1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/CodeMetrics.h" 60 #include "llvm/Analysis/GlobalsModRef.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/Analysis/VectorUtils.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfo.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/IRBuilder.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/PatternMatch.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/IR/Verifier.h" 85 #include "llvm/Pass.h" 86 #include "llvm/Support/BranchProbability.h" 87 #include "llvm/Support/CommandLine.h" 88 #include "llvm/Support/Debug.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Transforms/Scalar.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/LoopUtils.h" 94 #include "llvm/Transforms/Utils/LoopVersioning.h" 95 #include "llvm/Transforms/Vectorize.h" 96 #include <algorithm> 97 #include <map> 98 #include <tuple> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define LV_NAME "loop-vectorize" 104 #define DEBUG_TYPE LV_NAME 105 106 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109 static cl::opt<bool> 110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 111 cl::desc("Enable if-conversion during vectorization.")); 112 113 /// We don't vectorize loops with a known constant trip count below this number. 114 static cl::opt<unsigned> TinyTripCountVectorThreshold( 115 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 116 cl::desc("Don't vectorize loops with a constant " 117 "trip count that is smaller than this " 118 "value.")); 119 120 static cl::opt<bool> MaximizeBandwidth( 121 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 122 cl::desc("Maximize bandwidth when selecting vectorization factor which " 123 "will be determined by the smallest type in loop.")); 124 125 static cl::opt<bool> EnableInterleavedMemAccesses( 126 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 127 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 128 129 /// Maximum factor for an interleaved memory access. 130 static cl::opt<unsigned> MaxInterleaveGroupFactor( 131 "max-interleave-group-factor", cl::Hidden, 132 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 133 cl::init(8)); 134 135 /// We don't interleave loops with a known constant trip count below this 136 /// number. 137 static const unsigned TinyTripCountInterleaveThreshold = 128; 138 139 static cl::opt<unsigned> ForceTargetNumScalarRegs( 140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 141 cl::desc("A flag that overrides the target's number of scalar registers.")); 142 143 static cl::opt<unsigned> ForceTargetNumVectorRegs( 144 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of vector registers.")); 146 147 /// Maximum vectorization interleave count. 148 static const unsigned MaxInterleaveFactor = 16; 149 150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's max interleave factor for " 153 "scalar loops.")); 154 155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "vectorized loops.")); 159 160 static cl::opt<unsigned> ForceTargetInstructionCost( 161 "force-target-instruction-cost", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's expected cost for " 163 "an instruction to a single constant value. Mostly " 164 "useful for getting consistent testing.")); 165 166 static cl::opt<unsigned> SmallLoopCost( 167 "small-loop-cost", cl::init(20), cl::Hidden, 168 cl::desc( 169 "The cost of a loop that is considered 'small' by the interleaver.")); 170 171 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 172 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 173 cl::desc("Enable the use of the block frequency analysis to access PGO " 174 "heuristics minimizing code growth in cold regions and being more " 175 "aggressive in hot regions.")); 176 177 // Runtime interleave loops for load/store throughput. 178 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 179 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 180 cl::desc( 181 "Enable runtime interleaving until load/store ports are saturated")); 182 183 /// The number of stores in a loop that are allowed to need predication. 184 static cl::opt<unsigned> NumberOfStoresToPredicate( 185 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 186 cl::desc("Max number of stores to be predicated behind an if.")); 187 188 static cl::opt<bool> EnableIndVarRegisterHeur( 189 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 190 cl::desc("Count the induction variable only once when interleaving")); 191 192 static cl::opt<bool> EnableCondStoresVectorization( 193 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 194 cl::desc("Enable if predication of stores during vectorization.")); 195 196 static cl::opt<unsigned> MaxNestedScalarReductionIC( 197 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 198 cl::desc("The maximum interleave count to use when interleaving a scalar " 199 "reduction in a nested loop.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 207 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 208 cl::desc("The maximum number of SCEV checks allowed.")); 209 210 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 211 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed with a " 213 "vectorize(enable) pragma")); 214 215 namespace { 216 217 // Forward declarations. 218 class LoopVectorizeHints; 219 class LoopVectorizationLegality; 220 class LoopVectorizationCostModel; 221 class LoopVectorizationRequirements; 222 223 /// \brief This modifies LoopAccessReport to initialize message with 224 /// loop-vectorizer-specific part. 225 class VectorizationReport : public LoopAccessReport { 226 public: 227 VectorizationReport(Instruction *I = nullptr) 228 : LoopAccessReport("loop not vectorized: ", I) {} 229 230 /// \brief This allows promotion of the loop-access analysis report into the 231 /// loop-vectorizer report. It modifies the message to add the 232 /// loop-vectorizer-specific part of the message. 233 explicit VectorizationReport(const LoopAccessReport &R) 234 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 235 R.getInstr()) {} 236 }; 237 238 /// A helper function for converting Scalar types to vector types. 239 /// If the incoming type is void, we return void. If the VF is 1, we return 240 /// the scalar type. 241 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 242 if (Scalar->isVoidTy() || VF == 1) 243 return Scalar; 244 return VectorType::get(Scalar, VF); 245 } 246 247 /// A helper function that returns GEP instruction and knows to skip a 248 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 249 /// pointee types of the 'bitcast' have the same size. 250 /// For example: 251 /// bitcast double** %var to i64* - can be skipped 252 /// bitcast double** %var to i8* - can not 253 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 254 255 if (isa<GetElementPtrInst>(Ptr)) 256 return cast<GetElementPtrInst>(Ptr); 257 258 if (isa<BitCastInst>(Ptr) && 259 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 260 Type *BitcastTy = Ptr->getType(); 261 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 262 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 263 return nullptr; 264 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 265 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 266 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 267 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 268 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 269 } 270 return nullptr; 271 } 272 273 /// InnerLoopVectorizer vectorizes loops which contain only one basic 274 /// block to a specified vectorization factor (VF). 275 /// This class performs the widening of scalars into vectors, or multiple 276 /// scalars. This class also implements the following features: 277 /// * It inserts an epilogue loop for handling loops that don't have iteration 278 /// counts that are known to be a multiple of the vectorization factor. 279 /// * It handles the code generation for reduction variables. 280 /// * Scalarization (implementation using scalars) of un-vectorizable 281 /// instructions. 282 /// InnerLoopVectorizer does not perform any vectorization-legality 283 /// checks, and relies on the caller to check for the different legality 284 /// aspects. The InnerLoopVectorizer relies on the 285 /// LoopVectorizationLegality class to provide information about the induction 286 /// and reduction variables that were found to a given vectorization factor. 287 class InnerLoopVectorizer { 288 public: 289 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 290 LoopInfo *LI, DominatorTree *DT, 291 const TargetLibraryInfo *TLI, 292 const TargetTransformInfo *TTI, AssumptionCache *AC, 293 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 294 unsigned UnrollFactor) 295 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 296 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 297 Builder(PSE.getSE()->getContext()), Induction(nullptr), 298 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 299 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 300 301 // Perform the actual loop widening (vectorization). 302 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 303 // can be validly truncated to. The cost model has assumed this truncation 304 // will happen when vectorizing. VecValuesToIgnore contains scalar values 305 // that the cost model has chosen to ignore because they will not be 306 // vectorized. 307 void vectorize(LoopVectorizationLegality *L, 308 const MapVector<Instruction *, uint64_t> &MinimumBitWidths, 309 SmallPtrSetImpl<const Value *> &VecValuesToIgnore) { 310 MinBWs = &MinimumBitWidths; 311 ValuesNotWidened = &VecValuesToIgnore; 312 Legal = L; 313 // Create a new empty loop. Unlink the old loop and connect the new one. 314 createEmptyLoop(); 315 // Widen each instruction in the old loop to a new one in the new loop. 316 // Use the Legality module to find the induction and reduction variables. 317 vectorizeLoop(); 318 } 319 320 // Return true if any runtime check is added. 321 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 322 323 virtual ~InnerLoopVectorizer() {} 324 325 protected: 326 /// A small list of PHINodes. 327 typedef SmallVector<PHINode *, 4> PhiVector; 328 /// When we unroll loops we have multiple vector values for each scalar. 329 /// This data structure holds the unrolled and vectorized values that 330 /// originated from one scalar instruction. 331 typedef SmallVector<Value *, 2> VectorParts; 332 333 // When we if-convert we need to create edge masks. We have to cache values 334 // so that we don't end up with exponential recursion/IR. 335 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 336 EdgeMaskCache; 337 338 /// Create an empty loop, based on the loop ranges of the old loop. 339 void createEmptyLoop(); 340 341 /// Set up the values of the IVs correctly when exiting the vector loop. 342 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 343 Value *CountRoundDown, Value *EndValue, 344 BasicBlock *MiddleBlock); 345 346 /// Create a new induction variable inside L. 347 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 348 Value *Step, Instruction *DL); 349 /// Copy and widen the instructions from the old loop. 350 virtual void vectorizeLoop(); 351 352 /// Fix a first-order recurrence. This is the second phase of vectorizing 353 /// this phi node. 354 void fixFirstOrderRecurrence(PHINode *Phi); 355 356 /// \brief The Loop exit block may have single value PHI nodes where the 357 /// incoming value is 'Undef'. While vectorizing we only handled real values 358 /// that were defined inside the loop. Here we fix the 'undef case'. 359 /// See PR14725. 360 void fixLCSSAPHIs(); 361 362 /// Shrinks vector element sizes based on information in "MinBWs". 363 void truncateToMinimalBitwidths(); 364 365 /// A helper function that computes the predicate of the block BB, assuming 366 /// that the header block of the loop is set to True. It returns the *entry* 367 /// mask for the block BB. 368 VectorParts createBlockInMask(BasicBlock *BB); 369 /// A helper function that computes the predicate of the edge between SRC 370 /// and DST. 371 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 372 373 /// A helper function to vectorize a single BB within the innermost loop. 374 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 375 376 /// Vectorize a single PHINode in a block. This method handles the induction 377 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 378 /// arbitrary length vectors. 379 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 380 unsigned VF, PhiVector *PV); 381 382 /// Insert the new loop to the loop hierarchy and pass manager 383 /// and update the analysis passes. 384 void updateAnalysis(); 385 386 /// This instruction is un-vectorizable. Implement it as a sequence 387 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 388 /// scalarized instruction behind an if block predicated on the control 389 /// dependence of the instruction. 390 virtual void scalarizeInstruction(Instruction *Instr, 391 bool IfPredicateStore = false); 392 393 /// Vectorize Load and Store instructions, 394 virtual void vectorizeMemoryInstruction(Instruction *Instr); 395 396 /// Create a broadcast instruction. This method generates a broadcast 397 /// instruction (shuffle) for loop invariant values and for the induction 398 /// value. If this is the induction variable then we extend it to N, N+1, ... 399 /// this is needed because each iteration in the loop corresponds to a SIMD 400 /// element. 401 virtual Value *getBroadcastInstrs(Value *V); 402 403 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 404 /// to each vector element of Val. The sequence starts at StartIndex. 405 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 406 407 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 408 /// variable on which to base the steps, \p Step is the size of the step, and 409 /// \p EntryVal is the value from the original loop that maps to the steps. 410 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 411 /// can be a truncate instruction). 412 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 413 414 /// Create a vector induction phi node based on an existing scalar one. This 415 /// currently only works for integer induction variables with a constant 416 /// step. If \p TruncType is non-null, instead of widening the original IV, 417 /// we widen a version of the IV truncated to \p TruncType. 418 void createVectorIntInductionPHI(const InductionDescriptor &II, 419 VectorParts &Entry, IntegerType *TruncType); 420 421 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 422 /// induction variable will first be truncated to the corresponding type. The 423 /// widened values are placed in \p Entry. 424 void widenIntInduction(PHINode *IV, VectorParts &Entry, 425 TruncInst *Trunc = nullptr); 426 427 /// When we go over instructions in the basic block we rely on previous 428 /// values within the current basic block or on loop invariant values. 429 /// When we widen (vectorize) values we place them in the map. If the values 430 /// are not within the map, they have to be loop invariant, so we simply 431 /// broadcast them into a vector. 432 VectorParts &getVectorValue(Value *V); 433 434 /// Try to vectorize the interleaved access group that \p Instr belongs to. 435 void vectorizeInterleaveGroup(Instruction *Instr); 436 437 /// Generate a shuffle sequence that will reverse the vector Vec. 438 virtual Value *reverseVector(Value *Vec); 439 440 /// Returns (and creates if needed) the original loop trip count. 441 Value *getOrCreateTripCount(Loop *NewLoop); 442 443 /// Returns (and creates if needed) the trip count of the widened loop. 444 Value *getOrCreateVectorTripCount(Loop *NewLoop); 445 446 /// Emit a bypass check to see if the trip count would overflow, or we 447 /// wouldn't have enough iterations to execute one vector loop. 448 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 449 /// Emit a bypass check to see if the vector trip count is nonzero. 450 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 451 /// Emit a bypass check to see if all of the SCEV assumptions we've 452 /// had to make are correct. 453 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 454 /// Emit bypass checks to check any memory assumptions we may have made. 455 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 456 457 /// Add additional metadata to \p To that was not present on \p Orig. 458 /// 459 /// Currently this is used to add the noalias annotations based on the 460 /// inserted memchecks. Use this for instructions that are *cloned* into the 461 /// vector loop. 462 void addNewMetadata(Instruction *To, const Instruction *Orig); 463 464 /// Add metadata from one instruction to another. 465 /// 466 /// This includes both the original MDs from \p From and additional ones (\see 467 /// addNewMetadata). Use this for *newly created* instructions in the vector 468 /// loop. 469 void addMetadata(Instruction *To, Instruction *From); 470 471 /// \brief Similar to the previous function but it adds the metadata to a 472 /// vector of instructions. 473 void addMetadata(ArrayRef<Value *> To, Instruction *From); 474 475 /// This is a helper class that holds the vectorizer state. It maps scalar 476 /// instructions to vector instructions. When the code is 'unrolled' then 477 /// then a single scalar value is mapped to multiple vector parts. The parts 478 /// are stored in the VectorPart type. 479 struct ValueMap { 480 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 481 /// are mapped. 482 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 483 484 /// \return True if 'Key' is saved in the Value Map. 485 bool has(Value *Key) const { return MapStorage.count(Key); } 486 487 /// Initializes a new entry in the map. Sets all of the vector parts to the 488 /// save value in 'Val'. 489 /// \return A reference to a vector with splat values. 490 VectorParts &splat(Value *Key, Value *Val) { 491 VectorParts &Entry = MapStorage[Key]; 492 Entry.assign(UF, Val); 493 return Entry; 494 } 495 496 ///\return A reference to the value that is stored at 'Key'. 497 VectorParts &get(Value *Key) { 498 VectorParts &Entry = MapStorage[Key]; 499 if (Entry.empty()) 500 Entry.resize(UF); 501 assert(Entry.size() == UF); 502 return Entry; 503 } 504 505 private: 506 /// The unroll factor. Each entry in the map stores this number of vector 507 /// elements. 508 unsigned UF; 509 510 /// Map storage. We use std::map and not DenseMap because insertions to a 511 /// dense map invalidates its iterators. 512 std::map<Value *, VectorParts> MapStorage; 513 }; 514 515 /// The original loop. 516 Loop *OrigLoop; 517 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 518 /// dynamic knowledge to simplify SCEV expressions and converts them to a 519 /// more usable form. 520 PredicatedScalarEvolution &PSE; 521 /// Loop Info. 522 LoopInfo *LI; 523 /// Dominator Tree. 524 DominatorTree *DT; 525 /// Alias Analysis. 526 AliasAnalysis *AA; 527 /// Target Library Info. 528 const TargetLibraryInfo *TLI; 529 /// Target Transform Info. 530 const TargetTransformInfo *TTI; 531 /// Assumption Cache. 532 AssumptionCache *AC; 533 /// Interface to emit optimization remarks. 534 OptimizationRemarkEmitter *ORE; 535 536 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 537 /// used. 538 /// 539 /// This is currently only used to add no-alias metadata based on the 540 /// memchecks. The actually versioning is performed manually. 541 std::unique_ptr<LoopVersioning> LVer; 542 543 /// The vectorization SIMD factor to use. Each vector will have this many 544 /// vector elements. 545 unsigned VF; 546 547 protected: 548 /// The vectorization unroll factor to use. Each scalar is vectorized to this 549 /// many different vector instructions. 550 unsigned UF; 551 552 /// The builder that we use 553 IRBuilder<> Builder; 554 555 // --- Vectorization state --- 556 557 /// The vector-loop preheader. 558 BasicBlock *LoopVectorPreHeader; 559 /// The scalar-loop preheader. 560 BasicBlock *LoopScalarPreHeader; 561 /// Middle Block between the vector and the scalar. 562 BasicBlock *LoopMiddleBlock; 563 /// The ExitBlock of the scalar loop. 564 BasicBlock *LoopExitBlock; 565 /// The vector loop body. 566 BasicBlock *LoopVectorBody; 567 /// The scalar loop body. 568 BasicBlock *LoopScalarBody; 569 /// A list of all bypass blocks. The first block is the entry of the loop. 570 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 571 572 /// The new Induction variable which was added to the new block. 573 PHINode *Induction; 574 /// The induction variable of the old basic block. 575 PHINode *OldInduction; 576 /// Maps scalars to widened vectors. 577 ValueMap WidenMap; 578 579 /// A map of induction variables from the original loop to their 580 /// corresponding VF * UF scalarized values in the vectorized loop. The 581 /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap 582 /// maps original loop values to their vector versions in the new loop, 583 /// ScalarIVMap maps induction variables from the original loop that are not 584 /// vectorized to their scalar equivalents in the vector loop. Maintaining a 585 /// separate map for scalarized induction variables allows us to avoid 586 /// unnecessary scalar-to-vector-to-scalar conversions. 587 DenseMap<Value *, SmallVector<Value *, 8>> ScalarIVMap; 588 589 /// Store instructions that should be predicated, as a pair 590 /// <StoreInst, Predicate> 591 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 592 EdgeMaskCache MaskCache; 593 /// Trip count of the original loop. 594 Value *TripCount; 595 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 596 Value *VectorTripCount; 597 598 /// Map of scalar integer values to the smallest bitwidth they can be legally 599 /// represented as. The vector equivalents of these values should be truncated 600 /// to this type. 601 const MapVector<Instruction *, uint64_t> *MinBWs; 602 603 /// A set of values that should not be widened. This is taken from 604 /// VecValuesToIgnore in the cost model. 605 SmallPtrSetImpl<const Value *> *ValuesNotWidened; 606 607 LoopVectorizationLegality *Legal; 608 609 // Record whether runtime checks are added. 610 bool AddedSafetyChecks; 611 }; 612 613 class InnerLoopUnroller : public InnerLoopVectorizer { 614 public: 615 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 616 LoopInfo *LI, DominatorTree *DT, 617 const TargetLibraryInfo *TLI, 618 const TargetTransformInfo *TTI, AssumptionCache *AC, 619 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor) 620 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 621 UnrollFactor) {} 622 623 private: 624 void scalarizeInstruction(Instruction *Instr, 625 bool IfPredicateStore = false) override; 626 void vectorizeMemoryInstruction(Instruction *Instr) override; 627 Value *getBroadcastInstrs(Value *V) override; 628 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 629 Value *reverseVector(Value *Vec) override; 630 }; 631 632 /// \brief Look for a meaningful debug location on the instruction or it's 633 /// operands. 634 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 635 if (!I) 636 return I; 637 638 DebugLoc Empty; 639 if (I->getDebugLoc() != Empty) 640 return I; 641 642 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 643 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 644 if (OpInst->getDebugLoc() != Empty) 645 return OpInst; 646 } 647 648 return I; 649 } 650 651 /// \brief Set the debug location in the builder using the debug location in the 652 /// instruction. 653 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 654 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 655 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 656 else 657 B.SetCurrentDebugLocation(DebugLoc()); 658 } 659 660 #ifndef NDEBUG 661 /// \return string containing a file name and a line # for the given loop. 662 static std::string getDebugLocString(const Loop *L) { 663 std::string Result; 664 if (L) { 665 raw_string_ostream OS(Result); 666 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 667 LoopDbgLoc.print(OS); 668 else 669 // Just print the module name. 670 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 671 OS.flush(); 672 } 673 return Result; 674 } 675 #endif 676 677 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 678 const Instruction *Orig) { 679 // If the loop was versioned with memchecks, add the corresponding no-alias 680 // metadata. 681 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 682 LVer->annotateInstWithNoAlias(To, Orig); 683 } 684 685 void InnerLoopVectorizer::addMetadata(Instruction *To, 686 Instruction *From) { 687 propagateMetadata(To, From); 688 addNewMetadata(To, From); 689 } 690 691 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 692 Instruction *From) { 693 for (Value *V : To) { 694 if (Instruction *I = dyn_cast<Instruction>(V)) 695 addMetadata(I, From); 696 } 697 } 698 699 /// \brief The group of interleaved loads/stores sharing the same stride and 700 /// close to each other. 701 /// 702 /// Each member in this group has an index starting from 0, and the largest 703 /// index should be less than interleaved factor, which is equal to the absolute 704 /// value of the access's stride. 705 /// 706 /// E.g. An interleaved load group of factor 4: 707 /// for (unsigned i = 0; i < 1024; i+=4) { 708 /// a = A[i]; // Member of index 0 709 /// b = A[i+1]; // Member of index 1 710 /// d = A[i+3]; // Member of index 3 711 /// ... 712 /// } 713 /// 714 /// An interleaved store group of factor 4: 715 /// for (unsigned i = 0; i < 1024; i+=4) { 716 /// ... 717 /// A[i] = a; // Member of index 0 718 /// A[i+1] = b; // Member of index 1 719 /// A[i+2] = c; // Member of index 2 720 /// A[i+3] = d; // Member of index 3 721 /// } 722 /// 723 /// Note: the interleaved load group could have gaps (missing members), but 724 /// the interleaved store group doesn't allow gaps. 725 class InterleaveGroup { 726 public: 727 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 728 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 729 assert(Align && "The alignment should be non-zero"); 730 731 Factor = std::abs(Stride); 732 assert(Factor > 1 && "Invalid interleave factor"); 733 734 Reverse = Stride < 0; 735 Members[0] = Instr; 736 } 737 738 bool isReverse() const { return Reverse; } 739 unsigned getFactor() const { return Factor; } 740 unsigned getAlignment() const { return Align; } 741 unsigned getNumMembers() const { return Members.size(); } 742 743 /// \brief Try to insert a new member \p Instr with index \p Index and 744 /// alignment \p NewAlign. The index is related to the leader and it could be 745 /// negative if it is the new leader. 746 /// 747 /// \returns false if the instruction doesn't belong to the group. 748 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 749 assert(NewAlign && "The new member's alignment should be non-zero"); 750 751 int Key = Index + SmallestKey; 752 753 // Skip if there is already a member with the same index. 754 if (Members.count(Key)) 755 return false; 756 757 if (Key > LargestKey) { 758 // The largest index is always less than the interleave factor. 759 if (Index >= static_cast<int>(Factor)) 760 return false; 761 762 LargestKey = Key; 763 } else if (Key < SmallestKey) { 764 // The largest index is always less than the interleave factor. 765 if (LargestKey - Key >= static_cast<int>(Factor)) 766 return false; 767 768 SmallestKey = Key; 769 } 770 771 // It's always safe to select the minimum alignment. 772 Align = std::min(Align, NewAlign); 773 Members[Key] = Instr; 774 return true; 775 } 776 777 /// \brief Get the member with the given index \p Index 778 /// 779 /// \returns nullptr if contains no such member. 780 Instruction *getMember(unsigned Index) const { 781 int Key = SmallestKey + Index; 782 if (!Members.count(Key)) 783 return nullptr; 784 785 return Members.find(Key)->second; 786 } 787 788 /// \brief Get the index for the given member. Unlike the key in the member 789 /// map, the index starts from 0. 790 unsigned getIndex(Instruction *Instr) const { 791 for (auto I : Members) 792 if (I.second == Instr) 793 return I.first - SmallestKey; 794 795 llvm_unreachable("InterleaveGroup contains no such member"); 796 } 797 798 Instruction *getInsertPos() const { return InsertPos; } 799 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 800 801 private: 802 unsigned Factor; // Interleave Factor. 803 bool Reverse; 804 unsigned Align; 805 DenseMap<int, Instruction *> Members; 806 int SmallestKey; 807 int LargestKey; 808 809 // To avoid breaking dependences, vectorized instructions of an interleave 810 // group should be inserted at either the first load or the last store in 811 // program order. 812 // 813 // E.g. %even = load i32 // Insert Position 814 // %add = add i32 %even // Use of %even 815 // %odd = load i32 816 // 817 // store i32 %even 818 // %odd = add i32 // Def of %odd 819 // store i32 %odd // Insert Position 820 Instruction *InsertPos; 821 }; 822 823 /// \brief Drive the analysis of interleaved memory accesses in the loop. 824 /// 825 /// Use this class to analyze interleaved accesses only when we can vectorize 826 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 827 /// on interleaved accesses is unsafe. 828 /// 829 /// The analysis collects interleave groups and records the relationships 830 /// between the member and the group in a map. 831 class InterleavedAccessInfo { 832 public: 833 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 834 DominatorTree *DT, LoopInfo *LI) 835 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 836 RequiresScalarEpilogue(false) {} 837 838 ~InterleavedAccessInfo() { 839 SmallSet<InterleaveGroup *, 4> DelSet; 840 // Avoid releasing a pointer twice. 841 for (auto &I : InterleaveGroupMap) 842 DelSet.insert(I.second); 843 for (auto *Ptr : DelSet) 844 delete Ptr; 845 } 846 847 /// \brief Analyze the interleaved accesses and collect them in interleave 848 /// groups. Substitute symbolic strides using \p Strides. 849 void analyzeInterleaving(const ValueToValueMap &Strides); 850 851 /// \brief Check if \p Instr belongs to any interleave group. 852 bool isInterleaved(Instruction *Instr) const { 853 return InterleaveGroupMap.count(Instr); 854 } 855 856 /// \brief Return the maximum interleave factor of all interleaved groups. 857 unsigned getMaxInterleaveFactor() const { 858 unsigned MaxFactor = 1; 859 for (auto &Entry : InterleaveGroupMap) 860 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 861 return MaxFactor; 862 } 863 864 /// \brief Get the interleave group that \p Instr belongs to. 865 /// 866 /// \returns nullptr if doesn't have such group. 867 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 868 if (InterleaveGroupMap.count(Instr)) 869 return InterleaveGroupMap.find(Instr)->second; 870 return nullptr; 871 } 872 873 /// \brief Returns true if an interleaved group that may access memory 874 /// out-of-bounds requires a scalar epilogue iteration for correctness. 875 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 876 877 /// \brief Initialize the LoopAccessInfo used for dependence checking. 878 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 879 880 private: 881 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 882 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 883 /// The interleaved access analysis can also add new predicates (for example 884 /// by versioning strides of pointers). 885 PredicatedScalarEvolution &PSE; 886 Loop *TheLoop; 887 DominatorTree *DT; 888 LoopInfo *LI; 889 const LoopAccessInfo *LAI; 890 891 /// True if the loop may contain non-reversed interleaved groups with 892 /// out-of-bounds accesses. We ensure we don't speculatively access memory 893 /// out-of-bounds by executing at least one scalar epilogue iteration. 894 bool RequiresScalarEpilogue; 895 896 /// Holds the relationships between the members and the interleave group. 897 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 898 899 /// Holds dependences among the memory accesses in the loop. It maps a source 900 /// access to a set of dependent sink accesses. 901 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 902 903 /// \brief The descriptor for a strided memory access. 904 struct StrideDescriptor { 905 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 906 unsigned Align) 907 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 908 909 StrideDescriptor() = default; 910 911 // The access's stride. It is negative for a reverse access. 912 int64_t Stride = 0; 913 const SCEV *Scev = nullptr; // The scalar expression of this access 914 uint64_t Size = 0; // The size of the memory object. 915 unsigned Align = 0; // The alignment of this access. 916 }; 917 918 /// \brief A type for holding instructions and their stride descriptors. 919 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 920 921 /// \brief Create a new interleave group with the given instruction \p Instr, 922 /// stride \p Stride and alignment \p Align. 923 /// 924 /// \returns the newly created interleave group. 925 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 926 unsigned Align) { 927 assert(!InterleaveGroupMap.count(Instr) && 928 "Already in an interleaved access group"); 929 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 930 return InterleaveGroupMap[Instr]; 931 } 932 933 /// \brief Release the group and remove all the relationships. 934 void releaseGroup(InterleaveGroup *Group) { 935 for (unsigned i = 0; i < Group->getFactor(); i++) 936 if (Instruction *Member = Group->getMember(i)) 937 InterleaveGroupMap.erase(Member); 938 939 delete Group; 940 } 941 942 /// \brief Collect all the accesses with a constant stride in program order. 943 void collectConstStrideAccesses( 944 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 945 const ValueToValueMap &Strides); 946 947 /// \brief Returns true if \p Stride is allowed in an interleaved group. 948 static bool isStrided(int Stride) { 949 unsigned Factor = std::abs(Stride); 950 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 951 } 952 953 /// \brief Returns true if \p BB is a predicated block. 954 bool isPredicated(BasicBlock *BB) const { 955 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 956 } 957 958 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 959 bool areDependencesValid() const { 960 return LAI && LAI->getDepChecker().getDependences(); 961 } 962 963 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 964 /// necessary, when constructing interleaved groups. 965 /// 966 /// \p A must precede \p B in program order. We return false if reordering is 967 /// not necessary or is prevented because \p A and \p B may be dependent. 968 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 969 StrideEntry *B) const { 970 971 // Code motion for interleaved accesses can potentially hoist strided loads 972 // and sink strided stores. The code below checks the legality of the 973 // following two conditions: 974 // 975 // 1. Potentially moving a strided load (B) before any store (A) that 976 // precedes B, or 977 // 978 // 2. Potentially moving a strided store (A) after any load or store (B) 979 // that A precedes. 980 // 981 // It's legal to reorder A and B if we know there isn't a dependence from A 982 // to B. Note that this determination is conservative since some 983 // dependences could potentially be reordered safely. 984 985 // A is potentially the source of a dependence. 986 auto *Src = A->first; 987 auto SrcDes = A->second; 988 989 // B is potentially the sink of a dependence. 990 auto *Sink = B->first; 991 auto SinkDes = B->second; 992 993 // Code motion for interleaved accesses can't violate WAR dependences. 994 // Thus, reordering is legal if the source isn't a write. 995 if (!Src->mayWriteToMemory()) 996 return true; 997 998 // At least one of the accesses must be strided. 999 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1000 return true; 1001 1002 // If dependence information is not available from LoopAccessInfo, 1003 // conservatively assume the instructions can't be reordered. 1004 if (!areDependencesValid()) 1005 return false; 1006 1007 // If we know there is a dependence from source to sink, assume the 1008 // instructions can't be reordered. Otherwise, reordering is legal. 1009 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1010 } 1011 1012 /// \brief Collect the dependences from LoopAccessInfo. 1013 /// 1014 /// We process the dependences once during the interleaved access analysis to 1015 /// enable constant-time dependence queries. 1016 void collectDependences() { 1017 if (!areDependencesValid()) 1018 return; 1019 auto *Deps = LAI->getDepChecker().getDependences(); 1020 for (auto Dep : *Deps) 1021 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1022 } 1023 }; 1024 1025 /// Utility class for getting and setting loop vectorizer hints in the form 1026 /// of loop metadata. 1027 /// This class keeps a number of loop annotations locally (as member variables) 1028 /// and can, upon request, write them back as metadata on the loop. It will 1029 /// initially scan the loop for existing metadata, and will update the local 1030 /// values based on information in the loop. 1031 /// We cannot write all values to metadata, as the mere presence of some info, 1032 /// for example 'force', means a decision has been made. So, we need to be 1033 /// careful NOT to add them if the user hasn't specifically asked so. 1034 class LoopVectorizeHints { 1035 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1036 1037 /// Hint - associates name and validation with the hint value. 1038 struct Hint { 1039 const char *Name; 1040 unsigned Value; // This may have to change for non-numeric values. 1041 HintKind Kind; 1042 1043 Hint(const char *Name, unsigned Value, HintKind Kind) 1044 : Name(Name), Value(Value), Kind(Kind) {} 1045 1046 bool validate(unsigned Val) { 1047 switch (Kind) { 1048 case HK_WIDTH: 1049 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1050 case HK_UNROLL: 1051 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1052 case HK_FORCE: 1053 return (Val <= 1); 1054 } 1055 return false; 1056 } 1057 }; 1058 1059 /// Vectorization width. 1060 Hint Width; 1061 /// Vectorization interleave factor. 1062 Hint Interleave; 1063 /// Vectorization forced 1064 Hint Force; 1065 1066 /// Return the loop metadata prefix. 1067 static StringRef Prefix() { return "llvm.loop."; } 1068 1069 /// True if there is any unsafe math in the loop. 1070 bool PotentiallyUnsafe; 1071 1072 public: 1073 enum ForceKind { 1074 FK_Undefined = -1, ///< Not selected. 1075 FK_Disabled = 0, ///< Forcing disabled. 1076 FK_Enabled = 1, ///< Forcing enabled. 1077 }; 1078 1079 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1080 OptimizationRemarkEmitter &ORE) 1081 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1082 HK_WIDTH), 1083 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1084 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1085 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1086 // Populate values with existing loop metadata. 1087 getHintsFromMetadata(); 1088 1089 // force-vector-interleave overrides DisableInterleaving. 1090 if (VectorizerParams::isInterleaveForced()) 1091 Interleave.Value = VectorizerParams::VectorizationInterleave; 1092 1093 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1094 << "LV: Interleaving disabled by the pass manager\n"); 1095 } 1096 1097 /// Mark the loop L as already vectorized by setting the width to 1. 1098 void setAlreadyVectorized() { 1099 Width.Value = Interleave.Value = 1; 1100 Hint Hints[] = {Width, Interleave}; 1101 writeHintsToMetadata(Hints); 1102 } 1103 1104 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1105 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1106 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1107 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1108 emitRemark()); 1109 return false; 1110 } 1111 1112 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1113 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1114 ORE.emitOptimizationRemarkAnalysis(vectorizeAnalysisPassName(), L, 1115 emitRemark()); 1116 return false; 1117 } 1118 1119 if (getWidth() == 1 && getInterleave() == 1) { 1120 // FIXME: Add a separate metadata to indicate when the loop has already 1121 // been vectorized instead of setting width and count to 1. 1122 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1123 // FIXME: Add interleave.disable metadata. This will allow 1124 // vectorize.disable to be used without disabling the pass and errors 1125 // to differentiate between disabled vectorization and a width of 1. 1126 ORE.emitOptimizationRemarkAnalysis( 1127 vectorizeAnalysisPassName(), L, 1128 "loop not vectorized: vectorization and interleaving are explicitly " 1129 "disabled, or vectorize width and interleave count are both set to " 1130 "1"); 1131 return false; 1132 } 1133 1134 return true; 1135 } 1136 1137 /// Dumps all the hint information. 1138 std::string emitRemark() const { 1139 VectorizationReport R; 1140 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1141 R << "vectorization is explicitly disabled"; 1142 else { 1143 R << "use -Rpass-analysis=loop-vectorize for more info"; 1144 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1145 R << " (Force=true"; 1146 if (Width.Value != 0) 1147 R << ", Vector Width=" << Width.Value; 1148 if (Interleave.Value != 0) 1149 R << ", Interleave Count=" << Interleave.Value; 1150 R << ")"; 1151 } 1152 } 1153 1154 return R.str(); 1155 } 1156 1157 unsigned getWidth() const { return Width.Value; } 1158 unsigned getInterleave() const { return Interleave.Value; } 1159 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1160 1161 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1162 /// pass name to force the frontend to print the diagnostic. 1163 const char *vectorizeAnalysisPassName() const { 1164 if (getWidth() == 1) 1165 return LV_NAME; 1166 if (getForce() == LoopVectorizeHints::FK_Disabled) 1167 return LV_NAME; 1168 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1169 return LV_NAME; 1170 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1171 } 1172 1173 bool allowReordering() const { 1174 // When enabling loop hints are provided we allow the vectorizer to change 1175 // the order of operations that is given by the scalar loop. This is not 1176 // enabled by default because can be unsafe or inefficient. For example, 1177 // reordering floating-point operations will change the way round-off 1178 // error accumulates in the loop. 1179 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1180 } 1181 1182 bool isPotentiallyUnsafe() const { 1183 // Avoid FP vectorization if the target is unsure about proper support. 1184 // This may be related to the SIMD unit in the target not handling 1185 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1186 // Otherwise, a sequence of vectorized loops, even without reduction, 1187 // could lead to different end results on the destination vectors. 1188 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1189 } 1190 1191 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1192 1193 private: 1194 /// Find hints specified in the loop metadata and update local values. 1195 void getHintsFromMetadata() { 1196 MDNode *LoopID = TheLoop->getLoopID(); 1197 if (!LoopID) 1198 return; 1199 1200 // First operand should refer to the loop id itself. 1201 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1202 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1203 1204 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1205 const MDString *S = nullptr; 1206 SmallVector<Metadata *, 4> Args; 1207 1208 // The expected hint is either a MDString or a MDNode with the first 1209 // operand a MDString. 1210 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1211 if (!MD || MD->getNumOperands() == 0) 1212 continue; 1213 S = dyn_cast<MDString>(MD->getOperand(0)); 1214 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1215 Args.push_back(MD->getOperand(i)); 1216 } else { 1217 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1218 assert(Args.size() == 0 && "too many arguments for MDString"); 1219 } 1220 1221 if (!S) 1222 continue; 1223 1224 // Check if the hint starts with the loop metadata prefix. 1225 StringRef Name = S->getString(); 1226 if (Args.size() == 1) 1227 setHint(Name, Args[0]); 1228 } 1229 } 1230 1231 /// Checks string hint with one operand and set value if valid. 1232 void setHint(StringRef Name, Metadata *Arg) { 1233 if (!Name.startswith(Prefix())) 1234 return; 1235 Name = Name.substr(Prefix().size(), StringRef::npos); 1236 1237 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1238 if (!C) 1239 return; 1240 unsigned Val = C->getZExtValue(); 1241 1242 Hint *Hints[] = {&Width, &Interleave, &Force}; 1243 for (auto H : Hints) { 1244 if (Name == H->Name) { 1245 if (H->validate(Val)) 1246 H->Value = Val; 1247 else 1248 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1249 break; 1250 } 1251 } 1252 } 1253 1254 /// Create a new hint from name / value pair. 1255 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1256 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1257 Metadata *MDs[] = {MDString::get(Context, Name), 1258 ConstantAsMetadata::get( 1259 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1260 return MDNode::get(Context, MDs); 1261 } 1262 1263 /// Matches metadata with hint name. 1264 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1265 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1266 if (!Name) 1267 return false; 1268 1269 for (auto H : HintTypes) 1270 if (Name->getString().endswith(H.Name)) 1271 return true; 1272 return false; 1273 } 1274 1275 /// Sets current hints into loop metadata, keeping other values intact. 1276 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1277 if (HintTypes.size() == 0) 1278 return; 1279 1280 // Reserve the first element to LoopID (see below). 1281 SmallVector<Metadata *, 4> MDs(1); 1282 // If the loop already has metadata, then ignore the existing operands. 1283 MDNode *LoopID = TheLoop->getLoopID(); 1284 if (LoopID) { 1285 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1286 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1287 // If node in update list, ignore old value. 1288 if (!matchesHintMetadataName(Node, HintTypes)) 1289 MDs.push_back(Node); 1290 } 1291 } 1292 1293 // Now, add the missing hints. 1294 for (auto H : HintTypes) 1295 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1296 1297 // Replace current metadata node with new one. 1298 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1299 MDNode *NewLoopID = MDNode::get(Context, MDs); 1300 // Set operand 0 to refer to the loop id itself. 1301 NewLoopID->replaceOperandWith(0, NewLoopID); 1302 1303 TheLoop->setLoopID(NewLoopID); 1304 } 1305 1306 /// The loop these hints belong to. 1307 const Loop *TheLoop; 1308 1309 /// Interface to emit optimization remarks. 1310 OptimizationRemarkEmitter &ORE; 1311 }; 1312 1313 static void emitAnalysisDiag(const Loop *TheLoop, 1314 const LoopVectorizeHints &Hints, 1315 OptimizationRemarkEmitter &ORE, 1316 const LoopAccessReport &Message) { 1317 const char *Name = Hints.vectorizeAnalysisPassName(); 1318 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1319 } 1320 1321 static void emitMissedWarning(Function *F, Loop *L, 1322 const LoopVectorizeHints &LH, 1323 OptimizationRemarkEmitter *ORE) { 1324 ORE->emitOptimizationRemarkMissed(LV_NAME, L, LH.emitRemark()); 1325 1326 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1327 if (LH.getWidth() != 1) 1328 emitLoopVectorizeWarning( 1329 F->getContext(), *F, L->getStartLoc(), 1330 "failed explicitly specified loop vectorization"); 1331 else if (LH.getInterleave() != 1) 1332 emitLoopInterleaveWarning( 1333 F->getContext(), *F, L->getStartLoc(), 1334 "failed explicitly specified loop interleaving"); 1335 } 1336 } 1337 1338 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1339 /// to what vectorization factor. 1340 /// This class does not look at the profitability of vectorization, only the 1341 /// legality. This class has two main kinds of checks: 1342 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1343 /// will change the order of memory accesses in a way that will change the 1344 /// correctness of the program. 1345 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1346 /// checks for a number of different conditions, such as the availability of a 1347 /// single induction variable, that all types are supported and vectorize-able, 1348 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1349 /// This class is also used by InnerLoopVectorizer for identifying 1350 /// induction variable and the different reduction variables. 1351 class LoopVectorizationLegality { 1352 public: 1353 LoopVectorizationLegality( 1354 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1355 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1356 const TargetTransformInfo *TTI, 1357 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1358 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1359 LoopVectorizeHints *H) 1360 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1361 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1362 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1363 Requirements(R), Hints(H) {} 1364 1365 /// ReductionList contains the reduction descriptors for all 1366 /// of the reductions that were found in the loop. 1367 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1368 1369 /// InductionList saves induction variables and maps them to the 1370 /// induction descriptor. 1371 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1372 1373 /// RecurrenceSet contains the phi nodes that are recurrences other than 1374 /// inductions and reductions. 1375 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1376 1377 /// Returns true if it is legal to vectorize this loop. 1378 /// This does not mean that it is profitable to vectorize this 1379 /// loop, only that it is legal to do so. 1380 bool canVectorize(); 1381 1382 /// Returns the Induction variable. 1383 PHINode *getInduction() { return Induction; } 1384 1385 /// Returns the reduction variables found in the loop. 1386 ReductionList *getReductionVars() { return &Reductions; } 1387 1388 /// Returns the induction variables found in the loop. 1389 InductionList *getInductionVars() { return &Inductions; } 1390 1391 /// Return the first-order recurrences found in the loop. 1392 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1393 1394 /// Returns the widest induction type. 1395 Type *getWidestInductionType() { return WidestIndTy; } 1396 1397 /// Returns True if V is an induction variable in this loop. 1398 bool isInductionVariable(const Value *V); 1399 1400 /// Returns True if PN is a reduction variable in this loop. 1401 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1402 1403 /// Returns True if Phi is a first-order recurrence in this loop. 1404 bool isFirstOrderRecurrence(const PHINode *Phi); 1405 1406 /// Return true if the block BB needs to be predicated in order for the loop 1407 /// to be vectorized. 1408 bool blockNeedsPredication(BasicBlock *BB); 1409 1410 /// Check if this pointer is consecutive when vectorizing. This happens 1411 /// when the last index of the GEP is the induction variable, or that the 1412 /// pointer itself is an induction variable. 1413 /// This check allows us to vectorize A[idx] into a wide load/store. 1414 /// Returns: 1415 /// 0 - Stride is unknown or non-consecutive. 1416 /// 1 - Address is consecutive. 1417 /// -1 - Address is consecutive, and decreasing. 1418 int isConsecutivePtr(Value *Ptr); 1419 1420 /// Returns true if the value V is uniform within the loop. 1421 bool isUniform(Value *V); 1422 1423 /// Returns true if this instruction will remain scalar after vectorization. 1424 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1425 1426 /// Returns the information that we collected about runtime memory check. 1427 const RuntimePointerChecking *getRuntimePointerChecking() const { 1428 return LAI->getRuntimePointerChecking(); 1429 } 1430 1431 const LoopAccessInfo *getLAI() const { return LAI; } 1432 1433 /// \brief Check if \p Instr belongs to any interleaved access group. 1434 bool isAccessInterleaved(Instruction *Instr) { 1435 return InterleaveInfo.isInterleaved(Instr); 1436 } 1437 1438 /// \brief Return the maximum interleave factor of all interleaved groups. 1439 unsigned getMaxInterleaveFactor() const { 1440 return InterleaveInfo.getMaxInterleaveFactor(); 1441 } 1442 1443 /// \brief Get the interleaved access group that \p Instr belongs to. 1444 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1445 return InterleaveInfo.getInterleaveGroup(Instr); 1446 } 1447 1448 /// \brief Returns true if an interleaved group requires a scalar iteration 1449 /// to handle accesses with gaps. 1450 bool requiresScalarEpilogue() const { 1451 return InterleaveInfo.requiresScalarEpilogue(); 1452 } 1453 1454 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1455 1456 bool hasStride(Value *V) { return LAI->hasStride(V); } 1457 1458 /// Returns true if the target machine supports masked store operation 1459 /// for the given \p DataType and kind of access to \p Ptr. 1460 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1461 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1462 } 1463 /// Returns true if the target machine supports masked load operation 1464 /// for the given \p DataType and kind of access to \p Ptr. 1465 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1466 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1467 } 1468 /// Returns true if the target machine supports masked scatter operation 1469 /// for the given \p DataType. 1470 bool isLegalMaskedScatter(Type *DataType) { 1471 return TTI->isLegalMaskedScatter(DataType); 1472 } 1473 /// Returns true if the target machine supports masked gather operation 1474 /// for the given \p DataType. 1475 bool isLegalMaskedGather(Type *DataType) { 1476 return TTI->isLegalMaskedGather(DataType); 1477 } 1478 1479 /// Returns true if vector representation of the instruction \p I 1480 /// requires mask. 1481 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1482 unsigned getNumStores() const { return LAI->getNumStores(); } 1483 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1484 unsigned getNumPredStores() const { return NumPredStores; } 1485 1486 private: 1487 /// Check if a single basic block loop is vectorizable. 1488 /// At this point we know that this is a loop with a constant trip count 1489 /// and we only need to check individual instructions. 1490 bool canVectorizeInstrs(); 1491 1492 /// When we vectorize loops we may change the order in which 1493 /// we read and write from memory. This method checks if it is 1494 /// legal to vectorize the code, considering only memory constrains. 1495 /// Returns true if the loop is vectorizable 1496 bool canVectorizeMemory(); 1497 1498 /// Return true if we can vectorize this loop using the IF-conversion 1499 /// transformation. 1500 bool canVectorizeWithIfConvert(); 1501 1502 /// Collect the variables that need to stay uniform after vectorization. 1503 void collectLoopUniforms(); 1504 1505 /// Return true if all of the instructions in the block can be speculatively 1506 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1507 /// and we know that we can read from them without segfault. 1508 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1509 1510 /// Updates the vectorization state by adding \p Phi to the inductions list. 1511 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1512 /// better choice for the main induction than the existing one. 1513 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1514 SmallPtrSetImpl<Value *> &AllowedExit); 1515 1516 /// Report an analysis message to assist the user in diagnosing loops that are 1517 /// not vectorized. These are handled as LoopAccessReport rather than 1518 /// VectorizationReport because the << operator of VectorizationReport returns 1519 /// LoopAccessReport. 1520 void emitAnalysis(const LoopAccessReport &Message) const { 1521 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1522 } 1523 1524 /// \brief If an access has a symbolic strides, this maps the pointer value to 1525 /// the stride symbol. 1526 const ValueToValueMap *getSymbolicStrides() { 1527 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1528 // it's collected. This happens from canVectorizeWithIfConvert, when the 1529 // pointer is checked to reference consecutive elements suitable for a 1530 // masked access. 1531 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1532 } 1533 1534 unsigned NumPredStores; 1535 1536 /// The loop that we evaluate. 1537 Loop *TheLoop; 1538 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1539 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1540 /// of existing SCEV assumptions. The analysis will also add a minimal set 1541 /// of new predicates if this is required to enable vectorization and 1542 /// unrolling. 1543 PredicatedScalarEvolution &PSE; 1544 /// Target Library Info. 1545 TargetLibraryInfo *TLI; 1546 /// Target Transform Info 1547 const TargetTransformInfo *TTI; 1548 /// Dominator Tree. 1549 DominatorTree *DT; 1550 // LoopAccess analysis. 1551 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1552 // And the loop-accesses info corresponding to this loop. This pointer is 1553 // null until canVectorizeMemory sets it up. 1554 const LoopAccessInfo *LAI; 1555 /// Interface to emit optimization remarks. 1556 OptimizationRemarkEmitter *ORE; 1557 1558 /// The interleave access information contains groups of interleaved accesses 1559 /// with the same stride and close to each other. 1560 InterleavedAccessInfo InterleaveInfo; 1561 1562 // --- vectorization state --- // 1563 1564 /// Holds the integer induction variable. This is the counter of the 1565 /// loop. 1566 PHINode *Induction; 1567 /// Holds the reduction variables. 1568 ReductionList Reductions; 1569 /// Holds all of the induction variables that we found in the loop. 1570 /// Notice that inductions don't need to start at zero and that induction 1571 /// variables can be pointers. 1572 InductionList Inductions; 1573 /// Holds the phi nodes that are first-order recurrences. 1574 RecurrenceSet FirstOrderRecurrences; 1575 /// Holds the widest induction type encountered. 1576 Type *WidestIndTy; 1577 1578 /// Allowed outside users. This holds the induction and reduction 1579 /// vars which can be accessed from outside the loop. 1580 SmallPtrSet<Value *, 4> AllowedExit; 1581 /// This set holds the variables which are known to be uniform after 1582 /// vectorization. 1583 SmallPtrSet<Instruction *, 4> Uniforms; 1584 1585 /// Can we assume the absence of NaNs. 1586 bool HasFunNoNaNAttr; 1587 1588 /// Vectorization requirements that will go through late-evaluation. 1589 LoopVectorizationRequirements *Requirements; 1590 1591 /// Used to emit an analysis of any legality issues. 1592 LoopVectorizeHints *Hints; 1593 1594 /// While vectorizing these instructions we have to generate a 1595 /// call to the appropriate masked intrinsic 1596 SmallPtrSet<const Instruction *, 8> MaskedOp; 1597 }; 1598 1599 /// LoopVectorizationCostModel - estimates the expected speedups due to 1600 /// vectorization. 1601 /// In many cases vectorization is not profitable. This can happen because of 1602 /// a number of reasons. In this class we mainly attempt to predict the 1603 /// expected speedup/slowdowns due to the supported instruction set. We use the 1604 /// TargetTransformInfo to query the different backends for the cost of 1605 /// different operations. 1606 class LoopVectorizationCostModel { 1607 public: 1608 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1609 LoopInfo *LI, LoopVectorizationLegality *Legal, 1610 const TargetTransformInfo &TTI, 1611 const TargetLibraryInfo *TLI, DemandedBits *DB, 1612 AssumptionCache *AC, 1613 OptimizationRemarkEmitter *ORE, const Function *F, 1614 const LoopVectorizeHints *Hints) 1615 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1616 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1617 1618 /// Information about vectorization costs 1619 struct VectorizationFactor { 1620 unsigned Width; // Vector width with best cost 1621 unsigned Cost; // Cost of the loop with that width 1622 }; 1623 /// \return The most profitable vectorization factor and the cost of that VF. 1624 /// This method checks every power of two up to VF. If UserVF is not ZERO 1625 /// then this vectorization factor will be selected if vectorization is 1626 /// possible. 1627 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1628 1629 /// \return The size (in bits) of the smallest and widest types in the code 1630 /// that needs to be vectorized. We ignore values that remain scalar such as 1631 /// 64 bit loop indices. 1632 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1633 1634 /// \return The desired interleave count. 1635 /// If interleave count has been specified by metadata it will be returned. 1636 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1637 /// are the selected vectorization factor and the cost of the selected VF. 1638 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1639 unsigned LoopCost); 1640 1641 /// \return The most profitable unroll factor. 1642 /// This method finds the best unroll-factor based on register pressure and 1643 /// other parameters. VF and LoopCost are the selected vectorization factor 1644 /// and the cost of the selected VF. 1645 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1646 unsigned LoopCost); 1647 1648 /// \brief A struct that represents some properties of the register usage 1649 /// of a loop. 1650 struct RegisterUsage { 1651 /// Holds the number of loop invariant values that are used in the loop. 1652 unsigned LoopInvariantRegs; 1653 /// Holds the maximum number of concurrent live intervals in the loop. 1654 unsigned MaxLocalUsers; 1655 /// Holds the number of instructions in the loop. 1656 unsigned NumInstructions; 1657 }; 1658 1659 /// \return Returns information about the register usages of the loop for the 1660 /// given vectorization factors. 1661 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1662 1663 /// Collect values we want to ignore in the cost model. 1664 void collectValuesToIgnore(); 1665 1666 private: 1667 /// The vectorization cost is a combination of the cost itself and a boolean 1668 /// indicating whether any of the contributing operations will actually 1669 /// operate on 1670 /// vector values after type legalization in the backend. If this latter value 1671 /// is 1672 /// false, then all operations will be scalarized (i.e. no vectorization has 1673 /// actually taken place). 1674 typedef std::pair<unsigned, bool> VectorizationCostTy; 1675 1676 /// Returns the expected execution cost. The unit of the cost does 1677 /// not matter because we use the 'cost' units to compare different 1678 /// vector widths. The cost that is returned is *not* normalized by 1679 /// the factor width. 1680 VectorizationCostTy expectedCost(unsigned VF); 1681 1682 /// Returns the execution time cost of an instruction for a given vector 1683 /// width. Vector width of one means scalar. 1684 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1685 1686 /// The cost-computation logic from getInstructionCost which provides 1687 /// the vector type as an output parameter. 1688 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1689 1690 /// Returns whether the instruction is a load or store and will be a emitted 1691 /// as a vector operation. 1692 bool isConsecutiveLoadOrStore(Instruction *I); 1693 1694 /// Report an analysis message to assist the user in diagnosing loops that are 1695 /// not vectorized. These are handled as LoopAccessReport rather than 1696 /// VectorizationReport because the << operator of VectorizationReport returns 1697 /// LoopAccessReport. 1698 void emitAnalysis(const LoopAccessReport &Message) const { 1699 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1700 } 1701 1702 public: 1703 /// Map of scalar integer values to the smallest bitwidth they can be legally 1704 /// represented as. The vector equivalents of these values should be truncated 1705 /// to this type. 1706 MapVector<Instruction *, uint64_t> MinBWs; 1707 1708 /// The loop that we evaluate. 1709 Loop *TheLoop; 1710 /// Predicated scalar evolution analysis. 1711 PredicatedScalarEvolution &PSE; 1712 /// Loop Info analysis. 1713 LoopInfo *LI; 1714 /// Vectorization legality. 1715 LoopVectorizationLegality *Legal; 1716 /// Vector target information. 1717 const TargetTransformInfo &TTI; 1718 /// Target Library Info. 1719 const TargetLibraryInfo *TLI; 1720 /// Demanded bits analysis. 1721 DemandedBits *DB; 1722 /// Assumption cache. 1723 AssumptionCache *AC; 1724 /// Interface to emit optimization remarks. 1725 OptimizationRemarkEmitter *ORE; 1726 1727 const Function *TheFunction; 1728 /// Loop Vectorize Hint. 1729 const LoopVectorizeHints *Hints; 1730 /// Values to ignore in the cost model. 1731 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1732 /// Values to ignore in the cost model when VF > 1. 1733 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1734 }; 1735 1736 /// \brief This holds vectorization requirements that must be verified late in 1737 /// the process. The requirements are set by legalize and costmodel. Once 1738 /// vectorization has been determined to be possible and profitable the 1739 /// requirements can be verified by looking for metadata or compiler options. 1740 /// For example, some loops require FP commutativity which is only allowed if 1741 /// vectorization is explicitly specified or if the fast-math compiler option 1742 /// has been provided. 1743 /// Late evaluation of these requirements allows helpful diagnostics to be 1744 /// composed that tells the user what need to be done to vectorize the loop. For 1745 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1746 /// evaluation should be used only when diagnostics can generated that can be 1747 /// followed by a non-expert user. 1748 class LoopVectorizationRequirements { 1749 public: 1750 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 1751 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 1752 1753 void addUnsafeAlgebraInst(Instruction *I) { 1754 // First unsafe algebra instruction. 1755 if (!UnsafeAlgebraInst) 1756 UnsafeAlgebraInst = I; 1757 } 1758 1759 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1760 1761 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1762 const char *Name = Hints.vectorizeAnalysisPassName(); 1763 bool Failed = false; 1764 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1765 ORE.emitOptimizationRemarkAnalysisFPCommute( 1766 Name, UnsafeAlgebraInst->getDebugLoc(), 1767 UnsafeAlgebraInst->getParent(), 1768 VectorizationReport() << "cannot prove it is safe to reorder " 1769 "floating-point operations"); 1770 Failed = true; 1771 } 1772 1773 // Test if runtime memcheck thresholds are exceeded. 1774 bool PragmaThresholdReached = 1775 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1776 bool ThresholdReached = 1777 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1778 if ((ThresholdReached && !Hints.allowReordering()) || 1779 PragmaThresholdReached) { 1780 ORE.emitOptimizationRemarkAnalysisAliasing( 1781 Name, L, 1782 VectorizationReport() 1783 << "cannot prove it is safe to reorder memory operations"); 1784 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1785 Failed = true; 1786 } 1787 1788 return Failed; 1789 } 1790 1791 private: 1792 unsigned NumRuntimePointerChecks; 1793 Instruction *UnsafeAlgebraInst; 1794 1795 /// Interface to emit optimization remarks. 1796 OptimizationRemarkEmitter &ORE; 1797 }; 1798 1799 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1800 if (L.empty()) 1801 return V.push_back(&L); 1802 1803 for (Loop *InnerL : L) 1804 addInnerLoop(*InnerL, V); 1805 } 1806 1807 /// The LoopVectorize Pass. 1808 struct LoopVectorize : public FunctionPass { 1809 /// Pass identification, replacement for typeid 1810 static char ID; 1811 1812 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1813 : FunctionPass(ID) { 1814 Impl.DisableUnrolling = NoUnrolling; 1815 Impl.AlwaysVectorize = AlwaysVectorize; 1816 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1817 } 1818 1819 LoopVectorizePass Impl; 1820 1821 bool runOnFunction(Function &F) override { 1822 if (skipFunction(F)) 1823 return false; 1824 1825 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1826 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1827 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1828 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1829 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1830 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1831 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1832 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1833 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1834 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1835 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1836 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1837 1838 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1839 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1840 1841 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1842 GetLAA, *ORE); 1843 } 1844 1845 void getAnalysisUsage(AnalysisUsage &AU) const override { 1846 AU.addRequired<AssumptionCacheTracker>(); 1847 AU.addRequiredID(LoopSimplifyID); 1848 AU.addRequiredID(LCSSAID); 1849 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1850 AU.addRequired<DominatorTreeWrapperPass>(); 1851 AU.addRequired<LoopInfoWrapperPass>(); 1852 AU.addRequired<ScalarEvolutionWrapperPass>(); 1853 AU.addRequired<TargetTransformInfoWrapperPass>(); 1854 AU.addRequired<AAResultsWrapperPass>(); 1855 AU.addRequired<LoopAccessLegacyAnalysis>(); 1856 AU.addRequired<DemandedBitsWrapperPass>(); 1857 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1858 AU.addPreserved<LoopInfoWrapperPass>(); 1859 AU.addPreserved<DominatorTreeWrapperPass>(); 1860 AU.addPreserved<BasicAAWrapperPass>(); 1861 AU.addPreserved<GlobalsAAWrapperPass>(); 1862 } 1863 }; 1864 1865 } // end anonymous namespace 1866 1867 //===----------------------------------------------------------------------===// 1868 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1869 // LoopVectorizationCostModel. 1870 //===----------------------------------------------------------------------===// 1871 1872 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1873 // We need to place the broadcast of invariant variables outside the loop. 1874 Instruction *Instr = dyn_cast<Instruction>(V); 1875 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1876 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1877 1878 // Place the code for broadcasting invariant variables in the new preheader. 1879 IRBuilder<>::InsertPointGuard Guard(Builder); 1880 if (Invariant) 1881 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1882 1883 // Broadcast the scalar into all locations in the vector. 1884 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1885 1886 return Shuf; 1887 } 1888 1889 void InnerLoopVectorizer::createVectorIntInductionPHI( 1890 const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) { 1891 Value *Start = II.getStartValue(); 1892 ConstantInt *Step = II.getConstIntStepValue(); 1893 assert(Step && "Can not widen an IV with a non-constant step"); 1894 1895 // Construct the initial value of the vector IV in the vector loop preheader 1896 auto CurrIP = Builder.saveIP(); 1897 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1898 if (TruncType) { 1899 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 1900 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1901 } 1902 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1903 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 1904 Builder.restoreIP(CurrIP); 1905 1906 Value *SplatVF = 1907 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 1908 VF * Step->getSExtValue())); 1909 // We may need to add the step a number of times, depending on the unroll 1910 // factor. The last of those goes into the PHI. 1911 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1912 &*LoopVectorBody->getFirstInsertionPt()); 1913 Value *LastInduction = VecInd; 1914 for (unsigned Part = 0; Part < UF; ++Part) { 1915 Entry[Part] = LastInduction; 1916 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 1917 } 1918 1919 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1920 VecInd->addIncoming(LastInduction, LoopVectorBody); 1921 } 1922 1923 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry, 1924 TruncInst *Trunc) { 1925 1926 auto II = Legal->getInductionVars()->find(IV); 1927 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1928 1929 auto ID = II->second; 1930 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1931 1932 // If a truncate instruction was provided, get the smaller type. 1933 auto *TruncType = Trunc ? cast<IntegerType>(Trunc->getType()) : nullptr; 1934 1935 // The step of the induction. 1936 Value *Step = nullptr; 1937 1938 // If the induction variable has a constant integer step value, go ahead and 1939 // get it now. 1940 if (ID.getConstIntStepValue()) 1941 Step = ID.getConstIntStepValue(); 1942 1943 // Try to create a new independent vector induction variable. If we can't 1944 // create the phi node, we will splat the scalar induction variable in each 1945 // loop iteration. 1946 if (VF > 1 && IV->getType() == Induction->getType() && Step && 1947 !ValuesNotWidened->count(IV)) 1948 return createVectorIntInductionPHI(ID, Entry, TruncType); 1949 1950 // The scalar value to broadcast. This will be derived from the canonical 1951 // induction variable. 1952 Value *ScalarIV = nullptr; 1953 1954 // Define the scalar induction variable and step values. If we were given a 1955 // truncation type, truncate the canonical induction variable and constant 1956 // step. Otherwise, derive these values from the induction descriptor. 1957 if (TruncType) { 1958 assert(Step && "Truncation requires constant integer step"); 1959 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 1960 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 1961 Step = ConstantInt::getSigned(TruncType, StepInt); 1962 } else { 1963 ScalarIV = Induction; 1964 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1965 if (IV != OldInduction) { 1966 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 1967 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1968 ScalarIV->setName("offset.idx"); 1969 } 1970 if (!Step) { 1971 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1972 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1973 &*Builder.GetInsertPoint()); 1974 } 1975 } 1976 1977 // Splat the scalar induction variable, and build the necessary step vectors. 1978 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1979 for (unsigned Part = 0; Part < UF; ++Part) 1980 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 1981 1982 // If an induction variable is only used for counting loop iterations or 1983 // calculating addresses, it doesn't need to be widened. Create scalar steps 1984 // that can be used by instructions we will later scalarize. Note that the 1985 // addition of the scalar steps will not increase the number of instructions 1986 // in the loop in the common case prior to InstCombine. We will be trading 1987 // one vector extract for each scalar step. 1988 if (VF > 1 && ValuesNotWidened->count(IV)) { 1989 auto *EntryVal = Trunc ? cast<Value>(Trunc) : IV; 1990 buildScalarSteps(ScalarIV, Step, EntryVal); 1991 } 1992 } 1993 1994 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1995 Value *Step) { 1996 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1997 assert(Val->getType()->getScalarType()->isIntegerTy() && 1998 "Elem must be an integer"); 1999 assert(Step->getType() == Val->getType()->getScalarType() && 2000 "Step has wrong type"); 2001 // Create the types. 2002 Type *ITy = Val->getType()->getScalarType(); 2003 VectorType *Ty = cast<VectorType>(Val->getType()); 2004 int VLen = Ty->getNumElements(); 2005 SmallVector<Constant *, 8> Indices; 2006 2007 // Create a vector of consecutive numbers from zero to VF. 2008 for (int i = 0; i < VLen; ++i) 2009 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2010 2011 // Add the consecutive indices to the vector value. 2012 Constant *Cv = ConstantVector::get(Indices); 2013 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2014 Step = Builder.CreateVectorSplat(VLen, Step); 2015 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2016 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2017 // which can be found from the original scalar operations. 2018 Step = Builder.CreateMul(Cv, Step); 2019 return Builder.CreateAdd(Val, Step, "induction"); 2020 } 2021 2022 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2023 Value *EntryVal) { 2024 2025 // We shouldn't have to build scalar steps if we aren't vectorizing. 2026 assert(VF > 1 && "VF should be greater than one"); 2027 2028 // Get the value type and ensure it and the step have the same integer type. 2029 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2030 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2031 "Val and Step should have the same integer type"); 2032 2033 // Compute the scalar steps and save the results in ScalarIVMap. 2034 for (unsigned Part = 0; Part < UF; ++Part) 2035 for (unsigned I = 0; I < VF; ++I) { 2036 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I); 2037 auto *Mul = Builder.CreateMul(StartIdx, Step); 2038 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2039 ScalarIVMap[EntryVal].push_back(Add); 2040 } 2041 } 2042 2043 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2044 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2045 auto *SE = PSE.getSE(); 2046 // Make sure that the pointer does not point to structs. 2047 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2048 return 0; 2049 2050 // If this value is a pointer induction variable, we know it is consecutive. 2051 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2052 if (Phi && Inductions.count(Phi)) { 2053 InductionDescriptor II = Inductions[Phi]; 2054 return II.getConsecutiveDirection(); 2055 } 2056 2057 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2058 if (!Gep) 2059 return 0; 2060 2061 unsigned NumOperands = Gep->getNumOperands(); 2062 Value *GpPtr = Gep->getPointerOperand(); 2063 // If this GEP value is a consecutive pointer induction variable and all of 2064 // the indices are constant, then we know it is consecutive. 2065 Phi = dyn_cast<PHINode>(GpPtr); 2066 if (Phi && Inductions.count(Phi)) { 2067 2068 // Make sure that the pointer does not point to structs. 2069 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2070 if (GepPtrType->getElementType()->isAggregateType()) 2071 return 0; 2072 2073 // Make sure that all of the index operands are loop invariant. 2074 for (unsigned i = 1; i < NumOperands; ++i) 2075 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2076 return 0; 2077 2078 InductionDescriptor II = Inductions[Phi]; 2079 return II.getConsecutiveDirection(); 2080 } 2081 2082 unsigned InductionOperand = getGEPInductionOperand(Gep); 2083 2084 // Check that all of the gep indices are uniform except for our induction 2085 // operand. 2086 for (unsigned i = 0; i != NumOperands; ++i) 2087 if (i != InductionOperand && 2088 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2089 return 0; 2090 2091 // We can emit wide load/stores only if the last non-zero index is the 2092 // induction variable. 2093 const SCEV *Last = nullptr; 2094 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2095 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2096 else { 2097 // Because of the multiplication by a stride we can have a s/zext cast. 2098 // We are going to replace this stride by 1 so the cast is safe to ignore. 2099 // 2100 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2101 // %0 = trunc i64 %indvars.iv to i32 2102 // %mul = mul i32 %0, %Stride1 2103 // %idxprom = zext i32 %mul to i64 << Safe cast. 2104 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2105 // 2106 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2107 Gep->getOperand(InductionOperand), Gep); 2108 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2109 Last = 2110 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2111 ? C->getOperand() 2112 : Last; 2113 } 2114 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2115 const SCEV *Step = AR->getStepRecurrence(*SE); 2116 2117 // The memory is consecutive because the last index is consecutive 2118 // and all other indices are loop invariant. 2119 if (Step->isOne()) 2120 return 1; 2121 if (Step->isAllOnesValue()) 2122 return -1; 2123 } 2124 2125 return 0; 2126 } 2127 2128 bool LoopVectorizationLegality::isUniform(Value *V) { 2129 return LAI->isUniform(V); 2130 } 2131 2132 InnerLoopVectorizer::VectorParts & 2133 InnerLoopVectorizer::getVectorValue(Value *V) { 2134 assert(V != Induction && "The new induction variable should not be used."); 2135 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2136 2137 // If we have a stride that is replaced by one, do it here. 2138 if (Legal->hasStride(V)) 2139 V = ConstantInt::get(V->getType(), 1); 2140 2141 // If we have this scalar in the map, return it. 2142 if (WidenMap.has(V)) 2143 return WidenMap.get(V); 2144 2145 // If this scalar is unknown, assume that it is a constant or that it is 2146 // loop invariant. Broadcast V and save the value for future uses. 2147 Value *B = getBroadcastInstrs(V); 2148 return WidenMap.splat(V, B); 2149 } 2150 2151 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2152 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2153 SmallVector<Constant *, 8> ShuffleMask; 2154 for (unsigned i = 0; i < VF; ++i) 2155 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2156 2157 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2158 ConstantVector::get(ShuffleMask), 2159 "reverse"); 2160 } 2161 2162 // Get a mask to interleave \p NumVec vectors into a wide vector. 2163 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2164 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2165 // <0, 4, 1, 5, 2, 6, 3, 7> 2166 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2167 unsigned NumVec) { 2168 SmallVector<Constant *, 16> Mask; 2169 for (unsigned i = 0; i < VF; i++) 2170 for (unsigned j = 0; j < NumVec; j++) 2171 Mask.push_back(Builder.getInt32(j * VF + i)); 2172 2173 return ConstantVector::get(Mask); 2174 } 2175 2176 // Get the strided mask starting from index \p Start. 2177 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2178 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2179 unsigned Stride, unsigned VF) { 2180 SmallVector<Constant *, 16> Mask; 2181 for (unsigned i = 0; i < VF; i++) 2182 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2183 2184 return ConstantVector::get(Mask); 2185 } 2186 2187 // Get a mask of two parts: The first part consists of sequential integers 2188 // starting from 0, The second part consists of UNDEFs. 2189 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2190 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2191 unsigned NumUndef) { 2192 SmallVector<Constant *, 16> Mask; 2193 for (unsigned i = 0; i < NumInt; i++) 2194 Mask.push_back(Builder.getInt32(i)); 2195 2196 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2197 for (unsigned i = 0; i < NumUndef; i++) 2198 Mask.push_back(Undef); 2199 2200 return ConstantVector::get(Mask); 2201 } 2202 2203 // Concatenate two vectors with the same element type. The 2nd vector should 2204 // not have more elements than the 1st vector. If the 2nd vector has less 2205 // elements, extend it with UNDEFs. 2206 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2207 Value *V2) { 2208 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2209 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2210 assert(VecTy1 && VecTy2 && 2211 VecTy1->getScalarType() == VecTy2->getScalarType() && 2212 "Expect two vectors with the same element type"); 2213 2214 unsigned NumElts1 = VecTy1->getNumElements(); 2215 unsigned NumElts2 = VecTy2->getNumElements(); 2216 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2217 2218 if (NumElts1 > NumElts2) { 2219 // Extend with UNDEFs. 2220 Constant *ExtMask = 2221 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2222 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2223 } 2224 2225 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2226 return Builder.CreateShuffleVector(V1, V2, Mask); 2227 } 2228 2229 // Concatenate vectors in the given list. All vectors have the same type. 2230 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2231 ArrayRef<Value *> InputList) { 2232 unsigned NumVec = InputList.size(); 2233 assert(NumVec > 1 && "Should be at least two vectors"); 2234 2235 SmallVector<Value *, 8> ResList; 2236 ResList.append(InputList.begin(), InputList.end()); 2237 do { 2238 SmallVector<Value *, 8> TmpList; 2239 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2240 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2241 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2242 "Only the last vector may have a different type"); 2243 2244 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2245 } 2246 2247 // Push the last vector if the total number of vectors is odd. 2248 if (NumVec % 2 != 0) 2249 TmpList.push_back(ResList[NumVec - 1]); 2250 2251 ResList = TmpList; 2252 NumVec = ResList.size(); 2253 } while (NumVec > 1); 2254 2255 return ResList[0]; 2256 } 2257 2258 // Try to vectorize the interleave group that \p Instr belongs to. 2259 // 2260 // E.g. Translate following interleaved load group (factor = 3): 2261 // for (i = 0; i < N; i+=3) { 2262 // R = Pic[i]; // Member of index 0 2263 // G = Pic[i+1]; // Member of index 1 2264 // B = Pic[i+2]; // Member of index 2 2265 // ... // do something to R, G, B 2266 // } 2267 // To: 2268 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2269 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2270 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2271 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2272 // 2273 // Or translate following interleaved store group (factor = 3): 2274 // for (i = 0; i < N; i+=3) { 2275 // ... do something to R, G, B 2276 // Pic[i] = R; // Member of index 0 2277 // Pic[i+1] = G; // Member of index 1 2278 // Pic[i+2] = B; // Member of index 2 2279 // } 2280 // To: 2281 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2282 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2283 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2284 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2285 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2286 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2287 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2288 assert(Group && "Fail to get an interleaved access group."); 2289 2290 // Skip if current instruction is not the insert position. 2291 if (Instr != Group->getInsertPos()) 2292 return; 2293 2294 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2295 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2296 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2297 2298 // Prepare for the vector type of the interleaved load/store. 2299 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2300 unsigned InterleaveFactor = Group->getFactor(); 2301 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2302 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2303 2304 // Prepare for the new pointers. 2305 setDebugLocFromInst(Builder, Ptr); 2306 VectorParts &PtrParts = getVectorValue(Ptr); 2307 SmallVector<Value *, 2> NewPtrs; 2308 unsigned Index = Group->getIndex(Instr); 2309 for (unsigned Part = 0; Part < UF; Part++) { 2310 // Extract the pointer for current instruction from the pointer vector. A 2311 // reverse access uses the pointer in the last lane. 2312 Value *NewPtr = Builder.CreateExtractElement( 2313 PtrParts[Part], 2314 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2315 2316 // Notice current instruction could be any index. Need to adjust the address 2317 // to the member of index 0. 2318 // 2319 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2320 // b = A[i]; // Member of index 0 2321 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2322 // 2323 // E.g. A[i+1] = a; // Member of index 1 2324 // A[i] = b; // Member of index 0 2325 // A[i+2] = c; // Member of index 2 (Current instruction) 2326 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2327 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2328 2329 // Cast to the vector pointer type. 2330 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2331 } 2332 2333 setDebugLocFromInst(Builder, Instr); 2334 Value *UndefVec = UndefValue::get(VecTy); 2335 2336 // Vectorize the interleaved load group. 2337 if (LI) { 2338 for (unsigned Part = 0; Part < UF; Part++) { 2339 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2340 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2341 2342 for (unsigned i = 0; i < InterleaveFactor; i++) { 2343 Instruction *Member = Group->getMember(i); 2344 2345 // Skip the gaps in the group. 2346 if (!Member) 2347 continue; 2348 2349 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2350 Value *StridedVec = Builder.CreateShuffleVector( 2351 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2352 2353 // If this member has different type, cast the result type. 2354 if (Member->getType() != ScalarTy) { 2355 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2356 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2357 } 2358 2359 VectorParts &Entry = WidenMap.get(Member); 2360 Entry[Part] = 2361 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2362 } 2363 2364 addMetadata(NewLoadInstr, Instr); 2365 } 2366 return; 2367 } 2368 2369 // The sub vector type for current instruction. 2370 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2371 2372 // Vectorize the interleaved store group. 2373 for (unsigned Part = 0; Part < UF; Part++) { 2374 // Collect the stored vector from each member. 2375 SmallVector<Value *, 4> StoredVecs; 2376 for (unsigned i = 0; i < InterleaveFactor; i++) { 2377 // Interleaved store group doesn't allow a gap, so each index has a member 2378 Instruction *Member = Group->getMember(i); 2379 assert(Member && "Fail to get a member from an interleaved store group"); 2380 2381 Value *StoredVec = 2382 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2383 if (Group->isReverse()) 2384 StoredVec = reverseVector(StoredVec); 2385 2386 // If this member has different type, cast it to an unified type. 2387 if (StoredVec->getType() != SubVT) 2388 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2389 2390 StoredVecs.push_back(StoredVec); 2391 } 2392 2393 // Concatenate all vectors into a wide vector. 2394 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2395 2396 // Interleave the elements in the wide vector. 2397 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2398 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2399 "interleaved.vec"); 2400 2401 Instruction *NewStoreInstr = 2402 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2403 addMetadata(NewStoreInstr, Instr); 2404 } 2405 } 2406 2407 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2408 // Attempt to issue a wide load. 2409 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2410 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2411 2412 assert((LI || SI) && "Invalid Load/Store instruction"); 2413 2414 // Try to vectorize the interleave group if this access is interleaved. 2415 if (Legal->isAccessInterleaved(Instr)) 2416 return vectorizeInterleaveGroup(Instr); 2417 2418 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2419 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2420 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2421 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2422 // An alignment of 0 means target abi alignment. We need to use the scalar's 2423 // target abi alignment in such a case. 2424 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2425 if (!Alignment) 2426 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2427 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2428 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2429 uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2430 2431 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2432 !Legal->isMaskRequired(SI)) 2433 return scalarizeInstruction(Instr, true); 2434 2435 if (ScalarAllocatedSize != VectorElementSize) 2436 return scalarizeInstruction(Instr); 2437 2438 // If the pointer is loop invariant scalarize the load. 2439 if (LI && Legal->isUniform(Ptr)) 2440 return scalarizeInstruction(Instr); 2441 2442 // If the pointer is non-consecutive and gather/scatter is not supported 2443 // scalarize the instruction. 2444 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2445 bool Reverse = ConsecutiveStride < 0; 2446 bool CreateGatherScatter = 2447 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2448 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2449 2450 if (!ConsecutiveStride && !CreateGatherScatter) 2451 return scalarizeInstruction(Instr); 2452 2453 Constant *Zero = Builder.getInt32(0); 2454 VectorParts &Entry = WidenMap.get(Instr); 2455 VectorParts VectorGep; 2456 2457 // Handle consecutive loads/stores. 2458 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2459 if (ConsecutiveStride) { 2460 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2461 setDebugLocFromInst(Builder, Gep); 2462 Value *PtrOperand = Gep->getPointerOperand(); 2463 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2464 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2465 2466 // Create the new GEP with the new induction variable. 2467 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2468 Gep2->setOperand(0, FirstBasePtr); 2469 Gep2->setName("gep.indvar.base"); 2470 Ptr = Builder.Insert(Gep2); 2471 } else if (Gep) { 2472 setDebugLocFromInst(Builder, Gep); 2473 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2474 OrigLoop) && 2475 "Base ptr must be invariant"); 2476 // The last index does not have to be the induction. It can be 2477 // consecutive and be a function of the index. For example A[I+1]; 2478 unsigned NumOperands = Gep->getNumOperands(); 2479 unsigned InductionOperand = getGEPInductionOperand(Gep); 2480 // Create the new GEP with the new induction variable. 2481 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2482 2483 for (unsigned i = 0; i < NumOperands; ++i) { 2484 Value *GepOperand = Gep->getOperand(i); 2485 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2486 2487 // Update last index or loop invariant instruction anchored in loop. 2488 if (i == InductionOperand || 2489 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2490 assert((i == InductionOperand || 2491 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2492 OrigLoop)) && 2493 "Must be last index or loop invariant"); 2494 2495 VectorParts &GEPParts = getVectorValue(GepOperand); 2496 2497 // If GepOperand is an induction variable, and there's a scalarized 2498 // version of it available, use it. Otherwise, we will need to create 2499 // an extractelement instruction. 2500 Value *Index = ScalarIVMap.count(GepOperand) 2501 ? ScalarIVMap[GepOperand][0] 2502 : Builder.CreateExtractElement(GEPParts[0], Zero); 2503 2504 Gep2->setOperand(i, Index); 2505 Gep2->setName("gep.indvar.idx"); 2506 } 2507 } 2508 Ptr = Builder.Insert(Gep2); 2509 } else { // No GEP 2510 // Use the induction element ptr. 2511 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2512 setDebugLocFromInst(Builder, Ptr); 2513 VectorParts &PtrVal = getVectorValue(Ptr); 2514 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2515 } 2516 } else { 2517 // At this point we should vector version of GEP for Gather or Scatter 2518 assert(CreateGatherScatter && "The instruction should be scalarized"); 2519 if (Gep) { 2520 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2521 // and each index that's defined inside the loop, even if it is 2522 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2523 // scalar. 2524 SmallVector<VectorParts, 4> OpsV; 2525 for (Value *Op : Gep->operands()) { 2526 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2527 if (SrcInst && OrigLoop->contains(SrcInst)) 2528 OpsV.push_back(getVectorValue(Op)); 2529 else 2530 OpsV.push_back(VectorParts(UF, Op)); 2531 } 2532 for (unsigned Part = 0; Part < UF; ++Part) { 2533 SmallVector<Value *, 4> Ops; 2534 Value *GEPBasePtr = OpsV[0][Part]; 2535 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2536 Ops.push_back(OpsV[i][Part]); 2537 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2538 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2539 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2540 2541 NewGep = 2542 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2543 VectorGep.push_back(NewGep); 2544 } 2545 } else 2546 VectorGep = getVectorValue(Ptr); 2547 } 2548 2549 VectorParts Mask = createBlockInMask(Instr->getParent()); 2550 // Handle Stores: 2551 if (SI) { 2552 assert(!Legal->isUniform(SI->getPointerOperand()) && 2553 "We do not allow storing to uniform addresses"); 2554 setDebugLocFromInst(Builder, SI); 2555 // We don't want to update the value in the map as it might be used in 2556 // another expression. So don't use a reference type for "StoredVal". 2557 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2558 2559 for (unsigned Part = 0; Part < UF; ++Part) { 2560 Instruction *NewSI = nullptr; 2561 if (CreateGatherScatter) { 2562 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2563 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2564 Alignment, MaskPart); 2565 } else { 2566 // Calculate the pointer for the specific unroll-part. 2567 Value *PartPtr = 2568 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2569 2570 if (Reverse) { 2571 // If we store to reverse consecutive memory locations, then we need 2572 // to reverse the order of elements in the stored value. 2573 StoredVal[Part] = reverseVector(StoredVal[Part]); 2574 // If the address is consecutive but reversed, then the 2575 // wide store needs to start at the last vector element. 2576 PartPtr = 2577 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2578 PartPtr = 2579 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2580 Mask[Part] = reverseVector(Mask[Part]); 2581 } 2582 2583 Value *VecPtr = 2584 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2585 2586 if (Legal->isMaskRequired(SI)) 2587 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2588 Mask[Part]); 2589 else 2590 NewSI = 2591 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2592 } 2593 addMetadata(NewSI, SI); 2594 } 2595 return; 2596 } 2597 2598 // Handle loads. 2599 assert(LI && "Must have a load instruction"); 2600 setDebugLocFromInst(Builder, LI); 2601 for (unsigned Part = 0; Part < UF; ++Part) { 2602 Instruction *NewLI; 2603 if (CreateGatherScatter) { 2604 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2605 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2606 0, "wide.masked.gather"); 2607 Entry[Part] = NewLI; 2608 } else { 2609 // Calculate the pointer for the specific unroll-part. 2610 Value *PartPtr = 2611 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2612 2613 if (Reverse) { 2614 // If the address is consecutive but reversed, then the 2615 // wide load needs to start at the last vector element. 2616 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2617 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2618 Mask[Part] = reverseVector(Mask[Part]); 2619 } 2620 2621 Value *VecPtr = 2622 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2623 if (Legal->isMaskRequired(LI)) 2624 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2625 UndefValue::get(DataTy), 2626 "wide.masked.load"); 2627 else 2628 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2629 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2630 } 2631 addMetadata(NewLI, LI); 2632 } 2633 } 2634 2635 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2636 bool IfPredicateStore) { 2637 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2638 // Holds vector parameters or scalars, in case of uniform vals. 2639 SmallVector<VectorParts, 4> Params; 2640 2641 setDebugLocFromInst(Builder, Instr); 2642 2643 // Find all of the vectorized parameters. 2644 for (Value *SrcOp : Instr->operands()) { 2645 // If we are accessing the old induction variable, use the new one. 2646 if (SrcOp == OldInduction) { 2647 Params.push_back(getVectorValue(SrcOp)); 2648 continue; 2649 } 2650 2651 // Try using previously calculated values. 2652 auto *SrcInst = dyn_cast<Instruction>(SrcOp); 2653 2654 // If the src is an instruction that appeared earlier in the basic block, 2655 // then it should already be vectorized. 2656 if (SrcInst && OrigLoop->contains(SrcInst)) { 2657 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2658 // The parameter is a vector value from earlier. 2659 Params.push_back(WidenMap.get(SrcInst)); 2660 } else { 2661 // The parameter is a scalar from outside the loop. Maybe even a constant. 2662 VectorParts Scalars; 2663 Scalars.append(UF, SrcOp); 2664 Params.push_back(Scalars); 2665 } 2666 } 2667 2668 assert(Params.size() == Instr->getNumOperands() && 2669 "Invalid number of operands"); 2670 2671 // Does this instruction return a value ? 2672 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2673 2674 Value *UndefVec = 2675 IsVoidRetTy ? nullptr 2676 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2677 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2678 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2679 2680 VectorParts Cond; 2681 if (IfPredicateStore) { 2682 assert(Instr->getParent()->getSinglePredecessor() && 2683 "Only support single predecessor blocks"); 2684 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2685 Instr->getParent()); 2686 } 2687 2688 // For each vector unroll 'part': 2689 for (unsigned Part = 0; Part < UF; ++Part) { 2690 // For each scalar that we create: 2691 for (unsigned Width = 0; Width < VF; ++Width) { 2692 2693 // Start if-block. 2694 Value *Cmp = nullptr; 2695 if (IfPredicateStore) { 2696 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2697 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2698 ConstantInt::get(Cmp->getType(), 1)); 2699 } 2700 2701 Instruction *Cloned = Instr->clone(); 2702 if (!IsVoidRetTy) 2703 Cloned->setName(Instr->getName() + ".cloned"); 2704 // Replace the operands of the cloned instructions with extracted scalars. 2705 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2706 2707 // If the operand is an induction variable, and there's a scalarized 2708 // version of it available, use it. Otherwise, we will need to create 2709 // an extractelement instruction if vectorizing. 2710 auto *NewOp = Params[op][Part]; 2711 auto *ScalarOp = Instr->getOperand(op); 2712 if (ScalarIVMap.count(ScalarOp)) 2713 NewOp = ScalarIVMap[ScalarOp][VF * Part + Width]; 2714 else if (NewOp->getType()->isVectorTy()) 2715 NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width)); 2716 Cloned->setOperand(op, NewOp); 2717 } 2718 addNewMetadata(Cloned, Instr); 2719 2720 // Place the cloned scalar in the new loop. 2721 Builder.Insert(Cloned); 2722 2723 // If we just cloned a new assumption, add it the assumption cache. 2724 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2725 if (II->getIntrinsicID() == Intrinsic::assume) 2726 AC->registerAssumption(II); 2727 2728 // If the original scalar returns a value we need to place it in a vector 2729 // so that future users will be able to use it. 2730 if (!IsVoidRetTy) 2731 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2732 Builder.getInt32(Width)); 2733 // End if-block. 2734 if (IfPredicateStore) 2735 PredicatedStores.push_back( 2736 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2737 } 2738 } 2739 } 2740 2741 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2742 Value *End, Value *Step, 2743 Instruction *DL) { 2744 BasicBlock *Header = L->getHeader(); 2745 BasicBlock *Latch = L->getLoopLatch(); 2746 // As we're just creating this loop, it's possible no latch exists 2747 // yet. If so, use the header as this will be a single block loop. 2748 if (!Latch) 2749 Latch = Header; 2750 2751 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2752 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2753 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2754 2755 Builder.SetInsertPoint(Latch->getTerminator()); 2756 2757 // Create i+1 and fill the PHINode. 2758 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2759 Induction->addIncoming(Start, L->getLoopPreheader()); 2760 Induction->addIncoming(Next, Latch); 2761 // Create the compare. 2762 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2763 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2764 2765 // Now we have two terminators. Remove the old one from the block. 2766 Latch->getTerminator()->eraseFromParent(); 2767 2768 return Induction; 2769 } 2770 2771 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2772 if (TripCount) 2773 return TripCount; 2774 2775 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2776 // Find the loop boundaries. 2777 ScalarEvolution *SE = PSE.getSE(); 2778 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2779 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2780 "Invalid loop count"); 2781 2782 Type *IdxTy = Legal->getWidestInductionType(); 2783 2784 // The exit count might have the type of i64 while the phi is i32. This can 2785 // happen if we have an induction variable that is sign extended before the 2786 // compare. The only way that we get a backedge taken count is that the 2787 // induction variable was signed and as such will not overflow. In such a case 2788 // truncation is legal. 2789 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2790 IdxTy->getPrimitiveSizeInBits()) 2791 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2792 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2793 2794 // Get the total trip count from the count by adding 1. 2795 const SCEV *ExitCount = SE->getAddExpr( 2796 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2797 2798 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2799 2800 // Expand the trip count and place the new instructions in the preheader. 2801 // Notice that the pre-header does not change, only the loop body. 2802 SCEVExpander Exp(*SE, DL, "induction"); 2803 2804 // Count holds the overall loop count (N). 2805 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2806 L->getLoopPreheader()->getTerminator()); 2807 2808 if (TripCount->getType()->isPointerTy()) 2809 TripCount = 2810 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2811 L->getLoopPreheader()->getTerminator()); 2812 2813 return TripCount; 2814 } 2815 2816 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2817 if (VectorTripCount) 2818 return VectorTripCount; 2819 2820 Value *TC = getOrCreateTripCount(L); 2821 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2822 2823 // Now we need to generate the expression for the part of the loop that the 2824 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2825 // iterations are not required for correctness, or N - Step, otherwise. Step 2826 // is equal to the vectorization factor (number of SIMD elements) times the 2827 // unroll factor (number of SIMD instructions). 2828 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2829 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2830 2831 // If there is a non-reversed interleaved group that may speculatively access 2832 // memory out-of-bounds, we need to ensure that there will be at least one 2833 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2834 // the trip count, we set the remainder to be equal to the step. If the step 2835 // does not evenly divide the trip count, no adjustment is necessary since 2836 // there will already be scalar iterations. Note that the minimum iterations 2837 // check ensures that N >= Step. 2838 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2839 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2840 R = Builder.CreateSelect(IsZero, Step, R); 2841 } 2842 2843 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2844 2845 return VectorTripCount; 2846 } 2847 2848 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2849 BasicBlock *Bypass) { 2850 Value *Count = getOrCreateTripCount(L); 2851 BasicBlock *BB = L->getLoopPreheader(); 2852 IRBuilder<> Builder(BB->getTerminator()); 2853 2854 // Generate code to check that the loop's trip count that we computed by 2855 // adding one to the backedge-taken count will not overflow. 2856 Value *CheckMinIters = Builder.CreateICmpULT( 2857 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2858 2859 BasicBlock *NewBB = 2860 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2861 // Update dominator tree immediately if the generated block is a 2862 // LoopBypassBlock because SCEV expansions to generate loop bypass 2863 // checks may query it before the current function is finished. 2864 DT->addNewBlock(NewBB, BB); 2865 if (L->getParentLoop()) 2866 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2867 ReplaceInstWithInst(BB->getTerminator(), 2868 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2869 LoopBypassBlocks.push_back(BB); 2870 } 2871 2872 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2873 BasicBlock *Bypass) { 2874 Value *TC = getOrCreateVectorTripCount(L); 2875 BasicBlock *BB = L->getLoopPreheader(); 2876 IRBuilder<> Builder(BB->getTerminator()); 2877 2878 // Now, compare the new count to zero. If it is zero skip the vector loop and 2879 // jump to the scalar loop. 2880 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2881 "cmp.zero"); 2882 2883 // Generate code to check that the loop's trip count that we computed by 2884 // adding one to the backedge-taken count will not overflow. 2885 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2886 // Update dominator tree immediately if the generated block is a 2887 // LoopBypassBlock because SCEV expansions to generate loop bypass 2888 // checks may query it before the current function is finished. 2889 DT->addNewBlock(NewBB, BB); 2890 if (L->getParentLoop()) 2891 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2892 ReplaceInstWithInst(BB->getTerminator(), 2893 BranchInst::Create(Bypass, NewBB, Cmp)); 2894 LoopBypassBlocks.push_back(BB); 2895 } 2896 2897 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2898 BasicBlock *BB = L->getLoopPreheader(); 2899 2900 // Generate the code to check that the SCEV assumptions that we made. 2901 // We want the new basic block to start at the first instruction in a 2902 // sequence of instructions that form a check. 2903 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2904 "scev.check"); 2905 Value *SCEVCheck = 2906 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2907 2908 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2909 if (C->isZero()) 2910 return; 2911 2912 // Create a new block containing the stride check. 2913 BB->setName("vector.scevcheck"); 2914 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2915 // Update dominator tree immediately if the generated block is a 2916 // LoopBypassBlock because SCEV expansions to generate loop bypass 2917 // checks may query it before the current function is finished. 2918 DT->addNewBlock(NewBB, BB); 2919 if (L->getParentLoop()) 2920 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2921 ReplaceInstWithInst(BB->getTerminator(), 2922 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2923 LoopBypassBlocks.push_back(BB); 2924 AddedSafetyChecks = true; 2925 } 2926 2927 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2928 BasicBlock *BB = L->getLoopPreheader(); 2929 2930 // Generate the code that checks in runtime if arrays overlap. We put the 2931 // checks into a separate block to make the more common case of few elements 2932 // faster. 2933 Instruction *FirstCheckInst; 2934 Instruction *MemRuntimeCheck; 2935 std::tie(FirstCheckInst, MemRuntimeCheck) = 2936 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2937 if (!MemRuntimeCheck) 2938 return; 2939 2940 // Create a new block containing the memory check. 2941 BB->setName("vector.memcheck"); 2942 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2943 // Update dominator tree immediately if the generated block is a 2944 // LoopBypassBlock because SCEV expansions to generate loop bypass 2945 // checks may query it before the current function is finished. 2946 DT->addNewBlock(NewBB, BB); 2947 if (L->getParentLoop()) 2948 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2949 ReplaceInstWithInst(BB->getTerminator(), 2950 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2951 LoopBypassBlocks.push_back(BB); 2952 AddedSafetyChecks = true; 2953 2954 // We currently don't use LoopVersioning for the actual loop cloning but we 2955 // still use it to add the noalias metadata. 2956 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2957 PSE.getSE()); 2958 LVer->prepareNoAliasMetadata(); 2959 } 2960 2961 void InnerLoopVectorizer::createEmptyLoop() { 2962 /* 2963 In this function we generate a new loop. The new loop will contain 2964 the vectorized instructions while the old loop will continue to run the 2965 scalar remainder. 2966 2967 [ ] <-- loop iteration number check. 2968 / | 2969 / v 2970 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2971 | / | 2972 | / v 2973 || [ ] <-- vector pre header. 2974 |/ | 2975 | v 2976 | [ ] \ 2977 | [ ]_| <-- vector loop. 2978 | | 2979 | v 2980 | -[ ] <--- middle-block. 2981 | / | 2982 | / v 2983 -|- >[ ] <--- new preheader. 2984 | | 2985 | v 2986 | [ ] \ 2987 | [ ]_| <-- old scalar loop to handle remainder. 2988 \ | 2989 \ v 2990 >[ ] <-- exit block. 2991 ... 2992 */ 2993 2994 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2995 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2996 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2997 assert(VectorPH && "Invalid loop structure"); 2998 assert(ExitBlock && "Must have an exit block"); 2999 3000 // Some loops have a single integer induction variable, while other loops 3001 // don't. One example is c++ iterators that often have multiple pointer 3002 // induction variables. In the code below we also support a case where we 3003 // don't have a single induction variable. 3004 // 3005 // We try to obtain an induction variable from the original loop as hard 3006 // as possible. However if we don't find one that: 3007 // - is an integer 3008 // - counts from zero, stepping by one 3009 // - is the size of the widest induction variable type 3010 // then we create a new one. 3011 OldInduction = Legal->getInduction(); 3012 Type *IdxTy = Legal->getWidestInductionType(); 3013 3014 // Split the single block loop into the two loop structure described above. 3015 BasicBlock *VecBody = 3016 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3017 BasicBlock *MiddleBlock = 3018 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3019 BasicBlock *ScalarPH = 3020 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3021 3022 // Create and register the new vector loop. 3023 Loop *Lp = new Loop(); 3024 Loop *ParentLoop = OrigLoop->getParentLoop(); 3025 3026 // Insert the new loop into the loop nest and register the new basic blocks 3027 // before calling any utilities such as SCEV that require valid LoopInfo. 3028 if (ParentLoop) { 3029 ParentLoop->addChildLoop(Lp); 3030 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3031 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3032 } else { 3033 LI->addTopLevelLoop(Lp); 3034 } 3035 Lp->addBasicBlockToLoop(VecBody, *LI); 3036 3037 // Find the loop boundaries. 3038 Value *Count = getOrCreateTripCount(Lp); 3039 3040 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3041 3042 // We need to test whether the backedge-taken count is uint##_max. Adding one 3043 // to it will cause overflow and an incorrect loop trip count in the vector 3044 // body. In case of overflow we want to directly jump to the scalar remainder 3045 // loop. 3046 emitMinimumIterationCountCheck(Lp, ScalarPH); 3047 // Now, compare the new count to zero. If it is zero skip the vector loop and 3048 // jump to the scalar loop. 3049 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3050 // Generate the code to check any assumptions that we've made for SCEV 3051 // expressions. 3052 emitSCEVChecks(Lp, ScalarPH); 3053 3054 // Generate the code that checks in runtime if arrays overlap. We put the 3055 // checks into a separate block to make the more common case of few elements 3056 // faster. 3057 emitMemRuntimeChecks(Lp, ScalarPH); 3058 3059 // Generate the induction variable. 3060 // The loop step is equal to the vectorization factor (num of SIMD elements) 3061 // times the unroll factor (num of SIMD instructions). 3062 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3063 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3064 Induction = 3065 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3066 getDebugLocFromInstOrOperands(OldInduction)); 3067 3068 // We are going to resume the execution of the scalar loop. 3069 // Go over all of the induction variables that we found and fix the 3070 // PHIs that are left in the scalar version of the loop. 3071 // The starting values of PHI nodes depend on the counter of the last 3072 // iteration in the vectorized loop. 3073 // If we come from a bypass edge then we need to start from the original 3074 // start value. 3075 3076 // This variable saves the new starting index for the scalar loop. It is used 3077 // to test if there are any tail iterations left once the vector loop has 3078 // completed. 3079 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3080 for (auto &InductionEntry : *List) { 3081 PHINode *OrigPhi = InductionEntry.first; 3082 InductionDescriptor II = InductionEntry.second; 3083 3084 // Create phi nodes to merge from the backedge-taken check block. 3085 PHINode *BCResumeVal = PHINode::Create( 3086 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3087 Value *EndValue; 3088 if (OrigPhi == OldInduction) { 3089 // We know what the end value is. 3090 EndValue = CountRoundDown; 3091 } else { 3092 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3093 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3094 II.getStep()->getType(), "cast.crd"); 3095 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3096 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3097 EndValue->setName("ind.end"); 3098 } 3099 3100 // The new PHI merges the original incoming value, in case of a bypass, 3101 // or the value at the end of the vectorized loop. 3102 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3103 3104 // Fix up external users of the induction variable. 3105 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3106 3107 // Fix the scalar body counter (PHI node). 3108 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3109 3110 // The old induction's phi node in the scalar body needs the truncated 3111 // value. 3112 for (BasicBlock *BB : LoopBypassBlocks) 3113 BCResumeVal->addIncoming(II.getStartValue(), BB); 3114 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3115 } 3116 3117 // Add a check in the middle block to see if we have completed 3118 // all of the iterations in the first vector loop. 3119 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3120 Value *CmpN = 3121 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3122 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3123 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3124 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3125 3126 // Get ready to start creating new instructions into the vectorized body. 3127 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3128 3129 // Save the state. 3130 LoopVectorPreHeader = Lp->getLoopPreheader(); 3131 LoopScalarPreHeader = ScalarPH; 3132 LoopMiddleBlock = MiddleBlock; 3133 LoopExitBlock = ExitBlock; 3134 LoopVectorBody = VecBody; 3135 LoopScalarBody = OldBasicBlock; 3136 3137 // Keep all loop hints from the original loop on the vector loop (we'll 3138 // replace the vectorizer-specific hints below). 3139 if (MDNode *LID = OrigLoop->getLoopID()) 3140 Lp->setLoopID(LID); 3141 3142 LoopVectorizeHints Hints(Lp, true, *ORE); 3143 Hints.setAlreadyVectorized(); 3144 } 3145 3146 // Fix up external users of the induction variable. At this point, we are 3147 // in LCSSA form, with all external PHIs that use the IV having one input value, 3148 // coming from the remainder loop. We need those PHIs to also have a correct 3149 // value for the IV when arriving directly from the middle block. 3150 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3151 const InductionDescriptor &II, 3152 Value *CountRoundDown, Value *EndValue, 3153 BasicBlock *MiddleBlock) { 3154 // There are two kinds of external IV usages - those that use the value 3155 // computed in the last iteration (the PHI) and those that use the penultimate 3156 // value (the value that feeds into the phi from the loop latch). 3157 // We allow both, but they, obviously, have different values. 3158 3159 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3160 3161 DenseMap<Value *, Value *> MissingVals; 3162 3163 // An external user of the last iteration's value should see the value that 3164 // the remainder loop uses to initialize its own IV. 3165 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3166 for (User *U : PostInc->users()) { 3167 Instruction *UI = cast<Instruction>(U); 3168 if (!OrigLoop->contains(UI)) { 3169 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3170 MissingVals[UI] = EndValue; 3171 } 3172 } 3173 3174 // An external user of the penultimate value need to see EndValue - Step. 3175 // The simplest way to get this is to recompute it from the constituent SCEVs, 3176 // that is Start + (Step * (CRD - 1)). 3177 for (User *U : OrigPhi->users()) { 3178 auto *UI = cast<Instruction>(U); 3179 if (!OrigLoop->contains(UI)) { 3180 const DataLayout &DL = 3181 OrigLoop->getHeader()->getModule()->getDataLayout(); 3182 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3183 3184 IRBuilder<> B(MiddleBlock->getTerminator()); 3185 Value *CountMinusOne = B.CreateSub( 3186 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3187 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3188 "cast.cmo"); 3189 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3190 Escape->setName("ind.escape"); 3191 MissingVals[UI] = Escape; 3192 } 3193 } 3194 3195 for (auto &I : MissingVals) { 3196 PHINode *PHI = cast<PHINode>(I.first); 3197 // One corner case we have to handle is two IVs "chasing" each-other, 3198 // that is %IV2 = phi [...], [ %IV1, %latch ] 3199 // In this case, if IV1 has an external use, we need to avoid adding both 3200 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3201 // don't already have an incoming value for the middle block. 3202 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3203 PHI->addIncoming(I.second, MiddleBlock); 3204 } 3205 } 3206 3207 namespace { 3208 struct CSEDenseMapInfo { 3209 static bool canHandle(Instruction *I) { 3210 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3211 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3212 } 3213 static inline Instruction *getEmptyKey() { 3214 return DenseMapInfo<Instruction *>::getEmptyKey(); 3215 } 3216 static inline Instruction *getTombstoneKey() { 3217 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3218 } 3219 static unsigned getHashValue(Instruction *I) { 3220 assert(canHandle(I) && "Unknown instruction!"); 3221 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3222 I->value_op_end())); 3223 } 3224 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3225 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3226 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3227 return LHS == RHS; 3228 return LHS->isIdenticalTo(RHS); 3229 } 3230 }; 3231 } 3232 3233 ///\brief Perform cse of induction variable instructions. 3234 static void cse(BasicBlock *BB) { 3235 // Perform simple cse. 3236 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3237 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3238 Instruction *In = &*I++; 3239 3240 if (!CSEDenseMapInfo::canHandle(In)) 3241 continue; 3242 3243 // Check if we can replace this instruction with any of the 3244 // visited instructions. 3245 if (Instruction *V = CSEMap.lookup(In)) { 3246 In->replaceAllUsesWith(V); 3247 In->eraseFromParent(); 3248 continue; 3249 } 3250 3251 CSEMap[In] = In; 3252 } 3253 } 3254 3255 /// \brief Adds a 'fast' flag to floating point operations. 3256 static Value *addFastMathFlag(Value *V) { 3257 if (isa<FPMathOperator>(V)) { 3258 FastMathFlags Flags; 3259 Flags.setUnsafeAlgebra(); 3260 cast<Instruction>(V)->setFastMathFlags(Flags); 3261 } 3262 return V; 3263 } 3264 3265 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3266 /// the result needs to be inserted and/or extracted from vectors. 3267 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3268 const TargetTransformInfo &TTI) { 3269 if (Ty->isVoidTy()) 3270 return 0; 3271 3272 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3273 unsigned Cost = 0; 3274 3275 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3276 if (Insert) 3277 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3278 if (Extract) 3279 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3280 } 3281 3282 return Cost; 3283 } 3284 3285 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3286 // Return the cost of the instruction, including scalarization overhead if it's 3287 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3288 // i.e. either vector version isn't available, or is too expensive. 3289 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3290 const TargetTransformInfo &TTI, 3291 const TargetLibraryInfo *TLI, 3292 bool &NeedToScalarize) { 3293 Function *F = CI->getCalledFunction(); 3294 StringRef FnName = CI->getCalledFunction()->getName(); 3295 Type *ScalarRetTy = CI->getType(); 3296 SmallVector<Type *, 4> Tys, ScalarTys; 3297 for (auto &ArgOp : CI->arg_operands()) 3298 ScalarTys.push_back(ArgOp->getType()); 3299 3300 // Estimate cost of scalarized vector call. The source operands are assumed 3301 // to be vectors, so we need to extract individual elements from there, 3302 // execute VF scalar calls, and then gather the result into the vector return 3303 // value. 3304 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3305 if (VF == 1) 3306 return ScalarCallCost; 3307 3308 // Compute corresponding vector type for return value and arguments. 3309 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3310 for (Type *ScalarTy : ScalarTys) 3311 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3312 3313 // Compute costs of unpacking argument values for the scalar calls and 3314 // packing the return values to a vector. 3315 unsigned ScalarizationCost = 3316 getScalarizationOverhead(RetTy, true, false, TTI); 3317 for (Type *Ty : Tys) 3318 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3319 3320 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3321 3322 // If we can't emit a vector call for this function, then the currently found 3323 // cost is the cost we need to return. 3324 NeedToScalarize = true; 3325 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3326 return Cost; 3327 3328 // If the corresponding vector cost is cheaper, return its cost. 3329 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3330 if (VectorCallCost < Cost) { 3331 NeedToScalarize = false; 3332 return VectorCallCost; 3333 } 3334 return Cost; 3335 } 3336 3337 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3338 // factor VF. Return the cost of the instruction, including scalarization 3339 // overhead if it's needed. 3340 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3341 const TargetTransformInfo &TTI, 3342 const TargetLibraryInfo *TLI) { 3343 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3344 assert(ID && "Expected intrinsic call!"); 3345 3346 Type *RetTy = ToVectorTy(CI->getType(), VF); 3347 SmallVector<Type *, 4> Tys; 3348 for (Value *ArgOperand : CI->arg_operands()) 3349 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3350 3351 FastMathFlags FMF; 3352 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3353 FMF = FPMO->getFastMathFlags(); 3354 3355 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3356 } 3357 3358 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3359 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3360 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3361 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3362 } 3363 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3364 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3365 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3366 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3367 } 3368 3369 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3370 // For every instruction `I` in MinBWs, truncate the operands, create a 3371 // truncated version of `I` and reextend its result. InstCombine runs 3372 // later and will remove any ext/trunc pairs. 3373 // 3374 SmallPtrSet<Value *, 4> Erased; 3375 for (const auto &KV : *MinBWs) { 3376 VectorParts &Parts = WidenMap.get(KV.first); 3377 for (Value *&I : Parts) { 3378 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3379 continue; 3380 Type *OriginalTy = I->getType(); 3381 Type *ScalarTruncatedTy = 3382 IntegerType::get(OriginalTy->getContext(), KV.second); 3383 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3384 OriginalTy->getVectorNumElements()); 3385 if (TruncatedTy == OriginalTy) 3386 continue; 3387 3388 IRBuilder<> B(cast<Instruction>(I)); 3389 auto ShrinkOperand = [&](Value *V) -> Value * { 3390 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3391 if (ZI->getSrcTy() == TruncatedTy) 3392 return ZI->getOperand(0); 3393 return B.CreateZExtOrTrunc(V, TruncatedTy); 3394 }; 3395 3396 // The actual instruction modification depends on the instruction type, 3397 // unfortunately. 3398 Value *NewI = nullptr; 3399 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3400 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3401 ShrinkOperand(BO->getOperand(1))); 3402 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3403 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3404 NewI = 3405 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3406 ShrinkOperand(CI->getOperand(1))); 3407 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3408 NewI = B.CreateSelect(SI->getCondition(), 3409 ShrinkOperand(SI->getTrueValue()), 3410 ShrinkOperand(SI->getFalseValue())); 3411 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3412 switch (CI->getOpcode()) { 3413 default: 3414 llvm_unreachable("Unhandled cast!"); 3415 case Instruction::Trunc: 3416 NewI = ShrinkOperand(CI->getOperand(0)); 3417 break; 3418 case Instruction::SExt: 3419 NewI = B.CreateSExtOrTrunc( 3420 CI->getOperand(0), 3421 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3422 break; 3423 case Instruction::ZExt: 3424 NewI = B.CreateZExtOrTrunc( 3425 CI->getOperand(0), 3426 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3427 break; 3428 } 3429 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3430 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3431 auto *O0 = B.CreateZExtOrTrunc( 3432 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3433 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3434 auto *O1 = B.CreateZExtOrTrunc( 3435 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3436 3437 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3438 } else if (isa<LoadInst>(I)) { 3439 // Don't do anything with the operands, just extend the result. 3440 continue; 3441 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3442 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3443 auto *O0 = B.CreateZExtOrTrunc( 3444 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3445 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3446 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3447 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3448 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3449 auto *O0 = B.CreateZExtOrTrunc( 3450 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3451 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3452 } else { 3453 llvm_unreachable("Unhandled instruction type!"); 3454 } 3455 3456 // Lastly, extend the result. 3457 NewI->takeName(cast<Instruction>(I)); 3458 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3459 I->replaceAllUsesWith(Res); 3460 cast<Instruction>(I)->eraseFromParent(); 3461 Erased.insert(I); 3462 I = Res; 3463 } 3464 } 3465 3466 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3467 for (const auto &KV : *MinBWs) { 3468 VectorParts &Parts = WidenMap.get(KV.first); 3469 for (Value *&I : Parts) { 3470 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3471 if (Inst && Inst->use_empty()) { 3472 Value *NewI = Inst->getOperand(0); 3473 Inst->eraseFromParent(); 3474 I = NewI; 3475 } 3476 } 3477 } 3478 } 3479 3480 void InnerLoopVectorizer::vectorizeLoop() { 3481 //===------------------------------------------------===// 3482 // 3483 // Notice: any optimization or new instruction that go 3484 // into the code below should be also be implemented in 3485 // the cost-model. 3486 // 3487 //===------------------------------------------------===// 3488 Constant *Zero = Builder.getInt32(0); 3489 3490 // In order to support recurrences we need to be able to vectorize Phi nodes. 3491 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3492 // we create a new vector PHI node with no incoming edges. We use this value 3493 // when we vectorize all of the instructions that use the PHI. Next, after 3494 // all of the instructions in the block are complete we add the new incoming 3495 // edges to the PHI. At this point all of the instructions in the basic block 3496 // are vectorized, so we can use them to construct the PHI. 3497 PhiVector PHIsToFix; 3498 3499 // Scan the loop in a topological order to ensure that defs are vectorized 3500 // before users. 3501 LoopBlocksDFS DFS(OrigLoop); 3502 DFS.perform(LI); 3503 3504 // Vectorize all of the blocks in the original loop. 3505 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3506 vectorizeBlockInLoop(BB, &PHIsToFix); 3507 3508 // Insert truncates and extends for any truncated instructions as hints to 3509 // InstCombine. 3510 if (VF > 1) 3511 truncateToMinimalBitwidths(); 3512 3513 // At this point every instruction in the original loop is widened to a 3514 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3515 // nodes are currently empty because we did not want to introduce cycles. 3516 // This is the second stage of vectorizing recurrences. 3517 for (PHINode *Phi : PHIsToFix) { 3518 assert(Phi && "Unable to recover vectorized PHI"); 3519 3520 // Handle first-order recurrences that need to be fixed. 3521 if (Legal->isFirstOrderRecurrence(Phi)) { 3522 fixFirstOrderRecurrence(Phi); 3523 continue; 3524 } 3525 3526 // If the phi node is not a first-order recurrence, it must be a reduction. 3527 // Get it's reduction variable descriptor. 3528 assert(Legal->isReductionVariable(Phi) && 3529 "Unable to find the reduction variable"); 3530 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3531 3532 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3533 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3534 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3535 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3536 RdxDesc.getMinMaxRecurrenceKind(); 3537 setDebugLocFromInst(Builder, ReductionStartValue); 3538 3539 // We need to generate a reduction vector from the incoming scalar. 3540 // To do so, we need to generate the 'identity' vector and override 3541 // one of the elements with the incoming scalar reduction. We need 3542 // to do it in the vector-loop preheader. 3543 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3544 3545 // This is the vector-clone of the value that leaves the loop. 3546 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3547 Type *VecTy = VectorExit[0]->getType(); 3548 3549 // Find the reduction identity variable. Zero for addition, or, xor, 3550 // one for multiplication, -1 for And. 3551 Value *Identity; 3552 Value *VectorStart; 3553 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3554 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3555 // MinMax reduction have the start value as their identify. 3556 if (VF == 1) { 3557 VectorStart = Identity = ReductionStartValue; 3558 } else { 3559 VectorStart = Identity = 3560 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3561 } 3562 } else { 3563 // Handle other reduction kinds: 3564 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3565 RK, VecTy->getScalarType()); 3566 if (VF == 1) { 3567 Identity = Iden; 3568 // This vector is the Identity vector where the first element is the 3569 // incoming scalar reduction. 3570 VectorStart = ReductionStartValue; 3571 } else { 3572 Identity = ConstantVector::getSplat(VF, Iden); 3573 3574 // This vector is the Identity vector where the first element is the 3575 // incoming scalar reduction. 3576 VectorStart = 3577 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3578 } 3579 } 3580 3581 // Fix the vector-loop phi. 3582 3583 // Reductions do not have to start at zero. They can start with 3584 // any loop invariant values. 3585 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3586 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3587 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3588 VectorParts &Val = getVectorValue(LoopVal); 3589 for (unsigned part = 0; part < UF; ++part) { 3590 // Make sure to add the reduction stat value only to the 3591 // first unroll part. 3592 Value *StartVal = (part == 0) ? VectorStart : Identity; 3593 cast<PHINode>(VecRdxPhi[part]) 3594 ->addIncoming(StartVal, LoopVectorPreHeader); 3595 cast<PHINode>(VecRdxPhi[part]) 3596 ->addIncoming(Val[part], LoopVectorBody); 3597 } 3598 3599 // Before each round, move the insertion point right between 3600 // the PHIs and the values we are going to write. 3601 // This allows us to write both PHINodes and the extractelement 3602 // instructions. 3603 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3604 3605 VectorParts RdxParts = getVectorValue(LoopExitInst); 3606 setDebugLocFromInst(Builder, LoopExitInst); 3607 3608 // If the vector reduction can be performed in a smaller type, we truncate 3609 // then extend the loop exit value to enable InstCombine to evaluate the 3610 // entire expression in the smaller type. 3611 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3612 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3613 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3614 for (unsigned part = 0; part < UF; ++part) { 3615 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3616 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3617 : Builder.CreateZExt(Trunc, VecTy); 3618 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3619 UI != RdxParts[part]->user_end();) 3620 if (*UI != Trunc) { 3621 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3622 RdxParts[part] = Extnd; 3623 } else { 3624 ++UI; 3625 } 3626 } 3627 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3628 for (unsigned part = 0; part < UF; ++part) 3629 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3630 } 3631 3632 // Reduce all of the unrolled parts into a single vector. 3633 Value *ReducedPartRdx = RdxParts[0]; 3634 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3635 setDebugLocFromInst(Builder, ReducedPartRdx); 3636 for (unsigned part = 1; part < UF; ++part) { 3637 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3638 // Floating point operations had to be 'fast' to enable the reduction. 3639 ReducedPartRdx = addFastMathFlag( 3640 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3641 ReducedPartRdx, "bin.rdx")); 3642 else 3643 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3644 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3645 } 3646 3647 if (VF > 1) { 3648 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3649 // and vector ops, reducing the set of values being computed by half each 3650 // round. 3651 assert(isPowerOf2_32(VF) && 3652 "Reduction emission only supported for pow2 vectors!"); 3653 Value *TmpVec = ReducedPartRdx; 3654 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3655 for (unsigned i = VF; i != 1; i >>= 1) { 3656 // Move the upper half of the vector to the lower half. 3657 for (unsigned j = 0; j != i / 2; ++j) 3658 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3659 3660 // Fill the rest of the mask with undef. 3661 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3662 UndefValue::get(Builder.getInt32Ty())); 3663 3664 Value *Shuf = Builder.CreateShuffleVector( 3665 TmpVec, UndefValue::get(TmpVec->getType()), 3666 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3667 3668 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3669 // Floating point operations had to be 'fast' to enable the reduction. 3670 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3671 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3672 else 3673 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3674 TmpVec, Shuf); 3675 } 3676 3677 // The result is in the first element of the vector. 3678 ReducedPartRdx = 3679 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3680 3681 // If the reduction can be performed in a smaller type, we need to extend 3682 // the reduction to the wider type before we branch to the original loop. 3683 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3684 ReducedPartRdx = 3685 RdxDesc.isSigned() 3686 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3687 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3688 } 3689 3690 // Create a phi node that merges control-flow from the backedge-taken check 3691 // block and the middle block. 3692 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3693 LoopScalarPreHeader->getTerminator()); 3694 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3695 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3696 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3697 3698 // Now, we need to fix the users of the reduction variable 3699 // inside and outside of the scalar remainder loop. 3700 // We know that the loop is in LCSSA form. We need to update the 3701 // PHI nodes in the exit blocks. 3702 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3703 LEE = LoopExitBlock->end(); 3704 LEI != LEE; ++LEI) { 3705 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3706 if (!LCSSAPhi) 3707 break; 3708 3709 // All PHINodes need to have a single entry edge, or two if 3710 // we already fixed them. 3711 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3712 3713 // We found our reduction value exit-PHI. Update it with the 3714 // incoming bypass edge. 3715 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3716 // Add an edge coming from the bypass. 3717 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3718 break; 3719 } 3720 } // end of the LCSSA phi scan. 3721 3722 // Fix the scalar loop reduction variable with the incoming reduction sum 3723 // from the vector body and from the backedge value. 3724 int IncomingEdgeBlockIdx = 3725 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3726 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3727 // Pick the other block. 3728 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3729 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3730 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3731 } // end of for each Phi in PHIsToFix. 3732 3733 fixLCSSAPHIs(); 3734 3735 // Make sure DomTree is updated. 3736 updateAnalysis(); 3737 3738 // Predicate any stores. 3739 for (auto KV : PredicatedStores) { 3740 BasicBlock::iterator I(KV.first); 3741 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3742 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3743 /*BranchWeights=*/nullptr, DT, LI); 3744 I->moveBefore(T); 3745 I->getParent()->setName("pred.store.if"); 3746 BB->setName("pred.store.continue"); 3747 } 3748 DEBUG(DT->verifyDomTree()); 3749 // Remove redundant induction instructions. 3750 cse(LoopVectorBody); 3751 } 3752 3753 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3754 3755 // This is the second phase of vectorizing first-order recurrences. An 3756 // overview of the transformation is described below. Suppose we have the 3757 // following loop. 3758 // 3759 // for (int i = 0; i < n; ++i) 3760 // b[i] = a[i] - a[i - 1]; 3761 // 3762 // There is a first-order recurrence on "a". For this loop, the shorthand 3763 // scalar IR looks like: 3764 // 3765 // scalar.ph: 3766 // s_init = a[-1] 3767 // br scalar.body 3768 // 3769 // scalar.body: 3770 // i = phi [0, scalar.ph], [i+1, scalar.body] 3771 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3772 // s2 = a[i] 3773 // b[i] = s2 - s1 3774 // br cond, scalar.body, ... 3775 // 3776 // In this example, s1 is a recurrence because it's value depends on the 3777 // previous iteration. In the first phase of vectorization, we created a 3778 // temporary value for s1. We now complete the vectorization and produce the 3779 // shorthand vector IR shown below (for VF = 4, UF = 1). 3780 // 3781 // vector.ph: 3782 // v_init = vector(..., ..., ..., a[-1]) 3783 // br vector.body 3784 // 3785 // vector.body 3786 // i = phi [0, vector.ph], [i+4, vector.body] 3787 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3788 // v2 = a[i, i+1, i+2, i+3]; 3789 // v3 = vector(v1(3), v2(0, 1, 2)) 3790 // b[i, i+1, i+2, i+3] = v2 - v3 3791 // br cond, vector.body, middle.block 3792 // 3793 // middle.block: 3794 // x = v2(3) 3795 // br scalar.ph 3796 // 3797 // scalar.ph: 3798 // s_init = phi [x, middle.block], [a[-1], otherwise] 3799 // br scalar.body 3800 // 3801 // After execution completes the vector loop, we extract the next value of 3802 // the recurrence (x) to use as the initial value in the scalar loop. 3803 3804 // Get the original loop preheader and single loop latch. 3805 auto *Preheader = OrigLoop->getLoopPreheader(); 3806 auto *Latch = OrigLoop->getLoopLatch(); 3807 3808 // Get the initial and previous values of the scalar recurrence. 3809 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3810 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3811 3812 // Create a vector from the initial value. 3813 auto *VectorInit = ScalarInit; 3814 if (VF > 1) { 3815 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3816 VectorInit = Builder.CreateInsertElement( 3817 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3818 Builder.getInt32(VF - 1), "vector.recur.init"); 3819 } 3820 3821 // We constructed a temporary phi node in the first phase of vectorization. 3822 // This phi node will eventually be deleted. 3823 auto &PhiParts = getVectorValue(Phi); 3824 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3825 3826 // Create a phi node for the new recurrence. The current value will either be 3827 // the initial value inserted into a vector or loop-varying vector value. 3828 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3829 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3830 3831 // Get the vectorized previous value. We ensured the previous values was an 3832 // instruction when detecting the recurrence. 3833 auto &PreviousParts = getVectorValue(Previous); 3834 3835 // Set the insertion point to be after this instruction. We ensured the 3836 // previous value dominated all uses of the phi when detecting the 3837 // recurrence. 3838 Builder.SetInsertPoint( 3839 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3840 3841 // We will construct a vector for the recurrence by combining the values for 3842 // the current and previous iterations. This is the required shuffle mask. 3843 SmallVector<Constant *, 8> ShuffleMask(VF); 3844 ShuffleMask[0] = Builder.getInt32(VF - 1); 3845 for (unsigned I = 1; I < VF; ++I) 3846 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3847 3848 // The vector from which to take the initial value for the current iteration 3849 // (actual or unrolled). Initially, this is the vector phi node. 3850 Value *Incoming = VecPhi; 3851 3852 // Shuffle the current and previous vector and update the vector parts. 3853 for (unsigned Part = 0; Part < UF; ++Part) { 3854 auto *Shuffle = 3855 VF > 1 3856 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3857 ConstantVector::get(ShuffleMask)) 3858 : Incoming; 3859 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3860 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3861 PhiParts[Part] = Shuffle; 3862 Incoming = PreviousParts[Part]; 3863 } 3864 3865 // Fix the latch value of the new recurrence in the vector loop. 3866 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3867 3868 // Extract the last vector element in the middle block. This will be the 3869 // initial value for the recurrence when jumping to the scalar loop. 3870 auto *Extract = Incoming; 3871 if (VF > 1) { 3872 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3873 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3874 "vector.recur.extract"); 3875 } 3876 3877 // Fix the initial value of the original recurrence in the scalar loop. 3878 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3879 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3880 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3881 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3882 Start->addIncoming(Incoming, BB); 3883 } 3884 3885 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3886 Phi->setName("scalar.recur"); 3887 3888 // Finally, fix users of the recurrence outside the loop. The users will need 3889 // either the last value of the scalar recurrence or the last value of the 3890 // vector recurrence we extracted in the middle block. Since the loop is in 3891 // LCSSA form, we just need to find the phi node for the original scalar 3892 // recurrence in the exit block, and then add an edge for the middle block. 3893 for (auto &I : *LoopExitBlock) { 3894 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3895 if (!LCSSAPhi) 3896 break; 3897 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3898 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3899 break; 3900 } 3901 } 3902 } 3903 3904 void InnerLoopVectorizer::fixLCSSAPHIs() { 3905 for (Instruction &LEI : *LoopExitBlock) { 3906 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 3907 if (!LCSSAPhi) 3908 break; 3909 if (LCSSAPhi->getNumIncomingValues() == 1) 3910 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3911 LoopMiddleBlock); 3912 } 3913 } 3914 3915 InnerLoopVectorizer::VectorParts 3916 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3917 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3918 "Invalid edge"); 3919 3920 // Look for cached value. 3921 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 3922 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3923 if (ECEntryIt != MaskCache.end()) 3924 return ECEntryIt->second; 3925 3926 VectorParts SrcMask = createBlockInMask(Src); 3927 3928 // The terminator has to be a branch inst! 3929 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3930 assert(BI && "Unexpected terminator found"); 3931 3932 if (BI->isConditional()) { 3933 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3934 3935 if (BI->getSuccessor(0) != Dst) 3936 for (unsigned part = 0; part < UF; ++part) 3937 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3938 3939 for (unsigned part = 0; part < UF; ++part) 3940 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3941 3942 MaskCache[Edge] = EdgeMask; 3943 return EdgeMask; 3944 } 3945 3946 MaskCache[Edge] = SrcMask; 3947 return SrcMask; 3948 } 3949 3950 InnerLoopVectorizer::VectorParts 3951 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3952 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3953 3954 // Loop incoming mask is all-one. 3955 if (OrigLoop->getHeader() == BB) { 3956 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3957 return getVectorValue(C); 3958 } 3959 3960 // This is the block mask. We OR all incoming edges, and with zero. 3961 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3962 VectorParts BlockMask = getVectorValue(Zero); 3963 3964 // For each pred: 3965 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3966 VectorParts EM = createEdgeMask(*it, BB); 3967 for (unsigned part = 0; part < UF; ++part) 3968 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3969 } 3970 3971 return BlockMask; 3972 } 3973 3974 void InnerLoopVectorizer::widenPHIInstruction( 3975 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3976 unsigned VF, PhiVector *PV) { 3977 PHINode *P = cast<PHINode>(PN); 3978 // Handle recurrences. 3979 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3980 for (unsigned part = 0; part < UF; ++part) { 3981 // This is phase one of vectorizing PHIs. 3982 Type *VecTy = 3983 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3984 Entry[part] = PHINode::Create( 3985 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3986 } 3987 PV->push_back(P); 3988 return; 3989 } 3990 3991 setDebugLocFromInst(Builder, P); 3992 // Check for PHI nodes that are lowered to vector selects. 3993 if (P->getParent() != OrigLoop->getHeader()) { 3994 // We know that all PHIs in non-header blocks are converted into 3995 // selects, so we don't have to worry about the insertion order and we 3996 // can just use the builder. 3997 // At this point we generate the predication tree. There may be 3998 // duplications since this is a simple recursive scan, but future 3999 // optimizations will clean it up. 4000 4001 unsigned NumIncoming = P->getNumIncomingValues(); 4002 4003 // Generate a sequence of selects of the form: 4004 // SELECT(Mask3, In3, 4005 // SELECT(Mask2, In2, 4006 // ( ...))) 4007 for (unsigned In = 0; In < NumIncoming; In++) { 4008 VectorParts Cond = 4009 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4010 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4011 4012 for (unsigned part = 0; part < UF; ++part) { 4013 // We might have single edge PHIs (blocks) - use an identity 4014 // 'select' for the first PHI operand. 4015 if (In == 0) 4016 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4017 else 4018 // Select between the current value and the previous incoming edge 4019 // based on the incoming mask. 4020 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4021 "predphi"); 4022 } 4023 } 4024 return; 4025 } 4026 4027 // This PHINode must be an induction variable. 4028 // Make sure that we know about it. 4029 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4030 4031 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4032 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4033 4034 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4035 // which can be found from the original scalar operations. 4036 switch (II.getKind()) { 4037 case InductionDescriptor::IK_NoInduction: 4038 llvm_unreachable("Unknown induction"); 4039 case InductionDescriptor::IK_IntInduction: 4040 return widenIntInduction(P, Entry); 4041 case InductionDescriptor::IK_PtrInduction: 4042 // Handle the pointer induction variable case. 4043 assert(P->getType()->isPointerTy() && "Unexpected type."); 4044 // This is the normalized GEP that starts counting at zero. 4045 Value *PtrInd = Induction; 4046 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4047 // This is the vector of results. Notice that we don't generate 4048 // vector geps because scalar geps result in better code. 4049 for (unsigned part = 0; part < UF; ++part) { 4050 if (VF == 1) { 4051 int EltIndex = part; 4052 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4053 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4054 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4055 SclrGep->setName("next.gep"); 4056 Entry[part] = SclrGep; 4057 continue; 4058 } 4059 4060 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4061 for (unsigned int i = 0; i < VF; ++i) { 4062 int EltIndex = i + part * VF; 4063 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4064 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4065 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4066 SclrGep->setName("next.gep"); 4067 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4068 Builder.getInt32(i), "insert.gep"); 4069 } 4070 Entry[part] = VecVal; 4071 } 4072 return; 4073 } 4074 } 4075 4076 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4077 // For each instruction in the old loop. 4078 for (Instruction &I : *BB) { 4079 VectorParts &Entry = WidenMap.get(&I); 4080 4081 switch (I.getOpcode()) { 4082 case Instruction::Br: 4083 // Nothing to do for PHIs and BR, since we already took care of the 4084 // loop control flow instructions. 4085 continue; 4086 case Instruction::PHI: { 4087 // Vectorize PHINodes. 4088 widenPHIInstruction(&I, Entry, UF, VF, PV); 4089 continue; 4090 } // End of PHI. 4091 4092 case Instruction::Add: 4093 case Instruction::FAdd: 4094 case Instruction::Sub: 4095 case Instruction::FSub: 4096 case Instruction::Mul: 4097 case Instruction::FMul: 4098 case Instruction::UDiv: 4099 case Instruction::SDiv: 4100 case Instruction::FDiv: 4101 case Instruction::URem: 4102 case Instruction::SRem: 4103 case Instruction::FRem: 4104 case Instruction::Shl: 4105 case Instruction::LShr: 4106 case Instruction::AShr: 4107 case Instruction::And: 4108 case Instruction::Or: 4109 case Instruction::Xor: { 4110 // Just widen binops. 4111 auto *BinOp = cast<BinaryOperator>(&I); 4112 setDebugLocFromInst(Builder, BinOp); 4113 VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4114 VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4115 4116 // Use this vector value for all users of the original instruction. 4117 for (unsigned Part = 0; Part < UF; ++Part) { 4118 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4119 4120 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4121 VecOp->copyIRFlags(BinOp); 4122 4123 Entry[Part] = V; 4124 } 4125 4126 addMetadata(Entry, BinOp); 4127 break; 4128 } 4129 case Instruction::Select: { 4130 // Widen selects. 4131 // If the selector is loop invariant we can create a select 4132 // instruction with a scalar condition. Otherwise, use vector-select. 4133 auto *SE = PSE.getSE(); 4134 bool InvariantCond = 4135 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4136 setDebugLocFromInst(Builder, &I); 4137 4138 // The condition can be loop invariant but still defined inside the 4139 // loop. This means that we can't just use the original 'cond' value. 4140 // We have to take the 'vectorized' value and pick the first lane. 4141 // Instcombine will make this a no-op. 4142 VectorParts &Cond = getVectorValue(I.getOperand(0)); 4143 VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4144 VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4145 4146 Value *ScalarCond = 4147 (VF == 1) 4148 ? Cond[0] 4149 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4150 4151 for (unsigned Part = 0; Part < UF; ++Part) { 4152 Entry[Part] = Builder.CreateSelect( 4153 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4154 } 4155 4156 addMetadata(Entry, &I); 4157 break; 4158 } 4159 4160 case Instruction::ICmp: 4161 case Instruction::FCmp: { 4162 // Widen compares. Generate vector compares. 4163 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4164 auto *Cmp = dyn_cast<CmpInst>(&I); 4165 setDebugLocFromInst(Builder, Cmp); 4166 VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4167 VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4168 for (unsigned Part = 0; Part < UF; ++Part) { 4169 Value *C = nullptr; 4170 if (FCmp) { 4171 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4172 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4173 } else { 4174 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4175 } 4176 Entry[Part] = C; 4177 } 4178 4179 addMetadata(Entry, &I); 4180 break; 4181 } 4182 4183 case Instruction::Store: 4184 case Instruction::Load: 4185 vectorizeMemoryInstruction(&I); 4186 break; 4187 case Instruction::ZExt: 4188 case Instruction::SExt: 4189 case Instruction::FPToUI: 4190 case Instruction::FPToSI: 4191 case Instruction::FPExt: 4192 case Instruction::PtrToInt: 4193 case Instruction::IntToPtr: 4194 case Instruction::SIToFP: 4195 case Instruction::UIToFP: 4196 case Instruction::Trunc: 4197 case Instruction::FPTrunc: 4198 case Instruction::BitCast: { 4199 auto *CI = dyn_cast<CastInst>(&I); 4200 setDebugLocFromInst(Builder, CI); 4201 4202 // Optimize the special case where the source is a constant integer 4203 // induction variable. Notice that we can only optimize the 'trunc' case 4204 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4205 // (c) other casts depend on pointer size. 4206 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4207 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4208 ID.getConstIntStepValue()) { 4209 widenIntInduction(OldInduction, Entry, cast<TruncInst>(CI)); 4210 addMetadata(Entry, &I); 4211 break; 4212 } 4213 4214 /// Vectorize casts. 4215 Type *DestTy = 4216 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4217 4218 VectorParts &A = getVectorValue(CI->getOperand(0)); 4219 for (unsigned Part = 0; Part < UF; ++Part) 4220 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4221 addMetadata(Entry, &I); 4222 break; 4223 } 4224 4225 case Instruction::Call: { 4226 // Ignore dbg intrinsics. 4227 if (isa<DbgInfoIntrinsic>(I)) 4228 break; 4229 setDebugLocFromInst(Builder, &I); 4230 4231 Module *M = BB->getParent()->getParent(); 4232 auto *CI = cast<CallInst>(&I); 4233 4234 StringRef FnName = CI->getCalledFunction()->getName(); 4235 Function *F = CI->getCalledFunction(); 4236 Type *RetTy = ToVectorTy(CI->getType(), VF); 4237 SmallVector<Type *, 4> Tys; 4238 for (Value *ArgOperand : CI->arg_operands()) 4239 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4240 4241 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4242 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4243 ID == Intrinsic::lifetime_start)) { 4244 scalarizeInstruction(&I); 4245 break; 4246 } 4247 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4248 // version of the instruction. 4249 // Is it beneficial to perform intrinsic call compared to lib call? 4250 bool NeedToScalarize; 4251 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4252 bool UseVectorIntrinsic = 4253 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4254 if (!UseVectorIntrinsic && NeedToScalarize) { 4255 scalarizeInstruction(&I); 4256 break; 4257 } 4258 4259 for (unsigned Part = 0; Part < UF; ++Part) { 4260 SmallVector<Value *, 4> Args; 4261 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4262 Value *Arg = CI->getArgOperand(i); 4263 // Some intrinsics have a scalar argument - don't replace it with a 4264 // vector. 4265 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4266 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4267 Arg = VectorArg[Part]; 4268 } 4269 Args.push_back(Arg); 4270 } 4271 4272 Function *VectorF; 4273 if (UseVectorIntrinsic) { 4274 // Use vector version of the intrinsic. 4275 Type *TysForDecl[] = {CI->getType()}; 4276 if (VF > 1) 4277 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4278 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4279 } else { 4280 // Use vector version of the library call. 4281 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4282 assert(!VFnName.empty() && "Vector function name is empty."); 4283 VectorF = M->getFunction(VFnName); 4284 if (!VectorF) { 4285 // Generate a declaration 4286 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4287 VectorF = 4288 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4289 VectorF->copyAttributesFrom(F); 4290 } 4291 } 4292 assert(VectorF && "Can't create vector function."); 4293 4294 SmallVector<OperandBundleDef, 1> OpBundles; 4295 CI->getOperandBundlesAsDefs(OpBundles); 4296 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4297 4298 if (isa<FPMathOperator>(V)) 4299 V->copyFastMathFlags(CI); 4300 4301 Entry[Part] = V; 4302 } 4303 4304 addMetadata(Entry, &I); 4305 break; 4306 } 4307 4308 default: 4309 // All other instructions are unsupported. Scalarize them. 4310 scalarizeInstruction(&I); 4311 break; 4312 } // end of switch. 4313 } // end of for_each instr. 4314 } 4315 4316 void InnerLoopVectorizer::updateAnalysis() { 4317 // Forget the original basic block. 4318 PSE.getSE()->forgetLoop(OrigLoop); 4319 4320 // Update the dominator tree information. 4321 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4322 "Entry does not dominate exit."); 4323 4324 // We don't predicate stores by this point, so the vector body should be a 4325 // single loop. 4326 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4327 4328 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4329 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4330 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4331 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4332 4333 DEBUG(DT->verifyDomTree()); 4334 } 4335 4336 /// \brief Check whether it is safe to if-convert this phi node. 4337 /// 4338 /// Phi nodes with constant expressions that can trap are not safe to if 4339 /// convert. 4340 static bool canIfConvertPHINodes(BasicBlock *BB) { 4341 for (Instruction &I : *BB) { 4342 auto *Phi = dyn_cast<PHINode>(&I); 4343 if (!Phi) 4344 return true; 4345 for (Value *V : Phi->incoming_values()) 4346 if (auto *C = dyn_cast<Constant>(V)) 4347 if (C->canTrap()) 4348 return false; 4349 } 4350 return true; 4351 } 4352 4353 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4354 if (!EnableIfConversion) { 4355 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4356 return false; 4357 } 4358 4359 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4360 4361 // A list of pointers that we can safely read and write to. 4362 SmallPtrSet<Value *, 8> SafePointes; 4363 4364 // Collect safe addresses. 4365 for (BasicBlock *BB : TheLoop->blocks()) { 4366 if (blockNeedsPredication(BB)) 4367 continue; 4368 4369 for (Instruction &I : *BB) { 4370 if (auto *LI = dyn_cast<LoadInst>(&I)) 4371 SafePointes.insert(LI->getPointerOperand()); 4372 else if (auto *SI = dyn_cast<StoreInst>(&I)) 4373 SafePointes.insert(SI->getPointerOperand()); 4374 } 4375 } 4376 4377 // Collect the blocks that need predication. 4378 BasicBlock *Header = TheLoop->getHeader(); 4379 for (BasicBlock *BB : TheLoop->blocks()) { 4380 // We don't support switch statements inside loops. 4381 if (!isa<BranchInst>(BB->getTerminator())) { 4382 emitAnalysis(VectorizationReport(BB->getTerminator()) 4383 << "loop contains a switch statement"); 4384 return false; 4385 } 4386 4387 // We must be able to predicate all blocks that need to be predicated. 4388 if (blockNeedsPredication(BB)) { 4389 if (!blockCanBePredicated(BB, SafePointes)) { 4390 emitAnalysis(VectorizationReport(BB->getTerminator()) 4391 << "control flow cannot be substituted for a select"); 4392 return false; 4393 } 4394 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4395 emitAnalysis(VectorizationReport(BB->getTerminator()) 4396 << "control flow cannot be substituted for a select"); 4397 return false; 4398 } 4399 } 4400 4401 // We can if-convert this loop. 4402 return true; 4403 } 4404 4405 bool LoopVectorizationLegality::canVectorize() { 4406 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4407 // be canonicalized. 4408 if (!TheLoop->getLoopPreheader()) { 4409 emitAnalysis(VectorizationReport() 4410 << "loop control flow is not understood by vectorizer"); 4411 return false; 4412 } 4413 4414 // We can only vectorize innermost loops. 4415 if (!TheLoop->empty()) { 4416 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4417 return false; 4418 } 4419 4420 // We must have a single backedge. 4421 if (TheLoop->getNumBackEdges() != 1) { 4422 emitAnalysis(VectorizationReport() 4423 << "loop control flow is not understood by vectorizer"); 4424 return false; 4425 } 4426 4427 // We must have a single exiting block. 4428 if (!TheLoop->getExitingBlock()) { 4429 emitAnalysis(VectorizationReport() 4430 << "loop control flow is not understood by vectorizer"); 4431 return false; 4432 } 4433 4434 // We only handle bottom-tested loops, i.e. loop in which the condition is 4435 // checked at the end of each iteration. With that we can assume that all 4436 // instructions in the loop are executed the same number of times. 4437 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4438 emitAnalysis(VectorizationReport() 4439 << "loop control flow is not understood by vectorizer"); 4440 return false; 4441 } 4442 4443 // We need to have a loop header. 4444 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4445 << '\n'); 4446 4447 // Check if we can if-convert non-single-bb loops. 4448 unsigned NumBlocks = TheLoop->getNumBlocks(); 4449 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4450 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4451 return false; 4452 } 4453 4454 // ScalarEvolution needs to be able to find the exit count. 4455 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4456 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4457 emitAnalysis(VectorizationReport() 4458 << "could not determine number of loop iterations"); 4459 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4460 return false; 4461 } 4462 4463 // Check if we can vectorize the instructions and CFG in this loop. 4464 if (!canVectorizeInstrs()) { 4465 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4466 return false; 4467 } 4468 4469 // Go over each instruction and look at memory deps. 4470 if (!canVectorizeMemory()) { 4471 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4472 return false; 4473 } 4474 4475 // Collect all of the variables that remain uniform after vectorization. 4476 collectLoopUniforms(); 4477 4478 DEBUG(dbgs() << "LV: We can vectorize this loop" 4479 << (LAI->getRuntimePointerChecking()->Need 4480 ? " (with a runtime bound check)" 4481 : "") 4482 << "!\n"); 4483 4484 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4485 4486 // If an override option has been passed in for interleaved accesses, use it. 4487 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4488 UseInterleaved = EnableInterleavedMemAccesses; 4489 4490 // Analyze interleaved memory accesses. 4491 if (UseInterleaved) 4492 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4493 4494 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4495 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4496 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4497 4498 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4499 emitAnalysis(VectorizationReport() 4500 << "Too many SCEV assumptions need to be made and checked " 4501 << "at runtime"); 4502 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4503 return false; 4504 } 4505 4506 // Okay! We can vectorize. At this point we don't have any other mem analysis 4507 // which may limit our maximum vectorization factor, so just return true with 4508 // no restrictions. 4509 return true; 4510 } 4511 4512 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4513 if (Ty->isPointerTy()) 4514 return DL.getIntPtrType(Ty); 4515 4516 // It is possible that char's or short's overflow when we ask for the loop's 4517 // trip count, work around this by changing the type size. 4518 if (Ty->getScalarSizeInBits() < 32) 4519 return Type::getInt32Ty(Ty->getContext()); 4520 4521 return Ty; 4522 } 4523 4524 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4525 Ty0 = convertPointerToIntegerType(DL, Ty0); 4526 Ty1 = convertPointerToIntegerType(DL, Ty1); 4527 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4528 return Ty0; 4529 return Ty1; 4530 } 4531 4532 /// \brief Check that the instruction has outside loop users and is not an 4533 /// identified reduction variable. 4534 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4535 SmallPtrSetImpl<Value *> &AllowedExit) { 4536 // Reduction and Induction instructions are allowed to have exit users. All 4537 // other instructions must not have external users. 4538 if (!AllowedExit.count(Inst)) 4539 // Check that all of the users of the loop are inside the BB. 4540 for (User *U : Inst->users()) { 4541 Instruction *UI = cast<Instruction>(U); 4542 // This user may be a reduction exit value. 4543 if (!TheLoop->contains(UI)) { 4544 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4545 return true; 4546 } 4547 } 4548 return false; 4549 } 4550 4551 void LoopVectorizationLegality::addInductionPhi( 4552 PHINode *Phi, const InductionDescriptor &ID, 4553 SmallPtrSetImpl<Value *> &AllowedExit) { 4554 Inductions[Phi] = ID; 4555 Type *PhiTy = Phi->getType(); 4556 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4557 4558 // Get the widest type. 4559 if (!WidestIndTy) 4560 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4561 else 4562 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4563 4564 // Int inductions are special because we only allow one IV. 4565 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4566 ID.getConstIntStepValue() && 4567 ID.getConstIntStepValue()->isOne() && 4568 isa<Constant>(ID.getStartValue()) && 4569 cast<Constant>(ID.getStartValue())->isNullValue()) { 4570 4571 // Use the phi node with the widest type as induction. Use the last 4572 // one if there are multiple (no good reason for doing this other 4573 // than it is expedient). We've checked that it begins at zero and 4574 // steps by one, so this is a canonical induction variable. 4575 if (!Induction || PhiTy == WidestIndTy) 4576 Induction = Phi; 4577 } 4578 4579 // Both the PHI node itself, and the "post-increment" value feeding 4580 // back into the PHI node may have external users. 4581 AllowedExit.insert(Phi); 4582 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4583 4584 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4585 return; 4586 } 4587 4588 bool LoopVectorizationLegality::canVectorizeInstrs() { 4589 BasicBlock *Header = TheLoop->getHeader(); 4590 4591 // Look for the attribute signaling the absence of NaNs. 4592 Function &F = *Header->getParent(); 4593 HasFunNoNaNAttr = 4594 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4595 4596 // For each block in the loop. 4597 for (BasicBlock *BB : TheLoop->blocks()) { 4598 // Scan the instructions in the block and look for hazards. 4599 for (Instruction &I : *BB) { 4600 if (auto *Phi = dyn_cast<PHINode>(&I)) { 4601 Type *PhiTy = Phi->getType(); 4602 // Check that this PHI type is allowed. 4603 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4604 !PhiTy->isPointerTy()) { 4605 emitAnalysis(VectorizationReport(Phi) 4606 << "loop control flow is not understood by vectorizer"); 4607 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4608 return false; 4609 } 4610 4611 // If this PHINode is not in the header block, then we know that we 4612 // can convert it to select during if-conversion. No need to check if 4613 // the PHIs in this block are induction or reduction variables. 4614 if (BB != Header) { 4615 // Check that this instruction has no outside users or is an 4616 // identified reduction value with an outside user. 4617 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 4618 continue; 4619 emitAnalysis(VectorizationReport(Phi) 4620 << "value could not be identified as " 4621 "an induction or reduction variable"); 4622 return false; 4623 } 4624 4625 // We only allow if-converted PHIs with exactly two incoming values. 4626 if (Phi->getNumIncomingValues() != 2) { 4627 emitAnalysis(VectorizationReport(Phi) 4628 << "control flow not understood by vectorizer"); 4629 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4630 return false; 4631 } 4632 4633 RecurrenceDescriptor RedDes; 4634 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4635 if (RedDes.hasUnsafeAlgebra()) 4636 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4637 AllowedExit.insert(RedDes.getLoopExitInstr()); 4638 Reductions[Phi] = RedDes; 4639 continue; 4640 } 4641 4642 InductionDescriptor ID; 4643 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4644 addInductionPhi(Phi, ID, AllowedExit); 4645 continue; 4646 } 4647 4648 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4649 FirstOrderRecurrences.insert(Phi); 4650 continue; 4651 } 4652 4653 // As a last resort, coerce the PHI to a AddRec expression 4654 // and re-try classifying it a an induction PHI. 4655 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4656 addInductionPhi(Phi, ID, AllowedExit); 4657 continue; 4658 } 4659 4660 emitAnalysis(VectorizationReport(Phi) 4661 << "value that could not be identified as " 4662 "reduction is used outside the loop"); 4663 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4664 return false; 4665 } // end of PHI handling 4666 4667 // We handle calls that: 4668 // * Are debug info intrinsics. 4669 // * Have a mapping to an IR intrinsic. 4670 // * Have a vector version available. 4671 auto *CI = dyn_cast<CallInst>(&I); 4672 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4673 !isa<DbgInfoIntrinsic>(CI) && 4674 !(CI->getCalledFunction() && TLI && 4675 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4676 emitAnalysis(VectorizationReport(CI) 4677 << "call instruction cannot be vectorized"); 4678 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4679 return false; 4680 } 4681 4682 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4683 // second argument is the same (i.e. loop invariant) 4684 if (CI && hasVectorInstrinsicScalarOpd( 4685 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4686 auto *SE = PSE.getSE(); 4687 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4688 emitAnalysis(VectorizationReport(CI) 4689 << "intrinsic instruction cannot be vectorized"); 4690 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4691 return false; 4692 } 4693 } 4694 4695 // Check that the instruction return type is vectorizable. 4696 // Also, we can't vectorize extractelement instructions. 4697 if ((!VectorType::isValidElementType(I.getType()) && 4698 !I.getType()->isVoidTy()) || 4699 isa<ExtractElementInst>(I)) { 4700 emitAnalysis(VectorizationReport(&I) 4701 << "instruction return type cannot be vectorized"); 4702 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4703 return false; 4704 } 4705 4706 // Check that the stored type is vectorizable. 4707 if (auto *ST = dyn_cast<StoreInst>(&I)) { 4708 Type *T = ST->getValueOperand()->getType(); 4709 if (!VectorType::isValidElementType(T)) { 4710 emitAnalysis(VectorizationReport(ST) 4711 << "store instruction cannot be vectorized"); 4712 return false; 4713 } 4714 4715 // FP instructions can allow unsafe algebra, thus vectorizable by 4716 // non-IEEE-754 compliant SIMD units. 4717 // This applies to floating-point math operations and calls, not memory 4718 // operations, shuffles, or casts, as they don't change precision or 4719 // semantics. 4720 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 4721 !I.hasUnsafeAlgebra()) { 4722 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4723 Hints->setPotentiallyUnsafe(); 4724 } 4725 4726 // Reduction instructions are allowed to have exit users. 4727 // All other instructions must not have external users. 4728 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 4729 emitAnalysis(VectorizationReport(&I) 4730 << "value cannot be used outside the loop"); 4731 return false; 4732 } 4733 4734 } // next instr. 4735 } 4736 4737 if (!Induction) { 4738 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4739 if (Inductions.empty()) { 4740 emitAnalysis(VectorizationReport() 4741 << "loop induction variable could not be identified"); 4742 return false; 4743 } 4744 } 4745 4746 // Now we know the widest induction type, check if our found induction 4747 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4748 // will create another. 4749 if (Induction && WidestIndTy != Induction->getType()) 4750 Induction = nullptr; 4751 4752 return true; 4753 } 4754 4755 void LoopVectorizationLegality::collectLoopUniforms() { 4756 // We now know that the loop is vectorizable! 4757 // Collect variables that will remain uniform after vectorization. 4758 4759 // If V is not an instruction inside the current loop, it is a Value 4760 // outside of the scope which we are interesting in. 4761 auto isOutOfScope = [&](Value *V) -> bool { 4762 Instruction *I = dyn_cast<Instruction>(V); 4763 return (!I || !TheLoop->contains(I)); 4764 }; 4765 4766 SetVector<Instruction *> Worklist; 4767 BasicBlock *Latch = TheLoop->getLoopLatch(); 4768 // Start with the conditional branch. 4769 if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { 4770 Instruction *Cmp = cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4771 Worklist.insert(Cmp); 4772 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4773 } 4774 4775 // Also add all consecutive pointer values; these values will be uniform 4776 // after vectorization (and subsequent cleanup). 4777 for (auto *BB : TheLoop->blocks()) { 4778 for (auto &I : *BB) { 4779 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) { 4780 Worklist.insert(&I); 4781 DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n"); 4782 } 4783 } 4784 } 4785 4786 // Expand Worklist in topological order: whenever a new instruction 4787 // is added , its users should be either already inside Worklist, or 4788 // out of scope. It ensures a uniform instruction will only be used 4789 // by uniform instructions or out of scope instructions. 4790 unsigned idx = 0; 4791 do { 4792 Instruction *I = Worklist[idx++]; 4793 4794 for (auto OV : I->operand_values()) { 4795 if (isOutOfScope(OV)) 4796 continue; 4797 auto *OI = cast<Instruction>(OV); 4798 if (all_of(OI->users(), [&](User *U) -> bool { 4799 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 4800 })) { 4801 Worklist.insert(OI); 4802 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4803 } 4804 } 4805 } while (idx != Worklist.size()); 4806 4807 // For an instruction to be added into Worklist above, all its users inside 4808 // the current loop should be already added into Worklist. This condition 4809 // cannot be true for phi instructions which is always in a dependence loop. 4810 // Because any instruction in the dependence cycle always depends on others 4811 // in the cycle to be added into Worklist first, the result is no ones in 4812 // the cycle will be added into Worklist in the end. 4813 // That is why we process PHI separately. 4814 for (auto &Induction : *getInductionVars()) { 4815 auto *PN = Induction.first; 4816 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 4817 if (all_of(PN->users(), 4818 [&](User *U) -> bool { 4819 return U == UpdateV || isOutOfScope(U) || 4820 Worklist.count(cast<Instruction>(U)); 4821 }) && 4822 all_of(UpdateV->users(), [&](User *U) -> bool { 4823 return U == PN || isOutOfScope(U) || 4824 Worklist.count(cast<Instruction>(U)); 4825 })) { 4826 Worklist.insert(cast<Instruction>(PN)); 4827 Worklist.insert(cast<Instruction>(UpdateV)); 4828 DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n"); 4829 DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n"); 4830 } 4831 } 4832 4833 Uniforms.insert(Worklist.begin(), Worklist.end()); 4834 } 4835 4836 bool LoopVectorizationLegality::canVectorizeMemory() { 4837 LAI = &(*GetLAA)(*TheLoop); 4838 InterleaveInfo.setLAI(LAI); 4839 auto &OptionalReport = LAI->getReport(); 4840 if (OptionalReport) 4841 emitAnalysis(VectorizationReport(*OptionalReport)); 4842 if (!LAI->canVectorizeMemory()) 4843 return false; 4844 4845 if (LAI->hasStoreToLoopInvariantAddress()) { 4846 emitAnalysis( 4847 VectorizationReport() 4848 << "write to a loop invariant address could not be vectorized"); 4849 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4850 return false; 4851 } 4852 4853 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4854 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 4855 4856 return true; 4857 } 4858 4859 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4860 Value *In0 = const_cast<Value *>(V); 4861 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4862 if (!PN) 4863 return false; 4864 4865 return Inductions.count(PN); 4866 } 4867 4868 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4869 return FirstOrderRecurrences.count(Phi); 4870 } 4871 4872 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4873 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4874 } 4875 4876 bool LoopVectorizationLegality::blockCanBePredicated( 4877 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 4878 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4879 4880 for (Instruction &I : *BB) { 4881 // Check that we don't have a constant expression that can trap as operand. 4882 for (Value *Operand : I.operands()) { 4883 if (auto *C = dyn_cast<Constant>(Operand)) 4884 if (C->canTrap()) 4885 return false; 4886 } 4887 // We might be able to hoist the load. 4888 if (I.mayReadFromMemory()) { 4889 auto *LI = dyn_cast<LoadInst>(&I); 4890 if (!LI) 4891 return false; 4892 if (!SafePtrs.count(LI->getPointerOperand())) { 4893 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4894 isLegalMaskedGather(LI->getType())) { 4895 MaskedOp.insert(LI); 4896 continue; 4897 } 4898 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4899 if (IsAnnotatedParallel) 4900 continue; 4901 return false; 4902 } 4903 } 4904 4905 // We don't predicate stores at the moment. 4906 if (I.mayWriteToMemory()) { 4907 auto *SI = dyn_cast<StoreInst>(&I); 4908 // We only support predication of stores in basic blocks with one 4909 // predecessor. 4910 if (!SI) 4911 return false; 4912 4913 // Build a masked store if it is legal for the target. 4914 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 4915 SI->getPointerOperand()) || 4916 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 4917 MaskedOp.insert(SI); 4918 continue; 4919 } 4920 4921 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4922 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4923 4924 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4925 !isSinglePredecessor) 4926 return false; 4927 } 4928 if (I.mayThrow()) 4929 return false; 4930 4931 // The instructions below can trap. 4932 switch (I.getOpcode()) { 4933 default: 4934 continue; 4935 case Instruction::UDiv: 4936 case Instruction::SDiv: 4937 case Instruction::URem: 4938 case Instruction::SRem: 4939 return false; 4940 } 4941 } 4942 4943 return true; 4944 } 4945 4946 void InterleavedAccessInfo::collectConstStrideAccesses( 4947 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4948 const ValueToValueMap &Strides) { 4949 4950 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4951 4952 // Since it's desired that the load/store instructions be maintained in 4953 // "program order" for the interleaved access analysis, we have to visit the 4954 // blocks in the loop in reverse postorder (i.e., in a topological order). 4955 // Such an ordering will ensure that any load/store that may be executed 4956 // before a second load/store will precede the second load/store in 4957 // AccessStrideInfo. 4958 LoopBlocksDFS DFS(TheLoop); 4959 DFS.perform(LI); 4960 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4961 for (auto &I : *BB) { 4962 auto *LI = dyn_cast<LoadInst>(&I); 4963 auto *SI = dyn_cast<StoreInst>(&I); 4964 if (!LI && !SI) 4965 continue; 4966 4967 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4968 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 4969 4970 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4971 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4972 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4973 4974 // An alignment of 0 means target ABI alignment. 4975 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4976 if (!Align) 4977 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4978 4979 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4980 } 4981 } 4982 4983 // Analyze interleaved accesses and collect them into interleaved load and 4984 // store groups. 4985 // 4986 // When generating code for an interleaved load group, we effectively hoist all 4987 // loads in the group to the location of the first load in program order. When 4988 // generating code for an interleaved store group, we sink all stores to the 4989 // location of the last store. This code motion can change the order of load 4990 // and store instructions and may break dependences. 4991 // 4992 // The code generation strategy mentioned above ensures that we won't violate 4993 // any write-after-read (WAR) dependences. 4994 // 4995 // E.g., for the WAR dependence: a = A[i]; // (1) 4996 // A[i] = b; // (2) 4997 // 4998 // The store group of (2) is always inserted at or below (2), and the load 4999 // group of (1) is always inserted at or above (1). Thus, the instructions will 5000 // never be reordered. All other dependences are checked to ensure the 5001 // correctness of the instruction reordering. 5002 // 5003 // The algorithm visits all memory accesses in the loop in bottom-up program 5004 // order. Program order is established by traversing the blocks in the loop in 5005 // reverse postorder when collecting the accesses. 5006 // 5007 // We visit the memory accesses in bottom-up order because it can simplify the 5008 // construction of store groups in the presence of write-after-write (WAW) 5009 // dependences. 5010 // 5011 // E.g., for the WAW dependence: A[i] = a; // (1) 5012 // A[i] = b; // (2) 5013 // A[i + 1] = c; // (3) 5014 // 5015 // We will first create a store group with (3) and (2). (1) can't be added to 5016 // this group because it and (2) are dependent. However, (1) can be grouped 5017 // with other accesses that may precede it in program order. Note that a 5018 // bottom-up order does not imply that WAW dependences should not be checked. 5019 void InterleavedAccessInfo::analyzeInterleaving( 5020 const ValueToValueMap &Strides) { 5021 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5022 5023 // Holds all accesses with a constant stride. 5024 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5025 collectConstStrideAccesses(AccessStrideInfo, Strides); 5026 5027 if (AccessStrideInfo.empty()) 5028 return; 5029 5030 // Collect the dependences in the loop. 5031 collectDependences(); 5032 5033 // Holds all interleaved store groups temporarily. 5034 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5035 // Holds all interleaved load groups temporarily. 5036 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5037 5038 // Search in bottom-up program order for pairs of accesses (A and B) that can 5039 // form interleaved load or store groups. In the algorithm below, access A 5040 // precedes access B in program order. We initialize a group for B in the 5041 // outer loop of the algorithm, and then in the inner loop, we attempt to 5042 // insert each A into B's group if: 5043 // 5044 // 1. A and B have the same stride, 5045 // 2. A and B have the same memory object size, and 5046 // 3. A belongs in B's group according to its distance from B. 5047 // 5048 // Special care is taken to ensure group formation will not break any 5049 // dependences. 5050 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5051 BI != E; ++BI) { 5052 Instruction *B = BI->first; 5053 StrideDescriptor DesB = BI->second; 5054 5055 // Initialize a group for B if it has an allowable stride. Even if we don't 5056 // create a group for B, we continue with the bottom-up algorithm to ensure 5057 // we don't break any of B's dependences. 5058 InterleaveGroup *Group = nullptr; 5059 if (isStrided(DesB.Stride)) { 5060 Group = getInterleaveGroup(B); 5061 if (!Group) { 5062 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5063 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5064 } 5065 if (B->mayWriteToMemory()) 5066 StoreGroups.insert(Group); 5067 else 5068 LoadGroups.insert(Group); 5069 } 5070 5071 for (auto AI = std::next(BI); AI != E; ++AI) { 5072 Instruction *A = AI->first; 5073 StrideDescriptor DesA = AI->second; 5074 5075 // Our code motion strategy implies that we can't have dependences 5076 // between accesses in an interleaved group and other accesses located 5077 // between the first and last member of the group. Note that this also 5078 // means that a group can't have more than one member at a given offset. 5079 // The accesses in a group can have dependences with other accesses, but 5080 // we must ensure we don't extend the boundaries of the group such that 5081 // we encompass those dependent accesses. 5082 // 5083 // For example, assume we have the sequence of accesses shown below in a 5084 // stride-2 loop: 5085 // 5086 // (1, 2) is a group | A[i] = a; // (1) 5087 // | A[i-1] = b; // (2) | 5088 // A[i-3] = c; // (3) 5089 // A[i] = d; // (4) | (2, 4) is not a group 5090 // 5091 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5092 // but not with (4). If we did, the dependent access (3) would be within 5093 // the boundaries of the (2, 4) group. 5094 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5095 5096 // If a dependence exists and A is already in a group, we know that A 5097 // must be a store since A precedes B and WAR dependences are allowed. 5098 // Thus, A would be sunk below B. We release A's group to prevent this 5099 // illegal code motion. A will then be free to form another group with 5100 // instructions that precede it. 5101 if (isInterleaved(A)) { 5102 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5103 StoreGroups.remove(StoreGroup); 5104 releaseGroup(StoreGroup); 5105 } 5106 5107 // If a dependence exists and A is not already in a group (or it was 5108 // and we just released it), B might be hoisted above A (if B is a 5109 // load) or another store might be sunk below A (if B is a store). In 5110 // either case, we can't add additional instructions to B's group. B 5111 // will only form a group with instructions that it precedes. 5112 break; 5113 } 5114 5115 // At this point, we've checked for illegal code motion. If either A or B 5116 // isn't strided, there's nothing left to do. 5117 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5118 continue; 5119 5120 // Ignore A if it's already in a group or isn't the same kind of memory 5121 // operation as B. 5122 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5123 continue; 5124 5125 // Check rules 1 and 2. Ignore A if its stride or size is different from 5126 // that of B. 5127 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5128 continue; 5129 5130 // Calculate the distance from A to B. 5131 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5132 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5133 if (!DistToB) 5134 continue; 5135 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5136 5137 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5138 // size. 5139 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5140 continue; 5141 5142 // Ignore A if either A or B is in a predicated block. Although we 5143 // currently prevent group formation for predicated accesses, we may be 5144 // able to relax this limitation in the future once we handle more 5145 // complicated blocks. 5146 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5147 continue; 5148 5149 // The index of A is the index of B plus A's distance to B in multiples 5150 // of the size. 5151 int IndexA = 5152 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5153 5154 // Try to insert A into B's group. 5155 if (Group->insertMember(A, IndexA, DesA.Align)) { 5156 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5157 << " into the interleave group with" << *B << '\n'); 5158 InterleaveGroupMap[A] = Group; 5159 5160 // Set the first load in program order as the insert position. 5161 if (A->mayReadFromMemory()) 5162 Group->setInsertPos(A); 5163 } 5164 } // Iteration over A accesses. 5165 } // Iteration over B accesses. 5166 5167 // Remove interleaved store groups with gaps. 5168 for (InterleaveGroup *Group : StoreGroups) 5169 if (Group->getNumMembers() != Group->getFactor()) 5170 releaseGroup(Group); 5171 5172 // If there is a non-reversed interleaved load group with gaps, we will need 5173 // to execute at least one scalar epilogue iteration. This will ensure that 5174 // we don't speculatively access memory out-of-bounds. Note that we only need 5175 // to look for a member at index factor - 1, since every group must have a 5176 // member at index zero. 5177 for (InterleaveGroup *Group : LoadGroups) 5178 if (!Group->getMember(Group->getFactor() - 1)) { 5179 if (Group->isReverse()) { 5180 releaseGroup(Group); 5181 } else { 5182 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5183 RequiresScalarEpilogue = true; 5184 } 5185 } 5186 } 5187 5188 LoopVectorizationCostModel::VectorizationFactor 5189 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5190 // Width 1 means no vectorize 5191 VectorizationFactor Factor = {1U, 0U}; 5192 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5193 emitAnalysis( 5194 VectorizationReport() 5195 << "runtime pointer checks needed. Enable vectorization of this " 5196 "loop with '#pragma clang loop vectorize(enable)' when " 5197 "compiling with -Os/-Oz"); 5198 DEBUG(dbgs() 5199 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5200 return Factor; 5201 } 5202 5203 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5204 emitAnalysis( 5205 VectorizationReport() 5206 << "store that is conditionally executed prevents vectorization"); 5207 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5208 return Factor; 5209 } 5210 5211 // Find the trip count. 5212 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5213 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5214 5215 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5216 unsigned SmallestType, WidestType; 5217 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5218 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5219 unsigned MaxSafeDepDist = -1U; 5220 5221 // Get the maximum safe dependence distance in bits computed by LAA. If the 5222 // loop contains any interleaved accesses, we divide the dependence distance 5223 // by the maximum interleave factor of all interleaved groups. Note that 5224 // although the division ensures correctness, this is a fairly conservative 5225 // computation because the maximum distance computed by LAA may not involve 5226 // any of the interleaved accesses. 5227 if (Legal->getMaxSafeDepDistBytes() != -1U) 5228 MaxSafeDepDist = 5229 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5230 5231 WidestRegister = 5232 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5233 unsigned MaxVectorSize = WidestRegister / WidestType; 5234 5235 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5236 << WidestType << " bits.\n"); 5237 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5238 << " bits.\n"); 5239 5240 if (MaxVectorSize == 0) { 5241 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5242 MaxVectorSize = 1; 5243 } 5244 5245 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5246 " into one vector!"); 5247 5248 unsigned VF = MaxVectorSize; 5249 if (MaximizeBandwidth && !OptForSize) { 5250 // Collect all viable vectorization factors. 5251 SmallVector<unsigned, 8> VFs; 5252 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5253 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5254 VFs.push_back(VS); 5255 5256 // For each VF calculate its register usage. 5257 auto RUs = calculateRegisterUsage(VFs); 5258 5259 // Select the largest VF which doesn't require more registers than existing 5260 // ones. 5261 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5262 for (int i = RUs.size() - 1; i >= 0; --i) { 5263 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5264 VF = VFs[i]; 5265 break; 5266 } 5267 } 5268 } 5269 5270 // If we optimize the program for size, avoid creating the tail loop. 5271 if (OptForSize) { 5272 // If we are unable to calculate the trip count then don't try to vectorize. 5273 if (TC < 2) { 5274 emitAnalysis( 5275 VectorizationReport() 5276 << "unable to calculate the loop count due to complex control flow"); 5277 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5278 return Factor; 5279 } 5280 5281 // Find the maximum SIMD width that can fit within the trip count. 5282 VF = TC % MaxVectorSize; 5283 5284 if (VF == 0) 5285 VF = MaxVectorSize; 5286 else { 5287 // If the trip count that we found modulo the vectorization factor is not 5288 // zero then we require a tail. 5289 emitAnalysis(VectorizationReport() 5290 << "cannot optimize for size and vectorize at the " 5291 "same time. Enable vectorization of this loop " 5292 "with '#pragma clang loop vectorize(enable)' " 5293 "when compiling with -Os/-Oz"); 5294 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5295 return Factor; 5296 } 5297 } 5298 5299 int UserVF = Hints->getWidth(); 5300 if (UserVF != 0) { 5301 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5302 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5303 5304 Factor.Width = UserVF; 5305 return Factor; 5306 } 5307 5308 float Cost = expectedCost(1).first; 5309 #ifndef NDEBUG 5310 const float ScalarCost = Cost; 5311 #endif /* NDEBUG */ 5312 unsigned Width = 1; 5313 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5314 5315 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5316 // Ignore scalar width, because the user explicitly wants vectorization. 5317 if (ForceVectorization && VF > 1) { 5318 Width = 2; 5319 Cost = expectedCost(Width).first / (float)Width; 5320 } 5321 5322 for (unsigned i = 2; i <= VF; i *= 2) { 5323 // Notice that the vector loop needs to be executed less times, so 5324 // we need to divide the cost of the vector loops by the width of 5325 // the vector elements. 5326 VectorizationCostTy C = expectedCost(i); 5327 float VectorCost = C.first / (float)i; 5328 DEBUG(dbgs() << "LV: Vector loop of width " << i 5329 << " costs: " << (int)VectorCost << ".\n"); 5330 if (!C.second && !ForceVectorization) { 5331 DEBUG( 5332 dbgs() << "LV: Not considering vector loop of width " << i 5333 << " because it will not generate any vector instructions.\n"); 5334 continue; 5335 } 5336 if (VectorCost < Cost) { 5337 Cost = VectorCost; 5338 Width = i; 5339 } 5340 } 5341 5342 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5343 << "LV: Vectorization seems to be not beneficial, " 5344 << "but was forced by a user.\n"); 5345 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5346 Factor.Width = Width; 5347 Factor.Cost = Width * Cost; 5348 return Factor; 5349 } 5350 5351 std::pair<unsigned, unsigned> 5352 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5353 unsigned MinWidth = -1U; 5354 unsigned MaxWidth = 8; 5355 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5356 5357 // For each block. 5358 for (BasicBlock *BB : TheLoop->blocks()) { 5359 // For each instruction in the loop. 5360 for (Instruction &I : *BB) { 5361 Type *T = I.getType(); 5362 5363 // Skip ignored values. 5364 if (ValuesToIgnore.count(&I)) 5365 continue; 5366 5367 // Only examine Loads, Stores and PHINodes. 5368 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5369 continue; 5370 5371 // Examine PHI nodes that are reduction variables. Update the type to 5372 // account for the recurrence type. 5373 if (auto *PN = dyn_cast<PHINode>(&I)) { 5374 if (!Legal->isReductionVariable(PN)) 5375 continue; 5376 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5377 T = RdxDesc.getRecurrenceType(); 5378 } 5379 5380 // Examine the stored values. 5381 if (auto *ST = dyn_cast<StoreInst>(&I)) 5382 T = ST->getValueOperand()->getType(); 5383 5384 // Ignore loaded pointer types and stored pointer types that are not 5385 // consecutive. However, we do want to take consecutive stores/loads of 5386 // pointer vectors into account. 5387 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 5388 continue; 5389 5390 MinWidth = std::min(MinWidth, 5391 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5392 MaxWidth = std::max(MaxWidth, 5393 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5394 } 5395 } 5396 5397 return {MinWidth, MaxWidth}; 5398 } 5399 5400 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5401 unsigned VF, 5402 unsigned LoopCost) { 5403 5404 // -- The interleave heuristics -- 5405 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5406 // There are many micro-architectural considerations that we can't predict 5407 // at this level. For example, frontend pressure (on decode or fetch) due to 5408 // code size, or the number and capabilities of the execution ports. 5409 // 5410 // We use the following heuristics to select the interleave count: 5411 // 1. If the code has reductions, then we interleave to break the cross 5412 // iteration dependency. 5413 // 2. If the loop is really small, then we interleave to reduce the loop 5414 // overhead. 5415 // 3. We don't interleave if we think that we will spill registers to memory 5416 // due to the increased register pressure. 5417 5418 // When we optimize for size, we don't interleave. 5419 if (OptForSize) 5420 return 1; 5421 5422 // We used the distance for the interleave count. 5423 if (Legal->getMaxSafeDepDistBytes() != -1U) 5424 return 1; 5425 5426 // Do not interleave loops with a relatively small trip count. 5427 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5428 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5429 return 1; 5430 5431 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5432 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5433 << " registers\n"); 5434 5435 if (VF == 1) { 5436 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5437 TargetNumRegisters = ForceTargetNumScalarRegs; 5438 } else { 5439 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5440 TargetNumRegisters = ForceTargetNumVectorRegs; 5441 } 5442 5443 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5444 // We divide by these constants so assume that we have at least one 5445 // instruction that uses at least one register. 5446 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5447 R.NumInstructions = std::max(R.NumInstructions, 1U); 5448 5449 // We calculate the interleave count using the following formula. 5450 // Subtract the number of loop invariants from the number of available 5451 // registers. These registers are used by all of the interleaved instances. 5452 // Next, divide the remaining registers by the number of registers that is 5453 // required by the loop, in order to estimate how many parallel instances 5454 // fit without causing spills. All of this is rounded down if necessary to be 5455 // a power of two. We want power of two interleave count to simplify any 5456 // addressing operations or alignment considerations. 5457 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5458 R.MaxLocalUsers); 5459 5460 // Don't count the induction variable as interleaved. 5461 if (EnableIndVarRegisterHeur) 5462 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5463 std::max(1U, (R.MaxLocalUsers - 1))); 5464 5465 // Clamp the interleave ranges to reasonable counts. 5466 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5467 5468 // Check if the user has overridden the max. 5469 if (VF == 1) { 5470 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5471 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5472 } else { 5473 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5474 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5475 } 5476 5477 // If we did not calculate the cost for VF (because the user selected the VF) 5478 // then we calculate the cost of VF here. 5479 if (LoopCost == 0) 5480 LoopCost = expectedCost(VF).first; 5481 5482 // Clamp the calculated IC to be between the 1 and the max interleave count 5483 // that the target allows. 5484 if (IC > MaxInterleaveCount) 5485 IC = MaxInterleaveCount; 5486 else if (IC < 1) 5487 IC = 1; 5488 5489 // Interleave if we vectorized this loop and there is a reduction that could 5490 // benefit from interleaving. 5491 if (VF > 1 && Legal->getReductionVars()->size()) { 5492 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5493 return IC; 5494 } 5495 5496 // Note that if we've already vectorized the loop we will have done the 5497 // runtime check and so interleaving won't require further checks. 5498 bool InterleavingRequiresRuntimePointerCheck = 5499 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5500 5501 // We want to interleave small loops in order to reduce the loop overhead and 5502 // potentially expose ILP opportunities. 5503 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5504 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5505 // We assume that the cost overhead is 1 and we use the cost model 5506 // to estimate the cost of the loop and interleave until the cost of the 5507 // loop overhead is about 5% of the cost of the loop. 5508 unsigned SmallIC = 5509 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5510 5511 // Interleave until store/load ports (estimated by max interleave count) are 5512 // saturated. 5513 unsigned NumStores = Legal->getNumStores(); 5514 unsigned NumLoads = Legal->getNumLoads(); 5515 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5516 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5517 5518 // If we have a scalar reduction (vector reductions are already dealt with 5519 // by this point), we can increase the critical path length if the loop 5520 // we're interleaving is inside another loop. Limit, by default to 2, so the 5521 // critical path only gets increased by one reduction operation. 5522 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5523 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5524 SmallIC = std::min(SmallIC, F); 5525 StoresIC = std::min(StoresIC, F); 5526 LoadsIC = std::min(LoadsIC, F); 5527 } 5528 5529 if (EnableLoadStoreRuntimeInterleave && 5530 std::max(StoresIC, LoadsIC) > SmallIC) { 5531 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5532 return std::max(StoresIC, LoadsIC); 5533 } 5534 5535 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5536 return SmallIC; 5537 } 5538 5539 // Interleave if this is a large loop (small loops are already dealt with by 5540 // this point) that could benefit from interleaving. 5541 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5542 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5543 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5544 return IC; 5545 } 5546 5547 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5548 return 1; 5549 } 5550 5551 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5552 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5553 // This function calculates the register usage by measuring the highest number 5554 // of values that are alive at a single location. Obviously, this is a very 5555 // rough estimation. We scan the loop in a topological order in order and 5556 // assign a number to each instruction. We use RPO to ensure that defs are 5557 // met before their users. We assume that each instruction that has in-loop 5558 // users starts an interval. We record every time that an in-loop value is 5559 // used, so we have a list of the first and last occurrences of each 5560 // instruction. Next, we transpose this data structure into a multi map that 5561 // holds the list of intervals that *end* at a specific location. This multi 5562 // map allows us to perform a linear search. We scan the instructions linearly 5563 // and record each time that a new interval starts, by placing it in a set. 5564 // If we find this value in the multi-map then we remove it from the set. 5565 // The max register usage is the maximum size of the set. 5566 // We also search for instructions that are defined outside the loop, but are 5567 // used inside the loop. We need this number separately from the max-interval 5568 // usage number because when we unroll, loop-invariant values do not take 5569 // more register. 5570 LoopBlocksDFS DFS(TheLoop); 5571 DFS.perform(LI); 5572 5573 RegisterUsage RU; 5574 RU.NumInstructions = 0; 5575 5576 // Each 'key' in the map opens a new interval. The values 5577 // of the map are the index of the 'last seen' usage of the 5578 // instruction that is the key. 5579 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5580 // Maps instruction to its index. 5581 DenseMap<unsigned, Instruction *> IdxToInstr; 5582 // Marks the end of each interval. 5583 IntervalMap EndPoint; 5584 // Saves the list of instruction indices that are used in the loop. 5585 SmallSet<Instruction *, 8> Ends; 5586 // Saves the list of values that are used in the loop but are 5587 // defined outside the loop, such as arguments and constants. 5588 SmallPtrSet<Value *, 8> LoopInvariants; 5589 5590 unsigned Index = 0; 5591 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5592 RU.NumInstructions += BB->size(); 5593 for (Instruction &I : *BB) { 5594 IdxToInstr[Index++] = &I; 5595 5596 // Save the end location of each USE. 5597 for (Value *U : I.operands()) { 5598 auto *Instr = dyn_cast<Instruction>(U); 5599 5600 // Ignore non-instruction values such as arguments, constants, etc. 5601 if (!Instr) 5602 continue; 5603 5604 // If this instruction is outside the loop then record it and continue. 5605 if (!TheLoop->contains(Instr)) { 5606 LoopInvariants.insert(Instr); 5607 continue; 5608 } 5609 5610 // Overwrite previous end points. 5611 EndPoint[Instr] = Index; 5612 Ends.insert(Instr); 5613 } 5614 } 5615 } 5616 5617 // Saves the list of intervals that end with the index in 'key'. 5618 typedef SmallVector<Instruction *, 2> InstrList; 5619 DenseMap<unsigned, InstrList> TransposeEnds; 5620 5621 // Transpose the EndPoints to a list of values that end at each index. 5622 for (auto &Interval : EndPoint) 5623 TransposeEnds[Interval.second].push_back(Interval.first); 5624 5625 SmallSet<Instruction *, 8> OpenIntervals; 5626 5627 // Get the size of the widest register. 5628 unsigned MaxSafeDepDist = -1U; 5629 if (Legal->getMaxSafeDepDistBytes() != -1U) 5630 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5631 unsigned WidestRegister = 5632 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5633 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5634 5635 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5636 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5637 5638 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5639 5640 // A lambda that gets the register usage for the given type and VF. 5641 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5642 if (Ty->isTokenTy()) 5643 return 0U; 5644 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5645 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5646 }; 5647 5648 for (unsigned int i = 0; i < Index; ++i) { 5649 Instruction *I = IdxToInstr[i]; 5650 // Ignore instructions that are never used within the loop. 5651 if (!Ends.count(I)) 5652 continue; 5653 5654 // Remove all of the instructions that end at this location. 5655 InstrList &List = TransposeEnds[i]; 5656 for (Instruction *ToRemove : List) 5657 OpenIntervals.erase(ToRemove); 5658 5659 // Skip ignored values. 5660 if (ValuesToIgnore.count(I)) 5661 continue; 5662 5663 // For each VF find the maximum usage of registers. 5664 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5665 if (VFs[j] == 1) { 5666 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5667 continue; 5668 } 5669 5670 // Count the number of live intervals. 5671 unsigned RegUsage = 0; 5672 for (auto Inst : OpenIntervals) { 5673 // Skip ignored values for VF > 1. 5674 if (VecValuesToIgnore.count(Inst)) 5675 continue; 5676 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5677 } 5678 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5679 } 5680 5681 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5682 << OpenIntervals.size() << '\n'); 5683 5684 // Add the current instruction to the list of open intervals. 5685 OpenIntervals.insert(I); 5686 } 5687 5688 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5689 unsigned Invariant = 0; 5690 if (VFs[i] == 1) 5691 Invariant = LoopInvariants.size(); 5692 else { 5693 for (auto Inst : LoopInvariants) 5694 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5695 } 5696 5697 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5698 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5699 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5700 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5701 5702 RU.LoopInvariantRegs = Invariant; 5703 RU.MaxLocalUsers = MaxUsages[i]; 5704 RUs[i] = RU; 5705 } 5706 5707 return RUs; 5708 } 5709 5710 LoopVectorizationCostModel::VectorizationCostTy 5711 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5712 VectorizationCostTy Cost; 5713 5714 // For each block. 5715 for (BasicBlock *BB : TheLoop->blocks()) { 5716 VectorizationCostTy BlockCost; 5717 5718 // For each instruction in the old loop. 5719 for (Instruction &I : *BB) { 5720 // Skip dbg intrinsics. 5721 if (isa<DbgInfoIntrinsic>(I)) 5722 continue; 5723 5724 // Skip ignored values. 5725 if (ValuesToIgnore.count(&I)) 5726 continue; 5727 5728 VectorizationCostTy C = getInstructionCost(&I, VF); 5729 5730 // Check if we should override the cost. 5731 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5732 C.first = ForceTargetInstructionCost; 5733 5734 BlockCost.first += C.first; 5735 BlockCost.second |= C.second; 5736 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5737 << VF << " For instruction: " << I << '\n'); 5738 } 5739 5740 // We assume that if-converted blocks have a 50% chance of being executed. 5741 // When the code is scalar then some of the blocks are avoided due to CF. 5742 // When the code is vectorized we execute all code paths. 5743 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5744 BlockCost.first /= 2; 5745 5746 Cost.first += BlockCost.first; 5747 Cost.second |= BlockCost.second; 5748 } 5749 5750 return Cost; 5751 } 5752 5753 /// \brief Check if the load/store instruction \p I may be translated into 5754 /// gather/scatter during vectorization. 5755 /// 5756 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5757 /// instruction. We need it to retrieve data type. 5758 /// Using gather/scatter is possible when it is supported by target. 5759 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5760 LoopVectorizationLegality *Legal) { 5761 auto *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5762 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5763 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5764 } 5765 5766 /// \brief Check whether the address computation for a non-consecutive memory 5767 /// access looks like an unlikely candidate for being merged into the indexing 5768 /// mode. 5769 /// 5770 /// We look for a GEP which has one index that is an induction variable and all 5771 /// other indices are loop invariant. If the stride of this access is also 5772 /// within a small bound we decide that this address computation can likely be 5773 /// merged into the addressing mode. 5774 /// In all other cases, we identify the address computation as complex. 5775 static bool isLikelyComplexAddressComputation(Value *Ptr, 5776 LoopVectorizationLegality *Legal, 5777 ScalarEvolution *SE, 5778 const Loop *TheLoop) { 5779 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5780 if (!Gep) 5781 return true; 5782 5783 // We are looking for a gep with all loop invariant indices except for one 5784 // which should be an induction variable. 5785 unsigned NumOperands = Gep->getNumOperands(); 5786 for (unsigned i = 1; i < NumOperands; ++i) { 5787 Value *Opd = Gep->getOperand(i); 5788 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5789 !Legal->isInductionVariable(Opd)) 5790 return true; 5791 } 5792 5793 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5794 // can likely be merged into the address computation. 5795 unsigned MaxMergeDistance = 64; 5796 5797 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5798 if (!AddRec) 5799 return true; 5800 5801 // Check the step is constant. 5802 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5803 // Calculate the pointer stride and check if it is consecutive. 5804 const auto *C = dyn_cast<SCEVConstant>(Step); 5805 if (!C) 5806 return true; 5807 5808 const APInt &APStepVal = C->getAPInt(); 5809 5810 // Huge step value - give up. 5811 if (APStepVal.getBitWidth() > 64) 5812 return true; 5813 5814 int64_t StepVal = APStepVal.getSExtValue(); 5815 5816 return StepVal > MaxMergeDistance; 5817 } 5818 5819 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5820 return Legal->hasStride(I->getOperand(0)) || 5821 Legal->hasStride(I->getOperand(1)); 5822 } 5823 5824 LoopVectorizationCostModel::VectorizationCostTy 5825 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5826 // If we know that this instruction will remain uniform, check the cost of 5827 // the scalar version. 5828 if (Legal->isUniformAfterVectorization(I)) 5829 VF = 1; 5830 5831 Type *VectorTy; 5832 unsigned C = getInstructionCost(I, VF, VectorTy); 5833 5834 bool TypeNotScalarized = 5835 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5836 return VectorizationCostTy(C, TypeNotScalarized); 5837 } 5838 5839 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5840 unsigned VF, 5841 Type *&VectorTy) { 5842 Type *RetTy = I->getType(); 5843 if (VF > 1 && MinBWs.count(I)) 5844 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5845 VectorTy = ToVectorTy(RetTy, VF); 5846 auto SE = PSE.getSE(); 5847 5848 // TODO: We need to estimate the cost of intrinsic calls. 5849 switch (I->getOpcode()) { 5850 case Instruction::GetElementPtr: 5851 // We mark this instruction as zero-cost because the cost of GEPs in 5852 // vectorized code depends on whether the corresponding memory instruction 5853 // is scalarized or not. Therefore, we handle GEPs with the memory 5854 // instruction cost. 5855 return 0; 5856 case Instruction::Br: { 5857 return TTI.getCFInstrCost(I->getOpcode()); 5858 } 5859 case Instruction::PHI: { 5860 auto *Phi = cast<PHINode>(I); 5861 5862 // First-order recurrences are replaced by vector shuffles inside the loop. 5863 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5864 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5865 VectorTy, VF - 1, VectorTy); 5866 5867 // TODO: IF-converted IFs become selects. 5868 return 0; 5869 } 5870 case Instruction::Add: 5871 case Instruction::FAdd: 5872 case Instruction::Sub: 5873 case Instruction::FSub: 5874 case Instruction::Mul: 5875 case Instruction::FMul: 5876 case Instruction::UDiv: 5877 case Instruction::SDiv: 5878 case Instruction::FDiv: 5879 case Instruction::URem: 5880 case Instruction::SRem: 5881 case Instruction::FRem: 5882 case Instruction::Shl: 5883 case Instruction::LShr: 5884 case Instruction::AShr: 5885 case Instruction::And: 5886 case Instruction::Or: 5887 case Instruction::Xor: { 5888 // Since we will replace the stride by 1 the multiplication should go away. 5889 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5890 return 0; 5891 // Certain instructions can be cheaper to vectorize if they have a constant 5892 // second vector operand. One example of this are shifts on x86. 5893 TargetTransformInfo::OperandValueKind Op1VK = 5894 TargetTransformInfo::OK_AnyValue; 5895 TargetTransformInfo::OperandValueKind Op2VK = 5896 TargetTransformInfo::OK_AnyValue; 5897 TargetTransformInfo::OperandValueProperties Op1VP = 5898 TargetTransformInfo::OP_None; 5899 TargetTransformInfo::OperandValueProperties Op2VP = 5900 TargetTransformInfo::OP_None; 5901 Value *Op2 = I->getOperand(1); 5902 5903 // Check for a splat of a constant or for a non uniform vector of constants. 5904 if (isa<ConstantInt>(Op2)) { 5905 ConstantInt *CInt = cast<ConstantInt>(Op2); 5906 if (CInt && CInt->getValue().isPowerOf2()) 5907 Op2VP = TargetTransformInfo::OP_PowerOf2; 5908 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5909 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5910 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5911 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5912 if (SplatValue) { 5913 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5914 if (CInt && CInt->getValue().isPowerOf2()) 5915 Op2VP = TargetTransformInfo::OP_PowerOf2; 5916 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5917 } 5918 } 5919 5920 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5921 Op1VP, Op2VP); 5922 } 5923 case Instruction::Select: { 5924 SelectInst *SI = cast<SelectInst>(I); 5925 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5926 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5927 Type *CondTy = SI->getCondition()->getType(); 5928 if (!ScalarCond) 5929 CondTy = VectorType::get(CondTy, VF); 5930 5931 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5932 } 5933 case Instruction::ICmp: 5934 case Instruction::FCmp: { 5935 Type *ValTy = I->getOperand(0)->getType(); 5936 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5937 auto It = MinBWs.find(Op0AsInstruction); 5938 if (VF > 1 && It != MinBWs.end()) 5939 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5940 VectorTy = ToVectorTy(ValTy, VF); 5941 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5942 } 5943 case Instruction::Store: 5944 case Instruction::Load: { 5945 StoreInst *SI = dyn_cast<StoreInst>(I); 5946 LoadInst *LI = dyn_cast<LoadInst>(I); 5947 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 5948 VectorTy = ToVectorTy(ValTy, VF); 5949 5950 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5951 unsigned AS = 5952 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 5953 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5954 // We add the cost of address computation here instead of with the gep 5955 // instruction because only here we know whether the operation is 5956 // scalarized. 5957 if (VF == 1) 5958 return TTI.getAddressComputationCost(VectorTy) + 5959 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5960 5961 if (LI && Legal->isUniform(Ptr)) { 5962 // Scalar load + broadcast 5963 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5964 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5965 Alignment, AS); 5966 return Cost + 5967 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 5968 } 5969 5970 // For an interleaved access, calculate the total cost of the whole 5971 // interleave group. 5972 if (Legal->isAccessInterleaved(I)) { 5973 auto Group = Legal->getInterleavedAccessGroup(I); 5974 assert(Group && "Fail to get an interleaved access group."); 5975 5976 // Only calculate the cost once at the insert position. 5977 if (Group->getInsertPos() != I) 5978 return 0; 5979 5980 unsigned InterleaveFactor = Group->getFactor(); 5981 Type *WideVecTy = 5982 VectorType::get(VectorTy->getVectorElementType(), 5983 VectorTy->getVectorNumElements() * InterleaveFactor); 5984 5985 // Holds the indices of existing members in an interleaved load group. 5986 // An interleaved store group doesn't need this as it doesn't allow gaps. 5987 SmallVector<unsigned, 4> Indices; 5988 if (LI) { 5989 for (unsigned i = 0; i < InterleaveFactor; i++) 5990 if (Group->getMember(i)) 5991 Indices.push_back(i); 5992 } 5993 5994 // Calculate the cost of the whole interleaved group. 5995 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5996 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5997 Group->getAlignment(), AS); 5998 5999 if (Group->isReverse()) 6000 Cost += 6001 Group->getNumMembers() * 6002 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6003 6004 // FIXME: The interleaved load group with a huge gap could be even more 6005 // expensive than scalar operations. Then we could ignore such group and 6006 // use scalar operations instead. 6007 return Cost; 6008 } 6009 6010 // Scalarized loads/stores. 6011 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6012 bool UseGatherOrScatter = 6013 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6014 6015 bool Reverse = ConsecutiveStride < 0; 6016 const DataLayout &DL = I->getModule()->getDataLayout(); 6017 uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6018 uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6019 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6020 ScalarAllocatedSize != VectorElementSize) { 6021 bool IsComplexComputation = 6022 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6023 unsigned Cost = 0; 6024 // The cost of extracting from the value vector and pointer vector. 6025 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6026 for (unsigned i = 0; i < VF; ++i) { 6027 // The cost of extracting the pointer operand. 6028 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6029 // In case of STORE, the cost of ExtractElement from the vector. 6030 // In case of LOAD, the cost of InsertElement into the returned 6031 // vector. 6032 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6033 : Instruction::InsertElement, 6034 VectorTy, i); 6035 } 6036 6037 // The cost of the scalar loads/stores. 6038 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6039 Cost += VF * 6040 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6041 Alignment, AS); 6042 return Cost; 6043 } 6044 6045 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6046 if (UseGatherOrScatter) { 6047 assert(ConsecutiveStride == 0 && 6048 "Gather/Scatter are not used for consecutive stride"); 6049 return Cost + 6050 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6051 Legal->isMaskRequired(I), Alignment); 6052 } 6053 // Wide load/stores. 6054 if (Legal->isMaskRequired(I)) 6055 Cost += 6056 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6057 else 6058 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6059 6060 if (Reverse) 6061 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6062 return Cost; 6063 } 6064 case Instruction::ZExt: 6065 case Instruction::SExt: 6066 case Instruction::FPToUI: 6067 case Instruction::FPToSI: 6068 case Instruction::FPExt: 6069 case Instruction::PtrToInt: 6070 case Instruction::IntToPtr: 6071 case Instruction::SIToFP: 6072 case Instruction::UIToFP: 6073 case Instruction::Trunc: 6074 case Instruction::FPTrunc: 6075 case Instruction::BitCast: { 6076 // We optimize the truncation of induction variable. 6077 // The cost of these is the same as the scalar operation. 6078 if (I->getOpcode() == Instruction::Trunc && 6079 Legal->isInductionVariable(I->getOperand(0))) 6080 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6081 I->getOperand(0)->getType()); 6082 6083 Type *SrcScalarTy = I->getOperand(0)->getType(); 6084 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6085 if (VF > 1 && MinBWs.count(I)) { 6086 // This cast is going to be shrunk. This may remove the cast or it might 6087 // turn it into slightly different cast. For example, if MinBW == 16, 6088 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6089 // 6090 // Calculate the modified src and dest types. 6091 Type *MinVecTy = VectorTy; 6092 if (I->getOpcode() == Instruction::Trunc) { 6093 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6094 VectorTy = 6095 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6096 } else if (I->getOpcode() == Instruction::ZExt || 6097 I->getOpcode() == Instruction::SExt) { 6098 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6099 VectorTy = 6100 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6101 } 6102 } 6103 6104 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6105 } 6106 case Instruction::Call: { 6107 bool NeedToScalarize; 6108 CallInst *CI = cast<CallInst>(I); 6109 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6110 if (getVectorIntrinsicIDForCall(CI, TLI)) 6111 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6112 return CallCost; 6113 } 6114 default: { 6115 // We are scalarizing the instruction. Return the cost of the scalar 6116 // instruction, plus the cost of insert and extract into vector 6117 // elements, times the vector width. 6118 unsigned Cost = 0; 6119 6120 if (!RetTy->isVoidTy() && VF != 1) { 6121 unsigned InsCost = 6122 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6123 unsigned ExtCost = 6124 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6125 6126 // The cost of inserting the results plus extracting each one of the 6127 // operands. 6128 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6129 } 6130 6131 // The cost of executing VF copies of the scalar instruction. This opcode 6132 // is unknown. Assume that it is the same as 'mul'. 6133 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6134 return Cost; 6135 } 6136 } // end of switch. 6137 } 6138 6139 char LoopVectorize::ID = 0; 6140 static const char lv_name[] = "Loop Vectorization"; 6141 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6142 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6143 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6144 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6145 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6146 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6147 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6149 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6150 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6152 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6153 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6154 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6155 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6156 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6157 6158 namespace llvm { 6159 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6160 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6161 } 6162 } 6163 6164 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6165 // Check for a store. 6166 if (auto *ST = dyn_cast<StoreInst>(Inst)) 6167 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6168 6169 // Check for a load. 6170 if (auto *LI = dyn_cast<LoadInst>(Inst)) 6171 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6172 6173 return false; 6174 } 6175 6176 /// Take the pointer operand from the Load/Store instruction. 6177 /// Returns NULL if this is not a valid Load/Store instruction. 6178 static Value *getPointerOperand(Value *I) { 6179 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 6180 return LI->getPointerOperand(); 6181 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 6182 return SI->getPointerOperand(); 6183 return nullptr; 6184 } 6185 6186 void LoopVectorizationCostModel::collectValuesToIgnore() { 6187 // Ignore ephemeral values. 6188 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6189 6190 // Ignore type-promoting instructions we identified during reduction 6191 // detection. 6192 for (auto &Reduction : *Legal->getReductionVars()) { 6193 RecurrenceDescriptor &RedDes = Reduction.second; 6194 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6195 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6196 } 6197 6198 // Insert uniform instruction into VecValuesToIgnore. 6199 // Collect non-gather/scatter and non-consecutive ptr in NonConsecutivePtr. 6200 SmallPtrSet<Instruction *, 8> NonConsecutivePtr; 6201 for (auto *BB : TheLoop->getBlocks()) { 6202 for (auto &I : *BB) { 6203 if (Legal->isUniformAfterVectorization(&I)) 6204 VecValuesToIgnore.insert(&I); 6205 Instruction *PI = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 6206 if (PI && !Legal->isConsecutivePtr(PI) && 6207 !isGatherOrScatterLegal(&I, PI, Legal)) 6208 NonConsecutivePtr.insert(PI); 6209 } 6210 } 6211 6212 // Ignore induction phis that are either used in uniform instructions or 6213 // NonConsecutivePtr. 6214 for (auto &Induction : *Legal->getInductionVars()) { 6215 auto *PN = Induction.first; 6216 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6217 6218 if (std::all_of(PN->user_begin(), PN->user_end(), 6219 [&](User *U) -> bool { 6220 Instruction *UI = dyn_cast<Instruction>(U); 6221 return U == UpdateV || !TheLoop->contains(UI) || 6222 Legal->isUniformAfterVectorization(UI) || 6223 NonConsecutivePtr.count(UI); 6224 }) && 6225 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6226 [&](User *U) -> bool { 6227 Instruction *UI = dyn_cast<Instruction>(U); 6228 return U == PN || !TheLoop->contains(UI) || 6229 Legal->isUniformAfterVectorization(UI) || 6230 NonConsecutivePtr.count(UI); 6231 })) { 6232 VecValuesToIgnore.insert(PN); 6233 VecValuesToIgnore.insert(UpdateV); 6234 } 6235 } 6236 } 6237 6238 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6239 bool IfPredicateStore) { 6240 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6241 // Holds vector parameters or scalars, in case of uniform vals. 6242 SmallVector<VectorParts, 4> Params; 6243 6244 setDebugLocFromInst(Builder, Instr); 6245 6246 // Find all of the vectorized parameters. 6247 for (Value *SrcOp : Instr->operands()) { 6248 // If we are accessing the old induction variable, use the new one. 6249 if (SrcOp == OldInduction) { 6250 Params.push_back(getVectorValue(SrcOp)); 6251 continue; 6252 } 6253 6254 // Try using previously calculated values. 6255 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6256 6257 // If the src is an instruction that appeared earlier in the basic block 6258 // then it should already be vectorized. 6259 if (SrcInst && OrigLoop->contains(SrcInst)) { 6260 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6261 // The parameter is a vector value from earlier. 6262 Params.push_back(WidenMap.get(SrcInst)); 6263 } else { 6264 // The parameter is a scalar from outside the loop. Maybe even a constant. 6265 VectorParts Scalars; 6266 Scalars.append(UF, SrcOp); 6267 Params.push_back(Scalars); 6268 } 6269 } 6270 6271 assert(Params.size() == Instr->getNumOperands() && 6272 "Invalid number of operands"); 6273 6274 // Does this instruction return a value ? 6275 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6276 6277 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6278 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6279 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6280 6281 VectorParts Cond; 6282 if (IfPredicateStore) { 6283 assert(Instr->getParent()->getSinglePredecessor() && 6284 "Only support single predecessor blocks"); 6285 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6286 Instr->getParent()); 6287 } 6288 6289 // For each vector unroll 'part': 6290 for (unsigned Part = 0; Part < UF; ++Part) { 6291 // For each scalar that we create: 6292 6293 // Start an "if (pred) a[i] = ..." block. 6294 Value *Cmp = nullptr; 6295 if (IfPredicateStore) { 6296 if (Cond[Part]->getType()->isVectorTy()) 6297 Cond[Part] = 6298 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6299 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6300 ConstantInt::get(Cond[Part]->getType(), 1)); 6301 } 6302 6303 Instruction *Cloned = Instr->clone(); 6304 if (!IsVoidRetTy) 6305 Cloned->setName(Instr->getName() + ".cloned"); 6306 // Replace the operands of the cloned instructions with extracted scalars. 6307 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6308 Value *Op = Params[op][Part]; 6309 Cloned->setOperand(op, Op); 6310 } 6311 6312 // Place the cloned scalar in the new loop. 6313 Builder.Insert(Cloned); 6314 6315 // If we just cloned a new assumption, add it the assumption cache. 6316 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6317 if (II->getIntrinsicID() == Intrinsic::assume) 6318 AC->registerAssumption(II); 6319 6320 // If the original scalar returns a value we need to place it in a vector 6321 // so that future users will be able to use it. 6322 if (!IsVoidRetTy) 6323 VecResults[Part] = Cloned; 6324 6325 // End if-block. 6326 if (IfPredicateStore) 6327 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6328 } 6329 } 6330 6331 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6332 auto *SI = dyn_cast<StoreInst>(Instr); 6333 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6334 6335 return scalarizeInstruction(Instr, IfPredicateStore); 6336 } 6337 6338 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6339 6340 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6341 6342 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6343 // When unrolling and the VF is 1, we only need to add a simple scalar. 6344 Type *ITy = Val->getType(); 6345 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6346 Constant *C = ConstantInt::get(ITy, StartIdx); 6347 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6348 } 6349 6350 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6351 SmallVector<Metadata *, 4> MDs; 6352 // Reserve first location for self reference to the LoopID metadata node. 6353 MDs.push_back(nullptr); 6354 bool IsUnrollMetadata = false; 6355 MDNode *LoopID = L->getLoopID(); 6356 if (LoopID) { 6357 // First find existing loop unrolling disable metadata. 6358 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6359 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6360 if (MD) { 6361 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6362 IsUnrollMetadata = 6363 S && S->getString().startswith("llvm.loop.unroll.disable"); 6364 } 6365 MDs.push_back(LoopID->getOperand(i)); 6366 } 6367 } 6368 6369 if (!IsUnrollMetadata) { 6370 // Add runtime unroll disable metadata. 6371 LLVMContext &Context = L->getHeader()->getContext(); 6372 SmallVector<Metadata *, 1> DisableOperands; 6373 DisableOperands.push_back( 6374 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6375 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6376 MDs.push_back(DisableNode); 6377 MDNode *NewLoopID = MDNode::get(Context, MDs); 6378 // Set operand 0 to refer to the loop id itself. 6379 NewLoopID->replaceOperandWith(0, NewLoopID); 6380 L->setLoopID(NewLoopID); 6381 } 6382 } 6383 6384 bool LoopVectorizePass::processLoop(Loop *L) { 6385 assert(L->empty() && "Only process inner loops."); 6386 6387 #ifndef NDEBUG 6388 const std::string DebugLocStr = getDebugLocString(L); 6389 #endif /* NDEBUG */ 6390 6391 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6392 << L->getHeader()->getParent()->getName() << "\" from " 6393 << DebugLocStr << "\n"); 6394 6395 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 6396 6397 DEBUG(dbgs() << "LV: Loop hints:" 6398 << " force=" 6399 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6400 ? "disabled" 6401 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6402 ? "enabled" 6403 : "?")) 6404 << " width=" << Hints.getWidth() 6405 << " unroll=" << Hints.getInterleave() << "\n"); 6406 6407 // Function containing loop 6408 Function *F = L->getHeader()->getParent(); 6409 6410 // Looking at the diagnostic output is the only way to determine if a loop 6411 // was vectorized (other than looking at the IR or machine code), so it 6412 // is important to generate an optimization remark for each loop. Most of 6413 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 6414 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 6415 // less verbose reporting vectorized loops and unvectorized loops that may 6416 // benefit from vectorization, respectively. 6417 6418 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6419 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6420 return false; 6421 } 6422 6423 // Check the loop for a trip count threshold: 6424 // do not vectorize loops with a tiny trip count. 6425 const unsigned TC = SE->getSmallConstantTripCount(L); 6426 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 6427 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6428 << "This loop is not worth vectorizing."); 6429 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6430 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6431 else { 6432 DEBUG(dbgs() << "\n"); 6433 emitAnalysisDiag(L, Hints, *ORE, VectorizationReport() 6434 << "vectorization is not beneficial " 6435 "and is not explicitly forced"); 6436 return false; 6437 } 6438 } 6439 6440 PredicatedScalarEvolution PSE(*SE, *L); 6441 6442 // Check if it is legal to vectorize the loop. 6443 LoopVectorizationRequirements Requirements(*ORE); 6444 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 6445 &Requirements, &Hints); 6446 if (!LVL.canVectorize()) { 6447 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6448 emitMissedWarning(F, L, Hints, ORE); 6449 return false; 6450 } 6451 6452 // Use the cost model. 6453 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 6454 &Hints); 6455 CM.collectValuesToIgnore(); 6456 6457 // Check the function attributes to find out if this function should be 6458 // optimized for size. 6459 bool OptForSize = 6460 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6461 6462 // Compute the weighted frequency of this loop being executed and see if it 6463 // is less than 20% of the function entry baseline frequency. Note that we 6464 // always have a canonical loop here because we think we *can* vectorize. 6465 // FIXME: This is hidden behind a flag due to pervasive problems with 6466 // exactly what block frequency models. 6467 if (LoopVectorizeWithBlockFrequency) { 6468 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 6469 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 6470 LoopEntryFreq < ColdEntryFreq) 6471 OptForSize = true; 6472 } 6473 6474 // Check the function attributes to see if implicit floats are allowed. 6475 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6476 // an integer loop and the vector instructions selected are purely integer 6477 // vector instructions? 6478 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6479 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6480 "attribute is used.\n"); 6481 emitAnalysisDiag( 6482 L, Hints, *ORE, 6483 VectorizationReport() 6484 << "loop not vectorized due to NoImplicitFloat attribute"); 6485 emitMissedWarning(F, L, Hints, ORE); 6486 return false; 6487 } 6488 6489 // Check if the target supports potentially unsafe FP vectorization. 6490 // FIXME: Add a check for the type of safety issue (denormal, signaling) 6491 // for the target we're vectorizing for, to make sure none of the 6492 // additional fp-math flags can help. 6493 if (Hints.isPotentiallyUnsafe() && 6494 TTI->isFPVectorizationPotentiallyUnsafe()) { 6495 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 6496 emitAnalysisDiag(L, Hints, *ORE, 6497 VectorizationReport() 6498 << "loop not vectorized due to unsafe FP support."); 6499 emitMissedWarning(F, L, Hints, ORE); 6500 return false; 6501 } 6502 6503 // Select the optimal vectorization factor. 6504 const LoopVectorizationCostModel::VectorizationFactor VF = 6505 CM.selectVectorizationFactor(OptForSize); 6506 6507 // Select the interleave count. 6508 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 6509 6510 // Get user interleave count. 6511 unsigned UserIC = Hints.getInterleave(); 6512 6513 // Identify the diagnostic messages that should be produced. 6514 std::string VecDiagMsg, IntDiagMsg; 6515 bool VectorizeLoop = true, InterleaveLoop = true; 6516 if (Requirements.doesNotMeet(F, L, Hints)) { 6517 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 6518 "requirements.\n"); 6519 emitMissedWarning(F, L, Hints, ORE); 6520 return false; 6521 } 6522 6523 if (VF.Width == 1) { 6524 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 6525 VecDiagMsg = 6526 "the cost-model indicates that vectorization is not beneficial"; 6527 VectorizeLoop = false; 6528 } 6529 6530 if (IC == 1 && UserIC <= 1) { 6531 // Tell the user interleaving is not beneficial. 6532 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 6533 IntDiagMsg = 6534 "the cost-model indicates that interleaving is not beneficial"; 6535 InterleaveLoop = false; 6536 if (UserIC == 1) 6537 IntDiagMsg += 6538 " and is explicitly disabled or interleave count is set to 1"; 6539 } else if (IC > 1 && UserIC == 1) { 6540 // Tell the user interleaving is beneficial, but it explicitly disabled. 6541 DEBUG(dbgs() 6542 << "LV: Interleaving is beneficial but is explicitly disabled."); 6543 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 6544 "but is explicitly disabled or interleave count is set to 1"; 6545 InterleaveLoop = false; 6546 } 6547 6548 // Override IC if user provided an interleave count. 6549 IC = UserIC > 0 ? UserIC : IC; 6550 6551 // Emit diagnostic messages, if any. 6552 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 6553 if (!VectorizeLoop && !InterleaveLoop) { 6554 // Do not vectorize or interleaving the loop. 6555 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 6556 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 6557 return false; 6558 } else if (!VectorizeLoop && InterleaveLoop) { 6559 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6560 ORE->emitOptimizationRemarkAnalysis(VAPassName, L, VecDiagMsg); 6561 } else if (VectorizeLoop && !InterleaveLoop) { 6562 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6563 << DebugLocStr << '\n'); 6564 ORE->emitOptimizationRemarkAnalysis(LV_NAME, L, IntDiagMsg); 6565 } else if (VectorizeLoop && InterleaveLoop) { 6566 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 6567 << DebugLocStr << '\n'); 6568 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 6569 } 6570 6571 if (!VectorizeLoop) { 6572 assert(IC > 1 && "interleave count should not be 1 or 0"); 6573 // If we decided that it is not legal to vectorize the loop, then 6574 // interleave it. 6575 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC); 6576 Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6577 6578 ORE->emitOptimizationRemark(LV_NAME, L, 6579 Twine("interleaved loop (interleaved count: ") + 6580 Twine(IC) + ")"); 6581 } else { 6582 // If we decided that it is *legal* to vectorize the loop, then do it. 6583 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC); 6584 LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); 6585 ++LoopsVectorized; 6586 6587 // Add metadata to disable runtime unrolling a scalar loop when there are 6588 // no runtime checks about strides and memory. A scalar loop that is 6589 // rarely used is not worth unrolling. 6590 if (!LB.areSafetyChecksAdded()) 6591 AddRuntimeUnrollDisableMetaData(L); 6592 6593 // Report the vectorization decision. 6594 ORE->emitOptimizationRemark( 6595 LV_NAME, L, Twine("vectorized loop (vectorization width: ") + 6596 Twine(VF.Width) + ", interleaved count: " + Twine(IC) + 6597 ")"); 6598 } 6599 6600 // Mark the loop as already vectorized to avoid vectorizing again. 6601 Hints.setAlreadyVectorized(); 6602 6603 DEBUG(verifyFunction(*L->getHeader()->getParent())); 6604 return true; 6605 } 6606 6607 bool LoopVectorizePass::runImpl( 6608 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 6609 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 6610 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 6611 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 6612 OptimizationRemarkEmitter &ORE_) { 6613 6614 SE = &SE_; 6615 LI = &LI_; 6616 TTI = &TTI_; 6617 DT = &DT_; 6618 BFI = &BFI_; 6619 TLI = TLI_; 6620 AA = &AA_; 6621 AC = &AC_; 6622 GetLAA = &GetLAA_; 6623 DB = &DB_; 6624 ORE = &ORE_; 6625 6626 // Compute some weights outside of the loop over the loops. Compute this 6627 // using a BranchProbability to re-use its scaling math. 6628 const BranchProbability ColdProb(1, 5); // 20% 6629 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 6630 6631 // Don't attempt if 6632 // 1. the target claims to have no vector registers, and 6633 // 2. interleaving won't help ILP. 6634 // 6635 // The second condition is necessary because, even if the target has no 6636 // vector registers, loop vectorization may still enable scalar 6637 // interleaving. 6638 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 6639 return false; 6640 6641 // Build up a worklist of inner-loops to vectorize. This is necessary as 6642 // the act of vectorizing or partially unrolling a loop creates new loops 6643 // and can invalidate iterators across the loops. 6644 SmallVector<Loop *, 8> Worklist; 6645 6646 for (Loop *L : *LI) 6647 addInnerLoop(*L, Worklist); 6648 6649 LoopsAnalyzed += Worklist.size(); 6650 6651 // Now walk the identified inner loops. 6652 bool Changed = false; 6653 while (!Worklist.empty()) 6654 Changed |= processLoop(Worklist.pop_back_val()); 6655 6656 // Process each loop nest in the function. 6657 return Changed; 6658 6659 } 6660 6661 6662 PreservedAnalyses LoopVectorizePass::run(Function &F, 6663 FunctionAnalysisManager &AM) { 6664 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 6665 auto &LI = AM.getResult<LoopAnalysis>(F); 6666 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 6667 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 6668 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 6669 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6670 auto &AA = AM.getResult<AAManager>(F); 6671 auto &AC = AM.getResult<AssumptionAnalysis>(F); 6672 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 6673 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6674 6675 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 6676 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 6677 [&](Loop &L) -> const LoopAccessInfo & { 6678 return LAM.getResult<LoopAccessAnalysis>(L); 6679 }; 6680 bool Changed = 6681 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 6682 if (!Changed) 6683 return PreservedAnalyses::all(); 6684 PreservedAnalyses PA; 6685 PA.preserve<LoopAnalysis>(); 6686 PA.preserve<DominatorTreeAnalysis>(); 6687 PA.preserve<BasicAA>(); 6688 PA.preserve<GlobalsAA>(); 6689 return PA; 6690 } 6691