 Builder.Insert(Cloned); 2349 2350 // Add the cloned scalar to the scalar map entry. 2351 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2352 2353 // If we just cloned a new assumption, add it the assumption cache. 2354 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2355 if (II->getIntrinsicID() == Intrinsic::assume) 2356 AC->registerAssumption(II); 2357 2358 // End if-block. 2359 if (IfPredicateInstr) 2360 PredicatedInstructions.push_back(Cloned); 2361 } 2362 2363 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2364 Value *End, Value *Step, 2365 Instruction *DL) { 2366 BasicBlock *Header = L->getHeader(); 2367 BasicBlock *Latch = L->getLoopLatch(); 2368 // As we're just creating this loop, it's possible no latch exists 2369 // yet. If so, use the header as this will be a single block loop. 2370 if (!Latch) 2371 Latch = Header; 2372 2373 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2374 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2375 setDebugLocFromInst(Builder, OldInst); 2376 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2377 2378 Builder.SetInsertPoint(Latch->getTerminator()); 2379 setDebugLocFromInst(Builder, OldInst); 2380 2381 // Create i+1 and fill the PHINode. 2382 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2383 Induction->addIncoming(Start, L->getLoopPreheader()); 2384 Induction->addIncoming(Next, Latch); 2385 // Create the compare. 2386 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2387 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2388 2389 // Now we have two terminators. Remove the old one from the block. 2390 Latch->getTerminator()->eraseFromParent(); 2391 2392 return Induction; 2393 } 2394 2395 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2396 if (TripCount) 2397 return TripCount; 2398 2399 assert(L && "Create Trip Count for null loop."); 2400 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2401 // Find the loop boundaries. 2402 ScalarEvolution *SE = PSE.getSE(); 2403 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2404 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2405 "Invalid loop count"); 2406 2407 Type *IdxTy = Legal->getWidestInductionType(); 2408 assert(IdxTy && "No type for induction"); 2409 2410 // The exit count might have the type of i64 while the phi is i32. This can 2411 // happen if we have an induction variable that is sign extended before the 2412 // compare. The only way that we get a backedge taken count is that the 2413 // induction variable was signed and as such will not overflow. In such a case 2414 // truncation is legal. 2415 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2416 IdxTy->getPrimitiveSizeInBits()) 2417 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2418 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2419 2420 // Get the total trip count from the count by adding 1. 2421 const SCEV *ExitCount = SE->getAddExpr( 2422 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2423 2424 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2425 2426 // Expand the trip count and place the new instructions in the preheader. 2427 // Notice that the pre-header does not change, only the loop body. 2428 SCEVExpander Exp(*SE, DL, "induction"); 2429 2430 // Count holds the overall loop count (N). 2431 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2432 L->getLoopPreheader()->getTerminator()); 2433 2434 if (TripCount->getType()->isPointerTy()) 2435 TripCount = 2436 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2437 L->getLoopPreheader()->getTerminator()); 2438 2439 return TripCount; 2440 } 2441 2442 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2443 if (VectorTripCount) 2444 return VectorTripCount; 2445 2446 Value *TC = getOrCreateTripCount(L); 2447 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2448 2449 Type *Ty = TC->getType(); 2450 Constant *Step = ConstantInt::get(Ty, VF * UF); 2451 2452 // If the tail is to be folded by masking, round the number of iterations N 2453 // up to a multiple of Step instead of rounding down. This is done by first 2454 // adding Step-1 and then rounding down. Note that it's ok if this addition 2455 // overflows: the vector induction variable will eventually wrap to zero given 2456 // that it starts at zero and its Step is a power of two; the loop will then 2457 // exit, with the last early-exit vector comparison also producing all-true. 2458 if (Cost->foldTailByMasking()) { 2459 assert(isPowerOf2_32(VF * UF) && 2460 "VF*UF must be a power of 2 when folding tail by masking"); 2461 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2462 } 2463 2464 // Now we need to generate the expression for the part of the loop that the 2465 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2466 // iterations are not required for correctness, or N - Step, otherwise. Step 2467 // is equal to the vectorization factor (number of SIMD elements) times the 2468 // unroll factor (number of SIMD instructions). 2469 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2470 2471 // If there is a non-reversed interleaved group that may speculatively access 2472 // memory out-of-bounds, we need to ensure that there will be at least one 2473 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2474 // the trip count, we set the remainder to be equal to the step. If the step 2475 // does not evenly divide the trip count, no adjustment is necessary since 2476 // there will already be scalar iterations. Note that the minimum iterations 2477 // check ensures that N >= Step. 2478 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2479 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2480 R = Builder.CreateSelect(IsZero, Step, R); 2481 } 2482 2483 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2484 2485 return VectorTripCount; 2486 } 2487 2488 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2489 const DataLayout &DL) { 2490 // Verify that V is a vector type with same number of elements as DstVTy. 2491 unsigned VF = DstVTy->getNumElements(); 2492 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2493 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2494 Type *SrcElemTy = SrcVecTy->getElementType(); 2495 Type *DstElemTy = DstVTy->getElementType(); 2496 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2497 "Vector elements must have same size"); 2498 2499 // Do a direct cast if element types are castable. 2500 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2501 return Builder.CreateBitOrPointerCast(V, DstVTy); 2502 } 2503 // V cannot be directly casted to desired vector type. 2504 // May happen when V is a floating point vector but DstVTy is a vector of 2505 // pointers or vice-versa. Handle this using a two-step bitcast using an 2506 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2507 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2508 "Only one type should be a pointer type"); 2509 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2510 "Only one type should be a floating point type"); 2511 Type *IntTy = 2512 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2513 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2514 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2515 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2516 } 2517 2518 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2519 BasicBlock *Bypass) { 2520 Value *Count = getOrCreateTripCount(L); 2521 BasicBlock *BB = L->getLoopPreheader(); 2522 IRBuilder<> Builder(BB->getTerminator()); 2523 2524 // Generate code to check if the loop's trip count is less than VF * UF, or 2525 // equal to it in case a scalar epilogue is required; this implies that the 2526 // vector trip count is zero. This check also covers the case where adding one 2527 // to the backedge-taken count overflowed leading to an incorrect trip count 2528 // of zero. In this case we will also jump to the scalar loop. 2529 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2530 : ICmpInst::ICMP_ULT; 2531 2532 // If tail is to be folded, vector loop takes care of all iterations. 2533 Value *CheckMinIters = Builder.getFalse(); 2534 if (!Cost->foldTailByMasking()) 2535 CheckMinIters = Builder.CreateICmp( 2536 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2537 "min.iters.check"); 2538 2539 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2540 // Update dominator tree immediately if the generated block is a 2541 // LoopBypassBlock because SCEV expansions to generate loop bypass 2542 // checks may query it before the current function is finished. 2543 DT->addNewBlock(NewBB, BB); 2544 if (L->getParentLoop()) 2545 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2546 ReplaceInstWithInst(BB->getTerminator(), 2547 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2548 LoopBypassBlocks.push_back(BB); 2549 } 2550 2551 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2552 BasicBlock *BB = L->getLoopPreheader(); 2553 2554 // Generate the code to check that the SCEV assumptions that we made. 2555 // We want the new basic block to start at the first instruction in a 2556 // sequence of instructions that form a check. 2557 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2558 "scev.check"); 2559 Value *SCEVCheck = 2560 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2561 2562 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2563 if (C->isZero()) 2564 return; 2565 2566 assert(!Cost->foldTailByMasking() && 2567 "Cannot SCEV check stride or overflow when folding tail"); 2568 // Create a new block containing the stride check. 2569 BB->setName("vector.scevcheck"); 2570 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2571 // Update dominator tree immediately if the generated block is a 2572 // LoopBypassBlock because SCEV expansions to generate loop bypass 2573 // checks may query it before the current function is finished. 2574 DT->addNewBlock(NewBB, BB); 2575 if (L->getParentLoop()) 2576 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2577 ReplaceInstWithInst(BB->getTerminator(), 2578 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2579 LoopBypassBlocks.push_back(BB); 2580 AddedSafetyChecks = true; 2581 } 2582 2583 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2584 // VPlan-native path does not do any analysis for runtime checks currently. 2585 if (EnableVPlanNativePath) 2586 return; 2587 2588 BasicBlock *BB = L->getLoopPreheader(); 2589 2590 // Generate the code that checks in runtime if arrays overlap. We put the 2591 // checks into a separate block to make the more common case of few elements 2592 // faster. 2593 Instruction *FirstCheckInst; 2594 Instruction *MemRuntimeCheck; 2595 std::tie(FirstCheckInst, MemRuntimeCheck) = 2596 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2597 if (!MemRuntimeCheck) 2598 return; 2599 2600 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2601 // Create a new block containing the memory check. 2602 BB->setName("vector.memcheck"); 2603 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2604 // Update dominator tree immediately if the generated block is a 2605 // LoopBypassBlock because SCEV expansions to generate loop bypass 2606 // checks may query it before the current function is finished. 2607 DT->addNewBlock(NewBB, BB); 2608 if (L->getParentLoop()) 2609 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2610 ReplaceInstWithInst(BB->getTerminator(), 2611 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2612 LoopBypassBlocks.push_back(BB); 2613 AddedSafetyChecks = true; 2614 2615 // We currently don't use LoopVersioning for the actual loop cloning but we 2616 // still use it to add the noalias metadata. 2617 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2618 PSE.getSE()); 2619 LVer->prepareNoAliasMetadata(); 2620 } 2621 2622 Value *InnerLoopVectorizer::emitTransformedIndex( 2623 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2624 const InductionDescriptor &ID) const { 2625 2626 SCEVExpander Exp(*SE, DL, "induction"); 2627 auto Step = ID.getStep(); 2628 auto StartValue = ID.getStartValue(); 2629 assert(Index->getType() == Step->getType() && 2630 "Index type does not match StepValue type"); 2631 2632 // Note: the IR at this point is broken. We cannot use SE to create any new 2633 // SCEV and then expand it, hoping that SCEV's simplification will give us 2634 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2635 // lead to various SCEV crashes. So all we can do is to use builder and rely 2636 // on InstCombine for future simplifications. Here we handle some trivial 2637 // cases only. 2638 auto CreateAdd = [&B](Value *X, Value *Y) { 2639 assert(X->getType() == Y->getType() && "Types don't match!"); 2640 if (auto *CX = dyn_cast<ConstantInt>(X)) 2641 if (CX->isZero()) 2642 return Y; 2643 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2644 if (CY->isZero()) 2645 return X; 2646 return B.CreateAdd(X, Y); 2647 }; 2648 2649 auto CreateMul = [&B](Value *X, Value *Y) { 2650 assert(X->getType() == Y->getType() && "Types don't match!"); 2651 if (auto *CX = dyn_cast<ConstantInt>(X)) 2652 if (CX->isOne()) 2653 return Y; 2654 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2655 if (CY->isOne()) 2656 return X; 2657 return B.CreateMul(X, Y); 2658 }; 2659 2660 switch (ID.getKind()) { 2661 case InductionDescriptor::IK_IntInduction: { 2662 assert(Index->getType() == StartValue->getType() && 2663 "Index type does not match StartValue type"); 2664 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2665 return B.CreateSub(StartValue, Index); 2666 auto *Offset = CreateMul( 2667 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2668 return CreateAdd(StartValue, Offset); 2669 } 2670 case InductionDescriptor::IK_PtrInduction: { 2671 assert(isa<SCEVConstant>(Step) && 2672 "Expected constant step for pointer induction"); 2673 return B.CreateGEP( 2674 StartValue->getType()->getPointerElementType(), StartValue, 2675 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2676 &*B.GetInsertPoint()))); 2677 } 2678 case InductionDescriptor::IK_FpInduction: { 2679 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2680 auto InductionBinOp = ID.getInductionBinOp(); 2681 assert(InductionBinOp && 2682 (InductionBinOp->getOpcode() == Instruction::FAdd || 2683 InductionBinOp->getOpcode() == Instruction::FSub) && 2684 "Original bin op should be defined for FP induction"); 2685 2686 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2687 2688 // Floating point operations had to be 'fast' to enable the induction. 2689 FastMathFlags Flags; 2690 Flags.setFast(); 2691 2692 Value *MulExp = B.CreateFMul(StepValue, Index); 2693 if (isa<Instruction>(MulExp)) 2694 // We have to check, the MulExp may be a constant. 2695 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2696 2697 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2698 "induction"); 2699 if (isa<Instruction>(BOp)) 2700 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2701 2702 return BOp; 2703 } 2704 case InductionDescriptor::IK_NoInduction: 2705 return nullptr; 2706 } 2707 llvm_unreachable("invalid enum"); 2708 } 2709 2710 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2711 /* 2712 In this function we generate a new loop. The new loop will contain 2713 the vectorized instructions while the old loop will continue to run the 2714 scalar remainder. 2715 2716 [ ] <-- loop iteration number check. 2717 / | 2718 / v 2719 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2720 | / | 2721 | / v 2722 || [ ] <-- vector pre header. 2723 |/ | 2724 | v 2725 | [ ] \ 2726 | [ ]_| <-- vector loop. 2727 | | 2728 | v 2729 | -[ ] <--- middle-block. 2730 | / | 2731 | / v 2732 -|- >[ ] <--- new preheader. 2733 | | 2734 | v 2735 | [ ] \ 2736 | [ ]_| <-- old scalar loop to handle remainder. 2737 \ | 2738 \ v 2739 >[ ] <-- exit block. 2740 ... 2741 */ 2742 2743 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2744 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2745 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2746 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2747 assert(VectorPH && "Invalid loop structure"); 2748 assert(ExitBlock && "Must have an exit block"); 2749 2750 // Some loops have a single integer induction variable, while other loops 2751 // don't. One example is c++ iterators that often have multiple pointer 2752 // induction variables. In the code below we also support a case where we 2753 // don't have a single induction variable. 2754 // 2755 // We try to obtain an induction variable from the original loop as hard 2756 // as possible. However if we don't find one that: 2757 // - is an integer 2758 // - counts from zero, stepping by one 2759 // - is the size of the widest induction variable type 2760 // then we create a new one. 2761 OldInduction = Legal->getPrimaryInduction(); 2762 Type *IdxTy = Legal->getWidestInductionType(); 2763 2764 // Split the single block loop into the two loop structure described above. 2765 BasicBlock *VecBody = 2766 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2767 BasicBlock *MiddleBlock = 2768 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2769 BasicBlock *ScalarPH = 2770 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2771 2772 // Create and register the new vector loop. 2773 Loop *Lp = LI->AllocateLoop(); 2774 Loop *ParentLoop = OrigLoop->getParentLoop(); 2775 2776 // Insert the new loop into the loop nest and register the new basic blocks 2777 // before calling any utilities such as SCEV that require valid LoopInfo. 2778 if (ParentLoop) { 2779 ParentLoop->addChildLoop(Lp); 2780 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2781 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2782 } else { 2783 LI->addTopLevelLoop(Lp); 2784 } 2785 Lp->addBasicBlockToLoop(VecBody, *LI); 2786 2787 // Find the loop boundaries. 2788 Value *Count = getOrCreateTripCount(Lp); 2789 2790 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2791 2792 // Now, compare the new count to zero. If it is zero skip the vector loop and 2793 // jump to the scalar loop. This check also covers the case where the 2794 // backedge-taken count is uint##_max: adding one to it will overflow leading 2795 // to an incorrect trip count of zero. In this (rare) case we will also jump 2796 // to the scalar loop. 2797 emitMinimumIterationCountCheck(Lp, ScalarPH); 2798 2799 // Generate the code to check any assumptions that we've made for SCEV 2800 // expressions. 2801 emitSCEVChecks(Lp, ScalarPH); 2802 2803 // Generate the code that checks in runtime if arrays overlap. We put the 2804 // checks into a separate block to make the more common case of few elements 2805 // faster. 2806 emitMemRuntimeChecks(Lp, ScalarPH); 2807 2808 // Generate the induction variable. 2809 // The loop step is equal to the vectorization factor (num of SIMD elements) 2810 // times the unroll factor (num of SIMD instructions). 2811 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2812 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2813 Induction = 2814 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2815 getDebugLocFromInstOrOperands(OldInduction)); 2816 2817 // We are going to resume the execution of the scalar loop. 2818 // Go over all of the induction variables that we found and fix the 2819 // PHIs that are left in the scalar version of the loop. 2820 // The starting values of PHI nodes depend on the counter of the last 2821 // iteration in the vectorized loop. 2822 // If we come from a bypass edge then we need to start from the original 2823 // start value. 2824 2825 // This variable saves the new starting index for the scalar loop. It is used 2826 // to test if there are any tail iterations left once the vector loop has 2827 // completed. 2828 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2829 for (auto &InductionEntry : *List) { 2830 PHINode *OrigPhi = InductionEntry.first; 2831 InductionDescriptor II = InductionEntry.second; 2832 2833 // Create phi nodes to merge from the backedge-taken check block. 2834 PHINode *BCResumeVal = PHINode::Create( 2835 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2836 // Copy original phi DL over to the new one. 2837 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2838 Value *&EndValue = IVEndValues[OrigPhi]; 2839 if (OrigPhi == OldInduction) { 2840 // We know what the end value is. 2841 EndValue = CountRoundDown; 2842 } else { 2843 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2844 Type *StepType = II.getStep()->getType(); 2845 Instruction::CastOps CastOp = 2846 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2847 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2848 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2849 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2850 EndValue->setName("ind.end"); 2851 } 2852 2853 // The new PHI merges the original incoming value, in case of a bypass, 2854 // or the value at the end of the vectorized loop. 2855 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2856 2857 // Fix the scalar body counter (PHI node). 2858 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2859 2860 // The old induction's phi node in the scalar body needs the truncated 2861 // value. 2862 for (BasicBlock *BB : LoopBypassBlocks) 2863 BCResumeVal->addIncoming(II.getStartValue(), BB); 2864 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2865 } 2866 2867 // Add a check in the middle block to see if we have completed 2868 // all of the iterations in the first vector loop. 2869 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2870 // If tail is to be folded, we know we don't need to run the remainder. 2871 Value *CmpN = Builder.getTrue(); 2872 if (!Cost->foldTailByMasking()) 2873 CmpN = 2874 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2875 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2876 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2877 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2878 2879 // Get ready to start creating new instructions into the vectorized body. 2880 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2881 2882 // Save the state. 2883 LoopVectorPreHeader = Lp->getLoopPreheader(); 2884 LoopScalarPreHeader = ScalarPH; 2885 LoopMiddleBlock = MiddleBlock; 2886 LoopExitBlock = ExitBlock; 2887 LoopVectorBody = VecBody; 2888 LoopScalarBody = OldBasicBlock; 2889 2890 Optional<MDNode *> VectorizedLoopID = 2891 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2892 LLVMLoopVectorizeFollowupVectorized}); 2893 if (VectorizedLoopID.hasValue()) { 2894 Lp->setLoopID(VectorizedLoopID.getValue()); 2895 2896 // Do not setAlreadyVectorized if loop attributes have been defined 2897 // explicitly. 2898 return LoopVectorPreHeader; 2899 } 2900 2901 // Keep all loop hints from the original loop on the vector loop (we'll 2902 // replace the vectorizer-specific hints below). 2903 if (MDNode *LID = OrigLoop->getLoopID()) 2904 Lp->setLoopID(LID); 2905 2906 LoopVectorizeHints Hints(Lp, true, *ORE); 2907 Hints.setAlreadyVectorized(); 2908 2909 return LoopVectorPreHeader; 2910 } 2911 2912 // Fix up external users of the induction variable. At this point, we are 2913 // in LCSSA form, with all external PHIs that use the IV having one input value, 2914 // coming from the remainder loop. We need those PHIs to also have a correct 2915 // value for the IV when arriving directly from the middle block. 2916 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2917 const InductionDescriptor &II, 2918 Value *CountRoundDown, Value *EndValue, 2919 BasicBlock *MiddleBlock) { 2920 // There are two kinds of external IV usages - those that use the value 2921 // computed in the last iteration (the PHI) and those that use the penultimate 2922 // value (the value that feeds into the phi from the loop latch). 2923 // We allow both, but they, obviously, have different values. 2924 2925 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2926 2927 DenseMap<Value *, Value *> MissingVals; 2928 2929 // An external user of the last iteration's value should see the value that 2930 // the remainder loop uses to initialize its own IV. 2931 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2932 for (User *U : PostInc->users()) { 2933 Instruction *UI = cast<Instruction>(U); 2934 if (!OrigLoop->contains(UI)) { 2935 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2936 MissingVals[UI] = EndValue; 2937 } 2938 } 2939 2940 // An external user of the penultimate value need to see EndValue - Step. 2941 // The simplest way to get this is to recompute it from the constituent SCEVs, 2942 // that is Start + (Step * (CRD - 1)). 2943 for (User *U : OrigPhi->users()) { 2944 auto *UI = cast<Instruction>(U); 2945 if (!OrigLoop->contains(UI)) { 2946 const DataLayout &DL = 2947 OrigLoop->getHeader()->getModule()->getDataLayout(); 2948 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2949 2950 IRBuilder<> B(MiddleBlock->getTerminator()); 2951 Value *CountMinusOne = B.CreateSub( 2952 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2953 Value *CMO = 2954 !II.getStep()->getType()->isIntegerTy() 2955 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2956 II.getStep()->getType()) 2957 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2958 CMO->setName("cast.cmo"); 2959 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2960 Escape->setName("ind.escape"); 2961 MissingVals[UI] = Escape; 2962 } 2963 } 2964 2965 for (auto &I : MissingVals) { 2966 PHINode *PHI = cast<PHINode>(I.first); 2967 // One corner case we have to handle is two IVs "chasing" each-other, 2968 // that is %IV2 = phi [...], [ %IV1, %latch ] 2969 // In this case, if IV1 has an external use, we need to avoid adding both 2970 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2971 // don't already have an incoming value for the middle block. 2972 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2973 PHI->addIncoming(I.second, MiddleBlock); 2974 } 2975 } 2976 2977 namespace { 2978 2979 struct CSEDenseMapInfo { 2980 static bool canHandle(const Instruction *I) { 2981 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2982 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2983 } 2984 2985 static inline Instruction *getEmptyKey() { 2986 return DenseMapInfo<Instruction *>::getEmptyKey(); 2987 } 2988 2989 static inline Instruction *getTombstoneKey() { 2990 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2991 } 2992 2993 static unsigned getHashValue(const Instruction *I) { 2994 assert(canHandle(I) && "Unknown instruction!"); 2995 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2996 I->value_op_end())); 2997 } 2998 2999 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3000 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3001 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3002 return LHS == RHS; 3003 return LHS->isIdenticalTo(RHS); 3004 } 3005 }; 3006 3007 } // end anonymous namespace 3008 3009 ///Perform cse of induction variable instructions. 3010 static void cse(BasicBlock *BB) { 3011 // Perform simple cse. 3012 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3013 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3014 Instruction *In = &*I++; 3015 3016 if (!CSEDenseMapInfo::canHandle(In)) 3017 continue; 3018 3019 // Check if we can replace this instruction with any of the 3020 // visited instructions. 3021 if (Instruction *V = CSEMap.lookup(In)) { 3022 In->replaceAllUsesWith(V); 3023 In->eraseFromParent(); 3024 continue; 3025 } 3026 3027 CSEMap[In] = In; 3028 } 3029 } 3030 3031 /// Estimate the overhead of scalarizing an instruction. This is a 3032 /// convenience wrapper for the type-based getScalarizationOverhead API. 3033 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3034 const TargetTransformInfo &TTI) { 3035 if (VF == 1) 3036 return 0; 3037 3038 unsigned Cost = 0; 3039 Type *RetTy = ToVectorTy(I->getType(), VF); 3040 if (!RetTy->isVoidTy() && 3041 (!isa<LoadInst>(I) || 3042 !TTI.supportsEfficientVectorElementLoadStore())) 3043 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3044 3045 // Some targets keep addresses scalar. 3046 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3047 return Cost; 3048 3049 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3050 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3051 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3052 } 3053 else if (!isa<StoreInst>(I) || 3054 !TTI.supportsEfficientVectorElementLoadStore()) { 3055 SmallVector<const Value *, 4> Operands(I->operand_values()); 3056 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3057 } 3058 3059 return Cost; 3060 } 3061 3062 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3063 // Return the cost of the instruction, including scalarization overhead if it's 3064 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3065 // i.e. either vector version isn't available, or is too expensive. 3066 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3067 const TargetTransformInfo &TTI, 3068 const TargetLibraryInfo *TLI, 3069 bool &NeedToScalarize) { 3070 Function *F = CI->getCalledFunction(); 3071 StringRef FnName = CI->getCalledFunction()->getName(); 3072 Type *ScalarRetTy = CI->getType(); 3073 SmallVector<Type *, 4> Tys, ScalarTys; 3074 for (auto &ArgOp : CI->arg_operands()) 3075 ScalarTys.push_back(ArgOp->getType()); 3076 3077 // Estimate cost of scalarized vector call. The source operands are assumed 3078 // to be vectors, so we need to extract individual elements from there, 3079 // execute VF scalar calls, and then gather the result into the vector return 3080 // value. 3081 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3082 if (VF == 1) 3083 return ScalarCallCost; 3084 3085 // Compute corresponding vector type for return value and arguments. 3086 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3087 for (Type *ScalarTy : ScalarTys) 3088 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3089 3090 // Compute costs of unpacking argument values for the scalar calls and 3091 // packing the return values to a vector. 3092 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3093 3094 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3095 3096 // If we can't emit a vector call for this function, then the currently found 3097 // cost is the cost we need to return. 3098 NeedToScalarize = true; 3099 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3100 return Cost; 3101 3102 // If the corresponding vector cost is cheaper, return its cost. 3103 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3104 if (VectorCallCost < Cost) { 3105 NeedToScalarize = false; 3106 return VectorCallCost; 3107 } 3108 return Cost; 3109 } 3110 3111 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3112 // factor VF. Return the cost of the instruction, including scalarization 3113 // overhead if it's needed. 3114 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3115 const TargetTransformInfo &TTI, 3116 const TargetLibraryInfo *TLI) { 3117 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3118 assert(ID && "Expected intrinsic call!"); 3119 3120 FastMathFlags FMF; 3121 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3122 FMF = FPMO->getFastMathFlags(); 3123 3124 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3125 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3126 } 3127 3128 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3129 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3130 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3131 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3132 } 3133 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3134 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3135 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3136 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3137 } 3138 3139 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3140 // For every instruction `I` in MinBWs, truncate the operands, create a 3141 // truncated version of `I` and reextend its result. InstCombine runs 3142 // later and will remove any ext/trunc pairs. 3143 SmallPtrSet<Value *, 4> Erased; 3144 for (const auto &KV : Cost->getMinimalBitwidths()) { 3145 // If the value wasn't vectorized, we must maintain the original scalar 3146 // type. The absence of the value from VectorLoopValueMap indicates that it 3147 // wasn't vectorized. 3148 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3149 continue; 3150 for (unsigned Part = 0; Part < UF; ++Part) { 3151 Value *I = getOrCreateVectorValue(KV.first, Part); 3152 if (Erased.find(I) != Erased.end() || I->use_empty() || 3153 !isa<Instruction>(I)) 3154 continue; 3155 Type *OriginalTy = I->getType(); 3156 Type *ScalarTruncatedTy = 3157 IntegerType::get(OriginalTy->getContext(), KV.second); 3158 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3159 OriginalTy->getVectorNumElements()); 3160 if (TruncatedTy == OriginalTy) 3161 continue; 3162 3163 IRBuilder<> B(cast<Instruction>(I)); 3164 auto ShrinkOperand = [&](Value *V) -> Value * { 3165 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3166 if (ZI->getSrcTy() == TruncatedTy) 3167 return ZI->getOperand(0); 3168 return B.CreateZExtOrTrunc(V, TruncatedTy); 3169 }; 3170 3171 // The actual instruction modification depends on the instruction type, 3172 // unfortunately. 3173 Value *NewI = nullptr; 3174 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3175 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3176 ShrinkOperand(BO->getOperand(1))); 3177 3178 // Any wrapping introduced by shrinking this operation shouldn't be 3179 // considered undefined behavior. So, we can't unconditionally copy 3180 // arithmetic wrapping flags to NewI. 3181 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3182 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3183 NewI = 3184 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3185 ShrinkOperand(CI->getOperand(1))); 3186 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3187 NewI = B.CreateSelect(SI->getCondition(), 3188 ShrinkOperand(SI->getTrueValue()), 3189 ShrinkOperand(SI->getFalseValue())); 3190 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3191 switch (CI->getOpcode()) { 3192 default: 3193 llvm_unreachable("Unhandled cast!"); 3194 case Instruction::Trunc: 3195 NewI = ShrinkOperand(CI->getOperand(0)); 3196 break; 3197 case Instruction::SExt: 3198 NewI = B.CreateSExtOrTrunc( 3199 CI->getOperand(0), 3200 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3201 break; 3202 case Instruction::ZExt: 3203 NewI = B.CreateZExtOrTrunc( 3204 CI->getOperand(0), 3205 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3206 break; 3207 } 3208 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3209 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3210 auto *O0 = B.CreateZExtOrTrunc( 3211 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3212 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3213 auto *O1 = B.CreateZExtOrTrunc( 3214 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3215 3216 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3217 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3218 // Don't do anything with the operands, just extend the result. 3219 continue; 3220 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3221 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3222 auto *O0 = B.CreateZExtOrTrunc( 3223 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3224 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3225 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3226 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3227 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3228 auto *O0 = B.CreateZExtOrTrunc( 3229 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3230 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3231 } else { 3232 // If we don't know what to do, be conservative and don't do anything. 3233 continue; 3234 } 3235 3236 // Lastly, extend the result. 3237 NewI->takeName(cast<Instruction>(I)); 3238 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3239 I->replaceAllUsesWith(Res); 3240 cast<Instruction>(I)->eraseFromParent(); 3241 Erased.insert(I); 3242 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3243 } 3244 } 3245 3246 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3247 for (const auto &KV : Cost->getMinimalBitwidths()) { 3248 // If the value wasn't vectorized, we must maintain the original scalar 3249 // type. The absence of the value from VectorLoopValueMap indicates that it 3250 // wasn't vectorized. 3251 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3252 continue; 3253 for (unsigned Part = 0; Part < UF; ++Part) { 3254 Value *I = getOrCreateVectorValue(KV.first, Part); 3255 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3256 if (Inst && Inst->use_empty()) { 3257 Value *NewI = Inst->getOperand(0); 3258 Inst->eraseFromParent(); 3259 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3260 } 3261 } 3262 } 3263 } 3264 3265 void InnerLoopVectorizer::fixVectorizedLoop() { 3266 // Insert truncates and extends for any truncated instructions as hints to 3267 // InstCombine. 3268 if (VF > 1) 3269 truncateToMinimalBitwidths(); 3270 3271 // Fix widened non-induction PHIs by setting up the PHI operands. 3272 if (OrigPHIsToFix.size()) { 3273 assert(EnableVPlanNativePath && 3274 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3275 fixNonInductionPHIs(); 3276 } 3277 3278 // At this point every instruction in the original loop is widened to a 3279 // vector form. Now we need to fix the recurrences in the loop. These PHI 3280 // nodes are currently empty because we did not want to introduce cycles. 3281 // This is the second stage of vectorizing recurrences. 3282 fixCrossIterationPHIs(); 3283 3284 // Update the dominator tree. 3285 // 3286 // FIXME: After creating the structure of the new loop, the dominator tree is 3287 // no longer up-to-date, and it remains that way until we update it 3288 // here. An out-of-date dominator tree is problematic for SCEV, 3289 // because SCEVExpander uses it to guide code generation. The 3290 // vectorizer use SCEVExpanders in several places. Instead, we should 3291 // keep the dominator tree up-to-date as we go. 3292 updateAnalysis(); 3293 3294 // Fix-up external users of the induction variables. 3295 for (auto &Entry : *Legal->getInductionVars()) 3296 fixupIVUsers(Entry.first, Entry.second, 3297 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3298 IVEndValues[Entry.first], LoopMiddleBlock); 3299 3300 fixLCSSAPHIs(); 3301 for (Instruction *PI : PredicatedInstructions) 3302 sinkScalarOperands(&*PI); 3303 3304 // Remove redundant induction instructions. 3305 cse(LoopVectorBody); 3306 } 3307 3308 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3309 // In order to support recurrences we need to be able to vectorize Phi nodes. 3310 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3311 // stage #2: We now need to fix the recurrences by adding incoming edges to 3312 // the currently empty PHI nodes. At this point every instruction in the 3313 // original loop is widened to a vector form so we can use them to construct 3314 // the incoming edges. 3315 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3316 // Handle first-order recurrences and reductions that need to be fixed. 3317 if (Legal->isFirstOrderRecurrence(&Phi)) 3318 fixFirstOrderRecurrence(&Phi); 3319 else if (Legal->isReductionVariable(&Phi)) 3320 fixReduction(&Phi); 3321 } 3322 } 3323 3324 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3325 // This is the second phase of vectorizing first-order recurrences. An 3326 // overview of the transformation is described below. Suppose we have the 3327 // following loop. 3328 // 3329 // for (int i = 0; i < n; ++i) 3330 // b[i] = a[i] - a[i - 1]; 3331 // 3332 // There is a first-order recurrence on "a". For this loop, the shorthand 3333 // scalar IR looks like: 3334 // 3335 // scalar.ph: 3336 // s_init = a[-1] 3337 // br scalar.body 3338 // 3339 // scalar.body: 3340 // i = phi [0, scalar.ph], [i+1, scalar.body] 3341 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3342 // s2 = a[i] 3343 // b[i] = s2 - s1 3344 // br cond, scalar.body, ... 3345 // 3346 // In this example, s1 is a recurrence because it's value depends on the 3347 // previous iteration. In the first phase of vectorization, we created a 3348 // temporary value for s1. We now complete the vectorization and produce the 3349 // shorthand vector IR shown below (for VF = 4, UF = 1). 3350 // 3351 // vector.ph: 3352 // v_init = vector(..., ..., ..., a[-1]) 3353 // br vector.body 3354 // 3355 // vector.body 3356 // i = phi [0, vector.ph], [i+4, vector.body] 3357 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3358 // v2 = a[i, i+1, i+2, i+3]; 3359 // v3 = vector(v1(3), v2(0, 1, 2)) 3360 // b[i, i+1, i+2, i+3] = v2 - v3 3361 // br cond, vector.body, middle.block 3362 // 3363 // middle.block: 3364 // x = v2(3) 3365 // br scalar.ph 3366 // 3367 // scalar.ph: 3368 // s_init = phi [x, middle.block], [a[-1], otherwise] 3369 // br scalar.body 3370 // 3371 // After execution completes the vector loop, we extract the next value of 3372 // the recurrence (x) to use as the initial value in the scalar loop. 3373 3374 // Get the original loop preheader and single loop latch. 3375 auto *Preheader = OrigLoop->getLoopPreheader(); 3376 auto *Latch = OrigLoop->getLoopLatch(); 3377 3378 // Get the initial and previous values of the scalar recurrence. 3379 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3380 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3381 3382 // Create a vector from the initial value. 3383 auto *VectorInit = ScalarInit; 3384 if (VF > 1) { 3385 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3386 VectorInit = Builder.CreateInsertElement( 3387 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3388 Builder.getInt32(VF - 1), "vector.recur.init"); 3389 } 3390 3391 // We constructed a temporary phi node in the first phase of vectorization. 3392 // This phi node will eventually be deleted. 3393 Builder.SetInsertPoint( 3394 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3395 3396 // Create a phi node for the new recurrence. The current value will either be 3397 // the initial value inserted into a vector or loop-varying vector value. 3398 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3399 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3400 3401 // Get the vectorized previous value of the last part UF - 1. It appears last 3402 // among all unrolled iterations, due to the order of their construction. 3403 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3404 3405 // Set the insertion point after the previous value if it is an instruction. 3406 // Note that the previous value may have been constant-folded so it is not 3407 // guaranteed to be an instruction in the vector loop. Also, if the previous 3408 // value is a phi node, we should insert after all the phi nodes to avoid 3409 // breaking basic block verification. 3410 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3411 isa<PHINode>(PreviousLastPart)) 3412 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3413 else 3414 Builder.SetInsertPoint( 3415 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3416 3417 // We will construct a vector for the recurrence by combining the values for 3418 // the current and previous iterations. This is the required shuffle mask. 3419 SmallVector<Constant *, 8> ShuffleMask(VF); 3420 ShuffleMask[0] = Builder.getInt32(VF - 1); 3421 for (unsigned I = 1; I < VF; ++I) 3422 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3423 3424 // The vector from which to take the initial value for the current iteration 3425 // (actual or unrolled). Initially, this is the vector phi node. 3426 Value *Incoming = VecPhi; 3427 3428 // Shuffle the current and previous vector and update the vector parts. 3429 for (unsigned Part = 0; Part < UF; ++Part) { 3430 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3431 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3432 auto *Shuffle = 3433 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3434 ConstantVector::get(ShuffleMask)) 3435 : Incoming; 3436 PhiPart->replaceAllUsesWith(Shuffle); 3437 cast<Instruction>(PhiPart)->eraseFromParent(); 3438 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3439 Incoming = PreviousPart; 3440 } 3441 3442 // Fix the latch value of the new recurrence in the vector loop. 3443 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3444 3445 // Extract the last vector element in the middle block. This will be the 3446 // initial value for the recurrence when jumping to the scalar loop. 3447 auto *ExtractForScalar = Incoming; 3448 if (VF > 1) { 3449 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3450 ExtractForScalar = Builder.CreateExtractElement( 3451 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3452 } 3453 // Extract the second last element in the middle block if the 3454 // Phi is used outside the loop. We need to extract the phi itself 3455 // and not the last element (the phi update in the current iteration). This 3456 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3457 // when the scalar loop is not run at all. 3458 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3459 if (VF > 1) 3460 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3461 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3462 // When loop is unrolled without vectorizing, initialize 3463 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3464 // `Incoming`. This is analogous to the vectorized case above: extracting the 3465 // second last element when VF > 1. 3466 else if (UF > 1) 3467 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3468 3469 // Fix the initial value of the original recurrence in the scalar loop. 3470 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3471 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3472 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3473 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3474 Start->addIncoming(Incoming, BB); 3475 } 3476 3477 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3478 Phi->setName("scalar.recur"); 3479 3480 // Finally, fix users of the recurrence outside the loop. The users will need 3481 // either the last value of the scalar recurrence or the last value of the 3482 // vector recurrence we extracted in the middle block. Since the loop is in 3483 // LCSSA form, we just need to find all the phi nodes for the original scalar 3484 // recurrence in the exit block, and then add an edge for the middle block. 3485 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3486 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3487 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3488 } 3489 } 3490 } 3491 3492 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3493 Constant *Zero = Builder.getInt32(0); 3494 3495 // Get it's reduction variable descriptor. 3496 assert(Legal->isReductionVariable(Phi) && 3497 "Unable to find the reduction variable"); 3498 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3499 3500 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3501 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3502 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3503 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3504 RdxDesc.getMinMaxRecurrenceKind(); 3505 setDebugLocFromInst(Builder, ReductionStartValue); 3506 3507 // We need to generate a reduction vector from the incoming scalar. 3508 // To do so, we need to generate the 'identity' vector and override 3509 // one of the elements with the incoming scalar reduction. We need 3510 // to do it in the vector-loop preheader. 3511 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3512 3513 // This is the vector-clone of the value that leaves the loop. 3514 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3515 3516 // Find the reduction identity variable. Zero for addition, or, xor, 3517 // one for multiplication, -1 for And. 3518 Value *Identity; 3519 Value *VectorStart; 3520 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3521 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3522 // MinMax reduction have the start value as their identify. 3523 if (VF == 1) { 3524 VectorStart = Identity = ReductionStartValue; 3525 } else { 3526 VectorStart = Identity = 3527 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3528 } 3529 } else { 3530 // Handle other reduction kinds: 3531 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3532 RK, VecTy->getScalarType()); 3533 if (VF == 1) { 3534 Identity = Iden; 3535 // This vector is the Identity vector where the first element is the 3536 // incoming scalar reduction. 3537 VectorStart = ReductionStartValue; 3538 } else { 3539 Identity = ConstantVector::getSplat(VF, Iden); 3540 3541 // This vector is the Identity vector where the first element is the 3542 // incoming scalar reduction. 3543 VectorStart = 3544 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3545 } 3546 } 3547 3548 // Fix the vector-loop phi. 3549 3550 // Reductions do not have to start at zero. They can start with 3551 // any loop invariant values. 3552 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3553 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3554 for (unsigned Part = 0; Part < UF; ++Part) { 3555 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3556 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3557 // Make sure to add the reduction stat value only to the 3558 // first unroll part. 3559 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3560 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3561 cast<PHINode>(VecRdxPhi) 3562 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3563 } 3564 3565 // Before each round, move the insertion point right between 3566 // the PHIs and the values we are going to write. 3567 // This allows us to write both PHINodes and the extractelement 3568 // instructions. 3569 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3570 3571 setDebugLocFromInst(Builder, LoopExitInst); 3572 3573 // If the vector reduction can be performed in a smaller type, we truncate 3574 // then extend the loop exit value to enable InstCombine to evaluate the 3575 // entire expression in the smaller type. 3576 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3577 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3578 Builder.SetInsertPoint( 3579 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3580 VectorParts RdxParts(UF); 3581 for (unsigned Part = 0; Part < UF; ++Part) { 3582 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3583 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3584 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3585 : Builder.CreateZExt(Trunc, VecTy); 3586 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3587 UI != RdxParts[Part]->user_end();) 3588 if (*UI != Trunc) { 3589 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3590 RdxParts[Part] = Extnd; 3591 } else { 3592 ++UI; 3593 } 3594 } 3595 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3596 for (unsigned Part = 0; Part < UF; ++Part) { 3597 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3598 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3599 } 3600 } 3601 3602 // Reduce all of the unrolled parts into a single vector. 3603 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3604 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3605 setDebugLocFromInst(Builder, ReducedPartRdx); 3606 for (unsigned Part = 1; Part < UF; ++Part) { 3607 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3608 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3609 // Floating point operations had to be 'fast' to enable the reduction. 3610 ReducedPartRdx = addFastMathFlag( 3611 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3612 ReducedPartRdx, "bin.rdx"), 3613 RdxDesc.getFastMathFlags()); 3614 else 3615 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3616 RdxPart); 3617 } 3618 3619 if (VF > 1) { 3620 bool NoNaN = Legal->hasFunNoNaNAttr(); 3621 ReducedPartRdx = 3622 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3623 // If the reduction can be performed in a smaller type, we need to extend 3624 // the reduction to the wider type before we branch to the original loop. 3625 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3626 ReducedPartRdx = 3627 RdxDesc.isSigned() 3628 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3629 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3630 } 3631 3632 // Create a phi node that merges control-flow from the backedge-taken check 3633 // block and the middle block. 3634 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3635 LoopScalarPreHeader->getTerminator()); 3636 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3637 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3638 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3639 3640 // Now, we need to fix the users of the reduction variable 3641 // inside and outside of the scalar remainder loop. 3642 // We know that the loop is in LCSSA form. We need to update the 3643 // PHI nodes in the exit blocks. 3644 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3645 // All PHINodes need to have a single entry edge, or two if 3646 // we already fixed them. 3647 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3648 3649 // We found a reduction value exit-PHI. Update it with the 3650 // incoming bypass edge. 3651 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3652 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3653 } // end of the LCSSA phi scan. 3654 3655 // Fix the scalar loop reduction variable with the incoming reduction sum 3656 // from the vector body and from the backedge value. 3657 int IncomingEdgeBlockIdx = 3658 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3659 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3660 // Pick the other block. 3661 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3662 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3663 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3664 } 3665 3666 void InnerLoopVectorizer::fixLCSSAPHIs() { 3667 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3668 if (LCSSAPhi.getNumIncomingValues() == 1) { 3669 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3670 // Non-instruction incoming values will have only one value. 3671 unsigned LastLane = 0; 3672 if (isa<Instruction>(IncomingValue)) 3673 LastLane = Cost->isUniformAfterVectorization( 3674 cast<Instruction>(IncomingValue), VF) 3675 ? 0 3676 : VF - 1; 3677 // Can be a loop invariant incoming value or the last scalar value to be 3678 // extracted from the vectorized loop. 3679 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3680 Value *lastIncomingValue = 3681 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3682 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3683 } 3684 } 3685 } 3686 3687 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3688 // The basic block and loop containing the predicated instruction. 3689 auto *PredBB = PredInst->getParent(); 3690 auto *VectorLoop = LI->getLoopFor(PredBB); 3691 3692 // Initialize a worklist with the operands of the predicated instruction. 3693 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3694 3695 // Holds instructions that we need to analyze again. An instruction may be 3696 // reanalyzed if we don't yet know if we can sink it or not. 3697 SmallVector<Instruction *, 8> InstsToReanalyze; 3698 3699 // Returns true if a given use occurs in the predicated block. Phi nodes use 3700 // their operands in their corresponding predecessor blocks. 3701 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3702 auto *I = cast<Instruction>(U.getUser()); 3703 BasicBlock *BB = I->getParent(); 3704 if (auto *Phi = dyn_cast<PHINode>(I)) 3705 BB = Phi->getIncomingBlock( 3706 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3707 return BB == PredBB; 3708 }; 3709 3710 // Iteratively sink the scalarized operands of the predicated instruction 3711 // into the block we created for it. When an instruction is sunk, it's 3712 // operands are then added to the worklist. The algorithm ends after one pass 3713 // through the worklist doesn't sink a single instruction. 3714 bool Changed; 3715 do { 3716 // Add the instructions that need to be reanalyzed to the worklist, and 3717 // reset the changed indicator. 3718 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3719 InstsToReanalyze.clear(); 3720 Changed = false; 3721 3722 while (!Worklist.empty()) { 3723 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3724 3725 // We can't sink an instruction if it is a phi node, is already in the 3726 // predicated block, is not in the loop, or may have side effects. 3727 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3728 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3729 continue; 3730 3731 // It's legal to sink the instruction if all its uses occur in the 3732 // predicated block. Otherwise, there's nothing to do yet, and we may 3733 // need to reanalyze the instruction. 3734 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3735 InstsToReanalyze.push_back(I); 3736 continue; 3737 } 3738 3739 // Move the instruction to the beginning of the predicated block, and add 3740 // it's operands to the worklist. 3741 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3742 Worklist.insert(I->op_begin(), I->op_end()); 3743 3744 // The sinking may have enabled other instructions to be sunk, so we will 3745 // need to iterate. 3746 Changed = true; 3747 } 3748 } while (Changed); 3749 } 3750 3751 void InnerLoopVectorizer::fixNonInductionPHIs() { 3752 for (PHINode *OrigPhi : OrigPHIsToFix) { 3753 PHINode *NewPhi = 3754 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3755 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3756 3757 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3758 predecessors(OrigPhi->getParent())); 3759 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3760 predecessors(NewPhi->getParent())); 3761 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3762 "Scalar and Vector BB should have the same number of predecessors"); 3763 3764 // The insertion point in Builder may be invalidated by the time we get 3765 // here. Force the Builder insertion point to something valid so that we do 3766 // not run into issues during insertion point restore in 3767 // getOrCreateVectorValue calls below. 3768 Builder.SetInsertPoint(NewPhi); 3769 3770 // The predecessor order is preserved and we can rely on mapping between 3771 // scalar and vector block predecessors. 3772 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3773 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3774 3775 // When looking up the new scalar/vector values to fix up, use incoming 3776 // values from original phi. 3777 Value *ScIncV = 3778 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3779 3780 // Scalar incoming value may need a broadcast 3781 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3782 NewPhi->addIncoming(NewIncV, NewPredBB); 3783 } 3784 } 3785 } 3786 3787 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3788 unsigned VF) { 3789 PHINode *P = cast<PHINode>(PN); 3790 if (EnableVPlanNativePath) { 3791 // Currently we enter here in the VPlan-native path for non-induction 3792 // PHIs where all control flow is uniform. We simply widen these PHIs. 3793 // Create a vector phi with no operands - the vector phi operands will be 3794 // set at the end of vector code generation. 3795 Type *VecTy = 3796 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3797 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3798 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3799 OrigPHIsToFix.push_back(P); 3800 3801 return; 3802 } 3803 3804 assert(PN->getParent() == OrigLoop->getHeader() && 3805 "Non-header phis should have been handled elsewhere"); 3806 3807 // In order to support recurrences we need to be able to vectorize Phi nodes. 3808 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3809 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3810 // this value when we vectorize all of the instructions that use the PHI. 3811 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3812 for (unsigned Part = 0; Part < UF; ++Part) { 3813 // This is phase one of vectorizing PHIs. 3814 Type *VecTy = 3815 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3816 Value *EntryPart = PHINode::Create( 3817 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3818 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3819 } 3820 return; 3821 } 3822 3823 setDebugLocFromInst(Builder, P); 3824 3825 // This PHINode must be an induction variable. 3826 // Make sure that we know about it. 3827 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3828 3829 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3830 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3831 3832 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3833 // which can be found from the original scalar operations. 3834 switch (II.getKind()) { 3835 case InductionDescriptor::IK_NoInduction: 3836 llvm_unreachable("Unknown induction"); 3837 case InductionDescriptor::IK_IntInduction: 3838 case InductionDescriptor::IK_FpInduction: 3839 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3840 case InductionDescriptor::IK_PtrInduction: { 3841 // Handle the pointer induction variable case. 3842 assert(P->getType()->isPointerTy() && "Unexpected type."); 3843 // This is the normalized GEP that starts counting at zero. 3844 Value *PtrInd = Induction; 3845 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3846 // Determine the number of scalars we need to generate for each unroll 3847 // iteration. If the instruction is uniform, we only need to generate the 3848 // first lane. Otherwise, we generate all VF values. 3849 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3850 // These are the scalar results. Notice that we don't generate vector GEPs 3851 // because scalar GEPs result in better code. 3852 for (unsigned Part = 0; Part < UF; ++Part) { 3853 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3854 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3855 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3856 Value *SclrGep = 3857 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3858 SclrGep->setName("next.gep"); 3859 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3860 } 3861 } 3862 return; 3863 } 3864 } 3865 } 3866 3867 /// A helper function for checking whether an integer division-related 3868 /// instruction may divide by zero (in which case it must be predicated if 3869 /// executed conditionally in the scalar code). 3870 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3871 /// Non-zero divisors that are non compile-time constants will not be 3872 /// converted into multiplication, so we will still end up scalarizing 3873 /// the division, but can do so w/o predication. 3874 static bool mayDivideByZero(Instruction &I) { 3875 assert((I.getOpcode() == Instruction::UDiv || 3876 I.getOpcode() == Instruction::SDiv || 3877 I.getOpcode() == Instruction::URem || 3878 I.getOpcode() == Instruction::SRem) && 3879 "Unexpected instruction"); 3880 Value *Divisor = I.getOperand(1); 3881 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3882 return !CInt || CInt->isZero(); 3883 } 3884 3885 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3886 switch (I.getOpcode()) { 3887 case Instruction::Br: 3888 case Instruction::PHI: 3889 llvm_unreachable("This instruction is handled by a different recipe."); 3890 case Instruction::GetElementPtr: { 3891 // Construct a vector GEP by widening the operands of the scalar GEP as 3892 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3893 // results in a vector of pointers when at least one operand of the GEP 3894 // is vector-typed. Thus, to keep the representation compact, we only use 3895 // vector-typed operands for loop-varying values. 3896 auto *GEP = cast<GetElementPtrInst>(&I); 3897 3898 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3899 // If we are vectorizing, but the GEP has only loop-invariant operands, 3900 // the GEP we build (by only using vector-typed operands for 3901 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3902 // produce a vector of pointers, we need to either arbitrarily pick an 3903 // operand to broadcast, or broadcast a clone of the original GEP. 3904 // Here, we broadcast a clone of the original. 3905 // 3906 // TODO: If at some point we decide to scalarize instructions having 3907 // loop-invariant operands, this special case will no longer be 3908 // required. We would add the scalarization decision to 3909 // collectLoopScalars() and teach getVectorValue() to broadcast 3910 // the lane-zero scalar value. 3911 auto *Clone = Builder.Insert(GEP->clone()); 3912 for (unsigned Part = 0; Part < UF; ++Part) { 3913 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3914 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3915 addMetadata(EntryPart, GEP); 3916 } 3917 } else { 3918 // If the GEP has at least one loop-varying operand, we are sure to 3919 // produce a vector of pointers. But if we are only unrolling, we want 3920 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3921 // produce with the code below will be scalar (if VF == 1) or vector 3922 // (otherwise). Note that for the unroll-only case, we still maintain 3923 // values in the vector mapping with initVector, as we do for other 3924 // instructions. 3925 for (unsigned Part = 0; Part < UF; ++Part) { 3926 // The pointer operand of the new GEP. If it's loop-invariant, we 3927 // won't broadcast it. 3928 auto *Ptr = 3929 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3930 ? GEP->getPointerOperand() 3931 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3932 3933 // Collect all the indices for the new GEP. If any index is 3934 // loop-invariant, we won't broadcast it. 3935 SmallVector<Value *, 4> Indices; 3936 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3937 if (OrigLoop->isLoopInvariant(U.get())) 3938 Indices.push_back(U.get()); 3939 else 3940 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3941 } 3942 3943 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3944 // but it should be a vector, otherwise. 3945 auto *NewGEP = 3946 GEP->isInBounds() 3947 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3948 Indices) 3949 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3950 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3951 "NewGEP is not a pointer vector"); 3952 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3953 addMetadata(NewGEP, GEP); 3954 } 3955 } 3956 3957 break; 3958 } 3959 case Instruction::UDiv: 3960 case Instruction::SDiv: 3961 case Instruction::SRem: 3962 case Instruction::URem: 3963 case Instruction::Add: 3964 case Instruction::FAdd: 3965 case Instruction::Sub: 3966 case Instruction::FSub: 3967 case Instruction::Mul: 3968 case Instruction::FMul: 3969 case Instruction::FDiv: 3970 case Instruction::FRem: 3971 case Instruction::Shl: 3972 case Instruction::LShr: 3973 case Instruction::AShr: 3974 case Instruction::And: 3975 case Instruction::Or: 3976 case Instruction::Xor: { 3977 // Just widen binops. 3978 auto *BinOp = cast<BinaryOperator>(&I); 3979 setDebugLocFromInst(Builder, BinOp); 3980 3981 for (unsigned Part = 0; Part < UF; ++Part) { 3982 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3983 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3984 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3985 3986 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3987 VecOp->copyIRFlags(BinOp); 3988 3989 // Use this vector value for all users of the original instruction. 3990 VectorLoopValueMap.setVectorValue(&I, Part, V); 3991 addMetadata(V, BinOp); 3992 } 3993 3994 break; 3995 } 3996 case Instruction::Select: { 3997 // Widen selects. 3998 // If the selector is loop invariant we can create a select 3999 // instruction with a scalar condition. Otherwise, use vector-select. 4000 auto *SE = PSE.getSE(); 4001 bool InvariantCond = 4002 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4003 setDebugLocFromInst(Builder, &I); 4004 4005 // The condition can be loop invariant but still defined inside the 4006 // loop. This means that we can't just use the original 'cond' value. 4007 // We have to take the 'vectorized' value and pick the first lane. 4008 // Instcombine will make this a no-op. 4009 4010 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4011 4012 for (unsigned Part = 0; Part < UF; ++Part) { 4013 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4014 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4015 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4016 Value *Sel = 4017 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4018 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4019 addMetadata(Sel, &I); 4020 } 4021 4022 break; 4023 } 4024 4025 case Instruction::ICmp: 4026 case Instruction::FCmp: { 4027 // Widen compares. Generate vector compares. 4028 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4029 auto *Cmp = dyn_cast<CmpInst>(&I); 4030 setDebugLocFromInst(Builder, Cmp); 4031 for (unsigned Part = 0; Part < UF; ++Part) { 4032 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4033 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4034 Value *C = nullptr; 4035 if (FCmp) { 4036 // Propagate fast math flags. 4037 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4038 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4039 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4040 } else { 4041 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4042 } 4043 VectorLoopValueMap.setVectorValue(&I, Part, C); 4044 addMetadata(C, &I); 4045 } 4046 4047 break; 4048 } 4049 4050 case Instruction::ZExt: 4051 case Instruction::SExt: 4052 case Instruction::FPToUI: 4053 case Instruction::FPToSI: 4054 case Instruction::FPExt: 4055 case Instruction::PtrToInt: 4056 case Instruction::IntToPtr: 4057 case Instruction::SIToFP: 4058 case Instruction::UIToFP: 4059 case Instruction::Trunc: 4060 case Instruction::FPTrunc: 4061 case Instruction::BitCast: { 4062 auto *CI = dyn_cast<CastInst>(&I); 4063 setDebugLocFromInst(Builder, CI); 4064 4065 /// Vectorize casts. 4066 Type *DestTy = 4067 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4068 4069 for (unsigned Part = 0; Part < UF; ++Part) { 4070 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4071 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4072 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4073 addMetadata(Cast, &I); 4074 } 4075 break; 4076 } 4077 4078 case Instruction::Call: { 4079 // Ignore dbg intrinsics. 4080 if (isa<DbgInfoIntrinsic>(I)) 4081 break; 4082 setDebugLocFromInst(Builder, &I); 4083 4084 Module *M = I.getParent()->getParent()->getParent(); 4085 auto *CI = cast<CallInst>(&I); 4086 4087 StringRef FnName = CI->getCalledFunction()->getName(); 4088 Function *F = CI->getCalledFunction(); 4089 Type *RetTy = ToVectorTy(CI->getType(), VF); 4090 SmallVector<Type *, 4> Tys; 4091 for (Value *ArgOperand : CI->arg_operands()) 4092 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4093 4094 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4095 4096 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4097 // version of the instruction. 4098 // Is it beneficial to perform intrinsic call compared to lib call? 4099 bool NeedToScalarize; 4100 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4101 bool UseVectorIntrinsic = 4102 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4103 assert((UseVectorIntrinsic || !NeedToScalarize) && 4104 "Instruction should be scalarized elsewhere."); 4105 4106 for (unsigned Part = 0; Part < UF; ++Part) { 4107 SmallVector<Value *, 4> Args; 4108 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4109 Value *Arg = CI->getArgOperand(i); 4110 // Some intrinsics have a scalar argument - don't replace it with a 4111 // vector. 4112 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4113 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4114 Args.push_back(Arg); 4115 } 4116 4117 Function *VectorF; 4118 if (UseVectorIntrinsic) { 4119 // Use vector version of the intrinsic. 4120 Type *TysForDecl[] = {CI->getType()}; 4121 if (VF > 1) 4122 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4123 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4124 } else { 4125 // Use vector version of the library call. 4126 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4127 assert(!VFnName.empty() && "Vector function name is empty."); 4128 VectorF = M->getFunction(VFnName); 4129 if (!VectorF) { 4130 // Generate a declaration 4131 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4132 VectorF = 4133 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4134 VectorF->copyAttributesFrom(F); 4135 } 4136 } 4137 assert(VectorF && "Can't create vector function."); 4138 4139 SmallVector<OperandBundleDef, 1> OpBundles; 4140 CI->getOperandBundlesAsDefs(OpBundles); 4141 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4142 4143 if (isa<FPMathOperator>(V)) 4144 V->copyFastMathFlags(CI); 4145 4146 VectorLoopValueMap.setVectorValue(&I, Part, V); 4147 addMetadata(V, &I); 4148 } 4149 4150 break; 4151 } 4152 4153 default: 4154 // This instruction is not vectorized by simple widening. 4155 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4156 llvm_unreachable("Unhandled instruction!"); 4157 } // end of switch. 4158 } 4159 4160 void InnerLoopVectorizer::updateAnalysis() { 4161 // Forget the original basic block. 4162 PSE.getSE()->forgetLoop(OrigLoop); 4163 4164 // DT is not kept up-to-date for outer loop vectorization 4165 if (EnableVPlanNativePath) 4166 return; 4167 4168 // Update the dominator tree information. 4169 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4170 "Entry does not dominate exit."); 4171 4172 DT->addNewBlock(LoopMiddleBlock, 4173 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4174 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4175 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4176 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4177 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4178 } 4179 4180 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4181 // We should not collect Scalars more than once per VF. Right now, this 4182 // function is called from collectUniformsAndScalars(), which already does 4183 // this check. Collecting Scalars for VF=1 does not make any sense. 4184 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4185 "This function should not be visited twice for the same VF"); 4186 4187 SmallSetVector<Instruction *, 8> Worklist; 4188 4189 // These sets are used to seed the analysis with pointers used by memory 4190 // accesses that will remain scalar. 4191 SmallSetVector<Instruction *, 8> ScalarPtrs; 4192 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4193 4194 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4195 // The pointer operands of loads and stores will be scalar as long as the 4196 // memory access is not a gather or scatter operation. The value operand of a 4197 // store will remain scalar if the store is scalarized. 4198 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4199 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4200 assert(WideningDecision != CM_Unknown && 4201 "Widening decision should be ready at this moment"); 4202 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4203 if (Ptr == Store->getValueOperand()) 4204 return WideningDecision == CM_Scalarize; 4205 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4206 "Ptr is neither a value or pointer operand"); 4207 return WideningDecision != CM_GatherScatter; 4208 }; 4209 4210 // A helper that returns true if the given value is a bitcast or 4211 // getelementptr instruction contained in the loop. 4212 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4213 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4214 isa<GetElementPtrInst>(V)) && 4215 !TheLoop->isLoopInvariant(V); 4216 }; 4217 4218 // A helper that evaluates a memory access's use of a pointer. If the use 4219 // will be a scalar use, and the pointer is only used by memory accesses, we 4220 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4221 // PossibleNonScalarPtrs. 4222 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4223 // We only care about bitcast and getelementptr instructions contained in 4224 // the loop. 4225 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4226 return; 4227 4228 // If the pointer has already been identified as scalar (e.g., if it was 4229 // also identified as uniform), there's nothing to do. 4230 auto *I = cast<Instruction>(Ptr); 4231 if (Worklist.count(I)) 4232 return; 4233 4234 // If the use of the pointer will be a scalar use, and all users of the 4235 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4236 // place the pointer in PossibleNonScalarPtrs. 4237 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4238 return isa<LoadInst>(U) || isa<StoreInst>(U); 4239 })) 4240 ScalarPtrs.insert(I); 4241 else 4242 PossibleNonScalarPtrs.insert(I); 4243 }; 4244 4245 // We seed the scalars analysis with three classes of instructions: (1) 4246 // instructions marked uniform-after-vectorization, (2) bitcast and 4247 // getelementptr instructions used by memory accesses requiring a scalar use, 4248 // and (3) pointer induction variables and their update instructions (we 4249 // currently only scalarize these). 4250 // 4251 // (1) Add to the worklist all instructions that have been identified as 4252 // uniform-after-vectorization. 4253 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4254 4255 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4256 // memory accesses requiring a scalar use. The pointer operands of loads and 4257 // stores will be scalar as long as the memory accesses is not a gather or 4258 // scatter operation. The value operand of a store will remain scalar if the 4259 // store is scalarized. 4260 for (auto *BB : TheLoop->blocks()) 4261 for (auto &I : *BB) { 4262 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4263 evaluatePtrUse(Load, Load->getPointerOperand()); 4264 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4265 evaluatePtrUse(Store, Store->getPointerOperand()); 4266 evaluatePtrUse(Store, Store->getValueOperand()); 4267 } 4268 } 4269 for (auto *I : ScalarPtrs) 4270 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4271 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4272 Worklist.insert(I); 4273 } 4274 4275 // (3) Add to the worklist all pointer induction variables and their update 4276 // instructions. 4277 // 4278 // TODO: Once we are able to vectorize pointer induction variables we should 4279 // no longer insert them into the worklist here. 4280 auto *Latch = TheLoop->getLoopLatch(); 4281 for (auto &Induction : *Legal->getInductionVars()) { 4282 auto *Ind = Induction.first; 4283 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4284 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4285 continue; 4286 Worklist.insert(Ind); 4287 Worklist.insert(IndUpdate); 4288 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4289 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4290 << "\n"); 4291 } 4292 4293 // Insert the forced scalars. 4294 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4295 // induction variable when the PHI user is scalarized. 4296 auto ForcedScalar = ForcedScalars.find(VF); 4297 if (ForcedScalar != ForcedScalars.end()) 4298 for (auto *I : ForcedScalar->second) 4299 Worklist.insert(I); 4300 4301 // Expand the worklist by looking through any bitcasts and getelementptr 4302 // instructions we've already identified as scalar. This is similar to the 4303 // expansion step in collectLoopUniforms(); however, here we're only 4304 // expanding to include additional bitcasts and getelementptr instructions. 4305 unsigned Idx = 0; 4306 while (Idx != Worklist.size()) { 4307 Instruction *Dst = Worklist[Idx++]; 4308 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4309 continue; 4310 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4311 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4312 auto *J = cast<Instruction>(U); 4313 return !TheLoop->contains(J) || Worklist.count(J) || 4314 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4315 isScalarUse(J, Src)); 4316 })) { 4317 Worklist.insert(Src); 4318 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4319 } 4320 } 4321 4322 // An induction variable will remain scalar if all users of the induction 4323 // variable and induction variable update remain scalar. 4324 for (auto &Induction : *Legal->getInductionVars()) { 4325 auto *Ind = Induction.first; 4326 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4327 4328 // We already considered pointer induction variables, so there's no reason 4329 // to look at their users again. 4330 // 4331 // TODO: Once we are able to vectorize pointer induction variables we 4332 // should no longer skip over them here. 4333 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4334 continue; 4335 4336 // Determine if all users of the induction variable are scalar after 4337 // vectorization. 4338 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4339 auto *I = cast<Instruction>(U); 4340 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4341 }); 4342 if (!ScalarInd) 4343 continue; 4344 4345 // Determine if all users of the induction variable update instruction are 4346 // scalar after vectorization. 4347 auto ScalarIndUpdate = 4348 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4349 auto *I = cast<Instruction>(U); 4350 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4351 }); 4352 if (!ScalarIndUpdate) 4353 continue; 4354 4355 // The induction variable and its update instruction will remain scalar. 4356 Worklist.insert(Ind); 4357 Worklist.insert(IndUpdate); 4358 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4359 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4360 << "\n"); 4361 } 4362 4363 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4364 } 4365 4366 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4367 if (!blockNeedsPredication(I->getParent())) 4368 return false; 4369 switch(I->getOpcode()) { 4370 default: 4371 break; 4372 case Instruction::Load: 4373 case Instruction::Store: { 4374 if (!Legal->isMaskRequired(I)) 4375 return false; 4376 auto *Ptr = getLoadStorePointerOperand(I); 4377 auto *Ty = getMemInstValueType(I); 4378 // We have already decided how to vectorize this instruction, get that 4379 // result. 4380 if (VF > 1) { 4381 InstWidening WideningDecision = getWideningDecision(I, VF); 4382 assert(WideningDecision != CM_Unknown && 4383 "Widening decision should be ready at this moment"); 4384 return WideningDecision == CM_Scalarize; 4385 } 4386 return isa<LoadInst>(I) ? 4387 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4388 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4389 } 4390 case Instruction::UDiv: 4391 case Instruction::SDiv: 4392 case Instruction::SRem: 4393 case Instruction::URem: 4394 return mayDivideByZero(*I); 4395 } 4396 return false; 4397 } 4398 4399 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4400 unsigned VF) { 4401 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4402 assert(getWideningDecision(I, VF) == CM_Unknown && 4403 "Decision should not be set yet."); 4404 auto *Group = getInterleavedAccessGroup(I); 4405 assert(Group && "Must have a group."); 4406 4407 // Check if masking is required. 4408 // A Group may need masking for one of two reasons: it resides in a block that 4409 // needs predication, or it was decided to use masking to deal with gaps. 4410 bool PredicatedAccessRequiresMasking = 4411 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4412 bool AccessWithGapsRequiresMasking = 4413 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4414 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4415 return true; 4416 4417 // If masked interleaving is required, we expect that the user/target had 4418 // enabled it, because otherwise it either wouldn't have been created or 4419 // it should have been invalidated by the CostModel. 4420 assert(useMaskedInterleavedAccesses(TTI) && 4421 "Masked interleave-groups for predicated accesses are not enabled."); 4422 4423 auto *Ty = getMemInstValueType(I); 4424 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4425 : TTI.isLegalMaskedStore(Ty); 4426 } 4427 4428 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4429 unsigned VF) { 4430 // Get and ensure we have a valid memory instruction. 4431 LoadInst *LI = dyn_cast<LoadInst>(I); 4432 StoreInst *SI = dyn_cast<StoreInst>(I); 4433 assert((LI || SI) && "Invalid memory instruction"); 4434 4435 auto *Ptr = getLoadStorePointerOperand(I); 4436 4437 // In order to be widened, the pointer should be consecutive, first of all. 4438 if (!Legal->isConsecutivePtr(Ptr)) 4439 return false; 4440 4441 // If the instruction is a store located in a predicated block, it will be 4442 // scalarized. 4443 if (isScalarWithPredication(I)) 4444 return false; 4445 4446 // If the instruction's allocated size doesn't equal it's type size, it 4447 // requires padding and will be scalarized. 4448 auto &DL = I->getModule()->getDataLayout(); 4449 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4450 if (hasIrregularType(ScalarTy, DL, VF)) 4451 return false; 4452 4453 return true; 4454 } 4455 4456 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4457 // We should not collect Uniforms more than once per VF. Right now, 4458 // this function is called from collectUniformsAndScalars(), which 4459 // already does this check. Collecting Uniforms for VF=1 does not make any 4460 // sense. 4461 4462 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4463 "This function should not be visited twice for the same VF"); 4464 4465 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4466 // not analyze again. Uniforms.count(VF) will return 1. 4467 Uniforms[VF].clear(); 4468 4469 // We now know that the loop is vectorizable! 4470 // Collect instructions inside the loop that will remain uniform after 4471 // vectorization. 4472 4473 // Global values, params and instructions outside of current loop are out of 4474 // scope. 4475 auto isOutOfScope = [&](Value *V) -> bool { 4476 Instruction *I = dyn_cast<Instruction>(V); 4477 return (!I || !TheLoop->contains(I)); 4478 }; 4479 4480 SetVector<Instruction *> Worklist; 4481 BasicBlock *Latch = TheLoop->getLoopLatch(); 4482 4483 // Start with the conditional branch. If the branch condition is an 4484 // instruction contained in the loop that is only used by the branch, it is 4485 // uniform. 4486 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4487 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4488 Worklist.insert(Cmp); 4489 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4490 } 4491 4492 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4493 // are pointers that are treated like consecutive pointers during 4494 // vectorization. The pointer operands of interleaved accesses are an 4495 // example. 4496 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4497 4498 // Holds pointer operands of instructions that are possibly non-uniform. 4499 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4500 4501 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4502 InstWidening WideningDecision = getWideningDecision(I, VF); 4503 assert(WideningDecision != CM_Unknown && 4504 "Widening decision should be ready at this moment"); 4505 4506 return (WideningDecision == CM_Widen || 4507 WideningDecision == CM_Widen_Reverse || 4508 WideningDecision == CM_Interleave); 4509 }; 4510 // Iterate over the instructions in the loop, and collect all 4511 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4512 // that a consecutive-like pointer operand will be scalarized, we collect it 4513 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4514 // getelementptr instruction can be used by both vectorized and scalarized 4515 // memory instructions. For example, if a loop loads and stores from the same 4516 // location, but the store is conditional, the store will be scalarized, and 4517 // the getelementptr won't remain uniform. 4518 for (auto *BB : TheLoop->blocks()) 4519 for (auto &I : *BB) { 4520 // If there's no pointer operand, there's nothing to do. 4521 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4522 if (!Ptr) 4523 continue; 4524 4525 // True if all users of Ptr are memory accesses that have Ptr as their 4526 // pointer operand. 4527 auto UsersAreMemAccesses = 4528 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4529 return getLoadStorePointerOperand(U) == Ptr; 4530 }); 4531 4532 // Ensure the memory instruction will not be scalarized or used by 4533 // gather/scatter, making its pointer operand non-uniform. If the pointer 4534 // operand is used by any instruction other than a memory access, we 4535 // conservatively assume the pointer operand may be non-uniform. 4536 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4537 PossibleNonUniformPtrs.insert(Ptr); 4538 4539 // If the memory instruction will be vectorized and its pointer operand 4540 // is consecutive-like, or interleaving - the pointer operand should 4541 // remain uniform. 4542 else 4543 ConsecutiveLikePtrs.insert(Ptr); 4544 } 4545 4546 // Add to the Worklist all consecutive and consecutive-like pointers that 4547 // aren't also identified as possibly non-uniform. 4548 for (auto *V : ConsecutiveLikePtrs) 4549 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4550 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4551 Worklist.insert(V); 4552 } 4553 4554 // Expand Worklist in topological order: whenever a new instruction 4555 // is added , its users should be already inside Worklist. It ensures 4556 // a uniform instruction will only be used by uniform instructions. 4557 unsigned idx = 0; 4558 while (idx != Worklist.size()) { 4559 Instruction *I = Worklist[idx++]; 4560 4561 for (auto OV : I->operand_values()) { 4562 // isOutOfScope operands cannot be uniform instructions. 4563 if (isOutOfScope(OV)) 4564 continue; 4565 // First order recurrence Phi's should typically be considered 4566 // non-uniform. 4567 auto *OP = dyn_cast<PHINode>(OV); 4568 if (OP && Legal->isFirstOrderRecurrence(OP)) 4569 continue; 4570 // If all the users of the operand are uniform, then add the 4571 // operand into the uniform worklist. 4572 auto *OI = cast<Instruction>(OV); 4573 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4574 auto *J = cast<Instruction>(U); 4575 return Worklist.count(J) || 4576 (OI == getLoadStorePointerOperand(J) && 4577 isUniformDecision(J, VF)); 4578 })) { 4579 Worklist.insert(OI); 4580 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4581 } 4582 } 4583 } 4584 4585 // Returns true if Ptr is the pointer operand of a memory access instruction 4586 // I, and I is known to not require scalarization. 4587 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4588 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4589 }; 4590 4591 // For an instruction to be added into Worklist above, all its users inside 4592 // the loop should also be in Worklist. However, this condition cannot be 4593 // true for phi nodes that form a cyclic dependence. We must process phi 4594 // nodes separately. An induction variable will remain uniform if all users 4595 // of the induction variable and induction variable update remain uniform. 4596 // The code below handles both pointer and non-pointer induction variables. 4597 for (auto &Induction : *Legal->getInductionVars()) { 4598 auto *Ind = Induction.first; 4599 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4600 4601 // Determine if all users of the induction variable are uniform after 4602 // vectorization. 4603 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4604 auto *I = cast<Instruction>(U); 4605 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4606 isVectorizedMemAccessUse(I, Ind); 4607 }); 4608 if (!UniformInd) 4609 continue; 4610 4611 // Determine if all users of the induction variable update instruction are 4612 // uniform after vectorization. 4613 auto UniformIndUpdate = 4614 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4615 auto *I = cast<Instruction>(U); 4616 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4617 isVectorizedMemAccessUse(I, IndUpdate); 4618 }); 4619 if (!UniformIndUpdate) 4620 continue; 4621 4622 // The induction variable and its update instruction will remain uniform. 4623 Worklist.insert(Ind); 4624 Worklist.insert(IndUpdate); 4625 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4626 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4627 << "\n"); 4628 } 4629 4630 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4631 } 4632 4633 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4634 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4635 // TODO: It may by useful to do since it's still likely to be dynamically 4636 // uniform if the target can skip. 4637 LLVM_DEBUG( 4638 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4639 4640 ORE->emit( 4641 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4642 << "runtime pointer checks needed. Not enabled for divergent target"); 4643 4644 return None; 4645 } 4646 4647 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4648 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4649 return computeFeasibleMaxVF(OptForSize, TC); 4650 4651 if (Legal->getRuntimePointerChecking()->Need) { 4652 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4653 << "runtime pointer checks needed. Enable vectorization of this " 4654 "loop with '#pragma clang loop vectorize(enable)' when " 4655 "compiling with -Os/-Oz"); 4656 LLVM_DEBUG( 4657 dbgs() 4658 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4659 return None; 4660 } 4661 4662 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4663 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4664 << "runtime SCEV checks needed. Enable vectorization of this " 4665 "loop with '#pragma clang loop vectorize(enable)' when " 4666 "compiling with -Os/-Oz"); 4667 LLVM_DEBUG( 4668 dbgs() 4669 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4670 return None; 4671 } 4672 4673 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4674 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4675 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4676 << "runtime stride == 1 checks needed. Enable vectorization of " 4677 "this loop with '#pragma clang loop vectorize(enable)' when " 4678 "compiling with -Os/-Oz"); 4679 LLVM_DEBUG( 4680 dbgs() 4681 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4682 return None; 4683 } 4684 4685 // If we optimize the program for size, avoid creating the tail loop. 4686 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4687 4688 if (TC == 1) { 4689 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4690 << "loop trip count is one, irrelevant for vectorization"); 4691 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4692 return None; 4693 } 4694 4695 // Record that scalar epilogue is not allowed. 4696 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4697 4698 IsScalarEpilogueAllowed = !OptForSize; 4699 4700 // We don't create an epilogue when optimizing for size. 4701 // Invalidate interleave groups that require an epilogue if we can't mask 4702 // the interleave-group. 4703 if (!useMaskedInterleavedAccesses(TTI)) 4704 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4705 4706 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4707 4708 if (TC > 0 && TC % MaxVF == 0) { 4709 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4710 return MaxVF; 4711 } 4712 4713 // If we don't know the precise trip count, or if the trip count that we 4714 // found modulo the vectorization factor is not zero, try to fold the tail 4715 // by masking. 4716 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4717 if (Legal->canFoldTailByMasking()) { 4718 FoldTailByMasking = true; 4719 return MaxVF; 4720 } 4721 4722 if (TC == 0) { 4723 ORE->emit( 4724 createMissedAnalysis("UnknownLoopCountComplexCFG") 4725 << "unable to calculate the loop count due to complex control flow"); 4726 return None; 4727 } 4728 4729 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4730 << "cannot optimize for size and vectorize at the same time. " 4731 "Enable vectorization of this loop with '#pragma clang loop " 4732 "vectorize(enable)' when compiling with -Os/-Oz"); 4733 return None; 4734 } 4735 4736 unsigned 4737 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4738 unsigned ConstTripCount) { 4739 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4740 unsigned SmallestType, WidestType; 4741 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4742 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4743 4744 // Get the maximum safe dependence distance in bits computed by LAA. 4745 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4746 // the memory accesses that is most restrictive (involved in the smallest 4747 // dependence distance). 4748 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4749 4750 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4751 4752 unsigned MaxVectorSize = WidestRegister / WidestType; 4753 4754 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4755 << " / " << WidestType << " bits.\n"); 4756 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4757 << WidestRegister << " bits.\n"); 4758 4759 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4760 " into one vector!"); 4761 if (MaxVectorSize == 0) { 4762 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4763 MaxVectorSize = 1; 4764 return MaxVectorSize; 4765 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4766 isPowerOf2_32(ConstTripCount)) { 4767 // We need to clamp the VF to be the ConstTripCount. There is no point in 4768 // choosing a higher viable VF as done in the loop below. 4769 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4770 << ConstTripCount << "\n"); 4771 MaxVectorSize = ConstTripCount; 4772 return MaxVectorSize; 4773 } 4774 4775 unsigned MaxVF = MaxVectorSize; 4776 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4777 (MaximizeBandwidth && !OptForSize)) { 4778 // Collect all viable vectorization factors larger than the default MaxVF 4779 // (i.e. MaxVectorSize). 4780 SmallVector<unsigned, 8> VFs; 4781 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4782 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4783 VFs.push_back(VS); 4784 4785 // For each VF calculate its register usage. 4786 auto RUs = calculateRegisterUsage(VFs); 4787 4788 // Select the largest VF which doesn't require more registers than existing 4789 // ones. 4790 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4791 for (int i = RUs.size() - 1; i >= 0; --i) { 4792 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4793 MaxVF = VFs[i]; 4794 break; 4795 } 4796 } 4797 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4798 if (MaxVF < MinVF) { 4799 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4800 << ") with target's minimum: " << MinVF << '\n'); 4801 MaxVF = MinVF; 4802 } 4803 } 4804 } 4805 return MaxVF; 4806 } 4807 4808 VectorizationFactor 4809 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4810 float Cost = expectedCost(1).first; 4811 const float ScalarCost = Cost; 4812 unsigned Width = 1; 4813 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4814 4815 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4816 if (ForceVectorization && MaxVF > 1) { 4817 // Ignore scalar width, because the user explicitly wants vectorization. 4818 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4819 // evaluation. 4820 Cost = std::numeric_limits<float>::max(); 4821 } 4822 4823 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4824 // Notice that the vector loop needs to be executed less times, so 4825 // we need to divide the cost of the vector loops by the width of 4826 // the vector elements. 4827 VectorizationCostTy C = expectedCost(i); 4828 float VectorCost = C.first / (float)i; 4829 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4830 << " costs: " << (int)VectorCost << ".\n"); 4831 if (!C.second && !ForceVectorization) { 4832 LLVM_DEBUG( 4833 dbgs() << "LV: Not considering vector loop of width " << i 4834 << " because it will not generate any vector instructions.\n"); 4835 continue; 4836 } 4837 if (VectorCost < Cost) { 4838 Cost = VectorCost; 4839 Width = i; 4840 } 4841 } 4842 4843 if (!EnableCondStoresVectorization && NumPredStores) { 4844 ORE->emit(createMissedAnalysis("ConditionalStore") 4845 << "store that is conditionally executed prevents vectorization"); 4846 LLVM_DEBUG( 4847 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4848 Width = 1; 4849 Cost = ScalarCost; 4850 } 4851 4852 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4853 << "LV: Vectorization seems to be not beneficial, " 4854 << "but was forced by a user.\n"); 4855 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4856 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4857 return Factor; 4858 } 4859 4860 std::pair<unsigned, unsigned> 4861 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4862 unsigned MinWidth = -1U; 4863 unsigned MaxWidth = 8; 4864 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4865 4866 // For each block. 4867 for (BasicBlock *BB : TheLoop->blocks()) { 4868 // For each instruction in the loop. 4869 for (Instruction &I : BB->instructionsWithoutDebug()) { 4870 Type *T = I.getType(); 4871 4872 // Skip ignored values. 4873 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4874 continue; 4875 4876 // Only examine Loads, Stores and PHINodes. 4877 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4878 continue; 4879 4880 // Examine PHI nodes that are reduction variables. Update the type to 4881 // account for the recurrence type. 4882 if (auto *PN = dyn_cast<PHINode>(&I)) { 4883 if (!Legal->isReductionVariable(PN)) 4884 continue; 4885 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4886 T = RdxDesc.getRecurrenceType(); 4887 } 4888 4889 // Examine the stored values. 4890 if (auto *ST = dyn_cast<StoreInst>(&I)) 4891 T = ST->getValueOperand()->getType(); 4892 4893 // Ignore loaded pointer types and stored pointer types that are not 4894 // vectorizable. 4895 // 4896 // FIXME: The check here attempts to predict whether a load or store will 4897 // be vectorized. We only know this for certain after a VF has 4898 // been selected. Here, we assume that if an access can be 4899 // vectorized, it will be. We should also look at extending this 4900 // optimization to non-pointer types. 4901 // 4902 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4903 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4904 continue; 4905 4906 MinWidth = std::min(MinWidth, 4907 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4908 MaxWidth = std::max(MaxWidth, 4909 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4910 } 4911 } 4912 4913 return {MinWidth, MaxWidth}; 4914 } 4915 4916 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4917 unsigned VF, 4918 unsigned LoopCost) { 4919 // -- The interleave heuristics -- 4920 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4921 // There are many micro-architectural considerations that we can't predict 4922 // at this level. For example, frontend pressure (on decode or fetch) due to 4923 // code size, or the number and capabilities of the execution ports. 4924 // 4925 // We use the following heuristics to select the interleave count: 4926 // 1. If the code has reductions, then we interleave to break the cross 4927 // iteration dependency. 4928 // 2. If the loop is really small, then we interleave to reduce the loop 4929 // overhead. 4930 // 3. We don't interleave if we think that we will spill registers to memory 4931 // due to the increased register pressure. 4932 4933 // When we optimize for size, we don't interleave. 4934 if (OptForSize) 4935 return 1; 4936 4937 // We used the distance for the interleave count. 4938 if (Legal->getMaxSafeDepDistBytes() != -1U) 4939 return 1; 4940 4941 // Do not interleave loops with a relatively small trip count. 4942 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4943 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4944 return 1; 4945 4946 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4947 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4948 << " registers\n"); 4949 4950 if (VF == 1) { 4951 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4952 TargetNumRegisters = ForceTargetNumScalarRegs; 4953 } else { 4954 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4955 TargetNumRegisters = ForceTargetNumVectorRegs; 4956 } 4957 4958 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4959 // We divide by these constants so assume that we have at least one 4960 // instruction that uses at least one register. 4961 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4962 4963 // We calculate the interleave count using the following formula. 4964 // Subtract the number of loop invariants from the number of available 4965 // registers. These registers are used by all of the interleaved instances. 4966 // Next, divide the remaining registers by the number of registers that is 4967 // required by the loop, in order to estimate how many parallel instances 4968 // fit without causing spills. All of this is rounded down if necessary to be 4969 // a power of two. We want power of two interleave count to simplify any 4970 // addressing operations or alignment considerations. 4971 // We also want power of two interleave counts to ensure that the induction 4972 // variable of the vector loop wraps to zero, when tail is folded by masking; 4973 // this currently happens when OptForSize, in which case IC is set to 1 above. 4974 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4975 R.MaxLocalUsers); 4976 4977 // Don't count the induction variable as interleaved. 4978 if (EnableIndVarRegisterHeur) 4979 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4980 std::max(1U, (R.MaxLocalUsers - 1))); 4981 4982 // Clamp the interleave ranges to reasonable counts. 4983 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4984 4985 // Check if the user has overridden the max. 4986 if (VF == 1) { 4987 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4988 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4989 } else { 4990 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4991 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4992 } 4993 4994 // If we did not calculate the cost for VF (because the user selected the VF) 4995 // then we calculate the cost of VF here. 4996 if (LoopCost == 0) 4997 LoopCost = expectedCost(VF).first; 4998 4999 // Clamp the calculated IC to be between the 1 and the max interleave count 5000 // that the target allows. 5001 if (IC > MaxInterleaveCount) 5002 IC = MaxInterleaveCount; 5003 else if (IC < 1) 5004 IC = 1; 5005 5006 // Interleave if we vectorized this loop and there is a reduction that could 5007 // benefit from interleaving. 5008 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5009 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5010 return IC; 5011 } 5012 5013 // Note that if we've already vectorized the loop we will have done the 5014 // runtime check and so interleaving won't require further checks. 5015 bool InterleavingRequiresRuntimePointerCheck = 5016 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5017 5018 // We want to interleave small loops in order to reduce the loop overhead and 5019 // potentially expose ILP opportunities. 5020 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5021 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5022 // We assume that the cost overhead is 1 and we use the cost model 5023 // to estimate the cost of the loop and interleave until the cost of the 5024 // loop overhead is about 5% of the cost of the loop. 5025 unsigned SmallIC = 5026 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5027 5028 // Interleave until store/load ports (estimated by max interleave count) are 5029 // saturated. 5030 unsigned NumStores = Legal->getNumStores(); 5031 unsigned NumLoads = Legal->getNumLoads(); 5032 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5033 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5034 5035 // If we have a scalar reduction (vector reductions are already dealt with 5036 // by this point), we can increase the critical path length if the loop 5037 // we're interleaving is inside another loop. Limit, by default to 2, so the 5038 // critical path only gets increased by one reduction operation. 5039 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5040 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5041 SmallIC = std::min(SmallIC, F); 5042 StoresIC = std::min(StoresIC, F); 5043 LoadsIC = std::min(LoadsIC, F); 5044 } 5045 5046 if (EnableLoadStoreRuntimeInterleave && 5047 std::max(StoresIC, LoadsIC) > SmallIC) { 5048 LLVM_DEBUG( 5049 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5050 return std::max(StoresIC, LoadsIC); 5051 } 5052 5053 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5054 return SmallIC; 5055 } 5056 5057 // Interleave if this is a large loop (small loops are already dealt with by 5058 // this point) that could benefit from interleaving. 5059 bool HasReductions = !Legal->getReductionVars()->empty(); 5060 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5061 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5062 return IC; 5063 } 5064 5065 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5066 return 1; 5067 } 5068 5069 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5070 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5071 // This function calculates the register usage by measuring the highest number 5072 // of values that are alive at a single location. Obviously, this is a very 5073 // rough estimation. We scan the loop in a topological order in order and 5074 // assign a number to each instruction. We use RPO to ensure that defs are 5075 // met before their users. We assume that each instruction that has in-loop 5076 // users starts an interval. We record every time that an in-loop value is 5077 // used, so we have a list of the first and last occurrences of each 5078 // instruction. Next, we transpose this data structure into a multi map that 5079 // holds the list of intervals that *end* at a specific location. This multi 5080 // map allows us to perform a linear search. We scan the instructions linearly 5081 // and record each time that a new interval starts, by placing it in a set. 5082 // If we find this value in the multi-map then we remove it from the set. 5083 // The max register usage is the maximum size of the set. 5084 // We also search for instructions that are defined outside the loop, but are 5085 // used inside the loop. We need this number separately from the max-interval 5086 // usage number because when we unroll, loop-invariant values do not take 5087 // more register. 5088 LoopBlocksDFS DFS(TheLoop); 5089 DFS.perform(LI); 5090 5091 RegisterUsage RU; 5092 5093 // Each 'key' in the map opens a new interval. The values 5094 // of the map are the index of the 'last seen' usage of the 5095 // instruction that is the key. 5096 using IntervalMap = DenseMap<Instruction *, unsigned>; 5097 5098 // Maps instruction to its index. 5099 SmallVector<Instruction *, 64> IdxToInstr; 5100 // Marks the end of each interval. 5101 IntervalMap EndPoint; 5102 // Saves the list of instruction indices that are used in the loop. 5103 SmallPtrSet<Instruction *, 8> Ends; 5104 // Saves the list of values that are used in the loop but are 5105 // defined outside the loop, such as arguments and constants. 5106 SmallPtrSet<Value *, 8> LoopInvariants; 5107 5108 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5109 for (Instruction &I : BB->instructionsWithoutDebug()) { 5110 IdxToInstr.push_back(&I); 5111 5112 // Save the end location of each USE. 5113 for (Value *U : I.operands()) { 5114 auto *Instr = dyn_cast<Instruction>(U); 5115 5116 // Ignore non-instruction values such as arguments, constants, etc. 5117 if (!Instr) 5118 continue; 5119 5120 // If this instruction is outside the loop then record it and continue. 5121 if (!TheLoop->contains(Instr)) { 5122 LoopInvariants.insert(Instr); 5123 continue; 5124 } 5125 5126 // Overwrite previous end points. 5127 EndPoint[Instr] = IdxToInstr.size(); 5128 Ends.insert(Instr); 5129 } 5130 } 5131 } 5132 5133 // Saves the list of intervals that end with the index in 'key'. 5134 using InstrList = SmallVector<Instruction *, 2>; 5135 DenseMap<unsigned, InstrList> TransposeEnds; 5136 5137 // Transpose the EndPoints to a list of values that end at each index. 5138 for (auto &Interval : EndPoint) 5139 TransposeEnds[Interval.second].push_back(Interval.first); 5140 5141 SmallPtrSet<Instruction *, 8> OpenIntervals; 5142 5143 // Get the size of the widest register. 5144 unsigned MaxSafeDepDist = -1U; 5145 if (Legal->getMaxSafeDepDistBytes() != -1U) 5146 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5147 unsigned WidestRegister = 5148 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5149 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5150 5151 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5152 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5153 5154 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5155 5156 // A lambda that gets the register usage for the given type and VF. 5157 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5158 if (Ty->isTokenTy()) 5159 return 0U; 5160 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5161 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5162 }; 5163 5164 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5165 Instruction *I = IdxToInstr[i]; 5166 5167 // Remove all of the instructions that end at this location. 5168 InstrList &List = TransposeEnds[i]; 5169 for (Instruction *ToRemove : List) 5170 OpenIntervals.erase(ToRemove); 5171 5172 // Ignore instructions that are never used within the loop. 5173 if (Ends.find(I) == Ends.end()) 5174 continue; 5175 5176 // Skip ignored values. 5177 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5178 continue; 5179 5180 // For each VF find the maximum usage of registers. 5181 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5182 if (VFs[j] == 1) { 5183 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5184 continue; 5185 } 5186 collectUniformsAndScalars(VFs[j]); 5187 // Count the number of live intervals. 5188 unsigned RegUsage = 0; 5189 for (auto Inst : OpenIntervals) { 5190 // Skip ignored values for VF > 1. 5191 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5192 isScalarAfterVectorization(Inst, VFs[j])) 5193 continue; 5194 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5195 } 5196 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5197 } 5198 5199 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5200 << OpenIntervals.size() << '\n'); 5201 5202 // Add the current instruction to the list of open intervals. 5203 OpenIntervals.insert(I); 5204 } 5205 5206 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5207 unsigned Invariant = 0; 5208 if (VFs[i] == 1) 5209 Invariant = LoopInvariants.size(); 5210 else { 5211 for (auto Inst : LoopInvariants) 5212 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5213 } 5214 5215 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5216 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5217 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5218 << '\n'); 5219 5220 RU.LoopInvariantRegs = Invariant; 5221 RU.MaxLocalUsers = MaxUsages[i]; 5222 RUs[i] = RU; 5223 } 5224 5225 return RUs; 5226 } 5227 5228 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5229 // TODO: Cost model for emulated masked load/store is completely 5230 // broken. This hack guides the cost model to use an artificially 5231 // high enough value to practically disable vectorization with such 5232 // operations, except where previously deployed legality hack allowed 5233 // using very low cost values. This is to avoid regressions coming simply 5234 // from moving "masked load/store" check from legality to cost model. 5235 // Masked Load/Gather emulation was previously never allowed. 5236 // Limited number of Masked Store/Scatter emulation was allowed. 5237 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5238 return isa<LoadInst>(I) || 5239 (isa<StoreInst>(I) && 5240 NumPredStores > NumberOfStoresToPredicate); 5241 } 5242 5243 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5244 // If we aren't vectorizing the loop, or if we've already collected the 5245 // instructions to scalarize, there's nothing to do. Collection may already 5246 // have occurred if we have a user-selected VF and are now computing the 5247 // expected cost for interleaving. 5248 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5249 return; 5250 5251 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5252 // not profitable to scalarize any instructions, the presence of VF in the 5253 // map will indicate that we've analyzed it already. 5254 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5255 5256 // Find all the instructions that are scalar with predication in the loop and 5257 // determine if it would be better to not if-convert the blocks they are in. 5258 // If so, we also record the instructions to scalarize. 5259 for (BasicBlock *BB : TheLoop->blocks()) { 5260 if (!blockNeedsPredication(BB)) 5261 continue; 5262 for (Instruction &I : *BB) 5263 if (isScalarWithPredication(&I)) { 5264 ScalarCostsTy ScalarCosts; 5265 // Do not apply discount logic if hacked cost is needed 5266 // for emulated masked memrefs. 5267 if (!useEmulatedMaskMemRefHack(&I) && 5268 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5269 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5270 // Remember that BB will remain after vectorization. 5271 PredicatedBBsAfterVectorization.insert(BB); 5272 } 5273 } 5274 } 5275 5276 int LoopVectorizationCostModel::computePredInstDiscount( 5277 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5278 unsigned VF) { 5279 assert(!isUniformAfterVectorization(PredInst, VF) && 5280 "Instruction marked uniform-after-vectorization will be predicated"); 5281 5282 // Initialize the discount to zero, meaning that the scalar version and the 5283 // vector version cost the same. 5284 int Discount = 0; 5285 5286 // Holds instructions to analyze. The instructions we visit are mapped in 5287 // ScalarCosts. Those instructions are the ones that would be scalarized if 5288 // we find that the scalar version costs less. 5289 SmallVector<Instruction *, 8> Worklist; 5290 5291 // Returns true if the given instruction can be scalarized. 5292 auto canBeScalarized = [&](Instruction *I) -> bool { 5293 // We only attempt to scalarize instructions forming a single-use chain 5294 // from the original predicated block that would otherwise be vectorized. 5295 // Although not strictly necessary, we give up on instructions we know will 5296 // already be scalar to avoid traversing chains that are unlikely to be 5297 // beneficial. 5298 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5299 isScalarAfterVectorization(I, VF)) 5300 return false; 5301 5302 // If the instruction is scalar with predication, it will be analyzed 5303 // separately. We ignore it within the context of PredInst. 5304 if (isScalarWithPredication(I)) 5305 return false; 5306 5307 // If any of the instruction's operands are uniform after vectorization, 5308 // the instruction cannot be scalarized. This prevents, for example, a 5309 // masked load from being scalarized. 5310 // 5311 // We assume we will only emit a value for lane zero of an instruction 5312 // marked uniform after vectorization, rather than VF identical values. 5313 // Thus, if we scalarize an instruction that uses a uniform, we would 5314 // create uses of values corresponding to the lanes we aren't emitting code 5315 // for. This behavior can be changed by allowing getScalarValue to clone 5316 // the lane zero values for uniforms rather than asserting. 5317 for (Use &U : I->operands()) 5318 if (auto *J = dyn_cast<Instruction>(U.get())) 5319 if (isUniformAfterVectorization(J, VF)) 5320 return false; 5321 5322 // Otherwise, we can scalarize the instruction. 5323 return true; 5324 }; 5325 5326 // Returns true if an operand that cannot be scalarized must be extracted 5327 // from a vector. We will account for this scalarization overhead below. Note 5328 // that the non-void predicated instructions are placed in their own blocks, 5329 // and their return values are inserted into vectors. Thus, an extract would 5330 // still be required. 5331 auto needsExtract = [&](Instruction *I) -> bool { 5332 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5333 }; 5334 5335 // Compute the expected cost discount from scalarizing the entire expression 5336 // feeding the predicated instruction. We currently only consider expressions 5337 // that are single-use instruction chains. 5338 Worklist.push_back(PredInst); 5339 while (!Worklist.empty()) { 5340 Instruction *I = Worklist.pop_back_val(); 5341 5342 // If we've already analyzed the instruction, there's nothing to do. 5343 if (ScalarCosts.find(I) != ScalarCosts.end()) 5344 continue; 5345 5346 // Compute the cost of the vector instruction. Note that this cost already 5347 // includes the scalarization overhead of the predicated instruction. 5348 unsigned VectorCost = getInstructionCost(I, VF).first; 5349 5350 // Compute the cost of the scalarized instruction. This cost is the cost of 5351 // the instruction as if it wasn't if-converted and instead remained in the 5352 // predicated block. We will scale this cost by block probability after 5353 // computing the scalarization overhead. 5354 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5355 5356 // Compute the scalarization overhead of needed insertelement instructions 5357 // and phi nodes. 5358 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5359 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5360 true, false); 5361 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5362 } 5363 5364 // Compute the scalarization overhead of needed extractelement 5365 // instructions. For each of the instruction's operands, if the operand can 5366 // be scalarized, add it to the worklist; otherwise, account for the 5367 // overhead. 5368 for (Use &U : I->operands()) 5369 if (auto *J = dyn_cast<Instruction>(U.get())) { 5370 assert(VectorType::isValidElementType(J->getType()) && 5371 "Instruction has non-scalar type"); 5372 if (canBeScalarized(J)) 5373 Worklist.push_back(J); 5374 else if (needsExtract(J)) 5375 ScalarCost += TTI.getScalarizationOverhead( 5376 ToVectorTy(J->getType(),VF), false, true); 5377 } 5378 5379 // Scale the total scalar cost by block probability. 5380 ScalarCost /= getReciprocalPredBlockProb(); 5381 5382 // Compute the discount. A non-negative discount means the vector version 5383 // of the instruction costs more, and scalarizing would be beneficial. 5384 Discount += VectorCost - ScalarCost; 5385 ScalarCosts[I] = ScalarCost; 5386 } 5387 5388 return Discount; 5389 } 5390 5391 LoopVectorizationCostModel::VectorizationCostTy 5392 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5393 VectorizationCostTy Cost; 5394 5395 // For each block. 5396 for (BasicBlock *BB : TheLoop->blocks()) { 5397 VectorizationCostTy BlockCost; 5398 5399 // For each instruction in the old loop. 5400 for (Instruction &I : BB->instructionsWithoutDebug()) { 5401 // Skip ignored values. 5402 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5403 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5404 continue; 5405 5406 VectorizationCostTy C = getInstructionCost(&I, VF); 5407 5408 // Check if we should override the cost. 5409 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5410 C.first = ForceTargetInstructionCost; 5411 5412 BlockCost.first += C.first; 5413 BlockCost.second |= C.second; 5414 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5415 << " for VF " << VF << " For instruction: " << I 5416 << '\n'); 5417 } 5418 5419 // If we are vectorizing a predicated block, it will have been 5420 // if-converted. This means that the block's instructions (aside from 5421 // stores and instructions that may divide by zero) will now be 5422 // unconditionally executed. For the scalar case, we may not always execute 5423 // the predicated block. Thus, scale the block's cost by the probability of 5424 // executing it. 5425 if (VF == 1 && blockNeedsPredication(BB)) 5426 BlockCost.first /= getReciprocalPredBlockProb(); 5427 5428 Cost.first += BlockCost.first; 5429 Cost.second |= BlockCost.second; 5430 } 5431 5432 return Cost; 5433 } 5434 5435 /// Gets Address Access SCEV after verifying that the access pattern 5436 /// is loop invariant except the induction variable dependence. 5437 /// 5438 /// This SCEV can be sent to the Target in order to estimate the address 5439 /// calculation cost. 5440 static const SCEV *getAddressAccessSCEV( 5441 Value *Ptr, 5442 LoopVectorizationLegality *Legal, 5443 PredicatedScalarEvolution &PSE, 5444 const Loop *TheLoop) { 5445 5446 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5447 if (!Gep) 5448 return nullptr; 5449 5450 // We are looking for a gep with all loop invariant indices except for one 5451 // which should be an induction variable. 5452 auto SE = PSE.getSE(); 5453 unsigned NumOperands = Gep->getNumOperands(); 5454 for (unsigned i = 1; i < NumOperands; ++i) { 5455 Value *Opd = Gep->getOperand(i); 5456 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5457 !Legal->isInductionVariable(Opd)) 5458 return nullptr; 5459 } 5460 5461 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5462 return PSE.getSCEV(Ptr); 5463 } 5464 5465 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5466 return Legal->hasStride(I->getOperand(0)) || 5467 Legal->hasStride(I->getOperand(1)); 5468 } 5469 5470 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5471 unsigned VF) { 5472 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5473 Type *ValTy = getMemInstValueType(I); 5474 auto SE = PSE.getSE(); 5475 5476 unsigned Alignment = getLoadStoreAlignment(I); 5477 unsigned AS = getLoadStoreAddressSpace(I); 5478 Value *Ptr = getLoadStorePointerOperand(I); 5479 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5480 5481 // Figure out whether the access is strided and get the stride value 5482 // if it's known in compile time 5483 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5484 5485 // Get the cost of the scalar memory instruction and address computation. 5486 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5487 5488 // Don't pass *I here, since it is scalar but will actually be part of a 5489 // vectorized loop where the user of it is a vectorized instruction. 5490 Cost += VF * 5491 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5492 AS); 5493 5494 // Get the overhead of the extractelement and insertelement instructions 5495 // we might create due to scalarization. 5496 Cost += getScalarizationOverhead(I, VF, TTI); 5497 5498 // If we have a predicated store, it may not be executed for each vector 5499 // lane. Scale the cost by the probability of executing the predicated 5500 // block. 5501 if (isPredicatedInst(I)) { 5502 Cost /= getReciprocalPredBlockProb(); 5503 5504 if (useEmulatedMaskMemRefHack(I)) 5505 // Artificially setting to a high enough value to practically disable 5506 // vectorization with such operations. 5507 Cost = 3000000; 5508 } 5509 5510 return Cost; 5511 } 5512 5513 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5514 unsigned VF) { 5515 Type *ValTy = getMemInstValueType(I); 5516 Type *VectorTy = ToVectorTy(ValTy, VF); 5517 unsigned Alignment = getLoadStoreAlignment(I); 5518 Value *Ptr = getLoadStorePointerOperand(I); 5519 unsigned AS = getLoadStoreAddressSpace(I); 5520 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5521 5522 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5523 "Stride should be 1 or -1 for consecutive memory access"); 5524 unsigned Cost = 0; 5525 if (Legal->isMaskRequired(I)) 5526 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5527 else 5528 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5529 5530 bool Reverse = ConsecutiveStride < 0; 5531 if (Reverse) 5532 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5533 return Cost; 5534 } 5535 5536 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5537 unsigned VF) { 5538 Type *ValTy = getMemInstValueType(I); 5539 Type *VectorTy = ToVectorTy(ValTy, VF); 5540 unsigned Alignment = getLoadStoreAlignment(I); 5541 unsigned AS = getLoadStoreAddressSpace(I); 5542 if (isa<LoadInst>(I)) { 5543 return TTI.getAddressComputationCost(ValTy) + 5544 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5545 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5546 } 5547 StoreInst *SI = cast<StoreInst>(I); 5548 5549 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5550 return TTI.getAddressComputationCost(ValTy) + 5551 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5552 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5553 Instruction::ExtractElement, 5554 VectorTy, VF - 1)); 5555 } 5556 5557 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5558 unsigned VF) { 5559 Type *ValTy = getMemInstValueType(I); 5560 Type *VectorTy = ToVectorTy(ValTy, VF); 5561 unsigned Alignment = getLoadStoreAlignment(I); 5562 Value *Ptr = getLoadStorePointerOperand(I); 5563 5564 return TTI.getAddressComputationCost(VectorTy) + 5565 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5566 Legal->isMaskRequired(I), Alignment); 5567 } 5568 5569 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5570 unsigned VF) { 5571 Type *ValTy = getMemInstValueType(I); 5572 Type *VectorTy = ToVectorTy(ValTy, VF); 5573 unsigned AS = getLoadStoreAddressSpace(I); 5574 5575 auto Group = getInterleavedAccessGroup(I); 5576 assert(Group && "Fail to get an interleaved access group."); 5577 5578 unsigned InterleaveFactor = Group->getFactor(); 5579 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5580 5581 // Holds the indices of existing members in an interleaved load group. 5582 // An interleaved store group doesn't need this as it doesn't allow gaps. 5583 SmallVector<unsigned, 4> Indices; 5584 if (isa<LoadInst>(I)) { 5585 for (unsigned i = 0; i < InterleaveFactor; i++) 5586 if (Group->getMember(i)) 5587 Indices.push_back(i); 5588 } 5589 5590 // Calculate the cost of the whole interleaved group. 5591 bool UseMaskForGaps = 5592 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5593 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5594 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5595 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5596 5597 if (Group->isReverse()) { 5598 // TODO: Add support for reversed masked interleaved access. 5599 assert(!Legal->isMaskRequired(I) && 5600 "Reverse masked interleaved access not supported."); 5601 Cost += Group->getNumMembers() * 5602 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5603 } 5604 return Cost; 5605 } 5606 5607 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5608 unsigned VF) { 5609 // Calculate scalar cost only. Vectorization cost should be ready at this 5610 // moment. 5611 if (VF == 1) { 5612 Type *ValTy = getMemInstValueType(I); 5613 unsigned Alignment = getLoadStoreAlignment(I); 5614 unsigned AS = getLoadStoreAddressSpace(I); 5615 5616 return TTI.getAddressComputationCost(ValTy) + 5617 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5618 } 5619 return getWideningCost(I, VF); 5620 } 5621 5622 LoopVectorizationCostModel::VectorizationCostTy 5623 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5624 // If we know that this instruction will remain uniform, check the cost of 5625 // the scalar version. 5626 if (isUniformAfterVectorization(I, VF)) 5627 VF = 1; 5628 5629 if (VF > 1 && isProfitableToScalarize(I, VF)) 5630 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5631 5632 // Forced scalars do not have any scalarization overhead. 5633 auto ForcedScalar = ForcedScalars.find(VF); 5634 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5635 auto InstSet = ForcedScalar->second; 5636 if (InstSet.find(I) != InstSet.end()) 5637 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5638 } 5639 5640 Type *VectorTy; 5641 unsigned C = getInstructionCost(I, VF, VectorTy); 5642 5643 bool TypeNotScalarized = 5644 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5645 return VectorizationCostTy(C, TypeNotScalarized); 5646 } 5647 5648 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5649 if (VF == 1) 5650 return; 5651 NumPredStores = 0; 5652 for (BasicBlock *BB : TheLoop->blocks()) { 5653 // For each instruction in the old loop. 5654 for (Instruction &I : *BB) { 5655 Value *Ptr = getLoadStorePointerOperand(&I); 5656 if (!Ptr) 5657 continue; 5658 5659 // TODO: We should generate better code and update the cost model for 5660 // predicated uniform stores. Today they are treated as any other 5661 // predicated store (see added test cases in 5662 // invariant-store-vectorization.ll). 5663 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5664 NumPredStores++; 5665 5666 if (Legal->isUniform(Ptr) && 5667 // Conditional loads and stores should be scalarized and predicated. 5668 // isScalarWithPredication cannot be used here since masked 5669 // gather/scatters are not considered scalar with predication. 5670 !Legal->blockNeedsPredication(I.getParent())) { 5671 // TODO: Avoid replicating loads and stores instead of 5672 // relying on instcombine to remove them. 5673 // Load: Scalar load + broadcast 5674 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5675 unsigned Cost = getUniformMemOpCost(&I, VF); 5676 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5677 continue; 5678 } 5679 5680 // We assume that widening is the best solution when possible. 5681 if (memoryInstructionCanBeWidened(&I, VF)) { 5682 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5683 int ConsecutiveStride = 5684 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5685 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5686 "Expected consecutive stride."); 5687 InstWidening Decision = 5688 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5689 setWideningDecision(&I, VF, Decision, Cost); 5690 continue; 5691 } 5692 5693 // Choose between Interleaving, Gather/Scatter or Scalarization. 5694 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5695 unsigned NumAccesses = 1; 5696 if (isAccessInterleaved(&I)) { 5697 auto Group = getInterleavedAccessGroup(&I); 5698 assert(Group && "Fail to get an interleaved access group."); 5699 5700 // Make one decision for the whole group. 5701 if (getWideningDecision(&I, VF) != CM_Unknown) 5702 continue; 5703 5704 NumAccesses = Group->getNumMembers(); 5705 if (interleavedAccessCanBeWidened(&I, VF)) 5706 InterleaveCost = getInterleaveGroupCost(&I, VF); 5707 } 5708 5709 unsigned GatherScatterCost = 5710 isLegalGatherOrScatter(&I) 5711 ? getGatherScatterCost(&I, VF) * NumAccesses 5712 : std::numeric_limits<unsigned>::max(); 5713 5714 unsigned ScalarizationCost = 5715 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5716 5717 // Choose better solution for the current VF, 5718 // write down this decision and use it during vectorization. 5719 unsigned Cost; 5720 InstWidening Decision; 5721 if (InterleaveCost <= GatherScatterCost && 5722 InterleaveCost < ScalarizationCost) { 5723 Decision = CM_Interleave; 5724 Cost = InterleaveCost; 5725 } else if (GatherScatterCost < ScalarizationCost) { 5726 Decision = CM_GatherScatter; 5727 Cost = GatherScatterCost; 5728 } else { 5729 Decision = CM_Scalarize; 5730 Cost = ScalarizationCost; 5731 } 5732 // If the instructions belongs to an interleave group, the whole group 5733 // receives the same decision. The whole group receives the cost, but 5734 // the cost will actually be assigned to one instruction. 5735 if (auto Group = getInterleavedAccessGroup(&I)) 5736 setWideningDecision(Group, VF, Decision, Cost); 5737 else 5738 setWideningDecision(&I, VF, Decision, Cost); 5739 } 5740 } 5741 5742 // Make sure that any load of address and any other address computation 5743 // remains scalar unless there is gather/scatter support. This avoids 5744 // inevitable extracts into address registers, and also has the benefit of 5745 // activating LSR more, since that pass can't optimize vectorized 5746 // addresses. 5747 if (TTI.prefersVectorizedAddressing()) 5748 return; 5749 5750 // Start with all scalar pointer uses. 5751 SmallPtrSet<Instruction *, 8> AddrDefs; 5752 for (BasicBlock *BB : TheLoop->blocks()) 5753 for (Instruction &I : *BB) { 5754 Instruction *PtrDef = 5755 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5756 if (PtrDef && TheLoop->contains(PtrDef) && 5757 getWideningDecision(&I, VF) != CM_GatherScatter) 5758 AddrDefs.insert(PtrDef); 5759 } 5760 5761 // Add all instructions used to generate the addresses. 5762 SmallVector<Instruction *, 4> Worklist; 5763 for (auto *I : AddrDefs) 5764 Worklist.push_back(I); 5765 while (!Worklist.empty()) { 5766 Instruction *I = Worklist.pop_back_val(); 5767 for (auto &Op : I->operands()) 5768 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5769 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5770 AddrDefs.insert(InstOp).second) 5771 Worklist.push_back(InstOp); 5772 } 5773 5774 for (auto *I : AddrDefs) { 5775 if (isa<LoadInst>(I)) { 5776 // Setting the desired widening decision should ideally be handled in 5777 // by cost functions, but since this involves the task of finding out 5778 // if the loaded register is involved in an address computation, it is 5779 // instead changed here when we know this is the case. 5780 InstWidening Decision = getWideningDecision(I, VF); 5781 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5782 // Scalarize a widened load of address. 5783 setWideningDecision(I, VF, CM_Scalarize, 5784 (VF * getMemoryInstructionCost(I, 1))); 5785 else if (auto Group = getInterleavedAccessGroup(I)) { 5786 // Scalarize an interleave group of address loads. 5787 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5788 if (Instruction *Member = Group->getMember(I)) 5789 setWideningDecision(Member, VF, CM_Scalarize, 5790 (VF * getMemoryInstructionCost(Member, 1))); 5791 } 5792 } 5793 } else 5794 // Make sure I gets scalarized and a cost estimate without 5795 // scalarization overhead. 5796 ForcedScalars[VF].insert(I); 5797 } 5798 } 5799 5800 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5801 unsigned VF, 5802 Type *&VectorTy) { 5803 Type *RetTy = I->getType(); 5804 if (canTruncateToMinimalBitwidth(I, VF)) 5805 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5806 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5807 auto SE = PSE.getSE(); 5808 5809 // TODO: We need to estimate the cost of intrinsic calls. 5810 switch (I->getOpcode()) { 5811 case Instruction::GetElementPtr: 5812 // We mark this instruction as zero-cost because the cost of GEPs in 5813 // vectorized code depends on whether the corresponding memory instruction 5814 // is scalarized or not. Therefore, we handle GEPs with the memory 5815 // instruction cost. 5816 return 0; 5817 case Instruction::Br: { 5818 // In cases of scalarized and predicated instructions, there will be VF 5819 // predicated blocks in the vectorized loop. Each branch around these 5820 // blocks requires also an extract of its vector compare i1 element. 5821 bool ScalarPredicatedBB = false; 5822 BranchInst *BI = cast<BranchInst>(I); 5823 if (VF > 1 && BI->isConditional() && 5824 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5825 PredicatedBBsAfterVectorization.end() || 5826 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5827 PredicatedBBsAfterVectorization.end())) 5828 ScalarPredicatedBB = true; 5829 5830 if (ScalarPredicatedBB) { 5831 // Return cost for branches around scalarized and predicated blocks. 5832 Type *Vec_i1Ty = 5833 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5834 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5835 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5836 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5837 // The back-edge branch will remain, as will all scalar branches. 5838 return TTI.getCFInstrCost(Instruction::Br); 5839 else 5840 // This branch will be eliminated by if-conversion. 5841 return 0; 5842 // Note: We currently assume zero cost for an unconditional branch inside 5843 // a predicated block since it will become a fall-through, although we 5844 // may decide in the future to call TTI for all branches. 5845 } 5846 case Instruction::PHI: { 5847 auto *Phi = cast<PHINode>(I); 5848 5849 // First-order recurrences are replaced by vector shuffles inside the loop. 5850 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5851 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5852 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5853 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5854 5855 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5856 // converted into select instructions. We require N - 1 selects per phi 5857 // node, where N is the number of incoming values. 5858 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5859 return (Phi->getNumIncomingValues() - 1) * 5860 TTI.getCmpSelInstrCost( 5861 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5862 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5863 5864 return TTI.getCFInstrCost(Instruction::PHI); 5865 } 5866 case Instruction::UDiv: 5867 case Instruction::SDiv: 5868 case Instruction::URem: 5869 case Instruction::SRem: 5870 // If we have a predicated instruction, it may not be executed for each 5871 // vector lane. Get the scalarization cost and scale this amount by the 5872 // probability of executing the predicated block. If the instruction is not 5873 // predicated, we fall through to the next case. 5874 if (VF > 1 && isScalarWithPredication(I)) { 5875 unsigned Cost = 0; 5876 5877 // These instructions have a non-void type, so account for the phi nodes 5878 // that we will create. This cost is likely to be zero. The phi node 5879 // cost, if any, should be scaled by the block probability because it 5880 // models a copy at the end of each predicated block. 5881 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5882 5883 // The cost of the non-predicated instruction. 5884 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5885 5886 // The cost of insertelement and extractelement instructions needed for 5887 // scalarization. 5888 Cost += getScalarizationOverhead(I, VF, TTI); 5889 5890 // Scale the cost by the probability of executing the predicated blocks. 5891 // This assumes the predicated block for each vector lane is equally 5892 // likely. 5893 return Cost / getReciprocalPredBlockProb(); 5894 } 5895 LLVM_FALLTHROUGH; 5896 case Instruction::Add: 5897 case Instruction::FAdd: 5898 case Instruction::Sub: 5899 case Instruction::FSub: 5900 case Instruction::Mul: 5901 case Instruction::FMul: 5902 case Instruction::FDiv: 5903 case Instruction::FRem: 5904 case Instruction::Shl: 5905 case Instruction::LShr: 5906 case Instruction::AShr: 5907 case Instruction::And: 5908 case Instruction::Or: 5909 case Instruction::Xor: { 5910 // Since we will replace the stride by 1 the multiplication should go away. 5911 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5912 return 0; 5913 // Certain instructions can be cheaper to vectorize if they have a constant 5914 // second vector operand. One example of this are shifts on x86. 5915 Value *Op2 = I->getOperand(1); 5916 TargetTransformInfo::OperandValueProperties Op2VP; 5917 TargetTransformInfo::OperandValueKind Op2VK = 5918 TTI.getOperandInfo(Op2, Op2VP); 5919 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5920 Op2VK = TargetTransformInfo::OK_UniformValue; 5921 5922 SmallVector<const Value *, 4> Operands(I->operand_values()); 5923 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5924 return N * TTI.getArithmeticInstrCost( 5925 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5926 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5927 } 5928 case Instruction::Select: { 5929 SelectInst *SI = cast<SelectInst>(I); 5930 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5931 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5932 Type *CondTy = SI->getCondition()->getType(); 5933 if (!ScalarCond) 5934 CondTy = VectorType::get(CondTy, VF); 5935 5936 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5937 } 5938 case Instruction::ICmp: 5939 case Instruction::FCmp: { 5940 Type *ValTy = I->getOperand(0)->getType(); 5941 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5942 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5943 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5944 VectorTy = ToVectorTy(ValTy, VF); 5945 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5946 } 5947 case Instruction::Store: 5948 case Instruction::Load: { 5949 unsigned Width = VF; 5950 if (Width > 1) { 5951 InstWidening Decision = getWideningDecision(I, Width); 5952 assert(Decision != CM_Unknown && 5953 "CM decision should be taken at this point"); 5954 if (Decision == CM_Scalarize) 5955 Width = 1; 5956 } 5957 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5958 return getMemoryInstructionCost(I, VF); 5959 } 5960 case Instruction::ZExt: 5961 case Instruction::SExt: 5962 case Instruction::FPToUI: 5963 case Instruction::FPToSI: 5964 case Instruction::FPExt: 5965 case Instruction::PtrToInt: 5966 case Instruction::IntToPtr: 5967 case Instruction::SIToFP: 5968 case Instruction::UIToFP: 5969 case Instruction::Trunc: 5970 case Instruction::FPTrunc: 5971 case Instruction::BitCast: { 5972 // We optimize the truncation of induction variables having constant 5973 // integer steps. The cost of these truncations is the same as the scalar 5974 // operation. 5975 if (isOptimizableIVTruncate(I, VF)) { 5976 auto *Trunc = cast<TruncInst>(I); 5977 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5978 Trunc->getSrcTy(), Trunc); 5979 } 5980 5981 Type *SrcScalarTy = I->getOperand(0)->getType(); 5982 Type *SrcVecTy = 5983 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5984 if (canTruncateToMinimalBitwidth(I, VF)) { 5985 // This cast is going to be shrunk. This may remove the cast or it might 5986 // turn it into slightly different cast. For example, if MinBW == 16, 5987 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5988 // 5989 // Calculate the modified src and dest types. 5990 Type *MinVecTy = VectorTy; 5991 if (I->getOpcode() == Instruction::Trunc) { 5992 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5993 VectorTy = 5994 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5995 } else if (I->getOpcode() == Instruction::ZExt || 5996 I->getOpcode() == Instruction::SExt) { 5997 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5998 VectorTy = 5999 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6000 } 6001 } 6002 6003 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6004 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6005 } 6006 case Instruction::Call: { 6007 bool NeedToScalarize; 6008 CallInst *CI = cast<CallInst>(I); 6009 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6010 if (getVectorIntrinsicIDForCall(CI, TLI)) 6011 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6012 return CallCost; 6013 } 6014 default: 6015 // The cost of executing VF copies of the scalar instruction. This opcode 6016 // is unknown. Assume that it is the same as 'mul'. 6017 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6018 getScalarizationOverhead(I, VF, TTI); 6019 } // end of switch. 6020 } 6021 6022 char LoopVectorize::ID = 0; 6023 6024 static const char lv_name[] = "Loop Vectorization"; 6025 6026 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6027 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6028 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6029 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6030 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6031 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6032 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6033 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6034 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6035 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6036 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6037 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6038 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6039 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6040 6041 namespace llvm { 6042 6043 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6044 bool VectorizeOnlyWhenForced) { 6045 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6046 } 6047 6048 } // end namespace llvm 6049 6050 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6051 // Check if the pointer operand of a load or store instruction is 6052 // consecutive. 6053 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6054 return Legal->isConsecutivePtr(Ptr); 6055 return false; 6056 } 6057 6058 void LoopVectorizationCostModel::collectValuesToIgnore() { 6059 // Ignore ephemeral values. 6060 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6061 6062 // Ignore type-promoting instructions we identified during reduction 6063 // detection. 6064 for (auto &Reduction : *Legal->getReductionVars()) { 6065 RecurrenceDescriptor &RedDes = Reduction.second; 6066 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6067 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6068 } 6069 // Ignore type-casting instructions we identified during induction 6070 // detection. 6071 for (auto &Induction : *Legal->getInductionVars()) { 6072 InductionDescriptor &IndDes = Induction.second; 6073 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6074 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6075 } 6076 } 6077 6078 // TODO: we could return a pair of values that specify the max VF and 6079 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6080 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6081 // doesn't have a cost model that can choose which plan to execute if 6082 // more than one is generated. 6083 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6084 LoopVectorizationCostModel &CM) { 6085 unsigned WidestType; 6086 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6087 return WidestVectorRegBits / WidestType; 6088 } 6089 6090 VectorizationFactor 6091 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6092 unsigned UserVF) { 6093 unsigned VF = UserVF; 6094 // Outer loop handling: They may require CFG and instruction level 6095 // transformations before even evaluating whether vectorization is profitable. 6096 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6097 // the vectorization pipeline. 6098 if (!OrigLoop->empty()) { 6099 // If the user doesn't provide a vectorization factor, determine a 6100 // reasonable one. 6101 if (!UserVF) { 6102 // We set VF to 4 for stress testing. 6103 if (VPlanBuildStressTest) 6104 VF = 4; 6105 else 6106 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6107 } 6108 6109 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6110 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6111 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user VF " : "computed VF ") 6112 << VF << " to build VPlans.\n"); 6113 buildVPlans(VF, VF); 6114 6115 // For VPlan build stress testing, we bail out after VPlan construction. 6116 if (VPlanBuildStressTest) 6117 return VectorizationFactor::Disabled(); 6118 6119 return {VF, 0}; 6120 } 6121 6122 LLVM_DEBUG( 6123 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6124 "VPlan-native path.\n"); 6125 return VectorizationFactor::Disabled(); 6126 } 6127 6128 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6129 unsigned UserVF) { 6130 assert(OrigLoop->empty() && "Inner loop expected."); 6131 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6132 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6133 return None; 6134 6135 // Invalidate interleave groups if all blocks of loop will be predicated. 6136 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6137 !useMaskedInterleavedAccesses(*TTI)) { 6138 LLVM_DEBUG( 6139 dbgs() 6140 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6141 "which requires masked-interleaved support.\n"); 6142 CM.InterleaveInfo.reset(); 6143 } 6144 6145 if (UserVF) { 6146 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6147 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6148 // Collect the instructions (and their associated costs) that will be more 6149 // profitable to scalarize. 6150 CM.selectUserVectorizationFactor(UserVF); 6151 buildVPlansWithVPRecipes(UserVF, UserVF); 6152 LLVM_DEBUG(printPlans(dbgs())); 6153 return {{UserVF, 0}}; 6154 } 6155 6156 unsigned MaxVF = MaybeMaxVF.getValue(); 6157 assert(MaxVF != 0 && "MaxVF is zero."); 6158 6159 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6160 // Collect Uniform and Scalar instructions after vectorization with VF. 6161 CM.collectUniformsAndScalars(VF); 6162 6163 // Collect the instructions (and their associated costs) that will be more 6164 // profitable to scalarize. 6165 if (VF > 1) 6166 CM.collectInstsToScalarize(VF); 6167 } 6168 6169 buildVPlansWithVPRecipes(1, MaxVF); 6170 LLVM_DEBUG(printPlans(dbgs())); 6171 if (MaxVF == 1) 6172 return VectorizationFactor::Disabled(); 6173 6174 // Select the optimal vectorization factor. 6175 return CM.selectVectorizationFactor(MaxVF); 6176 } 6177 6178 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6179 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6180 << '\n'); 6181 BestVF = VF; 6182 BestUF = UF; 6183 6184 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6185 return !Plan->hasVF(VF); 6186 }); 6187 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6188 } 6189 6190 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6191 DominatorTree *DT) { 6192 // Perform the actual loop transformation. 6193 6194 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6195 VPCallbackILV CallbackILV(ILV); 6196 6197 VPTransformState State{BestVF, BestUF, LI, 6198 DT, ILV.Builder, ILV.VectorLoopValueMap, 6199 &ILV, CallbackILV}; 6200 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6201 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6202 6203 //===------------------------------------------------===// 6204 // 6205 // Notice: any optimization or new instruction that go 6206 // into the code below should also be implemented in 6207 // the cost-model. 6208 // 6209 //===------------------------------------------------===// 6210 6211 // 2. Copy and widen instructions from the old loop into the new loop. 6212 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6213 VPlans.front()->execute(&State); 6214 6215 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6216 // predication, updating analyses. 6217 ILV.fixVectorizedLoop(); 6218 } 6219 6220 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6221 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6222 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6223 6224 // We create new control-flow for the vectorized loop, so the original 6225 // condition will be dead after vectorization if it's only used by the 6226 // branch. 6227 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6228 if (Cmp && Cmp->hasOneUse()) 6229 DeadInstructions.insert(Cmp); 6230 6231 // We create new "steps" for induction variable updates to which the original 6232 // induction variables map. An original update instruction will be dead if 6233 // all its users except the induction variable are dead. 6234 for (auto &Induction : *Legal->getInductionVars()) { 6235 PHINode *Ind = Induction.first; 6236 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6237 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6238 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6239 DeadInstructions.end(); 6240 })) 6241 DeadInstructions.insert(IndUpdate); 6242 6243 // We record as "Dead" also the type-casting instructions we had identified 6244 // during induction analysis. We don't need any handling for them in the 6245 // vectorized loop because we have proven that, under a proper runtime 6246 // test guarding the vectorized loop, the value of the phi, and the casted 6247 // value of the phi, are the same. The last instruction in this casting chain 6248 // will get its scalar/vector/widened def from the scalar/vector/widened def 6249 // of the respective phi node. Any other casts in the induction def-use chain 6250 // have no other uses outside the phi update chain, and will be ignored. 6251 InductionDescriptor &IndDes = Induction.second; 6252 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6253 DeadInstructions.insert(Casts.begin(), Casts.end()); 6254 } 6255 } 6256 6257 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6258 6259 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6260 6261 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6262 Instruction::BinaryOps BinOp) { 6263 // When unrolling and the VF is 1, we only need to add a simple scalar. 6264 Type *Ty = Val->getType(); 6265 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6266 6267 if (Ty->isFloatingPointTy()) { 6268 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6269 6270 // Floating point operations had to be 'fast' to enable the unrolling. 6271 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6272 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6273 } 6274 Constant *C = ConstantInt::get(Ty, StartIdx); 6275 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6276 } 6277 6278 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6279 SmallVector<Metadata *, 4> MDs; 6280 // Reserve first location for self reference to the LoopID metadata node. 6281 MDs.push_back(nullptr); 6282 bool IsUnrollMetadata = false; 6283 MDNode *LoopID = L->getLoopID(); 6284 if (LoopID) { 6285 // First find existing loop unrolling disable metadata. 6286 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6287 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6288 if (MD) { 6289 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6290 IsUnrollMetadata = 6291 S && S->getString().startswith("llvm.loop.unroll.disable"); 6292 } 6293 MDs.push_back(LoopID->getOperand(i)); 6294 } 6295 } 6296 6297 if (!IsUnrollMetadata) { 6298 // Add runtime unroll disable metadata. 6299 LLVMContext &Context = L->getHeader()->getContext(); 6300 SmallVector<Metadata *, 1> DisableOperands; 6301 DisableOperands.push_back( 6302 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6303 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6304 MDs.push_back(DisableNode); 6305 MDNode *NewLoopID = MDNode::get(Context, MDs); 6306 // Set operand 0 to refer to the loop id itself. 6307 NewLoopID->replaceOperandWith(0, NewLoopID); 6308 L->setLoopID(NewLoopID); 6309 } 6310 } 6311 6312 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6313 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6314 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6315 bool PredicateAtRangeStart = Predicate(Range.Start); 6316 6317 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6318 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6319 Range.End = TmpVF; 6320 break; 6321 } 6322 6323 return PredicateAtRangeStart; 6324 } 6325 6326 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6327 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6328 /// of VF's starting at a given VF and extending it as much as possible. Each 6329 /// vectorization decision can potentially shorten this sub-range during 6330 /// buildVPlan(). 6331 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6332 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6333 VFRange SubRange = {VF, MaxVF + 1}; 6334 VPlans.push_back(buildVPlan(SubRange)); 6335 VF = SubRange.End; 6336 } 6337 } 6338 6339 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6340 VPlanPtr &Plan) { 6341 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6342 6343 // Look for cached value. 6344 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6345 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6346 if (ECEntryIt != EdgeMaskCache.end()) 6347 return ECEntryIt->second; 6348 6349 VPValue *SrcMask = createBlockInMask(Src, Plan); 6350 6351 // The terminator has to be a branch inst! 6352 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6353 assert(BI && "Unexpected terminator found"); 6354 6355 if (!BI->isConditional()) 6356 return EdgeMaskCache[Edge] = SrcMask; 6357 6358 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6359 assert(EdgeMask && "No Edge Mask found for condition"); 6360 6361 if (BI->getSuccessor(0) != Dst) 6362 EdgeMask = Builder.createNot(EdgeMask); 6363 6364 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6365 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6366 6367 return EdgeMaskCache[Edge] = EdgeMask; 6368 } 6369 6370 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6371 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6372 6373 // Look for cached value. 6374 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6375 if (BCEntryIt != BlockMaskCache.end()) 6376 return BCEntryIt->second; 6377 6378 // All-one mask is modelled as no-mask following the convention for masked 6379 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6380 VPValue *BlockMask = nullptr; 6381 6382 if (OrigLoop->getHeader() == BB) { 6383 if (!CM.blockNeedsPredication(BB)) 6384 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6385 6386 // Introduce the early-exit compare IV <= BTC to form header block mask. 6387 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6388 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6389 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6390 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6391 return BlockMaskCache[BB] = BlockMask; 6392 } 6393 6394 // This is the block mask. We OR all incoming edges. 6395 for (auto *Predecessor : predecessors(BB)) { 6396 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6397 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6398 return BlockMaskCache[BB] = EdgeMask; 6399 6400 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6401 BlockMask = EdgeMask; 6402 continue; 6403 } 6404 6405 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6406 } 6407 6408 return BlockMaskCache[BB] = BlockMask; 6409 } 6410 6411 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6412 VFRange &Range, 6413 VPlanPtr &Plan) { 6414 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6415 if (!IG) 6416 return nullptr; 6417 6418 // Now check if IG is relevant for VF's in the given range. 6419 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6420 return [=](unsigned VF) -> bool { 6421 return (VF >= 2 && // Query is illegal for VF == 1 6422 CM.getWideningDecision(I, VF) == 6423 LoopVectorizationCostModel::CM_Interleave); 6424 }; 6425 }; 6426 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6427 return nullptr; 6428 6429 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6430 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6431 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6432 assert(I == IG->getInsertPos() && 6433 "Generating a recipe for an adjunct member of an interleave group"); 6434 6435 VPValue *Mask = nullptr; 6436 if (Legal->isMaskRequired(I)) 6437 Mask = createBlockInMask(I->getParent(), Plan); 6438 6439 return new VPInterleaveRecipe(IG, Mask); 6440 } 6441 6442 VPWidenMemoryInstructionRecipe * 6443 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6444 VPlanPtr &Plan) { 6445 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6446 return nullptr; 6447 6448 auto willWiden = [&](unsigned VF) -> bool { 6449 if (VF == 1) 6450 return false; 6451 if (CM.isScalarAfterVectorization(I, VF) || 6452 CM.isProfitableToScalarize(I, VF)) 6453 return false; 6454 LoopVectorizationCostModel::InstWidening Decision = 6455 CM.getWideningDecision(I, VF); 6456 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6457 "CM decision should be taken at this point."); 6458 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6459 "Interleave memory opportunity should be caught earlier."); 6460 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6461 }; 6462 6463 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6464 return nullptr; 6465 6466 VPValue *Mask = nullptr; 6467 if (Legal->isMaskRequired(I)) 6468 Mask = createBlockInMask(I->getParent(), Plan); 6469 6470 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6471 } 6472 6473 VPWidenIntOrFpInductionRecipe * 6474 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6475 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6476 // Check if this is an integer or fp induction. If so, build the recipe that 6477 // produces its scalar and vector values. 6478 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6479 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6480 II.getKind() == InductionDescriptor::IK_FpInduction) 6481 return new VPWidenIntOrFpInductionRecipe(Phi); 6482 6483 return nullptr; 6484 } 6485 6486 // Optimize the special case where the source is a constant integer 6487 // induction variable. Notice that we can only optimize the 'trunc' case 6488 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6489 // (c) other casts depend on pointer size. 6490 6491 // Determine whether \p K is a truncation based on an induction variable that 6492 // can be optimized. 6493 auto isOptimizableIVTruncate = 6494 [&](Instruction *K) -> std::function<bool(unsigned)> { 6495 return 6496 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6497 }; 6498 6499 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6500 isOptimizableIVTruncate(I), Range)) 6501 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6502 cast<TruncInst>(I)); 6503 return nullptr; 6504 } 6505 6506 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6507 PHINode *Phi = dyn_cast<PHINode>(I); 6508 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6509 return nullptr; 6510 6511 // We know that all PHIs in non-header blocks are converted into selects, so 6512 // we don't have to worry about the insertion order and we can just use the 6513 // builder. At this point we generate the predication tree. There may be 6514 // duplications since this is a simple recursive scan, but future 6515 // optimizations will clean it up. 6516 6517 SmallVector<VPValue *, 2> Masks; 6518 unsigned NumIncoming = Phi->getNumIncomingValues(); 6519 for (unsigned In = 0; In < NumIncoming; In++) { 6520 VPValue *EdgeMask = 6521 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6522 assert((EdgeMask || NumIncoming == 1) && 6523 "Multiple predecessors with one having a full mask"); 6524 if (EdgeMask) 6525 Masks.push_back(EdgeMask); 6526 } 6527 return new VPBlendRecipe(Phi, Masks); 6528 } 6529 6530 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6531 VFRange &Range) { 6532 6533 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6534 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6535 6536 if (IsPredicated) 6537 return false; 6538 6539 auto IsVectorizableOpcode = [](unsigned Opcode) { 6540 switch (Opcode) { 6541 case Instruction::Add: 6542 case Instruction::And: 6543 case Instruction::AShr: 6544 case Instruction::BitCast: 6545 case Instruction::Br: 6546 case Instruction::Call: 6547 case Instruction::FAdd: 6548 case Instruction::FCmp: 6549 case Instruction::FDiv: 6550 case Instruction::FMul: 6551 case Instruction::FPExt: 6552 case Instruction::FPToSI: 6553 case Instruction::FPToUI: 6554 case Instruction::FPTrunc: 6555 case Instruction::FRem: 6556 case Instruction::FSub: 6557 case Instruction::GetElementPtr: 6558 case Instruction::ICmp: 6559 case Instruction::IntToPtr: 6560 case Instruction::Load: 6561 case Instruction::LShr: 6562 case Instruction::Mul: 6563 case Instruction::Or: 6564 case Instruction::PHI: 6565 case Instruction::PtrToInt: 6566 case Instruction::SDiv: 6567 case Instruction::Select: 6568 case Instruction::SExt: 6569 case Instruction::Shl: 6570 case Instruction::SIToFP: 6571 case Instruction::SRem: 6572 case Instruction::Store: 6573 case Instruction::Sub: 6574 case Instruction::Trunc: 6575 case Instruction::UDiv: 6576 case Instruction::UIToFP: 6577 case Instruction::URem: 6578 case Instruction::Xor: 6579 case Instruction::ZExt: 6580 return true; 6581 } 6582 return false; 6583 }; 6584 6585 if (!IsVectorizableOpcode(I->getOpcode())) 6586 return false; 6587 6588 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6589 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6590 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6591 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6592 return false; 6593 } 6594 6595 auto willWiden = [&](unsigned VF) -> bool { 6596 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6597 CM.isProfitableToScalarize(I, VF))) 6598 return false; 6599 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6600 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6601 // The following case may be scalarized depending on the VF. 6602 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6603 // version of the instruction. 6604 // Is it beneficial to perform intrinsic call compared to lib call? 6605 bool NeedToScalarize; 6606 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6607 bool UseVectorIntrinsic = 6608 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6609 return UseVectorIntrinsic || !NeedToScalarize; 6610 } 6611 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6612 assert(CM.getWideningDecision(I, VF) == 6613 LoopVectorizationCostModel::CM_Scalarize && 6614 "Memory widening decisions should have been taken care by now"); 6615 return false; 6616 } 6617 return true; 6618 }; 6619 6620 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6621 return false; 6622 6623 // Success: widen this instruction. We optimize the common case where 6624 // consecutive instructions can be represented by a single recipe. 6625 if (!VPBB->empty()) { 6626 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6627 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6628 return true; 6629 } 6630 6631 VPBB->appendRecipe(new VPWidenRecipe(I)); 6632 return true; 6633 } 6634 6635 VPBasicBlock *VPRecipeBuilder::handleReplication( 6636 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6637 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6638 VPlanPtr &Plan) { 6639 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6640 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6641 Range); 6642 6643 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6644 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6645 6646 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6647 6648 // Find if I uses a predicated instruction. If so, it will use its scalar 6649 // value. Avoid hoisting the insert-element which packs the scalar value into 6650 // a vector value, as that happens iff all users use the vector value. 6651 for (auto &Op : I->operands()) 6652 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6653 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6654 PredInst2Recipe[PredInst]->setAlsoPack(false); 6655 6656 // Finalize the recipe for Instr, first if it is not predicated. 6657 if (!IsPredicated) { 6658 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6659 VPBB->appendRecipe(Recipe); 6660 return VPBB; 6661 } 6662 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6663 assert(VPBB->getSuccessors().empty() && 6664 "VPBB has successors when handling predicated replication."); 6665 // Record predicated instructions for above packing optimizations. 6666 PredInst2Recipe[I] = Recipe; 6667 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6668 VPBlockUtils::insertBlockAfter(Region, VPBB); 6669 auto *RegSucc = new VPBasicBlock(); 6670 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6671 return RegSucc; 6672 } 6673 6674 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6675 VPRecipeBase *PredRecipe, 6676 VPlanPtr &Plan) { 6677 // Instructions marked for predication are replicated and placed under an 6678 // if-then construct to prevent side-effects. 6679 6680 // Generate recipes to compute the block mask for this region. 6681 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6682 6683 // Build the triangular if-then region. 6684 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6685 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6686 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6687 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6688 auto *PHIRecipe = 6689 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6690 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6691 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6692 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6693 6694 // Note: first set Entry as region entry and then connect successors starting 6695 // from it in order, to propagate the "parent" of each VPBasicBlock. 6696 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6697 VPBlockUtils::connectBlocks(Pred, Exit); 6698 6699 return Region; 6700 } 6701 6702 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6703 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6704 VPRecipeBase *Recipe = nullptr; 6705 // Check if Instr should belong to an interleave memory recipe, or already 6706 // does. In the latter case Instr is irrelevant. 6707 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6708 VPBB->appendRecipe(Recipe); 6709 return true; 6710 } 6711 6712 // Check if Instr is a memory operation that should be widened. 6713 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6714 VPBB->appendRecipe(Recipe); 6715 return true; 6716 } 6717 6718 // Check if Instr should form some PHI recipe. 6719 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6720 VPBB->appendRecipe(Recipe); 6721 return true; 6722 } 6723 if ((Recipe = tryToBlend(Instr, Plan))) { 6724 VPBB->appendRecipe(Recipe); 6725 return true; 6726 } 6727 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6728 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6729 return true; 6730 } 6731 6732 // Check if Instr is to be widened by a general VPWidenRecipe, after 6733 // having first checked for specific widening recipes that deal with 6734 // Interleave Groups, Inductions and Phi nodes. 6735 if (tryToWiden(Instr, VPBB, Range)) 6736 return true; 6737 6738 return false; 6739 } 6740 6741 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6742 unsigned MaxVF) { 6743 assert(OrigLoop->empty() && "Inner loop expected."); 6744 6745 // Collect conditions feeding internal conditional branches; they need to be 6746 // represented in VPlan for it to model masking. 6747 SmallPtrSet<Value *, 1> NeedDef; 6748 6749 auto *Latch = OrigLoop->getLoopLatch(); 6750 for (BasicBlock *BB : OrigLoop->blocks()) { 6751 if (BB == Latch) 6752 continue; 6753 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6754 if (Branch && Branch->isConditional()) 6755 NeedDef.insert(Branch->getCondition()); 6756 } 6757 6758 // If the tail is to be folded by masking, the primary induction variable 6759 // needs to be represented in VPlan for it to model early-exit masking. 6760 if (CM.foldTailByMasking()) 6761 NeedDef.insert(Legal->getPrimaryInduction()); 6762 6763 // Collect instructions from the original loop that will become trivially dead 6764 // in the vectorized loop. We don't need to vectorize these instructions. For 6765 // example, original induction update instructions can become dead because we 6766 // separately emit induction "steps" when generating code for the new loop. 6767 // Similarly, we create a new latch condition when setting up the structure 6768 // of the new loop, so the old one can become dead. 6769 SmallPtrSet<Instruction *, 4> DeadInstructions; 6770 collectTriviallyDeadInstructions(DeadInstructions); 6771 6772 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6773 VFRange SubRange = {VF, MaxVF + 1}; 6774 VPlans.push_back( 6775 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6776 VF = SubRange.End; 6777 } 6778 } 6779 6780 LoopVectorizationPlanner::VPlanPtr 6781 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6782 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6783 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6784 // Hold a mapping from predicated instructions to their recipes, in order to 6785 // fix their AlsoPack behavior if a user is determined to replicate and use a 6786 // scalar instead of vector value. 6787 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6788 6789 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6790 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6791 6792 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6793 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6794 auto Plan = llvm::make_unique<VPlan>(VPBB); 6795 6796 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6797 // Represent values that will have defs inside VPlan. 6798 for (Value *V : NeedDef) 6799 Plan->addVPValue(V); 6800 6801 // Scan the body of the loop in a topological order to visit each basic block 6802 // after having visited its predecessor basic blocks. 6803 LoopBlocksDFS DFS(OrigLoop); 6804 DFS.perform(LI); 6805 6806 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6807 // Relevant instructions from basic block BB will be grouped into VPRecipe 6808 // ingredients and fill a new VPBasicBlock. 6809 unsigned VPBBsForBB = 0; 6810 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6811 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6812 VPBB = FirstVPBBForBB; 6813 Builder.setInsertPoint(VPBB); 6814 6815 std::vector<Instruction *> Ingredients; 6816 6817 // Organize the ingredients to vectorize from current basic block in the 6818 // right order. 6819 for (Instruction &I : BB->instructionsWithoutDebug()) { 6820 Instruction *Instr = &I; 6821 6822 // First filter out irrelevant instructions, to ensure no recipes are 6823 // built for them. 6824 if (isa<BranchInst>(Instr) || 6825 DeadInstructions.find(Instr) != DeadInstructions.end()) 6826 continue; 6827 6828 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6829 // member of the IG, do not construct any Recipe for it. 6830 const InterleaveGroup<Instruction> *IG = 6831 CM.getInterleavedAccessGroup(Instr); 6832 if (IG && Instr != IG->getInsertPos() && 6833 Range.Start >= 2 && // Query is illegal for VF == 1 6834 CM.getWideningDecision(Instr, Range.Start) == 6835 LoopVectorizationCostModel::CM_Interleave) { 6836 auto SinkCandidate = SinkAfterInverse.find(Instr); 6837 if (SinkCandidate != SinkAfterInverse.end()) 6838 Ingredients.push_back(SinkCandidate->second); 6839 continue; 6840 } 6841 6842 // Move instructions to handle first-order recurrences, step 1: avoid 6843 // handling this instruction until after we've handled the instruction it 6844 // should follow. 6845 auto SAIt = SinkAfter.find(Instr); 6846 if (SAIt != SinkAfter.end()) { 6847 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6848 << *SAIt->second 6849 << " to vectorize a 1st order recurrence.\n"); 6850 SinkAfterInverse[SAIt->second] = Instr; 6851 continue; 6852 } 6853 6854 Ingredients.push_back(Instr); 6855 6856 // Move instructions to handle first-order recurrences, step 2: push the 6857 // instruction to be sunk at its insertion point. 6858 auto SAInvIt = SinkAfterInverse.find(Instr); 6859 if (SAInvIt != SinkAfterInverse.end()) 6860 Ingredients.push_back(SAInvIt->second); 6861 } 6862 6863 // Introduce each ingredient into VPlan. 6864 for (Instruction *Instr : Ingredients) { 6865 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6866 continue; 6867 6868 // Otherwise, if all widening options failed, Instruction is to be 6869 // replicated. This may create a successor for VPBB. 6870 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6871 Instr, Range, VPBB, PredInst2Recipe, Plan); 6872 if (NextVPBB != VPBB) { 6873 VPBB = NextVPBB; 6874 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6875 : ""); 6876 } 6877 } 6878 } 6879 6880 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6881 // may also be empty, such as the last one VPBB, reflecting original 6882 // basic-blocks with no recipes. 6883 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6884 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6885 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6886 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6887 delete PreEntry; 6888 6889 std::string PlanName; 6890 raw_string_ostream RSO(PlanName); 6891 unsigned VF = Range.Start; 6892 Plan->addVF(VF); 6893 RSO << "Initial VPlan for VF={" << VF; 6894 for (VF *= 2; VF < Range.End; VF *= 2) { 6895 Plan->addVF(VF); 6896 RSO << "," << VF; 6897 } 6898 RSO << "},UF>=1"; 6899 RSO.flush(); 6900 Plan->setName(PlanName); 6901 6902 return Plan; 6903 } 6904 6905 LoopVectorizationPlanner::VPlanPtr 6906 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6907 // Outer loop handling: They may require CFG and instruction level 6908 // transformations before even evaluating whether vectorization is profitable. 6909 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6910 // the vectorization pipeline. 6911 assert(!OrigLoop->empty()); 6912 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6913 6914 // Create new empty VPlan 6915 auto Plan = llvm::make_unique<VPlan>(); 6916 6917 // Build hierarchical CFG 6918 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6919 HCFGBuilder.buildHierarchicalCFG(); 6920 6921 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6922 Plan->addVF(VF); 6923 6924 if (EnableVPlanPredication) { 6925 VPlanPredicator VPP(*Plan); 6926 VPP.predicate(); 6927 6928 // Avoid running transformation to recipes until masked code generation in 6929 // VPlan-native path is in place. 6930 return Plan; 6931 } 6932 6933 SmallPtrSet<Instruction *, 1> DeadInstructions; 6934 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6935 Plan, Legal->getInductionVars(), DeadInstructions); 6936 6937 return Plan; 6938 } 6939 6940 Value* LoopVectorizationPlanner::VPCallbackILV:: 6941 getOrCreateVectorValues(Value *V, unsigned Part) { 6942 return ILV.getOrCreateVectorValue(V, Part); 6943 } 6944 6945 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6946 O << " +\n" 6947 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6948 IG->getInsertPos()->printAsOperand(O, false); 6949 if (User) { 6950 O << ", "; 6951 User->getOperand(0)->printAsOperand(O); 6952 } 6953 O << "\\l\""; 6954 for (unsigned i = 0; i < IG->getFactor(); ++i) 6955 if (Instruction *I = IG->getMember(i)) 6956 O << " +\n" 6957 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6958 } 6959 6960 void VPWidenRecipe::execute(VPTransformState &State) { 6961 for (auto &Instr : make_range(Begin, End)) 6962 State.ILV->widenInstruction(Instr); 6963 } 6964 6965 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6966 assert(!State.Instance && "Int or FP induction being replicated."); 6967 State.ILV->widenIntOrFpInduction(IV, Trunc); 6968 } 6969 6970 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6971 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6972 } 6973 6974 void VPBlendRecipe::execute(VPTransformState &State) { 6975 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6976 // We know that all PHIs in non-header blocks are converted into 6977 // selects, so we don't have to worry about the insertion order and we 6978 // can just use the builder. 6979 // At this point we generate the predication tree. There may be 6980 // duplications since this is a simple recursive scan, but future 6981 // optimizations will clean it up. 6982 6983 unsigned NumIncoming = Phi->getNumIncomingValues(); 6984 6985 assert((User || NumIncoming == 1) && 6986 "Multiple predecessors with predecessors having a full mask"); 6987 // Generate a sequence of selects of the form: 6988 // SELECT(Mask3, In3, 6989 // SELECT(Mask2, In2, 6990 // ( ...))) 6991 InnerLoopVectorizer::VectorParts Entry(State.UF); 6992 for (unsigned In = 0; In < NumIncoming; ++In) { 6993 for (unsigned Part = 0; Part < State.UF; ++Part) { 6994 // We might have single edge PHIs (blocks) - use an identity 6995 // 'select' for the first PHI operand. 6996 Value *In0 = 6997 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6998 if (In == 0) 6999 Entry[Part] = In0; // Initialize with the first incoming value. 7000 else { 7001 // Select between the current value and the previous incoming edge 7002 // based on the incoming mask. 7003 Value *Cond = State.get(User->getOperand(In), Part); 7004 Entry[Part] = 7005 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7006 } 7007 } 7008 } 7009 for (unsigned Part = 0; Part < State.UF; ++Part) 7010 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7011 } 7012 7013 void VPInterleaveRecipe::execute(VPTransformState &State) { 7014 assert(!State.Instance && "Interleave group being replicated."); 7015 if (!User) 7016 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7017 7018 // Last (and currently only) operand is a mask. 7019 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7020 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7021 for (unsigned Part = 0; Part < State.UF; ++Part) 7022 MaskValues[Part] = State.get(Mask, Part); 7023 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7024 } 7025 7026 void VPReplicateRecipe::execute(VPTransformState &State) { 7027 if (State.Instance) { // Generate a single instance. 7028 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7029 // Insert scalar instance packing it into a vector. 7030 if (AlsoPack && State.VF > 1) { 7031 // If we're constructing lane 0, initialize to start from undef. 7032 if (State.Instance->Lane == 0) { 7033 Value *Undef = 7034 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7035 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7036 } 7037 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7038 } 7039 return; 7040 } 7041 7042 // Generate scalar instances for all VF lanes of all UF parts, unless the 7043 // instruction is uniform inwhich case generate only the first lane for each 7044 // of the UF parts. 7045 unsigned EndLane = IsUniform ? 1 : State.VF; 7046 for (unsigned Part = 0; Part < State.UF; ++Part) 7047 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7048 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7049 } 7050 7051 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7052 assert(State.Instance && "Branch on Mask works only on single instance."); 7053 7054 unsigned Part = State.Instance->Part; 7055 unsigned Lane = State.Instance->Lane; 7056 7057 Value *ConditionBit = nullptr; 7058 if (!User) // Block in mask is all-one. 7059 ConditionBit = State.Builder.getTrue(); 7060 else { 7061 VPValue *BlockInMask = User->getOperand(0); 7062 ConditionBit = State.get(BlockInMask, Part); 7063 if (ConditionBit->getType()->isVectorTy()) 7064 ConditionBit = State.Builder.CreateExtractElement( 7065 ConditionBit, State.Builder.getInt32(Lane)); 7066 } 7067 7068 // Replace the temporary unreachable terminator with a new conditional branch, 7069 // whose two destinations will be set later when they are created. 7070 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7071 assert(isa<UnreachableInst>(CurrentTerminator) && 7072 "Expected to replace unreachable terminator with conditional branch."); 7073 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7074 CondBr->setSuccessor(0, nullptr); 7075 ReplaceInstWithInst(CurrentTerminator, CondBr); 7076 } 7077 7078 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7079 assert(State.Instance && "Predicated instruction PHI works per instance."); 7080 Instruction *ScalarPredInst = cast<Instruction>( 7081 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7082 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7083 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7084 assert(PredicatingBB && "Predicated block has no single predecessor."); 7085 7086 // By current pack/unpack logic we need to generate only a single phi node: if 7087 // a vector value for the predicated instruction exists at this point it means 7088 // the instruction has vector users only, and a phi for the vector value is 7089 // needed. In this case the recipe of the predicated instruction is marked to 7090 // also do that packing, thereby "hoisting" the insert-element sequence. 7091 // Otherwise, a phi node for the scalar value is needed. 7092 unsigned Part = State.Instance->Part; 7093 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7094 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7095 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7096 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7097 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7098 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7099 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7100 } else { 7101 Type *PredInstType = PredInst->getType(); 7102 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7103 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7104 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7105 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7106 } 7107 } 7108 7109 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7110 if (!User) 7111 return State.ILV->vectorizeMemoryInstruction(&Instr); 7112 7113 // Last (and currently only) operand is a mask. 7114 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7115 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7116 for (unsigned Part = 0; Part < State.UF; ++Part) 7117 MaskValues[Part] = State.get(Mask, Part); 7118 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7119 } 7120 7121 // Process the loop in the VPlan-native vectorization path. This path builds 7122 // VPlan upfront in the vectorization pipeline, which allows to apply 7123 // VPlan-to-VPlan transformations from the very beginning without modifying the 7124 // input LLVM IR. 7125 static bool processLoopInVPlanNativePath( 7126 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7127 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7128 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7129 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7130 7131 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7132 Function *F = L->getHeader()->getParent(); 7133 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7134 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7135 &Hints, IAI); 7136 // Use the planner for outer loop vectorization. 7137 // TODO: CM is not used at this point inside the planner. Turn CM into an 7138 // optional argument if we don't need it in the future. 7139 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7140 7141 // Get user vectorization factor. 7142 const unsigned UserVF = Hints.getWidth(); 7143 7144 // Check the function attributes to find out if this function should be 7145 // optimized for size. 7146 bool OptForSize = 7147 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7148 7149 // Plan how to best vectorize, return the best VF and its cost. 7150 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7151 7152 // If we are stress testing VPlan builds, do not attempt to generate vector 7153 // code. Masked vector code generation support will follow soon. 7154 // Also, do not attempt to vectorize if no vector code will be produced. 7155 if (VPlanBuildStressTest || EnableVPlanPredication || 7156 VectorizationFactor::Disabled() == VF) 7157 return false; 7158 7159 LVP.setBestPlan(VF.Width, 1); 7160 7161 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7162 &CM); 7163 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7164 << L->getHeader()->getParent()->getName() << "\"\n"); 7165 LVP.executePlan(LB, DT); 7166 7167 // Mark the loop as already vectorized to avoid vectorizing again. 7168 Hints.setAlreadyVectorized(); 7169 7170 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7171 return true; 7172 } 7173 7174 bool LoopVectorizePass::processLoop(Loop *L) { 7175 assert((EnableVPlanNativePath || L->empty()) && 7176 "VPlan-native path is not enabled. Only process inner loops."); 7177 7178 #ifndef NDEBUG 7179 const std::string DebugLocStr = getDebugLocString(L); 7180 #endif /* NDEBUG */ 7181 7182 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7183 << L->getHeader()->getParent()->getName() << "\" from " 7184 << DebugLocStr << "\n"); 7185 7186 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7187 7188 LLVM_DEBUG( 7189 dbgs() << "LV: Loop hints:" 7190 << " force=" 7191 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7192 ? "disabled" 7193 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7194 ? "enabled" 7195 : "?")) 7196 << " width=" << Hints.getWidth() 7197 << " unroll=" << Hints.getInterleave() << "\n"); 7198 7199 // Function containing loop 7200 Function *F = L->getHeader()->getParent(); 7201 7202 // Looking at the diagnostic output is the only way to determine if a loop 7203 // was vectorized (other than looking at the IR or machine code), so it 7204 // is important to generate an optimization remark for each loop. Most of 7205 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7206 // generated as OptimizationRemark and OptimizationRemarkMissed are 7207 // less verbose reporting vectorized loops and unvectorized loops that may 7208 // benefit from vectorization, respectively. 7209 7210 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7211 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7212 return false; 7213 } 7214 7215 PredicatedScalarEvolution PSE(*SE, *L); 7216 7217 // Check if it is legal to vectorize the loop. 7218 LoopVectorizationRequirements Requirements(*ORE); 7219 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7220 &Requirements, &Hints, DB, AC); 7221 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7222 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7223 Hints.emitRemarkWithHints(); 7224 return false; 7225 } 7226 7227 // Check the function attributes to find out if this function should be 7228 // optimized for size. 7229 bool OptForSize = 7230 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7231 7232 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7233 // here. They may require CFG and instruction level transformations before 7234 // even evaluating whether vectorization is profitable. Since we cannot modify 7235 // the incoming IR, we need to build VPlan upfront in the vectorization 7236 // pipeline. 7237 if (!L->empty()) 7238 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7239 ORE, Hints); 7240 7241 assert(L->empty() && "Inner loop expected."); 7242 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7243 // count by optimizing for size, to minimize overheads. 7244 // Prefer constant trip counts over profile data, over upper bound estimate. 7245 unsigned ExpectedTC = 0; 7246 bool HasExpectedTC = false; 7247 if (const SCEVConstant *ConstExits = 7248 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7249 const APInt &ExitsCount = ConstExits->getAPInt(); 7250 // We are interested in small values for ExpectedTC. Skip over those that 7251 // can't fit an unsigned. 7252 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7253 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7254 HasExpectedTC = true; 7255 } 7256 } 7257 // ExpectedTC may be large because it's bound by a variable. Check 7258 // profiling information to validate we should vectorize. 7259 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7260 auto EstimatedTC = getLoopEstimatedTripCount(L); 7261 if (EstimatedTC) { 7262 ExpectedTC = *EstimatedTC; 7263 HasExpectedTC = true; 7264 } 7265 } 7266 if (!HasExpectedTC) { 7267 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7268 HasExpectedTC = (ExpectedTC > 0); 7269 } 7270 7271 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7272 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7273 << "This loop is worth vectorizing only if no scalar " 7274 << "iteration overheads are incurred."); 7275 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7276 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7277 else { 7278 LLVM_DEBUG(dbgs() << "\n"); 7279 // Loops with a very small trip count are considered for vectorization 7280 // under OptForSize, thereby making sure the cost of their loop body is 7281 // dominant, free of runtime guards and scalar iteration overheads. 7282 OptForSize = true; 7283 } 7284 } 7285 7286 // Check the function attributes to see if implicit floats are allowed. 7287 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7288 // an integer loop and the vector instructions selected are purely integer 7289 // vector instructions? 7290 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7291 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7292 "attribute is used.\n"); 7293 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7294 "NoImplicitFloat", L) 7295 << "loop not vectorized due to NoImplicitFloat attribute"); 7296 Hints.emitRemarkWithHints(); 7297 return false; 7298 } 7299 7300 // Check if the target supports potentially unsafe FP vectorization. 7301 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7302 // for the target we're vectorizing for, to make sure none of the 7303 // additional fp-math flags can help. 7304 if (Hints.isPotentiallyUnsafe() && 7305 TTI->isFPVectorizationPotentiallyUnsafe()) { 7306 LLVM_DEBUG( 7307 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7308 ORE->emit( 7309 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7310 << "loop not vectorized due to unsafe FP support."); 7311 Hints.emitRemarkWithHints(); 7312 return false; 7313 } 7314 7315 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7316 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7317 7318 // If an override option has been passed in for interleaved accesses, use it. 7319 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7320 UseInterleaved = EnableInterleavedMemAccesses; 7321 7322 // Analyze interleaved memory accesses. 7323 if (UseInterleaved) { 7324 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7325 } 7326 7327 // Use the cost model. 7328 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7329 &Hints, IAI); 7330 CM.collectValuesToIgnore(); 7331 7332 // Use the planner for vectorization. 7333 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7334 7335 // Get user vectorization factor. 7336 unsigned UserVF = Hints.getWidth(); 7337 7338 // Plan how to best vectorize, return the best VF and its cost. 7339 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7340 7341 VectorizationFactor VF = VectorizationFactor::Disabled(); 7342 unsigned IC = 1; 7343 unsigned UserIC = Hints.getInterleave(); 7344 7345 if (MaybeVF) { 7346 VF = *MaybeVF; 7347 // Select the interleave count. 7348 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7349 } 7350 7351 // Identify the diagnostic messages that should be produced. 7352 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7353 bool VectorizeLoop = true, InterleaveLoop = true; 7354 if (Requirements.doesNotMeet(F, L, Hints)) { 7355 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7356 "requirements.\n"); 7357 Hints.emitRemarkWithHints(); 7358 return false; 7359 } 7360 7361 if (VF.Width == 1) { 7362 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7363 VecDiagMsg = std::make_pair( 7364 "VectorizationNotBeneficial", 7365 "the cost-model indicates that vectorization is not beneficial"); 7366 VectorizeLoop = false; 7367 } 7368 7369 if (!MaybeVF && UserIC > 1) { 7370 // Tell the user interleaving was avoided up-front, despite being explicitly 7371 // requested. 7372 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7373 "interleaving should be avoided up front\n"); 7374 IntDiagMsg = std::make_pair( 7375 "InterleavingAvoided", 7376 "Ignoring UserIC, because interleaving was avoided up front"); 7377 InterleaveLoop = false; 7378 } else if (IC == 1 && UserIC <= 1) { 7379 // Tell the user interleaving is not beneficial. 7380 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7381 IntDiagMsg = std::make_pair( 7382 "InterleavingNotBeneficial", 7383 "the cost-model indicates that interleaving is not beneficial"); 7384 InterleaveLoop = false; 7385 if (UserIC == 1) { 7386 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7387 IntDiagMsg.second += 7388 " and is explicitly disabled or interleave count is set to 1"; 7389 } 7390 } else if (IC > 1 && UserIC == 1) { 7391 // Tell the user interleaving is beneficial, but it explicitly disabled. 7392 LLVM_DEBUG( 7393 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7394 IntDiagMsg = std::make_pair( 7395 "InterleavingBeneficialButDisabled", 7396 "the cost-model indicates that interleaving is beneficial " 7397 "but is explicitly disabled or interleave count is set to 1"); 7398 InterleaveLoop = false; 7399 } 7400 7401 // Override IC if user provided an interleave count. 7402 IC = UserIC > 0 ? UserIC : IC; 7403 7404 // Emit diagnostic messages, if any. 7405 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7406 if (!VectorizeLoop && !InterleaveLoop) { 7407 // Do not vectorize or interleaving the loop. 7408 ORE->emit([&]() { 7409 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7410 L->getStartLoc(), L->getHeader()) 7411 << VecDiagMsg.second; 7412 }); 7413 ORE->emit([&]() { 7414 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7415 L->getStartLoc(), L->getHeader()) 7416 << IntDiagMsg.second; 7417 }); 7418 return false; 7419 } else if (!VectorizeLoop && InterleaveLoop) { 7420 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7421 ORE->emit([&]() { 7422 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7423 L->getStartLoc(), L->getHeader()) 7424 << VecDiagMsg.second; 7425 }); 7426 } else if (VectorizeLoop && !InterleaveLoop) { 7427 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7428 << ") in " << DebugLocStr << '\n'); 7429 ORE->emit([&]() { 7430 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7431 L->getStartLoc(), L->getHeader()) 7432 << IntDiagMsg.second; 7433 }); 7434 } else if (VectorizeLoop && InterleaveLoop) { 7435 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7436 << ") in " << DebugLocStr << '\n'); 7437 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7438 } 7439 7440 LVP.setBestPlan(VF.Width, IC); 7441 7442 using namespace ore; 7443 bool DisableRuntimeUnroll = false; 7444 MDNode *OrigLoopID = L->getLoopID(); 7445 7446 if (!VectorizeLoop) { 7447 assert(IC > 1 && "interleave count should not be 1 or 0"); 7448 // If we decided that it is not legal to vectorize the loop, then 7449 // interleave it. 7450 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7451 &CM); 7452 LVP.executePlan(Unroller, DT); 7453 7454 ORE->emit([&]() { 7455 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7456 L->getHeader()) 7457 << "interleaved loop (interleaved count: " 7458 << NV("InterleaveCount", IC) << ")"; 7459 }); 7460 } else { 7461 // If we decided that it is *legal* to vectorize the loop, then do it. 7462 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7463 &LVL, &CM); 7464 LVP.executePlan(LB, DT); 7465 ++LoopsVectorized; 7466 7467 // Add metadata to disable runtime unrolling a scalar loop when there are 7468 // no runtime checks about strides and memory. A scalar loop that is 7469 // rarely used is not worth unrolling. 7470 if (!LB.areSafetyChecksAdded()) 7471 DisableRuntimeUnroll = true; 7472 7473 // Report the vectorization decision. 7474 ORE->emit([&]() { 7475 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7476 L->getHeader()) 7477 << "vectorized loop (vectorization width: " 7478 << NV("VectorizationFactor", VF.Width) 7479 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7480 }); 7481 } 7482 7483 Optional<MDNode *> RemainderLoopID = 7484 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7485 LLVMLoopVectorizeFollowupEpilogue}); 7486 if (RemainderLoopID.hasValue()) { 7487 L->setLoopID(RemainderLoopID.getValue()); 7488 } else { 7489 if (DisableRuntimeUnroll) 7490 AddRuntimeUnrollDisableMetaData(L); 7491 7492 // Mark the loop as already vectorized to avoid vectorizing again. 7493 Hints.setAlreadyVectorized(); 7494 } 7495 7496 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7497 return true; 7498 } 7499 7500 bool LoopVectorizePass::runImpl( 7501 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7502 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7503 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7504 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7505 OptimizationRemarkEmitter &ORE_) { 7506 SE = &SE_; 7507 LI = &LI_; 7508 TTI = &TTI_; 7509 DT = &DT_; 7510 BFI = &BFI_; 7511 TLI = TLI_; 7512 AA = &AA_; 7513 AC = &AC_; 7514 GetLAA = &GetLAA_; 7515 DB = &DB_; 7516 ORE = &ORE_; 7517 7518 // Don't attempt if 7519 // 1. the target claims to have no vector registers, and 7520 // 2. interleaving won't help ILP. 7521 // 7522 // The second condition is necessary because, even if the target has no 7523 // vector registers, loop vectorization may still enable scalar 7524 // interleaving. 7525 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7526 return false; 7527 7528 bool Changed = false; 7529 7530 // The vectorizer requires loops to be in simplified form. 7531 // Since simplification may add new inner loops, it has to run before the 7532 // legality and profitability checks. This means running the loop vectorizer 7533 // will simplify all loops, regardless of whether anything end up being 7534 // vectorized. 7535 for (auto &L : *LI) 7536 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7537 7538 // Build up a worklist of inner-loops to vectorize. This is necessary as 7539 // the act of vectorizing or partially unrolling a loop creates new loops 7540 // and can invalidate iterators across the loops. 7541 SmallVector<Loop *, 8> Worklist; 7542 7543 for (Loop *L : *LI) 7544 collectSupportedLoops(*L, LI, ORE, Worklist); 7545 7546 LoopsAnalyzed += Worklist.size(); 7547 7548 // Now walk the identified inner loops. 7549 while (!Worklist.empty()) { 7550 Loop *L = Worklist.pop_back_val(); 7551 7552 // For the inner loops we actually process, form LCSSA to simplify the 7553 // transform. 7554 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7555 7556 Changed |= processLoop(L); 7557 } 7558 7559 // Process each loop nest in the function. 7560 return Changed; 7561 } 7562 7563 PreservedAnalyses LoopVectorizePass::run(Function &F, 7564 FunctionAnalysisManager &AM) { 7565 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7566 auto &LI = AM.getResult<LoopAnalysis>(F); 7567 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7568 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7569 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7570 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7571 auto &AA = AM.getResult<AAManager>(F); 7572 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7573 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7574 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7575 MemorySSA *MSSA = EnableMSSALoopDependency 7576 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7577 : nullptr; 7578 7579 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7580 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7581 [&](Loop &L) -> const LoopAccessInfo & { 7582 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7583 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7584 }; 7585 bool Changed = 7586 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7587 if (!Changed) 7588 return PreservedAnalyses::all(); 7589 PreservedAnalyses PA; 7590 7591 // We currently do not preserve loopinfo/dominator analyses with outer loop 7592 // vectorization. Until this is addressed, mark these analyses as preserved 7593 // only for non-VPlan-native path. 7594 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7595 if (!EnableVPlanNativePath) { 7596 PA.preserve<LoopAnalysis>(); 7597 PA.preserve<DominatorTreeAnalysis>(); 7598 } 7599 PA.preserve<BasicAA>(); 7600 PA.preserve<GlobalsAA>(); 7601 return PA; 7602 } 7603