1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/Optional.h" 55 #include "llvm/ADT/SCCIterator.h" 56 #include "llvm/ADT/SetVector.h" 57 #include "llvm/ADT/SmallPtrSet.h" 58 #include "llvm/ADT/SmallSet.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/GlobalsModRef.h" 64 #include "llvm/Analysis/LoopInfo.h" 65 #include "llvm/Analysis/LoopIterator.h" 66 #include "llvm/Analysis/LoopPass.h" 67 #include "llvm/Analysis/ScalarEvolutionExpander.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/Analysis/VectorUtils.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/DiagnosticInfo.h" 76 #include "llvm/IR/Dominators.h" 77 #include "llvm/IR/Function.h" 78 #include "llvm/IR/IRBuilder.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/IR/Verifier.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/BranchProbability.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/Scalar.h" 95 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 96 #include "llvm/Transforms/Utils/Local.h" 97 #include "llvm/Transforms/Utils/LoopSimplify.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/LoopVersioning.h" 100 #include "llvm/Transforms/Vectorize.h" 101 #include <algorithm> 102 #include <functional> 103 #include <map> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define LV_NAME "loop-vectorize" 110 #define DEBUG_TYPE LV_NAME 111 112 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 113 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// Loops with a known constant trip count below this number are vectorized only 120 /// if no scalar iteration overheads are incurred. 121 static cl::opt<unsigned> TinyTripCountVectorThreshold( 122 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 123 cl::desc("Loops with a constant trip count that is smaller than this " 124 "value are vectorized only if no scalar iteration overheads " 125 "are incurred.")); 126 127 static cl::opt<bool> MaximizeBandwidth( 128 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 129 cl::desc("Maximize bandwidth when selecting vectorization factor which " 130 "will be determined by the smallest type in loop.")); 131 132 static cl::opt<bool> EnableInterleavedMemAccesses( 133 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 134 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 135 136 /// Maximum factor for an interleaved memory access. 137 static cl::opt<unsigned> MaxInterleaveGroupFactor( 138 "max-interleave-group-factor", cl::Hidden, 139 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 140 cl::init(8)); 141 142 /// We don't interleave loops with a known constant trip count below this 143 /// number. 144 static const unsigned TinyTripCountInterleaveThreshold = 128; 145 146 static cl::opt<unsigned> ForceTargetNumScalarRegs( 147 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 148 cl::desc("A flag that overrides the target's number of scalar registers.")); 149 150 static cl::opt<unsigned> ForceTargetNumVectorRegs( 151 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's number of vector registers.")); 153 154 /// Maximum vectorization interleave count. 155 static const unsigned MaxInterleaveFactor = 16; 156 157 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 158 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 159 cl::desc("A flag that overrides the target's max interleave factor for " 160 "scalar loops.")); 161 162 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 163 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max interleave factor for " 165 "vectorized loops.")); 166 167 static cl::opt<unsigned> ForceTargetInstructionCost( 168 "force-target-instruction-cost", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's expected cost for " 170 "an instruction to a single constant value. Mostly " 171 "useful for getting consistent testing.")); 172 173 static cl::opt<unsigned> SmallLoopCost( 174 "small-loop-cost", cl::init(20), cl::Hidden, 175 cl::desc( 176 "The cost of a loop that is considered 'small' by the interleaver.")); 177 178 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 179 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 180 cl::desc("Enable the use of the block frequency analysis to access PGO " 181 "heuristics minimizing code growth in cold regions and being more " 182 "aggressive in hot regions.")); 183 184 // Runtime interleave loops for load/store throughput. 185 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 186 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 187 cl::desc( 188 "Enable runtime interleaving until load/store ports are saturated")); 189 190 /// The number of stores in a loop that are allowed to need predication. 191 static cl::opt<unsigned> NumberOfStoresToPredicate( 192 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 193 cl::desc("Max number of stores to be predicated behind an if.")); 194 195 static cl::opt<bool> EnableIndVarRegisterHeur( 196 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 197 cl::desc("Count the induction variable only once when interleaving")); 198 199 static cl::opt<bool> EnableCondStoresVectorization( 200 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 201 cl::desc("Enable if predication of stores during vectorization.")); 202 203 static cl::opt<unsigned> MaxNestedScalarReductionIC( 204 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 205 cl::desc("The maximum interleave count to use when interleaving a scalar " 206 "reduction in a nested loop.")); 207 208 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 209 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 210 cl::desc("The maximum allowed number of runtime memory checks with a " 211 "vectorize(enable) pragma.")); 212 213 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 214 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 215 cl::desc("The maximum number of SCEV checks allowed.")); 216 217 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 218 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 219 cl::desc("The maximum number of SCEV checks allowed with a " 220 "vectorize(enable) pragma")); 221 222 /// Create an analysis remark that explains why vectorization failed 223 /// 224 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 225 /// RemarkName is the identifier for the remark. If \p I is passed it is an 226 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 227 /// the location of the remark. \return the remark object that can be 228 /// streamed to. 229 static OptimizationRemarkAnalysis 230 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 231 Instruction *I = nullptr) { 232 Value *CodeRegion = TheLoop->getHeader(); 233 DebugLoc DL = TheLoop->getStartLoc(); 234 235 if (I) { 236 CodeRegion = I->getParent(); 237 // If there is no debug location attached to the instruction, revert back to 238 // using the loop's. 239 if (I->getDebugLoc()) 240 DL = I->getDebugLoc(); 241 } 242 243 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 244 R << "loop not vectorized: "; 245 return R; 246 } 247 248 namespace { 249 250 // Forward declarations. 251 class LoopVectorizeHints; 252 class LoopVectorizationLegality; 253 class LoopVectorizationCostModel; 254 class LoopVectorizationRequirements; 255 class VPInterleaveRecipe; 256 class VPReplicateRecipe; 257 class VPWidenIntOrFpInductionRecipe; 258 class VPWidenRecipe; 259 260 /// Returns true if the given loop body has a cycle, excluding the loop 261 /// itself. 262 static bool hasCyclesInLoopBody(const Loop &L) { 263 if (!L.empty()) 264 return true; 265 266 for (const auto &SCC : 267 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 268 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 269 if (SCC.size() > 1) { 270 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 271 DEBUG(L.dump()); 272 return true; 273 } 274 } 275 return false; 276 } 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 // FIXME: The following helper functions have multiple implementations 288 // in the project. They can be effectively organized in a common Load/Store 289 // utilities unit. 290 291 /// A helper function that returns the pointer operand of a load or store 292 /// instruction. 293 static Value *getPointerOperand(Value *I) { 294 if (auto *LI = dyn_cast<LoadInst>(I)) 295 return LI->getPointerOperand(); 296 if (auto *SI = dyn_cast<StoreInst>(I)) 297 return SI->getPointerOperand(); 298 return nullptr; 299 } 300 301 /// A helper function that returns the type of loaded or stored value. 302 static Type *getMemInstValueType(Value *I) { 303 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 304 "Expected Load or Store instruction"); 305 if (auto *LI = dyn_cast<LoadInst>(I)) 306 return LI->getType(); 307 return cast<StoreInst>(I)->getValueOperand()->getType(); 308 } 309 310 /// A helper function that returns the alignment of load or store instruction. 311 static unsigned getMemInstAlignment(Value *I) { 312 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 313 "Expected Load or Store instruction"); 314 if (auto *LI = dyn_cast<LoadInst>(I)) 315 return LI->getAlignment(); 316 return cast<StoreInst>(I)->getAlignment(); 317 } 318 319 /// A helper function that returns the address space of the pointer operand of 320 /// load or store instruction. 321 static unsigned getMemInstAddressSpace(Value *I) { 322 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 323 "Expected Load or Store instruction"); 324 if (auto *LI = dyn_cast<LoadInst>(I)) 325 return LI->getPointerAddressSpace(); 326 return cast<StoreInst>(I)->getPointerAddressSpace(); 327 } 328 329 /// A helper function that returns true if the given type is irregular. The 330 /// type is irregular if its allocated size doesn't equal the store size of an 331 /// element of the corresponding vector type at the given vectorization factor. 332 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 333 334 // Determine if an array of VF elements of type Ty is "bitcast compatible" 335 // with a <VF x Ty> vector. 336 if (VF > 1) { 337 auto *VectorTy = VectorType::get(Ty, VF); 338 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 339 } 340 341 // If the vectorization factor is one, we just check if an array of type Ty 342 // requires padding between elements. 343 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 344 } 345 346 /// A helper function that returns the reciprocal of the block probability of 347 /// predicated blocks. If we return X, we are assuming the predicated block 348 /// will execute once for for every X iterations of the loop header. 349 /// 350 /// TODO: We should use actual block probability here, if available. Currently, 351 /// we always assume predicated blocks have a 50% chance of executing. 352 static unsigned getReciprocalPredBlockProb() { return 2; } 353 354 /// A helper function that adds a 'fast' flag to floating-point operations. 355 static Value *addFastMathFlag(Value *V) { 356 if (isa<FPMathOperator>(V)) { 357 FastMathFlags Flags; 358 Flags.setUnsafeAlgebra(); 359 cast<Instruction>(V)->setFastMathFlags(Flags); 360 } 361 return V; 362 } 363 364 /// A helper function that returns an integer or floating-point constant with 365 /// value C. 366 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 367 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 368 : ConstantFP::get(Ty, C); 369 } 370 371 } // end anonymous namespace 372 373 namespace llvm { 374 /// InnerLoopVectorizer vectorizes loops which contain only one basic 375 /// block to a specified vectorization factor (VF). 376 /// This class performs the widening of scalars into vectors, or multiple 377 /// scalars. This class also implements the following features: 378 /// * It inserts an epilogue loop for handling loops that don't have iteration 379 /// counts that are known to be a multiple of the vectorization factor. 380 /// * It handles the code generation for reduction variables. 381 /// * Scalarization (implementation using scalars) of un-vectorizable 382 /// instructions. 383 /// InnerLoopVectorizer does not perform any vectorization-legality 384 /// checks, and relies on the caller to check for the different legality 385 /// aspects. The InnerLoopVectorizer relies on the 386 /// LoopVectorizationLegality class to provide information about the induction 387 /// and reduction variables that were found to a given vectorization factor. 388 class InnerLoopVectorizer { 389 public: 390 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 391 LoopInfo *LI, DominatorTree *DT, 392 const TargetLibraryInfo *TLI, 393 const TargetTransformInfo *TTI, AssumptionCache *AC, 394 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 395 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 396 LoopVectorizationCostModel *CM) 397 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 398 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 399 Builder(PSE.getSE()->getContext()), Induction(nullptr), 400 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 401 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 402 AddedSafetyChecks(false) {} 403 404 /// Create a new empty loop. Unlink the old loop and connect the new one. 405 /// Return the pre-header block of the new loop. 406 BasicBlock *createVectorizedLoopSkeleton(); 407 408 /// Widen a single instruction within the innermost loop. 409 void widenInstruction(Instruction &I); 410 411 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 412 void fixVectorizedLoop(); 413 414 // Return true if any runtime check is added. 415 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 416 417 virtual ~InnerLoopVectorizer() {} 418 419 /// A type for vectorized values in the new loop. Each value from the 420 /// original loop, when vectorized, is represented by UF vector values in the 421 /// new unrolled loop, where UF is the unroll factor. 422 typedef SmallVector<Value *, 2> VectorParts; 423 424 /// A helper function that computes the predicate of the block BB, assuming 425 /// that the header block of the loop is set to True. It returns the *entry* 426 /// mask for the block BB. 427 VectorParts createBlockInMask(BasicBlock *BB); 428 429 /// Vectorize a single PHINode in a block. This method handles the induction 430 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 431 /// arbitrary length vectors. 432 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 433 434 /// A helper function to scalarize a single Instruction in the innermost loop. 435 /// Generates a sequence of scalar instances for each lane between \p MinLane 436 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 437 /// inclusive.. 438 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 439 bool IfPredicateInstr); 440 441 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 442 /// is provided, the integer induction variable will first be truncated to 443 /// the corresponding type. 444 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 445 446 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 447 /// vector or scalar value on-demand if one is not yet available. When 448 /// vectorizing a loop, we visit the definition of an instruction before its 449 /// uses. When visiting the definition, we either vectorize or scalarize the 450 /// instruction, creating an entry for it in the corresponding map. (In some 451 /// cases, such as induction variables, we will create both vector and scalar 452 /// entries.) Then, as we encounter uses of the definition, we derive values 453 /// for each scalar or vector use unless such a value is already available. 454 /// For example, if we scalarize a definition and one of its uses is vector, 455 /// we build the required vector on-demand with an insertelement sequence 456 /// when visiting the use. Otherwise, if the use is scalar, we can use the 457 /// existing scalar definition. 458 /// 459 /// Return a value in the new loop corresponding to \p V from the original 460 /// loop at unroll index \p Part. If the value has already been vectorized, 461 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 462 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 463 /// a new vector value on-demand by inserting the scalar values into a vector 464 /// with an insertelement sequence. If the value has been neither vectorized 465 /// nor scalarized, it must be loop invariant, so we simply broadcast the 466 /// value into a vector. 467 Value *getOrCreateVectorValue(Value *V, unsigned Part); 468 469 /// Return a value in the new loop corresponding to \p V from the original 470 /// loop at unroll and vector indices \p Instance. If the value has been 471 /// vectorized but not scalarized, the necessary extractelement instruction 472 /// will be generated. 473 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 474 475 /// Construct the vector value of a scalarized value \p V one lane at a time. 476 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 477 478 /// Try to vectorize the interleaved access group that \p Instr belongs to. 479 void vectorizeInterleaveGroup(Instruction *Instr); 480 481 protected: 482 /// A small list of PHINodes. 483 typedef SmallVector<PHINode *, 4> PhiVector; 484 485 /// A type for scalarized values in the new loop. Each value from the 486 /// original loop, when scalarized, is represented by UF x VF scalar values 487 /// in the new unrolled loop, where UF is the unroll factor and VF is the 488 /// vectorization factor. 489 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 490 491 // When we if-convert we need to create edge masks. We have to cache values 492 // so that we don't end up with exponential recursion/IR. 493 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 494 EdgeMaskCacheTy; 495 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 496 497 /// Set up the values of the IVs correctly when exiting the vector loop. 498 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 499 Value *CountRoundDown, Value *EndValue, 500 BasicBlock *MiddleBlock); 501 502 /// Create a new induction variable inside L. 503 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 504 Value *Step, Instruction *DL); 505 506 /// Handle all cross-iteration phis in the header. 507 void fixCrossIterationPHIs(); 508 509 /// Fix a first-order recurrence. This is the second phase of vectorizing 510 /// this phi node. 511 void fixFirstOrderRecurrence(PHINode *Phi); 512 513 /// Fix a reduction cross-iteration phi. This is the second phase of 514 /// vectorizing this phi node. 515 void fixReduction(PHINode *Phi); 516 517 /// \brief The Loop exit block may have single value PHI nodes with some 518 /// incoming value. While vectorizing we only handled real values 519 /// that were defined inside the loop and we should have one value for 520 /// each predecessor of its parent basic block. See PR14725. 521 void fixLCSSAPHIs(); 522 523 /// Iteratively sink the scalarized operands of a predicated instruction into 524 /// the block that was created for it. 525 void sinkScalarOperands(Instruction *PredInst); 526 527 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 528 /// represented as. 529 void truncateToMinimalBitwidths(); 530 531 /// A helper function that computes the predicate of the edge between SRC 532 /// and DST. 533 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 534 535 /// Insert the new loop to the loop hierarchy and pass manager 536 /// and update the analysis passes. 537 void updateAnalysis(); 538 539 /// Vectorize Load and Store instructions, 540 virtual void vectorizeMemoryInstruction(Instruction *Instr); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 550 /// to each vector element of Val. The sequence starts at StartIndex. 551 /// \p Opcode is relevant for FP induction variable. 552 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 553 Instruction::BinaryOps Opcode = 554 Instruction::BinaryOpsEnd); 555 556 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 557 /// variable on which to base the steps, \p Step is the size of the step, and 558 /// \p EntryVal is the value from the original loop that maps to the steps. 559 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 560 /// can be a truncate instruction). 561 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 562 const InductionDescriptor &ID); 563 564 /// Create a vector induction phi node based on an existing scalar one. \p 565 /// EntryVal is the value from the original loop that maps to the vector phi 566 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 567 /// truncate instruction, instead of widening the original IV, we widen a 568 /// version of the IV truncated to \p EntryVal's type. 569 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 570 Value *Step, Instruction *EntryVal); 571 572 /// Returns true if an instruction \p I should be scalarized instead of 573 /// vectorized for the chosen vectorization factor. 574 bool shouldScalarizeInstruction(Instruction *I) const; 575 576 /// Returns true if we should generate a scalar version of \p IV. 577 bool needsScalarInduction(Instruction *IV) const; 578 579 /// Generate a shuffle sequence that will reverse the vector Vec. 580 virtual Value *reverseVector(Value *Vec); 581 582 /// Returns (and creates if needed) the original loop trip count. 583 Value *getOrCreateTripCount(Loop *NewLoop); 584 585 /// Returns (and creates if needed) the trip count of the widened loop. 586 Value *getOrCreateVectorTripCount(Loop *NewLoop); 587 588 /// Returns a bitcasted value to the requested vector type. 589 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 590 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 591 const DataLayout &DL); 592 593 /// Emit a bypass check to see if the vector trip count is zero, including if 594 /// it overflows. 595 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 596 /// Emit a bypass check to see if all of the SCEV assumptions we've 597 /// had to make are correct. 598 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 599 /// Emit bypass checks to check any memory assumptions we may have made. 600 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 601 602 /// Add additional metadata to \p To that was not present on \p Orig. 603 /// 604 /// Currently this is used to add the noalias annotations based on the 605 /// inserted memchecks. Use this for instructions that are *cloned* into the 606 /// vector loop. 607 void addNewMetadata(Instruction *To, const Instruction *Orig); 608 609 /// Add metadata from one instruction to another. 610 /// 611 /// This includes both the original MDs from \p From and additional ones (\see 612 /// addNewMetadata). Use this for *newly created* instructions in the vector 613 /// loop. 614 void addMetadata(Instruction *To, Instruction *From); 615 616 /// \brief Similar to the previous function but it adds the metadata to a 617 /// vector of instructions. 618 void addMetadata(ArrayRef<Value *> To, Instruction *From); 619 620 /// \brief Set the debug location in the builder using the debug location in 621 /// the instruction. 622 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 623 624 /// The original loop. 625 Loop *OrigLoop; 626 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 627 /// dynamic knowledge to simplify SCEV expressions and converts them to a 628 /// more usable form. 629 PredicatedScalarEvolution &PSE; 630 /// Loop Info. 631 LoopInfo *LI; 632 /// Dominator Tree. 633 DominatorTree *DT; 634 /// Alias Analysis. 635 AliasAnalysis *AA; 636 /// Target Library Info. 637 const TargetLibraryInfo *TLI; 638 /// Target Transform Info. 639 const TargetTransformInfo *TTI; 640 /// Assumption Cache. 641 AssumptionCache *AC; 642 /// Interface to emit optimization remarks. 643 OptimizationRemarkEmitter *ORE; 644 645 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 646 /// used. 647 /// 648 /// This is currently only used to add no-alias metadata based on the 649 /// memchecks. The actually versioning is performed manually. 650 std::unique_ptr<LoopVersioning> LVer; 651 652 /// The vectorization SIMD factor to use. Each vector will have this many 653 /// vector elements. 654 unsigned VF; 655 656 /// The vectorization unroll factor to use. Each scalar is vectorized to this 657 /// many different vector instructions. 658 unsigned UF; 659 660 /// The builder that we use 661 IRBuilder<> Builder; 662 663 // --- Vectorization state --- 664 665 /// The vector-loop preheader. 666 BasicBlock *LoopVectorPreHeader; 667 /// The scalar-loop preheader. 668 BasicBlock *LoopScalarPreHeader; 669 /// Middle Block between the vector and the scalar. 670 BasicBlock *LoopMiddleBlock; 671 /// The ExitBlock of the scalar loop. 672 BasicBlock *LoopExitBlock; 673 /// The vector loop body. 674 BasicBlock *LoopVectorBody; 675 /// The scalar loop body. 676 BasicBlock *LoopScalarBody; 677 /// A list of all bypass blocks. The first block is the entry of the loop. 678 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 679 680 /// The new Induction variable which was added to the new block. 681 PHINode *Induction; 682 /// The induction variable of the old basic block. 683 PHINode *OldInduction; 684 685 /// Maps values from the original loop to their corresponding values in the 686 /// vectorized loop. A key value can map to either vector values, scalar 687 /// values or both kinds of values, depending on whether the key was 688 /// vectorized and scalarized. 689 VectorizerValueMap VectorLoopValueMap; 690 691 /// Store instructions that were predicated. 692 SmallVector<Instruction *, 4> PredicatedInstructions; 693 EdgeMaskCacheTy EdgeMaskCache; 694 BlockMaskCacheTy BlockMaskCache; 695 /// Trip count of the original loop. 696 Value *TripCount; 697 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 698 Value *VectorTripCount; 699 700 /// The legality analysis. 701 LoopVectorizationLegality *Legal; 702 703 /// The profitablity analysis. 704 LoopVectorizationCostModel *Cost; 705 706 // Record whether runtime checks are added. 707 bool AddedSafetyChecks; 708 709 // Holds the end values for each induction variable. We save the end values 710 // so we can later fix-up the external users of the induction variables. 711 DenseMap<PHINode *, Value *> IVEndValues; 712 713 friend class LoopVectorizationPlanner; 714 }; 715 716 class InnerLoopUnroller : public InnerLoopVectorizer { 717 public: 718 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 719 LoopInfo *LI, DominatorTree *DT, 720 const TargetLibraryInfo *TLI, 721 const TargetTransformInfo *TTI, AssumptionCache *AC, 722 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 723 LoopVectorizationLegality *LVL, 724 LoopVectorizationCostModel *CM) 725 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 726 UnrollFactor, LVL, CM) {} 727 728 private: 729 Value *getBroadcastInstrs(Value *V) override; 730 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 731 Instruction::BinaryOps Opcode = 732 Instruction::BinaryOpsEnd) override; 733 Value *reverseVector(Value *Vec) override; 734 }; 735 736 /// \brief Look for a meaningful debug location on the instruction or it's 737 /// operands. 738 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 739 if (!I) 740 return I; 741 742 DebugLoc Empty; 743 if (I->getDebugLoc() != Empty) 744 return I; 745 746 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 747 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 748 if (OpInst->getDebugLoc() != Empty) 749 return OpInst; 750 } 751 752 return I; 753 } 754 755 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 756 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 757 const DILocation *DIL = Inst->getDebugLoc(); 758 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 759 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 760 else 761 B.SetCurrentDebugLocation(DIL); 762 } else 763 B.SetCurrentDebugLocation(DebugLoc()); 764 } 765 766 #ifndef NDEBUG 767 /// \return string containing a file name and a line # for the given loop. 768 static std::string getDebugLocString(const Loop *L) { 769 std::string Result; 770 if (L) { 771 raw_string_ostream OS(Result); 772 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 773 LoopDbgLoc.print(OS); 774 else 775 // Just print the module name. 776 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 777 OS.flush(); 778 } 779 return Result; 780 } 781 #endif 782 783 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 784 const Instruction *Orig) { 785 // If the loop was versioned with memchecks, add the corresponding no-alias 786 // metadata. 787 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 788 LVer->annotateInstWithNoAlias(To, Orig); 789 } 790 791 void InnerLoopVectorizer::addMetadata(Instruction *To, 792 Instruction *From) { 793 propagateMetadata(To, From); 794 addNewMetadata(To, From); 795 } 796 797 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 798 Instruction *From) { 799 for (Value *V : To) { 800 if (Instruction *I = dyn_cast<Instruction>(V)) 801 addMetadata(I, From); 802 } 803 } 804 805 } // namespace llvm 806 807 namespace { 808 809 /// \brief The group of interleaved loads/stores sharing the same stride and 810 /// close to each other. 811 /// 812 /// Each member in this group has an index starting from 0, and the largest 813 /// index should be less than interleaved factor, which is equal to the absolute 814 /// value of the access's stride. 815 /// 816 /// E.g. An interleaved load group of factor 4: 817 /// for (unsigned i = 0; i < 1024; i+=4) { 818 /// a = A[i]; // Member of index 0 819 /// b = A[i+1]; // Member of index 1 820 /// d = A[i+3]; // Member of index 3 821 /// ... 822 /// } 823 /// 824 /// An interleaved store group of factor 4: 825 /// for (unsigned i = 0; i < 1024; i+=4) { 826 /// ... 827 /// A[i] = a; // Member of index 0 828 /// A[i+1] = b; // Member of index 1 829 /// A[i+2] = c; // Member of index 2 830 /// A[i+3] = d; // Member of index 3 831 /// } 832 /// 833 /// Note: the interleaved load group could have gaps (missing members), but 834 /// the interleaved store group doesn't allow gaps. 835 class InterleaveGroup { 836 public: 837 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 838 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 839 assert(Align && "The alignment should be non-zero"); 840 841 Factor = std::abs(Stride); 842 assert(Factor > 1 && "Invalid interleave factor"); 843 844 Reverse = Stride < 0; 845 Members[0] = Instr; 846 } 847 848 bool isReverse() const { return Reverse; } 849 unsigned getFactor() const { return Factor; } 850 unsigned getAlignment() const { return Align; } 851 unsigned getNumMembers() const { return Members.size(); } 852 853 /// \brief Try to insert a new member \p Instr with index \p Index and 854 /// alignment \p NewAlign. The index is related to the leader and it could be 855 /// negative if it is the new leader. 856 /// 857 /// \returns false if the instruction doesn't belong to the group. 858 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 859 assert(NewAlign && "The new member's alignment should be non-zero"); 860 861 int Key = Index + SmallestKey; 862 863 // Skip if there is already a member with the same index. 864 if (Members.count(Key)) 865 return false; 866 867 if (Key > LargestKey) { 868 // The largest index is always less than the interleave factor. 869 if (Index >= static_cast<int>(Factor)) 870 return false; 871 872 LargestKey = Key; 873 } else if (Key < SmallestKey) { 874 // The largest index is always less than the interleave factor. 875 if (LargestKey - Key >= static_cast<int>(Factor)) 876 return false; 877 878 SmallestKey = Key; 879 } 880 881 // It's always safe to select the minimum alignment. 882 Align = std::min(Align, NewAlign); 883 Members[Key] = Instr; 884 return true; 885 } 886 887 /// \brief Get the member with the given index \p Index 888 /// 889 /// \returns nullptr if contains no such member. 890 Instruction *getMember(unsigned Index) const { 891 int Key = SmallestKey + Index; 892 if (!Members.count(Key)) 893 return nullptr; 894 895 return Members.find(Key)->second; 896 } 897 898 /// \brief Get the index for the given member. Unlike the key in the member 899 /// map, the index starts from 0. 900 unsigned getIndex(Instruction *Instr) const { 901 for (auto I : Members) 902 if (I.second == Instr) 903 return I.first - SmallestKey; 904 905 llvm_unreachable("InterleaveGroup contains no such member"); 906 } 907 908 Instruction *getInsertPos() const { return InsertPos; } 909 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 910 911 private: 912 unsigned Factor; // Interleave Factor. 913 bool Reverse; 914 unsigned Align; 915 DenseMap<int, Instruction *> Members; 916 int SmallestKey; 917 int LargestKey; 918 919 // To avoid breaking dependences, vectorized instructions of an interleave 920 // group should be inserted at either the first load or the last store in 921 // program order. 922 // 923 // E.g. %even = load i32 // Insert Position 924 // %add = add i32 %even // Use of %even 925 // %odd = load i32 926 // 927 // store i32 %even 928 // %odd = add i32 // Def of %odd 929 // store i32 %odd // Insert Position 930 Instruction *InsertPos; 931 }; 932 933 /// \brief Drive the analysis of interleaved memory accesses in the loop. 934 /// 935 /// Use this class to analyze interleaved accesses only when we can vectorize 936 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 937 /// on interleaved accesses is unsafe. 938 /// 939 /// The analysis collects interleave groups and records the relationships 940 /// between the member and the group in a map. 941 class InterleavedAccessInfo { 942 public: 943 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 944 DominatorTree *DT, LoopInfo *LI) 945 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 946 RequiresScalarEpilogue(false) {} 947 948 ~InterleavedAccessInfo() { 949 SmallSet<InterleaveGroup *, 4> DelSet; 950 // Avoid releasing a pointer twice. 951 for (auto &I : InterleaveGroupMap) 952 DelSet.insert(I.second); 953 for (auto *Ptr : DelSet) 954 delete Ptr; 955 } 956 957 /// \brief Analyze the interleaved accesses and collect them in interleave 958 /// groups. Substitute symbolic strides using \p Strides. 959 void analyzeInterleaving(const ValueToValueMap &Strides); 960 961 /// \brief Check if \p Instr belongs to any interleave group. 962 bool isInterleaved(Instruction *Instr) const { 963 return InterleaveGroupMap.count(Instr); 964 } 965 966 /// \brief Return the maximum interleave factor of all interleaved groups. 967 unsigned getMaxInterleaveFactor() const { 968 unsigned MaxFactor = 1; 969 for (auto &Entry : InterleaveGroupMap) 970 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 971 return MaxFactor; 972 } 973 974 /// \brief Get the interleave group that \p Instr belongs to. 975 /// 976 /// \returns nullptr if doesn't have such group. 977 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 978 if (InterleaveGroupMap.count(Instr)) 979 return InterleaveGroupMap.find(Instr)->second; 980 return nullptr; 981 } 982 983 /// \brief Returns true if an interleaved group that may access memory 984 /// out-of-bounds requires a scalar epilogue iteration for correctness. 985 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 986 987 /// \brief Initialize the LoopAccessInfo used for dependence checking. 988 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 989 990 private: 991 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 992 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 993 /// The interleaved access analysis can also add new predicates (for example 994 /// by versioning strides of pointers). 995 PredicatedScalarEvolution &PSE; 996 Loop *TheLoop; 997 DominatorTree *DT; 998 LoopInfo *LI; 999 const LoopAccessInfo *LAI; 1000 1001 /// True if the loop may contain non-reversed interleaved groups with 1002 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1003 /// out-of-bounds by executing at least one scalar epilogue iteration. 1004 bool RequiresScalarEpilogue; 1005 1006 /// Holds the relationships between the members and the interleave group. 1007 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1008 1009 /// Holds dependences among the memory accesses in the loop. It maps a source 1010 /// access to a set of dependent sink accesses. 1011 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1012 1013 /// \brief The descriptor for a strided memory access. 1014 struct StrideDescriptor { 1015 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1016 unsigned Align) 1017 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1018 1019 StrideDescriptor() = default; 1020 1021 // The access's stride. It is negative for a reverse access. 1022 int64_t Stride = 0; 1023 const SCEV *Scev = nullptr; // The scalar expression of this access 1024 uint64_t Size = 0; // The size of the memory object. 1025 unsigned Align = 0; // The alignment of this access. 1026 }; 1027 1028 /// \brief A type for holding instructions and their stride descriptors. 1029 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1030 1031 /// \brief Create a new interleave group with the given instruction \p Instr, 1032 /// stride \p Stride and alignment \p Align. 1033 /// 1034 /// \returns the newly created interleave group. 1035 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1036 unsigned Align) { 1037 assert(!InterleaveGroupMap.count(Instr) && 1038 "Already in an interleaved access group"); 1039 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1040 return InterleaveGroupMap[Instr]; 1041 } 1042 1043 /// \brief Release the group and remove all the relationships. 1044 void releaseGroup(InterleaveGroup *Group) { 1045 for (unsigned i = 0; i < Group->getFactor(); i++) 1046 if (Instruction *Member = Group->getMember(i)) 1047 InterleaveGroupMap.erase(Member); 1048 1049 delete Group; 1050 } 1051 1052 /// \brief Collect all the accesses with a constant stride in program order. 1053 void collectConstStrideAccesses( 1054 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1055 const ValueToValueMap &Strides); 1056 1057 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1058 static bool isStrided(int Stride) { 1059 unsigned Factor = std::abs(Stride); 1060 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1061 } 1062 1063 /// \brief Returns true if \p BB is a predicated block. 1064 bool isPredicated(BasicBlock *BB) const { 1065 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1066 } 1067 1068 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1069 bool areDependencesValid() const { 1070 return LAI && LAI->getDepChecker().getDependences(); 1071 } 1072 1073 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1074 /// necessary, when constructing interleaved groups. 1075 /// 1076 /// \p A must precede \p B in program order. We return false if reordering is 1077 /// not necessary or is prevented because \p A and \p B may be dependent. 1078 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1079 StrideEntry *B) const { 1080 1081 // Code motion for interleaved accesses can potentially hoist strided loads 1082 // and sink strided stores. The code below checks the legality of the 1083 // following two conditions: 1084 // 1085 // 1. Potentially moving a strided load (B) before any store (A) that 1086 // precedes B, or 1087 // 1088 // 2. Potentially moving a strided store (A) after any load or store (B) 1089 // that A precedes. 1090 // 1091 // It's legal to reorder A and B if we know there isn't a dependence from A 1092 // to B. Note that this determination is conservative since some 1093 // dependences could potentially be reordered safely. 1094 1095 // A is potentially the source of a dependence. 1096 auto *Src = A->first; 1097 auto SrcDes = A->second; 1098 1099 // B is potentially the sink of a dependence. 1100 auto *Sink = B->first; 1101 auto SinkDes = B->second; 1102 1103 // Code motion for interleaved accesses can't violate WAR dependences. 1104 // Thus, reordering is legal if the source isn't a write. 1105 if (!Src->mayWriteToMemory()) 1106 return true; 1107 1108 // At least one of the accesses must be strided. 1109 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1110 return true; 1111 1112 // If dependence information is not available from LoopAccessInfo, 1113 // conservatively assume the instructions can't be reordered. 1114 if (!areDependencesValid()) 1115 return false; 1116 1117 // If we know there is a dependence from source to sink, assume the 1118 // instructions can't be reordered. Otherwise, reordering is legal. 1119 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1120 } 1121 1122 /// \brief Collect the dependences from LoopAccessInfo. 1123 /// 1124 /// We process the dependences once during the interleaved access analysis to 1125 /// enable constant-time dependence queries. 1126 void collectDependences() { 1127 if (!areDependencesValid()) 1128 return; 1129 auto *Deps = LAI->getDepChecker().getDependences(); 1130 for (auto Dep : *Deps) 1131 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1132 } 1133 }; 1134 1135 /// Utility class for getting and setting loop vectorizer hints in the form 1136 /// of loop metadata. 1137 /// This class keeps a number of loop annotations locally (as member variables) 1138 /// and can, upon request, write them back as metadata on the loop. It will 1139 /// initially scan the loop for existing metadata, and will update the local 1140 /// values based on information in the loop. 1141 /// We cannot write all values to metadata, as the mere presence of some info, 1142 /// for example 'force', means a decision has been made. So, we need to be 1143 /// careful NOT to add them if the user hasn't specifically asked so. 1144 class LoopVectorizeHints { 1145 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1146 1147 /// Hint - associates name and validation with the hint value. 1148 struct Hint { 1149 const char *Name; 1150 unsigned Value; // This may have to change for non-numeric values. 1151 HintKind Kind; 1152 1153 Hint(const char *Name, unsigned Value, HintKind Kind) 1154 : Name(Name), Value(Value), Kind(Kind) {} 1155 1156 bool validate(unsigned Val) { 1157 switch (Kind) { 1158 case HK_WIDTH: 1159 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1160 case HK_UNROLL: 1161 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1162 case HK_FORCE: 1163 return (Val <= 1); 1164 case HK_ISVECTORIZED: 1165 return (Val==0 || Val==1); 1166 } 1167 return false; 1168 } 1169 }; 1170 1171 /// Vectorization width. 1172 Hint Width; 1173 /// Vectorization interleave factor. 1174 Hint Interleave; 1175 /// Vectorization forced 1176 Hint Force; 1177 1178 /// Already Vectorized 1179 Hint IsVectorized; 1180 /// Return the loop metadata prefix. 1181 static StringRef Prefix() { return "llvm.loop."; } 1182 1183 /// True if there is any unsafe math in the loop. 1184 bool PotentiallyUnsafe; 1185 1186 public: 1187 enum ForceKind { 1188 FK_Undefined = -1, ///< Not selected. 1189 FK_Disabled = 0, ///< Forcing disabled. 1190 FK_Enabled = 1, ///< Forcing enabled. 1191 }; 1192 1193 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1194 OptimizationRemarkEmitter &ORE) 1195 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1196 HK_WIDTH), 1197 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1198 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1199 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 1200 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1201 // Populate values with existing loop metadata. 1202 getHintsFromMetadata(); 1203 1204 // force-vector-interleave overrides DisableInterleaving. 1205 if (VectorizerParams::isInterleaveForced()) 1206 Interleave.Value = VectorizerParams::VectorizationInterleave; 1207 1208 if (IsVectorized.Value != 1) 1209 // If the vectorization width and interleaving count are both 1 then 1210 // consider the loop to have been already vectorized because there's 1211 // nothing more that we can do. 1212 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1213 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1214 << "LV: Interleaving disabled by the pass manager\n"); 1215 } 1216 1217 /// Mark the loop L as already vectorized by setting the width to 1. 1218 void setAlreadyVectorized() { 1219 IsVectorized.Value = 1; 1220 Hint Hints[] = {IsVectorized}; 1221 writeHintsToMetadata(Hints); 1222 } 1223 1224 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1225 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1226 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1227 emitRemarkWithHints(); 1228 return false; 1229 } 1230 1231 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1232 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1233 emitRemarkWithHints(); 1234 return false; 1235 } 1236 1237 if (getIsVectorized() == 1) { 1238 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1239 // FIXME: Add interleave.disable metadata. This will allow 1240 // vectorize.disable to be used without disabling the pass and errors 1241 // to differentiate between disabled vectorization and a width of 1. 1242 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1243 "AllDisabled", L->getStartLoc(), 1244 L->getHeader()) 1245 << "loop not vectorized: vectorization and interleaving are " 1246 "explicitly disabled, or the loop has already been " 1247 "vectorized"); 1248 return false; 1249 } 1250 1251 return true; 1252 } 1253 1254 /// Dumps all the hint information. 1255 void emitRemarkWithHints() const { 1256 using namespace ore; 1257 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1258 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1259 TheLoop->getStartLoc(), 1260 TheLoop->getHeader()) 1261 << "loop not vectorized: vectorization is explicitly disabled"); 1262 else { 1263 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1264 TheLoop->getStartLoc(), TheLoop->getHeader()); 1265 R << "loop not vectorized"; 1266 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1267 R << " (Force=" << NV("Force", true); 1268 if (Width.Value != 0) 1269 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1270 if (Interleave.Value != 0) 1271 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1272 R << ")"; 1273 } 1274 ORE.emit(R); 1275 } 1276 } 1277 1278 unsigned getWidth() const { return Width.Value; } 1279 unsigned getInterleave() const { return Interleave.Value; } 1280 unsigned getIsVectorized() const { return IsVectorized.Value; } 1281 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1282 1283 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1284 /// pass name to force the frontend to print the diagnostic. 1285 const char *vectorizeAnalysisPassName() const { 1286 if (getWidth() == 1) 1287 return LV_NAME; 1288 if (getForce() == LoopVectorizeHints::FK_Disabled) 1289 return LV_NAME; 1290 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1291 return LV_NAME; 1292 return OptimizationRemarkAnalysis::AlwaysPrint; 1293 } 1294 1295 bool allowReordering() const { 1296 // When enabling loop hints are provided we allow the vectorizer to change 1297 // the order of operations that is given by the scalar loop. This is not 1298 // enabled by default because can be unsafe or inefficient. For example, 1299 // reordering floating-point operations will change the way round-off 1300 // error accumulates in the loop. 1301 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1302 } 1303 1304 bool isPotentiallyUnsafe() const { 1305 // Avoid FP vectorization if the target is unsure about proper support. 1306 // This may be related to the SIMD unit in the target not handling 1307 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1308 // Otherwise, a sequence of vectorized loops, even without reduction, 1309 // could lead to different end results on the destination vectors. 1310 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1311 } 1312 1313 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1314 1315 private: 1316 /// Find hints specified in the loop metadata and update local values. 1317 void getHintsFromMetadata() { 1318 MDNode *LoopID = TheLoop->getLoopID(); 1319 if (!LoopID) 1320 return; 1321 1322 // First operand should refer to the loop id itself. 1323 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1324 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1325 1326 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1327 const MDString *S = nullptr; 1328 SmallVector<Metadata *, 4> Args; 1329 1330 // The expected hint is either a MDString or a MDNode with the first 1331 // operand a MDString. 1332 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1333 if (!MD || MD->getNumOperands() == 0) 1334 continue; 1335 S = dyn_cast<MDString>(MD->getOperand(0)); 1336 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1337 Args.push_back(MD->getOperand(i)); 1338 } else { 1339 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1340 assert(Args.size() == 0 && "too many arguments for MDString"); 1341 } 1342 1343 if (!S) 1344 continue; 1345 1346 // Check if the hint starts with the loop metadata prefix. 1347 StringRef Name = S->getString(); 1348 if (Args.size() == 1) 1349 setHint(Name, Args[0]); 1350 } 1351 } 1352 1353 /// Checks string hint with one operand and set value if valid. 1354 void setHint(StringRef Name, Metadata *Arg) { 1355 if (!Name.startswith(Prefix())) 1356 return; 1357 Name = Name.substr(Prefix().size(), StringRef::npos); 1358 1359 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1360 if (!C) 1361 return; 1362 unsigned Val = C->getZExtValue(); 1363 1364 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1365 for (auto H : Hints) { 1366 if (Name == H->Name) { 1367 if (H->validate(Val)) 1368 H->Value = Val; 1369 else 1370 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1371 break; 1372 } 1373 } 1374 } 1375 1376 /// Create a new hint from name / value pair. 1377 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1378 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1379 Metadata *MDs[] = {MDString::get(Context, Name), 1380 ConstantAsMetadata::get( 1381 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1382 return MDNode::get(Context, MDs); 1383 } 1384 1385 /// Matches metadata with hint name. 1386 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1387 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1388 if (!Name) 1389 return false; 1390 1391 for (auto H : HintTypes) 1392 if (Name->getString().endswith(H.Name)) 1393 return true; 1394 return false; 1395 } 1396 1397 /// Sets current hints into loop metadata, keeping other values intact. 1398 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1399 if (HintTypes.size() == 0) 1400 return; 1401 1402 // Reserve the first element to LoopID (see below). 1403 SmallVector<Metadata *, 4> MDs(1); 1404 // If the loop already has metadata, then ignore the existing operands. 1405 MDNode *LoopID = TheLoop->getLoopID(); 1406 if (LoopID) { 1407 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1408 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1409 // If node in update list, ignore old value. 1410 if (!matchesHintMetadataName(Node, HintTypes)) 1411 MDs.push_back(Node); 1412 } 1413 } 1414 1415 // Now, add the missing hints. 1416 for (auto H : HintTypes) 1417 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1418 1419 // Replace current metadata node with new one. 1420 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1421 MDNode *NewLoopID = MDNode::get(Context, MDs); 1422 // Set operand 0 to refer to the loop id itself. 1423 NewLoopID->replaceOperandWith(0, NewLoopID); 1424 1425 TheLoop->setLoopID(NewLoopID); 1426 } 1427 1428 /// The loop these hints belong to. 1429 const Loop *TheLoop; 1430 1431 /// Interface to emit optimization remarks. 1432 OptimizationRemarkEmitter &ORE; 1433 }; 1434 1435 static void emitMissedWarning(Function *F, Loop *L, 1436 const LoopVectorizeHints &LH, 1437 OptimizationRemarkEmitter *ORE) { 1438 LH.emitRemarkWithHints(); 1439 1440 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1441 if (LH.getWidth() != 1) 1442 ORE->emit(DiagnosticInfoOptimizationFailure( 1443 DEBUG_TYPE, "FailedRequestedVectorization", 1444 L->getStartLoc(), L->getHeader()) 1445 << "loop not vectorized: " 1446 << "failed explicitly specified loop vectorization"); 1447 else if (LH.getInterleave() != 1) 1448 ORE->emit(DiagnosticInfoOptimizationFailure( 1449 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1450 L->getHeader()) 1451 << "loop not interleaved: " 1452 << "failed explicitly specified loop interleaving"); 1453 } 1454 } 1455 1456 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1457 /// to what vectorization factor. 1458 /// This class does not look at the profitability of vectorization, only the 1459 /// legality. This class has two main kinds of checks: 1460 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1461 /// will change the order of memory accesses in a way that will change the 1462 /// correctness of the program. 1463 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1464 /// checks for a number of different conditions, such as the availability of a 1465 /// single induction variable, that all types are supported and vectorize-able, 1466 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1467 /// This class is also used by InnerLoopVectorizer for identifying 1468 /// induction variable and the different reduction variables. 1469 class LoopVectorizationLegality { 1470 public: 1471 LoopVectorizationLegality( 1472 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1473 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1474 const TargetTransformInfo *TTI, 1475 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1476 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1477 LoopVectorizeHints *H) 1478 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1479 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1480 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1481 Requirements(R), Hints(H) {} 1482 1483 /// ReductionList contains the reduction descriptors for all 1484 /// of the reductions that were found in the loop. 1485 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1486 1487 /// InductionList saves induction variables and maps them to the 1488 /// induction descriptor. 1489 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1490 1491 /// RecurrenceSet contains the phi nodes that are recurrences other than 1492 /// inductions and reductions. 1493 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1494 1495 /// Returns true if it is legal to vectorize this loop. 1496 /// This does not mean that it is profitable to vectorize this 1497 /// loop, only that it is legal to do so. 1498 bool canVectorize(); 1499 1500 /// Returns the primary induction variable. 1501 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1502 1503 /// Returns the reduction variables found in the loop. 1504 ReductionList *getReductionVars() { return &Reductions; } 1505 1506 /// Returns the induction variables found in the loop. 1507 InductionList *getInductionVars() { return &Inductions; } 1508 1509 /// Return the first-order recurrences found in the loop. 1510 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1511 1512 /// Return the set of instructions to sink to handle first-order recurrences. 1513 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1514 1515 /// Returns the widest induction type. 1516 Type *getWidestInductionType() { return WidestIndTy; } 1517 1518 /// Returns True if V is an induction variable in this loop. 1519 bool isInductionVariable(const Value *V); 1520 1521 /// Returns True if PN is a reduction variable in this loop. 1522 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1523 1524 /// Returns True if Phi is a first-order recurrence in this loop. 1525 bool isFirstOrderRecurrence(const PHINode *Phi); 1526 1527 /// Return true if the block BB needs to be predicated in order for the loop 1528 /// to be vectorized. 1529 bool blockNeedsPredication(BasicBlock *BB); 1530 1531 /// Check if this pointer is consecutive when vectorizing. This happens 1532 /// when the last index of the GEP is the induction variable, or that the 1533 /// pointer itself is an induction variable. 1534 /// This check allows us to vectorize A[idx] into a wide load/store. 1535 /// Returns: 1536 /// 0 - Stride is unknown or non-consecutive. 1537 /// 1 - Address is consecutive. 1538 /// -1 - Address is consecutive, and decreasing. 1539 int isConsecutivePtr(Value *Ptr); 1540 1541 /// Returns true if the value V is uniform within the loop. 1542 bool isUniform(Value *V); 1543 1544 /// Returns the information that we collected about runtime memory check. 1545 const RuntimePointerChecking *getRuntimePointerChecking() const { 1546 return LAI->getRuntimePointerChecking(); 1547 } 1548 1549 const LoopAccessInfo *getLAI() const { return LAI; } 1550 1551 /// \brief Check if \p Instr belongs to any interleaved access group. 1552 bool isAccessInterleaved(Instruction *Instr) { 1553 return InterleaveInfo.isInterleaved(Instr); 1554 } 1555 1556 /// \brief Return the maximum interleave factor of all interleaved groups. 1557 unsigned getMaxInterleaveFactor() const { 1558 return InterleaveInfo.getMaxInterleaveFactor(); 1559 } 1560 1561 /// \brief Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1563 return InterleaveInfo.getInterleaveGroup(Instr); 1564 } 1565 1566 /// \brief Returns true if an interleaved group requires a scalar iteration 1567 /// to handle accesses with gaps. 1568 bool requiresScalarEpilogue() const { 1569 return InterleaveInfo.requiresScalarEpilogue(); 1570 } 1571 1572 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1573 1574 bool hasStride(Value *V) { return LAI->hasStride(V); } 1575 1576 /// Returns true if the target machine supports masked store operation 1577 /// for the given \p DataType and kind of access to \p Ptr. 1578 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1579 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1580 } 1581 /// Returns true if the target machine supports masked load operation 1582 /// for the given \p DataType and kind of access to \p Ptr. 1583 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1584 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1585 } 1586 /// Returns true if the target machine supports masked scatter operation 1587 /// for the given \p DataType. 1588 bool isLegalMaskedScatter(Type *DataType) { 1589 return TTI->isLegalMaskedScatter(DataType); 1590 } 1591 /// Returns true if the target machine supports masked gather operation 1592 /// for the given \p DataType. 1593 bool isLegalMaskedGather(Type *DataType) { 1594 return TTI->isLegalMaskedGather(DataType); 1595 } 1596 /// Returns true if the target machine can represent \p V as a masked gather 1597 /// or scatter operation. 1598 bool isLegalGatherOrScatter(Value *V) { 1599 auto *LI = dyn_cast<LoadInst>(V); 1600 auto *SI = dyn_cast<StoreInst>(V); 1601 if (!LI && !SI) 1602 return false; 1603 auto *Ptr = getPointerOperand(V); 1604 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1605 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1606 } 1607 1608 /// Returns true if vector representation of the instruction \p I 1609 /// requires mask. 1610 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1611 unsigned getNumStores() const { return LAI->getNumStores(); } 1612 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1613 unsigned getNumPredStores() const { return NumPredStores; } 1614 1615 /// Returns true if \p I is an instruction that will be scalarized with 1616 /// predication. Such instructions include conditional stores and 1617 /// instructions that may divide by zero. 1618 bool isScalarWithPredication(Instruction *I); 1619 1620 /// Returns true if \p I is a memory instruction with consecutive memory 1621 /// access that can be widened. 1622 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1623 1624 // Returns true if the NoNaN attribute is set on the function. 1625 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1626 1627 private: 1628 /// Check if a single basic block loop is vectorizable. 1629 /// At this point we know that this is a loop with a constant trip count 1630 /// and we only need to check individual instructions. 1631 bool canVectorizeInstrs(); 1632 1633 /// When we vectorize loops we may change the order in which 1634 /// we read and write from memory. This method checks if it is 1635 /// legal to vectorize the code, considering only memory constrains. 1636 /// Returns true if the loop is vectorizable 1637 bool canVectorizeMemory(); 1638 1639 /// Return true if we can vectorize this loop using the IF-conversion 1640 /// transformation. 1641 bool canVectorizeWithIfConvert(); 1642 1643 /// Return true if all of the instructions in the block can be speculatively 1644 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1645 /// and we know that we can read from them without segfault. 1646 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1647 1648 /// Updates the vectorization state by adding \p Phi to the inductions list. 1649 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1650 /// better choice for the main induction than the existing one. 1651 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1652 SmallPtrSetImpl<Value *> &AllowedExit); 1653 1654 /// Create an analysis remark that explains why vectorization failed 1655 /// 1656 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1657 /// an instruction that prevents vectorization. Otherwise the loop is used 1658 /// for the location of the remark. \return the remark object that can be 1659 /// streamed to. 1660 OptimizationRemarkAnalysis 1661 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1662 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1663 RemarkName, TheLoop, I); 1664 } 1665 1666 /// \brief If an access has a symbolic strides, this maps the pointer value to 1667 /// the stride symbol. 1668 const ValueToValueMap *getSymbolicStrides() { 1669 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1670 // it's collected. This happens from canVectorizeWithIfConvert, when the 1671 // pointer is checked to reference consecutive elements suitable for a 1672 // masked access. 1673 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1674 } 1675 1676 unsigned NumPredStores; 1677 1678 /// The loop that we evaluate. 1679 Loop *TheLoop; 1680 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1681 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1682 /// of existing SCEV assumptions. The analysis will also add a minimal set 1683 /// of new predicates if this is required to enable vectorization and 1684 /// unrolling. 1685 PredicatedScalarEvolution &PSE; 1686 /// Target Library Info. 1687 TargetLibraryInfo *TLI; 1688 /// Target Transform Info 1689 const TargetTransformInfo *TTI; 1690 /// Dominator Tree. 1691 DominatorTree *DT; 1692 // LoopAccess analysis. 1693 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1694 // And the loop-accesses info corresponding to this loop. This pointer is 1695 // null until canVectorizeMemory sets it up. 1696 const LoopAccessInfo *LAI; 1697 /// Interface to emit optimization remarks. 1698 OptimizationRemarkEmitter *ORE; 1699 1700 /// The interleave access information contains groups of interleaved accesses 1701 /// with the same stride and close to each other. 1702 InterleavedAccessInfo InterleaveInfo; 1703 1704 // --- vectorization state --- // 1705 1706 /// Holds the primary induction variable. This is the counter of the 1707 /// loop. 1708 PHINode *PrimaryInduction; 1709 /// Holds the reduction variables. 1710 ReductionList Reductions; 1711 /// Holds all of the induction variables that we found in the loop. 1712 /// Notice that inductions don't need to start at zero and that induction 1713 /// variables can be pointers. 1714 InductionList Inductions; 1715 /// Holds the phi nodes that are first-order recurrences. 1716 RecurrenceSet FirstOrderRecurrences; 1717 /// Holds instructions that need to sink past other instructions to handle 1718 /// first-order recurrences. 1719 DenseMap<Instruction *, Instruction *> SinkAfter; 1720 /// Holds the widest induction type encountered. 1721 Type *WidestIndTy; 1722 1723 /// Allowed outside users. This holds the induction and reduction 1724 /// vars which can be accessed from outside the loop. 1725 SmallPtrSet<Value *, 4> AllowedExit; 1726 1727 /// Can we assume the absence of NaNs. 1728 bool HasFunNoNaNAttr; 1729 1730 /// Vectorization requirements that will go through late-evaluation. 1731 LoopVectorizationRequirements *Requirements; 1732 1733 /// Used to emit an analysis of any legality issues. 1734 LoopVectorizeHints *Hints; 1735 1736 /// While vectorizing these instructions we have to generate a 1737 /// call to the appropriate masked intrinsic 1738 SmallPtrSet<const Instruction *, 8> MaskedOp; 1739 }; 1740 1741 /// LoopVectorizationCostModel - estimates the expected speedups due to 1742 /// vectorization. 1743 /// In many cases vectorization is not profitable. This can happen because of 1744 /// a number of reasons. In this class we mainly attempt to predict the 1745 /// expected speedup/slowdowns due to the supported instruction set. We use the 1746 /// TargetTransformInfo to query the different backends for the cost of 1747 /// different operations. 1748 class LoopVectorizationCostModel { 1749 public: 1750 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1751 LoopInfo *LI, LoopVectorizationLegality *Legal, 1752 const TargetTransformInfo &TTI, 1753 const TargetLibraryInfo *TLI, DemandedBits *DB, 1754 AssumptionCache *AC, 1755 OptimizationRemarkEmitter *ORE, const Function *F, 1756 const LoopVectorizeHints *Hints) 1757 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1758 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1759 1760 /// \return An upper bound for the vectorization factor, or None if 1761 /// vectorization should be avoided up front. 1762 Optional<unsigned> computeMaxVF(bool OptForSize); 1763 1764 /// Information about vectorization costs 1765 struct VectorizationFactor { 1766 unsigned Width; // Vector width with best cost 1767 unsigned Cost; // Cost of the loop with that width 1768 }; 1769 /// \return The most profitable vectorization factor and the cost of that VF. 1770 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1771 /// then this vectorization factor will be selected if vectorization is 1772 /// possible. 1773 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1774 1775 /// Setup cost-based decisions for user vectorization factor. 1776 void selectUserVectorizationFactor(unsigned UserVF) { 1777 collectUniformsAndScalars(UserVF); 1778 collectInstsToScalarize(UserVF); 1779 } 1780 1781 /// \return The size (in bits) of the smallest and widest types in the code 1782 /// that needs to be vectorized. We ignore values that remain scalar such as 1783 /// 64 bit loop indices. 1784 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1785 1786 /// \return The desired interleave count. 1787 /// If interleave count has been specified by metadata it will be returned. 1788 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1789 /// are the selected vectorization factor and the cost of the selected VF. 1790 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1791 unsigned LoopCost); 1792 1793 /// Memory access instruction may be vectorized in more than one way. 1794 /// Form of instruction after vectorization depends on cost. 1795 /// This function takes cost-based decisions for Load/Store instructions 1796 /// and collects them in a map. This decisions map is used for building 1797 /// the lists of loop-uniform and loop-scalar instructions. 1798 /// The calculated cost is saved with widening decision in order to 1799 /// avoid redundant calculations. 1800 void setCostBasedWideningDecision(unsigned VF); 1801 1802 /// \brief A struct that represents some properties of the register usage 1803 /// of a loop. 1804 struct RegisterUsage { 1805 /// Holds the number of loop invariant values that are used in the loop. 1806 unsigned LoopInvariantRegs; 1807 /// Holds the maximum number of concurrent live intervals in the loop. 1808 unsigned MaxLocalUsers; 1809 /// Holds the number of instructions in the loop. 1810 unsigned NumInstructions; 1811 }; 1812 1813 /// \return Returns information about the register usages of the loop for the 1814 /// given vectorization factors. 1815 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1816 1817 /// Collect values we want to ignore in the cost model. 1818 void collectValuesToIgnore(); 1819 1820 /// \returns The smallest bitwidth each instruction can be represented with. 1821 /// The vector equivalents of these instructions should be truncated to this 1822 /// type. 1823 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1824 return MinBWs; 1825 } 1826 1827 /// \returns True if it is more profitable to scalarize instruction \p I for 1828 /// vectorization factor \p VF. 1829 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1830 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1831 auto Scalars = InstsToScalarize.find(VF); 1832 assert(Scalars != InstsToScalarize.end() && 1833 "VF not yet analyzed for scalarization profitability"); 1834 return Scalars->second.count(I); 1835 } 1836 1837 /// Returns true if \p I is known to be uniform after vectorization. 1838 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1839 if (VF == 1) 1840 return true; 1841 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1842 auto UniformsPerVF = Uniforms.find(VF); 1843 return UniformsPerVF->second.count(I); 1844 } 1845 1846 /// Returns true if \p I is known to be scalar after vectorization. 1847 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1848 if (VF == 1) 1849 return true; 1850 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1851 auto ScalarsPerVF = Scalars.find(VF); 1852 return ScalarsPerVF->second.count(I); 1853 } 1854 1855 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1856 /// for vectorization factor \p VF. 1857 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1858 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1859 !isScalarAfterVectorization(I, VF); 1860 } 1861 1862 /// Decision that was taken during cost calculation for memory instruction. 1863 enum InstWidening { 1864 CM_Unknown, 1865 CM_Widen, 1866 CM_Interleave, 1867 CM_GatherScatter, 1868 CM_Scalarize 1869 }; 1870 1871 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1872 /// instruction \p I and vector width \p VF. 1873 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1874 unsigned Cost) { 1875 assert(VF >= 2 && "Expected VF >=2"); 1876 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1877 } 1878 1879 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1880 /// interleaving group \p Grp and vector width \p VF. 1881 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1882 InstWidening W, unsigned Cost) { 1883 assert(VF >= 2 && "Expected VF >=2"); 1884 /// Broadcast this decicion to all instructions inside the group. 1885 /// But the cost will be assigned to one instruction only. 1886 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1887 if (auto *I = Grp->getMember(i)) { 1888 if (Grp->getInsertPos() == I) 1889 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1890 else 1891 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1892 } 1893 } 1894 } 1895 1896 /// Return the cost model decision for the given instruction \p I and vector 1897 /// width \p VF. Return CM_Unknown if this instruction did not pass 1898 /// through the cost modeling. 1899 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1900 assert(VF >= 2 && "Expected VF >=2"); 1901 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1902 auto Itr = WideningDecisions.find(InstOnVF); 1903 if (Itr == WideningDecisions.end()) 1904 return CM_Unknown; 1905 return Itr->second.first; 1906 } 1907 1908 /// Return the vectorization cost for the given instruction \p I and vector 1909 /// width \p VF. 1910 unsigned getWideningCost(Instruction *I, unsigned VF) { 1911 assert(VF >= 2 && "Expected VF >=2"); 1912 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1913 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1914 return WideningDecisions[InstOnVF].second; 1915 } 1916 1917 /// Return True if instruction \p I is an optimizable truncate whose operand 1918 /// is an induction variable. Such a truncate will be removed by adding a new 1919 /// induction variable with the destination type. 1920 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1921 1922 // If the instruction is not a truncate, return false. 1923 auto *Trunc = dyn_cast<TruncInst>(I); 1924 if (!Trunc) 1925 return false; 1926 1927 // Get the source and destination types of the truncate. 1928 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1929 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1930 1931 // If the truncate is free for the given types, return false. Replacing a 1932 // free truncate with an induction variable would add an induction variable 1933 // update instruction to each iteration of the loop. We exclude from this 1934 // check the primary induction variable since it will need an update 1935 // instruction regardless. 1936 Value *Op = Trunc->getOperand(0); 1937 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1938 return false; 1939 1940 // If the truncated value is not an induction variable, return false. 1941 return Legal->isInductionVariable(Op); 1942 } 1943 1944 /// Collects the instructions to scalarize for each predicated instruction in 1945 /// the loop. 1946 void collectInstsToScalarize(unsigned VF); 1947 1948 /// Collect Uniform and Scalar values for the given \p VF. 1949 /// The sets depend on CM decision for Load/Store instructions 1950 /// that may be vectorized as interleave, gather-scatter or scalarized. 1951 void collectUniformsAndScalars(unsigned VF) { 1952 // Do the analysis once. 1953 if (VF == 1 || Uniforms.count(VF)) 1954 return; 1955 setCostBasedWideningDecision(VF); 1956 collectLoopUniforms(VF); 1957 collectLoopScalars(VF); 1958 } 1959 1960 private: 1961 /// \return An upper bound for the vectorization factor, larger than zero. 1962 /// One is returned if vectorization should best be avoided due to cost. 1963 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount = 0); 1964 1965 /// The vectorization cost is a combination of the cost itself and a boolean 1966 /// indicating whether any of the contributing operations will actually 1967 /// operate on 1968 /// vector values after type legalization in the backend. If this latter value 1969 /// is 1970 /// false, then all operations will be scalarized (i.e. no vectorization has 1971 /// actually taken place). 1972 typedef std::pair<unsigned, bool> VectorizationCostTy; 1973 1974 /// Returns the expected execution cost. The unit of the cost does 1975 /// not matter because we use the 'cost' units to compare different 1976 /// vector widths. The cost that is returned is *not* normalized by 1977 /// the factor width. 1978 VectorizationCostTy expectedCost(unsigned VF); 1979 1980 /// Returns the execution time cost of an instruction for a given vector 1981 /// width. Vector width of one means scalar. 1982 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1983 1984 /// The cost-computation logic from getInstructionCost which provides 1985 /// the vector type as an output parameter. 1986 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1987 1988 /// Calculate vectorization cost of memory instruction \p I. 1989 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1990 1991 /// The cost computation for scalarized memory instruction. 1992 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1993 1994 /// The cost computation for interleaving group of memory instructions. 1995 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1996 1997 /// The cost computation for Gather/Scatter instruction. 1998 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1999 2000 /// The cost computation for widening instruction \p I with consecutive 2001 /// memory access. 2002 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2003 2004 /// The cost calculation for Load instruction \p I with uniform pointer - 2005 /// scalar load + broadcast. 2006 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2007 2008 /// Returns whether the instruction is a load or store and will be a emitted 2009 /// as a vector operation. 2010 bool isConsecutiveLoadOrStore(Instruction *I); 2011 2012 /// Create an analysis remark that explains why vectorization failed 2013 /// 2014 /// \p RemarkName is the identifier for the remark. \return the remark object 2015 /// that can be streamed to. 2016 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2017 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2018 RemarkName, TheLoop); 2019 } 2020 2021 /// Map of scalar integer values to the smallest bitwidth they can be legally 2022 /// represented as. The vector equivalents of these values should be truncated 2023 /// to this type. 2024 MapVector<Instruction *, uint64_t> MinBWs; 2025 2026 /// A type representing the costs for instructions if they were to be 2027 /// scalarized rather than vectorized. The entries are Instruction-Cost 2028 /// pairs. 2029 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2030 2031 /// A set containing all BasicBlocks that are known to present after 2032 /// vectorization as a predicated block. 2033 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2034 2035 /// A map holding scalar costs for different vectorization factors. The 2036 /// presence of a cost for an instruction in the mapping indicates that the 2037 /// instruction will be scalarized when vectorizing with the associated 2038 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2039 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2040 2041 /// Holds the instructions known to be uniform after vectorization. 2042 /// The data is collected per VF. 2043 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2044 2045 /// Holds the instructions known to be scalar after vectorization. 2046 /// The data is collected per VF. 2047 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2048 2049 /// Holds the instructions (address computations) that are forced to be 2050 /// scalarized. 2051 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2052 2053 /// Returns the expected difference in cost from scalarizing the expression 2054 /// feeding a predicated instruction \p PredInst. The instructions to 2055 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2056 /// non-negative return value implies the expression will be scalarized. 2057 /// Currently, only single-use chains are considered for scalarization. 2058 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2059 unsigned VF); 2060 2061 /// Collect the instructions that are uniform after vectorization. An 2062 /// instruction is uniform if we represent it with a single scalar value in 2063 /// the vectorized loop corresponding to each vector iteration. Examples of 2064 /// uniform instructions include pointer operands of consecutive or 2065 /// interleaved memory accesses. Note that although uniformity implies an 2066 /// instruction will be scalar, the reverse is not true. In general, a 2067 /// scalarized instruction will be represented by VF scalar values in the 2068 /// vectorized loop, each corresponding to an iteration of the original 2069 /// scalar loop. 2070 void collectLoopUniforms(unsigned VF); 2071 2072 /// Collect the instructions that are scalar after vectorization. An 2073 /// instruction is scalar if it is known to be uniform or will be scalarized 2074 /// during vectorization. Non-uniform scalarized instructions will be 2075 /// represented by VF values in the vectorized loop, each corresponding to an 2076 /// iteration of the original scalar loop. 2077 void collectLoopScalars(unsigned VF); 2078 2079 /// Keeps cost model vectorization decision and cost for instructions. 2080 /// Right now it is used for memory instructions only. 2081 typedef DenseMap<std::pair<Instruction *, unsigned>, 2082 std::pair<InstWidening, unsigned>> 2083 DecisionList; 2084 2085 DecisionList WideningDecisions; 2086 2087 public: 2088 /// The loop that we evaluate. 2089 Loop *TheLoop; 2090 /// Predicated scalar evolution analysis. 2091 PredicatedScalarEvolution &PSE; 2092 /// Loop Info analysis. 2093 LoopInfo *LI; 2094 /// Vectorization legality. 2095 LoopVectorizationLegality *Legal; 2096 /// Vector target information. 2097 const TargetTransformInfo &TTI; 2098 /// Target Library Info. 2099 const TargetLibraryInfo *TLI; 2100 /// Demanded bits analysis. 2101 DemandedBits *DB; 2102 /// Assumption cache. 2103 AssumptionCache *AC; 2104 /// Interface to emit optimization remarks. 2105 OptimizationRemarkEmitter *ORE; 2106 2107 const Function *TheFunction; 2108 /// Loop Vectorize Hint. 2109 const LoopVectorizeHints *Hints; 2110 /// Values to ignore in the cost model. 2111 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2112 /// Values to ignore in the cost model when VF > 1. 2113 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2114 }; 2115 2116 } // end anonymous namespace 2117 2118 namespace llvm { 2119 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2120 /// LoopVectorizationPlanner - drives the vectorization process after having 2121 /// passed Legality checks. 2122 /// The planner builds and optimizes the Vectorization Plans which record the 2123 /// decisions how to vectorize the given loop. In particular, represent the 2124 /// control-flow of the vectorized version, the replication of instructions that 2125 /// are to be scalarized, and interleave access groups. 2126 class LoopVectorizationPlanner { 2127 /// The loop that we evaluate. 2128 Loop *OrigLoop; 2129 2130 /// Loop Info analysis. 2131 LoopInfo *LI; 2132 2133 /// Target Library Info. 2134 const TargetLibraryInfo *TLI; 2135 2136 /// Target Transform Info. 2137 const TargetTransformInfo *TTI; 2138 2139 /// The legality analysis. 2140 LoopVectorizationLegality *Legal; 2141 2142 /// The profitablity analysis. 2143 LoopVectorizationCostModel &CM; 2144 2145 SmallVector<VPlan *, 4> VPlans; 2146 2147 unsigned BestVF; 2148 unsigned BestUF; 2149 2150 public: 2151 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2152 const TargetTransformInfo *TTI, 2153 LoopVectorizationLegality *Legal, 2154 LoopVectorizationCostModel &CM) 2155 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 2156 BestVF(0), BestUF(0) {} 2157 2158 ~LoopVectorizationPlanner() { 2159 while (!VPlans.empty()) { 2160 VPlan *Plan = VPlans.back(); 2161 VPlans.pop_back(); 2162 delete Plan; 2163 } 2164 } 2165 2166 /// Plan how to best vectorize, return the best VF and its cost. 2167 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2168 unsigned UserVF); 2169 2170 /// Finalize the best decision and dispose of all other VPlans. 2171 void setBestPlan(unsigned VF, unsigned UF); 2172 2173 /// Generate the IR code for the body of the vectorized loop according to the 2174 /// best selected VPlan. 2175 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2176 2177 void printPlans(raw_ostream &O) { 2178 for (VPlan *Plan : VPlans) 2179 O << *Plan; 2180 } 2181 2182 protected: 2183 /// Collect the instructions from the original loop that would be trivially 2184 /// dead in the vectorized loop if generated. 2185 void collectTriviallyDeadInstructions( 2186 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2187 2188 /// A range of powers-of-2 vectorization factors with fixed start and 2189 /// adjustable end. The range includes start and excludes end, e.g.,: 2190 /// [1, 9) = {1, 2, 4, 8} 2191 struct VFRange { 2192 const unsigned Start; // A power of 2. 2193 unsigned End; // Need not be a power of 2. If End <= Start range is empty. 2194 }; 2195 2196 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2197 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2198 /// returned value holds for the entire \p Range. 2199 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2200 VFRange &Range); 2201 2202 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2203 /// according to the information gathered by Legal when it checked if it is 2204 /// legal to vectorize the loop. 2205 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2206 2207 private: 2208 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2209 /// \return true in the first returned value if so and false otherwise. 2210 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2211 /// for \p Range.Start, and provide it as the second returned value. 2212 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2213 /// \return value is <true, nullptr>, as it is handled by another recipe. 2214 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2215 /// to \p Range.End. 2216 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2217 2218 /// Check if an induction recipe should be constructed for \I within the given 2219 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2220 /// may be decreased to ensure same decision from \p Range.Start to 2221 /// \p Range.End. 2222 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2223 VFRange &Range); 2224 2225 /// Check if \I can be widened within the given VF \p Range. If \I can be 2226 /// widened for Range.Start, extend \p LastWidenRecipe to include \p I if 2227 /// possible or else build a new VPWidenRecipe for it, and return the 2228 /// VPWidenRecipe that includes \p I. If \p I cannot be widened for 2229 /// Range.Start \return null. Range.End may be decreased to ensure same 2230 /// decision from \p Range.Start to \p Range.End. 2231 VPWidenRecipe *tryToWiden(Instruction *I, VPWidenRecipe *LastWidenRecipe, 2232 VFRange &Range); 2233 2234 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2235 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2236 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2237 /// Region. Update the packing decision of predicated instructions if they 2238 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2239 /// \p Range.Start to \p Range.End. 2240 VPBasicBlock *handleReplication( 2241 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2242 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe); 2243 2244 /// Create a replicating region for instruction \p I that requires 2245 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2246 VPRegionBlock *createReplicateRegion(Instruction *I, 2247 VPRecipeBase *PredRecipe); 2248 2249 /// Build a VPlan according to the information gathered by Legal. \return a 2250 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2251 /// exclusive, possibly decreasing \p Range.End. 2252 VPlan *buildVPlan(VFRange &Range); 2253 }; 2254 2255 } // namespace llvm 2256 2257 namespace { 2258 2259 /// \brief This holds vectorization requirements that must be verified late in 2260 /// the process. The requirements are set by legalize and costmodel. Once 2261 /// vectorization has been determined to be possible and profitable the 2262 /// requirements can be verified by looking for metadata or compiler options. 2263 /// For example, some loops require FP commutativity which is only allowed if 2264 /// vectorization is explicitly specified or if the fast-math compiler option 2265 /// has been provided. 2266 /// Late evaluation of these requirements allows helpful diagnostics to be 2267 /// composed that tells the user what need to be done to vectorize the loop. For 2268 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2269 /// evaluation should be used only when diagnostics can generated that can be 2270 /// followed by a non-expert user. 2271 class LoopVectorizationRequirements { 2272 public: 2273 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2274 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2275 2276 void addUnsafeAlgebraInst(Instruction *I) { 2277 // First unsafe algebra instruction. 2278 if (!UnsafeAlgebraInst) 2279 UnsafeAlgebraInst = I; 2280 } 2281 2282 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2283 2284 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2285 const char *PassName = Hints.vectorizeAnalysisPassName(); 2286 bool Failed = false; 2287 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2288 ORE.emit( 2289 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2290 UnsafeAlgebraInst->getDebugLoc(), 2291 UnsafeAlgebraInst->getParent()) 2292 << "loop not vectorized: cannot prove it is safe to reorder " 2293 "floating-point operations"); 2294 Failed = true; 2295 } 2296 2297 // Test if runtime memcheck thresholds are exceeded. 2298 bool PragmaThresholdReached = 2299 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2300 bool ThresholdReached = 2301 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2302 if ((ThresholdReached && !Hints.allowReordering()) || 2303 PragmaThresholdReached) { 2304 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2305 L->getStartLoc(), 2306 L->getHeader()) 2307 << "loop not vectorized: cannot prove it is safe to reorder " 2308 "memory operations"); 2309 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2310 Failed = true; 2311 } 2312 2313 return Failed; 2314 } 2315 2316 private: 2317 unsigned NumRuntimePointerChecks; 2318 Instruction *UnsafeAlgebraInst; 2319 2320 /// Interface to emit optimization remarks. 2321 OptimizationRemarkEmitter &ORE; 2322 }; 2323 2324 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2325 if (L.empty()) { 2326 if (!hasCyclesInLoopBody(L)) 2327 V.push_back(&L); 2328 return; 2329 } 2330 for (Loop *InnerL : L) 2331 addAcyclicInnerLoop(*InnerL, V); 2332 } 2333 2334 /// The LoopVectorize Pass. 2335 struct LoopVectorize : public FunctionPass { 2336 /// Pass identification, replacement for typeid 2337 static char ID; 2338 2339 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2340 : FunctionPass(ID) { 2341 Impl.DisableUnrolling = NoUnrolling; 2342 Impl.AlwaysVectorize = AlwaysVectorize; 2343 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2344 } 2345 2346 LoopVectorizePass Impl; 2347 2348 bool runOnFunction(Function &F) override { 2349 if (skipFunction(F)) 2350 return false; 2351 2352 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2353 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2354 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2355 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2356 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2357 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2358 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2359 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2360 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2361 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2362 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2363 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2364 2365 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2366 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2367 2368 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2369 GetLAA, *ORE); 2370 } 2371 2372 void getAnalysisUsage(AnalysisUsage &AU) const override { 2373 AU.addRequired<AssumptionCacheTracker>(); 2374 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2375 AU.addRequired<DominatorTreeWrapperPass>(); 2376 AU.addRequired<LoopInfoWrapperPass>(); 2377 AU.addRequired<ScalarEvolutionWrapperPass>(); 2378 AU.addRequired<TargetTransformInfoWrapperPass>(); 2379 AU.addRequired<AAResultsWrapperPass>(); 2380 AU.addRequired<LoopAccessLegacyAnalysis>(); 2381 AU.addRequired<DemandedBitsWrapperPass>(); 2382 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2383 AU.addPreserved<LoopInfoWrapperPass>(); 2384 AU.addPreserved<DominatorTreeWrapperPass>(); 2385 AU.addPreserved<BasicAAWrapperPass>(); 2386 AU.addPreserved<GlobalsAAWrapperPass>(); 2387 } 2388 }; 2389 2390 } // end anonymous namespace 2391 2392 //===----------------------------------------------------------------------===// 2393 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2394 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2395 //===----------------------------------------------------------------------===// 2396 2397 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2398 // We need to place the broadcast of invariant variables outside the loop. 2399 Instruction *Instr = dyn_cast<Instruction>(V); 2400 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2401 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2402 2403 // Place the code for broadcasting invariant variables in the new preheader. 2404 IRBuilder<>::InsertPointGuard Guard(Builder); 2405 if (Invariant) 2406 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2407 2408 // Broadcast the scalar into all locations in the vector. 2409 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2410 2411 return Shuf; 2412 } 2413 2414 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2415 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2416 Value *Start = II.getStartValue(); 2417 2418 // Construct the initial value of the vector IV in the vector loop preheader 2419 auto CurrIP = Builder.saveIP(); 2420 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2421 if (isa<TruncInst>(EntryVal)) { 2422 assert(Start->getType()->isIntegerTy() && 2423 "Truncation requires an integer type"); 2424 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2425 Step = Builder.CreateTrunc(Step, TruncType); 2426 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2427 } 2428 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2429 Value *SteppedStart = 2430 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2431 2432 // We create vector phi nodes for both integer and floating-point induction 2433 // variables. Here, we determine the kind of arithmetic we will perform. 2434 Instruction::BinaryOps AddOp; 2435 Instruction::BinaryOps MulOp; 2436 if (Step->getType()->isIntegerTy()) { 2437 AddOp = Instruction::Add; 2438 MulOp = Instruction::Mul; 2439 } else { 2440 AddOp = II.getInductionOpcode(); 2441 MulOp = Instruction::FMul; 2442 } 2443 2444 // Multiply the vectorization factor by the step using integer or 2445 // floating-point arithmetic as appropriate. 2446 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2447 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2448 2449 // Create a vector splat to use in the induction update. 2450 // 2451 // FIXME: If the step is non-constant, we create the vector splat with 2452 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2453 // handle a constant vector splat. 2454 Value *SplatVF = isa<Constant>(Mul) 2455 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2456 : Builder.CreateVectorSplat(VF, Mul); 2457 Builder.restoreIP(CurrIP); 2458 2459 // We may need to add the step a number of times, depending on the unroll 2460 // factor. The last of those goes into the PHI. 2461 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2462 &*LoopVectorBody->getFirstInsertionPt()); 2463 Instruction *LastInduction = VecInd; 2464 for (unsigned Part = 0; Part < UF; ++Part) { 2465 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2466 if (isa<TruncInst>(EntryVal)) 2467 addMetadata(LastInduction, EntryVal); 2468 LastInduction = cast<Instruction>(addFastMathFlag( 2469 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2470 } 2471 2472 // Move the last step to the end of the latch block. This ensures consistent 2473 // placement of all induction updates. 2474 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2475 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2476 auto *ICmp = cast<Instruction>(Br->getCondition()); 2477 LastInduction->moveBefore(ICmp); 2478 LastInduction->setName("vec.ind.next"); 2479 2480 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2481 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2482 } 2483 2484 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2485 return Cost->isScalarAfterVectorization(I, VF) || 2486 Cost->isProfitableToScalarize(I, VF); 2487 } 2488 2489 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2490 if (shouldScalarizeInstruction(IV)) 2491 return true; 2492 auto isScalarInst = [&](User *U) -> bool { 2493 auto *I = cast<Instruction>(U); 2494 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2495 }; 2496 return any_of(IV->users(), isScalarInst); 2497 } 2498 2499 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2500 2501 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2502 "Primary induction variable must have an integer type"); 2503 2504 auto II = Legal->getInductionVars()->find(IV); 2505 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2506 2507 auto ID = II->second; 2508 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2509 2510 // The scalar value to broadcast. This will be derived from the canonical 2511 // induction variable. 2512 Value *ScalarIV = nullptr; 2513 2514 // The value from the original loop to which we are mapping the new induction 2515 // variable. 2516 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2517 2518 // True if we have vectorized the induction variable. 2519 auto VectorizedIV = false; 2520 2521 // Determine if we want a scalar version of the induction variable. This is 2522 // true if the induction variable itself is not widened, or if it has at 2523 // least one user in the loop that is not widened. 2524 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2525 2526 // Generate code for the induction step. Note that induction steps are 2527 // required to be loop-invariant 2528 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2529 "Induction step should be loop invariant"); 2530 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2531 Value *Step = nullptr; 2532 if (PSE.getSE()->isSCEVable(IV->getType())) { 2533 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2534 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2535 LoopVectorPreHeader->getTerminator()); 2536 } else { 2537 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2538 } 2539 2540 // Try to create a new independent vector induction variable. If we can't 2541 // create the phi node, we will splat the scalar induction variable in each 2542 // loop iteration. 2543 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2544 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2545 VectorizedIV = true; 2546 } 2547 2548 // If we haven't yet vectorized the induction variable, or if we will create 2549 // a scalar one, we need to define the scalar induction variable and step 2550 // values. If we were given a truncation type, truncate the canonical 2551 // induction variable and step. Otherwise, derive these values from the 2552 // induction descriptor. 2553 if (!VectorizedIV || NeedsScalarIV) { 2554 ScalarIV = Induction; 2555 if (IV != OldInduction) { 2556 ScalarIV = IV->getType()->isIntegerTy() 2557 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2558 : Builder.CreateCast(Instruction::SIToFP, Induction, 2559 IV->getType()); 2560 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2561 ScalarIV->setName("offset.idx"); 2562 } 2563 if (Trunc) { 2564 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2565 assert(Step->getType()->isIntegerTy() && 2566 "Truncation requires an integer step"); 2567 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2568 Step = Builder.CreateTrunc(Step, TruncType); 2569 } 2570 } 2571 2572 // If we haven't yet vectorized the induction variable, splat the scalar 2573 // induction variable, and build the necessary step vectors. 2574 if (!VectorizedIV) { 2575 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2576 for (unsigned Part = 0; Part < UF; ++Part) { 2577 Value *EntryPart = 2578 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2579 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2580 if (Trunc) 2581 addMetadata(EntryPart, Trunc); 2582 } 2583 } 2584 2585 // If an induction variable is only used for counting loop iterations or 2586 // calculating addresses, it doesn't need to be widened. Create scalar steps 2587 // that can be used by instructions we will later scalarize. Note that the 2588 // addition of the scalar steps will not increase the number of instructions 2589 // in the loop in the common case prior to InstCombine. We will be trading 2590 // one vector extract for each scalar step. 2591 if (NeedsScalarIV) 2592 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2593 } 2594 2595 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2596 Instruction::BinaryOps BinOp) { 2597 // Create and check the types. 2598 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2599 int VLen = Val->getType()->getVectorNumElements(); 2600 2601 Type *STy = Val->getType()->getScalarType(); 2602 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2603 "Induction Step must be an integer or FP"); 2604 assert(Step->getType() == STy && "Step has wrong type"); 2605 2606 SmallVector<Constant *, 8> Indices; 2607 2608 if (STy->isIntegerTy()) { 2609 // Create a vector of consecutive numbers from zero to VF. 2610 for (int i = 0; i < VLen; ++i) 2611 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2612 2613 // Add the consecutive indices to the vector value. 2614 Constant *Cv = ConstantVector::get(Indices); 2615 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2616 Step = Builder.CreateVectorSplat(VLen, Step); 2617 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2618 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2619 // which can be found from the original scalar operations. 2620 Step = Builder.CreateMul(Cv, Step); 2621 return Builder.CreateAdd(Val, Step, "induction"); 2622 } 2623 2624 // Floating point induction. 2625 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2626 "Binary Opcode should be specified for FP induction"); 2627 // Create a vector of consecutive numbers from zero to VF. 2628 for (int i = 0; i < VLen; ++i) 2629 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2630 2631 // Add the consecutive indices to the vector value. 2632 Constant *Cv = ConstantVector::get(Indices); 2633 2634 Step = Builder.CreateVectorSplat(VLen, Step); 2635 2636 // Floating point operations had to be 'fast' to enable the induction. 2637 FastMathFlags Flags; 2638 Flags.setUnsafeAlgebra(); 2639 2640 Value *MulOp = Builder.CreateFMul(Cv, Step); 2641 if (isa<Instruction>(MulOp)) 2642 // Have to check, MulOp may be a constant 2643 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2644 2645 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2646 if (isa<Instruction>(BOp)) 2647 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2648 return BOp; 2649 } 2650 2651 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2652 Value *EntryVal, 2653 const InductionDescriptor &ID) { 2654 2655 // We shouldn't have to build scalar steps if we aren't vectorizing. 2656 assert(VF > 1 && "VF should be greater than one"); 2657 2658 // Get the value type and ensure it and the step have the same integer type. 2659 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2660 assert(ScalarIVTy == Step->getType() && 2661 "Val and Step should have the same type"); 2662 2663 // We build scalar steps for both integer and floating-point induction 2664 // variables. Here, we determine the kind of arithmetic we will perform. 2665 Instruction::BinaryOps AddOp; 2666 Instruction::BinaryOps MulOp; 2667 if (ScalarIVTy->isIntegerTy()) { 2668 AddOp = Instruction::Add; 2669 MulOp = Instruction::Mul; 2670 } else { 2671 AddOp = ID.getInductionOpcode(); 2672 MulOp = Instruction::FMul; 2673 } 2674 2675 // Determine the number of scalars we need to generate for each unroll 2676 // iteration. If EntryVal is uniform, we only need to generate the first 2677 // lane. Otherwise, we generate all VF values. 2678 unsigned Lanes = 2679 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2680 : VF; 2681 // Compute the scalar steps and save the results in VectorLoopValueMap. 2682 for (unsigned Part = 0; Part < UF; ++Part) { 2683 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2684 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2685 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2686 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2687 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2688 } 2689 } 2690 } 2691 2692 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2693 2694 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2695 ValueToValueMap(); 2696 2697 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2698 if (Stride == 1 || Stride == -1) 2699 return Stride; 2700 return 0; 2701 } 2702 2703 bool LoopVectorizationLegality::isUniform(Value *V) { 2704 return LAI->isUniform(V); 2705 } 2706 2707 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2708 assert(V != Induction && "The new induction variable should not be used."); 2709 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2710 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2711 2712 // If we have a stride that is replaced by one, do it here. 2713 if (Legal->hasStride(V)) 2714 V = ConstantInt::get(V->getType(), 1); 2715 2716 // If we have a vector mapped to this value, return it. 2717 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2718 return VectorLoopValueMap.getVectorValue(V, Part); 2719 2720 // If the value has not been vectorized, check if it has been scalarized 2721 // instead. If it has been scalarized, and we actually need the value in 2722 // vector form, we will construct the vector values on demand. 2723 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2724 2725 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2726 2727 // If we've scalarized a value, that value should be an instruction. 2728 auto *I = cast<Instruction>(V); 2729 2730 // If we aren't vectorizing, we can just copy the scalar map values over to 2731 // the vector map. 2732 if (VF == 1) { 2733 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2734 return ScalarValue; 2735 } 2736 2737 // Get the last scalar instruction we generated for V and Part. If the value 2738 // is known to be uniform after vectorization, this corresponds to lane zero 2739 // of the Part unroll iteration. Otherwise, the last instruction is the one 2740 // we created for the last vector lane of the Part unroll iteration. 2741 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2742 auto *LastInst = cast<Instruction>( 2743 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2744 2745 // Set the insert point after the last scalarized instruction. This ensures 2746 // the insertelement sequence will directly follow the scalar definitions. 2747 auto OldIP = Builder.saveIP(); 2748 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2749 Builder.SetInsertPoint(&*NewIP); 2750 2751 // However, if we are vectorizing, we need to construct the vector values. 2752 // If the value is known to be uniform after vectorization, we can just 2753 // broadcast the scalar value corresponding to lane zero for each unroll 2754 // iteration. Otherwise, we construct the vector values using insertelement 2755 // instructions. Since the resulting vectors are stored in 2756 // VectorLoopValueMap, we will only generate the insertelements once. 2757 Value *VectorValue = nullptr; 2758 if (Cost->isUniformAfterVectorization(I, VF)) { 2759 VectorValue = getBroadcastInstrs(ScalarValue); 2760 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2761 } else { 2762 // Initialize packing with insertelements to start from undef. 2763 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2764 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2765 for (unsigned Lane = 0; Lane < VF; ++Lane) 2766 packScalarIntoVectorValue(V, {Part, Lane}); 2767 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2768 } 2769 Builder.restoreIP(OldIP); 2770 return VectorValue; 2771 } 2772 2773 // If this scalar is unknown, assume that it is a constant or that it is 2774 // loop invariant. Broadcast V and save the value for future uses. 2775 Value *B = getBroadcastInstrs(V); 2776 VectorLoopValueMap.setVectorValue(V, Part, B); 2777 return B; 2778 } 2779 2780 Value * 2781 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2782 const VPIteration &Instance) { 2783 // If the value is not an instruction contained in the loop, it should 2784 // already be scalar. 2785 if (OrigLoop->isLoopInvariant(V)) 2786 return V; 2787 2788 assert(Instance.Lane > 0 2789 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2790 : true && "Uniform values only have lane zero"); 2791 2792 // If the value from the original loop has not been vectorized, it is 2793 // represented by UF x VF scalar values in the new loop. Return the requested 2794 // scalar value. 2795 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2796 return VectorLoopValueMap.getScalarValue(V, Instance); 2797 2798 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2799 // for the given unroll part. If this entry is not a vector type (i.e., the 2800 // vectorization factor is one), there is no need to generate an 2801 // extractelement instruction. 2802 auto *U = getOrCreateVectorValue(V, Instance.Part); 2803 if (!U->getType()->isVectorTy()) { 2804 assert(VF == 1 && "Value not scalarized has non-vector type"); 2805 return U; 2806 } 2807 2808 // Otherwise, the value from the original loop has been vectorized and is 2809 // represented by UF vector values. Extract and return the requested scalar 2810 // value from the appropriate vector lane. 2811 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2812 } 2813 2814 void InnerLoopVectorizer::packScalarIntoVectorValue( 2815 Value *V, const VPIteration &Instance) { 2816 assert(V != Induction && "The new induction variable should not be used."); 2817 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2818 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2819 2820 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2821 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2822 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2823 Builder.getInt32(Instance.Lane)); 2824 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2825 } 2826 2827 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2828 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2829 SmallVector<Constant *, 8> ShuffleMask; 2830 for (unsigned i = 0; i < VF; ++i) 2831 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2832 2833 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2834 ConstantVector::get(ShuffleMask), 2835 "reverse"); 2836 } 2837 2838 // Try to vectorize the interleave group that \p Instr belongs to. 2839 // 2840 // E.g. Translate following interleaved load group (factor = 3): 2841 // for (i = 0; i < N; i+=3) { 2842 // R = Pic[i]; // Member of index 0 2843 // G = Pic[i+1]; // Member of index 1 2844 // B = Pic[i+2]; // Member of index 2 2845 // ... // do something to R, G, B 2846 // } 2847 // To: 2848 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2849 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2850 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2851 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2852 // 2853 // Or translate following interleaved store group (factor = 3): 2854 // for (i = 0; i < N; i+=3) { 2855 // ... do something to R, G, B 2856 // Pic[i] = R; // Member of index 0 2857 // Pic[i+1] = G; // Member of index 1 2858 // Pic[i+2] = B; // Member of index 2 2859 // } 2860 // To: 2861 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2862 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2863 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2864 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2865 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2866 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2867 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2868 assert(Group && "Fail to get an interleaved access group."); 2869 2870 // Skip if current instruction is not the insert position. 2871 if (Instr != Group->getInsertPos()) 2872 return; 2873 2874 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2875 Value *Ptr = getPointerOperand(Instr); 2876 2877 // Prepare for the vector type of the interleaved load/store. 2878 Type *ScalarTy = getMemInstValueType(Instr); 2879 unsigned InterleaveFactor = Group->getFactor(); 2880 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2881 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2882 2883 // Prepare for the new pointers. 2884 setDebugLocFromInst(Builder, Ptr); 2885 SmallVector<Value *, 2> NewPtrs; 2886 unsigned Index = Group->getIndex(Instr); 2887 2888 // If the group is reverse, adjust the index to refer to the last vector lane 2889 // instead of the first. We adjust the index from the first vector lane, 2890 // rather than directly getting the pointer for lane VF - 1, because the 2891 // pointer operand of the interleaved access is supposed to be uniform. For 2892 // uniform instructions, we're only required to generate a value for the 2893 // first vector lane in each unroll iteration. 2894 if (Group->isReverse()) 2895 Index += (VF - 1) * Group->getFactor(); 2896 2897 for (unsigned Part = 0; Part < UF; Part++) { 2898 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2899 2900 // Notice current instruction could be any index. Need to adjust the address 2901 // to the member of index 0. 2902 // 2903 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2904 // b = A[i]; // Member of index 0 2905 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2906 // 2907 // E.g. A[i+1] = a; // Member of index 1 2908 // A[i] = b; // Member of index 0 2909 // A[i+2] = c; // Member of index 2 (Current instruction) 2910 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2911 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2912 2913 // Cast to the vector pointer type. 2914 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2915 } 2916 2917 setDebugLocFromInst(Builder, Instr); 2918 Value *UndefVec = UndefValue::get(VecTy); 2919 2920 // Vectorize the interleaved load group. 2921 if (isa<LoadInst>(Instr)) { 2922 2923 // For each unroll part, create a wide load for the group. 2924 SmallVector<Value *, 2> NewLoads; 2925 for (unsigned Part = 0; Part < UF; Part++) { 2926 auto *NewLoad = Builder.CreateAlignedLoad( 2927 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2928 addMetadata(NewLoad, Instr); 2929 NewLoads.push_back(NewLoad); 2930 } 2931 2932 // For each member in the group, shuffle out the appropriate data from the 2933 // wide loads. 2934 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2935 Instruction *Member = Group->getMember(I); 2936 2937 // Skip the gaps in the group. 2938 if (!Member) 2939 continue; 2940 2941 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2942 for (unsigned Part = 0; Part < UF; Part++) { 2943 Value *StridedVec = Builder.CreateShuffleVector( 2944 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2945 2946 // If this member has different type, cast the result type. 2947 if (Member->getType() != ScalarTy) { 2948 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2949 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2950 } 2951 2952 if (Group->isReverse()) 2953 StridedVec = reverseVector(StridedVec); 2954 2955 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2956 } 2957 } 2958 return; 2959 } 2960 2961 // The sub vector type for current instruction. 2962 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2963 2964 // Vectorize the interleaved store group. 2965 for (unsigned Part = 0; Part < UF; Part++) { 2966 // Collect the stored vector from each member. 2967 SmallVector<Value *, 4> StoredVecs; 2968 for (unsigned i = 0; i < InterleaveFactor; i++) { 2969 // Interleaved store group doesn't allow a gap, so each index has a member 2970 Instruction *Member = Group->getMember(i); 2971 assert(Member && "Fail to get a member from an interleaved store group"); 2972 2973 Value *StoredVec = getOrCreateVectorValue( 2974 cast<StoreInst>(Member)->getValueOperand(), Part); 2975 if (Group->isReverse()) 2976 StoredVec = reverseVector(StoredVec); 2977 2978 // If this member has different type, cast it to a unified type. 2979 2980 if (StoredVec->getType() != SubVT) 2981 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2982 2983 StoredVecs.push_back(StoredVec); 2984 } 2985 2986 // Concatenate all vectors into a wide vector. 2987 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2988 2989 // Interleave the elements in the wide vector. 2990 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2991 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2992 "interleaved.vec"); 2993 2994 Instruction *NewStoreInstr = 2995 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2996 addMetadata(NewStoreInstr, Instr); 2997 } 2998 } 2999 3000 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 3001 // Attempt to issue a wide load. 3002 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3003 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3004 3005 assert((LI || SI) && "Invalid Load/Store instruction"); 3006 3007 LoopVectorizationCostModel::InstWidening Decision = 3008 Cost->getWideningDecision(Instr, VF); 3009 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3010 "CM decision should be taken at this point"); 3011 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3012 return vectorizeInterleaveGroup(Instr); 3013 3014 Type *ScalarDataTy = getMemInstValueType(Instr); 3015 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3016 Value *Ptr = getPointerOperand(Instr); 3017 unsigned Alignment = getMemInstAlignment(Instr); 3018 // An alignment of 0 means target abi alignment. We need to use the scalar's 3019 // target abi alignment in such a case. 3020 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3021 if (!Alignment) 3022 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3023 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3024 3025 // Determine if the pointer operand of the access is either consecutive or 3026 // reverse consecutive. 3027 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3028 bool Reverse = ConsecutiveStride < 0; 3029 bool CreateGatherScatter = 3030 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3031 3032 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3033 // gather/scatter. Otherwise Decision should have been to Scalarize. 3034 assert((ConsecutiveStride || CreateGatherScatter) && 3035 "The instruction should be scalarized"); 3036 3037 // Handle consecutive loads/stores. 3038 if (ConsecutiveStride) 3039 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3040 3041 VectorParts Mask = createBlockInMask(Instr->getParent()); 3042 // Handle Stores: 3043 if (SI) { 3044 assert(!Legal->isUniform(SI->getPointerOperand()) && 3045 "We do not allow storing to uniform addresses"); 3046 setDebugLocFromInst(Builder, SI); 3047 3048 for (unsigned Part = 0; Part < UF; ++Part) { 3049 Instruction *NewSI = nullptr; 3050 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3051 if (CreateGatherScatter) { 3052 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3053 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3054 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3055 MaskPart); 3056 } else { 3057 // Calculate the pointer for the specific unroll-part. 3058 Value *PartPtr = 3059 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3060 3061 if (Reverse) { 3062 // If we store to reverse consecutive memory locations, then we need 3063 // to reverse the order of elements in the stored value. 3064 StoredVal = reverseVector(StoredVal); 3065 // We don't want to update the value in the map as it might be used in 3066 // another expression. So don't call resetVectorValue(StoredVal). 3067 3068 // If the address is consecutive but reversed, then the 3069 // wide store needs to start at the last vector element. 3070 PartPtr = 3071 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3072 PartPtr = 3073 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3074 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3075 Mask[Part] = reverseVector(Mask[Part]); 3076 } 3077 3078 Value *VecPtr = 3079 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3080 3081 if (Legal->isMaskRequired(SI) && Mask[Part]) 3082 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3083 Mask[Part]); 3084 else 3085 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3086 } 3087 addMetadata(NewSI, SI); 3088 } 3089 return; 3090 } 3091 3092 // Handle loads. 3093 assert(LI && "Must have a load instruction"); 3094 setDebugLocFromInst(Builder, LI); 3095 for (unsigned Part = 0; Part < UF; ++Part) { 3096 Value *NewLI; 3097 if (CreateGatherScatter) { 3098 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3099 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3100 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3101 nullptr, "wide.masked.gather"); 3102 addMetadata(NewLI, LI); 3103 } else { 3104 // Calculate the pointer for the specific unroll-part. 3105 Value *PartPtr = 3106 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3107 3108 if (Reverse) { 3109 // If the address is consecutive but reversed, then the 3110 // wide load needs to start at the last vector element. 3111 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3112 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3113 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3114 Mask[Part] = reverseVector(Mask[Part]); 3115 } 3116 3117 Value *VecPtr = 3118 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3119 if (Legal->isMaskRequired(LI) && Mask[Part]) 3120 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3121 UndefValue::get(DataTy), 3122 "wide.masked.load"); 3123 else 3124 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3125 3126 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3127 addMetadata(NewLI, LI); 3128 if (Reverse) 3129 NewLI = reverseVector(NewLI); 3130 } 3131 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3132 } 3133 } 3134 3135 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3136 const VPIteration &Instance, 3137 bool IfPredicateInstr) { 3138 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3139 3140 setDebugLocFromInst(Builder, Instr); 3141 3142 // Does this instruction return a value ? 3143 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3144 3145 Instruction *Cloned = Instr->clone(); 3146 if (!IsVoidRetTy) 3147 Cloned->setName(Instr->getName() + ".cloned"); 3148 3149 // Replace the operands of the cloned instructions with their scalar 3150 // equivalents in the new loop. 3151 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3152 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3153 Cloned->setOperand(op, NewOp); 3154 } 3155 addNewMetadata(Cloned, Instr); 3156 3157 // Place the cloned scalar in the new loop. 3158 Builder.Insert(Cloned); 3159 3160 // Add the cloned scalar to the scalar map entry. 3161 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3162 3163 // If we just cloned a new assumption, add it the assumption cache. 3164 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3165 if (II->getIntrinsicID() == Intrinsic::assume) 3166 AC->registerAssumption(II); 3167 3168 // End if-block. 3169 if (IfPredicateInstr) 3170 PredicatedInstructions.push_back(Cloned); 3171 } 3172 3173 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3174 Value *End, Value *Step, 3175 Instruction *DL) { 3176 BasicBlock *Header = L->getHeader(); 3177 BasicBlock *Latch = L->getLoopLatch(); 3178 // As we're just creating this loop, it's possible no latch exists 3179 // yet. If so, use the header as this will be a single block loop. 3180 if (!Latch) 3181 Latch = Header; 3182 3183 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3184 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3185 setDebugLocFromInst(Builder, OldInst); 3186 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3187 3188 Builder.SetInsertPoint(Latch->getTerminator()); 3189 setDebugLocFromInst(Builder, OldInst); 3190 3191 // Create i+1 and fill the PHINode. 3192 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3193 Induction->addIncoming(Start, L->getLoopPreheader()); 3194 Induction->addIncoming(Next, Latch); 3195 // Create the compare. 3196 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3197 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3198 3199 // Now we have two terminators. Remove the old one from the block. 3200 Latch->getTerminator()->eraseFromParent(); 3201 3202 return Induction; 3203 } 3204 3205 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3206 if (TripCount) 3207 return TripCount; 3208 3209 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3210 // Find the loop boundaries. 3211 ScalarEvolution *SE = PSE.getSE(); 3212 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3213 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3214 "Invalid loop count"); 3215 3216 Type *IdxTy = Legal->getWidestInductionType(); 3217 3218 // The exit count might have the type of i64 while the phi is i32. This can 3219 // happen if we have an induction variable that is sign extended before the 3220 // compare. The only way that we get a backedge taken count is that the 3221 // induction variable was signed and as such will not overflow. In such a case 3222 // truncation is legal. 3223 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3224 IdxTy->getPrimitiveSizeInBits()) 3225 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3226 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3227 3228 // Get the total trip count from the count by adding 1. 3229 const SCEV *ExitCount = SE->getAddExpr( 3230 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3231 3232 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3233 3234 // Expand the trip count and place the new instructions in the preheader. 3235 // Notice that the pre-header does not change, only the loop body. 3236 SCEVExpander Exp(*SE, DL, "induction"); 3237 3238 // Count holds the overall loop count (N). 3239 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3240 L->getLoopPreheader()->getTerminator()); 3241 3242 if (TripCount->getType()->isPointerTy()) 3243 TripCount = 3244 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3245 L->getLoopPreheader()->getTerminator()); 3246 3247 return TripCount; 3248 } 3249 3250 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3251 if (VectorTripCount) 3252 return VectorTripCount; 3253 3254 Value *TC = getOrCreateTripCount(L); 3255 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3256 3257 // Now we need to generate the expression for the part of the loop that the 3258 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3259 // iterations are not required for correctness, or N - Step, otherwise. Step 3260 // is equal to the vectorization factor (number of SIMD elements) times the 3261 // unroll factor (number of SIMD instructions). 3262 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3263 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3264 3265 // If there is a non-reversed interleaved group that may speculatively access 3266 // memory out-of-bounds, we need to ensure that there will be at least one 3267 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3268 // the trip count, we set the remainder to be equal to the step. If the step 3269 // does not evenly divide the trip count, no adjustment is necessary since 3270 // there will already be scalar iterations. Note that the minimum iterations 3271 // check ensures that N >= Step. 3272 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3273 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3274 R = Builder.CreateSelect(IsZero, Step, R); 3275 } 3276 3277 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3278 3279 return VectorTripCount; 3280 } 3281 3282 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3283 const DataLayout &DL) { 3284 // Verify that V is a vector type with same number of elements as DstVTy. 3285 unsigned VF = DstVTy->getNumElements(); 3286 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3287 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3288 Type *SrcElemTy = SrcVecTy->getElementType(); 3289 Type *DstElemTy = DstVTy->getElementType(); 3290 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3291 "Vector elements must have same size"); 3292 3293 // Do a direct cast if element types are castable. 3294 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3295 return Builder.CreateBitOrPointerCast(V, DstVTy); 3296 } 3297 // V cannot be directly casted to desired vector type. 3298 // May happen when V is a floating point vector but DstVTy is a vector of 3299 // pointers or vice-versa. Handle this using a two-step bitcast using an 3300 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3301 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3302 "Only one type should be a pointer type"); 3303 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3304 "Only one type should be a floating point type"); 3305 Type *IntTy = 3306 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3307 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3308 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3309 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3310 } 3311 3312 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3313 BasicBlock *Bypass) { 3314 Value *Count = getOrCreateTripCount(L); 3315 BasicBlock *BB = L->getLoopPreheader(); 3316 IRBuilder<> Builder(BB->getTerminator()); 3317 3318 // Generate code to check if the loop's trip count is less than VF * UF, or 3319 // equal to it in case a scalar epilogue is required; this implies that the 3320 // vector trip count is zero. This check also covers the case where adding one 3321 // to the backedge-taken count overflowed leading to an incorrect trip count 3322 // of zero. In this case we will also jump to the scalar loop. 3323 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3324 : ICmpInst::ICMP_ULT; 3325 Value *CheckMinIters = Builder.CreateICmp( 3326 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3327 3328 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3329 // Update dominator tree immediately if the generated block is a 3330 // LoopBypassBlock because SCEV expansions to generate loop bypass 3331 // checks may query it before the current function is finished. 3332 DT->addNewBlock(NewBB, BB); 3333 if (L->getParentLoop()) 3334 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3335 ReplaceInstWithInst(BB->getTerminator(), 3336 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3337 LoopBypassBlocks.push_back(BB); 3338 } 3339 3340 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3341 BasicBlock *BB = L->getLoopPreheader(); 3342 3343 // Generate the code to check that the SCEV assumptions that we made. 3344 // We want the new basic block to start at the first instruction in a 3345 // sequence of instructions that form a check. 3346 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3347 "scev.check"); 3348 Value *SCEVCheck = 3349 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3350 3351 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3352 if (C->isZero()) 3353 return; 3354 3355 // Create a new block containing the stride check. 3356 BB->setName("vector.scevcheck"); 3357 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3358 // Update dominator tree immediately if the generated block is a 3359 // LoopBypassBlock because SCEV expansions to generate loop bypass 3360 // checks may query it before the current function is finished. 3361 DT->addNewBlock(NewBB, BB); 3362 if (L->getParentLoop()) 3363 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3364 ReplaceInstWithInst(BB->getTerminator(), 3365 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3366 LoopBypassBlocks.push_back(BB); 3367 AddedSafetyChecks = true; 3368 } 3369 3370 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3371 BasicBlock *BB = L->getLoopPreheader(); 3372 3373 // Generate the code that checks in runtime if arrays overlap. We put the 3374 // checks into a separate block to make the more common case of few elements 3375 // faster. 3376 Instruction *FirstCheckInst; 3377 Instruction *MemRuntimeCheck; 3378 std::tie(FirstCheckInst, MemRuntimeCheck) = 3379 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3380 if (!MemRuntimeCheck) 3381 return; 3382 3383 // Create a new block containing the memory check. 3384 BB->setName("vector.memcheck"); 3385 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3386 // Update dominator tree immediately if the generated block is a 3387 // LoopBypassBlock because SCEV expansions to generate loop bypass 3388 // checks may query it before the current function is finished. 3389 DT->addNewBlock(NewBB, BB); 3390 if (L->getParentLoop()) 3391 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3392 ReplaceInstWithInst(BB->getTerminator(), 3393 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3394 LoopBypassBlocks.push_back(BB); 3395 AddedSafetyChecks = true; 3396 3397 // We currently don't use LoopVersioning for the actual loop cloning but we 3398 // still use it to add the noalias metadata. 3399 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3400 PSE.getSE()); 3401 LVer->prepareNoAliasMetadata(); 3402 } 3403 3404 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3405 /* 3406 In this function we generate a new loop. The new loop will contain 3407 the vectorized instructions while the old loop will continue to run the 3408 scalar remainder. 3409 3410 [ ] <-- loop iteration number check. 3411 / | 3412 / v 3413 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3414 | / | 3415 | / v 3416 || [ ] <-- vector pre header. 3417 |/ | 3418 | v 3419 | [ ] \ 3420 | [ ]_| <-- vector loop. 3421 | | 3422 | v 3423 | -[ ] <--- middle-block. 3424 | / | 3425 | / v 3426 -|- >[ ] <--- new preheader. 3427 | | 3428 | v 3429 | [ ] \ 3430 | [ ]_| <-- old scalar loop to handle remainder. 3431 \ | 3432 \ v 3433 >[ ] <-- exit block. 3434 ... 3435 */ 3436 3437 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3438 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3439 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3440 assert(VectorPH && "Invalid loop structure"); 3441 assert(ExitBlock && "Must have an exit block"); 3442 3443 // Some loops have a single integer induction variable, while other loops 3444 // don't. One example is c++ iterators that often have multiple pointer 3445 // induction variables. In the code below we also support a case where we 3446 // don't have a single induction variable. 3447 // 3448 // We try to obtain an induction variable from the original loop as hard 3449 // as possible. However if we don't find one that: 3450 // - is an integer 3451 // - counts from zero, stepping by one 3452 // - is the size of the widest induction variable type 3453 // then we create a new one. 3454 OldInduction = Legal->getPrimaryInduction(); 3455 Type *IdxTy = Legal->getWidestInductionType(); 3456 3457 // Split the single block loop into the two loop structure described above. 3458 BasicBlock *VecBody = 3459 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3460 BasicBlock *MiddleBlock = 3461 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3462 BasicBlock *ScalarPH = 3463 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3464 3465 // Create and register the new vector loop. 3466 Loop *Lp = new Loop(); 3467 Loop *ParentLoop = OrigLoop->getParentLoop(); 3468 3469 // Insert the new loop into the loop nest and register the new basic blocks 3470 // before calling any utilities such as SCEV that require valid LoopInfo. 3471 if (ParentLoop) { 3472 ParentLoop->addChildLoop(Lp); 3473 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3474 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3475 } else { 3476 LI->addTopLevelLoop(Lp); 3477 } 3478 Lp->addBasicBlockToLoop(VecBody, *LI); 3479 3480 // Find the loop boundaries. 3481 Value *Count = getOrCreateTripCount(Lp); 3482 3483 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3484 3485 // Now, compare the new count to zero. If it is zero skip the vector loop and 3486 // jump to the scalar loop. This check also covers the case where the 3487 // backedge-taken count is uint##_max: adding one to it will overflow leading 3488 // to an incorrect trip count of zero. In this (rare) case we will also jump 3489 // to the scalar loop. 3490 emitMinimumIterationCountCheck(Lp, ScalarPH); 3491 3492 // Generate the code to check any assumptions that we've made for SCEV 3493 // expressions. 3494 emitSCEVChecks(Lp, ScalarPH); 3495 3496 // Generate the code that checks in runtime if arrays overlap. We put the 3497 // checks into a separate block to make the more common case of few elements 3498 // faster. 3499 emitMemRuntimeChecks(Lp, ScalarPH); 3500 3501 // Generate the induction variable. 3502 // The loop step is equal to the vectorization factor (num of SIMD elements) 3503 // times the unroll factor (num of SIMD instructions). 3504 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3505 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3506 Induction = 3507 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3508 getDebugLocFromInstOrOperands(OldInduction)); 3509 3510 // We are going to resume the execution of the scalar loop. 3511 // Go over all of the induction variables that we found and fix the 3512 // PHIs that are left in the scalar version of the loop. 3513 // The starting values of PHI nodes depend on the counter of the last 3514 // iteration in the vectorized loop. 3515 // If we come from a bypass edge then we need to start from the original 3516 // start value. 3517 3518 // This variable saves the new starting index for the scalar loop. It is used 3519 // to test if there are any tail iterations left once the vector loop has 3520 // completed. 3521 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3522 for (auto &InductionEntry : *List) { 3523 PHINode *OrigPhi = InductionEntry.first; 3524 InductionDescriptor II = InductionEntry.second; 3525 3526 // Create phi nodes to merge from the backedge-taken check block. 3527 PHINode *BCResumeVal = PHINode::Create( 3528 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3529 Value *&EndValue = IVEndValues[OrigPhi]; 3530 if (OrigPhi == OldInduction) { 3531 // We know what the end value is. 3532 EndValue = CountRoundDown; 3533 } else { 3534 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3535 Type *StepType = II.getStep()->getType(); 3536 Instruction::CastOps CastOp = 3537 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3538 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3539 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3540 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3541 EndValue->setName("ind.end"); 3542 } 3543 3544 // The new PHI merges the original incoming value, in case of a bypass, 3545 // or the value at the end of the vectorized loop. 3546 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3547 3548 // Fix the scalar body counter (PHI node). 3549 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3550 3551 // The old induction's phi node in the scalar body needs the truncated 3552 // value. 3553 for (BasicBlock *BB : LoopBypassBlocks) 3554 BCResumeVal->addIncoming(II.getStartValue(), BB); 3555 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3556 } 3557 3558 // Add a check in the middle block to see if we have completed 3559 // all of the iterations in the first vector loop. 3560 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3561 Value *CmpN = 3562 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3563 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3564 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3565 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3566 3567 // Get ready to start creating new instructions into the vectorized body. 3568 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3569 3570 // Save the state. 3571 LoopVectorPreHeader = Lp->getLoopPreheader(); 3572 LoopScalarPreHeader = ScalarPH; 3573 LoopMiddleBlock = MiddleBlock; 3574 LoopExitBlock = ExitBlock; 3575 LoopVectorBody = VecBody; 3576 LoopScalarBody = OldBasicBlock; 3577 3578 // Keep all loop hints from the original loop on the vector loop (we'll 3579 // replace the vectorizer-specific hints below). 3580 if (MDNode *LID = OrigLoop->getLoopID()) 3581 Lp->setLoopID(LID); 3582 3583 LoopVectorizeHints Hints(Lp, true, *ORE); 3584 Hints.setAlreadyVectorized(); 3585 3586 return LoopVectorPreHeader; 3587 } 3588 3589 // Fix up external users of the induction variable. At this point, we are 3590 // in LCSSA form, with all external PHIs that use the IV having one input value, 3591 // coming from the remainder loop. We need those PHIs to also have a correct 3592 // value for the IV when arriving directly from the middle block. 3593 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3594 const InductionDescriptor &II, 3595 Value *CountRoundDown, Value *EndValue, 3596 BasicBlock *MiddleBlock) { 3597 // There are two kinds of external IV usages - those that use the value 3598 // computed in the last iteration (the PHI) and those that use the penultimate 3599 // value (the value that feeds into the phi from the loop latch). 3600 // We allow both, but they, obviously, have different values. 3601 3602 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3603 3604 DenseMap<Value *, Value *> MissingVals; 3605 3606 // An external user of the last iteration's value should see the value that 3607 // the remainder loop uses to initialize its own IV. 3608 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3609 for (User *U : PostInc->users()) { 3610 Instruction *UI = cast<Instruction>(U); 3611 if (!OrigLoop->contains(UI)) { 3612 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3613 MissingVals[UI] = EndValue; 3614 } 3615 } 3616 3617 // An external user of the penultimate value need to see EndValue - Step. 3618 // The simplest way to get this is to recompute it from the constituent SCEVs, 3619 // that is Start + (Step * (CRD - 1)). 3620 for (User *U : OrigPhi->users()) { 3621 auto *UI = cast<Instruction>(U); 3622 if (!OrigLoop->contains(UI)) { 3623 const DataLayout &DL = 3624 OrigLoop->getHeader()->getModule()->getDataLayout(); 3625 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3626 3627 IRBuilder<> B(MiddleBlock->getTerminator()); 3628 Value *CountMinusOne = B.CreateSub( 3629 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3630 Value *CMO = 3631 !II.getStep()->getType()->isIntegerTy() 3632 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3633 II.getStep()->getType()) 3634 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3635 CMO->setName("cast.cmo"); 3636 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3637 Escape->setName("ind.escape"); 3638 MissingVals[UI] = Escape; 3639 } 3640 } 3641 3642 for (auto &I : MissingVals) { 3643 PHINode *PHI = cast<PHINode>(I.first); 3644 // One corner case we have to handle is two IVs "chasing" each-other, 3645 // that is %IV2 = phi [...], [ %IV1, %latch ] 3646 // In this case, if IV1 has an external use, we need to avoid adding both 3647 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3648 // don't already have an incoming value for the middle block. 3649 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3650 PHI->addIncoming(I.second, MiddleBlock); 3651 } 3652 } 3653 3654 namespace { 3655 struct CSEDenseMapInfo { 3656 static bool canHandle(const Instruction *I) { 3657 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3658 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3659 } 3660 static inline Instruction *getEmptyKey() { 3661 return DenseMapInfo<Instruction *>::getEmptyKey(); 3662 } 3663 static inline Instruction *getTombstoneKey() { 3664 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3665 } 3666 static unsigned getHashValue(const Instruction *I) { 3667 assert(canHandle(I) && "Unknown instruction!"); 3668 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3669 I->value_op_end())); 3670 } 3671 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3672 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3673 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3674 return LHS == RHS; 3675 return LHS->isIdenticalTo(RHS); 3676 } 3677 }; 3678 } 3679 3680 ///\brief Perform cse of induction variable instructions. 3681 static void cse(BasicBlock *BB) { 3682 // Perform simple cse. 3683 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3684 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3685 Instruction *In = &*I++; 3686 3687 if (!CSEDenseMapInfo::canHandle(In)) 3688 continue; 3689 3690 // Check if we can replace this instruction with any of the 3691 // visited instructions. 3692 if (Instruction *V = CSEMap.lookup(In)) { 3693 In->replaceAllUsesWith(V); 3694 In->eraseFromParent(); 3695 continue; 3696 } 3697 3698 CSEMap[In] = In; 3699 } 3700 } 3701 3702 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3703 /// convenience wrapper for the type-based getScalarizationOverhead API. 3704 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3705 const TargetTransformInfo &TTI) { 3706 if (VF == 1) 3707 return 0; 3708 3709 unsigned Cost = 0; 3710 Type *RetTy = ToVectorTy(I->getType(), VF); 3711 if (!RetTy->isVoidTy() && 3712 (!isa<LoadInst>(I) || 3713 !TTI.supportsEfficientVectorElementLoadStore())) 3714 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3715 3716 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3717 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3718 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3719 } 3720 else if (!isa<StoreInst>(I) || 3721 !TTI.supportsEfficientVectorElementLoadStore()) { 3722 SmallVector<const Value *, 4> Operands(I->operand_values()); 3723 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3724 } 3725 3726 return Cost; 3727 } 3728 3729 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3730 // Return the cost of the instruction, including scalarization overhead if it's 3731 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3732 // i.e. either vector version isn't available, or is too expensive. 3733 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3734 const TargetTransformInfo &TTI, 3735 const TargetLibraryInfo *TLI, 3736 bool &NeedToScalarize) { 3737 Function *F = CI->getCalledFunction(); 3738 StringRef FnName = CI->getCalledFunction()->getName(); 3739 Type *ScalarRetTy = CI->getType(); 3740 SmallVector<Type *, 4> Tys, ScalarTys; 3741 for (auto &ArgOp : CI->arg_operands()) 3742 ScalarTys.push_back(ArgOp->getType()); 3743 3744 // Estimate cost of scalarized vector call. The source operands are assumed 3745 // to be vectors, so we need to extract individual elements from there, 3746 // execute VF scalar calls, and then gather the result into the vector return 3747 // value. 3748 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3749 if (VF == 1) 3750 return ScalarCallCost; 3751 3752 // Compute corresponding vector type for return value and arguments. 3753 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3754 for (Type *ScalarTy : ScalarTys) 3755 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3756 3757 // Compute costs of unpacking argument values for the scalar calls and 3758 // packing the return values to a vector. 3759 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3760 3761 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3762 3763 // If we can't emit a vector call for this function, then the currently found 3764 // cost is the cost we need to return. 3765 NeedToScalarize = true; 3766 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3767 return Cost; 3768 3769 // If the corresponding vector cost is cheaper, return its cost. 3770 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3771 if (VectorCallCost < Cost) { 3772 NeedToScalarize = false; 3773 return VectorCallCost; 3774 } 3775 return Cost; 3776 } 3777 3778 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3779 // factor VF. Return the cost of the instruction, including scalarization 3780 // overhead if it's needed. 3781 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3782 const TargetTransformInfo &TTI, 3783 const TargetLibraryInfo *TLI) { 3784 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3785 assert(ID && "Expected intrinsic call!"); 3786 3787 FastMathFlags FMF; 3788 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3789 FMF = FPMO->getFastMathFlags(); 3790 3791 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3792 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3793 } 3794 3795 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3796 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3797 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3798 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3799 } 3800 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3801 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3802 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3803 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3804 } 3805 3806 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3807 // For every instruction `I` in MinBWs, truncate the operands, create a 3808 // truncated version of `I` and reextend its result. InstCombine runs 3809 // later and will remove any ext/trunc pairs. 3810 // 3811 SmallPtrSet<Value *, 4> Erased; 3812 for (const auto &KV : Cost->getMinimalBitwidths()) { 3813 // If the value wasn't vectorized, we must maintain the original scalar 3814 // type. The absence of the value from VectorLoopValueMap indicates that it 3815 // wasn't vectorized. 3816 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3817 continue; 3818 for (unsigned Part = 0; Part < UF; ++Part) { 3819 Value *I = getOrCreateVectorValue(KV.first, Part); 3820 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3821 continue; 3822 Type *OriginalTy = I->getType(); 3823 Type *ScalarTruncatedTy = 3824 IntegerType::get(OriginalTy->getContext(), KV.second); 3825 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3826 OriginalTy->getVectorNumElements()); 3827 if (TruncatedTy == OriginalTy) 3828 continue; 3829 3830 IRBuilder<> B(cast<Instruction>(I)); 3831 auto ShrinkOperand = [&](Value *V) -> Value * { 3832 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3833 if (ZI->getSrcTy() == TruncatedTy) 3834 return ZI->getOperand(0); 3835 return B.CreateZExtOrTrunc(V, TruncatedTy); 3836 }; 3837 3838 // The actual instruction modification depends on the instruction type, 3839 // unfortunately. 3840 Value *NewI = nullptr; 3841 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3842 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3843 ShrinkOperand(BO->getOperand(1))); 3844 3845 // Any wrapping introduced by shrinking this operation shouldn't be 3846 // considered undefined behavior. So, we can't unconditionally copy 3847 // arithmetic wrapping flags to NewI. 3848 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3849 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3850 NewI = 3851 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3852 ShrinkOperand(CI->getOperand(1))); 3853 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3854 NewI = B.CreateSelect(SI->getCondition(), 3855 ShrinkOperand(SI->getTrueValue()), 3856 ShrinkOperand(SI->getFalseValue())); 3857 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3858 switch (CI->getOpcode()) { 3859 default: 3860 llvm_unreachable("Unhandled cast!"); 3861 case Instruction::Trunc: 3862 NewI = ShrinkOperand(CI->getOperand(0)); 3863 break; 3864 case Instruction::SExt: 3865 NewI = B.CreateSExtOrTrunc( 3866 CI->getOperand(0), 3867 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3868 break; 3869 case Instruction::ZExt: 3870 NewI = B.CreateZExtOrTrunc( 3871 CI->getOperand(0), 3872 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3873 break; 3874 } 3875 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3876 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3877 auto *O0 = B.CreateZExtOrTrunc( 3878 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3879 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3880 auto *O1 = B.CreateZExtOrTrunc( 3881 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3882 3883 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3884 } else if (isa<LoadInst>(I)) { 3885 // Don't do anything with the operands, just extend the result. 3886 continue; 3887 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3888 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3889 auto *O0 = B.CreateZExtOrTrunc( 3890 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3891 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3892 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3893 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3894 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3895 auto *O0 = B.CreateZExtOrTrunc( 3896 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3897 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3898 } else { 3899 llvm_unreachable("Unhandled instruction type!"); 3900 } 3901 3902 // Lastly, extend the result. 3903 NewI->takeName(cast<Instruction>(I)); 3904 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3905 I->replaceAllUsesWith(Res); 3906 cast<Instruction>(I)->eraseFromParent(); 3907 Erased.insert(I); 3908 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3909 } 3910 } 3911 3912 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3913 for (const auto &KV : Cost->getMinimalBitwidths()) { 3914 // If the value wasn't vectorized, we must maintain the original scalar 3915 // type. The absence of the value from VectorLoopValueMap indicates that it 3916 // wasn't vectorized. 3917 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3918 continue; 3919 for (unsigned Part = 0; Part < UF; ++Part) { 3920 Value *I = getOrCreateVectorValue(KV.first, Part); 3921 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3922 if (Inst && Inst->use_empty()) { 3923 Value *NewI = Inst->getOperand(0); 3924 Inst->eraseFromParent(); 3925 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3926 } 3927 } 3928 } 3929 } 3930 3931 void InnerLoopVectorizer::fixVectorizedLoop() { 3932 // Insert truncates and extends for any truncated instructions as hints to 3933 // InstCombine. 3934 if (VF > 1) 3935 truncateToMinimalBitwidths(); 3936 3937 // At this point every instruction in the original loop is widened to a 3938 // vector form. Now we need to fix the recurrences in the loop. These PHI 3939 // nodes are currently empty because we did not want to introduce cycles. 3940 // This is the second stage of vectorizing recurrences. 3941 fixCrossIterationPHIs(); 3942 3943 // Update the dominator tree. 3944 // 3945 // FIXME: After creating the structure of the new loop, the dominator tree is 3946 // no longer up-to-date, and it remains that way until we update it 3947 // here. An out-of-date dominator tree is problematic for SCEV, 3948 // because SCEVExpander uses it to guide code generation. The 3949 // vectorizer use SCEVExpanders in several places. Instead, we should 3950 // keep the dominator tree up-to-date as we go. 3951 updateAnalysis(); 3952 3953 // Fix-up external users of the induction variables. 3954 for (auto &Entry : *Legal->getInductionVars()) 3955 fixupIVUsers(Entry.first, Entry.second, 3956 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3957 IVEndValues[Entry.first], LoopMiddleBlock); 3958 3959 fixLCSSAPHIs(); 3960 for (Instruction *PI : PredicatedInstructions) 3961 sinkScalarOperands(&*PI); 3962 3963 // Remove redundant induction instructions. 3964 cse(LoopVectorBody); 3965 } 3966 3967 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3968 // In order to support recurrences we need to be able to vectorize Phi nodes. 3969 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3970 // stage #2: We now need to fix the recurrences by adding incoming edges to 3971 // the currently empty PHI nodes. At this point every instruction in the 3972 // original loop is widened to a vector form so we can use them to construct 3973 // the incoming edges. 3974 for (Instruction &I : *OrigLoop->getHeader()) { 3975 PHINode *Phi = dyn_cast<PHINode>(&I); 3976 if (!Phi) 3977 break; 3978 // Handle first-order recurrences and reductions that need to be fixed. 3979 if (Legal->isFirstOrderRecurrence(Phi)) 3980 fixFirstOrderRecurrence(Phi); 3981 else if (Legal->isReductionVariable(Phi)) 3982 fixReduction(Phi); 3983 } 3984 } 3985 3986 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3987 3988 // This is the second phase of vectorizing first-order recurrences. An 3989 // overview of the transformation is described below. Suppose we have the 3990 // following loop. 3991 // 3992 // for (int i = 0; i < n; ++i) 3993 // b[i] = a[i] - a[i - 1]; 3994 // 3995 // There is a first-order recurrence on "a". For this loop, the shorthand 3996 // scalar IR looks like: 3997 // 3998 // scalar.ph: 3999 // s_init = a[-1] 4000 // br scalar.body 4001 // 4002 // scalar.body: 4003 // i = phi [0, scalar.ph], [i+1, scalar.body] 4004 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4005 // s2 = a[i] 4006 // b[i] = s2 - s1 4007 // br cond, scalar.body, ... 4008 // 4009 // In this example, s1 is a recurrence because it's value depends on the 4010 // previous iteration. In the first phase of vectorization, we created a 4011 // temporary value for s1. We now complete the vectorization and produce the 4012 // shorthand vector IR shown below (for VF = 4, UF = 1). 4013 // 4014 // vector.ph: 4015 // v_init = vector(..., ..., ..., a[-1]) 4016 // br vector.body 4017 // 4018 // vector.body 4019 // i = phi [0, vector.ph], [i+4, vector.body] 4020 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4021 // v2 = a[i, i+1, i+2, i+3]; 4022 // v3 = vector(v1(3), v2(0, 1, 2)) 4023 // b[i, i+1, i+2, i+3] = v2 - v3 4024 // br cond, vector.body, middle.block 4025 // 4026 // middle.block: 4027 // x = v2(3) 4028 // br scalar.ph 4029 // 4030 // scalar.ph: 4031 // s_init = phi [x, middle.block], [a[-1], otherwise] 4032 // br scalar.body 4033 // 4034 // After execution completes the vector loop, we extract the next value of 4035 // the recurrence (x) to use as the initial value in the scalar loop. 4036 4037 // Get the original loop preheader and single loop latch. 4038 auto *Preheader = OrigLoop->getLoopPreheader(); 4039 auto *Latch = OrigLoop->getLoopLatch(); 4040 4041 // Get the initial and previous values of the scalar recurrence. 4042 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4043 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4044 4045 // Create a vector from the initial value. 4046 auto *VectorInit = ScalarInit; 4047 if (VF > 1) { 4048 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4049 VectorInit = Builder.CreateInsertElement( 4050 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4051 Builder.getInt32(VF - 1), "vector.recur.init"); 4052 } 4053 4054 // We constructed a temporary phi node in the first phase of vectorization. 4055 // This phi node will eventually be deleted. 4056 Builder.SetInsertPoint( 4057 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4058 4059 // Create a phi node for the new recurrence. The current value will either be 4060 // the initial value inserted into a vector or loop-varying vector value. 4061 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4062 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4063 4064 // Get the vectorized previous value of the last part UF - 1. It appears last 4065 // among all unrolled iterations, due to the order of their construction. 4066 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4067 4068 // Set the insertion point after the previous value if it is an instruction. 4069 // Note that the previous value may have been constant-folded so it is not 4070 // guaranteed to be an instruction in the vector loop. Also, if the previous 4071 // value is a phi node, we should insert after all the phi nodes to avoid 4072 // breaking basic block verification. 4073 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4074 isa<PHINode>(PreviousLastPart)) 4075 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4076 else 4077 Builder.SetInsertPoint( 4078 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4079 4080 // We will construct a vector for the recurrence by combining the values for 4081 // the current and previous iterations. This is the required shuffle mask. 4082 SmallVector<Constant *, 8> ShuffleMask(VF); 4083 ShuffleMask[0] = Builder.getInt32(VF - 1); 4084 for (unsigned I = 1; I < VF; ++I) 4085 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4086 4087 // The vector from which to take the initial value for the current iteration 4088 // (actual or unrolled). Initially, this is the vector phi node. 4089 Value *Incoming = VecPhi; 4090 4091 // Shuffle the current and previous vector and update the vector parts. 4092 for (unsigned Part = 0; Part < UF; ++Part) { 4093 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4094 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4095 auto *Shuffle = 4096 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4097 ConstantVector::get(ShuffleMask)) 4098 : Incoming; 4099 PhiPart->replaceAllUsesWith(Shuffle); 4100 cast<Instruction>(PhiPart)->eraseFromParent(); 4101 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4102 Incoming = PreviousPart; 4103 } 4104 4105 // Fix the latch value of the new recurrence in the vector loop. 4106 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4107 4108 // Extract the last vector element in the middle block. This will be the 4109 // initial value for the recurrence when jumping to the scalar loop. 4110 auto *ExtractForScalar = Incoming; 4111 if (VF > 1) { 4112 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4113 ExtractForScalar = Builder.CreateExtractElement( 4114 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4115 } 4116 // Extract the second last element in the middle block if the 4117 // Phi is used outside the loop. We need to extract the phi itself 4118 // and not the last element (the phi update in the current iteration). This 4119 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4120 // when the scalar loop is not run at all. 4121 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4122 if (VF > 1) 4123 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4124 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4125 // When loop is unrolled without vectorizing, initialize 4126 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4127 // `Incoming`. This is analogous to the vectorized case above: extracting the 4128 // second last element when VF > 1. 4129 else if (UF > 1) 4130 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4131 4132 // Fix the initial value of the original recurrence in the scalar loop. 4133 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4134 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4135 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4136 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4137 Start->addIncoming(Incoming, BB); 4138 } 4139 4140 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4141 Phi->setName("scalar.recur"); 4142 4143 // Finally, fix users of the recurrence outside the loop. The users will need 4144 // either the last value of the scalar recurrence or the last value of the 4145 // vector recurrence we extracted in the middle block. Since the loop is in 4146 // LCSSA form, we just need to find the phi node for the original scalar 4147 // recurrence in the exit block, and then add an edge for the middle block. 4148 for (auto &I : *LoopExitBlock) { 4149 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4150 if (!LCSSAPhi) 4151 break; 4152 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4153 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4154 break; 4155 } 4156 } 4157 } 4158 4159 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4160 Constant *Zero = Builder.getInt32(0); 4161 4162 // Get it's reduction variable descriptor. 4163 assert(Legal->isReductionVariable(Phi) && 4164 "Unable to find the reduction variable"); 4165 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4166 4167 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4168 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4169 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4170 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4171 RdxDesc.getMinMaxRecurrenceKind(); 4172 setDebugLocFromInst(Builder, ReductionStartValue); 4173 4174 // We need to generate a reduction vector from the incoming scalar. 4175 // To do so, we need to generate the 'identity' vector and override 4176 // one of the elements with the incoming scalar reduction. We need 4177 // to do it in the vector-loop preheader. 4178 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4179 4180 // This is the vector-clone of the value that leaves the loop. 4181 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4182 4183 // Find the reduction identity variable. Zero for addition, or, xor, 4184 // one for multiplication, -1 for And. 4185 Value *Identity; 4186 Value *VectorStart; 4187 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4188 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4189 // MinMax reduction have the start value as their identify. 4190 if (VF == 1) { 4191 VectorStart = Identity = ReductionStartValue; 4192 } else { 4193 VectorStart = Identity = 4194 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4195 } 4196 } else { 4197 // Handle other reduction kinds: 4198 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4199 RK, VecTy->getScalarType()); 4200 if (VF == 1) { 4201 Identity = Iden; 4202 // This vector is the Identity vector where the first element is the 4203 // incoming scalar reduction. 4204 VectorStart = ReductionStartValue; 4205 } else { 4206 Identity = ConstantVector::getSplat(VF, Iden); 4207 4208 // This vector is the Identity vector where the first element is the 4209 // incoming scalar reduction. 4210 VectorStart = 4211 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4212 } 4213 } 4214 4215 // Fix the vector-loop phi. 4216 4217 // Reductions do not have to start at zero. They can start with 4218 // any loop invariant values. 4219 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4220 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4221 for (unsigned Part = 0; Part < UF; ++Part) { 4222 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4223 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4224 // Make sure to add the reduction stat value only to the 4225 // first unroll part. 4226 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4227 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4228 cast<PHINode>(VecRdxPhi) 4229 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4230 } 4231 4232 // Before each round, move the insertion point right between 4233 // the PHIs and the values we are going to write. 4234 // This allows us to write both PHINodes and the extractelement 4235 // instructions. 4236 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4237 4238 setDebugLocFromInst(Builder, LoopExitInst); 4239 4240 // If the vector reduction can be performed in a smaller type, we truncate 4241 // then extend the loop exit value to enable InstCombine to evaluate the 4242 // entire expression in the smaller type. 4243 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4244 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4245 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4246 VectorParts RdxParts(UF); 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4249 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4250 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4251 : Builder.CreateZExt(Trunc, VecTy); 4252 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4253 UI != RdxParts[Part]->user_end();) 4254 if (*UI != Trunc) { 4255 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4256 RdxParts[Part] = Extnd; 4257 } else { 4258 ++UI; 4259 } 4260 } 4261 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4262 for (unsigned Part = 0; Part < UF; ++Part) { 4263 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4264 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4265 } 4266 } 4267 4268 // Reduce all of the unrolled parts into a single vector. 4269 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4270 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4271 setDebugLocFromInst(Builder, ReducedPartRdx); 4272 for (unsigned Part = 1; Part < UF; ++Part) { 4273 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4274 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4275 // Floating point operations had to be 'fast' to enable the reduction. 4276 ReducedPartRdx = addFastMathFlag( 4277 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4278 ReducedPartRdx, "bin.rdx")); 4279 else 4280 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4281 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4282 } 4283 4284 if (VF > 1) { 4285 bool NoNaN = Legal->hasFunNoNaNAttr(); 4286 ReducedPartRdx = 4287 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4288 // If the reduction can be performed in a smaller type, we need to extend 4289 // the reduction to the wider type before we branch to the original loop. 4290 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4291 ReducedPartRdx = 4292 RdxDesc.isSigned() 4293 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4294 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4295 } 4296 4297 // Create a phi node that merges control-flow from the backedge-taken check 4298 // block and the middle block. 4299 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4300 LoopScalarPreHeader->getTerminator()); 4301 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4302 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4303 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4304 4305 // Now, we need to fix the users of the reduction variable 4306 // inside and outside of the scalar remainder loop. 4307 // We know that the loop is in LCSSA form. We need to update the 4308 // PHI nodes in the exit blocks. 4309 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4310 LEE = LoopExitBlock->end(); 4311 LEI != LEE; ++LEI) { 4312 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4313 if (!LCSSAPhi) 4314 break; 4315 4316 // All PHINodes need to have a single entry edge, or two if 4317 // we already fixed them. 4318 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4319 4320 // We found a reduction value exit-PHI. Update it with the 4321 // incoming bypass edge. 4322 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4323 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4324 } // end of the LCSSA phi scan. 4325 4326 // Fix the scalar loop reduction variable with the incoming reduction sum 4327 // from the vector body and from the backedge value. 4328 int IncomingEdgeBlockIdx = 4329 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4330 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4331 // Pick the other block. 4332 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4333 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4334 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4335 } 4336 4337 void InnerLoopVectorizer::fixLCSSAPHIs() { 4338 for (Instruction &LEI : *LoopExitBlock) { 4339 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4340 if (!LCSSAPhi) 4341 break; 4342 if (LCSSAPhi->getNumIncomingValues() == 1) { 4343 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4344 "Incoming value isn't loop invariant"); 4345 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4346 } 4347 } 4348 } 4349 4350 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4351 4352 // The basic block and loop containing the predicated instruction. 4353 auto *PredBB = PredInst->getParent(); 4354 auto *VectorLoop = LI->getLoopFor(PredBB); 4355 4356 // Initialize a worklist with the operands of the predicated instruction. 4357 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4358 4359 // Holds instructions that we need to analyze again. An instruction may be 4360 // reanalyzed if we don't yet know if we can sink it or not. 4361 SmallVector<Instruction *, 8> InstsToReanalyze; 4362 4363 // Returns true if a given use occurs in the predicated block. Phi nodes use 4364 // their operands in their corresponding predecessor blocks. 4365 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4366 auto *I = cast<Instruction>(U.getUser()); 4367 BasicBlock *BB = I->getParent(); 4368 if (auto *Phi = dyn_cast<PHINode>(I)) 4369 BB = Phi->getIncomingBlock( 4370 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4371 return BB == PredBB; 4372 }; 4373 4374 // Iteratively sink the scalarized operands of the predicated instruction 4375 // into the block we created for it. When an instruction is sunk, it's 4376 // operands are then added to the worklist. The algorithm ends after one pass 4377 // through the worklist doesn't sink a single instruction. 4378 bool Changed; 4379 do { 4380 4381 // Add the instructions that need to be reanalyzed to the worklist, and 4382 // reset the changed indicator. 4383 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4384 InstsToReanalyze.clear(); 4385 Changed = false; 4386 4387 while (!Worklist.empty()) { 4388 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4389 4390 // We can't sink an instruction if it is a phi node, is already in the 4391 // predicated block, is not in the loop, or may have side effects. 4392 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4393 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4394 continue; 4395 4396 // It's legal to sink the instruction if all its uses occur in the 4397 // predicated block. Otherwise, there's nothing to do yet, and we may 4398 // need to reanalyze the instruction. 4399 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4400 InstsToReanalyze.push_back(I); 4401 continue; 4402 } 4403 4404 // Move the instruction to the beginning of the predicated block, and add 4405 // it's operands to the worklist. 4406 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4407 Worklist.insert(I->op_begin(), I->op_end()); 4408 4409 // The sinking may have enabled other instructions to be sunk, so we will 4410 // need to iterate. 4411 Changed = true; 4412 } 4413 } while (Changed); 4414 } 4415 4416 InnerLoopVectorizer::VectorParts 4417 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4418 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4419 4420 // Look for cached value. 4421 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4422 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4423 if (ECEntryIt != EdgeMaskCache.end()) 4424 return ECEntryIt->second; 4425 4426 VectorParts SrcMask = createBlockInMask(Src); 4427 4428 // The terminator has to be a branch inst! 4429 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4430 assert(BI && "Unexpected terminator found"); 4431 4432 if (!BI->isConditional()) 4433 return EdgeMaskCache[Edge] = SrcMask; 4434 4435 VectorParts EdgeMask(UF); 4436 for (unsigned Part = 0; Part < UF; ++Part) { 4437 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4438 if (BI->getSuccessor(0) != Dst) 4439 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4440 4441 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4442 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4443 4444 EdgeMask[Part] = EdgeMaskPart; 4445 } 4446 4447 return EdgeMaskCache[Edge] = EdgeMask; 4448 } 4449 4450 InnerLoopVectorizer::VectorParts 4451 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4452 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4453 4454 // Look for cached value. 4455 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4456 if (BCEntryIt != BlockMaskCache.end()) 4457 return BCEntryIt->second; 4458 4459 // All-one mask is modelled as no-mask following the convention for masked 4460 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4461 VectorParts BlockMask(UF); 4462 for (unsigned Part = 0; Part < UF; ++Part) 4463 BlockMask[Part] = nullptr; 4464 4465 // Loop incoming mask is all-one. 4466 if (OrigLoop->getHeader() == BB) 4467 return BlockMaskCache[BB] = BlockMask; 4468 4469 // This is the block mask. We OR all incoming edges. 4470 for (auto *Predecessor : predecessors(BB)) { 4471 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4472 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4473 return BlockMaskCache[BB] = EdgeMask; 4474 4475 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4476 BlockMask = EdgeMask; 4477 continue; 4478 } 4479 4480 for (unsigned Part = 0; Part < UF; ++Part) 4481 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4482 } 4483 4484 return BlockMaskCache[BB] = BlockMask; 4485 } 4486 4487 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4488 unsigned VF) { 4489 PHINode *P = cast<PHINode>(PN); 4490 // In order to support recurrences we need to be able to vectorize Phi nodes. 4491 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4492 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4493 // this value when we vectorize all of the instructions that use the PHI. 4494 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4495 for (unsigned Part = 0; Part < UF; ++Part) { 4496 // This is phase one of vectorizing PHIs. 4497 Type *VecTy = 4498 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4499 Value *EntryPart = PHINode::Create( 4500 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4501 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4502 } 4503 return; 4504 } 4505 4506 setDebugLocFromInst(Builder, P); 4507 // Check for PHI nodes that are lowered to vector selects. 4508 if (P->getParent() != OrigLoop->getHeader()) { 4509 // We know that all PHIs in non-header blocks are converted into 4510 // selects, so we don't have to worry about the insertion order and we 4511 // can just use the builder. 4512 // At this point we generate the predication tree. There may be 4513 // duplications since this is a simple recursive scan, but future 4514 // optimizations will clean it up. 4515 4516 unsigned NumIncoming = P->getNumIncomingValues(); 4517 4518 // Generate a sequence of selects of the form: 4519 // SELECT(Mask3, In3, 4520 // SELECT(Mask2, In2, 4521 // ( ...))) 4522 VectorParts Entry(UF); 4523 for (unsigned In = 0; In < NumIncoming; In++) { 4524 VectorParts Cond = 4525 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4526 4527 for (unsigned Part = 0; Part < UF; ++Part) { 4528 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4529 // We might have single edge PHIs (blocks) - use an identity 4530 // 'select' for the first PHI operand. 4531 if (In == 0) 4532 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, In0); 4533 else 4534 // Select between the current value and the previous incoming edge 4535 // based on the incoming mask. 4536 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4537 "predphi"); 4538 } 4539 } 4540 for (unsigned Part = 0; Part < UF; ++Part) 4541 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4542 return; 4543 } 4544 4545 // This PHINode must be an induction variable. 4546 // Make sure that we know about it. 4547 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4548 4549 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4550 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4551 4552 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4553 // which can be found from the original scalar operations. 4554 switch (II.getKind()) { 4555 case InductionDescriptor::IK_NoInduction: 4556 llvm_unreachable("Unknown induction"); 4557 case InductionDescriptor::IK_IntInduction: 4558 case InductionDescriptor::IK_FpInduction: 4559 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4560 case InductionDescriptor::IK_PtrInduction: { 4561 // Handle the pointer induction variable case. 4562 assert(P->getType()->isPointerTy() && "Unexpected type."); 4563 // This is the normalized GEP that starts counting at zero. 4564 Value *PtrInd = Induction; 4565 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4566 // Determine the number of scalars we need to generate for each unroll 4567 // iteration. If the instruction is uniform, we only need to generate the 4568 // first lane. Otherwise, we generate all VF values. 4569 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4570 // These are the scalar results. Notice that we don't generate vector GEPs 4571 // because scalar GEPs result in better code. 4572 for (unsigned Part = 0; Part < UF; ++Part) { 4573 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4574 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4575 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4576 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4577 SclrGep->setName("next.gep"); 4578 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4579 } 4580 } 4581 return; 4582 } 4583 } 4584 } 4585 4586 /// A helper function for checking whether an integer division-related 4587 /// instruction may divide by zero (in which case it must be predicated if 4588 /// executed conditionally in the scalar code). 4589 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4590 /// Non-zero divisors that are non compile-time constants will not be 4591 /// converted into multiplication, so we will still end up scalarizing 4592 /// the division, but can do so w/o predication. 4593 static bool mayDivideByZero(Instruction &I) { 4594 assert((I.getOpcode() == Instruction::UDiv || 4595 I.getOpcode() == Instruction::SDiv || 4596 I.getOpcode() == Instruction::URem || 4597 I.getOpcode() == Instruction::SRem) && 4598 "Unexpected instruction"); 4599 Value *Divisor = I.getOperand(1); 4600 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4601 return !CInt || CInt->isZero(); 4602 } 4603 4604 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4605 switch (I.getOpcode()) { 4606 case Instruction::Br: 4607 case Instruction::PHI: 4608 llvm_unreachable("This instruction is handled by a different recipe."); 4609 case Instruction::GetElementPtr: { 4610 // Construct a vector GEP by widening the operands of the scalar GEP as 4611 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4612 // results in a vector of pointers when at least one operand of the GEP 4613 // is vector-typed. Thus, to keep the representation compact, we only use 4614 // vector-typed operands for loop-varying values. 4615 auto *GEP = cast<GetElementPtrInst>(&I); 4616 4617 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4618 // If we are vectorizing, but the GEP has only loop-invariant operands, 4619 // the GEP we build (by only using vector-typed operands for 4620 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4621 // produce a vector of pointers, we need to either arbitrarily pick an 4622 // operand to broadcast, or broadcast a clone of the original GEP. 4623 // Here, we broadcast a clone of the original. 4624 // 4625 // TODO: If at some point we decide to scalarize instructions having 4626 // loop-invariant operands, this special case will no longer be 4627 // required. We would add the scalarization decision to 4628 // collectLoopScalars() and teach getVectorValue() to broadcast 4629 // the lane-zero scalar value. 4630 auto *Clone = Builder.Insert(GEP->clone()); 4631 for (unsigned Part = 0; Part < UF; ++Part) { 4632 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4633 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4634 addMetadata(EntryPart, GEP); 4635 } 4636 } else { 4637 // If the GEP has at least one loop-varying operand, we are sure to 4638 // produce a vector of pointers. But if we are only unrolling, we want 4639 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4640 // produce with the code below will be scalar (if VF == 1) or vector 4641 // (otherwise). Note that for the unroll-only case, we still maintain 4642 // values in the vector mapping with initVector, as we do for other 4643 // instructions. 4644 for (unsigned Part = 0; Part < UF; ++Part) { 4645 4646 // The pointer operand of the new GEP. If it's loop-invariant, we 4647 // won't broadcast it. 4648 auto *Ptr = 4649 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4650 ? GEP->getPointerOperand() 4651 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4652 4653 // Collect all the indices for the new GEP. If any index is 4654 // loop-invariant, we won't broadcast it. 4655 SmallVector<Value *, 4> Indices; 4656 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4657 if (OrigLoop->isLoopInvariant(U.get())) 4658 Indices.push_back(U.get()); 4659 else 4660 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4661 } 4662 4663 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4664 // but it should be a vector, otherwise. 4665 auto *NewGEP = GEP->isInBounds() 4666 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4667 : Builder.CreateGEP(Ptr, Indices); 4668 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4669 "NewGEP is not a pointer vector"); 4670 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4671 addMetadata(NewGEP, GEP); 4672 } 4673 } 4674 4675 break; 4676 } 4677 case Instruction::UDiv: 4678 case Instruction::SDiv: 4679 case Instruction::SRem: 4680 case Instruction::URem: 4681 case Instruction::Add: 4682 case Instruction::FAdd: 4683 case Instruction::Sub: 4684 case Instruction::FSub: 4685 case Instruction::Mul: 4686 case Instruction::FMul: 4687 case Instruction::FDiv: 4688 case Instruction::FRem: 4689 case Instruction::Shl: 4690 case Instruction::LShr: 4691 case Instruction::AShr: 4692 case Instruction::And: 4693 case Instruction::Or: 4694 case Instruction::Xor: { 4695 // Just widen binops. 4696 auto *BinOp = cast<BinaryOperator>(&I); 4697 setDebugLocFromInst(Builder, BinOp); 4698 4699 for (unsigned Part = 0; Part < UF; ++Part) { 4700 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4701 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4702 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4703 4704 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4705 VecOp->copyIRFlags(BinOp); 4706 4707 // Use this vector value for all users of the original instruction. 4708 VectorLoopValueMap.setVectorValue(&I, Part, V); 4709 addMetadata(V, BinOp); 4710 } 4711 4712 break; 4713 } 4714 case Instruction::Select: { 4715 // Widen selects. 4716 // If the selector is loop invariant we can create a select 4717 // instruction with a scalar condition. Otherwise, use vector-select. 4718 auto *SE = PSE.getSE(); 4719 bool InvariantCond = 4720 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4721 setDebugLocFromInst(Builder, &I); 4722 4723 // The condition can be loop invariant but still defined inside the 4724 // loop. This means that we can't just use the original 'cond' value. 4725 // We have to take the 'vectorized' value and pick the first lane. 4726 // Instcombine will make this a no-op. 4727 4728 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4729 4730 for (unsigned Part = 0; Part < UF; ++Part) { 4731 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4732 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4733 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4734 Value *Sel = 4735 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4736 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4737 addMetadata(Sel, &I); 4738 } 4739 4740 break; 4741 } 4742 4743 case Instruction::ICmp: 4744 case Instruction::FCmp: { 4745 // Widen compares. Generate vector compares. 4746 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4747 auto *Cmp = dyn_cast<CmpInst>(&I); 4748 setDebugLocFromInst(Builder, Cmp); 4749 for (unsigned Part = 0; Part < UF; ++Part) { 4750 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4751 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4752 Value *C = nullptr; 4753 if (FCmp) { 4754 // Propagate fast math flags. 4755 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4756 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4757 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4758 } else { 4759 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4760 } 4761 VectorLoopValueMap.setVectorValue(&I, Part, C); 4762 addMetadata(C, &I); 4763 } 4764 4765 break; 4766 } 4767 4768 case Instruction::Store: 4769 case Instruction::Load: 4770 vectorizeMemoryInstruction(&I); 4771 break; 4772 case Instruction::ZExt: 4773 case Instruction::SExt: 4774 case Instruction::FPToUI: 4775 case Instruction::FPToSI: 4776 case Instruction::FPExt: 4777 case Instruction::PtrToInt: 4778 case Instruction::IntToPtr: 4779 case Instruction::SIToFP: 4780 case Instruction::UIToFP: 4781 case Instruction::Trunc: 4782 case Instruction::FPTrunc: 4783 case Instruction::BitCast: { 4784 auto *CI = dyn_cast<CastInst>(&I); 4785 setDebugLocFromInst(Builder, CI); 4786 4787 /// Vectorize casts. 4788 Type *DestTy = 4789 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4790 4791 for (unsigned Part = 0; Part < UF; ++Part) { 4792 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4793 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4794 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4795 addMetadata(Cast, &I); 4796 } 4797 break; 4798 } 4799 4800 case Instruction::Call: { 4801 // Ignore dbg intrinsics. 4802 if (isa<DbgInfoIntrinsic>(I)) 4803 break; 4804 setDebugLocFromInst(Builder, &I); 4805 4806 Module *M = I.getParent()->getParent()->getParent(); 4807 auto *CI = cast<CallInst>(&I); 4808 4809 StringRef FnName = CI->getCalledFunction()->getName(); 4810 Function *F = CI->getCalledFunction(); 4811 Type *RetTy = ToVectorTy(CI->getType(), VF); 4812 SmallVector<Type *, 4> Tys; 4813 for (Value *ArgOperand : CI->arg_operands()) 4814 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4815 4816 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4817 4818 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4819 // version of the instruction. 4820 // Is it beneficial to perform intrinsic call compared to lib call? 4821 bool NeedToScalarize; 4822 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4823 bool UseVectorIntrinsic = 4824 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4825 assert((UseVectorIntrinsic || !NeedToScalarize) && 4826 "Instruction should be scalarized elsewhere."); 4827 4828 for (unsigned Part = 0; Part < UF; ++Part) { 4829 SmallVector<Value *, 4> Args; 4830 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4831 Value *Arg = CI->getArgOperand(i); 4832 // Some intrinsics have a scalar argument - don't replace it with a 4833 // vector. 4834 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4835 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4836 Args.push_back(Arg); 4837 } 4838 4839 Function *VectorF; 4840 if (UseVectorIntrinsic) { 4841 // Use vector version of the intrinsic. 4842 Type *TysForDecl[] = {CI->getType()}; 4843 if (VF > 1) 4844 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4845 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4846 } else { 4847 // Use vector version of the library call. 4848 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4849 assert(!VFnName.empty() && "Vector function name is empty."); 4850 VectorF = M->getFunction(VFnName); 4851 if (!VectorF) { 4852 // Generate a declaration 4853 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4854 VectorF = 4855 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4856 VectorF->copyAttributesFrom(F); 4857 } 4858 } 4859 assert(VectorF && "Can't create vector function."); 4860 4861 SmallVector<OperandBundleDef, 1> OpBundles; 4862 CI->getOperandBundlesAsDefs(OpBundles); 4863 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4864 4865 if (isa<FPMathOperator>(V)) 4866 V->copyFastMathFlags(CI); 4867 4868 VectorLoopValueMap.setVectorValue(&I, Part, V); 4869 addMetadata(V, &I); 4870 } 4871 4872 break; 4873 } 4874 4875 default: 4876 // All other instructions are scalarized. 4877 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4878 llvm_unreachable("Unhandled instruction!"); 4879 } // end of switch. 4880 } 4881 4882 void InnerLoopVectorizer::updateAnalysis() { 4883 // Forget the original basic block. 4884 PSE.getSE()->forgetLoop(OrigLoop); 4885 4886 // Update the dominator tree information. 4887 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4888 "Entry does not dominate exit."); 4889 4890 DT->addNewBlock(LoopMiddleBlock, 4891 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4892 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4893 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4894 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4895 DEBUG(DT->verifyDomTree()); 4896 } 4897 4898 /// \brief Check whether it is safe to if-convert this phi node. 4899 /// 4900 /// Phi nodes with constant expressions that can trap are not safe to if 4901 /// convert. 4902 static bool canIfConvertPHINodes(BasicBlock *BB) { 4903 for (Instruction &I : *BB) { 4904 auto *Phi = dyn_cast<PHINode>(&I); 4905 if (!Phi) 4906 return true; 4907 for (Value *V : Phi->incoming_values()) 4908 if (auto *C = dyn_cast<Constant>(V)) 4909 if (C->canTrap()) 4910 return false; 4911 } 4912 return true; 4913 } 4914 4915 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4916 if (!EnableIfConversion) { 4917 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4918 << "if-conversion is disabled"); 4919 return false; 4920 } 4921 4922 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4923 4924 // A list of pointers that we can safely read and write to. 4925 SmallPtrSet<Value *, 8> SafePointes; 4926 4927 // Collect safe addresses. 4928 for (BasicBlock *BB : TheLoop->blocks()) { 4929 if (blockNeedsPredication(BB)) 4930 continue; 4931 4932 for (Instruction &I : *BB) 4933 if (auto *Ptr = getPointerOperand(&I)) 4934 SafePointes.insert(Ptr); 4935 } 4936 4937 // Collect the blocks that need predication. 4938 BasicBlock *Header = TheLoop->getHeader(); 4939 for (BasicBlock *BB : TheLoop->blocks()) { 4940 // We don't support switch statements inside loops. 4941 if (!isa<BranchInst>(BB->getTerminator())) { 4942 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4943 << "loop contains a switch statement"); 4944 return false; 4945 } 4946 4947 // We must be able to predicate all blocks that need to be predicated. 4948 if (blockNeedsPredication(BB)) { 4949 if (!blockCanBePredicated(BB, SafePointes)) { 4950 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4951 << "control flow cannot be substituted for a select"); 4952 return false; 4953 } 4954 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4955 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4956 << "control flow cannot be substituted for a select"); 4957 return false; 4958 } 4959 } 4960 4961 // We can if-convert this loop. 4962 return true; 4963 } 4964 4965 bool LoopVectorizationLegality::canVectorize() { 4966 // Store the result and return it at the end instead of exiting early, in case 4967 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4968 bool Result = true; 4969 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4970 // be canonicalized. 4971 if (!TheLoop->getLoopPreheader()) { 4972 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4973 << "loop control flow is not understood by vectorizer"); 4974 if (ORE->allowExtraAnalysis()) 4975 Result = false; 4976 else 4977 return false; 4978 } 4979 4980 // FIXME: The code is currently dead, since the loop gets sent to 4981 // LoopVectorizationLegality is already an innermost loop. 4982 // 4983 // We can only vectorize innermost loops. 4984 if (!TheLoop->empty()) { 4985 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4986 << "loop is not the innermost loop"); 4987 if (ORE->allowExtraAnalysis()) 4988 Result = false; 4989 else 4990 return false; 4991 } 4992 4993 // We must have a single backedge. 4994 if (TheLoop->getNumBackEdges() != 1) { 4995 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4996 << "loop control flow is not understood by vectorizer"); 4997 if (ORE->allowExtraAnalysis()) 4998 Result = false; 4999 else 5000 return false; 5001 } 5002 5003 // We must have a single exiting block. 5004 if (!TheLoop->getExitingBlock()) { 5005 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5006 << "loop control flow is not understood by vectorizer"); 5007 if (ORE->allowExtraAnalysis()) 5008 Result = false; 5009 else 5010 return false; 5011 } 5012 5013 // We only handle bottom-tested loops, i.e. loop in which the condition is 5014 // checked at the end of each iteration. With that we can assume that all 5015 // instructions in the loop are executed the same number of times. 5016 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5017 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5018 << "loop control flow is not understood by vectorizer"); 5019 if (ORE->allowExtraAnalysis()) 5020 Result = false; 5021 else 5022 return false; 5023 } 5024 5025 // We need to have a loop header. 5026 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5027 << '\n'); 5028 5029 // Check if we can if-convert non-single-bb loops. 5030 unsigned NumBlocks = TheLoop->getNumBlocks(); 5031 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5032 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5033 if (ORE->allowExtraAnalysis()) 5034 Result = false; 5035 else 5036 return false; 5037 } 5038 5039 // Check if we can vectorize the instructions and CFG in this loop. 5040 if (!canVectorizeInstrs()) { 5041 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5042 if (ORE->allowExtraAnalysis()) 5043 Result = false; 5044 else 5045 return false; 5046 } 5047 5048 // Go over each instruction and look at memory deps. 5049 if (!canVectorizeMemory()) { 5050 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5051 if (ORE->allowExtraAnalysis()) 5052 Result = false; 5053 else 5054 return false; 5055 } 5056 5057 DEBUG(dbgs() << "LV: We can vectorize this loop" 5058 << (LAI->getRuntimePointerChecking()->Need 5059 ? " (with a runtime bound check)" 5060 : "") 5061 << "!\n"); 5062 5063 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5064 5065 // If an override option has been passed in for interleaved accesses, use it. 5066 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5067 UseInterleaved = EnableInterleavedMemAccesses; 5068 5069 // Analyze interleaved memory accesses. 5070 if (UseInterleaved) 5071 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5072 5073 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5074 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5075 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5076 5077 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5078 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5079 << "Too many SCEV assumptions need to be made and checked " 5080 << "at runtime"); 5081 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5082 if (ORE->allowExtraAnalysis()) 5083 Result = false; 5084 else 5085 return false; 5086 } 5087 5088 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5089 // we can vectorize, and at this point we don't have any other mem analysis 5090 // which may limit our maximum vectorization factor, so just return true with 5091 // no restrictions. 5092 return Result; 5093 } 5094 5095 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5096 if (Ty->isPointerTy()) 5097 return DL.getIntPtrType(Ty); 5098 5099 // It is possible that char's or short's overflow when we ask for the loop's 5100 // trip count, work around this by changing the type size. 5101 if (Ty->getScalarSizeInBits() < 32) 5102 return Type::getInt32Ty(Ty->getContext()); 5103 5104 return Ty; 5105 } 5106 5107 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5108 Ty0 = convertPointerToIntegerType(DL, Ty0); 5109 Ty1 = convertPointerToIntegerType(DL, Ty1); 5110 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5111 return Ty0; 5112 return Ty1; 5113 } 5114 5115 /// \brief Check that the instruction has outside loop users and is not an 5116 /// identified reduction variable. 5117 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5118 SmallPtrSetImpl<Value *> &AllowedExit) { 5119 // Reduction and Induction instructions are allowed to have exit users. All 5120 // other instructions must not have external users. 5121 if (!AllowedExit.count(Inst)) 5122 // Check that all of the users of the loop are inside the BB. 5123 for (User *U : Inst->users()) { 5124 Instruction *UI = cast<Instruction>(U); 5125 // This user may be a reduction exit value. 5126 if (!TheLoop->contains(UI)) { 5127 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5128 return true; 5129 } 5130 } 5131 return false; 5132 } 5133 5134 void LoopVectorizationLegality::addInductionPhi( 5135 PHINode *Phi, const InductionDescriptor &ID, 5136 SmallPtrSetImpl<Value *> &AllowedExit) { 5137 Inductions[Phi] = ID; 5138 Type *PhiTy = Phi->getType(); 5139 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5140 5141 // Get the widest type. 5142 if (!PhiTy->isFloatingPointTy()) { 5143 if (!WidestIndTy) 5144 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5145 else 5146 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5147 } 5148 5149 // Int inductions are special because we only allow one IV. 5150 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5151 ID.getConstIntStepValue() && 5152 ID.getConstIntStepValue()->isOne() && 5153 isa<Constant>(ID.getStartValue()) && 5154 cast<Constant>(ID.getStartValue())->isNullValue()) { 5155 5156 // Use the phi node with the widest type as induction. Use the last 5157 // one if there are multiple (no good reason for doing this other 5158 // than it is expedient). We've checked that it begins at zero and 5159 // steps by one, so this is a canonical induction variable. 5160 if (!PrimaryInduction || PhiTy == WidestIndTy) 5161 PrimaryInduction = Phi; 5162 } 5163 5164 // Both the PHI node itself, and the "post-increment" value feeding 5165 // back into the PHI node may have external users. 5166 // We can allow those uses, except if the SCEVs we have for them rely 5167 // on predicates that only hold within the loop, since allowing the exit 5168 // currently means re-using this SCEV outside the loop. 5169 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5170 AllowedExit.insert(Phi); 5171 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5172 } 5173 5174 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5175 return; 5176 } 5177 5178 bool LoopVectorizationLegality::canVectorizeInstrs() { 5179 BasicBlock *Header = TheLoop->getHeader(); 5180 5181 // Look for the attribute signaling the absence of NaNs. 5182 Function &F = *Header->getParent(); 5183 HasFunNoNaNAttr = 5184 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5185 5186 // For each block in the loop. 5187 for (BasicBlock *BB : TheLoop->blocks()) { 5188 // Scan the instructions in the block and look for hazards. 5189 for (Instruction &I : *BB) { 5190 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5191 Type *PhiTy = Phi->getType(); 5192 // Check that this PHI type is allowed. 5193 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5194 !PhiTy->isPointerTy()) { 5195 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5196 << "loop control flow is not understood by vectorizer"); 5197 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5198 return false; 5199 } 5200 5201 // If this PHINode is not in the header block, then we know that we 5202 // can convert it to select during if-conversion. No need to check if 5203 // the PHIs in this block are induction or reduction variables. 5204 if (BB != Header) { 5205 // Check that this instruction has no outside users or is an 5206 // identified reduction value with an outside user. 5207 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5208 continue; 5209 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5210 << "value could not be identified as " 5211 "an induction or reduction variable"); 5212 return false; 5213 } 5214 5215 // We only allow if-converted PHIs with exactly two incoming values. 5216 if (Phi->getNumIncomingValues() != 2) { 5217 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5218 << "control flow not understood by vectorizer"); 5219 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5220 return false; 5221 } 5222 5223 RecurrenceDescriptor RedDes; 5224 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5225 if (RedDes.hasUnsafeAlgebra()) 5226 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5227 AllowedExit.insert(RedDes.getLoopExitInstr()); 5228 Reductions[Phi] = RedDes; 5229 continue; 5230 } 5231 5232 InductionDescriptor ID; 5233 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5234 addInductionPhi(Phi, ID, AllowedExit); 5235 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5236 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5237 continue; 5238 } 5239 5240 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5241 SinkAfter, DT)) { 5242 FirstOrderRecurrences.insert(Phi); 5243 continue; 5244 } 5245 5246 // As a last resort, coerce the PHI to a AddRec expression 5247 // and re-try classifying it a an induction PHI. 5248 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5249 addInductionPhi(Phi, ID, AllowedExit); 5250 continue; 5251 } 5252 5253 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5254 << "value that could not be identified as " 5255 "reduction is used outside the loop"); 5256 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5257 return false; 5258 } // end of PHI handling 5259 5260 // We handle calls that: 5261 // * Are debug info intrinsics. 5262 // * Have a mapping to an IR intrinsic. 5263 // * Have a vector version available. 5264 auto *CI = dyn_cast<CallInst>(&I); 5265 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5266 !isa<DbgInfoIntrinsic>(CI) && 5267 !(CI->getCalledFunction() && TLI && 5268 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5269 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5270 << "call instruction cannot be vectorized"); 5271 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5272 return false; 5273 } 5274 5275 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5276 // second argument is the same (i.e. loop invariant) 5277 if (CI && hasVectorInstrinsicScalarOpd( 5278 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5279 auto *SE = PSE.getSE(); 5280 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5281 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5282 << "intrinsic instruction cannot be vectorized"); 5283 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5284 return false; 5285 } 5286 } 5287 5288 // Check that the instruction return type is vectorizable. 5289 // Also, we can't vectorize extractelement instructions. 5290 if ((!VectorType::isValidElementType(I.getType()) && 5291 !I.getType()->isVoidTy()) || 5292 isa<ExtractElementInst>(I)) { 5293 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5294 << "instruction return type cannot be vectorized"); 5295 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5296 return false; 5297 } 5298 5299 // Check that the stored type is vectorizable. 5300 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5301 Type *T = ST->getValueOperand()->getType(); 5302 if (!VectorType::isValidElementType(T)) { 5303 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5304 << "store instruction cannot be vectorized"); 5305 return false; 5306 } 5307 5308 // FP instructions can allow unsafe algebra, thus vectorizable by 5309 // non-IEEE-754 compliant SIMD units. 5310 // This applies to floating-point math operations and calls, not memory 5311 // operations, shuffles, or casts, as they don't change precision or 5312 // semantics. 5313 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5314 !I.hasUnsafeAlgebra()) { 5315 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5316 Hints->setPotentiallyUnsafe(); 5317 } 5318 5319 // Reduction instructions are allowed to have exit users. 5320 // All other instructions must not have external users. 5321 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5322 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5323 << "value cannot be used outside the loop"); 5324 return false; 5325 } 5326 5327 } // next instr. 5328 } 5329 5330 if (!PrimaryInduction) { 5331 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5332 if (Inductions.empty()) { 5333 ORE->emit(createMissedAnalysis("NoInductionVariable") 5334 << "loop induction variable could not be identified"); 5335 return false; 5336 } 5337 } 5338 5339 // Now we know the widest induction type, check if our found induction 5340 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5341 // will create another. 5342 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5343 PrimaryInduction = nullptr; 5344 5345 return true; 5346 } 5347 5348 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5349 5350 // We should not collect Scalars more than once per VF. Right now, this 5351 // function is called from collectUniformsAndScalars(), which already does 5352 // this check. Collecting Scalars for VF=1 does not make any sense. 5353 assert(VF >= 2 && !Scalars.count(VF) && 5354 "This function should not be visited twice for the same VF"); 5355 5356 SmallSetVector<Instruction *, 8> Worklist; 5357 5358 // These sets are used to seed the analysis with pointers used by memory 5359 // accesses that will remain scalar. 5360 SmallSetVector<Instruction *, 8> ScalarPtrs; 5361 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5362 5363 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5364 // The pointer operands of loads and stores will be scalar as long as the 5365 // memory access is not a gather or scatter operation. The value operand of a 5366 // store will remain scalar if the store is scalarized. 5367 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5368 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5369 assert(WideningDecision != CM_Unknown && 5370 "Widening decision should be ready at this moment"); 5371 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5372 if (Ptr == Store->getValueOperand()) 5373 return WideningDecision == CM_Scalarize; 5374 assert(Ptr == getPointerOperand(MemAccess) && 5375 "Ptr is neither a value or pointer operand"); 5376 return WideningDecision != CM_GatherScatter; 5377 }; 5378 5379 // A helper that returns true if the given value is a bitcast or 5380 // getelementptr instruction contained in the loop. 5381 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5382 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5383 isa<GetElementPtrInst>(V)) && 5384 !TheLoop->isLoopInvariant(V); 5385 }; 5386 5387 // A helper that evaluates a memory access's use of a pointer. If the use 5388 // will be a scalar use, and the pointer is only used by memory accesses, we 5389 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5390 // PossibleNonScalarPtrs. 5391 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5392 5393 // We only care about bitcast and getelementptr instructions contained in 5394 // the loop. 5395 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5396 return; 5397 5398 // If the pointer has already been identified as scalar (e.g., if it was 5399 // also identified as uniform), there's nothing to do. 5400 auto *I = cast<Instruction>(Ptr); 5401 if (Worklist.count(I)) 5402 return; 5403 5404 // If the use of the pointer will be a scalar use, and all users of the 5405 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5406 // place the pointer in PossibleNonScalarPtrs. 5407 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5408 return isa<LoadInst>(U) || isa<StoreInst>(U); 5409 })) 5410 ScalarPtrs.insert(I); 5411 else 5412 PossibleNonScalarPtrs.insert(I); 5413 }; 5414 5415 // We seed the scalars analysis with three classes of instructions: (1) 5416 // instructions marked uniform-after-vectorization, (2) bitcast and 5417 // getelementptr instructions used by memory accesses requiring a scalar use, 5418 // and (3) pointer induction variables and their update instructions (we 5419 // currently only scalarize these). 5420 // 5421 // (1) Add to the worklist all instructions that have been identified as 5422 // uniform-after-vectorization. 5423 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5424 5425 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5426 // memory accesses requiring a scalar use. The pointer operands of loads and 5427 // stores will be scalar as long as the memory accesses is not a gather or 5428 // scatter operation. The value operand of a store will remain scalar if the 5429 // store is scalarized. 5430 for (auto *BB : TheLoop->blocks()) 5431 for (auto &I : *BB) { 5432 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5433 evaluatePtrUse(Load, Load->getPointerOperand()); 5434 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5435 evaluatePtrUse(Store, Store->getPointerOperand()); 5436 evaluatePtrUse(Store, Store->getValueOperand()); 5437 } 5438 } 5439 for (auto *I : ScalarPtrs) 5440 if (!PossibleNonScalarPtrs.count(I)) { 5441 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5442 Worklist.insert(I); 5443 } 5444 5445 // (3) Add to the worklist all pointer induction variables and their update 5446 // instructions. 5447 // 5448 // TODO: Once we are able to vectorize pointer induction variables we should 5449 // no longer insert them into the worklist here. 5450 auto *Latch = TheLoop->getLoopLatch(); 5451 for (auto &Induction : *Legal->getInductionVars()) { 5452 auto *Ind = Induction.first; 5453 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5454 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5455 continue; 5456 Worklist.insert(Ind); 5457 Worklist.insert(IndUpdate); 5458 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5459 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5460 } 5461 5462 // Insert the forced scalars. 5463 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5464 // induction variable when the PHI user is scalarized. 5465 if (ForcedScalars.count(VF)) 5466 for (auto *I : ForcedScalars.find(VF)->second) 5467 Worklist.insert(I); 5468 5469 // Expand the worklist by looking through any bitcasts and getelementptr 5470 // instructions we've already identified as scalar. This is similar to the 5471 // expansion step in collectLoopUniforms(); however, here we're only 5472 // expanding to include additional bitcasts and getelementptr instructions. 5473 unsigned Idx = 0; 5474 while (Idx != Worklist.size()) { 5475 Instruction *Dst = Worklist[Idx++]; 5476 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5477 continue; 5478 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5479 if (all_of(Src->users(), [&](User *U) -> bool { 5480 auto *J = cast<Instruction>(U); 5481 return !TheLoop->contains(J) || Worklist.count(J) || 5482 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5483 isScalarUse(J, Src)); 5484 })) { 5485 Worklist.insert(Src); 5486 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5487 } 5488 } 5489 5490 // An induction variable will remain scalar if all users of the induction 5491 // variable and induction variable update remain scalar. 5492 for (auto &Induction : *Legal->getInductionVars()) { 5493 auto *Ind = Induction.first; 5494 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5495 5496 // We already considered pointer induction variables, so there's no reason 5497 // to look at their users again. 5498 // 5499 // TODO: Once we are able to vectorize pointer induction variables we 5500 // should no longer skip over them here. 5501 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5502 continue; 5503 5504 // Determine if all users of the induction variable are scalar after 5505 // vectorization. 5506 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5507 auto *I = cast<Instruction>(U); 5508 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5509 }); 5510 if (!ScalarInd) 5511 continue; 5512 5513 // Determine if all users of the induction variable update instruction are 5514 // scalar after vectorization. 5515 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5516 auto *I = cast<Instruction>(U); 5517 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5518 }); 5519 if (!ScalarIndUpdate) 5520 continue; 5521 5522 // The induction variable and its update instruction will remain scalar. 5523 Worklist.insert(Ind); 5524 Worklist.insert(IndUpdate); 5525 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5526 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5527 } 5528 5529 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5530 } 5531 5532 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5533 if (!blockNeedsPredication(I->getParent())) 5534 return false; 5535 switch(I->getOpcode()) { 5536 default: 5537 break; 5538 case Instruction::Store: 5539 return !isMaskRequired(I); 5540 case Instruction::UDiv: 5541 case Instruction::SDiv: 5542 case Instruction::SRem: 5543 case Instruction::URem: 5544 return mayDivideByZero(*I); 5545 } 5546 return false; 5547 } 5548 5549 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5550 unsigned VF) { 5551 // Get and ensure we have a valid memory instruction. 5552 LoadInst *LI = dyn_cast<LoadInst>(I); 5553 StoreInst *SI = dyn_cast<StoreInst>(I); 5554 assert((LI || SI) && "Invalid memory instruction"); 5555 5556 auto *Ptr = getPointerOperand(I); 5557 5558 // In order to be widened, the pointer should be consecutive, first of all. 5559 if (!isConsecutivePtr(Ptr)) 5560 return false; 5561 5562 // If the instruction is a store located in a predicated block, it will be 5563 // scalarized. 5564 if (isScalarWithPredication(I)) 5565 return false; 5566 5567 // If the instruction's allocated size doesn't equal it's type size, it 5568 // requires padding and will be scalarized. 5569 auto &DL = I->getModule()->getDataLayout(); 5570 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5571 if (hasIrregularType(ScalarTy, DL, VF)) 5572 return false; 5573 5574 return true; 5575 } 5576 5577 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5578 5579 // We should not collect Uniforms more than once per VF. Right now, 5580 // this function is called from collectUniformsAndScalars(), which 5581 // already does this check. Collecting Uniforms for VF=1 does not make any 5582 // sense. 5583 5584 assert(VF >= 2 && !Uniforms.count(VF) && 5585 "This function should not be visited twice for the same VF"); 5586 5587 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5588 // not analyze again. Uniforms.count(VF) will return 1. 5589 Uniforms[VF].clear(); 5590 5591 // We now know that the loop is vectorizable! 5592 // Collect instructions inside the loop that will remain uniform after 5593 // vectorization. 5594 5595 // Global values, params and instructions outside of current loop are out of 5596 // scope. 5597 auto isOutOfScope = [&](Value *V) -> bool { 5598 Instruction *I = dyn_cast<Instruction>(V); 5599 return (!I || !TheLoop->contains(I)); 5600 }; 5601 5602 SetVector<Instruction *> Worklist; 5603 BasicBlock *Latch = TheLoop->getLoopLatch(); 5604 5605 // Start with the conditional branch. If the branch condition is an 5606 // instruction contained in the loop that is only used by the branch, it is 5607 // uniform. 5608 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5609 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5610 Worklist.insert(Cmp); 5611 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5612 } 5613 5614 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5615 // are pointers that are treated like consecutive pointers during 5616 // vectorization. The pointer operands of interleaved accesses are an 5617 // example. 5618 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5619 5620 // Holds pointer operands of instructions that are possibly non-uniform. 5621 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5622 5623 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5624 InstWidening WideningDecision = getWideningDecision(I, VF); 5625 assert(WideningDecision != CM_Unknown && 5626 "Widening decision should be ready at this moment"); 5627 5628 return (WideningDecision == CM_Widen || 5629 WideningDecision == CM_Interleave); 5630 }; 5631 // Iterate over the instructions in the loop, and collect all 5632 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5633 // that a consecutive-like pointer operand will be scalarized, we collect it 5634 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5635 // getelementptr instruction can be used by both vectorized and scalarized 5636 // memory instructions. For example, if a loop loads and stores from the same 5637 // location, but the store is conditional, the store will be scalarized, and 5638 // the getelementptr won't remain uniform. 5639 for (auto *BB : TheLoop->blocks()) 5640 for (auto &I : *BB) { 5641 5642 // If there's no pointer operand, there's nothing to do. 5643 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5644 if (!Ptr) 5645 continue; 5646 5647 // True if all users of Ptr are memory accesses that have Ptr as their 5648 // pointer operand. 5649 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5650 return getPointerOperand(U) == Ptr; 5651 }); 5652 5653 // Ensure the memory instruction will not be scalarized or used by 5654 // gather/scatter, making its pointer operand non-uniform. If the pointer 5655 // operand is used by any instruction other than a memory access, we 5656 // conservatively assume the pointer operand may be non-uniform. 5657 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5658 PossibleNonUniformPtrs.insert(Ptr); 5659 5660 // If the memory instruction will be vectorized and its pointer operand 5661 // is consecutive-like, or interleaving - the pointer operand should 5662 // remain uniform. 5663 else 5664 ConsecutiveLikePtrs.insert(Ptr); 5665 } 5666 5667 // Add to the Worklist all consecutive and consecutive-like pointers that 5668 // aren't also identified as possibly non-uniform. 5669 for (auto *V : ConsecutiveLikePtrs) 5670 if (!PossibleNonUniformPtrs.count(V)) { 5671 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5672 Worklist.insert(V); 5673 } 5674 5675 // Expand Worklist in topological order: whenever a new instruction 5676 // is added , its users should be either already inside Worklist, or 5677 // out of scope. It ensures a uniform instruction will only be used 5678 // by uniform instructions or out of scope instructions. 5679 unsigned idx = 0; 5680 while (idx != Worklist.size()) { 5681 Instruction *I = Worklist[idx++]; 5682 5683 for (auto OV : I->operand_values()) { 5684 if (isOutOfScope(OV)) 5685 continue; 5686 auto *OI = cast<Instruction>(OV); 5687 if (all_of(OI->users(), [&](User *U) -> bool { 5688 auto *J = cast<Instruction>(U); 5689 return !TheLoop->contains(J) || Worklist.count(J) || 5690 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5691 })) { 5692 Worklist.insert(OI); 5693 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5694 } 5695 } 5696 } 5697 5698 // Returns true if Ptr is the pointer operand of a memory access instruction 5699 // I, and I is known to not require scalarization. 5700 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5701 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5702 }; 5703 5704 // For an instruction to be added into Worklist above, all its users inside 5705 // the loop should also be in Worklist. However, this condition cannot be 5706 // true for phi nodes that form a cyclic dependence. We must process phi 5707 // nodes separately. An induction variable will remain uniform if all users 5708 // of the induction variable and induction variable update remain uniform. 5709 // The code below handles both pointer and non-pointer induction variables. 5710 for (auto &Induction : *Legal->getInductionVars()) { 5711 auto *Ind = Induction.first; 5712 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5713 5714 // Determine if all users of the induction variable are uniform after 5715 // vectorization. 5716 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5717 auto *I = cast<Instruction>(U); 5718 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5719 isVectorizedMemAccessUse(I, Ind); 5720 }); 5721 if (!UniformInd) 5722 continue; 5723 5724 // Determine if all users of the induction variable update instruction are 5725 // uniform after vectorization. 5726 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5727 auto *I = cast<Instruction>(U); 5728 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5729 isVectorizedMemAccessUse(I, IndUpdate); 5730 }); 5731 if (!UniformIndUpdate) 5732 continue; 5733 5734 // The induction variable and its update instruction will remain uniform. 5735 Worklist.insert(Ind); 5736 Worklist.insert(IndUpdate); 5737 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5738 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5739 } 5740 5741 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5742 } 5743 5744 bool LoopVectorizationLegality::canVectorizeMemory() { 5745 LAI = &(*GetLAA)(*TheLoop); 5746 InterleaveInfo.setLAI(LAI); 5747 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5748 if (LAR) { 5749 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5750 "loop not vectorized: ", *LAR); 5751 ORE->emit(VR); 5752 } 5753 if (!LAI->canVectorizeMemory()) 5754 return false; 5755 5756 if (LAI->hasStoreToLoopInvariantAddress()) { 5757 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5758 << "write to a loop invariant address could not be vectorized"); 5759 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5760 return false; 5761 } 5762 5763 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5764 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5765 5766 return true; 5767 } 5768 5769 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5770 Value *In0 = const_cast<Value *>(V); 5771 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5772 if (!PN) 5773 return false; 5774 5775 return Inductions.count(PN); 5776 } 5777 5778 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5779 return FirstOrderRecurrences.count(Phi); 5780 } 5781 5782 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5783 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5784 } 5785 5786 bool LoopVectorizationLegality::blockCanBePredicated( 5787 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5788 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5789 5790 for (Instruction &I : *BB) { 5791 // Check that we don't have a constant expression that can trap as operand. 5792 for (Value *Operand : I.operands()) { 5793 if (auto *C = dyn_cast<Constant>(Operand)) 5794 if (C->canTrap()) 5795 return false; 5796 } 5797 // We might be able to hoist the load. 5798 if (I.mayReadFromMemory()) { 5799 auto *LI = dyn_cast<LoadInst>(&I); 5800 if (!LI) 5801 return false; 5802 if (!SafePtrs.count(LI->getPointerOperand())) { 5803 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5804 isLegalMaskedGather(LI->getType())) { 5805 MaskedOp.insert(LI); 5806 continue; 5807 } 5808 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5809 if (IsAnnotatedParallel) 5810 continue; 5811 return false; 5812 } 5813 } 5814 5815 if (I.mayWriteToMemory()) { 5816 auto *SI = dyn_cast<StoreInst>(&I); 5817 // We only support predication of stores in basic blocks with one 5818 // predecessor. 5819 if (!SI) 5820 return false; 5821 5822 // Build a masked store if it is legal for the target. 5823 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5824 SI->getPointerOperand()) || 5825 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5826 MaskedOp.insert(SI); 5827 continue; 5828 } 5829 5830 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5831 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5832 5833 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5834 !isSinglePredecessor) 5835 return false; 5836 } 5837 if (I.mayThrow()) 5838 return false; 5839 } 5840 5841 return true; 5842 } 5843 5844 void InterleavedAccessInfo::collectConstStrideAccesses( 5845 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5846 const ValueToValueMap &Strides) { 5847 5848 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5849 5850 // Since it's desired that the load/store instructions be maintained in 5851 // "program order" for the interleaved access analysis, we have to visit the 5852 // blocks in the loop in reverse postorder (i.e., in a topological order). 5853 // Such an ordering will ensure that any load/store that may be executed 5854 // before a second load/store will precede the second load/store in 5855 // AccessStrideInfo. 5856 LoopBlocksDFS DFS(TheLoop); 5857 DFS.perform(LI); 5858 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5859 for (auto &I : *BB) { 5860 auto *LI = dyn_cast<LoadInst>(&I); 5861 auto *SI = dyn_cast<StoreInst>(&I); 5862 if (!LI && !SI) 5863 continue; 5864 5865 Value *Ptr = getPointerOperand(&I); 5866 // We don't check wrapping here because we don't know yet if Ptr will be 5867 // part of a full group or a group with gaps. Checking wrapping for all 5868 // pointers (even those that end up in groups with no gaps) will be overly 5869 // conservative. For full groups, wrapping should be ok since if we would 5870 // wrap around the address space we would do a memory access at nullptr 5871 // even without the transformation. The wrapping checks are therefore 5872 // deferred until after we've formed the interleaved groups. 5873 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5874 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5875 5876 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5877 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5878 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5879 5880 // An alignment of 0 means target ABI alignment. 5881 unsigned Align = getMemInstAlignment(&I); 5882 if (!Align) 5883 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5884 5885 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5886 } 5887 } 5888 5889 // Analyze interleaved accesses and collect them into interleaved load and 5890 // store groups. 5891 // 5892 // When generating code for an interleaved load group, we effectively hoist all 5893 // loads in the group to the location of the first load in program order. When 5894 // generating code for an interleaved store group, we sink all stores to the 5895 // location of the last store. This code motion can change the order of load 5896 // and store instructions and may break dependences. 5897 // 5898 // The code generation strategy mentioned above ensures that we won't violate 5899 // any write-after-read (WAR) dependences. 5900 // 5901 // E.g., for the WAR dependence: a = A[i]; // (1) 5902 // A[i] = b; // (2) 5903 // 5904 // The store group of (2) is always inserted at or below (2), and the load 5905 // group of (1) is always inserted at or above (1). Thus, the instructions will 5906 // never be reordered. All other dependences are checked to ensure the 5907 // correctness of the instruction reordering. 5908 // 5909 // The algorithm visits all memory accesses in the loop in bottom-up program 5910 // order. Program order is established by traversing the blocks in the loop in 5911 // reverse postorder when collecting the accesses. 5912 // 5913 // We visit the memory accesses in bottom-up order because it can simplify the 5914 // construction of store groups in the presence of write-after-write (WAW) 5915 // dependences. 5916 // 5917 // E.g., for the WAW dependence: A[i] = a; // (1) 5918 // A[i] = b; // (2) 5919 // A[i + 1] = c; // (3) 5920 // 5921 // We will first create a store group with (3) and (2). (1) can't be added to 5922 // this group because it and (2) are dependent. However, (1) can be grouped 5923 // with other accesses that may precede it in program order. Note that a 5924 // bottom-up order does not imply that WAW dependences should not be checked. 5925 void InterleavedAccessInfo::analyzeInterleaving( 5926 const ValueToValueMap &Strides) { 5927 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5928 5929 // Holds all accesses with a constant stride. 5930 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5931 collectConstStrideAccesses(AccessStrideInfo, Strides); 5932 5933 if (AccessStrideInfo.empty()) 5934 return; 5935 5936 // Collect the dependences in the loop. 5937 collectDependences(); 5938 5939 // Holds all interleaved store groups temporarily. 5940 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5941 // Holds all interleaved load groups temporarily. 5942 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5943 5944 // Search in bottom-up program order for pairs of accesses (A and B) that can 5945 // form interleaved load or store groups. In the algorithm below, access A 5946 // precedes access B in program order. We initialize a group for B in the 5947 // outer loop of the algorithm, and then in the inner loop, we attempt to 5948 // insert each A into B's group if: 5949 // 5950 // 1. A and B have the same stride, 5951 // 2. A and B have the same memory object size, and 5952 // 3. A belongs in B's group according to its distance from B. 5953 // 5954 // Special care is taken to ensure group formation will not break any 5955 // dependences. 5956 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5957 BI != E; ++BI) { 5958 Instruction *B = BI->first; 5959 StrideDescriptor DesB = BI->second; 5960 5961 // Initialize a group for B if it has an allowable stride. Even if we don't 5962 // create a group for B, we continue with the bottom-up algorithm to ensure 5963 // we don't break any of B's dependences. 5964 InterleaveGroup *Group = nullptr; 5965 if (isStrided(DesB.Stride)) { 5966 Group = getInterleaveGroup(B); 5967 if (!Group) { 5968 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5969 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5970 } 5971 if (B->mayWriteToMemory()) 5972 StoreGroups.insert(Group); 5973 else 5974 LoadGroups.insert(Group); 5975 } 5976 5977 for (auto AI = std::next(BI); AI != E; ++AI) { 5978 Instruction *A = AI->first; 5979 StrideDescriptor DesA = AI->second; 5980 5981 // Our code motion strategy implies that we can't have dependences 5982 // between accesses in an interleaved group and other accesses located 5983 // between the first and last member of the group. Note that this also 5984 // means that a group can't have more than one member at a given offset. 5985 // The accesses in a group can have dependences with other accesses, but 5986 // we must ensure we don't extend the boundaries of the group such that 5987 // we encompass those dependent accesses. 5988 // 5989 // For example, assume we have the sequence of accesses shown below in a 5990 // stride-2 loop: 5991 // 5992 // (1, 2) is a group | A[i] = a; // (1) 5993 // | A[i-1] = b; // (2) | 5994 // A[i-3] = c; // (3) 5995 // A[i] = d; // (4) | (2, 4) is not a group 5996 // 5997 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5998 // but not with (4). If we did, the dependent access (3) would be within 5999 // the boundaries of the (2, 4) group. 6000 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6001 6002 // If a dependence exists and A is already in a group, we know that A 6003 // must be a store since A precedes B and WAR dependences are allowed. 6004 // Thus, A would be sunk below B. We release A's group to prevent this 6005 // illegal code motion. A will then be free to form another group with 6006 // instructions that precede it. 6007 if (isInterleaved(A)) { 6008 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6009 StoreGroups.remove(StoreGroup); 6010 releaseGroup(StoreGroup); 6011 } 6012 6013 // If a dependence exists and A is not already in a group (or it was 6014 // and we just released it), B might be hoisted above A (if B is a 6015 // load) or another store might be sunk below A (if B is a store). In 6016 // either case, we can't add additional instructions to B's group. B 6017 // will only form a group with instructions that it precedes. 6018 break; 6019 } 6020 6021 // At this point, we've checked for illegal code motion. If either A or B 6022 // isn't strided, there's nothing left to do. 6023 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6024 continue; 6025 6026 // Ignore A if it's already in a group or isn't the same kind of memory 6027 // operation as B. 6028 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6029 continue; 6030 6031 // Check rules 1 and 2. Ignore A if its stride or size is different from 6032 // that of B. 6033 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6034 continue; 6035 6036 // Ignore A if the memory object of A and B don't belong to the same 6037 // address space 6038 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6039 continue; 6040 6041 // Calculate the distance from A to B. 6042 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6043 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6044 if (!DistToB) 6045 continue; 6046 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6047 6048 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6049 // size. 6050 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6051 continue; 6052 6053 // Ignore A if either A or B is in a predicated block. Although we 6054 // currently prevent group formation for predicated accesses, we may be 6055 // able to relax this limitation in the future once we handle more 6056 // complicated blocks. 6057 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6058 continue; 6059 6060 // The index of A is the index of B plus A's distance to B in multiples 6061 // of the size. 6062 int IndexA = 6063 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6064 6065 // Try to insert A into B's group. 6066 if (Group->insertMember(A, IndexA, DesA.Align)) { 6067 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6068 << " into the interleave group with" << *B << '\n'); 6069 InterleaveGroupMap[A] = Group; 6070 6071 // Set the first load in program order as the insert position. 6072 if (A->mayReadFromMemory()) 6073 Group->setInsertPos(A); 6074 } 6075 } // Iteration over A accesses. 6076 } // Iteration over B accesses. 6077 6078 // Remove interleaved store groups with gaps. 6079 for (InterleaveGroup *Group : StoreGroups) 6080 if (Group->getNumMembers() != Group->getFactor()) 6081 releaseGroup(Group); 6082 6083 // Remove interleaved groups with gaps (currently only loads) whose memory 6084 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6085 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6086 // not check wrapping (see documentation there). 6087 // FORNOW we use Assume=false; 6088 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6089 // of runtime SCEV assumptions checks (thereby potentially failing to 6090 // vectorize altogether). 6091 // Additional optional optimizations: 6092 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6093 // wrap then we can deduce that all pointers in the group don't wrap. 6094 // This means that we can forcefully peel the loop in order to only have to 6095 // check the first pointer for no-wrap. When we'll change to use Assume=true 6096 // we'll only need at most one runtime check per interleaved group. 6097 // 6098 for (InterleaveGroup *Group : LoadGroups) { 6099 6100 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6101 // load would wrap around the address space we would do a memory access at 6102 // nullptr even without the transformation. 6103 if (Group->getNumMembers() == Group->getFactor()) 6104 continue; 6105 6106 // Case 2: If first and last members of the group don't wrap this implies 6107 // that all the pointers in the group don't wrap. 6108 // So we check only group member 0 (which is always guaranteed to exist), 6109 // and group member Factor - 1; If the latter doesn't exist we rely on 6110 // peeling (if it is a non-reveresed accsess -- see Case 3). 6111 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6112 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6113 /*ShouldCheckWrap=*/true)) { 6114 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6115 "first group member potentially pointer-wrapping.\n"); 6116 releaseGroup(Group); 6117 continue; 6118 } 6119 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6120 if (LastMember) { 6121 Value *LastMemberPtr = getPointerOperand(LastMember); 6122 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6123 /*ShouldCheckWrap=*/true)) { 6124 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6125 "last group member potentially pointer-wrapping.\n"); 6126 releaseGroup(Group); 6127 } 6128 } else { 6129 // Case 3: A non-reversed interleaved load group with gaps: We need 6130 // to execute at least one scalar epilogue iteration. This will ensure 6131 // we don't speculatively access memory out-of-bounds. We only need 6132 // to look for a member at index factor - 1, since every group must have 6133 // a member at index zero. 6134 if (Group->isReverse()) { 6135 releaseGroup(Group); 6136 continue; 6137 } 6138 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6139 RequiresScalarEpilogue = true; 6140 } 6141 } 6142 } 6143 6144 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6145 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6146 ORE->emit(createMissedAnalysis("ConditionalStore") 6147 << "store that is conditionally executed prevents vectorization"); 6148 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6149 return None; 6150 } 6151 6152 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6153 // TODO: It may by useful to do since it's still likely to be dynamically 6154 // uniform if the target can skip. 6155 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6156 6157 ORE->emit( 6158 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6159 << "runtime pointer checks needed. Not enabled for divergent target"); 6160 6161 return None; 6162 } 6163 6164 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6165 return computeFeasibleMaxVF(OptForSize); 6166 6167 if (Legal->getRuntimePointerChecking()->Need) { 6168 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6169 << "runtime pointer checks needed. Enable vectorization of this " 6170 "loop with '#pragma clang loop vectorize(enable)' when " 6171 "compiling with -Os/-Oz"); 6172 DEBUG(dbgs() 6173 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6174 return None; 6175 } 6176 6177 // If we optimize the program for size, avoid creating the tail loop. 6178 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6179 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6180 6181 // If we don't know the precise trip count, don't try to vectorize. 6182 if (TC < 2) { 6183 ORE->emit( 6184 createMissedAnalysis("UnknownLoopCountComplexCFG") 6185 << "unable to calculate the loop count due to complex control flow"); 6186 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6187 return None; 6188 } 6189 6190 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6191 6192 if (TC % MaxVF != 0) { 6193 // If the trip count that we found modulo the vectorization factor is not 6194 // zero then we require a tail. 6195 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6196 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6197 // smaller MaxVF that does not require a scalar epilog. 6198 6199 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6200 << "cannot optimize for size and vectorize at the " 6201 "same time. Enable vectorization of this loop " 6202 "with '#pragma clang loop vectorize(enable)' " 6203 "when compiling with -Os/-Oz"); 6204 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6205 return None; 6206 } 6207 6208 return MaxVF; 6209 } 6210 6211 unsigned 6212 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6213 unsigned ConstTripCount) { 6214 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6215 unsigned SmallestType, WidestType; 6216 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6217 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6218 unsigned MaxSafeDepDist = -1U; 6219 6220 // Get the maximum safe dependence distance in bits computed by LAA. If the 6221 // loop contains any interleaved accesses, we divide the dependence distance 6222 // by the maximum interleave factor of all interleaved groups. Note that 6223 // although the division ensures correctness, this is a fairly conservative 6224 // computation because the maximum distance computed by LAA may not involve 6225 // any of the interleaved accesses. 6226 if (Legal->getMaxSafeDepDistBytes() != -1U) 6227 MaxSafeDepDist = 6228 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6229 6230 WidestRegister = 6231 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6232 unsigned MaxVectorSize = WidestRegister / WidestType; 6233 6234 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6235 << WidestType << " bits.\n"); 6236 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6237 << " bits.\n"); 6238 6239 if (MaxVectorSize == 0) { 6240 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6241 MaxVectorSize = 1; 6242 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6243 isPowerOf2_32(ConstTripCount)) 6244 MaxVectorSize = ConstTripCount; 6245 6246 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6247 " into one vector!"); 6248 6249 unsigned MaxVF = MaxVectorSize; 6250 if (MaximizeBandwidth && !OptForSize) { 6251 // Collect all viable vectorization factors. 6252 SmallVector<unsigned, 8> VFs; 6253 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6254 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6255 VFs.push_back(VS); 6256 6257 // For each VF calculate its register usage. 6258 auto RUs = calculateRegisterUsage(VFs); 6259 6260 // Select the largest VF which doesn't require more registers than existing 6261 // ones. 6262 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6263 for (int i = RUs.size() - 1; i >= 0; --i) { 6264 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6265 MaxVF = VFs[i]; 6266 break; 6267 } 6268 } 6269 } 6270 return MaxVF; 6271 } 6272 6273 LoopVectorizationCostModel::VectorizationFactor 6274 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6275 float Cost = expectedCost(1).first; 6276 #ifndef NDEBUG 6277 const float ScalarCost = Cost; 6278 #endif /* NDEBUG */ 6279 unsigned Width = 1; 6280 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6281 6282 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6283 // Ignore scalar width, because the user explicitly wants vectorization. 6284 if (ForceVectorization && MaxVF > 1) { 6285 Width = 2; 6286 Cost = expectedCost(Width).first / (float)Width; 6287 } 6288 6289 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6290 // Notice that the vector loop needs to be executed less times, so 6291 // we need to divide the cost of the vector loops by the width of 6292 // the vector elements. 6293 VectorizationCostTy C = expectedCost(i); 6294 float VectorCost = C.first / (float)i; 6295 DEBUG(dbgs() << "LV: Vector loop of width " << i 6296 << " costs: " << (int)VectorCost << ".\n"); 6297 if (!C.second && !ForceVectorization) { 6298 DEBUG( 6299 dbgs() << "LV: Not considering vector loop of width " << i 6300 << " because it will not generate any vector instructions.\n"); 6301 continue; 6302 } 6303 if (VectorCost < Cost) { 6304 Cost = VectorCost; 6305 Width = i; 6306 } 6307 } 6308 6309 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6310 << "LV: Vectorization seems to be not beneficial, " 6311 << "but was forced by a user.\n"); 6312 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6313 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6314 return Factor; 6315 } 6316 6317 std::pair<unsigned, unsigned> 6318 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6319 unsigned MinWidth = -1U; 6320 unsigned MaxWidth = 8; 6321 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6322 6323 // For each block. 6324 for (BasicBlock *BB : TheLoop->blocks()) { 6325 // For each instruction in the loop. 6326 for (Instruction &I : *BB) { 6327 Type *T = I.getType(); 6328 6329 // Skip ignored values. 6330 if (ValuesToIgnore.count(&I)) 6331 continue; 6332 6333 // Only examine Loads, Stores and PHINodes. 6334 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6335 continue; 6336 6337 // Examine PHI nodes that are reduction variables. Update the type to 6338 // account for the recurrence type. 6339 if (auto *PN = dyn_cast<PHINode>(&I)) { 6340 if (!Legal->isReductionVariable(PN)) 6341 continue; 6342 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6343 T = RdxDesc.getRecurrenceType(); 6344 } 6345 6346 // Examine the stored values. 6347 if (auto *ST = dyn_cast<StoreInst>(&I)) 6348 T = ST->getValueOperand()->getType(); 6349 6350 // Ignore loaded pointer types and stored pointer types that are not 6351 // vectorizable. 6352 // 6353 // FIXME: The check here attempts to predict whether a load or store will 6354 // be vectorized. We only know this for certain after a VF has 6355 // been selected. Here, we assume that if an access can be 6356 // vectorized, it will be. We should also look at extending this 6357 // optimization to non-pointer types. 6358 // 6359 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6360 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6361 continue; 6362 6363 MinWidth = std::min(MinWidth, 6364 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6365 MaxWidth = std::max(MaxWidth, 6366 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6367 } 6368 } 6369 6370 return {MinWidth, MaxWidth}; 6371 } 6372 6373 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6374 unsigned VF, 6375 unsigned LoopCost) { 6376 6377 // -- The interleave heuristics -- 6378 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6379 // There are many micro-architectural considerations that we can't predict 6380 // at this level. For example, frontend pressure (on decode or fetch) due to 6381 // code size, or the number and capabilities of the execution ports. 6382 // 6383 // We use the following heuristics to select the interleave count: 6384 // 1. If the code has reductions, then we interleave to break the cross 6385 // iteration dependency. 6386 // 2. If the loop is really small, then we interleave to reduce the loop 6387 // overhead. 6388 // 3. We don't interleave if we think that we will spill registers to memory 6389 // due to the increased register pressure. 6390 6391 // When we optimize for size, we don't interleave. 6392 if (OptForSize) 6393 return 1; 6394 6395 // We used the distance for the interleave count. 6396 if (Legal->getMaxSafeDepDistBytes() != -1U) 6397 return 1; 6398 6399 // Do not interleave loops with a relatively small trip count. 6400 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6401 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6402 return 1; 6403 6404 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6405 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6406 << " registers\n"); 6407 6408 if (VF == 1) { 6409 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6410 TargetNumRegisters = ForceTargetNumScalarRegs; 6411 } else { 6412 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6413 TargetNumRegisters = ForceTargetNumVectorRegs; 6414 } 6415 6416 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6417 // We divide by these constants so assume that we have at least one 6418 // instruction that uses at least one register. 6419 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6420 R.NumInstructions = std::max(R.NumInstructions, 1U); 6421 6422 // We calculate the interleave count using the following formula. 6423 // Subtract the number of loop invariants from the number of available 6424 // registers. These registers are used by all of the interleaved instances. 6425 // Next, divide the remaining registers by the number of registers that is 6426 // required by the loop, in order to estimate how many parallel instances 6427 // fit without causing spills. All of this is rounded down if necessary to be 6428 // a power of two. We want power of two interleave count to simplify any 6429 // addressing operations or alignment considerations. 6430 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6431 R.MaxLocalUsers); 6432 6433 // Don't count the induction variable as interleaved. 6434 if (EnableIndVarRegisterHeur) 6435 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6436 std::max(1U, (R.MaxLocalUsers - 1))); 6437 6438 // Clamp the interleave ranges to reasonable counts. 6439 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6440 6441 // Check if the user has overridden the max. 6442 if (VF == 1) { 6443 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6444 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6445 } else { 6446 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6447 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6448 } 6449 6450 // If we did not calculate the cost for VF (because the user selected the VF) 6451 // then we calculate the cost of VF here. 6452 if (LoopCost == 0) 6453 LoopCost = expectedCost(VF).first; 6454 6455 // Clamp the calculated IC to be between the 1 and the max interleave count 6456 // that the target allows. 6457 if (IC > MaxInterleaveCount) 6458 IC = MaxInterleaveCount; 6459 else if (IC < 1) 6460 IC = 1; 6461 6462 // Interleave if we vectorized this loop and there is a reduction that could 6463 // benefit from interleaving. 6464 if (VF > 1 && Legal->getReductionVars()->size()) { 6465 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6466 return IC; 6467 } 6468 6469 // Note that if we've already vectorized the loop we will have done the 6470 // runtime check and so interleaving won't require further checks. 6471 bool InterleavingRequiresRuntimePointerCheck = 6472 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6473 6474 // We want to interleave small loops in order to reduce the loop overhead and 6475 // potentially expose ILP opportunities. 6476 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6477 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6478 // We assume that the cost overhead is 1 and we use the cost model 6479 // to estimate the cost of the loop and interleave until the cost of the 6480 // loop overhead is about 5% of the cost of the loop. 6481 unsigned SmallIC = 6482 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6483 6484 // Interleave until store/load ports (estimated by max interleave count) are 6485 // saturated. 6486 unsigned NumStores = Legal->getNumStores(); 6487 unsigned NumLoads = Legal->getNumLoads(); 6488 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6489 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6490 6491 // If we have a scalar reduction (vector reductions are already dealt with 6492 // by this point), we can increase the critical path length if the loop 6493 // we're interleaving is inside another loop. Limit, by default to 2, so the 6494 // critical path only gets increased by one reduction operation. 6495 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6496 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6497 SmallIC = std::min(SmallIC, F); 6498 StoresIC = std::min(StoresIC, F); 6499 LoadsIC = std::min(LoadsIC, F); 6500 } 6501 6502 if (EnableLoadStoreRuntimeInterleave && 6503 std::max(StoresIC, LoadsIC) > SmallIC) { 6504 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6505 return std::max(StoresIC, LoadsIC); 6506 } 6507 6508 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6509 return SmallIC; 6510 } 6511 6512 // Interleave if this is a large loop (small loops are already dealt with by 6513 // this point) that could benefit from interleaving. 6514 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6515 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6516 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6517 return IC; 6518 } 6519 6520 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6521 return 1; 6522 } 6523 6524 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6525 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6526 // This function calculates the register usage by measuring the highest number 6527 // of values that are alive at a single location. Obviously, this is a very 6528 // rough estimation. We scan the loop in a topological order in order and 6529 // assign a number to each instruction. We use RPO to ensure that defs are 6530 // met before their users. We assume that each instruction that has in-loop 6531 // users starts an interval. We record every time that an in-loop value is 6532 // used, so we have a list of the first and last occurrences of each 6533 // instruction. Next, we transpose this data structure into a multi map that 6534 // holds the list of intervals that *end* at a specific location. This multi 6535 // map allows us to perform a linear search. We scan the instructions linearly 6536 // and record each time that a new interval starts, by placing it in a set. 6537 // If we find this value in the multi-map then we remove it from the set. 6538 // The max register usage is the maximum size of the set. 6539 // We also search for instructions that are defined outside the loop, but are 6540 // used inside the loop. We need this number separately from the max-interval 6541 // usage number because when we unroll, loop-invariant values do not take 6542 // more register. 6543 LoopBlocksDFS DFS(TheLoop); 6544 DFS.perform(LI); 6545 6546 RegisterUsage RU; 6547 RU.NumInstructions = 0; 6548 6549 // Each 'key' in the map opens a new interval. The values 6550 // of the map are the index of the 'last seen' usage of the 6551 // instruction that is the key. 6552 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6553 // Maps instruction to its index. 6554 DenseMap<unsigned, Instruction *> IdxToInstr; 6555 // Marks the end of each interval. 6556 IntervalMap EndPoint; 6557 // Saves the list of instruction indices that are used in the loop. 6558 SmallSet<Instruction *, 8> Ends; 6559 // Saves the list of values that are used in the loop but are 6560 // defined outside the loop, such as arguments and constants. 6561 SmallPtrSet<Value *, 8> LoopInvariants; 6562 6563 unsigned Index = 0; 6564 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6565 RU.NumInstructions += BB->size(); 6566 for (Instruction &I : *BB) { 6567 IdxToInstr[Index++] = &I; 6568 6569 // Save the end location of each USE. 6570 for (Value *U : I.operands()) { 6571 auto *Instr = dyn_cast<Instruction>(U); 6572 6573 // Ignore non-instruction values such as arguments, constants, etc. 6574 if (!Instr) 6575 continue; 6576 6577 // If this instruction is outside the loop then record it and continue. 6578 if (!TheLoop->contains(Instr)) { 6579 LoopInvariants.insert(Instr); 6580 continue; 6581 } 6582 6583 // Overwrite previous end points. 6584 EndPoint[Instr] = Index; 6585 Ends.insert(Instr); 6586 } 6587 } 6588 } 6589 6590 // Saves the list of intervals that end with the index in 'key'. 6591 typedef SmallVector<Instruction *, 2> InstrList; 6592 DenseMap<unsigned, InstrList> TransposeEnds; 6593 6594 // Transpose the EndPoints to a list of values that end at each index. 6595 for (auto &Interval : EndPoint) 6596 TransposeEnds[Interval.second].push_back(Interval.first); 6597 6598 SmallSet<Instruction *, 8> OpenIntervals; 6599 6600 // Get the size of the widest register. 6601 unsigned MaxSafeDepDist = -1U; 6602 if (Legal->getMaxSafeDepDistBytes() != -1U) 6603 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6604 unsigned WidestRegister = 6605 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6606 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6607 6608 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6609 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6610 6611 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6612 6613 // A lambda that gets the register usage for the given type and VF. 6614 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6615 if (Ty->isTokenTy()) 6616 return 0U; 6617 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6618 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6619 }; 6620 6621 for (unsigned int i = 0; i < Index; ++i) { 6622 Instruction *I = IdxToInstr[i]; 6623 6624 // Remove all of the instructions that end at this location. 6625 InstrList &List = TransposeEnds[i]; 6626 for (Instruction *ToRemove : List) 6627 OpenIntervals.erase(ToRemove); 6628 6629 // Ignore instructions that are never used within the loop. 6630 if (!Ends.count(I)) 6631 continue; 6632 6633 // Skip ignored values. 6634 if (ValuesToIgnore.count(I)) 6635 continue; 6636 6637 // For each VF find the maximum usage of registers. 6638 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6639 if (VFs[j] == 1) { 6640 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6641 continue; 6642 } 6643 collectUniformsAndScalars(VFs[j]); 6644 // Count the number of live intervals. 6645 unsigned RegUsage = 0; 6646 for (auto Inst : OpenIntervals) { 6647 // Skip ignored values for VF > 1. 6648 if (VecValuesToIgnore.count(Inst) || 6649 isScalarAfterVectorization(Inst, VFs[j])) 6650 continue; 6651 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6652 } 6653 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6654 } 6655 6656 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6657 << OpenIntervals.size() << '\n'); 6658 6659 // Add the current instruction to the list of open intervals. 6660 OpenIntervals.insert(I); 6661 } 6662 6663 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6664 unsigned Invariant = 0; 6665 if (VFs[i] == 1) 6666 Invariant = LoopInvariants.size(); 6667 else { 6668 for (auto Inst : LoopInvariants) 6669 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6670 } 6671 6672 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6673 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6674 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6675 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6676 6677 RU.LoopInvariantRegs = Invariant; 6678 RU.MaxLocalUsers = MaxUsages[i]; 6679 RUs[i] = RU; 6680 } 6681 6682 return RUs; 6683 } 6684 6685 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6686 6687 // If we aren't vectorizing the loop, or if we've already collected the 6688 // instructions to scalarize, there's nothing to do. Collection may already 6689 // have occurred if we have a user-selected VF and are now computing the 6690 // expected cost for interleaving. 6691 if (VF < 2 || InstsToScalarize.count(VF)) 6692 return; 6693 6694 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6695 // not profitable to scalarize any instructions, the presence of VF in the 6696 // map will indicate that we've analyzed it already. 6697 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6698 6699 // Find all the instructions that are scalar with predication in the loop and 6700 // determine if it would be better to not if-convert the blocks they are in. 6701 // If so, we also record the instructions to scalarize. 6702 for (BasicBlock *BB : TheLoop->blocks()) { 6703 if (!Legal->blockNeedsPredication(BB)) 6704 continue; 6705 for (Instruction &I : *BB) 6706 if (Legal->isScalarWithPredication(&I)) { 6707 ScalarCostsTy ScalarCosts; 6708 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6709 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6710 6711 // Remember that BB will remain after vectorization. 6712 PredicatedBBsAfterVectorization.insert(BB); 6713 } 6714 } 6715 } 6716 6717 int LoopVectorizationCostModel::computePredInstDiscount( 6718 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6719 unsigned VF) { 6720 6721 assert(!isUniformAfterVectorization(PredInst, VF) && 6722 "Instruction marked uniform-after-vectorization will be predicated"); 6723 6724 // Initialize the discount to zero, meaning that the scalar version and the 6725 // vector version cost the same. 6726 int Discount = 0; 6727 6728 // Holds instructions to analyze. The instructions we visit are mapped in 6729 // ScalarCosts. Those instructions are the ones that would be scalarized if 6730 // we find that the scalar version costs less. 6731 SmallVector<Instruction *, 8> Worklist; 6732 6733 // Returns true if the given instruction can be scalarized. 6734 auto canBeScalarized = [&](Instruction *I) -> bool { 6735 6736 // We only attempt to scalarize instructions forming a single-use chain 6737 // from the original predicated block that would otherwise be vectorized. 6738 // Although not strictly necessary, we give up on instructions we know will 6739 // already be scalar to avoid traversing chains that are unlikely to be 6740 // beneficial. 6741 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6742 isScalarAfterVectorization(I, VF)) 6743 return false; 6744 6745 // If the instruction is scalar with predication, it will be analyzed 6746 // separately. We ignore it within the context of PredInst. 6747 if (Legal->isScalarWithPredication(I)) 6748 return false; 6749 6750 // If any of the instruction's operands are uniform after vectorization, 6751 // the instruction cannot be scalarized. This prevents, for example, a 6752 // masked load from being scalarized. 6753 // 6754 // We assume we will only emit a value for lane zero of an instruction 6755 // marked uniform after vectorization, rather than VF identical values. 6756 // Thus, if we scalarize an instruction that uses a uniform, we would 6757 // create uses of values corresponding to the lanes we aren't emitting code 6758 // for. This behavior can be changed by allowing getScalarValue to clone 6759 // the lane zero values for uniforms rather than asserting. 6760 for (Use &U : I->operands()) 6761 if (auto *J = dyn_cast<Instruction>(U.get())) 6762 if (isUniformAfterVectorization(J, VF)) 6763 return false; 6764 6765 // Otherwise, we can scalarize the instruction. 6766 return true; 6767 }; 6768 6769 // Returns true if an operand that cannot be scalarized must be extracted 6770 // from a vector. We will account for this scalarization overhead below. Note 6771 // that the non-void predicated instructions are placed in their own blocks, 6772 // and their return values are inserted into vectors. Thus, an extract would 6773 // still be required. 6774 auto needsExtract = [&](Instruction *I) -> bool { 6775 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6776 }; 6777 6778 // Compute the expected cost discount from scalarizing the entire expression 6779 // feeding the predicated instruction. We currently only consider expressions 6780 // that are single-use instruction chains. 6781 Worklist.push_back(PredInst); 6782 while (!Worklist.empty()) { 6783 Instruction *I = Worklist.pop_back_val(); 6784 6785 // If we've already analyzed the instruction, there's nothing to do. 6786 if (ScalarCosts.count(I)) 6787 continue; 6788 6789 // Compute the cost of the vector instruction. Note that this cost already 6790 // includes the scalarization overhead of the predicated instruction. 6791 unsigned VectorCost = getInstructionCost(I, VF).first; 6792 6793 // Compute the cost of the scalarized instruction. This cost is the cost of 6794 // the instruction as if it wasn't if-converted and instead remained in the 6795 // predicated block. We will scale this cost by block probability after 6796 // computing the scalarization overhead. 6797 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6798 6799 // Compute the scalarization overhead of needed insertelement instructions 6800 // and phi nodes. 6801 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6802 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6803 true, false); 6804 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6805 } 6806 6807 // Compute the scalarization overhead of needed extractelement 6808 // instructions. For each of the instruction's operands, if the operand can 6809 // be scalarized, add it to the worklist; otherwise, account for the 6810 // overhead. 6811 for (Use &U : I->operands()) 6812 if (auto *J = dyn_cast<Instruction>(U.get())) { 6813 assert(VectorType::isValidElementType(J->getType()) && 6814 "Instruction has non-scalar type"); 6815 if (canBeScalarized(J)) 6816 Worklist.push_back(J); 6817 else if (needsExtract(J)) 6818 ScalarCost += TTI.getScalarizationOverhead( 6819 ToVectorTy(J->getType(),VF), false, true); 6820 } 6821 6822 // Scale the total scalar cost by block probability. 6823 ScalarCost /= getReciprocalPredBlockProb(); 6824 6825 // Compute the discount. A non-negative discount means the vector version 6826 // of the instruction costs more, and scalarizing would be beneficial. 6827 Discount += VectorCost - ScalarCost; 6828 ScalarCosts[I] = ScalarCost; 6829 } 6830 6831 return Discount; 6832 } 6833 6834 LoopVectorizationCostModel::VectorizationCostTy 6835 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6836 VectorizationCostTy Cost; 6837 6838 // For each block. 6839 for (BasicBlock *BB : TheLoop->blocks()) { 6840 VectorizationCostTy BlockCost; 6841 6842 // For each instruction in the old loop. 6843 for (Instruction &I : *BB) { 6844 // Skip dbg intrinsics. 6845 if (isa<DbgInfoIntrinsic>(I)) 6846 continue; 6847 6848 // Skip ignored values. 6849 if (ValuesToIgnore.count(&I)) 6850 continue; 6851 6852 VectorizationCostTy C = getInstructionCost(&I, VF); 6853 6854 // Check if we should override the cost. 6855 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6856 C.first = ForceTargetInstructionCost; 6857 6858 BlockCost.first += C.first; 6859 BlockCost.second |= C.second; 6860 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6861 << VF << " For instruction: " << I << '\n'); 6862 } 6863 6864 // If we are vectorizing a predicated block, it will have been 6865 // if-converted. This means that the block's instructions (aside from 6866 // stores and instructions that may divide by zero) will now be 6867 // unconditionally executed. For the scalar case, we may not always execute 6868 // the predicated block. Thus, scale the block's cost by the probability of 6869 // executing it. 6870 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6871 BlockCost.first /= getReciprocalPredBlockProb(); 6872 6873 Cost.first += BlockCost.first; 6874 Cost.second |= BlockCost.second; 6875 } 6876 6877 return Cost; 6878 } 6879 6880 /// \brief Gets Address Access SCEV after verifying that the access pattern 6881 /// is loop invariant except the induction variable dependence. 6882 /// 6883 /// This SCEV can be sent to the Target in order to estimate the address 6884 /// calculation cost. 6885 static const SCEV *getAddressAccessSCEV( 6886 Value *Ptr, 6887 LoopVectorizationLegality *Legal, 6888 ScalarEvolution *SE, 6889 const Loop *TheLoop) { 6890 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6891 if (!Gep) 6892 return nullptr; 6893 6894 // We are looking for a gep with all loop invariant indices except for one 6895 // which should be an induction variable. 6896 unsigned NumOperands = Gep->getNumOperands(); 6897 for (unsigned i = 1; i < NumOperands; ++i) { 6898 Value *Opd = Gep->getOperand(i); 6899 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6900 !Legal->isInductionVariable(Opd)) 6901 return nullptr; 6902 } 6903 6904 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6905 return SE->getSCEV(Ptr); 6906 } 6907 6908 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6909 return Legal->hasStride(I->getOperand(0)) || 6910 Legal->hasStride(I->getOperand(1)); 6911 } 6912 6913 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6914 unsigned VF) { 6915 Type *ValTy = getMemInstValueType(I); 6916 auto SE = PSE.getSE(); 6917 6918 unsigned Alignment = getMemInstAlignment(I); 6919 unsigned AS = getMemInstAddressSpace(I); 6920 Value *Ptr = getPointerOperand(I); 6921 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6922 6923 // Figure out whether the access is strided and get the stride value 6924 // if it's known in compile time 6925 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6926 6927 // Get the cost of the scalar memory instruction and address computation. 6928 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6929 6930 Cost += VF * 6931 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6932 AS, I); 6933 6934 // Get the overhead of the extractelement and insertelement instructions 6935 // we might create due to scalarization. 6936 Cost += getScalarizationOverhead(I, VF, TTI); 6937 6938 // If we have a predicated store, it may not be executed for each vector 6939 // lane. Scale the cost by the probability of executing the predicated 6940 // block. 6941 if (Legal->isScalarWithPredication(I)) 6942 Cost /= getReciprocalPredBlockProb(); 6943 6944 return Cost; 6945 } 6946 6947 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6948 unsigned VF) { 6949 Type *ValTy = getMemInstValueType(I); 6950 Type *VectorTy = ToVectorTy(ValTy, VF); 6951 unsigned Alignment = getMemInstAlignment(I); 6952 Value *Ptr = getPointerOperand(I); 6953 unsigned AS = getMemInstAddressSpace(I); 6954 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6955 6956 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6957 "Stride should be 1 or -1 for consecutive memory access"); 6958 unsigned Cost = 0; 6959 if (Legal->isMaskRequired(I)) 6960 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6961 else 6962 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6963 6964 bool Reverse = ConsecutiveStride < 0; 6965 if (Reverse) 6966 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6967 return Cost; 6968 } 6969 6970 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6971 unsigned VF) { 6972 LoadInst *LI = cast<LoadInst>(I); 6973 Type *ValTy = LI->getType(); 6974 Type *VectorTy = ToVectorTy(ValTy, VF); 6975 unsigned Alignment = LI->getAlignment(); 6976 unsigned AS = LI->getPointerAddressSpace(); 6977 6978 return TTI.getAddressComputationCost(ValTy) + 6979 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6980 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6981 } 6982 6983 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6984 unsigned VF) { 6985 Type *ValTy = getMemInstValueType(I); 6986 Type *VectorTy = ToVectorTy(ValTy, VF); 6987 unsigned Alignment = getMemInstAlignment(I); 6988 Value *Ptr = getPointerOperand(I); 6989 6990 return TTI.getAddressComputationCost(VectorTy) + 6991 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6992 Legal->isMaskRequired(I), Alignment); 6993 } 6994 6995 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6996 unsigned VF) { 6997 Type *ValTy = getMemInstValueType(I); 6998 Type *VectorTy = ToVectorTy(ValTy, VF); 6999 unsigned AS = getMemInstAddressSpace(I); 7000 7001 auto Group = Legal->getInterleavedAccessGroup(I); 7002 assert(Group && "Fail to get an interleaved access group."); 7003 7004 unsigned InterleaveFactor = Group->getFactor(); 7005 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7006 7007 // Holds the indices of existing members in an interleaved load group. 7008 // An interleaved store group doesn't need this as it doesn't allow gaps. 7009 SmallVector<unsigned, 4> Indices; 7010 if (isa<LoadInst>(I)) { 7011 for (unsigned i = 0; i < InterleaveFactor; i++) 7012 if (Group->getMember(i)) 7013 Indices.push_back(i); 7014 } 7015 7016 // Calculate the cost of the whole interleaved group. 7017 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7018 Group->getFactor(), Indices, 7019 Group->getAlignment(), AS); 7020 7021 if (Group->isReverse()) 7022 Cost += Group->getNumMembers() * 7023 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7024 return Cost; 7025 } 7026 7027 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7028 unsigned VF) { 7029 7030 // Calculate scalar cost only. Vectorization cost should be ready at this 7031 // moment. 7032 if (VF == 1) { 7033 Type *ValTy = getMemInstValueType(I); 7034 unsigned Alignment = getMemInstAlignment(I); 7035 unsigned AS = getMemInstAddressSpace(I); 7036 7037 return TTI.getAddressComputationCost(ValTy) + 7038 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7039 } 7040 return getWideningCost(I, VF); 7041 } 7042 7043 LoopVectorizationCostModel::VectorizationCostTy 7044 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7045 // If we know that this instruction will remain uniform, check the cost of 7046 // the scalar version. 7047 if (isUniformAfterVectorization(I, VF)) 7048 VF = 1; 7049 7050 if (VF > 1 && isProfitableToScalarize(I, VF)) 7051 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7052 7053 // Forced scalars do not have any scalarization overhead. 7054 if (VF > 1 && ForcedScalars.count(VF) && 7055 ForcedScalars.find(VF)->second.count(I)) 7056 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7057 7058 Type *VectorTy; 7059 unsigned C = getInstructionCost(I, VF, VectorTy); 7060 7061 bool TypeNotScalarized = 7062 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7063 return VectorizationCostTy(C, TypeNotScalarized); 7064 } 7065 7066 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7067 if (VF == 1) 7068 return; 7069 for (BasicBlock *BB : TheLoop->blocks()) { 7070 // For each instruction in the old loop. 7071 for (Instruction &I : *BB) { 7072 Value *Ptr = getPointerOperand(&I); 7073 if (!Ptr) 7074 continue; 7075 7076 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7077 // Scalar load + broadcast 7078 unsigned Cost = getUniformMemOpCost(&I, VF); 7079 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7080 continue; 7081 } 7082 7083 // We assume that widening is the best solution when possible. 7084 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7085 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7086 setWideningDecision(&I, VF, CM_Widen, Cost); 7087 continue; 7088 } 7089 7090 // Choose between Interleaving, Gather/Scatter or Scalarization. 7091 unsigned InterleaveCost = UINT_MAX; 7092 unsigned NumAccesses = 1; 7093 if (Legal->isAccessInterleaved(&I)) { 7094 auto Group = Legal->getInterleavedAccessGroup(&I); 7095 assert(Group && "Fail to get an interleaved access group."); 7096 7097 // Make one decision for the whole group. 7098 if (getWideningDecision(&I, VF) != CM_Unknown) 7099 continue; 7100 7101 NumAccesses = Group->getNumMembers(); 7102 InterleaveCost = getInterleaveGroupCost(&I, VF); 7103 } 7104 7105 unsigned GatherScatterCost = 7106 Legal->isLegalGatherOrScatter(&I) 7107 ? getGatherScatterCost(&I, VF) * NumAccesses 7108 : UINT_MAX; 7109 7110 unsigned ScalarizationCost = 7111 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7112 7113 // Choose better solution for the current VF, 7114 // write down this decision and use it during vectorization. 7115 unsigned Cost; 7116 InstWidening Decision; 7117 if (InterleaveCost <= GatherScatterCost && 7118 InterleaveCost < ScalarizationCost) { 7119 Decision = CM_Interleave; 7120 Cost = InterleaveCost; 7121 } else if (GatherScatterCost < ScalarizationCost) { 7122 Decision = CM_GatherScatter; 7123 Cost = GatherScatterCost; 7124 } else { 7125 Decision = CM_Scalarize; 7126 Cost = ScalarizationCost; 7127 } 7128 // If the instructions belongs to an interleave group, the whole group 7129 // receives the same decision. The whole group receives the cost, but 7130 // the cost will actually be assigned to one instruction. 7131 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7132 setWideningDecision(Group, VF, Decision, Cost); 7133 else 7134 setWideningDecision(&I, VF, Decision, Cost); 7135 } 7136 } 7137 7138 // Make sure that any load of address and any other address computation 7139 // remains scalar unless there is gather/scatter support. This avoids 7140 // inevitable extracts into address registers, and also has the benefit of 7141 // activating LSR more, since that pass can't optimize vectorized 7142 // addresses. 7143 if (TTI.prefersVectorizedAddressing()) 7144 return; 7145 7146 // Start with all scalar pointer uses. 7147 SmallPtrSet<Instruction *, 8> AddrDefs; 7148 for (BasicBlock *BB : TheLoop->blocks()) 7149 for (Instruction &I : *BB) { 7150 Instruction *PtrDef = 7151 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7152 if (PtrDef && TheLoop->contains(PtrDef) && 7153 getWideningDecision(&I, VF) != CM_GatherScatter) 7154 AddrDefs.insert(PtrDef); 7155 } 7156 7157 // Add all instructions used to generate the addresses. 7158 SmallVector<Instruction *, 4> Worklist; 7159 for (auto *I : AddrDefs) 7160 Worklist.push_back(I); 7161 while (!Worklist.empty()) { 7162 Instruction *I = Worklist.pop_back_val(); 7163 for (auto &Op : I->operands()) 7164 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7165 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7166 AddrDefs.insert(InstOp).second == true) 7167 Worklist.push_back(InstOp); 7168 } 7169 7170 for (auto *I : AddrDefs) { 7171 if (isa<LoadInst>(I)) { 7172 // Setting the desired widening decision should ideally be handled in 7173 // by cost functions, but since this involves the task of finding out 7174 // if the loaded register is involved in an address computation, it is 7175 // instead changed here when we know this is the case. 7176 if (getWideningDecision(I, VF) == CM_Widen) 7177 // Scalarize a widened load of address. 7178 setWideningDecision(I, VF, CM_Scalarize, 7179 (VF * getMemoryInstructionCost(I, 1))); 7180 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7181 // Scalarize an interleave group of address loads. 7182 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7183 if (Instruction *Member = Group->getMember(I)) 7184 setWideningDecision(Member, VF, CM_Scalarize, 7185 (VF * getMemoryInstructionCost(Member, 1))); 7186 } 7187 } 7188 } else 7189 // Make sure I gets scalarized and a cost estimate without 7190 // scalarization overhead. 7191 ForcedScalars[VF].insert(I); 7192 } 7193 } 7194 7195 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7196 unsigned VF, 7197 Type *&VectorTy) { 7198 Type *RetTy = I->getType(); 7199 if (canTruncateToMinimalBitwidth(I, VF)) 7200 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7201 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7202 auto SE = PSE.getSE(); 7203 7204 // TODO: We need to estimate the cost of intrinsic calls. 7205 switch (I->getOpcode()) { 7206 case Instruction::GetElementPtr: 7207 // We mark this instruction as zero-cost because the cost of GEPs in 7208 // vectorized code depends on whether the corresponding memory instruction 7209 // is scalarized or not. Therefore, we handle GEPs with the memory 7210 // instruction cost. 7211 return 0; 7212 case Instruction::Br: { 7213 // In cases of scalarized and predicated instructions, there will be VF 7214 // predicated blocks in the vectorized loop. Each branch around these 7215 // blocks requires also an extract of its vector compare i1 element. 7216 bool ScalarPredicatedBB = false; 7217 BranchInst *BI = cast<BranchInst>(I); 7218 if (VF > 1 && BI->isConditional() && 7219 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7220 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7221 ScalarPredicatedBB = true; 7222 7223 if (ScalarPredicatedBB) { 7224 // Return cost for branches around scalarized and predicated blocks. 7225 Type *Vec_i1Ty = 7226 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7227 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7228 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7229 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7230 // The back-edge branch will remain, as will all scalar branches. 7231 return TTI.getCFInstrCost(Instruction::Br); 7232 else 7233 // This branch will be eliminated by if-conversion. 7234 return 0; 7235 // Note: We currently assume zero cost for an unconditional branch inside 7236 // a predicated block since it will become a fall-through, although we 7237 // may decide in the future to call TTI for all branches. 7238 } 7239 case Instruction::PHI: { 7240 auto *Phi = cast<PHINode>(I); 7241 7242 // First-order recurrences are replaced by vector shuffles inside the loop. 7243 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7244 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7245 VectorTy, VF - 1, VectorTy); 7246 7247 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7248 // converted into select instructions. We require N - 1 selects per phi 7249 // node, where N is the number of incoming values. 7250 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7251 return (Phi->getNumIncomingValues() - 1) * 7252 TTI.getCmpSelInstrCost( 7253 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7254 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7255 7256 return TTI.getCFInstrCost(Instruction::PHI); 7257 } 7258 case Instruction::UDiv: 7259 case Instruction::SDiv: 7260 case Instruction::URem: 7261 case Instruction::SRem: 7262 // If we have a predicated instruction, it may not be executed for each 7263 // vector lane. Get the scalarization cost and scale this amount by the 7264 // probability of executing the predicated block. If the instruction is not 7265 // predicated, we fall through to the next case. 7266 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7267 unsigned Cost = 0; 7268 7269 // These instructions have a non-void type, so account for the phi nodes 7270 // that we will create. This cost is likely to be zero. The phi node 7271 // cost, if any, should be scaled by the block probability because it 7272 // models a copy at the end of each predicated block. 7273 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7274 7275 // The cost of the non-predicated instruction. 7276 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7277 7278 // The cost of insertelement and extractelement instructions needed for 7279 // scalarization. 7280 Cost += getScalarizationOverhead(I, VF, TTI); 7281 7282 // Scale the cost by the probability of executing the predicated blocks. 7283 // This assumes the predicated block for each vector lane is equally 7284 // likely. 7285 return Cost / getReciprocalPredBlockProb(); 7286 } 7287 LLVM_FALLTHROUGH; 7288 case Instruction::Add: 7289 case Instruction::FAdd: 7290 case Instruction::Sub: 7291 case Instruction::FSub: 7292 case Instruction::Mul: 7293 case Instruction::FMul: 7294 case Instruction::FDiv: 7295 case Instruction::FRem: 7296 case Instruction::Shl: 7297 case Instruction::LShr: 7298 case Instruction::AShr: 7299 case Instruction::And: 7300 case Instruction::Or: 7301 case Instruction::Xor: { 7302 // Since we will replace the stride by 1 the multiplication should go away. 7303 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7304 return 0; 7305 // Certain instructions can be cheaper to vectorize if they have a constant 7306 // second vector operand. One example of this are shifts on x86. 7307 TargetTransformInfo::OperandValueKind Op1VK = 7308 TargetTransformInfo::OK_AnyValue; 7309 TargetTransformInfo::OperandValueKind Op2VK = 7310 TargetTransformInfo::OK_AnyValue; 7311 TargetTransformInfo::OperandValueProperties Op1VP = 7312 TargetTransformInfo::OP_None; 7313 TargetTransformInfo::OperandValueProperties Op2VP = 7314 TargetTransformInfo::OP_None; 7315 Value *Op2 = I->getOperand(1); 7316 7317 // Check for a splat or for a non uniform vector of constants. 7318 if (isa<ConstantInt>(Op2)) { 7319 ConstantInt *CInt = cast<ConstantInt>(Op2); 7320 if (CInt && CInt->getValue().isPowerOf2()) 7321 Op2VP = TargetTransformInfo::OP_PowerOf2; 7322 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7323 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7324 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7325 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7326 if (SplatValue) { 7327 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7328 if (CInt && CInt->getValue().isPowerOf2()) 7329 Op2VP = TargetTransformInfo::OP_PowerOf2; 7330 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7331 } 7332 } else if (Legal->isUniform(Op2)) { 7333 Op2VK = TargetTransformInfo::OK_UniformValue; 7334 } 7335 SmallVector<const Value *, 4> Operands(I->operand_values()); 7336 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7337 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7338 Op2VK, Op1VP, Op2VP, Operands); 7339 } 7340 case Instruction::Select: { 7341 SelectInst *SI = cast<SelectInst>(I); 7342 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7343 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7344 Type *CondTy = SI->getCondition()->getType(); 7345 if (!ScalarCond) 7346 CondTy = VectorType::get(CondTy, VF); 7347 7348 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7349 } 7350 case Instruction::ICmp: 7351 case Instruction::FCmp: { 7352 Type *ValTy = I->getOperand(0)->getType(); 7353 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7354 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7355 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7356 VectorTy = ToVectorTy(ValTy, VF); 7357 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7358 } 7359 case Instruction::Store: 7360 case Instruction::Load: { 7361 unsigned Width = VF; 7362 if (Width > 1) { 7363 InstWidening Decision = getWideningDecision(I, Width); 7364 assert(Decision != CM_Unknown && 7365 "CM decision should be taken at this point"); 7366 if (Decision == CM_Scalarize) 7367 Width = 1; 7368 } 7369 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7370 return getMemoryInstructionCost(I, VF); 7371 } 7372 case Instruction::ZExt: 7373 case Instruction::SExt: 7374 case Instruction::FPToUI: 7375 case Instruction::FPToSI: 7376 case Instruction::FPExt: 7377 case Instruction::PtrToInt: 7378 case Instruction::IntToPtr: 7379 case Instruction::SIToFP: 7380 case Instruction::UIToFP: 7381 case Instruction::Trunc: 7382 case Instruction::FPTrunc: 7383 case Instruction::BitCast: { 7384 // We optimize the truncation of induction variables having constant 7385 // integer steps. The cost of these truncations is the same as the scalar 7386 // operation. 7387 if (isOptimizableIVTruncate(I, VF)) { 7388 auto *Trunc = cast<TruncInst>(I); 7389 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7390 Trunc->getSrcTy(), Trunc); 7391 } 7392 7393 Type *SrcScalarTy = I->getOperand(0)->getType(); 7394 Type *SrcVecTy = 7395 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7396 if (canTruncateToMinimalBitwidth(I, VF)) { 7397 // This cast is going to be shrunk. This may remove the cast or it might 7398 // turn it into slightly different cast. For example, if MinBW == 16, 7399 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7400 // 7401 // Calculate the modified src and dest types. 7402 Type *MinVecTy = VectorTy; 7403 if (I->getOpcode() == Instruction::Trunc) { 7404 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7405 VectorTy = 7406 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7407 } else if (I->getOpcode() == Instruction::ZExt || 7408 I->getOpcode() == Instruction::SExt) { 7409 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7410 VectorTy = 7411 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7412 } 7413 } 7414 7415 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7416 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7417 } 7418 case Instruction::Call: { 7419 bool NeedToScalarize; 7420 CallInst *CI = cast<CallInst>(I); 7421 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7422 if (getVectorIntrinsicIDForCall(CI, TLI)) 7423 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7424 return CallCost; 7425 } 7426 default: 7427 // The cost of executing VF copies of the scalar instruction. This opcode 7428 // is unknown. Assume that it is the same as 'mul'. 7429 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7430 getScalarizationOverhead(I, VF, TTI); 7431 } // end of switch. 7432 } 7433 7434 char LoopVectorize::ID = 0; 7435 static const char lv_name[] = "Loop Vectorization"; 7436 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7437 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7438 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7439 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7440 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7442 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7447 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7448 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7449 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7450 7451 namespace llvm { 7452 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7453 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7454 } 7455 } 7456 7457 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7458 7459 // Check if the pointer operand of a load or store instruction is 7460 // consecutive. 7461 if (auto *Ptr = getPointerOperand(Inst)) 7462 return Legal->isConsecutivePtr(Ptr); 7463 return false; 7464 } 7465 7466 void LoopVectorizationCostModel::collectValuesToIgnore() { 7467 // Ignore ephemeral values. 7468 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7469 7470 // Ignore type-promoting instructions we identified during reduction 7471 // detection. 7472 for (auto &Reduction : *Legal->getReductionVars()) { 7473 RecurrenceDescriptor &RedDes = Reduction.second; 7474 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7475 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7476 } 7477 } 7478 7479 LoopVectorizationCostModel::VectorizationFactor 7480 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7481 7482 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7483 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7484 0U}; 7485 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7486 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7487 return NoVectorization; 7488 7489 if (UserVF) { 7490 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7491 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7492 // Collect the instructions (and their associated costs) that will be more 7493 // profitable to scalarize. 7494 CM.selectUserVectorizationFactor(UserVF); 7495 buildVPlans(UserVF, UserVF); 7496 DEBUG(printPlans(dbgs())); 7497 return {UserVF, 0}; 7498 } 7499 7500 unsigned MaxVF = MaybeMaxVF.getValue(); 7501 assert(MaxVF != 0 && "MaxVF is zero."); 7502 7503 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7504 // Collect Uniform and Scalar instructions after vectorization with VF. 7505 CM.collectUniformsAndScalars(VF); 7506 7507 // Collect the instructions (and their associated costs) that will be more 7508 // profitable to scalarize. 7509 if (VF > 1) 7510 CM.collectInstsToScalarize(VF); 7511 } 7512 7513 buildVPlans(1, MaxVF); 7514 DEBUG(printPlans(dbgs())); 7515 if (MaxVF == 1) 7516 return NoVectorization; 7517 7518 // Select the optimal vectorization factor. 7519 return CM.selectVectorizationFactor(MaxVF); 7520 } 7521 7522 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7523 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7524 BestVF = VF; 7525 BestUF = UF; 7526 7527 for (auto *VPlanIter = VPlans.begin(); VPlanIter != VPlans.end();) { 7528 VPlan *Plan = *VPlanIter; 7529 if (Plan->hasVF(VF)) 7530 ++VPlanIter; 7531 else { 7532 VPlanIter = VPlans.erase(VPlanIter); 7533 delete Plan; 7534 } 7535 } 7536 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7537 } 7538 7539 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7540 DominatorTree *DT) { 7541 // Perform the actual loop transformation. 7542 7543 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7544 VPTransformState State{ 7545 BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV}; 7546 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7547 7548 //===------------------------------------------------===// 7549 // 7550 // Notice: any optimization or new instruction that go 7551 // into the code below should also be implemented in 7552 // the cost-model. 7553 // 7554 //===------------------------------------------------===// 7555 7556 // 2. Copy and widen instructions from the old loop into the new loop. 7557 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7558 VPlan *Plan = *VPlans.begin(); 7559 Plan->execute(&State); 7560 7561 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7562 // predication, updating analyses. 7563 ILV.fixVectorizedLoop(); 7564 } 7565 7566 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7567 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7568 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7569 7570 // We create new control-flow for the vectorized loop, so the original 7571 // condition will be dead after vectorization if it's only used by the 7572 // branch. 7573 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7574 if (Cmp && Cmp->hasOneUse()) 7575 DeadInstructions.insert(Cmp); 7576 7577 // We create new "steps" for induction variable updates to which the original 7578 // induction variables map. An original update instruction will be dead if 7579 // all its users except the induction variable are dead. 7580 for (auto &Induction : *Legal->getInductionVars()) { 7581 PHINode *Ind = Induction.first; 7582 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7583 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7584 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7585 })) 7586 DeadInstructions.insert(IndUpdate); 7587 } 7588 } 7589 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7590 7591 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7592 7593 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7594 Instruction::BinaryOps BinOp) { 7595 // When unrolling and the VF is 1, we only need to add a simple scalar. 7596 Type *Ty = Val->getType(); 7597 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7598 7599 if (Ty->isFloatingPointTy()) { 7600 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7601 7602 // Floating point operations had to be 'fast' to enable the unrolling. 7603 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7604 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7605 } 7606 Constant *C = ConstantInt::get(Ty, StartIdx); 7607 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7608 } 7609 7610 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7611 SmallVector<Metadata *, 4> MDs; 7612 // Reserve first location for self reference to the LoopID metadata node. 7613 MDs.push_back(nullptr); 7614 bool IsUnrollMetadata = false; 7615 MDNode *LoopID = L->getLoopID(); 7616 if (LoopID) { 7617 // First find existing loop unrolling disable metadata. 7618 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7619 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7620 if (MD) { 7621 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7622 IsUnrollMetadata = 7623 S && S->getString().startswith("llvm.loop.unroll.disable"); 7624 } 7625 MDs.push_back(LoopID->getOperand(i)); 7626 } 7627 } 7628 7629 if (!IsUnrollMetadata) { 7630 // Add runtime unroll disable metadata. 7631 LLVMContext &Context = L->getHeader()->getContext(); 7632 SmallVector<Metadata *, 1> DisableOperands; 7633 DisableOperands.push_back( 7634 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7635 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7636 MDs.push_back(DisableNode); 7637 MDNode *NewLoopID = MDNode::get(Context, MDs); 7638 // Set operand 0 to refer to the loop id itself. 7639 NewLoopID->replaceOperandWith(0, NewLoopID); 7640 L->setLoopID(NewLoopID); 7641 } 7642 } 7643 7644 namespace { 7645 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7646 /// Instruction in its ingredients independently, in order. This recipe covers 7647 /// most of the traditional vectorization cases where each ingredient transforms 7648 /// into a vectorized version of itself. 7649 class VPWidenRecipe : public VPRecipeBase { 7650 private: 7651 /// Hold the ingredients by pointing to their original BasicBlock location. 7652 BasicBlock::iterator Begin; 7653 BasicBlock::iterator End; 7654 7655 public: 7656 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7657 End = I->getIterator(); 7658 Begin = End++; 7659 } 7660 7661 ~VPWidenRecipe() {} 7662 7663 /// Method to support type inquiry through isa, cast, and dyn_cast. 7664 static inline bool classof(const VPRecipeBase *V) { 7665 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7666 } 7667 7668 /// Produce widened copies of all Ingredients. 7669 void execute(VPTransformState &State) override { 7670 for (auto &Instr : make_range(Begin, End)) 7671 State.ILV->widenInstruction(Instr); 7672 } 7673 7674 /// Augment the recipe to include Instr, if it lies at its End. 7675 bool appendInstruction(Instruction *Instr) { 7676 if (End != Instr->getIterator()) 7677 return false; 7678 End++; 7679 return true; 7680 } 7681 7682 /// Print the recipe. 7683 void print(raw_ostream &O, const Twine &Indent) const override { 7684 O << " +\n" << Indent << "\"WIDEN\\l\""; 7685 for (auto &Instr : make_range(Begin, End)) 7686 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7687 } 7688 }; 7689 7690 /// A recipe for handling phi nodes of integer and floating-point inductions, 7691 /// producing their vector and scalar values. 7692 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7693 private: 7694 PHINode *IV; 7695 TruncInst *Trunc; 7696 7697 public: 7698 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7699 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7700 7701 ~VPWidenIntOrFpInductionRecipe() {} 7702 7703 /// Method to support type inquiry through isa, cast, and dyn_cast. 7704 static inline bool classof(const VPRecipeBase *V) { 7705 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7706 } 7707 7708 /// Generate the vectorized and scalarized versions of the phi node as 7709 /// needed by their users. 7710 void execute(VPTransformState &State) override { 7711 assert(!State.Instance && "Int or FP induction being replicated."); 7712 State.ILV->widenIntOrFpInduction(IV, Trunc); 7713 } 7714 7715 /// Print the recipe. 7716 void print(raw_ostream &O, const Twine &Indent) const override { 7717 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7718 if (Trunc) { 7719 O << "\\l\""; 7720 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7721 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7722 } else 7723 O << " " << VPlanIngredient(IV) << "\\l\""; 7724 } 7725 }; 7726 7727 /// A recipe for handling all phi nodes except for integer and FP inductions. 7728 class VPWidenPHIRecipe : public VPRecipeBase { 7729 private: 7730 PHINode *Phi; 7731 7732 public: 7733 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7734 7735 ~VPWidenPHIRecipe() {} 7736 7737 /// Method to support type inquiry through isa, cast, and dyn_cast. 7738 static inline bool classof(const VPRecipeBase *V) { 7739 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7740 } 7741 7742 /// Generate the phi/select nodes. 7743 void execute(VPTransformState &State) override { 7744 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7745 } 7746 7747 /// Print the recipe. 7748 void print(raw_ostream &O, const Twine &Indent) const override { 7749 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7750 } 7751 }; 7752 7753 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7754 /// or stores into one wide load/store and shuffles. 7755 class VPInterleaveRecipe : public VPRecipeBase { 7756 private: 7757 const InterleaveGroup *IG; 7758 7759 public: 7760 VPInterleaveRecipe(const InterleaveGroup *IG) 7761 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7762 7763 ~VPInterleaveRecipe() {} 7764 7765 /// Method to support type inquiry through isa, cast, and dyn_cast. 7766 static inline bool classof(const VPRecipeBase *V) { 7767 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7768 } 7769 7770 /// Generate the wide load or store, and shuffles. 7771 void execute(VPTransformState &State) override { 7772 assert(!State.Instance && "Interleave group being replicated."); 7773 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7774 } 7775 7776 /// Print the recipe. 7777 void print(raw_ostream &O, const Twine &Indent) const override; 7778 7779 const InterleaveGroup *getInterleaveGroup() { return IG; } 7780 }; 7781 7782 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7783 /// copies of the original scalar type, one per lane, instead of producing a 7784 /// single copy of widened type for all lanes. If the instruction is known to be 7785 /// uniform only one copy, per lane zero, will be generated. 7786 class VPReplicateRecipe : public VPRecipeBase { 7787 private: 7788 /// The instruction being replicated. 7789 Instruction *Ingredient; 7790 7791 /// Indicator if only a single replica per lane is needed. 7792 bool IsUniform; 7793 7794 /// Indicator if the replicas are also predicated. 7795 bool IsPredicated; 7796 7797 /// Indicator if the scalar values should also be packed into a vector. 7798 bool AlsoPack; 7799 7800 public: 7801 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7802 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7803 IsPredicated(IsPredicated) { 7804 // Retain the previous behavior of predicateInstructions(), where an 7805 // insert-element of a predicated instruction got hoisted into the 7806 // predicated basic block iff it was its only user. This is achieved by 7807 // having predicated instructions also pack their values into a vector by 7808 // default unless they have a replicated user which uses their scalar value. 7809 AlsoPack = IsPredicated && !I->use_empty(); 7810 } 7811 7812 ~VPReplicateRecipe() {} 7813 7814 /// Method to support type inquiry through isa, cast, and dyn_cast. 7815 static inline bool classof(const VPRecipeBase *V) { 7816 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7817 } 7818 7819 /// Generate replicas of the desired Ingredient. Replicas will be generated 7820 /// for all parts and lanes unless a specific part and lane are specified in 7821 /// the \p State. 7822 void execute(VPTransformState &State) override; 7823 7824 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7825 7826 /// Print the recipe. 7827 void print(raw_ostream &O, const Twine &Indent) const override { 7828 O << " +\n" 7829 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7830 << VPlanIngredient(Ingredient); 7831 if (AlsoPack) 7832 O << " (S->V)"; 7833 O << "\\l\""; 7834 } 7835 }; 7836 7837 /// A recipe for generating conditional branches on the bits of a mask. 7838 class VPBranchOnMaskRecipe : public VPRecipeBase { 7839 private: 7840 /// The input IR basic block used to obtain the mask providing the condition 7841 /// bits for the branch. 7842 BasicBlock *MaskedBasicBlock; 7843 7844 public: 7845 VPBranchOnMaskRecipe(BasicBlock *BB) 7846 : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {} 7847 7848 /// Method to support type inquiry through isa, cast, and dyn_cast. 7849 static inline bool classof(const VPRecipeBase *V) { 7850 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7851 } 7852 7853 /// Generate the extraction of the appropriate bit from the block mask and the 7854 /// conditional branch. 7855 void execute(VPTransformState &State) override; 7856 7857 /// Print the recipe. 7858 void print(raw_ostream &O, const Twine &Indent) const override { 7859 O << " +\n" 7860 << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName() 7861 << "\\l\""; 7862 } 7863 }; 7864 7865 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7866 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7867 /// order to merge values that are set under such a branch and feed their uses. 7868 /// The phi nodes can be scalar or vector depending on the users of the value. 7869 /// This recipe works in concert with VPBranchOnMaskRecipe. 7870 class VPPredInstPHIRecipe : public VPRecipeBase { 7871 private: 7872 Instruction *PredInst; 7873 7874 public: 7875 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7876 /// nodes after merging back from a Branch-on-Mask. 7877 VPPredInstPHIRecipe(Instruction *PredInst) 7878 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7879 7880 ~VPPredInstPHIRecipe() {} 7881 7882 /// Method to support type inquiry through isa, cast, and dyn_cast. 7883 static inline bool classof(const VPRecipeBase *V) { 7884 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7885 } 7886 7887 /// Generates phi nodes for live-outs as needed to retain SSA form. 7888 void execute(VPTransformState &State) override; 7889 7890 /// Print the recipe. 7891 void print(raw_ostream &O, const Twine &Indent) const override { 7892 O << " +\n" 7893 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7894 << "\\l\""; 7895 } 7896 }; 7897 } // end anonymous namespace 7898 7899 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7900 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7901 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7902 bool PredicateAtRangeStart = Predicate(Range.Start); 7903 7904 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7905 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7906 Range.End = TmpVF; 7907 break; 7908 } 7909 7910 return PredicateAtRangeStart; 7911 } 7912 7913 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7914 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7915 /// of VF's starting at a given VF and extending it as much as possible. Each 7916 /// vectorization decision can potentially shorten this sub-range during 7917 /// buildVPlan(). 7918 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7919 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7920 VFRange SubRange = {VF, MaxVF + 1}; 7921 VPlan *Plan = buildVPlan(SubRange); 7922 VPlans.push_back(Plan); 7923 VF = SubRange.End; 7924 } 7925 } 7926 7927 VPInterleaveRecipe * 7928 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7929 VFRange &Range) { 7930 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7931 if (!IG) 7932 return nullptr; 7933 7934 // Now check if IG is relevant for VF's in the given range. 7935 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7936 return [=](unsigned VF) -> bool { 7937 return (VF >= 2 && // Query is illegal for VF == 1 7938 CM.getWideningDecision(I, VF) == 7939 LoopVectorizationCostModel::CM_Interleave); 7940 }; 7941 }; 7942 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7943 return nullptr; 7944 7945 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7946 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7947 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7948 assert(I == IG->getInsertPos() && 7949 "Generating a recipe for an adjunct member of an interleave group"); 7950 7951 return new VPInterleaveRecipe(IG); 7952 } 7953 7954 VPWidenIntOrFpInductionRecipe * 7955 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7956 VFRange &Range) { 7957 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7958 // Check if this is an integer or fp induction. If so, build the recipe that 7959 // produces its scalar and vector values. 7960 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7961 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7962 II.getKind() == InductionDescriptor::IK_FpInduction) 7963 return new VPWidenIntOrFpInductionRecipe(Phi); 7964 7965 return nullptr; 7966 } 7967 7968 // Optimize the special case where the source is a constant integer 7969 // induction variable. Notice that we can only optimize the 'trunc' case 7970 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7971 // (c) other casts depend on pointer size. 7972 7973 // Determine whether \p K is a truncation based on an induction variable that 7974 // can be optimized. 7975 auto isOptimizableIVTruncate = 7976 [&](Instruction *K) -> std::function<bool(unsigned)> { 7977 return 7978 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7979 }; 7980 7981 if (isa<TruncInst>(I) && 7982 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7983 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7984 cast<TruncInst>(I)); 7985 return nullptr; 7986 } 7987 7988 VPWidenRecipe *LoopVectorizationPlanner::tryToWiden( 7989 Instruction *I, VPWidenRecipe *LastWidenRecipe, VFRange &Range) { 7990 7991 if (Legal->isScalarWithPredication(I)) 7992 return nullptr; 7993 7994 auto IsVectorizableOpcode = [](unsigned Opcode) { 7995 switch (Opcode) { 7996 case Instruction::Add: 7997 case Instruction::And: 7998 case Instruction::AShr: 7999 case Instruction::BitCast: 8000 case Instruction::Br: 8001 case Instruction::Call: 8002 case Instruction::FAdd: 8003 case Instruction::FCmp: 8004 case Instruction::FDiv: 8005 case Instruction::FMul: 8006 case Instruction::FPExt: 8007 case Instruction::FPToSI: 8008 case Instruction::FPToUI: 8009 case Instruction::FPTrunc: 8010 case Instruction::FRem: 8011 case Instruction::FSub: 8012 case Instruction::GetElementPtr: 8013 case Instruction::ICmp: 8014 case Instruction::IntToPtr: 8015 case Instruction::Load: 8016 case Instruction::LShr: 8017 case Instruction::Mul: 8018 case Instruction::Or: 8019 case Instruction::PHI: 8020 case Instruction::PtrToInt: 8021 case Instruction::SDiv: 8022 case Instruction::Select: 8023 case Instruction::SExt: 8024 case Instruction::Shl: 8025 case Instruction::SIToFP: 8026 case Instruction::SRem: 8027 case Instruction::Store: 8028 case Instruction::Sub: 8029 case Instruction::Trunc: 8030 case Instruction::UDiv: 8031 case Instruction::UIToFP: 8032 case Instruction::URem: 8033 case Instruction::Xor: 8034 case Instruction::ZExt: 8035 return true; 8036 } 8037 return false; 8038 }; 8039 8040 if (!IsVectorizableOpcode(I->getOpcode())) 8041 return nullptr; 8042 8043 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8044 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8045 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8046 ID == Intrinsic::lifetime_start)) 8047 return nullptr; 8048 } 8049 8050 auto willWiden = [&](unsigned VF) -> bool { 8051 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8052 CM.isProfitableToScalarize(I, VF))) 8053 return false; 8054 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8055 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8056 // The following case may be scalarized depending on the VF. 8057 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8058 // version of the instruction. 8059 // Is it beneficial to perform intrinsic call compared to lib call? 8060 bool NeedToScalarize; 8061 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8062 bool UseVectorIntrinsic = 8063 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8064 return UseVectorIntrinsic || !NeedToScalarize; 8065 } 8066 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8067 LoopVectorizationCostModel::InstWidening Decision = 8068 CM.getWideningDecision(I, VF); 8069 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8070 "CM decision should be taken at this point."); 8071 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8072 "Interleave memory opportunity should be caught earlier."); 8073 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8074 } 8075 return true; 8076 }; 8077 8078 if (!getDecisionAndClampRange(willWiden, Range)) 8079 return nullptr; 8080 8081 // Success: widen this instruction. We optimize the common case where 8082 // consecutive instructions can be represented by a single recipe. 8083 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8084 return LastWidenRecipe; 8085 return new VPWidenRecipe(I); 8086 } 8087 8088 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8089 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8090 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) { 8091 8092 bool IsUniform = getDecisionAndClampRange( 8093 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8094 Range); 8095 8096 bool IsPredicated = Legal->isScalarWithPredication(I); 8097 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8098 8099 // Find if I uses a predicated instruction. If so, it will use its scalar 8100 // value. Avoid hoisting the insert-element which packs the scalar value into 8101 // a vector value, as that happens iff all users use the vector value. 8102 for (auto &Op : I->operands()) 8103 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8104 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8105 PredInst2Recipe[PredInst]->setAlsoPack(false); 8106 8107 // Finalize the recipe for Instr, first if it is not predicated. 8108 if (!IsPredicated) { 8109 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8110 VPBB->appendRecipe(Recipe); 8111 return VPBB; 8112 } 8113 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8114 assert(VPBB->getSuccessors().empty() && 8115 "VPBB has successors when handling predicated replication."); 8116 // Record predicated instructions for above packing optimizations. 8117 PredInst2Recipe[I] = Recipe; 8118 VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe)); 8119 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8120 } 8121 8122 VPRegionBlock * 8123 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8124 VPRecipeBase *PredRecipe) { 8125 // Instructions marked for predication are replicated and placed under an 8126 // if-then construct to prevent side-effects. 8127 8128 // Build the triangular if-then region. 8129 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8130 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8131 auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent()); 8132 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8133 auto *PHIRecipe = 8134 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8135 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8136 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8137 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8138 8139 // Note: first set Entry as region entry and then connect successors starting 8140 // from it in order, to propagate the "parent" of each VPBasicBlock. 8141 Entry->setTwoSuccessors(Pred, Exit); 8142 Pred->setOneSuccessor(Exit); 8143 8144 return Region; 8145 } 8146 8147 VPlan *LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8148 8149 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8150 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8151 8152 // Collect instructions from the original loop that will become trivially dead 8153 // in the vectorized loop. We don't need to vectorize these instructions. For 8154 // example, original induction update instructions can become dead because we 8155 // separately emit induction "steps" when generating code for the new loop. 8156 // Similarly, we create a new latch condition when setting up the structure 8157 // of the new loop, so the old one can become dead. 8158 SmallPtrSet<Instruction *, 4> DeadInstructions; 8159 collectTriviallyDeadInstructions(DeadInstructions); 8160 8161 // Hold a mapping from predicated instructions to their recipes, in order to 8162 // fix their AlsoPack behavior if a user is determined to replicate and use a 8163 // scalar instead of vector value. 8164 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8165 8166 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8167 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8168 VPlan *Plan = new VPlan(VPBB); 8169 8170 // Scan the body of the loop in a topological order to visit each basic block 8171 // after having visited its predecessor basic blocks. 8172 LoopBlocksDFS DFS(OrigLoop); 8173 DFS.perform(LI); 8174 8175 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8176 // Relevant instructions from basic block BB will be grouped into VPRecipe 8177 // ingredients and fill a new VPBasicBlock. 8178 unsigned VPBBsForBB = 0; 8179 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8180 VPBB->setOneSuccessor(FirstVPBBForBB); 8181 VPBB = FirstVPBBForBB; 8182 VPWidenRecipe *LastWidenRecipe = nullptr; 8183 8184 std::vector<Instruction *> Ingredients; 8185 8186 // Organize the ingredients to vectorize from current basic block in the 8187 // right order. 8188 for (Instruction &I : *BB) { 8189 Instruction *Instr = &I; 8190 8191 // First filter out irrelevant instructions, to ensure no recipes are 8192 // built for them. 8193 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8194 DeadInstructions.count(Instr)) 8195 continue; 8196 8197 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8198 // member of the IG, do not construct any Recipe for it. 8199 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8200 if (IG && Instr != IG->getInsertPos() && 8201 Range.Start >= 2 && // Query is illegal for VF == 1 8202 CM.getWideningDecision(Instr, Range.Start) == 8203 LoopVectorizationCostModel::CM_Interleave) 8204 continue; 8205 8206 // Move instructions to handle first-order recurrences, step 1: avoid 8207 // handling this instruction until after we've handled the instruction it 8208 // should follow. 8209 auto SAIt = SinkAfter.find(Instr); 8210 if (SAIt != SinkAfter.end()) { 8211 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8212 << " to vectorize a 1st order recurrence.\n"); 8213 SinkAfterInverse[SAIt->second] = Instr; 8214 continue; 8215 } 8216 8217 Ingredients.push_back(Instr); 8218 8219 // Move instructions to handle first-order recurrences, step 2: push the 8220 // instruction to be sunk at its insertion point. 8221 auto SAInvIt = SinkAfterInverse.find(Instr); 8222 if (SAInvIt != SinkAfterInverse.end()) 8223 Ingredients.push_back(SAInvIt->second); 8224 } 8225 8226 // Introduce each ingredient into VPlan. 8227 for (Instruction *Instr : Ingredients) { 8228 VPRecipeBase *Recipe = nullptr; 8229 8230 // Check if Instr should belong to an interleave memory recipe, or already 8231 // does. In the latter case Instr is irrelevant. 8232 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8233 VPBB->appendRecipe(Recipe); 8234 continue; 8235 } 8236 8237 // Check if Instr should form some PHI recipe. 8238 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8239 VPBB->appendRecipe(Recipe); 8240 continue; 8241 } 8242 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8243 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8244 continue; 8245 } 8246 8247 // Check if Instr is to be widened by a general VPWidenRecipe, after 8248 // having first checked for specific widening recipes that deal with 8249 // Interleave Groups, Inductions and Phi nodes. 8250 if ((Recipe = tryToWiden(Instr, LastWidenRecipe, Range))) { 8251 if (Recipe != LastWidenRecipe) 8252 VPBB->appendRecipe(Recipe); 8253 LastWidenRecipe = cast<VPWidenRecipe>(Recipe); 8254 continue; 8255 } 8256 8257 // Otherwise, if all widening options failed, Instruction is to be 8258 // replicated. This may create a successor for VPBB. 8259 VPBasicBlock *NextVPBB = 8260 handleReplication(Instr, Range, VPBB, PredInst2Recipe); 8261 if (NextVPBB != VPBB) { 8262 VPBB = NextVPBB; 8263 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8264 : ""); 8265 } 8266 } 8267 } 8268 8269 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8270 // may also be empty, such as the last one VPBB, reflecting original 8271 // basic-blocks with no recipes. 8272 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8273 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8274 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8275 PreEntry->disconnectSuccessor(Entry); 8276 delete PreEntry; 8277 8278 std::string PlanName; 8279 raw_string_ostream RSO(PlanName); 8280 unsigned VF = Range.Start; 8281 Plan->addVF(VF); 8282 RSO << "Initial VPlan for VF={" << VF; 8283 for (VF *= 2; VF < Range.End; VF *= 2) { 8284 Plan->addVF(VF); 8285 RSO << "," << VF; 8286 } 8287 RSO << "},UF>=1"; 8288 RSO.flush(); 8289 Plan->setName(PlanName); 8290 8291 return Plan; 8292 } 8293 8294 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8295 O << " +\n" 8296 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8297 IG->getInsertPos()->printAsOperand(O, false); 8298 O << "\\l\""; 8299 for (unsigned i = 0; i < IG->getFactor(); ++i) 8300 if (Instruction *I = IG->getMember(i)) 8301 O << " +\n" 8302 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8303 } 8304 8305 void VPReplicateRecipe::execute(VPTransformState &State) { 8306 8307 if (State.Instance) { // Generate a single instance. 8308 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8309 // Insert scalar instance packing it into a vector. 8310 if (AlsoPack && State.VF > 1) { 8311 // If we're constructing lane 0, initialize to start from undef. 8312 if (State.Instance->Lane == 0) { 8313 Value *Undef = 8314 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8315 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8316 } 8317 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8318 } 8319 return; 8320 } 8321 8322 // Generate scalar instances for all VF lanes of all UF parts, unless the 8323 // instruction is uniform inwhich case generate only the first lane for each 8324 // of the UF parts. 8325 unsigned EndLane = IsUniform ? 1 : State.VF; 8326 for (unsigned Part = 0; Part < State.UF; ++Part) 8327 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8328 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8329 } 8330 8331 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8332 assert(State.Instance && "Branch on Mask works only on single instance."); 8333 8334 unsigned Part = State.Instance->Part; 8335 unsigned Lane = State.Instance->Lane; 8336 8337 auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock); 8338 8339 Value *ConditionBit = Cond[Part]; 8340 if (!ConditionBit) // Block in mask is all-one. 8341 ConditionBit = State.Builder.getTrue(); 8342 else if (ConditionBit->getType()->isVectorTy()) 8343 ConditionBit = State.Builder.CreateExtractElement( 8344 ConditionBit, State.Builder.getInt32(Lane)); 8345 8346 // Replace the temporary unreachable terminator with a new conditional branch, 8347 // whose two destinations will be set later when they are created. 8348 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8349 assert(isa<UnreachableInst>(CurrentTerminator) && 8350 "Expected to replace unreachable terminator with conditional branch."); 8351 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8352 CondBr->setSuccessor(0, nullptr); 8353 ReplaceInstWithInst(CurrentTerminator, CondBr); 8354 8355 DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe " 8356 << MaskedBasicBlock->getName()); 8357 } 8358 8359 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8360 assert(State.Instance && "Predicated instruction PHI works per instance."); 8361 Instruction *ScalarPredInst = cast<Instruction>( 8362 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8363 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8364 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8365 assert(PredicatingBB && "Predicated block has no single predecessor."); 8366 8367 // By current pack/unpack logic we need to generate only a single phi node: if 8368 // a vector value for the predicated instruction exists at this point it means 8369 // the instruction has vector users only, and a phi for the vector value is 8370 // needed. In this case the recipe of the predicated instruction is marked to 8371 // also do that packing, thereby "hoisting" the insert-element sequence. 8372 // Otherwise, a phi node for the scalar value is needed. 8373 unsigned Part = State.Instance->Part; 8374 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8375 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8376 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8377 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8378 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8379 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8380 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8381 } else { 8382 Type *PredInstType = PredInst->getType(); 8383 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8384 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8385 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8386 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8387 } 8388 } 8389 8390 bool LoopVectorizePass::processLoop(Loop *L) { 8391 assert(L->empty() && "Only process inner loops."); 8392 8393 #ifndef NDEBUG 8394 const std::string DebugLocStr = getDebugLocString(L); 8395 #endif /* NDEBUG */ 8396 8397 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8398 << L->getHeader()->getParent()->getName() << "\" from " 8399 << DebugLocStr << "\n"); 8400 8401 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8402 8403 DEBUG(dbgs() << "LV: Loop hints:" 8404 << " force=" 8405 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8406 ? "disabled" 8407 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8408 ? "enabled" 8409 : "?")) 8410 << " width=" << Hints.getWidth() 8411 << " unroll=" << Hints.getInterleave() << "\n"); 8412 8413 // Function containing loop 8414 Function *F = L->getHeader()->getParent(); 8415 8416 // Looking at the diagnostic output is the only way to determine if a loop 8417 // was vectorized (other than looking at the IR or machine code), so it 8418 // is important to generate an optimization remark for each loop. Most of 8419 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8420 // generated as OptimizationRemark and OptimizationRemarkMissed are 8421 // less verbose reporting vectorized loops and unvectorized loops that may 8422 // benefit from vectorization, respectively. 8423 8424 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8425 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8426 return false; 8427 } 8428 8429 PredicatedScalarEvolution PSE(*SE, *L); 8430 8431 // Check if it is legal to vectorize the loop. 8432 LoopVectorizationRequirements Requirements(*ORE); 8433 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8434 &Requirements, &Hints); 8435 if (!LVL.canVectorize()) { 8436 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8437 emitMissedWarning(F, L, Hints, ORE); 8438 return false; 8439 } 8440 8441 // Check the function attributes to find out if this function should be 8442 // optimized for size. 8443 bool OptForSize = 8444 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8445 8446 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8447 // count by optimizing for size, to minimize overheads. 8448 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8449 bool HasExpectedTC = (ExpectedTC > 0); 8450 8451 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8452 auto EstimatedTC = getLoopEstimatedTripCount(L); 8453 if (EstimatedTC) { 8454 ExpectedTC = *EstimatedTC; 8455 HasExpectedTC = true; 8456 } 8457 } 8458 8459 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8460 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8461 << "This loop is worth vectorizing only if no scalar " 8462 << "iteration overheads are incurred."); 8463 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8464 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8465 else { 8466 DEBUG(dbgs() << "\n"); 8467 // Loops with a very small trip count are considered for vectorization 8468 // under OptForSize, thereby making sure the cost of their loop body is 8469 // dominant, free of runtime guards and scalar iteration overheads. 8470 OptForSize = true; 8471 } 8472 } 8473 8474 // Check the function attributes to see if implicit floats are allowed. 8475 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8476 // an integer loop and the vector instructions selected are purely integer 8477 // vector instructions? 8478 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8479 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8480 "attribute is used.\n"); 8481 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8482 "NoImplicitFloat", L) 8483 << "loop not vectorized due to NoImplicitFloat attribute"); 8484 emitMissedWarning(F, L, Hints, ORE); 8485 return false; 8486 } 8487 8488 // Check if the target supports potentially unsafe FP vectorization. 8489 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8490 // for the target we're vectorizing for, to make sure none of the 8491 // additional fp-math flags can help. 8492 if (Hints.isPotentiallyUnsafe() && 8493 TTI->isFPVectorizationPotentiallyUnsafe()) { 8494 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8495 ORE->emit( 8496 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8497 << "loop not vectorized due to unsafe FP support."); 8498 emitMissedWarning(F, L, Hints, ORE); 8499 return false; 8500 } 8501 8502 // Use the cost model. 8503 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8504 &Hints); 8505 CM.collectValuesToIgnore(); 8506 8507 // Use the planner for vectorization. 8508 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8509 8510 // Get user vectorization factor. 8511 unsigned UserVF = Hints.getWidth(); 8512 8513 // Plan how to best vectorize, return the best VF and its cost. 8514 LoopVectorizationCostModel::VectorizationFactor VF = 8515 LVP.plan(OptForSize, UserVF); 8516 8517 // Select the interleave count. 8518 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8519 8520 // Get user interleave count. 8521 unsigned UserIC = Hints.getInterleave(); 8522 8523 // Identify the diagnostic messages that should be produced. 8524 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8525 bool VectorizeLoop = true, InterleaveLoop = true; 8526 if (Requirements.doesNotMeet(F, L, Hints)) { 8527 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8528 "requirements.\n"); 8529 emitMissedWarning(F, L, Hints, ORE); 8530 return false; 8531 } 8532 8533 if (VF.Width == 1) { 8534 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8535 VecDiagMsg = std::make_pair( 8536 "VectorizationNotBeneficial", 8537 "the cost-model indicates that vectorization is not beneficial"); 8538 VectorizeLoop = false; 8539 } 8540 8541 if (IC == 1 && UserIC <= 1) { 8542 // Tell the user interleaving is not beneficial. 8543 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8544 IntDiagMsg = std::make_pair( 8545 "InterleavingNotBeneficial", 8546 "the cost-model indicates that interleaving is not beneficial"); 8547 InterleaveLoop = false; 8548 if (UserIC == 1) { 8549 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8550 IntDiagMsg.second += 8551 " and is explicitly disabled or interleave count is set to 1"; 8552 } 8553 } else if (IC > 1 && UserIC == 1) { 8554 // Tell the user interleaving is beneficial, but it explicitly disabled. 8555 DEBUG(dbgs() 8556 << "LV: Interleaving is beneficial but is explicitly disabled."); 8557 IntDiagMsg = std::make_pair( 8558 "InterleavingBeneficialButDisabled", 8559 "the cost-model indicates that interleaving is beneficial " 8560 "but is explicitly disabled or interleave count is set to 1"); 8561 InterleaveLoop = false; 8562 } 8563 8564 // Override IC if user provided an interleave count. 8565 IC = UserIC > 0 ? UserIC : IC; 8566 8567 // Emit diagnostic messages, if any. 8568 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8569 if (!VectorizeLoop && !InterleaveLoop) { 8570 // Do not vectorize or interleaving the loop. 8571 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8572 L->getStartLoc(), L->getHeader()) 8573 << VecDiagMsg.second); 8574 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8575 L->getStartLoc(), L->getHeader()) 8576 << IntDiagMsg.second); 8577 return false; 8578 } else if (!VectorizeLoop && InterleaveLoop) { 8579 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8580 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8581 L->getStartLoc(), L->getHeader()) 8582 << VecDiagMsg.second); 8583 } else if (VectorizeLoop && !InterleaveLoop) { 8584 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8585 << DebugLocStr << '\n'); 8586 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8587 L->getStartLoc(), L->getHeader()) 8588 << IntDiagMsg.second); 8589 } else if (VectorizeLoop && InterleaveLoop) { 8590 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8591 << DebugLocStr << '\n'); 8592 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8593 } 8594 8595 LVP.setBestPlan(VF.Width, IC); 8596 8597 using namespace ore; 8598 if (!VectorizeLoop) { 8599 assert(IC > 1 && "interleave count should not be 1 or 0"); 8600 // If we decided that it is not legal to vectorize the loop, then 8601 // interleave it. 8602 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8603 &CM); 8604 LVP.executePlan(Unroller, DT); 8605 8606 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8607 L->getHeader()) 8608 << "interleaved loop (interleaved count: " 8609 << NV("InterleaveCount", IC) << ")"); 8610 } else { 8611 // If we decided that it is *legal* to vectorize the loop, then do it. 8612 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8613 &LVL, &CM); 8614 LVP.executePlan(LB, DT); 8615 ++LoopsVectorized; 8616 8617 // Add metadata to disable runtime unrolling a scalar loop when there are 8618 // no runtime checks about strides and memory. A scalar loop that is 8619 // rarely used is not worth unrolling. 8620 if (!LB.areSafetyChecksAdded()) 8621 AddRuntimeUnrollDisableMetaData(L); 8622 8623 // Report the vectorization decision. 8624 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8625 L->getHeader()) 8626 << "vectorized loop (vectorization width: " 8627 << NV("VectorizationFactor", VF.Width) 8628 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8629 } 8630 8631 // Mark the loop as already vectorized to avoid vectorizing again. 8632 Hints.setAlreadyVectorized(); 8633 8634 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8635 return true; 8636 } 8637 8638 bool LoopVectorizePass::runImpl( 8639 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8640 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8641 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8642 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8643 OptimizationRemarkEmitter &ORE_) { 8644 8645 SE = &SE_; 8646 LI = &LI_; 8647 TTI = &TTI_; 8648 DT = &DT_; 8649 BFI = &BFI_; 8650 TLI = TLI_; 8651 AA = &AA_; 8652 AC = &AC_; 8653 GetLAA = &GetLAA_; 8654 DB = &DB_; 8655 ORE = &ORE_; 8656 8657 // Don't attempt if 8658 // 1. the target claims to have no vector registers, and 8659 // 2. interleaving won't help ILP. 8660 // 8661 // The second condition is necessary because, even if the target has no 8662 // vector registers, loop vectorization may still enable scalar 8663 // interleaving. 8664 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8665 return false; 8666 8667 bool Changed = false; 8668 8669 // The vectorizer requires loops to be in simplified form. 8670 // Since simplification may add new inner loops, it has to run before the 8671 // legality and profitability checks. This means running the loop vectorizer 8672 // will simplify all loops, regardless of whether anything end up being 8673 // vectorized. 8674 for (auto &L : *LI) 8675 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8676 8677 // Build up a worklist of inner-loops to vectorize. This is necessary as 8678 // the act of vectorizing or partially unrolling a loop creates new loops 8679 // and can invalidate iterators across the loops. 8680 SmallVector<Loop *, 8> Worklist; 8681 8682 for (Loop *L : *LI) 8683 addAcyclicInnerLoop(*L, Worklist); 8684 8685 LoopsAnalyzed += Worklist.size(); 8686 8687 // Now walk the identified inner loops. 8688 while (!Worklist.empty()) { 8689 Loop *L = Worklist.pop_back_val(); 8690 8691 // For the inner loops we actually process, form LCSSA to simplify the 8692 // transform. 8693 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8694 8695 Changed |= processLoop(L); 8696 } 8697 8698 // Process each loop nest in the function. 8699 return Changed; 8700 8701 } 8702 8703 8704 PreservedAnalyses LoopVectorizePass::run(Function &F, 8705 FunctionAnalysisManager &AM) { 8706 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8707 auto &LI = AM.getResult<LoopAnalysis>(F); 8708 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8709 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8710 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8711 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8712 auto &AA = AM.getResult<AAManager>(F); 8713 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8714 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8715 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8716 8717 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8718 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8719 [&](Loop &L) -> const LoopAccessInfo & { 8720 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8721 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8722 }; 8723 bool Changed = 8724 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8725 if (!Changed) 8726 return PreservedAnalyses::all(); 8727 PreservedAnalyses PA; 8728 PA.preserve<LoopAnalysis>(); 8729 PA.preserve<DominatorTreeAnalysis>(); 8730 PA.preserve<BasicAA>(); 8731 PA.preserve<GlobalsAA>(); 8732 return PA; 8733 } 8734