1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 202 // that predication is preferred, and this lists all options. I.e., the 203 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 204 // and predicate the instructions accordingly. If tail-folding fails, there are 205 // different fallback strategies depending on these values: 206 namespace PreferPredicateTy { 207 enum Option { 208 ScalarEpilogue = 0, 209 PredicateElseScalarEpilogue, 210 PredicateOrDontVectorize 211 }; 212 } // namespace PreferPredicateTy 213 214 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 215 "prefer-predicate-over-epilogue", 216 cl::init(PreferPredicateTy::ScalarEpilogue), 217 cl::Hidden, 218 cl::desc("Tail-folding and predication preferences over creating a scalar " 219 "epilogue loop."), 220 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 221 "scalar-epilogue", 222 "Don't tail-predicate loops, create scalar epilogue"), 223 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 224 "predicate-else-scalar-epilogue", 225 "prefer tail-folding, create scalar epilogue if tail " 226 "folding fails."), 227 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 228 "predicate-dont-vectorize", 229 "prefers tail-folding, don't attempt vectorization if " 230 "tail-folding fails."))); 231 232 static cl::opt<bool> MaximizeBandwidth( 233 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 234 cl::desc("Maximize bandwidth when selecting vectorization factor which " 235 "will be determined by the smallest type in loop.")); 236 237 static cl::opt<bool> EnableInterleavedMemAccesses( 238 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 239 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 240 241 /// An interleave-group may need masking if it resides in a block that needs 242 /// predication, or in order to mask away gaps. 243 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 244 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 246 247 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 248 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 249 cl::desc("We don't interleave loops with a estimated constant trip count " 250 "below this number")); 251 252 static cl::opt<unsigned> ForceTargetNumScalarRegs( 253 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 254 cl::desc("A flag that overrides the target's number of scalar registers.")); 255 256 static cl::opt<unsigned> ForceTargetNumVectorRegs( 257 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of vector registers.")); 259 260 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 261 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's max interleave factor for " 263 "scalar loops.")); 264 265 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 266 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "vectorized loops.")); 269 270 static cl::opt<unsigned> ForceTargetInstructionCost( 271 "force-target-instruction-cost", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's expected cost for " 273 "an instruction to a single constant value. Mostly " 274 "useful for getting consistent testing.")); 275 276 static cl::opt<bool> ForceTargetSupportsScalableVectors( 277 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 278 cl::desc( 279 "Pretend that scalable vectors are supported, even if the target does " 280 "not support them. This flag should only be used for testing.")); 281 282 static cl::opt<unsigned> SmallLoopCost( 283 "small-loop-cost", cl::init(20), cl::Hidden, 284 cl::desc( 285 "The cost of a loop that is considered 'small' by the interleaver.")); 286 287 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 288 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 289 cl::desc("Enable the use of the block frequency analysis to access PGO " 290 "heuristics minimizing code growth in cold regions and being more " 291 "aggressive in hot regions.")); 292 293 // Runtime interleave loops for load/store throughput. 294 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 295 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 296 cl::desc( 297 "Enable runtime interleaving until load/store ports are saturated")); 298 299 /// Interleave small loops with scalar reductions. 300 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 301 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 302 cl::desc("Enable interleaving for loops with small iteration counts that " 303 "contain scalar reductions to expose ILP.")); 304 305 /// The number of stores in a loop that are allowed to need predication. 306 static cl::opt<unsigned> NumberOfStoresToPredicate( 307 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 308 cl::desc("Max number of stores to be predicated behind an if.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> PreferPredicatedReductionSelect( 330 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 331 cl::desc( 332 "Prefer predicating a reduction operation over an after loop select.")); 333 334 cl::opt<bool> EnableVPlanNativePath( 335 "enable-vplan-native-path", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path with " 337 "support for outer loop vectorization.")); 338 339 // FIXME: Remove this switch once we have divergence analysis. Currently we 340 // assume divergent non-backedge branches when this switch is true. 341 cl::opt<bool> EnableVPlanPredication( 342 "enable-vplan-predication", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path predicator with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 /// A helper function that returns the type of loaded or stored value. 365 static Type *getMemInstValueType(Value *I) { 366 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 367 "Expected Load or Store instruction"); 368 if (auto *LI = dyn_cast<LoadInst>(I)) 369 return LI->getType(); 370 return cast<StoreInst>(I)->getValueOperand()->getType(); 371 } 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type at the given vectorization factor. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 377 // Determine if an array of VF elements of type Ty is "bitcast compatible" 378 // with a <VF x Ty> vector. 379 if (VF.isVector()) { 380 auto *VectorTy = VectorType::get(Ty, VF); 381 return TypeSize::get(VF.getKnownMinValue() * 382 DL.getTypeAllocSize(Ty).getFixedValue(), 383 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 384 } 385 386 // If the vectorization factor is one, we just check if an array of type Ty 387 // requires padding between elements. 388 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 389 } 390 391 /// A helper function that returns the reciprocal of the block probability of 392 /// predicated blocks. If we return X, we are assuming the predicated block 393 /// will execute once for every X iterations of the loop header. 394 /// 395 /// TODO: We should use actual block probability here, if available. Currently, 396 /// we always assume predicated blocks have a 50% chance of executing. 397 static unsigned getReciprocalPredBlockProb() { return 2; } 398 399 /// A helper function that adds a 'fast' flag to floating-point operations. 400 static Value *addFastMathFlag(Value *V) { 401 if (isa<FPMathOperator>(V)) 402 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 403 return V; 404 } 405 406 /// A helper function that returns an integer or floating-point constant with 407 /// value C. 408 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 409 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 410 : ConstantFP::get(Ty, C); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if it is known. 418 /// 4) Returns None if all of the above failed. 419 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 420 // Check if exact trip count is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 422 return ExpectedTC; 423 424 // Check if there is an expected trip count available from profile data. 425 if (LoopVectorizeWithBlockFrequency) 426 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 427 return EstimatedTC; 428 429 // Check if upper bound estimate is known. 430 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 431 return ExpectedTC; 432 433 return None; 434 } 435 436 namespace llvm { 437 438 /// InnerLoopVectorizer vectorizes loops which contain only one basic 439 /// block to a specified vectorization factor (VF). 440 /// This class performs the widening of scalars into vectors, or multiple 441 /// scalars. This class also implements the following features: 442 /// * It inserts an epilogue loop for handling loops that don't have iteration 443 /// counts that are known to be a multiple of the vectorization factor. 444 /// * It handles the code generation for reduction variables. 445 /// * Scalarization (implementation using scalars) of un-vectorizable 446 /// instructions. 447 /// InnerLoopVectorizer does not perform any vectorization-legality 448 /// checks, and relies on the caller to check for the different legality 449 /// aspects. The InnerLoopVectorizer relies on the 450 /// LoopVectorizationLegality class to provide information about the induction 451 /// and reduction variables that were found to a given vectorization factor. 452 class InnerLoopVectorizer { 453 public: 454 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 455 LoopInfo *LI, DominatorTree *DT, 456 const TargetLibraryInfo *TLI, 457 const TargetTransformInfo *TTI, AssumptionCache *AC, 458 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 459 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 460 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 461 ProfileSummaryInfo *PSI) 462 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 463 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 464 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 465 PSI(PSI) { 466 // Query this against the original loop and save it here because the profile 467 // of the original loop header may change as the transformation happens. 468 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 469 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 470 } 471 472 virtual ~InnerLoopVectorizer() = default; 473 474 /// Create a new empty loop that will contain vectorized instructions later 475 /// on, while the old loop will be used as the scalar remainder. Control flow 476 /// is generated around the vectorized (and scalar epilogue) loops consisting 477 /// of various checks and bypasses. Return the pre-header block of the new 478 /// loop. 479 /// In the case of epilogue vectorization, this function is overriden to 480 /// handle the more complex control flow around the loops. 481 virtual BasicBlock *createVectorizedLoopSkeleton(); 482 483 /// Widen a single instruction within the innermost loop. 484 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 485 VPTransformState &State); 486 487 /// Widen a single call instruction within the innermost loop. 488 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 489 VPTransformState &State); 490 491 /// Widen a single select instruction within the innermost loop. 492 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 493 bool InvariantCond, VPTransformState &State); 494 495 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 496 void fixVectorizedLoop(VPTransformState &State); 497 498 // Return true if any runtime check is added. 499 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 500 501 /// A type for vectorized values in the new loop. Each value from the 502 /// original loop, when vectorized, is represented by UF vector values in the 503 /// new unrolled loop, where UF is the unroll factor. 504 using VectorParts = SmallVector<Value *, 2>; 505 506 /// Vectorize a single GetElementPtrInst based on information gathered and 507 /// decisions taken during planning. 508 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 509 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 510 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 511 512 /// Vectorize a single PHINode in a block. This method handles the induction 513 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 514 /// arbitrary length vectors. 515 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 516 VPValue *StartV, VPValue *Def, 517 VPTransformState &State); 518 519 /// A helper function to scalarize a single Instruction in the innermost loop. 520 /// Generates a sequence of scalar instances for each lane between \p MinLane 521 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 522 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 523 /// Instr's operands. 524 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 525 const VPIteration &Instance, bool IfPredicateInstr, 526 VPTransformState &State); 527 528 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 529 /// is provided, the integer induction variable will first be truncated to 530 /// the corresponding type. 531 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 532 VPValue *Def, VPValue *CastDef, 533 VPTransformState &State); 534 535 /// Construct the vector value of a scalarized value \p V one lane at a time. 536 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 537 VPTransformState &State); 538 539 /// Try to vectorize interleaved access group \p Group with the base address 540 /// given in \p Addr, optionally masking the vector operations if \p 541 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 542 /// values in the vectorized loop. 543 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 544 ArrayRef<VPValue *> VPDefs, 545 VPTransformState &State, VPValue *Addr, 546 ArrayRef<VPValue *> StoredValues, 547 VPValue *BlockInMask = nullptr); 548 549 /// Vectorize Load and Store instructions with the base address given in \p 550 /// Addr, optionally masking the vector operations if \p BlockInMask is 551 /// non-null. Use \p State to translate given VPValues to IR values in the 552 /// vectorized loop. 553 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 554 VPValue *Def, VPValue *Addr, 555 VPValue *StoredValue, VPValue *BlockInMask); 556 557 /// Set the debug location in the builder using the debug location in 558 /// the instruction. 559 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 560 561 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 562 void fixNonInductionPHIs(VPTransformState &State); 563 564 /// Create a broadcast instruction. This method generates a broadcast 565 /// instruction (shuffle) for loop invariant values and for the induction 566 /// value. If this is the induction variable then we extend it to N, N+1, ... 567 /// this is needed because each iteration in the loop corresponds to a SIMD 568 /// element. 569 virtual Value *getBroadcastInstrs(Value *V); 570 571 protected: 572 friend class LoopVectorizationPlanner; 573 574 /// A small list of PHINodes. 575 using PhiVector = SmallVector<PHINode *, 4>; 576 577 /// A type for scalarized values in the new loop. Each value from the 578 /// original loop, when scalarized, is represented by UF x VF scalar values 579 /// in the new unrolled loop, where UF is the unroll factor and VF is the 580 /// vectorization factor. 581 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 582 583 /// Set up the values of the IVs correctly when exiting the vector loop. 584 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 585 Value *CountRoundDown, Value *EndValue, 586 BasicBlock *MiddleBlock); 587 588 /// Create a new induction variable inside L. 589 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 590 Value *Step, Instruction *DL); 591 592 /// Handle all cross-iteration phis in the header. 593 void fixCrossIterationPHIs(VPTransformState &State); 594 595 /// Fix a first-order recurrence. This is the second phase of vectorizing 596 /// this phi node. 597 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 598 599 /// Fix a reduction cross-iteration phi. This is the second phase of 600 /// vectorizing this phi node. 601 void fixReduction(PHINode *Phi, VPTransformState &State); 602 603 /// Clear NSW/NUW flags from reduction instructions if necessary. 604 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 605 VPTransformState &State); 606 607 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 608 /// means we need to add the appropriate incoming value from the middle 609 /// block as exiting edges from the scalar epilogue loop (if present) are 610 /// already in place, and we exit the vector loop exclusively to the middle 611 /// block. 612 void fixLCSSAPHIs(VPTransformState &State); 613 614 /// Iteratively sink the scalarized operands of a predicated instruction into 615 /// the block that was created for it. 616 void sinkScalarOperands(Instruction *PredInst); 617 618 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 619 /// represented as. 620 void truncateToMinimalBitwidths(VPTransformState &State); 621 622 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 623 /// to each vector element of Val. The sequence starts at StartIndex. 624 /// \p Opcode is relevant for FP induction variable. 625 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 626 Instruction::BinaryOps Opcode = 627 Instruction::BinaryOpsEnd); 628 629 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 630 /// variable on which to base the steps, \p Step is the size of the step, and 631 /// \p EntryVal is the value from the original loop that maps to the steps. 632 /// Note that \p EntryVal doesn't have to be an induction variable - it 633 /// can also be a truncate instruction. 634 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 635 const InductionDescriptor &ID, VPValue *Def, 636 VPValue *CastDef, VPTransformState &State); 637 638 /// Create a vector induction phi node based on an existing scalar one. \p 639 /// EntryVal is the value from the original loop that maps to the vector phi 640 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 641 /// truncate instruction, instead of widening the original IV, we widen a 642 /// version of the IV truncated to \p EntryVal's type. 643 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 644 Value *Step, Value *Start, 645 Instruction *EntryVal, VPValue *Def, 646 VPValue *CastDef, 647 VPTransformState &State); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast( 675 const InductionDescriptor &ID, const Instruction *EntryVal, 676 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 677 unsigned Part, unsigned Lane = UINT_MAX); 678 679 /// Generate a shuffle sequence that will reverse the vector Vec. 680 virtual Value *reverseVector(Value *Vec); 681 682 /// Returns (and creates if needed) the original loop trip count. 683 Value *getOrCreateTripCount(Loop *NewLoop); 684 685 /// Returns (and creates if needed) the trip count of the widened loop. 686 Value *getOrCreateVectorTripCount(Loop *NewLoop); 687 688 /// Returns a bitcasted value to the requested vector type. 689 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 690 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 691 const DataLayout &DL); 692 693 /// Emit a bypass check to see if the vector trip count is zero, including if 694 /// it overflows. 695 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 696 697 /// Emit a bypass check to see if all of the SCEV assumptions we've 698 /// had to make are correct. 699 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The (unique) ExitBlock of the scalar loop. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 }; 870 871 class InnerLoopUnroller : public InnerLoopVectorizer { 872 public: 873 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 874 LoopInfo *LI, DominatorTree *DT, 875 const TargetLibraryInfo *TLI, 876 const TargetTransformInfo *TTI, AssumptionCache *AC, 877 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 878 LoopVectorizationLegality *LVL, 879 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 880 ProfileSummaryInfo *PSI) 881 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 882 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 883 BFI, PSI) {} 884 885 private: 886 Value *getBroadcastInstrs(Value *V) override; 887 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 888 Instruction::BinaryOps Opcode = 889 Instruction::BinaryOpsEnd) override; 890 Value *reverseVector(Value *Vec) override; 891 }; 892 893 /// Encapsulate information regarding vectorization of a loop and its epilogue. 894 /// This information is meant to be updated and used across two stages of 895 /// epilogue vectorization. 896 struct EpilogueLoopVectorizationInfo { 897 ElementCount MainLoopVF = ElementCount::getFixed(0); 898 unsigned MainLoopUF = 0; 899 ElementCount EpilogueVF = ElementCount::getFixed(0); 900 unsigned EpilogueUF = 0; 901 BasicBlock *MainLoopIterationCountCheck = nullptr; 902 BasicBlock *EpilogueIterationCountCheck = nullptr; 903 BasicBlock *SCEVSafetyCheck = nullptr; 904 BasicBlock *MemSafetyCheck = nullptr; 905 Value *TripCount = nullptr; 906 Value *VectorTripCount = nullptr; 907 908 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 909 unsigned EUF) 910 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 911 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 912 assert(EUF == 1 && 913 "A high UF for the epilogue loop is likely not beneficial."); 914 } 915 }; 916 917 /// An extension of the inner loop vectorizer that creates a skeleton for a 918 /// vectorized loop that has its epilogue (residual) also vectorized. 919 /// The idea is to run the vplan on a given loop twice, firstly to setup the 920 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 921 /// from the first step and vectorize the epilogue. This is achieved by 922 /// deriving two concrete strategy classes from this base class and invoking 923 /// them in succession from the loop vectorizer planner. 924 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 925 public: 926 InnerLoopAndEpilogueVectorizer( 927 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 928 DominatorTree *DT, const TargetLibraryInfo *TLI, 929 const TargetTransformInfo *TTI, AssumptionCache *AC, 930 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 931 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 932 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 933 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 934 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 935 EPI(EPI) {} 936 937 // Override this function to handle the more complex control flow around the 938 // three loops. 939 BasicBlock *createVectorizedLoopSkeleton() final override { 940 return createEpilogueVectorizedLoopSkeleton(); 941 } 942 943 /// The interface for creating a vectorized skeleton using one of two 944 /// different strategies, each corresponding to one execution of the vplan 945 /// as described above. 946 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 947 948 /// Holds and updates state information required to vectorize the main loop 949 /// and its epilogue in two separate passes. This setup helps us avoid 950 /// regenerating and recomputing runtime safety checks. It also helps us to 951 /// shorten the iteration-count-check path length for the cases where the 952 /// iteration count of the loop is so small that the main vector loop is 953 /// completely skipped. 954 EpilogueLoopVectorizationInfo &EPI; 955 }; 956 957 /// A specialized derived class of inner loop vectorizer that performs 958 /// vectorization of *main* loops in the process of vectorizing loops and their 959 /// epilogues. 960 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 961 public: 962 EpilogueVectorizerMainLoop( 963 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 964 DominatorTree *DT, const TargetLibraryInfo *TLI, 965 const TargetTransformInfo *TTI, AssumptionCache *AC, 966 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 967 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 968 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 969 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 970 EPI, LVL, CM, BFI, PSI) {} 971 /// Implements the interface for creating a vectorized skeleton using the 972 /// *main loop* strategy (ie the first pass of vplan execution). 973 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 974 975 protected: 976 /// Emits an iteration count bypass check once for the main loop (when \p 977 /// ForEpilogue is false) and once for the epilogue loop (when \p 978 /// ForEpilogue is true). 979 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 980 bool ForEpilogue); 981 void printDebugTracesAtStart() override; 982 void printDebugTracesAtEnd() override; 983 }; 984 985 // A specialized derived class of inner loop vectorizer that performs 986 // vectorization of *epilogue* loops in the process of vectorizing loops and 987 // their epilogues. 988 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 989 public: 990 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 991 LoopInfo *LI, DominatorTree *DT, 992 const TargetLibraryInfo *TLI, 993 const TargetTransformInfo *TTI, AssumptionCache *AC, 994 OptimizationRemarkEmitter *ORE, 995 EpilogueLoopVectorizationInfo &EPI, 996 LoopVectorizationLegality *LVL, 997 llvm::LoopVectorizationCostModel *CM, 998 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 999 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1000 EPI, LVL, CM, BFI, PSI) {} 1001 /// Implements the interface for creating a vectorized skeleton using the 1002 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1003 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1004 1005 protected: 1006 /// Emits an iteration count bypass check after the main vector loop has 1007 /// finished to see if there are any iterations left to execute by either 1008 /// the vector epilogue or the scalar epilogue. 1009 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1010 BasicBlock *Bypass, 1011 BasicBlock *Insert); 1012 void printDebugTracesAtStart() override; 1013 void printDebugTracesAtEnd() override; 1014 }; 1015 } // end namespace llvm 1016 1017 /// Look for a meaningful debug location on the instruction or it's 1018 /// operands. 1019 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1020 if (!I) 1021 return I; 1022 1023 DebugLoc Empty; 1024 if (I->getDebugLoc() != Empty) 1025 return I; 1026 1027 for (Use &Op : I->operands()) { 1028 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1029 if (OpInst->getDebugLoc() != Empty) 1030 return OpInst; 1031 } 1032 1033 return I; 1034 } 1035 1036 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1037 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1038 const DILocation *DIL = Inst->getDebugLoc(); 1039 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1040 !isa<DbgInfoIntrinsic>(Inst)) { 1041 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1042 auto NewDIL = 1043 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1044 if (NewDIL) 1045 B.SetCurrentDebugLocation(NewDIL.getValue()); 1046 else 1047 LLVM_DEBUG(dbgs() 1048 << "Failed to create new discriminator: " 1049 << DIL->getFilename() << " Line: " << DIL->getLine()); 1050 } 1051 else 1052 B.SetCurrentDebugLocation(DIL); 1053 } else 1054 B.SetCurrentDebugLocation(DebugLoc()); 1055 } 1056 1057 /// Write a record \p DebugMsg about vectorization failure to the debug 1058 /// output stream. If \p I is passed, it is an instruction that prevents 1059 /// vectorization. 1060 #ifndef NDEBUG 1061 static void debugVectorizationFailure(const StringRef DebugMsg, 1062 Instruction *I) { 1063 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1064 if (I != nullptr) 1065 dbgs() << " " << *I; 1066 else 1067 dbgs() << '.'; 1068 dbgs() << '\n'; 1069 } 1070 #endif 1071 1072 /// Create an analysis remark that explains why vectorization failed 1073 /// 1074 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1075 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1076 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1077 /// the location of the remark. \return the remark object that can be 1078 /// streamed to. 1079 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1080 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1081 Value *CodeRegion = TheLoop->getHeader(); 1082 DebugLoc DL = TheLoop->getStartLoc(); 1083 1084 if (I) { 1085 CodeRegion = I->getParent(); 1086 // If there is no debug location attached to the instruction, revert back to 1087 // using the loop's. 1088 if (I->getDebugLoc()) 1089 DL = I->getDebugLoc(); 1090 } 1091 1092 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1093 R << "loop not vectorized: "; 1094 return R; 1095 } 1096 1097 /// Return a value for Step multiplied by VF. 1098 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1099 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1100 Constant *StepVal = ConstantInt::get( 1101 Step->getType(), 1102 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1103 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1104 } 1105 1106 namespace llvm { 1107 1108 void reportVectorizationFailure(const StringRef DebugMsg, 1109 const StringRef OREMsg, const StringRef ORETag, 1110 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1111 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1112 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1113 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1114 ORETag, TheLoop, I) << OREMsg); 1115 } 1116 1117 } // end namespace llvm 1118 1119 #ifndef NDEBUG 1120 /// \return string containing a file name and a line # for the given loop. 1121 static std::string getDebugLocString(const Loop *L) { 1122 std::string Result; 1123 if (L) { 1124 raw_string_ostream OS(Result); 1125 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1126 LoopDbgLoc.print(OS); 1127 else 1128 // Just print the module name. 1129 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1130 OS.flush(); 1131 } 1132 return Result; 1133 } 1134 #endif 1135 1136 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1137 const Instruction *Orig) { 1138 // If the loop was versioned with memchecks, add the corresponding no-alias 1139 // metadata. 1140 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1141 LVer->annotateInstWithNoAlias(To, Orig); 1142 } 1143 1144 void InnerLoopVectorizer::addMetadata(Instruction *To, 1145 Instruction *From) { 1146 propagateMetadata(To, From); 1147 addNewMetadata(To, From); 1148 } 1149 1150 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1151 Instruction *From) { 1152 for (Value *V : To) { 1153 if (Instruction *I = dyn_cast<Instruction>(V)) 1154 addMetadata(I, From); 1155 } 1156 } 1157 1158 namespace llvm { 1159 1160 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1161 // lowered. 1162 enum ScalarEpilogueLowering { 1163 1164 // The default: allowing scalar epilogues. 1165 CM_ScalarEpilogueAllowed, 1166 1167 // Vectorization with OptForSize: don't allow epilogues. 1168 CM_ScalarEpilogueNotAllowedOptSize, 1169 1170 // A special case of vectorisation with OptForSize: loops with a very small 1171 // trip count are considered for vectorization under OptForSize, thereby 1172 // making sure the cost of their loop body is dominant, free of runtime 1173 // guards and scalar iteration overheads. 1174 CM_ScalarEpilogueNotAllowedLowTripLoop, 1175 1176 // Loop hint predicate indicating an epilogue is undesired. 1177 CM_ScalarEpilogueNotNeededUsePredicate, 1178 1179 // Directive indicating we must either tail fold or not vectorize 1180 CM_ScalarEpilogueNotAllowedUsePredicate 1181 }; 1182 1183 /// LoopVectorizationCostModel - estimates the expected speedups due to 1184 /// vectorization. 1185 /// In many cases vectorization is not profitable. This can happen because of 1186 /// a number of reasons. In this class we mainly attempt to predict the 1187 /// expected speedup/slowdowns due to the supported instruction set. We use the 1188 /// TargetTransformInfo to query the different backends for the cost of 1189 /// different operations. 1190 class LoopVectorizationCostModel { 1191 public: 1192 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1193 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1194 LoopVectorizationLegality *Legal, 1195 const TargetTransformInfo &TTI, 1196 const TargetLibraryInfo *TLI, DemandedBits *DB, 1197 AssumptionCache *AC, 1198 OptimizationRemarkEmitter *ORE, const Function *F, 1199 const LoopVectorizeHints *Hints, 1200 InterleavedAccessInfo &IAI) 1201 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1202 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1203 Hints(Hints), InterleaveInfo(IAI) {} 1204 1205 /// \return An upper bound for the vectorization factor, or None if 1206 /// vectorization and interleaving should be avoided up front. 1207 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1208 1209 /// \return True if runtime checks are required for vectorization, and false 1210 /// otherwise. 1211 bool runtimeChecksRequired(); 1212 1213 /// \return The most profitable vectorization factor and the cost of that VF. 1214 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1215 /// then this vectorization factor will be selected if vectorization is 1216 /// possible. 1217 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1218 VectorizationFactor 1219 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1220 const LoopVectorizationPlanner &LVP); 1221 1222 /// Setup cost-based decisions for user vectorization factor. 1223 void selectUserVectorizationFactor(ElementCount UserVF) { 1224 collectUniformsAndScalars(UserVF); 1225 collectInstsToScalarize(UserVF); 1226 } 1227 1228 /// \return The size (in bits) of the smallest and widest types in the code 1229 /// that needs to be vectorized. We ignore values that remain scalar such as 1230 /// 64 bit loop indices. 1231 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1232 1233 /// \return The desired interleave count. 1234 /// If interleave count has been specified by metadata it will be returned. 1235 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1236 /// are the selected vectorization factor and the cost of the selected VF. 1237 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1238 1239 /// Memory access instruction may be vectorized in more than one way. 1240 /// Form of instruction after vectorization depends on cost. 1241 /// This function takes cost-based decisions for Load/Store instructions 1242 /// and collects them in a map. This decisions map is used for building 1243 /// the lists of loop-uniform and loop-scalar instructions. 1244 /// The calculated cost is saved with widening decision in order to 1245 /// avoid redundant calculations. 1246 void setCostBasedWideningDecision(ElementCount VF); 1247 1248 /// A struct that represents some properties of the register usage 1249 /// of a loop. 1250 struct RegisterUsage { 1251 /// Holds the number of loop invariant values that are used in the loop. 1252 /// The key is ClassID of target-provided register class. 1253 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1254 /// Holds the maximum number of concurrent live intervals in the loop. 1255 /// The key is ClassID of target-provided register class. 1256 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1257 }; 1258 1259 /// \return Returns information about the register usages of the loop for the 1260 /// given vectorization factors. 1261 SmallVector<RegisterUsage, 8> 1262 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1263 1264 /// Collect values we want to ignore in the cost model. 1265 void collectValuesToIgnore(); 1266 1267 /// Split reductions into those that happen in the loop, and those that happen 1268 /// outside. In loop reductions are collected into InLoopReductionChains. 1269 void collectInLoopReductions(); 1270 1271 /// \returns The smallest bitwidth each instruction can be represented with. 1272 /// The vector equivalents of these instructions should be truncated to this 1273 /// type. 1274 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1275 return MinBWs; 1276 } 1277 1278 /// \returns True if it is more profitable to scalarize instruction \p I for 1279 /// vectorization factor \p VF. 1280 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1281 assert(VF.isVector() && 1282 "Profitable to scalarize relevant only for VF > 1."); 1283 1284 // Cost model is not run in the VPlan-native path - return conservative 1285 // result until this changes. 1286 if (EnableVPlanNativePath) 1287 return false; 1288 1289 auto Scalars = InstsToScalarize.find(VF); 1290 assert(Scalars != InstsToScalarize.end() && 1291 "VF not yet analyzed for scalarization profitability"); 1292 return Scalars->second.find(I) != Scalars->second.end(); 1293 } 1294 1295 /// Returns true if \p I is known to be uniform after vectorization. 1296 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1297 if (VF.isScalar()) 1298 return true; 1299 1300 // Cost model is not run in the VPlan-native path - return conservative 1301 // result until this changes. 1302 if (EnableVPlanNativePath) 1303 return false; 1304 1305 auto UniformsPerVF = Uniforms.find(VF); 1306 assert(UniformsPerVF != Uniforms.end() && 1307 "VF not yet analyzed for uniformity"); 1308 return UniformsPerVF->second.count(I); 1309 } 1310 1311 /// Returns true if \p I is known to be scalar after vectorization. 1312 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1313 if (VF.isScalar()) 1314 return true; 1315 1316 // Cost model is not run in the VPlan-native path - return conservative 1317 // result until this changes. 1318 if (EnableVPlanNativePath) 1319 return false; 1320 1321 auto ScalarsPerVF = Scalars.find(VF); 1322 assert(ScalarsPerVF != Scalars.end() && 1323 "Scalar values are not calculated for VF"); 1324 return ScalarsPerVF->second.count(I); 1325 } 1326 1327 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1328 /// for vectorization factor \p VF. 1329 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1330 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1331 !isProfitableToScalarize(I, VF) && 1332 !isScalarAfterVectorization(I, VF); 1333 } 1334 1335 /// Decision that was taken during cost calculation for memory instruction. 1336 enum InstWidening { 1337 CM_Unknown, 1338 CM_Widen, // For consecutive accesses with stride +1. 1339 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1340 CM_Interleave, 1341 CM_GatherScatter, 1342 CM_Scalarize 1343 }; 1344 1345 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1346 /// instruction \p I and vector width \p VF. 1347 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1348 InstructionCost Cost) { 1349 assert(VF.isVector() && "Expected VF >=2"); 1350 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1351 } 1352 1353 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1354 /// interleaving group \p Grp and vector width \p VF. 1355 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1356 ElementCount VF, InstWidening W, 1357 InstructionCost Cost) { 1358 assert(VF.isVector() && "Expected VF >=2"); 1359 /// Broadcast this decicion to all instructions inside the group. 1360 /// But the cost will be assigned to one instruction only. 1361 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1362 if (auto *I = Grp->getMember(i)) { 1363 if (Grp->getInsertPos() == I) 1364 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1365 else 1366 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1367 } 1368 } 1369 } 1370 1371 /// Return the cost model decision for the given instruction \p I and vector 1372 /// width \p VF. Return CM_Unknown if this instruction did not pass 1373 /// through the cost modeling. 1374 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1375 assert(VF.isVector() && "Expected VF to be a vector VF"); 1376 // Cost model is not run in the VPlan-native path - return conservative 1377 // result until this changes. 1378 if (EnableVPlanNativePath) 1379 return CM_GatherScatter; 1380 1381 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1382 auto Itr = WideningDecisions.find(InstOnVF); 1383 if (Itr == WideningDecisions.end()) 1384 return CM_Unknown; 1385 return Itr->second.first; 1386 } 1387 1388 /// Return the vectorization cost for the given instruction \p I and vector 1389 /// width \p VF. 1390 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1391 assert(VF.isVector() && "Expected VF >=2"); 1392 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1393 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1394 "The cost is not calculated"); 1395 return WideningDecisions[InstOnVF].second; 1396 } 1397 1398 /// Return True if instruction \p I is an optimizable truncate whose operand 1399 /// is an induction variable. Such a truncate will be removed by adding a new 1400 /// induction variable with the destination type. 1401 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1402 // If the instruction is not a truncate, return false. 1403 auto *Trunc = dyn_cast<TruncInst>(I); 1404 if (!Trunc) 1405 return false; 1406 1407 // Get the source and destination types of the truncate. 1408 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1409 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1410 1411 // If the truncate is free for the given types, return false. Replacing a 1412 // free truncate with an induction variable would add an induction variable 1413 // update instruction to each iteration of the loop. We exclude from this 1414 // check the primary induction variable since it will need an update 1415 // instruction regardless. 1416 Value *Op = Trunc->getOperand(0); 1417 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1418 return false; 1419 1420 // If the truncated value is not an induction variable, return false. 1421 return Legal->isInductionPhi(Op); 1422 } 1423 1424 /// Collects the instructions to scalarize for each predicated instruction in 1425 /// the loop. 1426 void collectInstsToScalarize(ElementCount VF); 1427 1428 /// Collect Uniform and Scalar values for the given \p VF. 1429 /// The sets depend on CM decision for Load/Store instructions 1430 /// that may be vectorized as interleave, gather-scatter or scalarized. 1431 void collectUniformsAndScalars(ElementCount VF) { 1432 // Do the analysis once. 1433 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1434 return; 1435 setCostBasedWideningDecision(VF); 1436 collectLoopUniforms(VF); 1437 collectLoopScalars(VF); 1438 } 1439 1440 /// Returns true if the target machine supports masked store operation 1441 /// for the given \p DataType and kind of access to \p Ptr. 1442 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1443 return Legal->isConsecutivePtr(Ptr) && 1444 TTI.isLegalMaskedStore(DataType, Alignment); 1445 } 1446 1447 /// Returns true if the target machine supports masked load operation 1448 /// for the given \p DataType and kind of access to \p Ptr. 1449 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1450 return Legal->isConsecutivePtr(Ptr) && 1451 TTI.isLegalMaskedLoad(DataType, Alignment); 1452 } 1453 1454 /// Returns true if the target machine supports masked scatter operation 1455 /// for the given \p DataType. 1456 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1457 return TTI.isLegalMaskedScatter(DataType, Alignment); 1458 } 1459 1460 /// Returns true if the target machine supports masked gather operation 1461 /// for the given \p DataType. 1462 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1463 return TTI.isLegalMaskedGather(DataType, Alignment); 1464 } 1465 1466 /// Returns true if the target machine can represent \p V as a masked gather 1467 /// or scatter operation. 1468 bool isLegalGatherOrScatter(Value *V) { 1469 bool LI = isa<LoadInst>(V); 1470 bool SI = isa<StoreInst>(V); 1471 if (!LI && !SI) 1472 return false; 1473 auto *Ty = getMemInstValueType(V); 1474 Align Align = getLoadStoreAlignment(V); 1475 return (LI && isLegalMaskedGather(Ty, Align)) || 1476 (SI && isLegalMaskedScatter(Ty, Align)); 1477 } 1478 1479 /// Returns true if the target machine supports all of the reduction 1480 /// variables found for the given VF. 1481 bool canVectorizeReductions(ElementCount VF) { 1482 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1483 RecurrenceDescriptor RdxDesc = Reduction.second; 1484 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1485 })); 1486 } 1487 1488 /// Returns true if \p I is an instruction that will be scalarized with 1489 /// predication. Such instructions include conditional stores and 1490 /// instructions that may divide by zero. 1491 /// If a non-zero VF has been calculated, we check if I will be scalarized 1492 /// predication for that VF. 1493 bool isScalarWithPredication(Instruction *I, 1494 ElementCount VF = ElementCount::getFixed(1)); 1495 1496 // Returns true if \p I is an instruction that will be predicated either 1497 // through scalar predication or masked load/store or masked gather/scatter. 1498 // Superset of instructions that return true for isScalarWithPredication. 1499 bool isPredicatedInst(Instruction *I) { 1500 if (!blockNeedsPredication(I->getParent())) 1501 return false; 1502 // Loads and stores that need some form of masked operation are predicated 1503 // instructions. 1504 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1505 return Legal->isMaskRequired(I); 1506 return isScalarWithPredication(I); 1507 } 1508 1509 /// Returns true if \p I is a memory instruction with consecutive memory 1510 /// access that can be widened. 1511 bool 1512 memoryInstructionCanBeWidened(Instruction *I, 1513 ElementCount VF = ElementCount::getFixed(1)); 1514 1515 /// Returns true if \p I is a memory instruction in an interleaved-group 1516 /// of memory accesses that can be vectorized with wide vector loads/stores 1517 /// and shuffles. 1518 bool 1519 interleavedAccessCanBeWidened(Instruction *I, 1520 ElementCount VF = ElementCount::getFixed(1)); 1521 1522 /// Check if \p Instr belongs to any interleaved access group. 1523 bool isAccessInterleaved(Instruction *Instr) { 1524 return InterleaveInfo.isInterleaved(Instr); 1525 } 1526 1527 /// Get the interleaved access group that \p Instr belongs to. 1528 const InterleaveGroup<Instruction> * 1529 getInterleavedAccessGroup(Instruction *Instr) { 1530 return InterleaveInfo.getInterleaveGroup(Instr); 1531 } 1532 1533 /// Returns true if we're required to use a scalar epilogue for at least 1534 /// the final iteration of the original loop. 1535 bool requiresScalarEpilogue() const { 1536 if (!isScalarEpilogueAllowed()) 1537 return false; 1538 // If we might exit from anywhere but the latch, must run the exiting 1539 // iteration in scalar form. 1540 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1541 return true; 1542 return InterleaveInfo.requiresScalarEpilogue(); 1543 } 1544 1545 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1546 /// loop hint annotation. 1547 bool isScalarEpilogueAllowed() const { 1548 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1549 } 1550 1551 /// Returns true if all loop blocks should be masked to fold tail loop. 1552 bool foldTailByMasking() const { return FoldTailByMasking; } 1553 1554 bool blockNeedsPredication(BasicBlock *BB) { 1555 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1556 } 1557 1558 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1559 /// nodes to the chain of instructions representing the reductions. Uses a 1560 /// MapVector to ensure deterministic iteration order. 1561 using ReductionChainMap = 1562 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1563 1564 /// Return the chain of instructions representing an inloop reduction. 1565 const ReductionChainMap &getInLoopReductionChains() const { 1566 return InLoopReductionChains; 1567 } 1568 1569 /// Returns true if the Phi is part of an inloop reduction. 1570 bool isInLoopReduction(PHINode *Phi) const { 1571 return InLoopReductionChains.count(Phi); 1572 } 1573 1574 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1575 /// with factor VF. Return the cost of the instruction, including 1576 /// scalarization overhead if it's needed. 1577 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1578 1579 /// Estimate cost of a call instruction CI if it were vectorized with factor 1580 /// VF. Return the cost of the instruction, including scalarization overhead 1581 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1582 /// scalarized - 1583 /// i.e. either vector version isn't available, or is too expensive. 1584 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1585 bool &NeedToScalarize); 1586 1587 /// Invalidates decisions already taken by the cost model. 1588 void invalidateCostModelingDecisions() { 1589 WideningDecisions.clear(); 1590 Uniforms.clear(); 1591 Scalars.clear(); 1592 } 1593 1594 private: 1595 unsigned NumPredStores = 0; 1596 1597 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1598 /// than zero. One is returned if vectorization should best be avoided due 1599 /// to cost. 1600 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1601 ElementCount UserVF); 1602 1603 /// The vectorization cost is a combination of the cost itself and a boolean 1604 /// indicating whether any of the contributing operations will actually 1605 /// operate on 1606 /// vector values after type legalization in the backend. If this latter value 1607 /// is 1608 /// false, then all operations will be scalarized (i.e. no vectorization has 1609 /// actually taken place). 1610 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1611 1612 /// Returns the expected execution cost. The unit of the cost does 1613 /// not matter because we use the 'cost' units to compare different 1614 /// vector widths. The cost that is returned is *not* normalized by 1615 /// the factor width. 1616 VectorizationCostTy expectedCost(ElementCount VF); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1630 Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1658 1659 /// Returns whether the instruction is a load or store and will be a emitted 1660 /// as a vector operation. 1661 bool isConsecutiveLoadOrStore(Instruction *I); 1662 1663 /// Returns true if an artificially high cost for emulated masked memrefs 1664 /// should be used. 1665 bool useEmulatedMaskMemRefHack(Instruction *I); 1666 1667 /// Map of scalar integer values to the smallest bitwidth they can be legally 1668 /// represented as. The vector equivalents of these values should be truncated 1669 /// to this type. 1670 MapVector<Instruction *, uint64_t> MinBWs; 1671 1672 /// A type representing the costs for instructions if they were to be 1673 /// scalarized rather than vectorized. The entries are Instruction-Cost 1674 /// pairs. 1675 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1676 1677 /// A set containing all BasicBlocks that are known to present after 1678 /// vectorization as a predicated block. 1679 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1680 1681 /// Records whether it is allowed to have the original scalar loop execute at 1682 /// least once. This may be needed as a fallback loop in case runtime 1683 /// aliasing/dependence checks fail, or to handle the tail/remainder 1684 /// iterations when the trip count is unknown or doesn't divide by the VF, 1685 /// or as a peel-loop to handle gaps in interleave-groups. 1686 /// Under optsize and when the trip count is very small we don't allow any 1687 /// iterations to execute in the scalar loop. 1688 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1689 1690 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1691 bool FoldTailByMasking = false; 1692 1693 /// A map holding scalar costs for different vectorization factors. The 1694 /// presence of a cost for an instruction in the mapping indicates that the 1695 /// instruction will be scalarized when vectorizing with the associated 1696 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1697 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1698 1699 /// Holds the instructions known to be uniform after vectorization. 1700 /// The data is collected per VF. 1701 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1702 1703 /// Holds the instructions known to be scalar after vectorization. 1704 /// The data is collected per VF. 1705 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1706 1707 /// Holds the instructions (address computations) that are forced to be 1708 /// scalarized. 1709 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1710 1711 /// PHINodes of the reductions that should be expanded in-loop along with 1712 /// their associated chains of reduction operations, in program order from top 1713 /// (PHI) to bottom 1714 ReductionChainMap InLoopReductionChains; 1715 1716 /// A Map of inloop reduction operations and their immediate chain operand. 1717 /// FIXME: This can be removed once reductions can be costed correctly in 1718 /// vplan. This was added to allow quick lookup to the inloop operations, 1719 /// without having to loop through InLoopReductionChains. 1720 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1721 1722 /// Returns the expected difference in cost from scalarizing the expression 1723 /// feeding a predicated instruction \p PredInst. The instructions to 1724 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1725 /// non-negative return value implies the expression will be scalarized. 1726 /// Currently, only single-use chains are considered for scalarization. 1727 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1728 ElementCount VF); 1729 1730 /// Collect the instructions that are uniform after vectorization. An 1731 /// instruction is uniform if we represent it with a single scalar value in 1732 /// the vectorized loop corresponding to each vector iteration. Examples of 1733 /// uniform instructions include pointer operands of consecutive or 1734 /// interleaved memory accesses. Note that although uniformity implies an 1735 /// instruction will be scalar, the reverse is not true. In general, a 1736 /// scalarized instruction will be represented by VF scalar values in the 1737 /// vectorized loop, each corresponding to an iteration of the original 1738 /// scalar loop. 1739 void collectLoopUniforms(ElementCount VF); 1740 1741 /// Collect the instructions that are scalar after vectorization. An 1742 /// instruction is scalar if it is known to be uniform or will be scalarized 1743 /// during vectorization. Non-uniform scalarized instructions will be 1744 /// represented by VF values in the vectorized loop, each corresponding to an 1745 /// iteration of the original scalar loop. 1746 void collectLoopScalars(ElementCount VF); 1747 1748 /// Keeps cost model vectorization decision and cost for instructions. 1749 /// Right now it is used for memory instructions only. 1750 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1751 std::pair<InstWidening, InstructionCost>>; 1752 1753 DecisionList WideningDecisions; 1754 1755 /// Returns true if \p V is expected to be vectorized and it needs to be 1756 /// extracted. 1757 bool needsExtract(Value *V, ElementCount VF) const { 1758 Instruction *I = dyn_cast<Instruction>(V); 1759 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1760 TheLoop->isLoopInvariant(I)) 1761 return false; 1762 1763 // Assume we can vectorize V (and hence we need extraction) if the 1764 // scalars are not computed yet. This can happen, because it is called 1765 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1766 // the scalars are collected. That should be a safe assumption in most 1767 // cases, because we check if the operands have vectorizable types 1768 // beforehand in LoopVectorizationLegality. 1769 return Scalars.find(VF) == Scalars.end() || 1770 !isScalarAfterVectorization(I, VF); 1771 }; 1772 1773 /// Returns a range containing only operands needing to be extracted. 1774 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1775 ElementCount VF) { 1776 return SmallVector<Value *, 4>(make_filter_range( 1777 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1778 } 1779 1780 /// Determines if we have the infrastructure to vectorize loop \p L and its 1781 /// epilogue, assuming the main loop is vectorized by \p VF. 1782 bool isCandidateForEpilogueVectorization(const Loop &L, 1783 const ElementCount VF) const; 1784 1785 /// Returns true if epilogue vectorization is considered profitable, and 1786 /// false otherwise. 1787 /// \p VF is the vectorization factor chosen for the original loop. 1788 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1789 1790 public: 1791 /// The loop that we evaluate. 1792 Loop *TheLoop; 1793 1794 /// Predicated scalar evolution analysis. 1795 PredicatedScalarEvolution &PSE; 1796 1797 /// Loop Info analysis. 1798 LoopInfo *LI; 1799 1800 /// Vectorization legality. 1801 LoopVectorizationLegality *Legal; 1802 1803 /// Vector target information. 1804 const TargetTransformInfo &TTI; 1805 1806 /// Target Library Info. 1807 const TargetLibraryInfo *TLI; 1808 1809 /// Demanded bits analysis. 1810 DemandedBits *DB; 1811 1812 /// Assumption cache. 1813 AssumptionCache *AC; 1814 1815 /// Interface to emit optimization remarks. 1816 OptimizationRemarkEmitter *ORE; 1817 1818 const Function *TheFunction; 1819 1820 /// Loop Vectorize Hint. 1821 const LoopVectorizeHints *Hints; 1822 1823 /// The interleave access information contains groups of interleaved accesses 1824 /// with the same stride and close to each other. 1825 InterleavedAccessInfo &InterleaveInfo; 1826 1827 /// Values to ignore in the cost model. 1828 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1829 1830 /// Values to ignore in the cost model when VF > 1. 1831 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1832 1833 /// Profitable vector factors. 1834 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1835 }; 1836 1837 } // end namespace llvm 1838 1839 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1840 // vectorization. The loop needs to be annotated with #pragma omp simd 1841 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1842 // vector length information is not provided, vectorization is not considered 1843 // explicit. Interleave hints are not allowed either. These limitations will be 1844 // relaxed in the future. 1845 // Please, note that we are currently forced to abuse the pragma 'clang 1846 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1847 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1848 // provides *explicit vectorization hints* (LV can bypass legal checks and 1849 // assume that vectorization is legal). However, both hints are implemented 1850 // using the same metadata (llvm.loop.vectorize, processed by 1851 // LoopVectorizeHints). This will be fixed in the future when the native IR 1852 // representation for pragma 'omp simd' is introduced. 1853 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1854 OptimizationRemarkEmitter *ORE) { 1855 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1856 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1857 1858 // Only outer loops with an explicit vectorization hint are supported. 1859 // Unannotated outer loops are ignored. 1860 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1861 return false; 1862 1863 Function *Fn = OuterLp->getHeader()->getParent(); 1864 if (!Hints.allowVectorization(Fn, OuterLp, 1865 true /*VectorizeOnlyWhenForced*/)) { 1866 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1867 return false; 1868 } 1869 1870 if (Hints.getInterleave() > 1) { 1871 // TODO: Interleave support is future work. 1872 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1873 "outer loops.\n"); 1874 Hints.emitRemarkWithHints(); 1875 return false; 1876 } 1877 1878 return true; 1879 } 1880 1881 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1882 OptimizationRemarkEmitter *ORE, 1883 SmallVectorImpl<Loop *> &V) { 1884 // Collect inner loops and outer loops without irreducible control flow. For 1885 // now, only collect outer loops that have explicit vectorization hints. If we 1886 // are stress testing the VPlan H-CFG construction, we collect the outermost 1887 // loop of every loop nest. 1888 if (L.isInnermost() || VPlanBuildStressTest || 1889 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1890 LoopBlocksRPO RPOT(&L); 1891 RPOT.perform(LI); 1892 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1893 V.push_back(&L); 1894 // TODO: Collect inner loops inside marked outer loops in case 1895 // vectorization fails for the outer loop. Do not invoke 1896 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1897 // already known to be reducible. We can use an inherited attribute for 1898 // that. 1899 return; 1900 } 1901 } 1902 for (Loop *InnerL : L) 1903 collectSupportedLoops(*InnerL, LI, ORE, V); 1904 } 1905 1906 namespace { 1907 1908 /// The LoopVectorize Pass. 1909 struct LoopVectorize : public FunctionPass { 1910 /// Pass identification, replacement for typeid 1911 static char ID; 1912 1913 LoopVectorizePass Impl; 1914 1915 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1916 bool VectorizeOnlyWhenForced = false) 1917 : FunctionPass(ID), 1918 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1919 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1920 } 1921 1922 bool runOnFunction(Function &F) override { 1923 if (skipFunction(F)) 1924 return false; 1925 1926 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1927 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1928 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1929 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1930 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1931 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1932 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1933 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1934 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1935 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1936 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1937 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1938 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1939 1940 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1941 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1942 1943 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1944 GetLAA, *ORE, PSI).MadeAnyChange; 1945 } 1946 1947 void getAnalysisUsage(AnalysisUsage &AU) const override { 1948 AU.addRequired<AssumptionCacheTracker>(); 1949 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1950 AU.addRequired<DominatorTreeWrapperPass>(); 1951 AU.addRequired<LoopInfoWrapperPass>(); 1952 AU.addRequired<ScalarEvolutionWrapperPass>(); 1953 AU.addRequired<TargetTransformInfoWrapperPass>(); 1954 AU.addRequired<AAResultsWrapperPass>(); 1955 AU.addRequired<LoopAccessLegacyAnalysis>(); 1956 AU.addRequired<DemandedBitsWrapperPass>(); 1957 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1958 AU.addRequired<InjectTLIMappingsLegacy>(); 1959 1960 // We currently do not preserve loopinfo/dominator analyses with outer loop 1961 // vectorization. Until this is addressed, mark these analyses as preserved 1962 // only for non-VPlan-native path. 1963 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1964 if (!EnableVPlanNativePath) { 1965 AU.addPreserved<LoopInfoWrapperPass>(); 1966 AU.addPreserved<DominatorTreeWrapperPass>(); 1967 } 1968 1969 AU.addPreserved<BasicAAWrapperPass>(); 1970 AU.addPreserved<GlobalsAAWrapperPass>(); 1971 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1972 } 1973 }; 1974 1975 } // end anonymous namespace 1976 1977 //===----------------------------------------------------------------------===// 1978 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1979 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1980 //===----------------------------------------------------------------------===// 1981 1982 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1983 // We need to place the broadcast of invariant variables outside the loop, 1984 // but only if it's proven safe to do so. Else, broadcast will be inside 1985 // vector loop body. 1986 Instruction *Instr = dyn_cast<Instruction>(V); 1987 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1988 (!Instr || 1989 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1990 // Place the code for broadcasting invariant variables in the new preheader. 1991 IRBuilder<>::InsertPointGuard Guard(Builder); 1992 if (SafeToHoist) 1993 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1994 1995 // Broadcast the scalar into all locations in the vector. 1996 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1997 1998 return Shuf; 1999 } 2000 2001 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2002 const InductionDescriptor &II, Value *Step, Value *Start, 2003 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2004 VPTransformState &State) { 2005 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2006 "Expected either an induction phi-node or a truncate of it!"); 2007 2008 // Construct the initial value of the vector IV in the vector loop preheader 2009 auto CurrIP = Builder.saveIP(); 2010 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2011 if (isa<TruncInst>(EntryVal)) { 2012 assert(Start->getType()->isIntegerTy() && 2013 "Truncation requires an integer type"); 2014 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2015 Step = Builder.CreateTrunc(Step, TruncType); 2016 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2017 } 2018 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2019 Value *SteppedStart = 2020 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2021 2022 // We create vector phi nodes for both integer and floating-point induction 2023 // variables. Here, we determine the kind of arithmetic we will perform. 2024 Instruction::BinaryOps AddOp; 2025 Instruction::BinaryOps MulOp; 2026 if (Step->getType()->isIntegerTy()) { 2027 AddOp = Instruction::Add; 2028 MulOp = Instruction::Mul; 2029 } else { 2030 AddOp = II.getInductionOpcode(); 2031 MulOp = Instruction::FMul; 2032 } 2033 2034 // Multiply the vectorization factor by the step using integer or 2035 // floating-point arithmetic as appropriate. 2036 Value *ConstVF = 2037 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2038 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2039 2040 // Create a vector splat to use in the induction update. 2041 // 2042 // FIXME: If the step is non-constant, we create the vector splat with 2043 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2044 // handle a constant vector splat. 2045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2046 Value *SplatVF = isa<Constant>(Mul) 2047 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2048 : Builder.CreateVectorSplat(VF, Mul); 2049 Builder.restoreIP(CurrIP); 2050 2051 // We may need to add the step a number of times, depending on the unroll 2052 // factor. The last of those goes into the PHI. 2053 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2054 &*LoopVectorBody->getFirstInsertionPt()); 2055 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2056 Instruction *LastInduction = VecInd; 2057 for (unsigned Part = 0; Part < UF; ++Part) { 2058 State.set(Def, LastInduction, Part); 2059 2060 if (isa<TruncInst>(EntryVal)) 2061 addMetadata(LastInduction, EntryVal); 2062 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2063 State, Part); 2064 2065 LastInduction = cast<Instruction>(addFastMathFlag( 2066 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2067 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2068 } 2069 2070 // Move the last step to the end of the latch block. This ensures consistent 2071 // placement of all induction updates. 2072 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2073 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2074 auto *ICmp = cast<Instruction>(Br->getCondition()); 2075 LastInduction->moveBefore(ICmp); 2076 LastInduction->setName("vec.ind.next"); 2077 2078 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2079 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2080 } 2081 2082 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2083 return Cost->isScalarAfterVectorization(I, VF) || 2084 Cost->isProfitableToScalarize(I, VF); 2085 } 2086 2087 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2088 if (shouldScalarizeInstruction(IV)) 2089 return true; 2090 auto isScalarInst = [&](User *U) -> bool { 2091 auto *I = cast<Instruction>(U); 2092 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2093 }; 2094 return llvm::any_of(IV->users(), isScalarInst); 2095 } 2096 2097 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2098 const InductionDescriptor &ID, const Instruction *EntryVal, 2099 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2100 unsigned Part, unsigned Lane) { 2101 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2102 "Expected either an induction phi-node or a truncate of it!"); 2103 2104 // This induction variable is not the phi from the original loop but the 2105 // newly-created IV based on the proof that casted Phi is equal to the 2106 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2107 // re-uses the same InductionDescriptor that original IV uses but we don't 2108 // have to do any recording in this case - that is done when original IV is 2109 // processed. 2110 if (isa<TruncInst>(EntryVal)) 2111 return; 2112 2113 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2114 if (Casts.empty()) 2115 return; 2116 // Only the first Cast instruction in the Casts vector is of interest. 2117 // The rest of the Casts (if exist) have no uses outside the 2118 // induction update chain itself. 2119 if (Lane < UINT_MAX) 2120 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2121 else 2122 State.set(CastDef, VectorLoopVal, Part); 2123 } 2124 2125 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2126 TruncInst *Trunc, VPValue *Def, 2127 VPValue *CastDef, 2128 VPTransformState &State) { 2129 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2130 "Primary induction variable must have an integer type"); 2131 2132 auto II = Legal->getInductionVars().find(IV); 2133 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2134 2135 auto ID = II->second; 2136 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2137 2138 // The value from the original loop to which we are mapping the new induction 2139 // variable. 2140 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2141 2142 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2143 2144 // Generate code for the induction step. Note that induction steps are 2145 // required to be loop-invariant 2146 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2147 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2148 "Induction step should be loop invariant"); 2149 if (PSE.getSE()->isSCEVable(IV->getType())) { 2150 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2151 return Exp.expandCodeFor(Step, Step->getType(), 2152 LoopVectorPreHeader->getTerminator()); 2153 } 2154 return cast<SCEVUnknown>(Step)->getValue(); 2155 }; 2156 2157 // The scalar value to broadcast. This is derived from the canonical 2158 // induction variable. If a truncation type is given, truncate the canonical 2159 // induction variable and step. Otherwise, derive these values from the 2160 // induction descriptor. 2161 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2162 Value *ScalarIV = Induction; 2163 if (IV != OldInduction) { 2164 ScalarIV = IV->getType()->isIntegerTy() 2165 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2166 : Builder.CreateCast(Instruction::SIToFP, Induction, 2167 IV->getType()); 2168 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2169 ScalarIV->setName("offset.idx"); 2170 } 2171 if (Trunc) { 2172 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2173 assert(Step->getType()->isIntegerTy() && 2174 "Truncation requires an integer step"); 2175 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2176 Step = Builder.CreateTrunc(Step, TruncType); 2177 } 2178 return ScalarIV; 2179 }; 2180 2181 // Create the vector values from the scalar IV, in the absence of creating a 2182 // vector IV. 2183 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2184 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2185 for (unsigned Part = 0; Part < UF; ++Part) { 2186 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2187 Value *EntryPart = 2188 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2189 ID.getInductionOpcode()); 2190 State.set(Def, EntryPart, Part); 2191 if (Trunc) 2192 addMetadata(EntryPart, Trunc); 2193 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2194 State, Part); 2195 } 2196 }; 2197 2198 // Now do the actual transformations, and start with creating the step value. 2199 Value *Step = CreateStepValue(ID.getStep()); 2200 if (VF.isZero() || VF.isScalar()) { 2201 Value *ScalarIV = CreateScalarIV(Step); 2202 CreateSplatIV(ScalarIV, Step); 2203 return; 2204 } 2205 2206 // Determine if we want a scalar version of the induction variable. This is 2207 // true if the induction variable itself is not widened, or if it has at 2208 // least one user in the loop that is not widened. 2209 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2210 if (!NeedsScalarIV) { 2211 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2212 State); 2213 return; 2214 } 2215 2216 // Try to create a new independent vector induction variable. If we can't 2217 // create the phi node, we will splat the scalar induction variable in each 2218 // loop iteration. 2219 if (!shouldScalarizeInstruction(EntryVal)) { 2220 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2221 State); 2222 Value *ScalarIV = CreateScalarIV(Step); 2223 // Create scalar steps that can be used by instructions we will later 2224 // scalarize. Note that the addition of the scalar steps will not increase 2225 // the number of instructions in the loop in the common case prior to 2226 // InstCombine. We will be trading one vector extract for each scalar step. 2227 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2228 return; 2229 } 2230 2231 // All IV users are scalar instructions, so only emit a scalar IV, not a 2232 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2233 // predicate used by the masked loads/stores. 2234 Value *ScalarIV = CreateScalarIV(Step); 2235 if (!Cost->isScalarEpilogueAllowed()) 2236 CreateSplatIV(ScalarIV, Step); 2237 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2238 } 2239 2240 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2241 Instruction::BinaryOps BinOp) { 2242 // Create and check the types. 2243 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2244 int VLen = ValVTy->getNumElements(); 2245 2246 Type *STy = Val->getType()->getScalarType(); 2247 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2248 "Induction Step must be an integer or FP"); 2249 assert(Step->getType() == STy && "Step has wrong type"); 2250 2251 SmallVector<Constant *, 8> Indices; 2252 2253 if (STy->isIntegerTy()) { 2254 // Create a vector of consecutive numbers from zero to VF. 2255 for (int i = 0; i < VLen; ++i) 2256 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2257 2258 // Add the consecutive indices to the vector value. 2259 Constant *Cv = ConstantVector::get(Indices); 2260 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2261 Step = Builder.CreateVectorSplat(VLen, Step); 2262 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2263 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2264 // which can be found from the original scalar operations. 2265 Step = Builder.CreateMul(Cv, Step); 2266 return Builder.CreateAdd(Val, Step, "induction"); 2267 } 2268 2269 // Floating point induction. 2270 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2271 "Binary Opcode should be specified for FP induction"); 2272 // Create a vector of consecutive numbers from zero to VF. 2273 for (int i = 0; i < VLen; ++i) 2274 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2275 2276 // Add the consecutive indices to the vector value. 2277 Constant *Cv = ConstantVector::get(Indices); 2278 2279 Step = Builder.CreateVectorSplat(VLen, Step); 2280 2281 // Floating point operations had to be 'fast' to enable the induction. 2282 FastMathFlags Flags; 2283 Flags.setFast(); 2284 2285 Value *MulOp = Builder.CreateFMul(Cv, Step); 2286 if (isa<Instruction>(MulOp)) 2287 // Have to check, MulOp may be a constant 2288 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2289 2290 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2291 if (isa<Instruction>(BOp)) 2292 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2293 return BOp; 2294 } 2295 2296 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2297 Instruction *EntryVal, 2298 const InductionDescriptor &ID, 2299 VPValue *Def, VPValue *CastDef, 2300 VPTransformState &State) { 2301 // We shouldn't have to build scalar steps if we aren't vectorizing. 2302 assert(VF.isVector() && "VF should be greater than one"); 2303 // Get the value type and ensure it and the step have the same integer type. 2304 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2305 assert(ScalarIVTy == Step->getType() && 2306 "Val and Step should have the same type"); 2307 2308 // We build scalar steps for both integer and floating-point induction 2309 // variables. Here, we determine the kind of arithmetic we will perform. 2310 Instruction::BinaryOps AddOp; 2311 Instruction::BinaryOps MulOp; 2312 if (ScalarIVTy->isIntegerTy()) { 2313 AddOp = Instruction::Add; 2314 MulOp = Instruction::Mul; 2315 } else { 2316 AddOp = ID.getInductionOpcode(); 2317 MulOp = Instruction::FMul; 2318 } 2319 2320 // Determine the number of scalars we need to generate for each unroll 2321 // iteration. If EntryVal is uniform, we only need to generate the first 2322 // lane. Otherwise, we generate all VF values. 2323 unsigned Lanes = 2324 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2325 ? 1 2326 : VF.getKnownMinValue(); 2327 assert((!VF.isScalable() || Lanes == 1) && 2328 "Should never scalarize a scalable vector"); 2329 // Compute the scalar steps and save the results in State. 2330 for (unsigned Part = 0; Part < UF; ++Part) { 2331 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2332 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2333 ScalarIVTy->getScalarSizeInBits()); 2334 Value *StartIdx = 2335 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2336 if (ScalarIVTy->isFloatingPointTy()) 2337 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2338 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2339 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2340 // The step returned by `createStepForVF` is a runtime-evaluated value 2341 // when VF is scalable. Otherwise, it should be folded into a Constant. 2342 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2343 "Expected StartIdx to be folded to a constant when VF is not " 2344 "scalable"); 2345 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2346 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2347 State.set(Def, Add, VPIteration(Part, Lane)); 2348 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2349 Part, Lane); 2350 } 2351 } 2352 } 2353 2354 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2355 const VPIteration &Instance, 2356 VPTransformState &State) { 2357 Value *ScalarInst = State.get(Def, Instance); 2358 Value *VectorValue = State.get(Def, Instance.Part); 2359 VectorValue = Builder.CreateInsertElement( 2360 VectorValue, ScalarInst, State.Builder.getInt32(Instance.Lane)); 2361 State.set(Def, VectorValue, Instance.Part); 2362 } 2363 2364 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2365 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2366 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2367 SmallVector<int, 8> ShuffleMask; 2368 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2369 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2370 2371 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2372 } 2373 2374 // Return whether we allow using masked interleave-groups (for dealing with 2375 // strided loads/stores that reside in predicated blocks, or for dealing 2376 // with gaps). 2377 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2378 // If an override option has been passed in for interleaved accesses, use it. 2379 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2380 return EnableMaskedInterleavedMemAccesses; 2381 2382 return TTI.enableMaskedInterleavedAccessVectorization(); 2383 } 2384 2385 // Try to vectorize the interleave group that \p Instr belongs to. 2386 // 2387 // E.g. Translate following interleaved load group (factor = 3): 2388 // for (i = 0; i < N; i+=3) { 2389 // R = Pic[i]; // Member of index 0 2390 // G = Pic[i+1]; // Member of index 1 2391 // B = Pic[i+2]; // Member of index 2 2392 // ... // do something to R, G, B 2393 // } 2394 // To: 2395 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2396 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2397 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2398 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2399 // 2400 // Or translate following interleaved store group (factor = 3): 2401 // for (i = 0; i < N; i+=3) { 2402 // ... do something to R, G, B 2403 // Pic[i] = R; // Member of index 0 2404 // Pic[i+1] = G; // Member of index 1 2405 // Pic[i+2] = B; // Member of index 2 2406 // } 2407 // To: 2408 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2409 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2410 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2411 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2412 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2413 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2414 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2415 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2416 VPValue *BlockInMask) { 2417 Instruction *Instr = Group->getInsertPos(); 2418 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2419 2420 // Prepare for the vector type of the interleaved load/store. 2421 Type *ScalarTy = getMemInstValueType(Instr); 2422 unsigned InterleaveFactor = Group->getFactor(); 2423 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2424 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2425 2426 // Prepare for the new pointers. 2427 SmallVector<Value *, 2> AddrParts; 2428 unsigned Index = Group->getIndex(Instr); 2429 2430 // TODO: extend the masked interleaved-group support to reversed access. 2431 assert((!BlockInMask || !Group->isReverse()) && 2432 "Reversed masked interleave-group not supported."); 2433 2434 // If the group is reverse, adjust the index to refer to the last vector lane 2435 // instead of the first. We adjust the index from the first vector lane, 2436 // rather than directly getting the pointer for lane VF - 1, because the 2437 // pointer operand of the interleaved access is supposed to be uniform. For 2438 // uniform instructions, we're only required to generate a value for the 2439 // first vector lane in each unroll iteration. 2440 assert(!VF.isScalable() && 2441 "scalable vector reverse operation is not implemented"); 2442 if (Group->isReverse()) 2443 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2444 2445 for (unsigned Part = 0; Part < UF; Part++) { 2446 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2447 setDebugLocFromInst(Builder, AddrPart); 2448 2449 // Notice current instruction could be any index. Need to adjust the address 2450 // to the member of index 0. 2451 // 2452 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2453 // b = A[i]; // Member of index 0 2454 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2455 // 2456 // E.g. A[i+1] = a; // Member of index 1 2457 // A[i] = b; // Member of index 0 2458 // A[i+2] = c; // Member of index 2 (Current instruction) 2459 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2460 2461 bool InBounds = false; 2462 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2463 InBounds = gep->isInBounds(); 2464 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2465 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2466 2467 // Cast to the vector pointer type. 2468 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2469 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2470 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2471 } 2472 2473 setDebugLocFromInst(Builder, Instr); 2474 Value *PoisonVec = PoisonValue::get(VecTy); 2475 2476 Value *MaskForGaps = nullptr; 2477 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2478 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2479 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2480 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2481 } 2482 2483 // Vectorize the interleaved load group. 2484 if (isa<LoadInst>(Instr)) { 2485 // For each unroll part, create a wide load for the group. 2486 SmallVector<Value *, 2> NewLoads; 2487 for (unsigned Part = 0; Part < UF; Part++) { 2488 Instruction *NewLoad; 2489 if (BlockInMask || MaskForGaps) { 2490 assert(useMaskedInterleavedAccesses(*TTI) && 2491 "masked interleaved groups are not allowed."); 2492 Value *GroupMask = MaskForGaps; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2496 Value *ShuffledMask = Builder.CreateShuffleVector( 2497 BlockInMaskPart, 2498 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2499 "interleaved.mask"); 2500 GroupMask = MaskForGaps 2501 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2502 MaskForGaps) 2503 : ShuffledMask; 2504 } 2505 NewLoad = 2506 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2507 GroupMask, PoisonVec, "wide.masked.vec"); 2508 } 2509 else 2510 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2511 Group->getAlign(), "wide.vec"); 2512 Group->addMetadata(NewLoad); 2513 NewLoads.push_back(NewLoad); 2514 } 2515 2516 // For each member in the group, shuffle out the appropriate data from the 2517 // wide loads. 2518 unsigned J = 0; 2519 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2520 Instruction *Member = Group->getMember(I); 2521 2522 // Skip the gaps in the group. 2523 if (!Member) 2524 continue; 2525 2526 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2527 auto StrideMask = 2528 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2529 for (unsigned Part = 0; Part < UF; Part++) { 2530 Value *StridedVec = Builder.CreateShuffleVector( 2531 NewLoads[Part], StrideMask, "strided.vec"); 2532 2533 // If this member has different type, cast the result type. 2534 if (Member->getType() != ScalarTy) { 2535 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2536 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2537 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2538 } 2539 2540 if (Group->isReverse()) 2541 StridedVec = reverseVector(StridedVec); 2542 2543 State.set(VPDefs[J], StridedVec, Part); 2544 } 2545 ++J; 2546 } 2547 return; 2548 } 2549 2550 // The sub vector type for current instruction. 2551 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2552 auto *SubVT = VectorType::get(ScalarTy, VF); 2553 2554 // Vectorize the interleaved store group. 2555 for (unsigned Part = 0; Part < UF; Part++) { 2556 // Collect the stored vector from each member. 2557 SmallVector<Value *, 4> StoredVecs; 2558 for (unsigned i = 0; i < InterleaveFactor; i++) { 2559 // Interleaved store group doesn't allow a gap, so each index has a member 2560 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2561 2562 Value *StoredVec = State.get(StoredValues[i], Part); 2563 2564 if (Group->isReverse()) 2565 StoredVec = reverseVector(StoredVec); 2566 2567 // If this member has different type, cast it to a unified type. 2568 2569 if (StoredVec->getType() != SubVT) 2570 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2571 2572 StoredVecs.push_back(StoredVec); 2573 } 2574 2575 // Concatenate all vectors into a wide vector. 2576 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2577 2578 // Interleave the elements in the wide vector. 2579 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2580 Value *IVec = Builder.CreateShuffleVector( 2581 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2582 "interleaved.vec"); 2583 2584 Instruction *NewStoreInstr; 2585 if (BlockInMask) { 2586 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2587 Value *ShuffledMask = Builder.CreateShuffleVector( 2588 BlockInMaskPart, 2589 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2590 "interleaved.mask"); 2591 NewStoreInstr = Builder.CreateMaskedStore( 2592 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2593 } 2594 else 2595 NewStoreInstr = 2596 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2597 2598 Group->addMetadata(NewStoreInstr); 2599 } 2600 } 2601 2602 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2603 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2604 VPValue *StoredValue, VPValue *BlockInMask) { 2605 // Attempt to issue a wide load. 2606 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2607 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2608 2609 assert((LI || SI) && "Invalid Load/Store instruction"); 2610 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2611 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2612 2613 LoopVectorizationCostModel::InstWidening Decision = 2614 Cost->getWideningDecision(Instr, VF); 2615 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2616 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2617 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2618 "CM decision is not to widen the memory instruction"); 2619 2620 Type *ScalarDataTy = getMemInstValueType(Instr); 2621 2622 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2623 const Align Alignment = getLoadStoreAlignment(Instr); 2624 2625 // Determine if the pointer operand of the access is either consecutive or 2626 // reverse consecutive. 2627 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2628 bool ConsecutiveStride = 2629 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2630 bool CreateGatherScatter = 2631 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2632 2633 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2634 // gather/scatter. Otherwise Decision should have been to Scalarize. 2635 assert((ConsecutiveStride || CreateGatherScatter) && 2636 "The instruction should be scalarized"); 2637 (void)ConsecutiveStride; 2638 2639 VectorParts BlockInMaskParts(UF); 2640 bool isMaskRequired = BlockInMask; 2641 if (isMaskRequired) 2642 for (unsigned Part = 0; Part < UF; ++Part) 2643 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2644 2645 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2646 // Calculate the pointer for the specific unroll-part. 2647 GetElementPtrInst *PartPtr = nullptr; 2648 2649 bool InBounds = false; 2650 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2651 InBounds = gep->isInBounds(); 2652 2653 if (Reverse) { 2654 assert(!VF.isScalable() && 2655 "Reversing vectors is not yet supported for scalable vectors."); 2656 2657 // If the address is consecutive but reversed, then the 2658 // wide store needs to start at the last vector element. 2659 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2660 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2661 PartPtr->setIsInBounds(InBounds); 2662 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2663 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2664 PartPtr->setIsInBounds(InBounds); 2665 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2666 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2667 } else { 2668 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2669 PartPtr = cast<GetElementPtrInst>( 2670 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2671 PartPtr->setIsInBounds(InBounds); 2672 } 2673 2674 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2675 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2676 }; 2677 2678 // Handle Stores: 2679 if (SI) { 2680 setDebugLocFromInst(Builder, SI); 2681 2682 for (unsigned Part = 0; Part < UF; ++Part) { 2683 Instruction *NewSI = nullptr; 2684 Value *StoredVal = State.get(StoredValue, Part); 2685 if (CreateGatherScatter) { 2686 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2687 Value *VectorGep = State.get(Addr, Part); 2688 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2689 MaskPart); 2690 } else { 2691 if (Reverse) { 2692 // If we store to reverse consecutive memory locations, then we need 2693 // to reverse the order of elements in the stored value. 2694 StoredVal = reverseVector(StoredVal); 2695 // We don't want to update the value in the map as it might be used in 2696 // another expression. So don't call resetVectorValue(StoredVal). 2697 } 2698 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2699 if (isMaskRequired) 2700 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2701 BlockInMaskParts[Part]); 2702 else 2703 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2704 } 2705 addMetadata(NewSI, SI); 2706 } 2707 return; 2708 } 2709 2710 // Handle loads. 2711 assert(LI && "Must have a load instruction"); 2712 setDebugLocFromInst(Builder, LI); 2713 for (unsigned Part = 0; Part < UF; ++Part) { 2714 Value *NewLI; 2715 if (CreateGatherScatter) { 2716 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2717 Value *VectorGep = State.get(Addr, Part); 2718 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2719 nullptr, "wide.masked.gather"); 2720 addMetadata(NewLI, LI); 2721 } else { 2722 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2723 if (isMaskRequired) 2724 NewLI = Builder.CreateMaskedLoad( 2725 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2726 "wide.masked.load"); 2727 else 2728 NewLI = 2729 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2730 2731 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2732 addMetadata(NewLI, LI); 2733 if (Reverse) 2734 NewLI = reverseVector(NewLI); 2735 } 2736 2737 State.set(Def, NewLI, Part); 2738 } 2739 } 2740 2741 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2742 VPUser &User, 2743 const VPIteration &Instance, 2744 bool IfPredicateInstr, 2745 VPTransformState &State) { 2746 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2747 2748 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2749 // the first lane and part. 2750 if (isa<NoAliasScopeDeclInst>(Instr)) 2751 if (!Instance.isFirstIteration()) 2752 return; 2753 2754 setDebugLocFromInst(Builder, Instr); 2755 2756 // Does this instruction return a value ? 2757 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2758 2759 Instruction *Cloned = Instr->clone(); 2760 if (!IsVoidRetTy) 2761 Cloned->setName(Instr->getName() + ".cloned"); 2762 2763 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2764 Builder.GetInsertPoint()); 2765 // Replace the operands of the cloned instructions with their scalar 2766 // equivalents in the new loop. 2767 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2768 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2769 auto InputInstance = Instance; 2770 if (!Operand || !OrigLoop->contains(Operand) || 2771 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2772 InputInstance.Lane = 0; 2773 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2774 Cloned->setOperand(op, NewOp); 2775 } 2776 addNewMetadata(Cloned, Instr); 2777 2778 // Place the cloned scalar in the new loop. 2779 Builder.Insert(Cloned); 2780 2781 State.set(Def, Cloned, Instance); 2782 2783 // If we just cloned a new assumption, add it the assumption cache. 2784 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2785 if (II->getIntrinsicID() == Intrinsic::assume) 2786 AC->registerAssumption(II); 2787 2788 // End if-block. 2789 if (IfPredicateInstr) 2790 PredicatedInstructions.push_back(Cloned); 2791 } 2792 2793 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2794 Value *End, Value *Step, 2795 Instruction *DL) { 2796 BasicBlock *Header = L->getHeader(); 2797 BasicBlock *Latch = L->getLoopLatch(); 2798 // As we're just creating this loop, it's possible no latch exists 2799 // yet. If so, use the header as this will be a single block loop. 2800 if (!Latch) 2801 Latch = Header; 2802 2803 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2804 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2805 setDebugLocFromInst(Builder, OldInst); 2806 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2807 2808 Builder.SetInsertPoint(Latch->getTerminator()); 2809 setDebugLocFromInst(Builder, OldInst); 2810 2811 // Create i+1 and fill the PHINode. 2812 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2813 Induction->addIncoming(Start, L->getLoopPreheader()); 2814 Induction->addIncoming(Next, Latch); 2815 // Create the compare. 2816 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2817 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 2818 2819 // Now we have two terminators. Remove the old one from the block. 2820 Latch->getTerminator()->eraseFromParent(); 2821 2822 return Induction; 2823 } 2824 2825 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2826 if (TripCount) 2827 return TripCount; 2828 2829 assert(L && "Create Trip Count for null loop."); 2830 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2831 // Find the loop boundaries. 2832 ScalarEvolution *SE = PSE.getSE(); 2833 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2834 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2835 "Invalid loop count"); 2836 2837 Type *IdxTy = Legal->getWidestInductionType(); 2838 assert(IdxTy && "No type for induction"); 2839 2840 // The exit count might have the type of i64 while the phi is i32. This can 2841 // happen if we have an induction variable that is sign extended before the 2842 // compare. The only way that we get a backedge taken count is that the 2843 // induction variable was signed and as such will not overflow. In such a case 2844 // truncation is legal. 2845 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2846 IdxTy->getPrimitiveSizeInBits()) 2847 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2848 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2849 2850 // Get the total trip count from the count by adding 1. 2851 const SCEV *ExitCount = SE->getAddExpr( 2852 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2853 2854 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2855 2856 // Expand the trip count and place the new instructions in the preheader. 2857 // Notice that the pre-header does not change, only the loop body. 2858 SCEVExpander Exp(*SE, DL, "induction"); 2859 2860 // Count holds the overall loop count (N). 2861 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2862 L->getLoopPreheader()->getTerminator()); 2863 2864 if (TripCount->getType()->isPointerTy()) 2865 TripCount = 2866 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2867 L->getLoopPreheader()->getTerminator()); 2868 2869 return TripCount; 2870 } 2871 2872 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2873 if (VectorTripCount) 2874 return VectorTripCount; 2875 2876 Value *TC = getOrCreateTripCount(L); 2877 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2878 2879 Type *Ty = TC->getType(); 2880 // This is where we can make the step a runtime constant. 2881 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 2882 2883 // If the tail is to be folded by masking, round the number of iterations N 2884 // up to a multiple of Step instead of rounding down. This is done by first 2885 // adding Step-1 and then rounding down. Note that it's ok if this addition 2886 // overflows: the vector induction variable will eventually wrap to zero given 2887 // that it starts at zero and its Step is a power of two; the loop will then 2888 // exit, with the last early-exit vector comparison also producing all-true. 2889 if (Cost->foldTailByMasking()) { 2890 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2891 "VF*UF must be a power of 2 when folding tail by masking"); 2892 assert(!VF.isScalable() && 2893 "Tail folding not yet supported for scalable vectors"); 2894 TC = Builder.CreateAdd( 2895 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2896 } 2897 2898 // Now we need to generate the expression for the part of the loop that the 2899 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2900 // iterations are not required for correctness, or N - Step, otherwise. Step 2901 // is equal to the vectorization factor (number of SIMD elements) times the 2902 // unroll factor (number of SIMD instructions). 2903 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2904 2905 // There are two cases where we need to ensure (at least) the last iteration 2906 // runs in the scalar remainder loop. Thus, if the step evenly divides 2907 // the trip count, we set the remainder to be equal to the step. If the step 2908 // does not evenly divide the trip count, no adjustment is necessary since 2909 // there will already be scalar iterations. Note that the minimum iterations 2910 // check ensures that N >= Step. The cases are: 2911 // 1) If there is a non-reversed interleaved group that may speculatively 2912 // access memory out-of-bounds. 2913 // 2) If any instruction may follow a conditionally taken exit. That is, if 2914 // the loop contains multiple exiting blocks, or a single exiting block 2915 // which is not the latch. 2916 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2917 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2918 R = Builder.CreateSelect(IsZero, Step, R); 2919 } 2920 2921 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2922 2923 return VectorTripCount; 2924 } 2925 2926 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2927 const DataLayout &DL) { 2928 // Verify that V is a vector type with same number of elements as DstVTy. 2929 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2930 unsigned VF = DstFVTy->getNumElements(); 2931 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2932 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2933 Type *SrcElemTy = SrcVecTy->getElementType(); 2934 Type *DstElemTy = DstFVTy->getElementType(); 2935 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2936 "Vector elements must have same size"); 2937 2938 // Do a direct cast if element types are castable. 2939 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2940 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2941 } 2942 // V cannot be directly casted to desired vector type. 2943 // May happen when V is a floating point vector but DstVTy is a vector of 2944 // pointers or vice-versa. Handle this using a two-step bitcast using an 2945 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2946 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2947 "Only one type should be a pointer type"); 2948 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2949 "Only one type should be a floating point type"); 2950 Type *IntTy = 2951 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2952 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2953 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2954 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2955 } 2956 2957 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2958 BasicBlock *Bypass) { 2959 Value *Count = getOrCreateTripCount(L); 2960 // Reuse existing vector loop preheader for TC checks. 2961 // Note that new preheader block is generated for vector loop. 2962 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2963 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2964 2965 // Generate code to check if the loop's trip count is less than VF * UF, or 2966 // equal to it in case a scalar epilogue is required; this implies that the 2967 // vector trip count is zero. This check also covers the case where adding one 2968 // to the backedge-taken count overflowed leading to an incorrect trip count 2969 // of zero. In this case we will also jump to the scalar loop. 2970 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2971 : ICmpInst::ICMP_ULT; 2972 2973 // If tail is to be folded, vector loop takes care of all iterations. 2974 Value *CheckMinIters = Builder.getFalse(); 2975 if (!Cost->foldTailByMasking()) { 2976 Value *Step = 2977 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 2978 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2979 } 2980 // Create new preheader for vector loop. 2981 LoopVectorPreHeader = 2982 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2983 "vector.ph"); 2984 2985 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2986 DT->getNode(Bypass)->getIDom()) && 2987 "TC check is expected to dominate Bypass"); 2988 2989 // Update dominator for Bypass & LoopExit. 2990 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2991 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2992 2993 ReplaceInstWithInst( 2994 TCCheckBlock->getTerminator(), 2995 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2996 LoopBypassBlocks.push_back(TCCheckBlock); 2997 } 2998 2999 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3000 // Reuse existing vector loop preheader for SCEV checks. 3001 // Note that new preheader block is generated for vector loop. 3002 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3003 3004 // Generate the code to check that the SCEV assumptions that we made. 3005 // We want the new basic block to start at the first instruction in a 3006 // sequence of instructions that form a check. 3007 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3008 "scev.check"); 3009 Value *SCEVCheck = Exp.expandCodeForPredicate( 3010 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3011 3012 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3013 if (C->isZero()) 3014 return; 3015 3016 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3017 (OptForSizeBasedOnProfile && 3018 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3019 "Cannot SCEV check stride or overflow when optimizing for size"); 3020 3021 SCEVCheckBlock->setName("vector.scevcheck"); 3022 // Create new preheader for vector loop. 3023 LoopVectorPreHeader = 3024 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3025 nullptr, "vector.ph"); 3026 3027 // Update dominator only if this is first RT check. 3028 if (LoopBypassBlocks.empty()) { 3029 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3030 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3031 } 3032 3033 ReplaceInstWithInst( 3034 SCEVCheckBlock->getTerminator(), 3035 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3036 LoopBypassBlocks.push_back(SCEVCheckBlock); 3037 AddedSafetyChecks = true; 3038 } 3039 3040 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3041 // VPlan-native path does not do any analysis for runtime checks currently. 3042 if (EnableVPlanNativePath) 3043 return; 3044 3045 // Reuse existing vector loop preheader for runtime memory checks. 3046 // Note that new preheader block is generated for vector loop. 3047 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3048 3049 // Generate the code that checks in runtime if arrays overlap. We put the 3050 // checks into a separate block to make the more common case of few elements 3051 // faster. 3052 auto *LAI = Legal->getLAI(); 3053 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3054 if (!RtPtrChecking.Need) 3055 return; 3056 3057 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3058 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3059 "Cannot emit memory checks when optimizing for size, unless forced " 3060 "to vectorize."); 3061 ORE->emit([&]() { 3062 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3063 L->getStartLoc(), L->getHeader()) 3064 << "Code-size may be reduced by not forcing " 3065 "vectorization, or by source-code modifications " 3066 "eliminating the need for runtime checks " 3067 "(e.g., adding 'restrict')."; 3068 }); 3069 } 3070 3071 MemCheckBlock->setName("vector.memcheck"); 3072 // Create new preheader for vector loop. 3073 LoopVectorPreHeader = 3074 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3075 "vector.ph"); 3076 3077 auto *CondBranch = cast<BranchInst>( 3078 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3079 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3080 LoopBypassBlocks.push_back(MemCheckBlock); 3081 AddedSafetyChecks = true; 3082 3083 // Update dominator only if this is first RT check. 3084 if (LoopBypassBlocks.empty()) { 3085 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3086 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3087 } 3088 3089 Instruction *FirstCheckInst; 3090 Instruction *MemRuntimeCheck; 3091 SCEVExpander Exp(*PSE.getSE(), MemCheckBlock->getModule()->getDataLayout(), 3092 "induction"); 3093 std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks( 3094 MemCheckBlock->getTerminator(), OrigLoop, RtPtrChecking.getChecks(), Exp); 3095 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3096 "claimed checks are required"); 3097 CondBranch->setCondition(MemRuntimeCheck); 3098 3099 // We currently don't use LoopVersioning for the actual loop cloning but we 3100 // still use it to add the noalias metadata. 3101 LVer = std::make_unique<LoopVersioning>( 3102 *Legal->getLAI(), 3103 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3104 DT, PSE.getSE()); 3105 LVer->prepareNoAliasMetadata(); 3106 } 3107 3108 Value *InnerLoopVectorizer::emitTransformedIndex( 3109 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3110 const InductionDescriptor &ID) const { 3111 3112 SCEVExpander Exp(*SE, DL, "induction"); 3113 auto Step = ID.getStep(); 3114 auto StartValue = ID.getStartValue(); 3115 assert(Index->getType() == Step->getType() && 3116 "Index type does not match StepValue type"); 3117 3118 // Note: the IR at this point is broken. We cannot use SE to create any new 3119 // SCEV and then expand it, hoping that SCEV's simplification will give us 3120 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3121 // lead to various SCEV crashes. So all we can do is to use builder and rely 3122 // on InstCombine for future simplifications. Here we handle some trivial 3123 // cases only. 3124 auto CreateAdd = [&B](Value *X, Value *Y) { 3125 assert(X->getType() == Y->getType() && "Types don't match!"); 3126 if (auto *CX = dyn_cast<ConstantInt>(X)) 3127 if (CX->isZero()) 3128 return Y; 3129 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3130 if (CY->isZero()) 3131 return X; 3132 return B.CreateAdd(X, Y); 3133 }; 3134 3135 auto CreateMul = [&B](Value *X, Value *Y) { 3136 assert(X->getType() == Y->getType() && "Types don't match!"); 3137 if (auto *CX = dyn_cast<ConstantInt>(X)) 3138 if (CX->isOne()) 3139 return Y; 3140 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3141 if (CY->isOne()) 3142 return X; 3143 return B.CreateMul(X, Y); 3144 }; 3145 3146 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3147 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3148 // the DomTree is not kept up-to-date for additional blocks generated in the 3149 // vector loop. By using the header as insertion point, we guarantee that the 3150 // expanded instructions dominate all their uses. 3151 auto GetInsertPoint = [this, &B]() { 3152 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3153 if (InsertBB != LoopVectorBody && 3154 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3155 return LoopVectorBody->getTerminator(); 3156 return &*B.GetInsertPoint(); 3157 }; 3158 switch (ID.getKind()) { 3159 case InductionDescriptor::IK_IntInduction: { 3160 assert(Index->getType() == StartValue->getType() && 3161 "Index type does not match StartValue type"); 3162 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3163 return B.CreateSub(StartValue, Index); 3164 auto *Offset = CreateMul( 3165 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3166 return CreateAdd(StartValue, Offset); 3167 } 3168 case InductionDescriptor::IK_PtrInduction: { 3169 assert(isa<SCEVConstant>(Step) && 3170 "Expected constant step for pointer induction"); 3171 return B.CreateGEP( 3172 StartValue->getType()->getPointerElementType(), StartValue, 3173 CreateMul(Index, 3174 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3175 } 3176 case InductionDescriptor::IK_FpInduction: { 3177 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3178 auto InductionBinOp = ID.getInductionBinOp(); 3179 assert(InductionBinOp && 3180 (InductionBinOp->getOpcode() == Instruction::FAdd || 3181 InductionBinOp->getOpcode() == Instruction::FSub) && 3182 "Original bin op should be defined for FP induction"); 3183 3184 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3185 3186 // Floating point operations had to be 'fast' to enable the induction. 3187 FastMathFlags Flags; 3188 Flags.setFast(); 3189 3190 Value *MulExp = B.CreateFMul(StepValue, Index); 3191 if (isa<Instruction>(MulExp)) 3192 // We have to check, the MulExp may be a constant. 3193 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3194 3195 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3196 "induction"); 3197 if (isa<Instruction>(BOp)) 3198 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3199 3200 return BOp; 3201 } 3202 case InductionDescriptor::IK_NoInduction: 3203 return nullptr; 3204 } 3205 llvm_unreachable("invalid enum"); 3206 } 3207 3208 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3209 LoopScalarBody = OrigLoop->getHeader(); 3210 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3211 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3212 assert(LoopExitBlock && "Must have an exit block"); 3213 assert(LoopVectorPreHeader && "Invalid loop structure"); 3214 3215 LoopMiddleBlock = 3216 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3217 LI, nullptr, Twine(Prefix) + "middle.block"); 3218 LoopScalarPreHeader = 3219 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3220 nullptr, Twine(Prefix) + "scalar.ph"); 3221 3222 // Set up branch from middle block to the exit and scalar preheader blocks. 3223 // completeLoopSkeleton will update the condition to use an iteration check, 3224 // if required to decide whether to execute the remainder. 3225 BranchInst *BrInst = 3226 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3227 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3228 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3229 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3230 3231 // We intentionally don't let SplitBlock to update LoopInfo since 3232 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3233 // LoopVectorBody is explicitly added to the correct place few lines later. 3234 LoopVectorBody = 3235 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3236 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3237 3238 // Update dominator for loop exit. 3239 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3240 3241 // Create and register the new vector loop. 3242 Loop *Lp = LI->AllocateLoop(); 3243 Loop *ParentLoop = OrigLoop->getParentLoop(); 3244 3245 // Insert the new loop into the loop nest and register the new basic blocks 3246 // before calling any utilities such as SCEV that require valid LoopInfo. 3247 if (ParentLoop) { 3248 ParentLoop->addChildLoop(Lp); 3249 } else { 3250 LI->addTopLevelLoop(Lp); 3251 } 3252 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3253 return Lp; 3254 } 3255 3256 void InnerLoopVectorizer::createInductionResumeValues( 3257 Loop *L, Value *VectorTripCount, 3258 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3259 assert(VectorTripCount && L && "Expected valid arguments"); 3260 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3261 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3262 "Inconsistent information about additional bypass."); 3263 // We are going to resume the execution of the scalar loop. 3264 // Go over all of the induction variables that we found and fix the 3265 // PHIs that are left in the scalar version of the loop. 3266 // The starting values of PHI nodes depend on the counter of the last 3267 // iteration in the vectorized loop. 3268 // If we come from a bypass edge then we need to start from the original 3269 // start value. 3270 for (auto &InductionEntry : Legal->getInductionVars()) { 3271 PHINode *OrigPhi = InductionEntry.first; 3272 InductionDescriptor II = InductionEntry.second; 3273 3274 // Create phi nodes to merge from the backedge-taken check block. 3275 PHINode *BCResumeVal = 3276 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3277 LoopScalarPreHeader->getTerminator()); 3278 // Copy original phi DL over to the new one. 3279 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3280 Value *&EndValue = IVEndValues[OrigPhi]; 3281 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3282 if (OrigPhi == OldInduction) { 3283 // We know what the end value is. 3284 EndValue = VectorTripCount; 3285 } else { 3286 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3287 Type *StepType = II.getStep()->getType(); 3288 Instruction::CastOps CastOp = 3289 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3290 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3291 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3292 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3293 EndValue->setName("ind.end"); 3294 3295 // Compute the end value for the additional bypass (if applicable). 3296 if (AdditionalBypass.first) { 3297 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3298 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3299 StepType, true); 3300 CRD = 3301 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3302 EndValueFromAdditionalBypass = 3303 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3304 EndValueFromAdditionalBypass->setName("ind.end"); 3305 } 3306 } 3307 // The new PHI merges the original incoming value, in case of a bypass, 3308 // or the value at the end of the vectorized loop. 3309 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3310 3311 // Fix the scalar body counter (PHI node). 3312 // The old induction's phi node in the scalar body needs the truncated 3313 // value. 3314 for (BasicBlock *BB : LoopBypassBlocks) 3315 BCResumeVal->addIncoming(II.getStartValue(), BB); 3316 3317 if (AdditionalBypass.first) 3318 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3319 EndValueFromAdditionalBypass); 3320 3321 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3322 } 3323 } 3324 3325 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3326 MDNode *OrigLoopID) { 3327 assert(L && "Expected valid loop."); 3328 3329 // The trip counts should be cached by now. 3330 Value *Count = getOrCreateTripCount(L); 3331 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3332 3333 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3334 3335 // Add a check in the middle block to see if we have completed 3336 // all of the iterations in the first vector loop. 3337 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3338 // If tail is to be folded, we know we don't need to run the remainder. 3339 if (!Cost->foldTailByMasking()) { 3340 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3341 Count, VectorTripCount, "cmp.n", 3342 LoopMiddleBlock->getTerminator()); 3343 3344 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3345 // of the corresponding compare because they may have ended up with 3346 // different line numbers and we want to avoid awkward line stepping while 3347 // debugging. Eg. if the compare has got a line number inside the loop. 3348 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3349 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3350 } 3351 3352 // Get ready to start creating new instructions into the vectorized body. 3353 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3354 "Inconsistent vector loop preheader"); 3355 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3356 3357 Optional<MDNode *> VectorizedLoopID = 3358 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3359 LLVMLoopVectorizeFollowupVectorized}); 3360 if (VectorizedLoopID.hasValue()) { 3361 L->setLoopID(VectorizedLoopID.getValue()); 3362 3363 // Do not setAlreadyVectorized if loop attributes have been defined 3364 // explicitly. 3365 return LoopVectorPreHeader; 3366 } 3367 3368 // Keep all loop hints from the original loop on the vector loop (we'll 3369 // replace the vectorizer-specific hints below). 3370 if (MDNode *LID = OrigLoop->getLoopID()) 3371 L->setLoopID(LID); 3372 3373 LoopVectorizeHints Hints(L, true, *ORE); 3374 Hints.setAlreadyVectorized(); 3375 3376 #ifdef EXPENSIVE_CHECKS 3377 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3378 LI->verify(*DT); 3379 #endif 3380 3381 return LoopVectorPreHeader; 3382 } 3383 3384 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3385 /* 3386 In this function we generate a new loop. The new loop will contain 3387 the vectorized instructions while the old loop will continue to run the 3388 scalar remainder. 3389 3390 [ ] <-- loop iteration number check. 3391 / | 3392 / v 3393 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3394 | / | 3395 | / v 3396 || [ ] <-- vector pre header. 3397 |/ | 3398 | v 3399 | [ ] \ 3400 | [ ]_| <-- vector loop. 3401 | | 3402 | v 3403 | -[ ] <--- middle-block. 3404 | / | 3405 | / v 3406 -|- >[ ] <--- new preheader. 3407 | | 3408 | v 3409 | [ ] \ 3410 | [ ]_| <-- old scalar loop to handle remainder. 3411 \ | 3412 \ v 3413 >[ ] <-- exit block. 3414 ... 3415 */ 3416 3417 // Get the metadata of the original loop before it gets modified. 3418 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3419 3420 // Create an empty vector loop, and prepare basic blocks for the runtime 3421 // checks. 3422 Loop *Lp = createVectorLoopSkeleton(""); 3423 3424 // Now, compare the new count to zero. If it is zero skip the vector loop and 3425 // jump to the scalar loop. This check also covers the case where the 3426 // backedge-taken count is uint##_max: adding one to it will overflow leading 3427 // to an incorrect trip count of zero. In this (rare) case we will also jump 3428 // to the scalar loop. 3429 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3430 3431 // Generate the code to check any assumptions that we've made for SCEV 3432 // expressions. 3433 emitSCEVChecks(Lp, LoopScalarPreHeader); 3434 3435 // Generate the code that checks in runtime if arrays overlap. We put the 3436 // checks into a separate block to make the more common case of few elements 3437 // faster. 3438 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3439 3440 // Some loops have a single integer induction variable, while other loops 3441 // don't. One example is c++ iterators that often have multiple pointer 3442 // induction variables. In the code below we also support a case where we 3443 // don't have a single induction variable. 3444 // 3445 // We try to obtain an induction variable from the original loop as hard 3446 // as possible. However if we don't find one that: 3447 // - is an integer 3448 // - counts from zero, stepping by one 3449 // - is the size of the widest induction variable type 3450 // then we create a new one. 3451 OldInduction = Legal->getPrimaryInduction(); 3452 Type *IdxTy = Legal->getWidestInductionType(); 3453 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3454 // The loop step is equal to the vectorization factor (num of SIMD elements) 3455 // times the unroll factor (num of SIMD instructions). 3456 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3457 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3458 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3459 Induction = 3460 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3461 getDebugLocFromInstOrOperands(OldInduction)); 3462 3463 // Emit phis for the new starting index of the scalar loop. 3464 createInductionResumeValues(Lp, CountRoundDown); 3465 3466 return completeLoopSkeleton(Lp, OrigLoopID); 3467 } 3468 3469 // Fix up external users of the induction variable. At this point, we are 3470 // in LCSSA form, with all external PHIs that use the IV having one input value, 3471 // coming from the remainder loop. We need those PHIs to also have a correct 3472 // value for the IV when arriving directly from the middle block. 3473 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3474 const InductionDescriptor &II, 3475 Value *CountRoundDown, Value *EndValue, 3476 BasicBlock *MiddleBlock) { 3477 // There are two kinds of external IV usages - those that use the value 3478 // computed in the last iteration (the PHI) and those that use the penultimate 3479 // value (the value that feeds into the phi from the loop latch). 3480 // We allow both, but they, obviously, have different values. 3481 3482 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3483 3484 DenseMap<Value *, Value *> MissingVals; 3485 3486 // An external user of the last iteration's value should see the value that 3487 // the remainder loop uses to initialize its own IV. 3488 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3489 for (User *U : PostInc->users()) { 3490 Instruction *UI = cast<Instruction>(U); 3491 if (!OrigLoop->contains(UI)) { 3492 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3493 MissingVals[UI] = EndValue; 3494 } 3495 } 3496 3497 // An external user of the penultimate value need to see EndValue - Step. 3498 // The simplest way to get this is to recompute it from the constituent SCEVs, 3499 // that is Start + (Step * (CRD - 1)). 3500 for (User *U : OrigPhi->users()) { 3501 auto *UI = cast<Instruction>(U); 3502 if (!OrigLoop->contains(UI)) { 3503 const DataLayout &DL = 3504 OrigLoop->getHeader()->getModule()->getDataLayout(); 3505 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3506 3507 IRBuilder<> B(MiddleBlock->getTerminator()); 3508 Value *CountMinusOne = B.CreateSub( 3509 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3510 Value *CMO = 3511 !II.getStep()->getType()->isIntegerTy() 3512 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3513 II.getStep()->getType()) 3514 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3515 CMO->setName("cast.cmo"); 3516 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3517 Escape->setName("ind.escape"); 3518 MissingVals[UI] = Escape; 3519 } 3520 } 3521 3522 for (auto &I : MissingVals) { 3523 PHINode *PHI = cast<PHINode>(I.first); 3524 // One corner case we have to handle is two IVs "chasing" each-other, 3525 // that is %IV2 = phi [...], [ %IV1, %latch ] 3526 // In this case, if IV1 has an external use, we need to avoid adding both 3527 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3528 // don't already have an incoming value for the middle block. 3529 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3530 PHI->addIncoming(I.second, MiddleBlock); 3531 } 3532 } 3533 3534 namespace { 3535 3536 struct CSEDenseMapInfo { 3537 static bool canHandle(const Instruction *I) { 3538 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3539 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3540 } 3541 3542 static inline Instruction *getEmptyKey() { 3543 return DenseMapInfo<Instruction *>::getEmptyKey(); 3544 } 3545 3546 static inline Instruction *getTombstoneKey() { 3547 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3548 } 3549 3550 static unsigned getHashValue(const Instruction *I) { 3551 assert(canHandle(I) && "Unknown instruction!"); 3552 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3553 I->value_op_end())); 3554 } 3555 3556 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3557 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3558 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3559 return LHS == RHS; 3560 return LHS->isIdenticalTo(RHS); 3561 } 3562 }; 3563 3564 } // end anonymous namespace 3565 3566 ///Perform cse of induction variable instructions. 3567 static void cse(BasicBlock *BB) { 3568 // Perform simple cse. 3569 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3570 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3571 Instruction *In = &*I++; 3572 3573 if (!CSEDenseMapInfo::canHandle(In)) 3574 continue; 3575 3576 // Check if we can replace this instruction with any of the 3577 // visited instructions. 3578 if (Instruction *V = CSEMap.lookup(In)) { 3579 In->replaceAllUsesWith(V); 3580 In->eraseFromParent(); 3581 continue; 3582 } 3583 3584 CSEMap[In] = In; 3585 } 3586 } 3587 3588 InstructionCost 3589 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3590 bool &NeedToScalarize) { 3591 Function *F = CI->getCalledFunction(); 3592 Type *ScalarRetTy = CI->getType(); 3593 SmallVector<Type *, 4> Tys, ScalarTys; 3594 for (auto &ArgOp : CI->arg_operands()) 3595 ScalarTys.push_back(ArgOp->getType()); 3596 3597 // Estimate cost of scalarized vector call. The source operands are assumed 3598 // to be vectors, so we need to extract individual elements from there, 3599 // execute VF scalar calls, and then gather the result into the vector return 3600 // value. 3601 InstructionCost ScalarCallCost = 3602 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3603 if (VF.isScalar()) 3604 return ScalarCallCost; 3605 3606 // Compute corresponding vector type for return value and arguments. 3607 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3608 for (Type *ScalarTy : ScalarTys) 3609 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3610 3611 // Compute costs of unpacking argument values for the scalar calls and 3612 // packing the return values to a vector. 3613 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3614 3615 InstructionCost Cost = 3616 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3617 3618 // If we can't emit a vector call for this function, then the currently found 3619 // cost is the cost we need to return. 3620 NeedToScalarize = true; 3621 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3622 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3623 3624 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3625 return Cost; 3626 3627 // If the corresponding vector cost is cheaper, return its cost. 3628 InstructionCost VectorCallCost = 3629 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3630 if (VectorCallCost < Cost) { 3631 NeedToScalarize = false; 3632 Cost = VectorCallCost; 3633 } 3634 return Cost; 3635 } 3636 3637 InstructionCost 3638 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3639 ElementCount VF) { 3640 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3641 assert(ID && "Expected intrinsic call!"); 3642 3643 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3644 return TTI.getIntrinsicInstrCost(CostAttrs, 3645 TargetTransformInfo::TCK_RecipThroughput); 3646 } 3647 3648 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3649 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3650 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3651 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3652 } 3653 3654 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3655 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3656 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3657 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3658 } 3659 3660 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3661 // For every instruction `I` in MinBWs, truncate the operands, create a 3662 // truncated version of `I` and reextend its result. InstCombine runs 3663 // later and will remove any ext/trunc pairs. 3664 SmallPtrSet<Value *, 4> Erased; 3665 for (const auto &KV : Cost->getMinimalBitwidths()) { 3666 // If the value wasn't vectorized, we must maintain the original scalar 3667 // type. The absence of the value from State indicates that it 3668 // wasn't vectorized. 3669 VPValue *Def = State.Plan->getVPValue(KV.first); 3670 if (!State.hasAnyVectorValue(Def)) 3671 continue; 3672 for (unsigned Part = 0; Part < UF; ++Part) { 3673 Value *I = State.get(Def, Part); 3674 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3675 continue; 3676 Type *OriginalTy = I->getType(); 3677 Type *ScalarTruncatedTy = 3678 IntegerType::get(OriginalTy->getContext(), KV.second); 3679 auto *TruncatedTy = FixedVectorType::get( 3680 ScalarTruncatedTy, 3681 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3682 if (TruncatedTy == OriginalTy) 3683 continue; 3684 3685 IRBuilder<> B(cast<Instruction>(I)); 3686 auto ShrinkOperand = [&](Value *V) -> Value * { 3687 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3688 if (ZI->getSrcTy() == TruncatedTy) 3689 return ZI->getOperand(0); 3690 return B.CreateZExtOrTrunc(V, TruncatedTy); 3691 }; 3692 3693 // The actual instruction modification depends on the instruction type, 3694 // unfortunately. 3695 Value *NewI = nullptr; 3696 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3697 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3698 ShrinkOperand(BO->getOperand(1))); 3699 3700 // Any wrapping introduced by shrinking this operation shouldn't be 3701 // considered undefined behavior. So, we can't unconditionally copy 3702 // arithmetic wrapping flags to NewI. 3703 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3704 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3705 NewI = 3706 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3707 ShrinkOperand(CI->getOperand(1))); 3708 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3709 NewI = B.CreateSelect(SI->getCondition(), 3710 ShrinkOperand(SI->getTrueValue()), 3711 ShrinkOperand(SI->getFalseValue())); 3712 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3713 switch (CI->getOpcode()) { 3714 default: 3715 llvm_unreachable("Unhandled cast!"); 3716 case Instruction::Trunc: 3717 NewI = ShrinkOperand(CI->getOperand(0)); 3718 break; 3719 case Instruction::SExt: 3720 NewI = B.CreateSExtOrTrunc( 3721 CI->getOperand(0), 3722 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3723 break; 3724 case Instruction::ZExt: 3725 NewI = B.CreateZExtOrTrunc( 3726 CI->getOperand(0), 3727 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3728 break; 3729 } 3730 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3731 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3732 ->getNumElements(); 3733 auto *O0 = B.CreateZExtOrTrunc( 3734 SI->getOperand(0), 3735 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3736 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3737 ->getNumElements(); 3738 auto *O1 = B.CreateZExtOrTrunc( 3739 SI->getOperand(1), 3740 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3741 3742 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3743 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3744 // Don't do anything with the operands, just extend the result. 3745 continue; 3746 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3747 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3748 ->getNumElements(); 3749 auto *O0 = B.CreateZExtOrTrunc( 3750 IE->getOperand(0), 3751 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3752 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3753 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3754 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3755 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3756 ->getNumElements(); 3757 auto *O0 = B.CreateZExtOrTrunc( 3758 EE->getOperand(0), 3759 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3760 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3761 } else { 3762 // If we don't know what to do, be conservative and don't do anything. 3763 continue; 3764 } 3765 3766 // Lastly, extend the result. 3767 NewI->takeName(cast<Instruction>(I)); 3768 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3769 I->replaceAllUsesWith(Res); 3770 cast<Instruction>(I)->eraseFromParent(); 3771 Erased.insert(I); 3772 State.reset(Def, Res, Part); 3773 } 3774 } 3775 3776 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3777 for (const auto &KV : Cost->getMinimalBitwidths()) { 3778 // If the value wasn't vectorized, we must maintain the original scalar 3779 // type. The absence of the value from State indicates that it 3780 // wasn't vectorized. 3781 VPValue *Def = State.Plan->getVPValue(KV.first); 3782 if (!State.hasAnyVectorValue(Def)) 3783 continue; 3784 for (unsigned Part = 0; Part < UF; ++Part) { 3785 Value *I = State.get(Def, Part); 3786 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3787 if (Inst && Inst->use_empty()) { 3788 Value *NewI = Inst->getOperand(0); 3789 Inst->eraseFromParent(); 3790 State.reset(Def, NewI, Part); 3791 } 3792 } 3793 } 3794 } 3795 3796 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3797 // Insert truncates and extends for any truncated instructions as hints to 3798 // InstCombine. 3799 if (VF.isVector()) 3800 truncateToMinimalBitwidths(State); 3801 3802 // Fix widened non-induction PHIs by setting up the PHI operands. 3803 if (OrigPHIsToFix.size()) { 3804 assert(EnableVPlanNativePath && 3805 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3806 fixNonInductionPHIs(State); 3807 } 3808 3809 // At this point every instruction in the original loop is widened to a 3810 // vector form. Now we need to fix the recurrences in the loop. These PHI 3811 // nodes are currently empty because we did not want to introduce cycles. 3812 // This is the second stage of vectorizing recurrences. 3813 fixCrossIterationPHIs(State); 3814 3815 // Forget the original basic block. 3816 PSE.getSE()->forgetLoop(OrigLoop); 3817 3818 // Fix-up external users of the induction variables. 3819 for (auto &Entry : Legal->getInductionVars()) 3820 fixupIVUsers(Entry.first, Entry.second, 3821 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3822 IVEndValues[Entry.first], LoopMiddleBlock); 3823 3824 fixLCSSAPHIs(State); 3825 for (Instruction *PI : PredicatedInstructions) 3826 sinkScalarOperands(&*PI); 3827 3828 // Remove redundant induction instructions. 3829 cse(LoopVectorBody); 3830 3831 // Set/update profile weights for the vector and remainder loops as original 3832 // loop iterations are now distributed among them. Note that original loop 3833 // represented by LoopScalarBody becomes remainder loop after vectorization. 3834 // 3835 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3836 // end up getting slightly roughened result but that should be OK since 3837 // profile is not inherently precise anyway. Note also possible bypass of 3838 // vector code caused by legality checks is ignored, assigning all the weight 3839 // to the vector loop, optimistically. 3840 // 3841 // For scalable vectorization we can't know at compile time how many iterations 3842 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3843 // vscale of '1'. 3844 setProfileInfoAfterUnrolling( 3845 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3846 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3847 } 3848 3849 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3850 // In order to support recurrences we need to be able to vectorize Phi nodes. 3851 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3852 // stage #2: We now need to fix the recurrences by adding incoming edges to 3853 // the currently empty PHI nodes. At this point every instruction in the 3854 // original loop is widened to a vector form so we can use them to construct 3855 // the incoming edges. 3856 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3857 // Handle first-order recurrences and reductions that need to be fixed. 3858 if (Legal->isFirstOrderRecurrence(&Phi)) 3859 fixFirstOrderRecurrence(&Phi, State); 3860 else if (Legal->isReductionVariable(&Phi)) 3861 fixReduction(&Phi, State); 3862 } 3863 } 3864 3865 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 3866 VPTransformState &State) { 3867 // This is the second phase of vectorizing first-order recurrences. An 3868 // overview of the transformation is described below. Suppose we have the 3869 // following loop. 3870 // 3871 // for (int i = 0; i < n; ++i) 3872 // b[i] = a[i] - a[i - 1]; 3873 // 3874 // There is a first-order recurrence on "a". For this loop, the shorthand 3875 // scalar IR looks like: 3876 // 3877 // scalar.ph: 3878 // s_init = a[-1] 3879 // br scalar.body 3880 // 3881 // scalar.body: 3882 // i = phi [0, scalar.ph], [i+1, scalar.body] 3883 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3884 // s2 = a[i] 3885 // b[i] = s2 - s1 3886 // br cond, scalar.body, ... 3887 // 3888 // In this example, s1 is a recurrence because it's value depends on the 3889 // previous iteration. In the first phase of vectorization, we created a 3890 // temporary value for s1. We now complete the vectorization and produce the 3891 // shorthand vector IR shown below (for VF = 4, UF = 1). 3892 // 3893 // vector.ph: 3894 // v_init = vector(..., ..., ..., a[-1]) 3895 // br vector.body 3896 // 3897 // vector.body 3898 // i = phi [0, vector.ph], [i+4, vector.body] 3899 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3900 // v2 = a[i, i+1, i+2, i+3]; 3901 // v3 = vector(v1(3), v2(0, 1, 2)) 3902 // b[i, i+1, i+2, i+3] = v2 - v3 3903 // br cond, vector.body, middle.block 3904 // 3905 // middle.block: 3906 // x = v2(3) 3907 // br scalar.ph 3908 // 3909 // scalar.ph: 3910 // s_init = phi [x, middle.block], [a[-1], otherwise] 3911 // br scalar.body 3912 // 3913 // After execution completes the vector loop, we extract the next value of 3914 // the recurrence (x) to use as the initial value in the scalar loop. 3915 3916 // Get the original loop preheader and single loop latch. 3917 auto *Preheader = OrigLoop->getLoopPreheader(); 3918 auto *Latch = OrigLoop->getLoopLatch(); 3919 3920 // Get the initial and previous values of the scalar recurrence. 3921 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3922 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3923 3924 // Create a vector from the initial value. 3925 auto *VectorInit = ScalarInit; 3926 if (VF.isVector()) { 3927 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3928 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3929 VectorInit = Builder.CreateInsertElement( 3930 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3931 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3932 } 3933 3934 VPValue *PhiDef = State.Plan->getVPValue(Phi); 3935 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 3936 // We constructed a temporary phi node in the first phase of vectorization. 3937 // This phi node will eventually be deleted. 3938 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 3939 3940 // Create a phi node for the new recurrence. The current value will either be 3941 // the initial value inserted into a vector or loop-varying vector value. 3942 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3943 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3944 3945 // Get the vectorized previous value of the last part UF - 1. It appears last 3946 // among all unrolled iterations, due to the order of their construction. 3947 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 3948 3949 // Find and set the insertion point after the previous value if it is an 3950 // instruction. 3951 BasicBlock::iterator InsertPt; 3952 // Note that the previous value may have been constant-folded so it is not 3953 // guaranteed to be an instruction in the vector loop. 3954 // FIXME: Loop invariant values do not form recurrences. We should deal with 3955 // them earlier. 3956 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3957 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3958 else { 3959 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3960 if (isa<PHINode>(PreviousLastPart)) 3961 // If the previous value is a phi node, we should insert after all the phi 3962 // nodes in the block containing the PHI to avoid breaking basic block 3963 // verification. Note that the basic block may be different to 3964 // LoopVectorBody, in case we predicate the loop. 3965 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3966 else 3967 InsertPt = ++PreviousInst->getIterator(); 3968 } 3969 Builder.SetInsertPoint(&*InsertPt); 3970 3971 // We will construct a vector for the recurrence by combining the values for 3972 // the current and previous iterations. This is the required shuffle mask. 3973 assert(!VF.isScalable()); 3974 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3975 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3976 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3977 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3978 3979 // The vector from which to take the initial value for the current iteration 3980 // (actual or unrolled). Initially, this is the vector phi node. 3981 Value *Incoming = VecPhi; 3982 3983 // Shuffle the current and previous vector and update the vector parts. 3984 for (unsigned Part = 0; Part < UF; ++Part) { 3985 Value *PreviousPart = State.get(PreviousDef, Part); 3986 Value *PhiPart = State.get(PhiDef, Part); 3987 auto *Shuffle = 3988 VF.isVector() 3989 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3990 : Incoming; 3991 PhiPart->replaceAllUsesWith(Shuffle); 3992 cast<Instruction>(PhiPart)->eraseFromParent(); 3993 State.reset(PhiDef, Shuffle, Part); 3994 Incoming = PreviousPart; 3995 } 3996 3997 // Fix the latch value of the new recurrence in the vector loop. 3998 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3999 4000 // Extract the last vector element in the middle block. This will be the 4001 // initial value for the recurrence when jumping to the scalar loop. 4002 auto *ExtractForScalar = Incoming; 4003 if (VF.isVector()) { 4004 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4005 ExtractForScalar = Builder.CreateExtractElement( 4006 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4007 "vector.recur.extract"); 4008 } 4009 // Extract the second last element in the middle block if the 4010 // Phi is used outside the loop. We need to extract the phi itself 4011 // and not the last element (the phi update in the current iteration). This 4012 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4013 // when the scalar loop is not run at all. 4014 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4015 if (VF.isVector()) 4016 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4017 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4018 "vector.recur.extract.for.phi"); 4019 // When loop is unrolled without vectorizing, initialize 4020 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4021 // `Incoming`. This is analogous to the vectorized case above: extracting the 4022 // second last element when VF > 1. 4023 else if (UF > 1) 4024 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4025 4026 // Fix the initial value of the original recurrence in the scalar loop. 4027 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4028 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4029 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4030 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4031 Start->addIncoming(Incoming, BB); 4032 } 4033 4034 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4035 Phi->setName("scalar.recur"); 4036 4037 // Finally, fix users of the recurrence outside the loop. The users will need 4038 // either the last value of the scalar recurrence or the last value of the 4039 // vector recurrence we extracted in the middle block. Since the loop is in 4040 // LCSSA form, we just need to find all the phi nodes for the original scalar 4041 // recurrence in the exit block, and then add an edge for the middle block. 4042 // Note that LCSSA does not imply single entry when the original scalar loop 4043 // had multiple exiting edges (as we always run the last iteration in the 4044 // scalar epilogue); in that case, the exiting path through middle will be 4045 // dynamically dead and the value picked for the phi doesn't matter. 4046 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4047 if (any_of(LCSSAPhi.incoming_values(), 4048 [Phi](Value *V) { return V == Phi; })) 4049 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4050 } 4051 4052 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4053 // Get it's reduction variable descriptor. 4054 assert(Legal->isReductionVariable(Phi) && 4055 "Unable to find the reduction variable"); 4056 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4057 4058 RecurKind RK = RdxDesc.getRecurrenceKind(); 4059 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4060 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4061 setDebugLocFromInst(Builder, ReductionStartValue); 4062 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4063 4064 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4065 // This is the vector-clone of the value that leaves the loop. 4066 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4067 4068 // Wrap flags are in general invalid after vectorization, clear them. 4069 clearReductionWrapFlags(RdxDesc, State); 4070 4071 // Fix the vector-loop phi. 4072 4073 // Reductions do not have to start at zero. They can start with 4074 // any loop invariant values. 4075 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4076 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4077 4078 for (unsigned Part = 0; Part < UF; ++Part) { 4079 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4080 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4081 cast<PHINode>(VecRdxPhi) 4082 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4083 } 4084 4085 // Before each round, move the insertion point right between 4086 // the PHIs and the values we are going to write. 4087 // This allows us to write both PHINodes and the extractelement 4088 // instructions. 4089 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4090 4091 setDebugLocFromInst(Builder, LoopExitInst); 4092 4093 // If tail is folded by masking, the vector value to leave the loop should be 4094 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4095 // instead of the former. For an inloop reduction the reduction will already 4096 // be predicated, and does not need to be handled here. 4097 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4098 for (unsigned Part = 0; Part < UF; ++Part) { 4099 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4100 Value *Sel = nullptr; 4101 for (User *U : VecLoopExitInst->users()) { 4102 if (isa<SelectInst>(U)) { 4103 assert(!Sel && "Reduction exit feeding two selects"); 4104 Sel = U; 4105 } else 4106 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4107 } 4108 assert(Sel && "Reduction exit feeds no select"); 4109 State.reset(LoopExitInstDef, Sel, Part); 4110 4111 // If the target can create a predicated operator for the reduction at no 4112 // extra cost in the loop (for example a predicated vadd), it can be 4113 // cheaper for the select to remain in the loop than be sunk out of it, 4114 // and so use the select value for the phi instead of the old 4115 // LoopExitValue. 4116 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4117 if (PreferPredicatedReductionSelect || 4118 TTI->preferPredicatedReductionSelect( 4119 RdxDesc.getOpcode(), Phi->getType(), 4120 TargetTransformInfo::ReductionFlags())) { 4121 auto *VecRdxPhi = 4122 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4123 VecRdxPhi->setIncomingValueForBlock( 4124 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4125 } 4126 } 4127 } 4128 4129 // If the vector reduction can be performed in a smaller type, we truncate 4130 // then extend the loop exit value to enable InstCombine to evaluate the 4131 // entire expression in the smaller type. 4132 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4133 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4134 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4135 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4136 Builder.SetInsertPoint( 4137 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4138 VectorParts RdxParts(UF); 4139 for (unsigned Part = 0; Part < UF; ++Part) { 4140 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4141 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4142 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4143 : Builder.CreateZExt(Trunc, VecTy); 4144 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4145 UI != RdxParts[Part]->user_end();) 4146 if (*UI != Trunc) { 4147 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4148 RdxParts[Part] = Extnd; 4149 } else { 4150 ++UI; 4151 } 4152 } 4153 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4154 for (unsigned Part = 0; Part < UF; ++Part) { 4155 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4156 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4157 } 4158 } 4159 4160 // Reduce all of the unrolled parts into a single vector. 4161 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4162 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4163 4164 // The middle block terminator has already been assigned a DebugLoc here (the 4165 // OrigLoop's single latch terminator). We want the whole middle block to 4166 // appear to execute on this line because: (a) it is all compiler generated, 4167 // (b) these instructions are always executed after evaluating the latch 4168 // conditional branch, and (c) other passes may add new predecessors which 4169 // terminate on this line. This is the easiest way to ensure we don't 4170 // accidentally cause an extra step back into the loop while debugging. 4171 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4172 { 4173 // Floating-point operations should have some FMF to enable the reduction. 4174 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4175 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4176 for (unsigned Part = 1; Part < UF; ++Part) { 4177 Value *RdxPart = State.get(LoopExitInstDef, Part); 4178 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4179 ReducedPartRdx = Builder.CreateBinOp( 4180 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4181 } else { 4182 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4183 } 4184 } 4185 } 4186 4187 // Create the reduction after the loop. Note that inloop reductions create the 4188 // target reduction in the loop using a Reduction recipe. 4189 if (VF.isVector() && !IsInLoopReductionPhi) { 4190 ReducedPartRdx = 4191 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4192 // If the reduction can be performed in a smaller type, we need to extend 4193 // the reduction to the wider type before we branch to the original loop. 4194 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4195 ReducedPartRdx = 4196 RdxDesc.isSigned() 4197 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4198 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4199 } 4200 4201 // Create a phi node that merges control-flow from the backedge-taken check 4202 // block and the middle block. 4203 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4204 LoopScalarPreHeader->getTerminator()); 4205 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4206 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4207 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4208 4209 // Now, we need to fix the users of the reduction variable 4210 // inside and outside of the scalar remainder loop. 4211 4212 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4213 // in the exit blocks. See comment on analogous loop in 4214 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4215 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4216 if (any_of(LCSSAPhi.incoming_values(), 4217 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4218 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4219 4220 // Fix the scalar loop reduction variable with the incoming reduction sum 4221 // from the vector body and from the backedge value. 4222 int IncomingEdgeBlockIdx = 4223 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4224 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4225 // Pick the other block. 4226 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4227 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4228 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4229 } 4230 4231 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4232 VPTransformState &State) { 4233 RecurKind RK = RdxDesc.getRecurrenceKind(); 4234 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4235 return; 4236 4237 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4238 assert(LoopExitInstr && "null loop exit instruction"); 4239 SmallVector<Instruction *, 8> Worklist; 4240 SmallPtrSet<Instruction *, 8> Visited; 4241 Worklist.push_back(LoopExitInstr); 4242 Visited.insert(LoopExitInstr); 4243 4244 while (!Worklist.empty()) { 4245 Instruction *Cur = Worklist.pop_back_val(); 4246 if (isa<OverflowingBinaryOperator>(Cur)) 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4249 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4250 } 4251 4252 for (User *U : Cur->users()) { 4253 Instruction *UI = cast<Instruction>(U); 4254 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4255 Visited.insert(UI).second) 4256 Worklist.push_back(UI); 4257 } 4258 } 4259 } 4260 4261 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4262 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4263 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4264 // Some phis were already hand updated by the reduction and recurrence 4265 // code above, leave them alone. 4266 continue; 4267 4268 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4269 // Non-instruction incoming values will have only one value. 4270 unsigned LastLane = 0; 4271 if (isa<Instruction>(IncomingValue)) 4272 LastLane = Cost->isUniformAfterVectorization( 4273 cast<Instruction>(IncomingValue), VF) 4274 ? 0 4275 : VF.getKnownMinValue() - 1; 4276 assert((!VF.isScalable() || LastLane == 0) && 4277 "scalable vectors dont support non-uniform scalars yet"); 4278 // Can be a loop invariant incoming value or the last scalar value to be 4279 // extracted from the vectorized loop. 4280 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4281 Value *lastIncomingValue = 4282 OrigLoop->isLoopInvariant(IncomingValue) 4283 ? IncomingValue 4284 : State.get(State.Plan->getVPValue(IncomingValue), 4285 VPIteration(UF - 1, LastLane)); 4286 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4287 } 4288 } 4289 4290 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4291 // The basic block and loop containing the predicated instruction. 4292 auto *PredBB = PredInst->getParent(); 4293 auto *VectorLoop = LI->getLoopFor(PredBB); 4294 4295 // Initialize a worklist with the operands of the predicated instruction. 4296 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4297 4298 // Holds instructions that we need to analyze again. An instruction may be 4299 // reanalyzed if we don't yet know if we can sink it or not. 4300 SmallVector<Instruction *, 8> InstsToReanalyze; 4301 4302 // Returns true if a given use occurs in the predicated block. Phi nodes use 4303 // their operands in their corresponding predecessor blocks. 4304 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4305 auto *I = cast<Instruction>(U.getUser()); 4306 BasicBlock *BB = I->getParent(); 4307 if (auto *Phi = dyn_cast<PHINode>(I)) 4308 BB = Phi->getIncomingBlock( 4309 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4310 return BB == PredBB; 4311 }; 4312 4313 // Iteratively sink the scalarized operands of the predicated instruction 4314 // into the block we created for it. When an instruction is sunk, it's 4315 // operands are then added to the worklist. The algorithm ends after one pass 4316 // through the worklist doesn't sink a single instruction. 4317 bool Changed; 4318 do { 4319 // Add the instructions that need to be reanalyzed to the worklist, and 4320 // reset the changed indicator. 4321 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4322 InstsToReanalyze.clear(); 4323 Changed = false; 4324 4325 while (!Worklist.empty()) { 4326 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4327 4328 // We can't sink an instruction if it is a phi node, is already in the 4329 // predicated block, is not in the loop, or may have side effects. 4330 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4331 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4332 continue; 4333 4334 // It's legal to sink the instruction if all its uses occur in the 4335 // predicated block. Otherwise, there's nothing to do yet, and we may 4336 // need to reanalyze the instruction. 4337 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4338 InstsToReanalyze.push_back(I); 4339 continue; 4340 } 4341 4342 // Move the instruction to the beginning of the predicated block, and add 4343 // it's operands to the worklist. 4344 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4345 Worklist.insert(I->op_begin(), I->op_end()); 4346 4347 // The sinking may have enabled other instructions to be sunk, so we will 4348 // need to iterate. 4349 Changed = true; 4350 } 4351 } while (Changed); 4352 } 4353 4354 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4355 for (PHINode *OrigPhi : OrigPHIsToFix) { 4356 VPWidenPHIRecipe *VPPhi = 4357 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4358 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4359 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4360 VPValue *Inc = VPPhi->getIncomingValue(i); 4361 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4362 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4363 } 4364 } 4365 } 4366 4367 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4368 VPUser &Operands, unsigned UF, 4369 ElementCount VF, bool IsPtrLoopInvariant, 4370 SmallBitVector &IsIndexLoopInvariant, 4371 VPTransformState &State) { 4372 // Construct a vector GEP by widening the operands of the scalar GEP as 4373 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4374 // results in a vector of pointers when at least one operand of the GEP 4375 // is vector-typed. Thus, to keep the representation compact, we only use 4376 // vector-typed operands for loop-varying values. 4377 4378 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4379 // If we are vectorizing, but the GEP has only loop-invariant operands, 4380 // the GEP we build (by only using vector-typed operands for 4381 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4382 // produce a vector of pointers, we need to either arbitrarily pick an 4383 // operand to broadcast, or broadcast a clone of the original GEP. 4384 // Here, we broadcast a clone of the original. 4385 // 4386 // TODO: If at some point we decide to scalarize instructions having 4387 // loop-invariant operands, this special case will no longer be 4388 // required. We would add the scalarization decision to 4389 // collectLoopScalars() and teach getVectorValue() to broadcast 4390 // the lane-zero scalar value. 4391 auto *Clone = Builder.Insert(GEP->clone()); 4392 for (unsigned Part = 0; Part < UF; ++Part) { 4393 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4394 State.set(VPDef, EntryPart, Part); 4395 addMetadata(EntryPart, GEP); 4396 } 4397 } else { 4398 // If the GEP has at least one loop-varying operand, we are sure to 4399 // produce a vector of pointers. But if we are only unrolling, we want 4400 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4401 // produce with the code below will be scalar (if VF == 1) or vector 4402 // (otherwise). Note that for the unroll-only case, we still maintain 4403 // values in the vector mapping with initVector, as we do for other 4404 // instructions. 4405 for (unsigned Part = 0; Part < UF; ++Part) { 4406 // The pointer operand of the new GEP. If it's loop-invariant, we 4407 // won't broadcast it. 4408 auto *Ptr = IsPtrLoopInvariant 4409 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4410 : State.get(Operands.getOperand(0), Part); 4411 4412 // Collect all the indices for the new GEP. If any index is 4413 // loop-invariant, we won't broadcast it. 4414 SmallVector<Value *, 4> Indices; 4415 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4416 VPValue *Operand = Operands.getOperand(I); 4417 if (IsIndexLoopInvariant[I - 1]) 4418 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4419 else 4420 Indices.push_back(State.get(Operand, Part)); 4421 } 4422 4423 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4424 // but it should be a vector, otherwise. 4425 auto *NewGEP = 4426 GEP->isInBounds() 4427 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4428 Indices) 4429 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4430 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4431 "NewGEP is not a pointer vector"); 4432 State.set(VPDef, NewGEP, Part); 4433 addMetadata(NewGEP, GEP); 4434 } 4435 } 4436 } 4437 4438 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4439 RecurrenceDescriptor *RdxDesc, 4440 VPValue *StartVPV, VPValue *Def, 4441 VPTransformState &State) { 4442 PHINode *P = cast<PHINode>(PN); 4443 if (EnableVPlanNativePath) { 4444 // Currently we enter here in the VPlan-native path for non-induction 4445 // PHIs where all control flow is uniform. We simply widen these PHIs. 4446 // Create a vector phi with no operands - the vector phi operands will be 4447 // set at the end of vector code generation. 4448 Type *VecTy = (State.VF.isScalar()) 4449 ? PN->getType() 4450 : VectorType::get(PN->getType(), State.VF); 4451 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4452 State.set(Def, VecPhi, 0); 4453 OrigPHIsToFix.push_back(P); 4454 4455 return; 4456 } 4457 4458 assert(PN->getParent() == OrigLoop->getHeader() && 4459 "Non-header phis should have been handled elsewhere"); 4460 4461 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4462 // In order to support recurrences we need to be able to vectorize Phi nodes. 4463 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4464 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4465 // this value when we vectorize all of the instructions that use the PHI. 4466 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4467 Value *Iden = nullptr; 4468 bool ScalarPHI = 4469 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4470 Type *VecTy = 4471 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4472 4473 if (RdxDesc) { 4474 assert(Legal->isReductionVariable(P) && StartV && 4475 "RdxDesc should only be set for reduction variables; in that case " 4476 "a StartV is also required"); 4477 RecurKind RK = RdxDesc->getRecurrenceKind(); 4478 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4479 // MinMax reduction have the start value as their identify. 4480 if (ScalarPHI) { 4481 Iden = StartV; 4482 } else { 4483 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4484 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4485 StartV = Iden = 4486 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4487 } 4488 } else { 4489 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4490 RK, VecTy->getScalarType()); 4491 Iden = IdenC; 4492 4493 if (!ScalarPHI) { 4494 Iden = ConstantVector::getSplat(State.VF, IdenC); 4495 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4496 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4497 Constant *Zero = Builder.getInt32(0); 4498 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4499 } 4500 } 4501 } 4502 4503 for (unsigned Part = 0; Part < State.UF; ++Part) { 4504 // This is phase one of vectorizing PHIs. 4505 Value *EntryPart = PHINode::Create( 4506 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4507 State.set(Def, EntryPart, Part); 4508 if (StartV) { 4509 // Make sure to add the reduction start value only to the 4510 // first unroll part. 4511 Value *StartVal = (Part == 0) ? StartV : Iden; 4512 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4513 } 4514 } 4515 return; 4516 } 4517 4518 assert(!Legal->isReductionVariable(P) && 4519 "reductions should be handled above"); 4520 4521 setDebugLocFromInst(Builder, P); 4522 4523 // This PHINode must be an induction variable. 4524 // Make sure that we know about it. 4525 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4526 4527 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4528 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4529 4530 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4531 // which can be found from the original scalar operations. 4532 switch (II.getKind()) { 4533 case InductionDescriptor::IK_NoInduction: 4534 llvm_unreachable("Unknown induction"); 4535 case InductionDescriptor::IK_IntInduction: 4536 case InductionDescriptor::IK_FpInduction: 4537 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4538 case InductionDescriptor::IK_PtrInduction: { 4539 // Handle the pointer induction variable case. 4540 assert(P->getType()->isPointerTy() && "Unexpected type."); 4541 4542 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4543 // This is the normalized GEP that starts counting at zero. 4544 Value *PtrInd = 4545 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4546 // Determine the number of scalars we need to generate for each unroll 4547 // iteration. If the instruction is uniform, we only need to generate the 4548 // first lane. Otherwise, we generate all VF values. 4549 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4550 ? 1 4551 : State.VF.getKnownMinValue(); 4552 for (unsigned Part = 0; Part < UF; ++Part) { 4553 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4554 Constant *Idx = ConstantInt::get( 4555 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4556 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4557 Value *SclrGep = 4558 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4559 SclrGep->setName("next.gep"); 4560 State.set(Def, SclrGep, VPIteration(Part, Lane)); 4561 } 4562 } 4563 return; 4564 } 4565 assert(isa<SCEVConstant>(II.getStep()) && 4566 "Induction step not a SCEV constant!"); 4567 Type *PhiType = II.getStep()->getType(); 4568 4569 // Build a pointer phi 4570 Value *ScalarStartValue = II.getStartValue(); 4571 Type *ScStValueType = ScalarStartValue->getType(); 4572 PHINode *NewPointerPhi = 4573 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4574 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4575 4576 // A pointer induction, performed by using a gep 4577 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4578 Instruction *InductionLoc = LoopLatch->getTerminator(); 4579 const SCEV *ScalarStep = II.getStep(); 4580 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4581 Value *ScalarStepValue = 4582 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4583 Value *InductionGEP = GetElementPtrInst::Create( 4584 ScStValueType->getPointerElementType(), NewPointerPhi, 4585 Builder.CreateMul( 4586 ScalarStepValue, 4587 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4588 "ptr.ind", InductionLoc); 4589 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4590 4591 // Create UF many actual address geps that use the pointer 4592 // phi as base and a vectorized version of the step value 4593 // (<step*0, ..., step*N>) as offset. 4594 for (unsigned Part = 0; Part < State.UF; ++Part) { 4595 SmallVector<Constant *, 8> Indices; 4596 // Create a vector of consecutive numbers from zero to VF. 4597 for (unsigned i = 0; i < State.VF.getKnownMinValue(); ++i) 4598 Indices.push_back( 4599 ConstantInt::get(PhiType, i + Part * State.VF.getKnownMinValue())); 4600 Constant *StartOffset = ConstantVector::get(Indices); 4601 4602 Value *GEP = Builder.CreateGEP( 4603 ScStValueType->getPointerElementType(), NewPointerPhi, 4604 Builder.CreateMul(StartOffset, 4605 Builder.CreateVectorSplat( 4606 State.VF.getKnownMinValue(), ScalarStepValue), 4607 "vector.gep")); 4608 State.set(Def, GEP, Part); 4609 } 4610 } 4611 } 4612 } 4613 4614 /// A helper function for checking whether an integer division-related 4615 /// instruction may divide by zero (in which case it must be predicated if 4616 /// executed conditionally in the scalar code). 4617 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4618 /// Non-zero divisors that are non compile-time constants will not be 4619 /// converted into multiplication, so we will still end up scalarizing 4620 /// the division, but can do so w/o predication. 4621 static bool mayDivideByZero(Instruction &I) { 4622 assert((I.getOpcode() == Instruction::UDiv || 4623 I.getOpcode() == Instruction::SDiv || 4624 I.getOpcode() == Instruction::URem || 4625 I.getOpcode() == Instruction::SRem) && 4626 "Unexpected instruction"); 4627 Value *Divisor = I.getOperand(1); 4628 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4629 return !CInt || CInt->isZero(); 4630 } 4631 4632 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4633 VPUser &User, 4634 VPTransformState &State) { 4635 switch (I.getOpcode()) { 4636 case Instruction::Call: 4637 case Instruction::Br: 4638 case Instruction::PHI: 4639 case Instruction::GetElementPtr: 4640 case Instruction::Select: 4641 llvm_unreachable("This instruction is handled by a different recipe."); 4642 case Instruction::UDiv: 4643 case Instruction::SDiv: 4644 case Instruction::SRem: 4645 case Instruction::URem: 4646 case Instruction::Add: 4647 case Instruction::FAdd: 4648 case Instruction::Sub: 4649 case Instruction::FSub: 4650 case Instruction::FNeg: 4651 case Instruction::Mul: 4652 case Instruction::FMul: 4653 case Instruction::FDiv: 4654 case Instruction::FRem: 4655 case Instruction::Shl: 4656 case Instruction::LShr: 4657 case Instruction::AShr: 4658 case Instruction::And: 4659 case Instruction::Or: 4660 case Instruction::Xor: { 4661 // Just widen unops and binops. 4662 setDebugLocFromInst(Builder, &I); 4663 4664 for (unsigned Part = 0; Part < UF; ++Part) { 4665 SmallVector<Value *, 2> Ops; 4666 for (VPValue *VPOp : User.operands()) 4667 Ops.push_back(State.get(VPOp, Part)); 4668 4669 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4670 4671 if (auto *VecOp = dyn_cast<Instruction>(V)) 4672 VecOp->copyIRFlags(&I); 4673 4674 // Use this vector value for all users of the original instruction. 4675 State.set(Def, V, Part); 4676 addMetadata(V, &I); 4677 } 4678 4679 break; 4680 } 4681 case Instruction::ICmp: 4682 case Instruction::FCmp: { 4683 // Widen compares. Generate vector compares. 4684 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4685 auto *Cmp = cast<CmpInst>(&I); 4686 setDebugLocFromInst(Builder, Cmp); 4687 for (unsigned Part = 0; Part < UF; ++Part) { 4688 Value *A = State.get(User.getOperand(0), Part); 4689 Value *B = State.get(User.getOperand(1), Part); 4690 Value *C = nullptr; 4691 if (FCmp) { 4692 // Propagate fast math flags. 4693 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4694 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4695 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4696 } else { 4697 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4698 } 4699 State.set(Def, C, Part); 4700 addMetadata(C, &I); 4701 } 4702 4703 break; 4704 } 4705 4706 case Instruction::ZExt: 4707 case Instruction::SExt: 4708 case Instruction::FPToUI: 4709 case Instruction::FPToSI: 4710 case Instruction::FPExt: 4711 case Instruction::PtrToInt: 4712 case Instruction::IntToPtr: 4713 case Instruction::SIToFP: 4714 case Instruction::UIToFP: 4715 case Instruction::Trunc: 4716 case Instruction::FPTrunc: 4717 case Instruction::BitCast: { 4718 auto *CI = cast<CastInst>(&I); 4719 setDebugLocFromInst(Builder, CI); 4720 4721 /// Vectorize casts. 4722 Type *DestTy = 4723 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4724 4725 for (unsigned Part = 0; Part < UF; ++Part) { 4726 Value *A = State.get(User.getOperand(0), Part); 4727 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4728 State.set(Def, Cast, Part); 4729 addMetadata(Cast, &I); 4730 } 4731 break; 4732 } 4733 default: 4734 // This instruction is not vectorized by simple widening. 4735 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4736 llvm_unreachable("Unhandled instruction!"); 4737 } // end of switch. 4738 } 4739 4740 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4741 VPUser &ArgOperands, 4742 VPTransformState &State) { 4743 assert(!isa<DbgInfoIntrinsic>(I) && 4744 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4745 setDebugLocFromInst(Builder, &I); 4746 4747 Module *M = I.getParent()->getParent()->getParent(); 4748 auto *CI = cast<CallInst>(&I); 4749 4750 SmallVector<Type *, 4> Tys; 4751 for (Value *ArgOperand : CI->arg_operands()) 4752 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4753 4754 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4755 4756 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4757 // version of the instruction. 4758 // Is it beneficial to perform intrinsic call compared to lib call? 4759 bool NeedToScalarize = false; 4760 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4761 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4762 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4763 assert((UseVectorIntrinsic || !NeedToScalarize) && 4764 "Instruction should be scalarized elsewhere."); 4765 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4766 "Cannot have invalid costs while widening"); 4767 4768 for (unsigned Part = 0; Part < UF; ++Part) { 4769 SmallVector<Value *, 4> Args; 4770 for (auto &I : enumerate(ArgOperands.operands())) { 4771 // Some intrinsics have a scalar argument - don't replace it with a 4772 // vector. 4773 Value *Arg; 4774 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4775 Arg = State.get(I.value(), Part); 4776 else 4777 Arg = State.get(I.value(), VPIteration(0, 0)); 4778 Args.push_back(Arg); 4779 } 4780 4781 Function *VectorF; 4782 if (UseVectorIntrinsic) { 4783 // Use vector version of the intrinsic. 4784 Type *TysForDecl[] = {CI->getType()}; 4785 if (VF.isVector()) 4786 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4787 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4788 assert(VectorF && "Can't retrieve vector intrinsic."); 4789 } else { 4790 // Use vector version of the function call. 4791 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4792 #ifndef NDEBUG 4793 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4794 "Can't create vector function."); 4795 #endif 4796 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4797 } 4798 SmallVector<OperandBundleDef, 1> OpBundles; 4799 CI->getOperandBundlesAsDefs(OpBundles); 4800 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4801 4802 if (isa<FPMathOperator>(V)) 4803 V->copyFastMathFlags(CI); 4804 4805 State.set(Def, V, Part); 4806 addMetadata(V, &I); 4807 } 4808 } 4809 4810 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4811 VPUser &Operands, 4812 bool InvariantCond, 4813 VPTransformState &State) { 4814 setDebugLocFromInst(Builder, &I); 4815 4816 // The condition can be loop invariant but still defined inside the 4817 // loop. This means that we can't just use the original 'cond' value. 4818 // We have to take the 'vectorized' value and pick the first lane. 4819 // Instcombine will make this a no-op. 4820 auto *InvarCond = InvariantCond 4821 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4822 : nullptr; 4823 4824 for (unsigned Part = 0; Part < UF; ++Part) { 4825 Value *Cond = 4826 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4827 Value *Op0 = State.get(Operands.getOperand(1), Part); 4828 Value *Op1 = State.get(Operands.getOperand(2), Part); 4829 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4830 State.set(VPDef, Sel, Part); 4831 addMetadata(Sel, &I); 4832 } 4833 } 4834 4835 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4836 // We should not collect Scalars more than once per VF. Right now, this 4837 // function is called from collectUniformsAndScalars(), which already does 4838 // this check. Collecting Scalars for VF=1 does not make any sense. 4839 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4840 "This function should not be visited twice for the same VF"); 4841 4842 SmallSetVector<Instruction *, 8> Worklist; 4843 4844 // These sets are used to seed the analysis with pointers used by memory 4845 // accesses that will remain scalar. 4846 SmallSetVector<Instruction *, 8> ScalarPtrs; 4847 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4848 auto *Latch = TheLoop->getLoopLatch(); 4849 4850 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4851 // The pointer operands of loads and stores will be scalar as long as the 4852 // memory access is not a gather or scatter operation. The value operand of a 4853 // store will remain scalar if the store is scalarized. 4854 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4855 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4856 assert(WideningDecision != CM_Unknown && 4857 "Widening decision should be ready at this moment"); 4858 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4859 if (Ptr == Store->getValueOperand()) 4860 return WideningDecision == CM_Scalarize; 4861 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4862 "Ptr is neither a value or pointer operand"); 4863 return WideningDecision != CM_GatherScatter; 4864 }; 4865 4866 // A helper that returns true if the given value is a bitcast or 4867 // getelementptr instruction contained in the loop. 4868 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4869 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4870 isa<GetElementPtrInst>(V)) && 4871 !TheLoop->isLoopInvariant(V); 4872 }; 4873 4874 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4875 if (!isa<PHINode>(Ptr) || 4876 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4877 return false; 4878 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4879 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4880 return false; 4881 return isScalarUse(MemAccess, Ptr); 4882 }; 4883 4884 // A helper that evaluates a memory access's use of a pointer. If the 4885 // pointer is actually the pointer induction of a loop, it is being 4886 // inserted into Worklist. If the use will be a scalar use, and the 4887 // pointer is only used by memory accesses, we place the pointer in 4888 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4889 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4890 if (isScalarPtrInduction(MemAccess, Ptr)) { 4891 Worklist.insert(cast<Instruction>(Ptr)); 4892 Instruction *Update = cast<Instruction>( 4893 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4894 Worklist.insert(Update); 4895 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4896 << "\n"); 4897 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4898 << "\n"); 4899 return; 4900 } 4901 // We only care about bitcast and getelementptr instructions contained in 4902 // the loop. 4903 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4904 return; 4905 4906 // If the pointer has already been identified as scalar (e.g., if it was 4907 // also identified as uniform), there's nothing to do. 4908 auto *I = cast<Instruction>(Ptr); 4909 if (Worklist.count(I)) 4910 return; 4911 4912 // If the use of the pointer will be a scalar use, and all users of the 4913 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4914 // place the pointer in PossibleNonScalarPtrs. 4915 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4916 return isa<LoadInst>(U) || isa<StoreInst>(U); 4917 })) 4918 ScalarPtrs.insert(I); 4919 else 4920 PossibleNonScalarPtrs.insert(I); 4921 }; 4922 4923 // We seed the scalars analysis with three classes of instructions: (1) 4924 // instructions marked uniform-after-vectorization and (2) bitcast, 4925 // getelementptr and (pointer) phi instructions used by memory accesses 4926 // requiring a scalar use. 4927 // 4928 // (1) Add to the worklist all instructions that have been identified as 4929 // uniform-after-vectorization. 4930 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4931 4932 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4933 // memory accesses requiring a scalar use. The pointer operands of loads and 4934 // stores will be scalar as long as the memory accesses is not a gather or 4935 // scatter operation. The value operand of a store will remain scalar if the 4936 // store is scalarized. 4937 for (auto *BB : TheLoop->blocks()) 4938 for (auto &I : *BB) { 4939 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4940 evaluatePtrUse(Load, Load->getPointerOperand()); 4941 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4942 evaluatePtrUse(Store, Store->getPointerOperand()); 4943 evaluatePtrUse(Store, Store->getValueOperand()); 4944 } 4945 } 4946 for (auto *I : ScalarPtrs) 4947 if (!PossibleNonScalarPtrs.count(I)) { 4948 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4949 Worklist.insert(I); 4950 } 4951 4952 // Insert the forced scalars. 4953 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4954 // induction variable when the PHI user is scalarized. 4955 auto ForcedScalar = ForcedScalars.find(VF); 4956 if (ForcedScalar != ForcedScalars.end()) 4957 for (auto *I : ForcedScalar->second) 4958 Worklist.insert(I); 4959 4960 // Expand the worklist by looking through any bitcasts and getelementptr 4961 // instructions we've already identified as scalar. This is similar to the 4962 // expansion step in collectLoopUniforms(); however, here we're only 4963 // expanding to include additional bitcasts and getelementptr instructions. 4964 unsigned Idx = 0; 4965 while (Idx != Worklist.size()) { 4966 Instruction *Dst = Worklist[Idx++]; 4967 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4968 continue; 4969 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4970 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4971 auto *J = cast<Instruction>(U); 4972 return !TheLoop->contains(J) || Worklist.count(J) || 4973 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4974 isScalarUse(J, Src)); 4975 })) { 4976 Worklist.insert(Src); 4977 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4978 } 4979 } 4980 4981 // An induction variable will remain scalar if all users of the induction 4982 // variable and induction variable update remain scalar. 4983 for (auto &Induction : Legal->getInductionVars()) { 4984 auto *Ind = Induction.first; 4985 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4986 4987 // If tail-folding is applied, the primary induction variable will be used 4988 // to feed a vector compare. 4989 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4990 continue; 4991 4992 // Determine if all users of the induction variable are scalar after 4993 // vectorization. 4994 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4995 auto *I = cast<Instruction>(U); 4996 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4997 }); 4998 if (!ScalarInd) 4999 continue; 5000 5001 // Determine if all users of the induction variable update instruction are 5002 // scalar after vectorization. 5003 auto ScalarIndUpdate = 5004 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5005 auto *I = cast<Instruction>(U); 5006 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5007 }); 5008 if (!ScalarIndUpdate) 5009 continue; 5010 5011 // The induction variable and its update instruction will remain scalar. 5012 Worklist.insert(Ind); 5013 Worklist.insert(IndUpdate); 5014 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5015 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5016 << "\n"); 5017 } 5018 5019 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5020 } 5021 5022 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5023 ElementCount VF) { 5024 if (!blockNeedsPredication(I->getParent())) 5025 return false; 5026 switch(I->getOpcode()) { 5027 default: 5028 break; 5029 case Instruction::Load: 5030 case Instruction::Store: { 5031 if (!Legal->isMaskRequired(I)) 5032 return false; 5033 auto *Ptr = getLoadStorePointerOperand(I); 5034 auto *Ty = getMemInstValueType(I); 5035 // We have already decided how to vectorize this instruction, get that 5036 // result. 5037 if (VF.isVector()) { 5038 InstWidening WideningDecision = getWideningDecision(I, VF); 5039 assert(WideningDecision != CM_Unknown && 5040 "Widening decision should be ready at this moment"); 5041 return WideningDecision == CM_Scalarize; 5042 } 5043 const Align Alignment = getLoadStoreAlignment(I); 5044 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5045 isLegalMaskedGather(Ty, Alignment)) 5046 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5047 isLegalMaskedScatter(Ty, Alignment)); 5048 } 5049 case Instruction::UDiv: 5050 case Instruction::SDiv: 5051 case Instruction::SRem: 5052 case Instruction::URem: 5053 return mayDivideByZero(*I); 5054 } 5055 return false; 5056 } 5057 5058 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5059 Instruction *I, ElementCount VF) { 5060 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5061 assert(getWideningDecision(I, VF) == CM_Unknown && 5062 "Decision should not be set yet."); 5063 auto *Group = getInterleavedAccessGroup(I); 5064 assert(Group && "Must have a group."); 5065 5066 // If the instruction's allocated size doesn't equal it's type size, it 5067 // requires padding and will be scalarized. 5068 auto &DL = I->getModule()->getDataLayout(); 5069 auto *ScalarTy = getMemInstValueType(I); 5070 if (hasIrregularType(ScalarTy, DL, VF)) 5071 return false; 5072 5073 // Check if masking is required. 5074 // A Group may need masking for one of two reasons: it resides in a block that 5075 // needs predication, or it was decided to use masking to deal with gaps. 5076 bool PredicatedAccessRequiresMasking = 5077 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5078 bool AccessWithGapsRequiresMasking = 5079 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5080 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5081 return true; 5082 5083 // If masked interleaving is required, we expect that the user/target had 5084 // enabled it, because otherwise it either wouldn't have been created or 5085 // it should have been invalidated by the CostModel. 5086 assert(useMaskedInterleavedAccesses(TTI) && 5087 "Masked interleave-groups for predicated accesses are not enabled."); 5088 5089 auto *Ty = getMemInstValueType(I); 5090 const Align Alignment = getLoadStoreAlignment(I); 5091 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5092 : TTI.isLegalMaskedStore(Ty, Alignment); 5093 } 5094 5095 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5096 Instruction *I, ElementCount VF) { 5097 // Get and ensure we have a valid memory instruction. 5098 LoadInst *LI = dyn_cast<LoadInst>(I); 5099 StoreInst *SI = dyn_cast<StoreInst>(I); 5100 assert((LI || SI) && "Invalid memory instruction"); 5101 5102 auto *Ptr = getLoadStorePointerOperand(I); 5103 5104 // In order to be widened, the pointer should be consecutive, first of all. 5105 if (!Legal->isConsecutivePtr(Ptr)) 5106 return false; 5107 5108 // If the instruction is a store located in a predicated block, it will be 5109 // scalarized. 5110 if (isScalarWithPredication(I)) 5111 return false; 5112 5113 // If the instruction's allocated size doesn't equal it's type size, it 5114 // requires padding and will be scalarized. 5115 auto &DL = I->getModule()->getDataLayout(); 5116 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5117 if (hasIrregularType(ScalarTy, DL, VF)) 5118 return false; 5119 5120 return true; 5121 } 5122 5123 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5124 // We should not collect Uniforms more than once per VF. Right now, 5125 // this function is called from collectUniformsAndScalars(), which 5126 // already does this check. Collecting Uniforms for VF=1 does not make any 5127 // sense. 5128 5129 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5130 "This function should not be visited twice for the same VF"); 5131 5132 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5133 // not analyze again. Uniforms.count(VF) will return 1. 5134 Uniforms[VF].clear(); 5135 5136 // We now know that the loop is vectorizable! 5137 // Collect instructions inside the loop that will remain uniform after 5138 // vectorization. 5139 5140 // Global values, params and instructions outside of current loop are out of 5141 // scope. 5142 auto isOutOfScope = [&](Value *V) -> bool { 5143 Instruction *I = dyn_cast<Instruction>(V); 5144 return (!I || !TheLoop->contains(I)); 5145 }; 5146 5147 SetVector<Instruction *> Worklist; 5148 BasicBlock *Latch = TheLoop->getLoopLatch(); 5149 5150 // Instructions that are scalar with predication must not be considered 5151 // uniform after vectorization, because that would create an erroneous 5152 // replicating region where only a single instance out of VF should be formed. 5153 // TODO: optimize such seldom cases if found important, see PR40816. 5154 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5155 if (isOutOfScope(I)) { 5156 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5157 << *I << "\n"); 5158 return; 5159 } 5160 if (isScalarWithPredication(I, VF)) { 5161 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5162 << *I << "\n"); 5163 return; 5164 } 5165 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5166 Worklist.insert(I); 5167 }; 5168 5169 // Start with the conditional branch. If the branch condition is an 5170 // instruction contained in the loop that is only used by the branch, it is 5171 // uniform. 5172 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5173 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5174 addToWorklistIfAllowed(Cmp); 5175 5176 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5177 InstWidening WideningDecision = getWideningDecision(I, VF); 5178 assert(WideningDecision != CM_Unknown && 5179 "Widening decision should be ready at this moment"); 5180 5181 // A uniform memory op is itself uniform. We exclude uniform stores 5182 // here as they demand the last lane, not the first one. 5183 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5184 assert(WideningDecision == CM_Scalarize); 5185 return true; 5186 } 5187 5188 return (WideningDecision == CM_Widen || 5189 WideningDecision == CM_Widen_Reverse || 5190 WideningDecision == CM_Interleave); 5191 }; 5192 5193 5194 // Returns true if Ptr is the pointer operand of a memory access instruction 5195 // I, and I is known to not require scalarization. 5196 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5197 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5198 }; 5199 5200 // Holds a list of values which are known to have at least one uniform use. 5201 // Note that there may be other uses which aren't uniform. A "uniform use" 5202 // here is something which only demands lane 0 of the unrolled iterations; 5203 // it does not imply that all lanes produce the same value (e.g. this is not 5204 // the usual meaning of uniform) 5205 SmallPtrSet<Value *, 8> HasUniformUse; 5206 5207 // Scan the loop for instructions which are either a) known to have only 5208 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5209 for (auto *BB : TheLoop->blocks()) 5210 for (auto &I : *BB) { 5211 // If there's no pointer operand, there's nothing to do. 5212 auto *Ptr = getLoadStorePointerOperand(&I); 5213 if (!Ptr) 5214 continue; 5215 5216 // A uniform memory op is itself uniform. We exclude uniform stores 5217 // here as they demand the last lane, not the first one. 5218 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5219 addToWorklistIfAllowed(&I); 5220 5221 if (isUniformDecision(&I, VF)) { 5222 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5223 HasUniformUse.insert(Ptr); 5224 } 5225 } 5226 5227 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5228 // demanding) users. Since loops are assumed to be in LCSSA form, this 5229 // disallows uses outside the loop as well. 5230 for (auto *V : HasUniformUse) { 5231 if (isOutOfScope(V)) 5232 continue; 5233 auto *I = cast<Instruction>(V); 5234 auto UsersAreMemAccesses = 5235 llvm::all_of(I->users(), [&](User *U) -> bool { 5236 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5237 }); 5238 if (UsersAreMemAccesses) 5239 addToWorklistIfAllowed(I); 5240 } 5241 5242 // Expand Worklist in topological order: whenever a new instruction 5243 // is added , its users should be already inside Worklist. It ensures 5244 // a uniform instruction will only be used by uniform instructions. 5245 unsigned idx = 0; 5246 while (idx != Worklist.size()) { 5247 Instruction *I = Worklist[idx++]; 5248 5249 for (auto OV : I->operand_values()) { 5250 // isOutOfScope operands cannot be uniform instructions. 5251 if (isOutOfScope(OV)) 5252 continue; 5253 // First order recurrence Phi's should typically be considered 5254 // non-uniform. 5255 auto *OP = dyn_cast<PHINode>(OV); 5256 if (OP && Legal->isFirstOrderRecurrence(OP)) 5257 continue; 5258 // If all the users of the operand are uniform, then add the 5259 // operand into the uniform worklist. 5260 auto *OI = cast<Instruction>(OV); 5261 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5262 auto *J = cast<Instruction>(U); 5263 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5264 })) 5265 addToWorklistIfAllowed(OI); 5266 } 5267 } 5268 5269 // For an instruction to be added into Worklist above, all its users inside 5270 // the loop should also be in Worklist. However, this condition cannot be 5271 // true for phi nodes that form a cyclic dependence. We must process phi 5272 // nodes separately. An induction variable will remain uniform if all users 5273 // of the induction variable and induction variable update remain uniform. 5274 // The code below handles both pointer and non-pointer induction variables. 5275 for (auto &Induction : Legal->getInductionVars()) { 5276 auto *Ind = Induction.first; 5277 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5278 5279 // Determine if all users of the induction variable are uniform after 5280 // vectorization. 5281 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5282 auto *I = cast<Instruction>(U); 5283 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5284 isVectorizedMemAccessUse(I, Ind); 5285 }); 5286 if (!UniformInd) 5287 continue; 5288 5289 // Determine if all users of the induction variable update instruction are 5290 // uniform after vectorization. 5291 auto UniformIndUpdate = 5292 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5293 auto *I = cast<Instruction>(U); 5294 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5295 isVectorizedMemAccessUse(I, IndUpdate); 5296 }); 5297 if (!UniformIndUpdate) 5298 continue; 5299 5300 // The induction variable and its update instruction will remain uniform. 5301 addToWorklistIfAllowed(Ind); 5302 addToWorklistIfAllowed(IndUpdate); 5303 } 5304 5305 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5306 } 5307 5308 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5309 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5310 5311 if (Legal->getRuntimePointerChecking()->Need) { 5312 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5313 "runtime pointer checks needed. Enable vectorization of this " 5314 "loop with '#pragma clang loop vectorize(enable)' when " 5315 "compiling with -Os/-Oz", 5316 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5317 return true; 5318 } 5319 5320 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5321 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5322 "runtime SCEV checks needed. Enable vectorization of this " 5323 "loop with '#pragma clang loop vectorize(enable)' when " 5324 "compiling with -Os/-Oz", 5325 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5326 return true; 5327 } 5328 5329 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5330 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5331 reportVectorizationFailure("Runtime stride check for small trip count", 5332 "runtime stride == 1 checks needed. Enable vectorization of " 5333 "this loop without such check by compiling with -Os/-Oz", 5334 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5335 return true; 5336 } 5337 5338 return false; 5339 } 5340 5341 Optional<ElementCount> 5342 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5343 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5344 // TODO: It may by useful to do since it's still likely to be dynamically 5345 // uniform if the target can skip. 5346 reportVectorizationFailure( 5347 "Not inserting runtime ptr check for divergent target", 5348 "runtime pointer checks needed. Not enabled for divergent target", 5349 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5350 return None; 5351 } 5352 5353 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5354 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5355 if (TC == 1) { 5356 reportVectorizationFailure("Single iteration (non) loop", 5357 "loop trip count is one, irrelevant for vectorization", 5358 "SingleIterationLoop", ORE, TheLoop); 5359 return None; 5360 } 5361 5362 switch (ScalarEpilogueStatus) { 5363 case CM_ScalarEpilogueAllowed: 5364 return computeFeasibleMaxVF(TC, UserVF); 5365 case CM_ScalarEpilogueNotAllowedUsePredicate: 5366 LLVM_FALLTHROUGH; 5367 case CM_ScalarEpilogueNotNeededUsePredicate: 5368 LLVM_DEBUG( 5369 dbgs() << "LV: vector predicate hint/switch found.\n" 5370 << "LV: Not allowing scalar epilogue, creating predicated " 5371 << "vector loop.\n"); 5372 break; 5373 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5374 // fallthrough as a special case of OptForSize 5375 case CM_ScalarEpilogueNotAllowedOptSize: 5376 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5377 LLVM_DEBUG( 5378 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5379 else 5380 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5381 << "count.\n"); 5382 5383 // Bail if runtime checks are required, which are not good when optimising 5384 // for size. 5385 if (runtimeChecksRequired()) 5386 return None; 5387 5388 break; 5389 } 5390 5391 // The only loops we can vectorize without a scalar epilogue, are loops with 5392 // a bottom-test and a single exiting block. We'd have to handle the fact 5393 // that not every instruction executes on the last iteration. This will 5394 // require a lane mask which varies through the vector loop body. (TODO) 5395 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5396 // If there was a tail-folding hint/switch, but we can't fold the tail by 5397 // masking, fallback to a vectorization with a scalar epilogue. 5398 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5399 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5400 "scalar epilogue instead.\n"); 5401 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5402 return computeFeasibleMaxVF(TC, UserVF); 5403 } 5404 return None; 5405 } 5406 5407 // Now try the tail folding 5408 5409 // Invalidate interleave groups that require an epilogue if we can't mask 5410 // the interleave-group. 5411 if (!useMaskedInterleavedAccesses(TTI)) { 5412 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5413 "No decisions should have been taken at this point"); 5414 // Note: There is no need to invalidate any cost modeling decisions here, as 5415 // non where taken so far. 5416 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5417 } 5418 5419 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5420 assert(!MaxVF.isScalable() && 5421 "Scalable vectors do not yet support tail folding"); 5422 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5423 "MaxVF must be a power of 2"); 5424 unsigned MaxVFtimesIC = 5425 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5426 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5427 // chose. 5428 ScalarEvolution *SE = PSE.getSE(); 5429 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5430 const SCEV *ExitCount = SE->getAddExpr( 5431 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5432 const SCEV *Rem = SE->getURemExpr( 5433 SE->applyLoopGuards(ExitCount, TheLoop), 5434 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5435 if (Rem->isZero()) { 5436 // Accept MaxVF if we do not have a tail. 5437 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5438 return MaxVF; 5439 } 5440 5441 // If we don't know the precise trip count, or if the trip count that we 5442 // found modulo the vectorization factor is not zero, try to fold the tail 5443 // by masking. 5444 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5445 if (Legal->prepareToFoldTailByMasking()) { 5446 FoldTailByMasking = true; 5447 return MaxVF; 5448 } 5449 5450 // If there was a tail-folding hint/switch, but we can't fold the tail by 5451 // masking, fallback to a vectorization with a scalar epilogue. 5452 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5453 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5454 "scalar epilogue instead.\n"); 5455 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5456 return MaxVF; 5457 } 5458 5459 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5460 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5461 return None; 5462 } 5463 5464 if (TC == 0) { 5465 reportVectorizationFailure( 5466 "Unable to calculate the loop count due to complex control flow", 5467 "unable to calculate the loop count due to complex control flow", 5468 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5469 return None; 5470 } 5471 5472 reportVectorizationFailure( 5473 "Cannot optimize for size and vectorize at the same time.", 5474 "cannot optimize for size and vectorize at the same time. " 5475 "Enable vectorization of this loop with '#pragma clang loop " 5476 "vectorize(enable)' when compiling with -Os/-Oz", 5477 "NoTailLoopWithOptForSize", ORE, TheLoop); 5478 return None; 5479 } 5480 5481 ElementCount 5482 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5483 ElementCount UserVF) { 5484 bool IgnoreScalableUserVF = UserVF.isScalable() && 5485 !TTI.supportsScalableVectors() && 5486 !ForceTargetSupportsScalableVectors; 5487 if (IgnoreScalableUserVF) { 5488 LLVM_DEBUG( 5489 dbgs() << "LV: Ignoring VF=" << UserVF 5490 << " because target does not support scalable vectors.\n"); 5491 ORE->emit([&]() { 5492 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5493 TheLoop->getStartLoc(), 5494 TheLoop->getHeader()) 5495 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5496 << " because target does not support scalable vectors."; 5497 }); 5498 } 5499 5500 // Beyond this point two scenarios are handled. If UserVF isn't specified 5501 // then a suitable VF is chosen. If UserVF is specified and there are 5502 // dependencies, check if it's legal. However, if a UserVF is specified and 5503 // there are no dependencies, then there's nothing to do. 5504 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5505 if (!canVectorizeReductions(UserVF)) { 5506 reportVectorizationFailure( 5507 "LV: Scalable vectorization not supported for the reduction " 5508 "operations found in this loop. Using fixed-width " 5509 "vectorization instead.", 5510 "Scalable vectorization not supported for the reduction operations " 5511 "found in this loop. Using fixed-width vectorization instead.", 5512 "ScalableVFUnfeasible", ORE, TheLoop); 5513 return computeFeasibleMaxVF( 5514 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5515 } 5516 5517 if (Legal->isSafeForAnyVectorWidth()) 5518 return UserVF; 5519 } 5520 5521 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5522 unsigned SmallestType, WidestType; 5523 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5524 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5525 5526 // Get the maximum safe dependence distance in bits computed by LAA. 5527 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5528 // the memory accesses that is most restrictive (involved in the smallest 5529 // dependence distance). 5530 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5531 5532 // If the user vectorization factor is legally unsafe, clamp it to a safe 5533 // value. Otherwise, return as is. 5534 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5535 unsigned MaxSafeElements = 5536 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5537 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5538 5539 if (UserVF.isScalable()) { 5540 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5541 5542 // Scale VF by vscale before checking if it's safe. 5543 MaxSafeVF = ElementCount::getScalable( 5544 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5545 5546 if (MaxSafeVF.isZero()) { 5547 // The dependence distance is too small to use scalable vectors, 5548 // fallback on fixed. 5549 LLVM_DEBUG( 5550 dbgs() 5551 << "LV: Max legal vector width too small, scalable vectorization " 5552 "unfeasible. Using fixed-width vectorization instead.\n"); 5553 ORE->emit([&]() { 5554 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5555 TheLoop->getStartLoc(), 5556 TheLoop->getHeader()) 5557 << "Max legal vector width too small, scalable vectorization " 5558 << "unfeasible. Using fixed-width vectorization instead."; 5559 }); 5560 return computeFeasibleMaxVF( 5561 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5562 } 5563 } 5564 5565 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5566 5567 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5568 return UserVF; 5569 5570 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5571 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5572 << ".\n"); 5573 ORE->emit([&]() { 5574 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5575 TheLoop->getStartLoc(), 5576 TheLoop->getHeader()) 5577 << "User-specified vectorization factor " 5578 << ore::NV("UserVectorizationFactor", UserVF) 5579 << " is unsafe, clamping to maximum safe vectorization factor " 5580 << ore::NV("VectorizationFactor", MaxSafeVF); 5581 }); 5582 return MaxSafeVF; 5583 } 5584 5585 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5586 5587 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5588 // Note that both WidestRegister and WidestType may not be a powers of 2. 5589 auto MaxVectorSize = 5590 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5591 5592 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5593 << " / " << WidestType << " bits.\n"); 5594 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5595 << WidestRegister << " bits.\n"); 5596 5597 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5598 "Did not expect to pack so many elements" 5599 " into one vector!"); 5600 if (MaxVectorSize.getFixedValue() == 0) { 5601 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5602 return ElementCount::getFixed(1); 5603 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5604 isPowerOf2_32(ConstTripCount)) { 5605 // We need to clamp the VF to be the ConstTripCount. There is no point in 5606 // choosing a higher viable VF as done in the loop below. 5607 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5608 << ConstTripCount << "\n"); 5609 return ElementCount::getFixed(ConstTripCount); 5610 } 5611 5612 ElementCount MaxVF = MaxVectorSize; 5613 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5614 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5615 // Collect all viable vectorization factors larger than the default MaxVF 5616 // (i.e. MaxVectorSize). 5617 SmallVector<ElementCount, 8> VFs; 5618 auto MaxVectorSizeMaxBW = 5619 ElementCount::getFixed(WidestRegister / SmallestType); 5620 for (ElementCount VS = MaxVectorSize * 2; 5621 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5622 VFs.push_back(VS); 5623 5624 // For each VF calculate its register usage. 5625 auto RUs = calculateRegisterUsage(VFs); 5626 5627 // Select the largest VF which doesn't require more registers than existing 5628 // ones. 5629 for (int i = RUs.size() - 1; i >= 0; --i) { 5630 bool Selected = true; 5631 for (auto &pair : RUs[i].MaxLocalUsers) { 5632 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5633 if (pair.second > TargetNumRegisters) 5634 Selected = false; 5635 } 5636 if (Selected) { 5637 MaxVF = VFs[i]; 5638 break; 5639 } 5640 } 5641 if (ElementCount MinVF = 5642 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5643 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5644 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5645 << ") with target's minimum: " << MinVF << '\n'); 5646 MaxVF = MinVF; 5647 } 5648 } 5649 } 5650 return MaxVF; 5651 } 5652 5653 VectorizationFactor 5654 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5655 // FIXME: This can be fixed for scalable vectors later, because at this stage 5656 // the LoopVectorizer will only consider vectorizing a loop with scalable 5657 // vectors when the loop has a hint to enable vectorization for a given VF. 5658 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5659 5660 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5661 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5662 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5663 5664 auto Width = ElementCount::getFixed(1); 5665 const float ScalarCost = *ExpectedCost.getValue(); 5666 float Cost = ScalarCost; 5667 5668 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5669 if (ForceVectorization && MaxVF.isVector()) { 5670 // Ignore scalar width, because the user explicitly wants vectorization. 5671 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5672 // evaluation. 5673 Cost = std::numeric_limits<float>::max(); 5674 } 5675 5676 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5677 i *= 2) { 5678 // Notice that the vector loop needs to be executed less times, so 5679 // we need to divide the cost of the vector loops by the width of 5680 // the vector elements. 5681 VectorizationCostTy C = expectedCost(i); 5682 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5683 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5684 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5685 << " costs: " << (int)VectorCost << ".\n"); 5686 if (!C.second && !ForceVectorization) { 5687 LLVM_DEBUG( 5688 dbgs() << "LV: Not considering vector loop of width " << i 5689 << " because it will not generate any vector instructions.\n"); 5690 continue; 5691 } 5692 5693 // If profitable add it to ProfitableVF list. 5694 if (VectorCost < ScalarCost) { 5695 ProfitableVFs.push_back(VectorizationFactor( 5696 {i, (unsigned)VectorCost})); 5697 } 5698 5699 if (VectorCost < Cost) { 5700 Cost = VectorCost; 5701 Width = i; 5702 } 5703 } 5704 5705 if (!EnableCondStoresVectorization && NumPredStores) { 5706 reportVectorizationFailure("There are conditional stores.", 5707 "store that is conditionally executed prevents vectorization", 5708 "ConditionalStore", ORE, TheLoop); 5709 Width = ElementCount::getFixed(1); 5710 Cost = ScalarCost; 5711 } 5712 5713 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5714 << "LV: Vectorization seems to be not beneficial, " 5715 << "but was forced by a user.\n"); 5716 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5717 VectorizationFactor Factor = {Width, 5718 (unsigned)(Width.getKnownMinValue() * Cost)}; 5719 return Factor; 5720 } 5721 5722 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5723 const Loop &L, ElementCount VF) const { 5724 // Cross iteration phis such as reductions need special handling and are 5725 // currently unsupported. 5726 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5727 return Legal->isFirstOrderRecurrence(&Phi) || 5728 Legal->isReductionVariable(&Phi); 5729 })) 5730 return false; 5731 5732 // Phis with uses outside of the loop require special handling and are 5733 // currently unsupported. 5734 for (auto &Entry : Legal->getInductionVars()) { 5735 // Look for uses of the value of the induction at the last iteration. 5736 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5737 for (User *U : PostInc->users()) 5738 if (!L.contains(cast<Instruction>(U))) 5739 return false; 5740 // Look for uses of penultimate value of the induction. 5741 for (User *U : Entry.first->users()) 5742 if (!L.contains(cast<Instruction>(U))) 5743 return false; 5744 } 5745 5746 // Induction variables that are widened require special handling that is 5747 // currently not supported. 5748 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5749 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5750 this->isProfitableToScalarize(Entry.first, VF)); 5751 })) 5752 return false; 5753 5754 return true; 5755 } 5756 5757 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5758 const ElementCount VF) const { 5759 // FIXME: We need a much better cost-model to take different parameters such 5760 // as register pressure, code size increase and cost of extra branches into 5761 // account. For now we apply a very crude heuristic and only consider loops 5762 // with vectorization factors larger than a certain value. 5763 // We also consider epilogue vectorization unprofitable for targets that don't 5764 // consider interleaving beneficial (eg. MVE). 5765 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5766 return false; 5767 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5768 return true; 5769 return false; 5770 } 5771 5772 VectorizationFactor 5773 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5774 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5775 VectorizationFactor Result = VectorizationFactor::Disabled(); 5776 if (!EnableEpilogueVectorization) { 5777 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5778 return Result; 5779 } 5780 5781 if (!isScalarEpilogueAllowed()) { 5782 LLVM_DEBUG( 5783 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5784 "allowed.\n";); 5785 return Result; 5786 } 5787 5788 // FIXME: This can be fixed for scalable vectors later, because at this stage 5789 // the LoopVectorizer will only consider vectorizing a loop with scalable 5790 // vectors when the loop has a hint to enable vectorization for a given VF. 5791 if (MainLoopVF.isScalable()) { 5792 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5793 "yet supported.\n"); 5794 return Result; 5795 } 5796 5797 // Not really a cost consideration, but check for unsupported cases here to 5798 // simplify the logic. 5799 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5800 LLVM_DEBUG( 5801 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5802 "not a supported candidate.\n";); 5803 return Result; 5804 } 5805 5806 if (EpilogueVectorizationForceVF > 1) { 5807 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5808 if (LVP.hasPlanWithVFs( 5809 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5810 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5811 else { 5812 LLVM_DEBUG( 5813 dbgs() 5814 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5815 return Result; 5816 } 5817 } 5818 5819 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5820 TheLoop->getHeader()->getParent()->hasMinSize()) { 5821 LLVM_DEBUG( 5822 dbgs() 5823 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5824 return Result; 5825 } 5826 5827 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 5828 return Result; 5829 5830 for (auto &NextVF : ProfitableVFs) 5831 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 5832 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 5833 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 5834 Result = NextVF; 5835 5836 if (Result != VectorizationFactor::Disabled()) 5837 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5838 << Result.Width.getFixedValue() << "\n";); 5839 return Result; 5840 } 5841 5842 std::pair<unsigned, unsigned> 5843 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5844 unsigned MinWidth = -1U; 5845 unsigned MaxWidth = 8; 5846 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5847 5848 // For each block. 5849 for (BasicBlock *BB : TheLoop->blocks()) { 5850 // For each instruction in the loop. 5851 for (Instruction &I : BB->instructionsWithoutDebug()) { 5852 Type *T = I.getType(); 5853 5854 // Skip ignored values. 5855 if (ValuesToIgnore.count(&I)) 5856 continue; 5857 5858 // Only examine Loads, Stores and PHINodes. 5859 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5860 continue; 5861 5862 // Examine PHI nodes that are reduction variables. Update the type to 5863 // account for the recurrence type. 5864 if (auto *PN = dyn_cast<PHINode>(&I)) { 5865 if (!Legal->isReductionVariable(PN)) 5866 continue; 5867 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5868 if (PreferInLoopReductions || 5869 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5870 RdxDesc.getRecurrenceType(), 5871 TargetTransformInfo::ReductionFlags())) 5872 continue; 5873 T = RdxDesc.getRecurrenceType(); 5874 } 5875 5876 // Examine the stored values. 5877 if (auto *ST = dyn_cast<StoreInst>(&I)) 5878 T = ST->getValueOperand()->getType(); 5879 5880 // Ignore loaded pointer types and stored pointer types that are not 5881 // vectorizable. 5882 // 5883 // FIXME: The check here attempts to predict whether a load or store will 5884 // be vectorized. We only know this for certain after a VF has 5885 // been selected. Here, we assume that if an access can be 5886 // vectorized, it will be. We should also look at extending this 5887 // optimization to non-pointer types. 5888 // 5889 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5890 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5891 continue; 5892 5893 MinWidth = std::min(MinWidth, 5894 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5895 MaxWidth = std::max(MaxWidth, 5896 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5897 } 5898 } 5899 5900 return {MinWidth, MaxWidth}; 5901 } 5902 5903 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5904 unsigned LoopCost) { 5905 // -- The interleave heuristics -- 5906 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5907 // There are many micro-architectural considerations that we can't predict 5908 // at this level. For example, frontend pressure (on decode or fetch) due to 5909 // code size, or the number and capabilities of the execution ports. 5910 // 5911 // We use the following heuristics to select the interleave count: 5912 // 1. If the code has reductions, then we interleave to break the cross 5913 // iteration dependency. 5914 // 2. If the loop is really small, then we interleave to reduce the loop 5915 // overhead. 5916 // 3. We don't interleave if we think that we will spill registers to memory 5917 // due to the increased register pressure. 5918 5919 if (!isScalarEpilogueAllowed()) 5920 return 1; 5921 5922 // We used the distance for the interleave count. 5923 if (Legal->getMaxSafeDepDistBytes() != -1U) 5924 return 1; 5925 5926 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5927 const bool HasReductions = !Legal->getReductionVars().empty(); 5928 // Do not interleave loops with a relatively small known or estimated trip 5929 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5930 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5931 // because with the above conditions interleaving can expose ILP and break 5932 // cross iteration dependences for reductions. 5933 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5934 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5935 return 1; 5936 5937 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5938 // We divide by these constants so assume that we have at least one 5939 // instruction that uses at least one register. 5940 for (auto& pair : R.MaxLocalUsers) { 5941 pair.second = std::max(pair.second, 1U); 5942 } 5943 5944 // We calculate the interleave count using the following formula. 5945 // Subtract the number of loop invariants from the number of available 5946 // registers. These registers are used by all of the interleaved instances. 5947 // Next, divide the remaining registers by the number of registers that is 5948 // required by the loop, in order to estimate how many parallel instances 5949 // fit without causing spills. All of this is rounded down if necessary to be 5950 // a power of two. We want power of two interleave count to simplify any 5951 // addressing operations or alignment considerations. 5952 // We also want power of two interleave counts to ensure that the induction 5953 // variable of the vector loop wraps to zero, when tail is folded by masking; 5954 // this currently happens when OptForSize, in which case IC is set to 1 above. 5955 unsigned IC = UINT_MAX; 5956 5957 for (auto& pair : R.MaxLocalUsers) { 5958 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5959 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5960 << " registers of " 5961 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5962 if (VF.isScalar()) { 5963 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5964 TargetNumRegisters = ForceTargetNumScalarRegs; 5965 } else { 5966 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5967 TargetNumRegisters = ForceTargetNumVectorRegs; 5968 } 5969 unsigned MaxLocalUsers = pair.second; 5970 unsigned LoopInvariantRegs = 0; 5971 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5972 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5973 5974 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5975 // Don't count the induction variable as interleaved. 5976 if (EnableIndVarRegisterHeur) { 5977 TmpIC = 5978 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5979 std::max(1U, (MaxLocalUsers - 1))); 5980 } 5981 5982 IC = std::min(IC, TmpIC); 5983 } 5984 5985 // Clamp the interleave ranges to reasonable counts. 5986 unsigned MaxInterleaveCount = 5987 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5988 5989 // Check if the user has overridden the max. 5990 if (VF.isScalar()) { 5991 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5992 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5993 } else { 5994 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5995 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5996 } 5997 5998 // If trip count is known or estimated compile time constant, limit the 5999 // interleave count to be less than the trip count divided by VF, provided it 6000 // is at least 1. 6001 // 6002 // For scalable vectors we can't know if interleaving is beneficial. It may 6003 // not be beneficial for small loops if none of the lanes in the second vector 6004 // iterations is enabled. However, for larger loops, there is likely to be a 6005 // similar benefit as for fixed-width vectors. For now, we choose to leave 6006 // the InterleaveCount as if vscale is '1', although if some information about 6007 // the vector is known (e.g. min vector size), we can make a better decision. 6008 if (BestKnownTC) { 6009 MaxInterleaveCount = 6010 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6011 // Make sure MaxInterleaveCount is greater than 0. 6012 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6013 } 6014 6015 assert(MaxInterleaveCount > 0 && 6016 "Maximum interleave count must be greater than 0"); 6017 6018 // Clamp the calculated IC to be between the 1 and the max interleave count 6019 // that the target and trip count allows. 6020 if (IC > MaxInterleaveCount) 6021 IC = MaxInterleaveCount; 6022 else 6023 // Make sure IC is greater than 0. 6024 IC = std::max(1u, IC); 6025 6026 assert(IC > 0 && "Interleave count must be greater than 0."); 6027 6028 // If we did not calculate the cost for VF (because the user selected the VF) 6029 // then we calculate the cost of VF here. 6030 if (LoopCost == 0) { 6031 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6032 LoopCost = *expectedCost(VF).first.getValue(); 6033 } 6034 6035 assert(LoopCost && "Non-zero loop cost expected"); 6036 6037 // Interleave if we vectorized this loop and there is a reduction that could 6038 // benefit from interleaving. 6039 if (VF.isVector() && HasReductions) { 6040 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6041 return IC; 6042 } 6043 6044 // Note that if we've already vectorized the loop we will have done the 6045 // runtime check and so interleaving won't require further checks. 6046 bool InterleavingRequiresRuntimePointerCheck = 6047 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6048 6049 // We want to interleave small loops in order to reduce the loop overhead and 6050 // potentially expose ILP opportunities. 6051 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6052 << "LV: IC is " << IC << '\n' 6053 << "LV: VF is " << VF << '\n'); 6054 const bool AggressivelyInterleaveReductions = 6055 TTI.enableAggressiveInterleaving(HasReductions); 6056 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6057 // We assume that the cost overhead is 1 and we use the cost model 6058 // to estimate the cost of the loop and interleave until the cost of the 6059 // loop overhead is about 5% of the cost of the loop. 6060 unsigned SmallIC = 6061 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6062 6063 // Interleave until store/load ports (estimated by max interleave count) are 6064 // saturated. 6065 unsigned NumStores = Legal->getNumStores(); 6066 unsigned NumLoads = Legal->getNumLoads(); 6067 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6068 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6069 6070 // If we have a scalar reduction (vector reductions are already dealt with 6071 // by this point), we can increase the critical path length if the loop 6072 // we're interleaving is inside another loop. Limit, by default to 2, so the 6073 // critical path only gets increased by one reduction operation. 6074 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6075 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6076 SmallIC = std::min(SmallIC, F); 6077 StoresIC = std::min(StoresIC, F); 6078 LoadsIC = std::min(LoadsIC, F); 6079 } 6080 6081 if (EnableLoadStoreRuntimeInterleave && 6082 std::max(StoresIC, LoadsIC) > SmallIC) { 6083 LLVM_DEBUG( 6084 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6085 return std::max(StoresIC, LoadsIC); 6086 } 6087 6088 // If there are scalar reductions and TTI has enabled aggressive 6089 // interleaving for reductions, we will interleave to expose ILP. 6090 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6091 AggressivelyInterleaveReductions) { 6092 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6093 // Interleave no less than SmallIC but not as aggressive as the normal IC 6094 // to satisfy the rare situation when resources are too limited. 6095 return std::max(IC / 2, SmallIC); 6096 } else { 6097 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6098 return SmallIC; 6099 } 6100 } 6101 6102 // Interleave if this is a large loop (small loops are already dealt with by 6103 // this point) that could benefit from interleaving. 6104 if (AggressivelyInterleaveReductions) { 6105 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6106 return IC; 6107 } 6108 6109 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6110 return 1; 6111 } 6112 6113 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6114 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6115 // This function calculates the register usage by measuring the highest number 6116 // of values that are alive at a single location. Obviously, this is a very 6117 // rough estimation. We scan the loop in a topological order in order and 6118 // assign a number to each instruction. We use RPO to ensure that defs are 6119 // met before their users. We assume that each instruction that has in-loop 6120 // users starts an interval. We record every time that an in-loop value is 6121 // used, so we have a list of the first and last occurrences of each 6122 // instruction. Next, we transpose this data structure into a multi map that 6123 // holds the list of intervals that *end* at a specific location. This multi 6124 // map allows us to perform a linear search. We scan the instructions linearly 6125 // and record each time that a new interval starts, by placing it in a set. 6126 // If we find this value in the multi-map then we remove it from the set. 6127 // The max register usage is the maximum size of the set. 6128 // We also search for instructions that are defined outside the loop, but are 6129 // used inside the loop. We need this number separately from the max-interval 6130 // usage number because when we unroll, loop-invariant values do not take 6131 // more register. 6132 LoopBlocksDFS DFS(TheLoop); 6133 DFS.perform(LI); 6134 6135 RegisterUsage RU; 6136 6137 // Each 'key' in the map opens a new interval. The values 6138 // of the map are the index of the 'last seen' usage of the 6139 // instruction that is the key. 6140 using IntervalMap = DenseMap<Instruction *, unsigned>; 6141 6142 // Maps instruction to its index. 6143 SmallVector<Instruction *, 64> IdxToInstr; 6144 // Marks the end of each interval. 6145 IntervalMap EndPoint; 6146 // Saves the list of instruction indices that are used in the loop. 6147 SmallPtrSet<Instruction *, 8> Ends; 6148 // Saves the list of values that are used in the loop but are 6149 // defined outside the loop, such as arguments and constants. 6150 SmallPtrSet<Value *, 8> LoopInvariants; 6151 6152 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6153 for (Instruction &I : BB->instructionsWithoutDebug()) { 6154 IdxToInstr.push_back(&I); 6155 6156 // Save the end location of each USE. 6157 for (Value *U : I.operands()) { 6158 auto *Instr = dyn_cast<Instruction>(U); 6159 6160 // Ignore non-instruction values such as arguments, constants, etc. 6161 if (!Instr) 6162 continue; 6163 6164 // If this instruction is outside the loop then record it and continue. 6165 if (!TheLoop->contains(Instr)) { 6166 LoopInvariants.insert(Instr); 6167 continue; 6168 } 6169 6170 // Overwrite previous end points. 6171 EndPoint[Instr] = IdxToInstr.size(); 6172 Ends.insert(Instr); 6173 } 6174 } 6175 } 6176 6177 // Saves the list of intervals that end with the index in 'key'. 6178 using InstrList = SmallVector<Instruction *, 2>; 6179 DenseMap<unsigned, InstrList> TransposeEnds; 6180 6181 // Transpose the EndPoints to a list of values that end at each index. 6182 for (auto &Interval : EndPoint) 6183 TransposeEnds[Interval.second].push_back(Interval.first); 6184 6185 SmallPtrSet<Instruction *, 8> OpenIntervals; 6186 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6187 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6188 6189 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6190 6191 // A lambda that gets the register usage for the given type and VF. 6192 const auto &TTICapture = TTI; 6193 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6194 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6195 return 0U; 6196 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6197 }; 6198 6199 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6200 Instruction *I = IdxToInstr[i]; 6201 6202 // Remove all of the instructions that end at this location. 6203 InstrList &List = TransposeEnds[i]; 6204 for (Instruction *ToRemove : List) 6205 OpenIntervals.erase(ToRemove); 6206 6207 // Ignore instructions that are never used within the loop. 6208 if (!Ends.count(I)) 6209 continue; 6210 6211 // Skip ignored values. 6212 if (ValuesToIgnore.count(I)) 6213 continue; 6214 6215 // For each VF find the maximum usage of registers. 6216 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6217 // Count the number of live intervals. 6218 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6219 6220 if (VFs[j].isScalar()) { 6221 for (auto Inst : OpenIntervals) { 6222 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6223 if (RegUsage.find(ClassID) == RegUsage.end()) 6224 RegUsage[ClassID] = 1; 6225 else 6226 RegUsage[ClassID] += 1; 6227 } 6228 } else { 6229 collectUniformsAndScalars(VFs[j]); 6230 for (auto Inst : OpenIntervals) { 6231 // Skip ignored values for VF > 1. 6232 if (VecValuesToIgnore.count(Inst)) 6233 continue; 6234 if (isScalarAfterVectorization(Inst, VFs[j])) { 6235 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6236 if (RegUsage.find(ClassID) == RegUsage.end()) 6237 RegUsage[ClassID] = 1; 6238 else 6239 RegUsage[ClassID] += 1; 6240 } else { 6241 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6242 if (RegUsage.find(ClassID) == RegUsage.end()) 6243 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6244 else 6245 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6246 } 6247 } 6248 } 6249 6250 for (auto& pair : RegUsage) { 6251 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6252 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6253 else 6254 MaxUsages[j][pair.first] = pair.second; 6255 } 6256 } 6257 6258 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6259 << OpenIntervals.size() << '\n'); 6260 6261 // Add the current instruction to the list of open intervals. 6262 OpenIntervals.insert(I); 6263 } 6264 6265 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6266 SmallMapVector<unsigned, unsigned, 4> Invariant; 6267 6268 for (auto Inst : LoopInvariants) { 6269 unsigned Usage = 6270 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6271 unsigned ClassID = 6272 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6273 if (Invariant.find(ClassID) == Invariant.end()) 6274 Invariant[ClassID] = Usage; 6275 else 6276 Invariant[ClassID] += Usage; 6277 } 6278 6279 LLVM_DEBUG({ 6280 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6281 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6282 << " item\n"; 6283 for (const auto &pair : MaxUsages[i]) { 6284 dbgs() << "LV(REG): RegisterClass: " 6285 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6286 << " registers\n"; 6287 } 6288 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6289 << " item\n"; 6290 for (const auto &pair : Invariant) { 6291 dbgs() << "LV(REG): RegisterClass: " 6292 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6293 << " registers\n"; 6294 } 6295 }); 6296 6297 RU.LoopInvariantRegs = Invariant; 6298 RU.MaxLocalUsers = MaxUsages[i]; 6299 RUs[i] = RU; 6300 } 6301 6302 return RUs; 6303 } 6304 6305 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6306 // TODO: Cost model for emulated masked load/store is completely 6307 // broken. This hack guides the cost model to use an artificially 6308 // high enough value to practically disable vectorization with such 6309 // operations, except where previously deployed legality hack allowed 6310 // using very low cost values. This is to avoid regressions coming simply 6311 // from moving "masked load/store" check from legality to cost model. 6312 // Masked Load/Gather emulation was previously never allowed. 6313 // Limited number of Masked Store/Scatter emulation was allowed. 6314 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6315 return isa<LoadInst>(I) || 6316 (isa<StoreInst>(I) && 6317 NumPredStores > NumberOfStoresToPredicate); 6318 } 6319 6320 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6321 // If we aren't vectorizing the loop, or if we've already collected the 6322 // instructions to scalarize, there's nothing to do. Collection may already 6323 // have occurred if we have a user-selected VF and are now computing the 6324 // expected cost for interleaving. 6325 if (VF.isScalar() || VF.isZero() || 6326 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6327 return; 6328 6329 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6330 // not profitable to scalarize any instructions, the presence of VF in the 6331 // map will indicate that we've analyzed it already. 6332 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6333 6334 // Find all the instructions that are scalar with predication in the loop and 6335 // determine if it would be better to not if-convert the blocks they are in. 6336 // If so, we also record the instructions to scalarize. 6337 for (BasicBlock *BB : TheLoop->blocks()) { 6338 if (!blockNeedsPredication(BB)) 6339 continue; 6340 for (Instruction &I : *BB) 6341 if (isScalarWithPredication(&I)) { 6342 ScalarCostsTy ScalarCosts; 6343 // Do not apply discount logic if hacked cost is needed 6344 // for emulated masked memrefs. 6345 if (!useEmulatedMaskMemRefHack(&I) && 6346 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6347 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6348 // Remember that BB will remain after vectorization. 6349 PredicatedBBsAfterVectorization.insert(BB); 6350 } 6351 } 6352 } 6353 6354 int LoopVectorizationCostModel::computePredInstDiscount( 6355 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6356 assert(!isUniformAfterVectorization(PredInst, VF) && 6357 "Instruction marked uniform-after-vectorization will be predicated"); 6358 6359 // Initialize the discount to zero, meaning that the scalar version and the 6360 // vector version cost the same. 6361 InstructionCost Discount = 0; 6362 6363 // Holds instructions to analyze. The instructions we visit are mapped in 6364 // ScalarCosts. Those instructions are the ones that would be scalarized if 6365 // we find that the scalar version costs less. 6366 SmallVector<Instruction *, 8> Worklist; 6367 6368 // Returns true if the given instruction can be scalarized. 6369 auto canBeScalarized = [&](Instruction *I) -> bool { 6370 // We only attempt to scalarize instructions forming a single-use chain 6371 // from the original predicated block that would otherwise be vectorized. 6372 // Although not strictly necessary, we give up on instructions we know will 6373 // already be scalar to avoid traversing chains that are unlikely to be 6374 // beneficial. 6375 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6376 isScalarAfterVectorization(I, VF)) 6377 return false; 6378 6379 // If the instruction is scalar with predication, it will be analyzed 6380 // separately. We ignore it within the context of PredInst. 6381 if (isScalarWithPredication(I)) 6382 return false; 6383 6384 // If any of the instruction's operands are uniform after vectorization, 6385 // the instruction cannot be scalarized. This prevents, for example, a 6386 // masked load from being scalarized. 6387 // 6388 // We assume we will only emit a value for lane zero of an instruction 6389 // marked uniform after vectorization, rather than VF identical values. 6390 // Thus, if we scalarize an instruction that uses a uniform, we would 6391 // create uses of values corresponding to the lanes we aren't emitting code 6392 // for. This behavior can be changed by allowing getScalarValue to clone 6393 // the lane zero values for uniforms rather than asserting. 6394 for (Use &U : I->operands()) 6395 if (auto *J = dyn_cast<Instruction>(U.get())) 6396 if (isUniformAfterVectorization(J, VF)) 6397 return false; 6398 6399 // Otherwise, we can scalarize the instruction. 6400 return true; 6401 }; 6402 6403 // Compute the expected cost discount from scalarizing the entire expression 6404 // feeding the predicated instruction. We currently only consider expressions 6405 // that are single-use instruction chains. 6406 Worklist.push_back(PredInst); 6407 while (!Worklist.empty()) { 6408 Instruction *I = Worklist.pop_back_val(); 6409 6410 // If we've already analyzed the instruction, there's nothing to do. 6411 if (ScalarCosts.find(I) != ScalarCosts.end()) 6412 continue; 6413 6414 // Compute the cost of the vector instruction. Note that this cost already 6415 // includes the scalarization overhead of the predicated instruction. 6416 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6417 6418 // Compute the cost of the scalarized instruction. This cost is the cost of 6419 // the instruction as if it wasn't if-converted and instead remained in the 6420 // predicated block. We will scale this cost by block probability after 6421 // computing the scalarization overhead. 6422 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6423 InstructionCost ScalarCost = 6424 VF.getKnownMinValue() * 6425 getInstructionCost(I, ElementCount::getFixed(1)).first; 6426 6427 // Compute the scalarization overhead of needed insertelement instructions 6428 // and phi nodes. 6429 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6430 ScalarCost += TTI.getScalarizationOverhead( 6431 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6432 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6433 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6434 ScalarCost += 6435 VF.getKnownMinValue() * 6436 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6437 } 6438 6439 // Compute the scalarization overhead of needed extractelement 6440 // instructions. For each of the instruction's operands, if the operand can 6441 // be scalarized, add it to the worklist; otherwise, account for the 6442 // overhead. 6443 for (Use &U : I->operands()) 6444 if (auto *J = dyn_cast<Instruction>(U.get())) { 6445 assert(VectorType::isValidElementType(J->getType()) && 6446 "Instruction has non-scalar type"); 6447 if (canBeScalarized(J)) 6448 Worklist.push_back(J); 6449 else if (needsExtract(J, VF)) { 6450 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6451 ScalarCost += TTI.getScalarizationOverhead( 6452 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6453 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6454 } 6455 } 6456 6457 // Scale the total scalar cost by block probability. 6458 ScalarCost /= getReciprocalPredBlockProb(); 6459 6460 // Compute the discount. A non-negative discount means the vector version 6461 // of the instruction costs more, and scalarizing would be beneficial. 6462 Discount += VectorCost - ScalarCost; 6463 ScalarCosts[I] = ScalarCost; 6464 } 6465 6466 return *Discount.getValue(); 6467 } 6468 6469 LoopVectorizationCostModel::VectorizationCostTy 6470 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6471 VectorizationCostTy Cost; 6472 6473 // For each block. 6474 for (BasicBlock *BB : TheLoop->blocks()) { 6475 VectorizationCostTy BlockCost; 6476 6477 // For each instruction in the old loop. 6478 for (Instruction &I : BB->instructionsWithoutDebug()) { 6479 // Skip ignored values. 6480 if (ValuesToIgnore.count(&I) || 6481 (VF.isVector() && VecValuesToIgnore.count(&I))) 6482 continue; 6483 6484 VectorizationCostTy C = getInstructionCost(&I, VF); 6485 6486 // Check if we should override the cost. 6487 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6488 C.first = InstructionCost(ForceTargetInstructionCost); 6489 6490 BlockCost.first += C.first; 6491 BlockCost.second |= C.second; 6492 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6493 << " for VF " << VF << " For instruction: " << I 6494 << '\n'); 6495 } 6496 6497 // If we are vectorizing a predicated block, it will have been 6498 // if-converted. This means that the block's instructions (aside from 6499 // stores and instructions that may divide by zero) will now be 6500 // unconditionally executed. For the scalar case, we may not always execute 6501 // the predicated block, if it is an if-else block. Thus, scale the block's 6502 // cost by the probability of executing it. blockNeedsPredication from 6503 // Legal is used so as to not include all blocks in tail folded loops. 6504 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6505 BlockCost.first /= getReciprocalPredBlockProb(); 6506 6507 Cost.first += BlockCost.first; 6508 Cost.second |= BlockCost.second; 6509 } 6510 6511 return Cost; 6512 } 6513 6514 /// Gets Address Access SCEV after verifying that the access pattern 6515 /// is loop invariant except the induction variable dependence. 6516 /// 6517 /// This SCEV can be sent to the Target in order to estimate the address 6518 /// calculation cost. 6519 static const SCEV *getAddressAccessSCEV( 6520 Value *Ptr, 6521 LoopVectorizationLegality *Legal, 6522 PredicatedScalarEvolution &PSE, 6523 const Loop *TheLoop) { 6524 6525 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6526 if (!Gep) 6527 return nullptr; 6528 6529 // We are looking for a gep with all loop invariant indices except for one 6530 // which should be an induction variable. 6531 auto SE = PSE.getSE(); 6532 unsigned NumOperands = Gep->getNumOperands(); 6533 for (unsigned i = 1; i < NumOperands; ++i) { 6534 Value *Opd = Gep->getOperand(i); 6535 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6536 !Legal->isInductionVariable(Opd)) 6537 return nullptr; 6538 } 6539 6540 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6541 return PSE.getSCEV(Ptr); 6542 } 6543 6544 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6545 return Legal->hasStride(I->getOperand(0)) || 6546 Legal->hasStride(I->getOperand(1)); 6547 } 6548 6549 InstructionCost 6550 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6551 ElementCount VF) { 6552 assert(VF.isVector() && 6553 "Scalarization cost of instruction implies vectorization."); 6554 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6555 Type *ValTy = getMemInstValueType(I); 6556 auto SE = PSE.getSE(); 6557 6558 unsigned AS = getLoadStoreAddressSpace(I); 6559 Value *Ptr = getLoadStorePointerOperand(I); 6560 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6561 6562 // Figure out whether the access is strided and get the stride value 6563 // if it's known in compile time 6564 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6565 6566 // Get the cost of the scalar memory instruction and address computation. 6567 InstructionCost Cost = 6568 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6569 6570 // Don't pass *I here, since it is scalar but will actually be part of a 6571 // vectorized loop where the user of it is a vectorized instruction. 6572 const Align Alignment = getLoadStoreAlignment(I); 6573 Cost += VF.getKnownMinValue() * 6574 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6575 AS, TTI::TCK_RecipThroughput); 6576 6577 // Get the overhead of the extractelement and insertelement instructions 6578 // we might create due to scalarization. 6579 Cost += getScalarizationOverhead(I, VF); 6580 6581 // If we have a predicated store, it may not be executed for each vector 6582 // lane. Scale the cost by the probability of executing the predicated 6583 // block. 6584 if (isPredicatedInst(I)) { 6585 Cost /= getReciprocalPredBlockProb(); 6586 6587 if (useEmulatedMaskMemRefHack(I)) 6588 // Artificially setting to a high enough value to practically disable 6589 // vectorization with such operations. 6590 Cost = 3000000; 6591 } 6592 6593 return Cost; 6594 } 6595 6596 InstructionCost 6597 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6598 ElementCount VF) { 6599 Type *ValTy = getMemInstValueType(I); 6600 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6601 Value *Ptr = getLoadStorePointerOperand(I); 6602 unsigned AS = getLoadStoreAddressSpace(I); 6603 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6604 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6605 6606 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6607 "Stride should be 1 or -1 for consecutive memory access"); 6608 const Align Alignment = getLoadStoreAlignment(I); 6609 InstructionCost Cost = 0; 6610 if (Legal->isMaskRequired(I)) 6611 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6612 CostKind); 6613 else 6614 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6615 CostKind, I); 6616 6617 bool Reverse = ConsecutiveStride < 0; 6618 if (Reverse) 6619 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6620 return Cost; 6621 } 6622 6623 InstructionCost 6624 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6625 ElementCount VF) { 6626 assert(Legal->isUniformMemOp(*I)); 6627 6628 Type *ValTy = getMemInstValueType(I); 6629 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6630 const Align Alignment = getLoadStoreAlignment(I); 6631 unsigned AS = getLoadStoreAddressSpace(I); 6632 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6633 if (isa<LoadInst>(I)) { 6634 return TTI.getAddressComputationCost(ValTy) + 6635 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6636 CostKind) + 6637 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6638 } 6639 StoreInst *SI = cast<StoreInst>(I); 6640 6641 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6642 return TTI.getAddressComputationCost(ValTy) + 6643 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6644 CostKind) + 6645 (isLoopInvariantStoreValue 6646 ? 0 6647 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6648 VF.getKnownMinValue() - 1)); 6649 } 6650 6651 InstructionCost 6652 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6653 ElementCount VF) { 6654 Type *ValTy = getMemInstValueType(I); 6655 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6656 const Align Alignment = getLoadStoreAlignment(I); 6657 const Value *Ptr = getLoadStorePointerOperand(I); 6658 6659 return TTI.getAddressComputationCost(VectorTy) + 6660 TTI.getGatherScatterOpCost( 6661 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6662 TargetTransformInfo::TCK_RecipThroughput, I); 6663 } 6664 6665 InstructionCost 6666 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6667 ElementCount VF) { 6668 // TODO: Once we have support for interleaving with scalable vectors 6669 // we can calculate the cost properly here. 6670 if (VF.isScalable()) 6671 return InstructionCost::getInvalid(); 6672 6673 Type *ValTy = getMemInstValueType(I); 6674 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6675 unsigned AS = getLoadStoreAddressSpace(I); 6676 6677 auto Group = getInterleavedAccessGroup(I); 6678 assert(Group && "Fail to get an interleaved access group."); 6679 6680 unsigned InterleaveFactor = Group->getFactor(); 6681 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6682 6683 // Holds the indices of existing members in an interleaved load group. 6684 // An interleaved store group doesn't need this as it doesn't allow gaps. 6685 SmallVector<unsigned, 4> Indices; 6686 if (isa<LoadInst>(I)) { 6687 for (unsigned i = 0; i < InterleaveFactor; i++) 6688 if (Group->getMember(i)) 6689 Indices.push_back(i); 6690 } 6691 6692 // Calculate the cost of the whole interleaved group. 6693 bool UseMaskForGaps = 6694 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6695 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6696 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6697 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6698 6699 if (Group->isReverse()) { 6700 // TODO: Add support for reversed masked interleaved access. 6701 assert(!Legal->isMaskRequired(I) && 6702 "Reverse masked interleaved access not supported."); 6703 Cost += Group->getNumMembers() * 6704 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6705 } 6706 return Cost; 6707 } 6708 6709 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6710 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6711 // Early exit for no inloop reductions 6712 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6713 return InstructionCost::getInvalid(); 6714 auto *VectorTy = cast<VectorType>(Ty); 6715 6716 // We are looking for a pattern of, and finding the minimal acceptable cost: 6717 // reduce(mul(ext(A), ext(B))) or 6718 // reduce(mul(A, B)) or 6719 // reduce(ext(A)) or 6720 // reduce(A). 6721 // The basic idea is that we walk down the tree to do that, finding the root 6722 // reduction instruction in InLoopReductionImmediateChains. From there we find 6723 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6724 // of the components. If the reduction cost is lower then we return it for the 6725 // reduction instruction and 0 for the other instructions in the pattern. If 6726 // it is not we return an invalid cost specifying the orignal cost method 6727 // should be used. 6728 Instruction *RetI = I; 6729 if ((RetI->getOpcode() == Instruction::SExt || 6730 RetI->getOpcode() == Instruction::ZExt)) { 6731 if (!RetI->hasOneUser()) 6732 return InstructionCost::getInvalid(); 6733 RetI = RetI->user_back(); 6734 } 6735 if (RetI->getOpcode() == Instruction::Mul && 6736 RetI->user_back()->getOpcode() == Instruction::Add) { 6737 if (!RetI->hasOneUser()) 6738 return InstructionCost::getInvalid(); 6739 RetI = RetI->user_back(); 6740 } 6741 6742 // Test if the found instruction is a reduction, and if not return an invalid 6743 // cost specifying the parent to use the original cost modelling. 6744 if (!InLoopReductionImmediateChains.count(RetI)) 6745 return InstructionCost::getInvalid(); 6746 6747 // Find the reduction this chain is a part of and calculate the basic cost of 6748 // the reduction on its own. 6749 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6750 Instruction *ReductionPhi = LastChain; 6751 while (!isa<PHINode>(ReductionPhi)) 6752 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6753 6754 RecurrenceDescriptor RdxDesc = 6755 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6756 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6757 VectorTy, false, CostKind); 6758 6759 // Get the operand that was not the reduction chain and match it to one of the 6760 // patterns, returning the better cost if it is found. 6761 Instruction *RedOp = RetI->getOperand(1) == LastChain 6762 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6763 : dyn_cast<Instruction>(RetI->getOperand(1)); 6764 6765 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6766 6767 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6768 !TheLoop->isLoopInvariant(RedOp)) { 6769 bool IsUnsigned = isa<ZExtInst>(RedOp); 6770 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6771 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6772 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6773 CostKind); 6774 6775 unsigned ExtCost = 6776 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6777 TTI::CastContextHint::None, CostKind, RedOp); 6778 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6779 return I == RetI ? *RedCost.getValue() : 0; 6780 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6781 Instruction *Mul = RedOp; 6782 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6783 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6784 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6785 Op0->getOpcode() == Op1->getOpcode() && 6786 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6787 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6788 bool IsUnsigned = isa<ZExtInst>(Op0); 6789 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6790 // reduce(mul(ext, ext)) 6791 unsigned ExtCost = 6792 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6793 TTI::CastContextHint::None, CostKind, Op0); 6794 unsigned MulCost = 6795 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6796 6797 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6798 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6799 CostKind); 6800 6801 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6802 return I == RetI ? *RedCost.getValue() : 0; 6803 } else { 6804 unsigned MulCost = 6805 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6806 6807 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6808 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6809 CostKind); 6810 6811 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6812 return I == RetI ? *RedCost.getValue() : 0; 6813 } 6814 } 6815 6816 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6817 } 6818 6819 InstructionCost 6820 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6821 ElementCount VF) { 6822 // Calculate scalar cost only. Vectorization cost should be ready at this 6823 // moment. 6824 if (VF.isScalar()) { 6825 Type *ValTy = getMemInstValueType(I); 6826 const Align Alignment = getLoadStoreAlignment(I); 6827 unsigned AS = getLoadStoreAddressSpace(I); 6828 6829 return TTI.getAddressComputationCost(ValTy) + 6830 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6831 TTI::TCK_RecipThroughput, I); 6832 } 6833 return getWideningCost(I, VF); 6834 } 6835 6836 LoopVectorizationCostModel::VectorizationCostTy 6837 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6838 ElementCount VF) { 6839 // If we know that this instruction will remain uniform, check the cost of 6840 // the scalar version. 6841 if (isUniformAfterVectorization(I, VF)) 6842 VF = ElementCount::getFixed(1); 6843 6844 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6845 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6846 6847 // Forced scalars do not have any scalarization overhead. 6848 auto ForcedScalar = ForcedScalars.find(VF); 6849 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6850 auto InstSet = ForcedScalar->second; 6851 if (InstSet.count(I)) 6852 return VectorizationCostTy( 6853 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6854 VF.getKnownMinValue()), 6855 false); 6856 } 6857 6858 Type *VectorTy; 6859 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6860 6861 bool TypeNotScalarized = 6862 VF.isVector() && VectorTy->isVectorTy() && 6863 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6864 return VectorizationCostTy(C, TypeNotScalarized); 6865 } 6866 6867 InstructionCost 6868 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6869 ElementCount VF) { 6870 6871 if (VF.isScalable()) 6872 return InstructionCost::getInvalid(); 6873 6874 if (VF.isScalar()) 6875 return 0; 6876 6877 InstructionCost Cost = 0; 6878 Type *RetTy = ToVectorTy(I->getType(), VF); 6879 if (!RetTy->isVoidTy() && 6880 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6881 Cost += TTI.getScalarizationOverhead( 6882 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6883 true, false); 6884 6885 // Some targets keep addresses scalar. 6886 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6887 return Cost; 6888 6889 // Some targets support efficient element stores. 6890 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6891 return Cost; 6892 6893 // Collect operands to consider. 6894 CallInst *CI = dyn_cast<CallInst>(I); 6895 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6896 6897 // Skip operands that do not require extraction/scalarization and do not incur 6898 // any overhead. 6899 return Cost + TTI.getOperandsScalarizationOverhead( 6900 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6901 } 6902 6903 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6904 if (VF.isScalar()) 6905 return; 6906 NumPredStores = 0; 6907 for (BasicBlock *BB : TheLoop->blocks()) { 6908 // For each instruction in the old loop. 6909 for (Instruction &I : *BB) { 6910 Value *Ptr = getLoadStorePointerOperand(&I); 6911 if (!Ptr) 6912 continue; 6913 6914 // TODO: We should generate better code and update the cost model for 6915 // predicated uniform stores. Today they are treated as any other 6916 // predicated store (see added test cases in 6917 // invariant-store-vectorization.ll). 6918 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6919 NumPredStores++; 6920 6921 if (Legal->isUniformMemOp(I)) { 6922 // TODO: Avoid replicating loads and stores instead of 6923 // relying on instcombine to remove them. 6924 // Load: Scalar load + broadcast 6925 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6926 InstructionCost Cost = getUniformMemOpCost(&I, VF); 6927 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6928 continue; 6929 } 6930 6931 // We assume that widening is the best solution when possible. 6932 if (memoryInstructionCanBeWidened(&I, VF)) { 6933 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6934 int ConsecutiveStride = 6935 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6936 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6937 "Expected consecutive stride."); 6938 InstWidening Decision = 6939 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6940 setWideningDecision(&I, VF, Decision, Cost); 6941 continue; 6942 } 6943 6944 // Choose between Interleaving, Gather/Scatter or Scalarization. 6945 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6946 unsigned NumAccesses = 1; 6947 if (isAccessInterleaved(&I)) { 6948 auto Group = getInterleavedAccessGroup(&I); 6949 assert(Group && "Fail to get an interleaved access group."); 6950 6951 // Make one decision for the whole group. 6952 if (getWideningDecision(&I, VF) != CM_Unknown) 6953 continue; 6954 6955 NumAccesses = Group->getNumMembers(); 6956 if (interleavedAccessCanBeWidened(&I, VF)) 6957 InterleaveCost = getInterleaveGroupCost(&I, VF); 6958 } 6959 6960 InstructionCost GatherScatterCost = 6961 isLegalGatherOrScatter(&I) 6962 ? getGatherScatterCost(&I, VF) * NumAccesses 6963 : InstructionCost::getInvalid(); 6964 6965 InstructionCost ScalarizationCost = 6966 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 6967 : InstructionCost::getInvalid(); 6968 6969 // Choose better solution for the current VF, 6970 // write down this decision and use it during vectorization. 6971 InstructionCost Cost; 6972 InstWidening Decision; 6973 if (InterleaveCost <= GatherScatterCost && 6974 InterleaveCost < ScalarizationCost) { 6975 Decision = CM_Interleave; 6976 Cost = InterleaveCost; 6977 } else if (GatherScatterCost < ScalarizationCost) { 6978 Decision = CM_GatherScatter; 6979 Cost = GatherScatterCost; 6980 } else { 6981 assert(!VF.isScalable() && 6982 "We cannot yet scalarise for scalable vectors"); 6983 Decision = CM_Scalarize; 6984 Cost = ScalarizationCost; 6985 } 6986 // If the instructions belongs to an interleave group, the whole group 6987 // receives the same decision. The whole group receives the cost, but 6988 // the cost will actually be assigned to one instruction. 6989 if (auto Group = getInterleavedAccessGroup(&I)) 6990 setWideningDecision(Group, VF, Decision, Cost); 6991 else 6992 setWideningDecision(&I, VF, Decision, Cost); 6993 } 6994 } 6995 6996 // Make sure that any load of address and any other address computation 6997 // remains scalar unless there is gather/scatter support. This avoids 6998 // inevitable extracts into address registers, and also has the benefit of 6999 // activating LSR more, since that pass can't optimize vectorized 7000 // addresses. 7001 if (TTI.prefersVectorizedAddressing()) 7002 return; 7003 7004 // Start with all scalar pointer uses. 7005 SmallPtrSet<Instruction *, 8> AddrDefs; 7006 for (BasicBlock *BB : TheLoop->blocks()) 7007 for (Instruction &I : *BB) { 7008 Instruction *PtrDef = 7009 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7010 if (PtrDef && TheLoop->contains(PtrDef) && 7011 getWideningDecision(&I, VF) != CM_GatherScatter) 7012 AddrDefs.insert(PtrDef); 7013 } 7014 7015 // Add all instructions used to generate the addresses. 7016 SmallVector<Instruction *, 4> Worklist; 7017 append_range(Worklist, AddrDefs); 7018 while (!Worklist.empty()) { 7019 Instruction *I = Worklist.pop_back_val(); 7020 for (auto &Op : I->operands()) 7021 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7022 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7023 AddrDefs.insert(InstOp).second) 7024 Worklist.push_back(InstOp); 7025 } 7026 7027 for (auto *I : AddrDefs) { 7028 if (isa<LoadInst>(I)) { 7029 // Setting the desired widening decision should ideally be handled in 7030 // by cost functions, but since this involves the task of finding out 7031 // if the loaded register is involved in an address computation, it is 7032 // instead changed here when we know this is the case. 7033 InstWidening Decision = getWideningDecision(I, VF); 7034 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7035 // Scalarize a widened load of address. 7036 setWideningDecision( 7037 I, VF, CM_Scalarize, 7038 (VF.getKnownMinValue() * 7039 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7040 else if (auto Group = getInterleavedAccessGroup(I)) { 7041 // Scalarize an interleave group of address loads. 7042 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7043 if (Instruction *Member = Group->getMember(I)) 7044 setWideningDecision( 7045 Member, VF, CM_Scalarize, 7046 (VF.getKnownMinValue() * 7047 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7048 } 7049 } 7050 } else 7051 // Make sure I gets scalarized and a cost estimate without 7052 // scalarization overhead. 7053 ForcedScalars[VF].insert(I); 7054 } 7055 } 7056 7057 InstructionCost 7058 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7059 Type *&VectorTy) { 7060 Type *RetTy = I->getType(); 7061 if (canTruncateToMinimalBitwidth(I, VF)) 7062 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7063 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7064 auto SE = PSE.getSE(); 7065 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7066 7067 // TODO: We need to estimate the cost of intrinsic calls. 7068 switch (I->getOpcode()) { 7069 case Instruction::GetElementPtr: 7070 // We mark this instruction as zero-cost because the cost of GEPs in 7071 // vectorized code depends on whether the corresponding memory instruction 7072 // is scalarized or not. Therefore, we handle GEPs with the memory 7073 // instruction cost. 7074 return 0; 7075 case Instruction::Br: { 7076 // In cases of scalarized and predicated instructions, there will be VF 7077 // predicated blocks in the vectorized loop. Each branch around these 7078 // blocks requires also an extract of its vector compare i1 element. 7079 bool ScalarPredicatedBB = false; 7080 BranchInst *BI = cast<BranchInst>(I); 7081 if (VF.isVector() && BI->isConditional() && 7082 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7083 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7084 ScalarPredicatedBB = true; 7085 7086 if (ScalarPredicatedBB) { 7087 // Return cost for branches around scalarized and predicated blocks. 7088 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7089 auto *Vec_i1Ty = 7090 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7091 return (TTI.getScalarizationOverhead( 7092 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7093 false, true) + 7094 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7095 VF.getKnownMinValue())); 7096 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7097 // The back-edge branch will remain, as will all scalar branches. 7098 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7099 else 7100 // This branch will be eliminated by if-conversion. 7101 return 0; 7102 // Note: We currently assume zero cost for an unconditional branch inside 7103 // a predicated block since it will become a fall-through, although we 7104 // may decide in the future to call TTI for all branches. 7105 } 7106 case Instruction::PHI: { 7107 auto *Phi = cast<PHINode>(I); 7108 7109 // First-order recurrences are replaced by vector shuffles inside the loop. 7110 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7111 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7112 return TTI.getShuffleCost( 7113 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7114 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7115 7116 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7117 // converted into select instructions. We require N - 1 selects per phi 7118 // node, where N is the number of incoming values. 7119 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7120 return (Phi->getNumIncomingValues() - 1) * 7121 TTI.getCmpSelInstrCost( 7122 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7123 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7124 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7125 7126 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7127 } 7128 case Instruction::UDiv: 7129 case Instruction::SDiv: 7130 case Instruction::URem: 7131 case Instruction::SRem: 7132 // If we have a predicated instruction, it may not be executed for each 7133 // vector lane. Get the scalarization cost and scale this amount by the 7134 // probability of executing the predicated block. If the instruction is not 7135 // predicated, we fall through to the next case. 7136 if (VF.isVector() && isScalarWithPredication(I)) { 7137 InstructionCost Cost = 0; 7138 7139 // These instructions have a non-void type, so account for the phi nodes 7140 // that we will create. This cost is likely to be zero. The phi node 7141 // cost, if any, should be scaled by the block probability because it 7142 // models a copy at the end of each predicated block. 7143 Cost += VF.getKnownMinValue() * 7144 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7145 7146 // The cost of the non-predicated instruction. 7147 Cost += VF.getKnownMinValue() * 7148 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7149 7150 // The cost of insertelement and extractelement instructions needed for 7151 // scalarization. 7152 Cost += getScalarizationOverhead(I, VF); 7153 7154 // Scale the cost by the probability of executing the predicated blocks. 7155 // This assumes the predicated block for each vector lane is equally 7156 // likely. 7157 return Cost / getReciprocalPredBlockProb(); 7158 } 7159 LLVM_FALLTHROUGH; 7160 case Instruction::Add: 7161 case Instruction::FAdd: 7162 case Instruction::Sub: 7163 case Instruction::FSub: 7164 case Instruction::Mul: 7165 case Instruction::FMul: 7166 case Instruction::FDiv: 7167 case Instruction::FRem: 7168 case Instruction::Shl: 7169 case Instruction::LShr: 7170 case Instruction::AShr: 7171 case Instruction::And: 7172 case Instruction::Or: 7173 case Instruction::Xor: { 7174 // Since we will replace the stride by 1 the multiplication should go away. 7175 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7176 return 0; 7177 7178 // Detect reduction patterns 7179 InstructionCost RedCost; 7180 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7181 .isValid()) 7182 return RedCost; 7183 7184 // Certain instructions can be cheaper to vectorize if they have a constant 7185 // second vector operand. One example of this are shifts on x86. 7186 Value *Op2 = I->getOperand(1); 7187 TargetTransformInfo::OperandValueProperties Op2VP; 7188 TargetTransformInfo::OperandValueKind Op2VK = 7189 TTI.getOperandInfo(Op2, Op2VP); 7190 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7191 Op2VK = TargetTransformInfo::OK_UniformValue; 7192 7193 SmallVector<const Value *, 4> Operands(I->operand_values()); 7194 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7195 return N * TTI.getArithmeticInstrCost( 7196 I->getOpcode(), VectorTy, CostKind, 7197 TargetTransformInfo::OK_AnyValue, 7198 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7199 } 7200 case Instruction::FNeg: { 7201 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7202 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7203 return N * TTI.getArithmeticInstrCost( 7204 I->getOpcode(), VectorTy, CostKind, 7205 TargetTransformInfo::OK_AnyValue, 7206 TargetTransformInfo::OK_AnyValue, 7207 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7208 I->getOperand(0), I); 7209 } 7210 case Instruction::Select: { 7211 SelectInst *SI = cast<SelectInst>(I); 7212 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7213 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7214 Type *CondTy = SI->getCondition()->getType(); 7215 if (!ScalarCond) 7216 CondTy = VectorType::get(CondTy, VF); 7217 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7218 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7219 } 7220 case Instruction::ICmp: 7221 case Instruction::FCmp: { 7222 Type *ValTy = I->getOperand(0)->getType(); 7223 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7224 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7225 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7226 VectorTy = ToVectorTy(ValTy, VF); 7227 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7228 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7229 } 7230 case Instruction::Store: 7231 case Instruction::Load: { 7232 ElementCount Width = VF; 7233 if (Width.isVector()) { 7234 InstWidening Decision = getWideningDecision(I, Width); 7235 assert(Decision != CM_Unknown && 7236 "CM decision should be taken at this point"); 7237 if (Decision == CM_Scalarize) 7238 Width = ElementCount::getFixed(1); 7239 } 7240 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7241 return getMemoryInstructionCost(I, VF); 7242 } 7243 case Instruction::ZExt: 7244 case Instruction::SExt: 7245 case Instruction::FPToUI: 7246 case Instruction::FPToSI: 7247 case Instruction::FPExt: 7248 case Instruction::PtrToInt: 7249 case Instruction::IntToPtr: 7250 case Instruction::SIToFP: 7251 case Instruction::UIToFP: 7252 case Instruction::Trunc: 7253 case Instruction::FPTrunc: 7254 case Instruction::BitCast: { 7255 // Computes the CastContextHint from a Load/Store instruction. 7256 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7257 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7258 "Expected a load or a store!"); 7259 7260 if (VF.isScalar() || !TheLoop->contains(I)) 7261 return TTI::CastContextHint::Normal; 7262 7263 switch (getWideningDecision(I, VF)) { 7264 case LoopVectorizationCostModel::CM_GatherScatter: 7265 return TTI::CastContextHint::GatherScatter; 7266 case LoopVectorizationCostModel::CM_Interleave: 7267 return TTI::CastContextHint::Interleave; 7268 case LoopVectorizationCostModel::CM_Scalarize: 7269 case LoopVectorizationCostModel::CM_Widen: 7270 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7271 : TTI::CastContextHint::Normal; 7272 case LoopVectorizationCostModel::CM_Widen_Reverse: 7273 return TTI::CastContextHint::Reversed; 7274 case LoopVectorizationCostModel::CM_Unknown: 7275 llvm_unreachable("Instr did not go through cost modelling?"); 7276 } 7277 7278 llvm_unreachable("Unhandled case!"); 7279 }; 7280 7281 unsigned Opcode = I->getOpcode(); 7282 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7283 // For Trunc, the context is the only user, which must be a StoreInst. 7284 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7285 if (I->hasOneUse()) 7286 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7287 CCH = ComputeCCH(Store); 7288 } 7289 // For Z/Sext, the context is the operand, which must be a LoadInst. 7290 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7291 Opcode == Instruction::FPExt) { 7292 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7293 CCH = ComputeCCH(Load); 7294 } 7295 7296 // We optimize the truncation of induction variables having constant 7297 // integer steps. The cost of these truncations is the same as the scalar 7298 // operation. 7299 if (isOptimizableIVTruncate(I, VF)) { 7300 auto *Trunc = cast<TruncInst>(I); 7301 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7302 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7303 } 7304 7305 // Detect reduction patterns 7306 InstructionCost RedCost; 7307 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7308 .isValid()) 7309 return RedCost; 7310 7311 Type *SrcScalarTy = I->getOperand(0)->getType(); 7312 Type *SrcVecTy = 7313 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7314 if (canTruncateToMinimalBitwidth(I, VF)) { 7315 // This cast is going to be shrunk. This may remove the cast or it might 7316 // turn it into slightly different cast. For example, if MinBW == 16, 7317 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7318 // 7319 // Calculate the modified src and dest types. 7320 Type *MinVecTy = VectorTy; 7321 if (Opcode == Instruction::Trunc) { 7322 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7323 VectorTy = 7324 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7325 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7326 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7327 VectorTy = 7328 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7329 } 7330 } 7331 7332 unsigned N; 7333 if (isScalarAfterVectorization(I, VF)) { 7334 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7335 N = VF.getKnownMinValue(); 7336 } else 7337 N = 1; 7338 return N * 7339 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7340 } 7341 case Instruction::Call: { 7342 bool NeedToScalarize; 7343 CallInst *CI = cast<CallInst>(I); 7344 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7345 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7346 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7347 return std::min(CallCost, IntrinsicCost); 7348 } 7349 return CallCost; 7350 } 7351 case Instruction::ExtractValue: 7352 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7353 default: 7354 // The cost of executing VF copies of the scalar instruction. This opcode 7355 // is unknown. Assume that it is the same as 'mul'. 7356 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7357 Instruction::Mul, VectorTy, CostKind) + 7358 getScalarizationOverhead(I, VF); 7359 } // end of switch. 7360 } 7361 7362 char LoopVectorize::ID = 0; 7363 7364 static const char lv_name[] = "Loop Vectorization"; 7365 7366 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7367 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7368 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7369 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7370 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7371 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7372 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7373 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7374 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7375 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7376 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7377 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7378 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7379 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7380 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7381 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7382 7383 namespace llvm { 7384 7385 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7386 7387 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7388 bool VectorizeOnlyWhenForced) { 7389 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7390 } 7391 7392 } // end namespace llvm 7393 7394 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7395 // Check if the pointer operand of a load or store instruction is 7396 // consecutive. 7397 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7398 return Legal->isConsecutivePtr(Ptr); 7399 return false; 7400 } 7401 7402 void LoopVectorizationCostModel::collectValuesToIgnore() { 7403 // Ignore ephemeral values. 7404 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7405 7406 // Ignore type-promoting instructions we identified during reduction 7407 // detection. 7408 for (auto &Reduction : Legal->getReductionVars()) { 7409 RecurrenceDescriptor &RedDes = Reduction.second; 7410 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7411 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7412 } 7413 // Ignore type-casting instructions we identified during induction 7414 // detection. 7415 for (auto &Induction : Legal->getInductionVars()) { 7416 InductionDescriptor &IndDes = Induction.second; 7417 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7418 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7419 } 7420 } 7421 7422 void LoopVectorizationCostModel::collectInLoopReductions() { 7423 for (auto &Reduction : Legal->getReductionVars()) { 7424 PHINode *Phi = Reduction.first; 7425 RecurrenceDescriptor &RdxDesc = Reduction.second; 7426 7427 // We don't collect reductions that are type promoted (yet). 7428 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7429 continue; 7430 7431 // If the target would prefer this reduction to happen "in-loop", then we 7432 // want to record it as such. 7433 unsigned Opcode = RdxDesc.getOpcode(); 7434 if (!PreferInLoopReductions && 7435 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7436 TargetTransformInfo::ReductionFlags())) 7437 continue; 7438 7439 // Check that we can correctly put the reductions into the loop, by 7440 // finding the chain of operations that leads from the phi to the loop 7441 // exit value. 7442 SmallVector<Instruction *, 4> ReductionOperations = 7443 RdxDesc.getReductionOpChain(Phi, TheLoop); 7444 bool InLoop = !ReductionOperations.empty(); 7445 if (InLoop) { 7446 InLoopReductionChains[Phi] = ReductionOperations; 7447 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7448 Instruction *LastChain = Phi; 7449 for (auto *I : ReductionOperations) { 7450 InLoopReductionImmediateChains[I] = LastChain; 7451 LastChain = I; 7452 } 7453 } 7454 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7455 << " reduction for phi: " << *Phi << "\n"); 7456 } 7457 } 7458 7459 // TODO: we could return a pair of values that specify the max VF and 7460 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7461 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7462 // doesn't have a cost model that can choose which plan to execute if 7463 // more than one is generated. 7464 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7465 LoopVectorizationCostModel &CM) { 7466 unsigned WidestType; 7467 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7468 return WidestVectorRegBits / WidestType; 7469 } 7470 7471 VectorizationFactor 7472 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7473 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7474 ElementCount VF = UserVF; 7475 // Outer loop handling: They may require CFG and instruction level 7476 // transformations before even evaluating whether vectorization is profitable. 7477 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7478 // the vectorization pipeline. 7479 if (!OrigLoop->isInnermost()) { 7480 // If the user doesn't provide a vectorization factor, determine a 7481 // reasonable one. 7482 if (UserVF.isZero()) { 7483 VF = ElementCount::getFixed( 7484 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7485 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7486 7487 // Make sure we have a VF > 1 for stress testing. 7488 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7489 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7490 << "overriding computed VF.\n"); 7491 VF = ElementCount::getFixed(4); 7492 } 7493 } 7494 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7495 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7496 "VF needs to be a power of two"); 7497 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7498 << "VF " << VF << " to build VPlans.\n"); 7499 buildVPlans(VF, VF); 7500 7501 // For VPlan build stress testing, we bail out after VPlan construction. 7502 if (VPlanBuildStressTest) 7503 return VectorizationFactor::Disabled(); 7504 7505 return {VF, 0 /*Cost*/}; 7506 } 7507 7508 LLVM_DEBUG( 7509 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7510 "VPlan-native path.\n"); 7511 return VectorizationFactor::Disabled(); 7512 } 7513 7514 Optional<VectorizationFactor> 7515 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7516 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7517 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7518 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7519 return None; 7520 7521 // Invalidate interleave groups if all blocks of loop will be predicated. 7522 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7523 !useMaskedInterleavedAccesses(*TTI)) { 7524 LLVM_DEBUG( 7525 dbgs() 7526 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7527 "which requires masked-interleaved support.\n"); 7528 if (CM.InterleaveInfo.invalidateGroups()) 7529 // Invalidating interleave groups also requires invalidating all decisions 7530 // based on them, which includes widening decisions and uniform and scalar 7531 // values. 7532 CM.invalidateCostModelingDecisions(); 7533 } 7534 7535 ElementCount MaxVF = MaybeMaxVF.getValue(); 7536 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7537 7538 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7539 if (!UserVF.isZero() && 7540 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7541 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7542 // VFs here, this should be reverted to only use legal UserVFs once the 7543 // loop below supports scalable VFs. 7544 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7545 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7546 << " VF " << VF << ".\n"); 7547 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7548 "VF needs to be a power of two"); 7549 // Collect the instructions (and their associated costs) that will be more 7550 // profitable to scalarize. 7551 CM.selectUserVectorizationFactor(VF); 7552 CM.collectInLoopReductions(); 7553 buildVPlansWithVPRecipes(VF, VF); 7554 LLVM_DEBUG(printPlans(dbgs())); 7555 return {{VF, 0}}; 7556 } 7557 7558 assert(!MaxVF.isScalable() && 7559 "Scalable vectors not yet supported beyond this point"); 7560 7561 for (ElementCount VF = ElementCount::getFixed(1); 7562 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7563 // Collect Uniform and Scalar instructions after vectorization with VF. 7564 CM.collectUniformsAndScalars(VF); 7565 7566 // Collect the instructions (and their associated costs) that will be more 7567 // profitable to scalarize. 7568 if (VF.isVector()) 7569 CM.collectInstsToScalarize(VF); 7570 } 7571 7572 CM.collectInLoopReductions(); 7573 7574 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7575 LLVM_DEBUG(printPlans(dbgs())); 7576 if (MaxVF.isScalar()) 7577 return VectorizationFactor::Disabled(); 7578 7579 // Select the optimal vectorization factor. 7580 return CM.selectVectorizationFactor(MaxVF); 7581 } 7582 7583 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7584 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7585 << '\n'); 7586 BestVF = VF; 7587 BestUF = UF; 7588 7589 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7590 return !Plan->hasVF(VF); 7591 }); 7592 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7593 } 7594 7595 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7596 DominatorTree *DT) { 7597 // Perform the actual loop transformation. 7598 7599 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7600 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7601 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7602 7603 VPTransformState State{ 7604 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 7605 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7606 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7607 State.CanonicalIV = ILV.Induction; 7608 7609 ILV.printDebugTracesAtStart(); 7610 7611 //===------------------------------------------------===// 7612 // 7613 // Notice: any optimization or new instruction that go 7614 // into the code below should also be implemented in 7615 // the cost-model. 7616 // 7617 //===------------------------------------------------===// 7618 7619 // 2. Copy and widen instructions from the old loop into the new loop. 7620 VPlans.front()->execute(&State); 7621 7622 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7623 // predication, updating analyses. 7624 ILV.fixVectorizedLoop(State); 7625 7626 ILV.printDebugTracesAtEnd(); 7627 } 7628 7629 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7630 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7631 7632 // We create new control-flow for the vectorized loop, so the original exit 7633 // conditions will be dead after vectorization if it's only used by the 7634 // terminator 7635 SmallVector<BasicBlock*> ExitingBlocks; 7636 OrigLoop->getExitingBlocks(ExitingBlocks); 7637 for (auto *BB : ExitingBlocks) { 7638 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7639 if (!Cmp || !Cmp->hasOneUse()) 7640 continue; 7641 7642 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7643 if (!DeadInstructions.insert(Cmp).second) 7644 continue; 7645 7646 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7647 // TODO: can recurse through operands in general 7648 for (Value *Op : Cmp->operands()) { 7649 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7650 DeadInstructions.insert(cast<Instruction>(Op)); 7651 } 7652 } 7653 7654 // We create new "steps" for induction variable updates to which the original 7655 // induction variables map. An original update instruction will be dead if 7656 // all its users except the induction variable are dead. 7657 auto *Latch = OrigLoop->getLoopLatch(); 7658 for (auto &Induction : Legal->getInductionVars()) { 7659 PHINode *Ind = Induction.first; 7660 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7661 7662 // If the tail is to be folded by masking, the primary induction variable, 7663 // if exists, isn't dead: it will be used for masking. Don't kill it. 7664 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7665 continue; 7666 7667 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7668 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7669 })) 7670 DeadInstructions.insert(IndUpdate); 7671 7672 // We record as "Dead" also the type-casting instructions we had identified 7673 // during induction analysis. We don't need any handling for them in the 7674 // vectorized loop because we have proven that, under a proper runtime 7675 // test guarding the vectorized loop, the value of the phi, and the casted 7676 // value of the phi, are the same. The last instruction in this casting chain 7677 // will get its scalar/vector/widened def from the scalar/vector/widened def 7678 // of the respective phi node. Any other casts in the induction def-use chain 7679 // have no other uses outside the phi update chain, and will be ignored. 7680 InductionDescriptor &IndDes = Induction.second; 7681 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7682 DeadInstructions.insert(Casts.begin(), Casts.end()); 7683 } 7684 } 7685 7686 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7687 7688 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7689 7690 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7691 Instruction::BinaryOps BinOp) { 7692 // When unrolling and the VF is 1, we only need to add a simple scalar. 7693 Type *Ty = Val->getType(); 7694 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7695 7696 if (Ty->isFloatingPointTy()) { 7697 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7698 7699 // Floating point operations had to be 'fast' to enable the unrolling. 7700 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7701 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7702 } 7703 Constant *C = ConstantInt::get(Ty, StartIdx); 7704 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7705 } 7706 7707 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7708 SmallVector<Metadata *, 4> MDs; 7709 // Reserve first location for self reference to the LoopID metadata node. 7710 MDs.push_back(nullptr); 7711 bool IsUnrollMetadata = false; 7712 MDNode *LoopID = L->getLoopID(); 7713 if (LoopID) { 7714 // First find existing loop unrolling disable metadata. 7715 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7716 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7717 if (MD) { 7718 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7719 IsUnrollMetadata = 7720 S && S->getString().startswith("llvm.loop.unroll.disable"); 7721 } 7722 MDs.push_back(LoopID->getOperand(i)); 7723 } 7724 } 7725 7726 if (!IsUnrollMetadata) { 7727 // Add runtime unroll disable metadata. 7728 LLVMContext &Context = L->getHeader()->getContext(); 7729 SmallVector<Metadata *, 1> DisableOperands; 7730 DisableOperands.push_back( 7731 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7732 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7733 MDs.push_back(DisableNode); 7734 MDNode *NewLoopID = MDNode::get(Context, MDs); 7735 // Set operand 0 to refer to the loop id itself. 7736 NewLoopID->replaceOperandWith(0, NewLoopID); 7737 L->setLoopID(NewLoopID); 7738 } 7739 } 7740 7741 //===--------------------------------------------------------------------===// 7742 // EpilogueVectorizerMainLoop 7743 //===--------------------------------------------------------------------===// 7744 7745 /// This function is partially responsible for generating the control flow 7746 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7747 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7748 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7749 Loop *Lp = createVectorLoopSkeleton(""); 7750 7751 // Generate the code to check the minimum iteration count of the vector 7752 // epilogue (see below). 7753 EPI.EpilogueIterationCountCheck = 7754 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7755 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7756 7757 // Generate the code to check any assumptions that we've made for SCEV 7758 // expressions. 7759 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7760 emitSCEVChecks(Lp, LoopScalarPreHeader); 7761 7762 // If a safety check was generated save it. 7763 if (SavedPreHeader != LoopVectorPreHeader) 7764 EPI.SCEVSafetyCheck = SavedPreHeader; 7765 7766 // Generate the code that checks at runtime if arrays overlap. We put the 7767 // checks into a separate block to make the more common case of few elements 7768 // faster. 7769 SavedPreHeader = LoopVectorPreHeader; 7770 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7771 7772 // If a safety check was generated save/overwite it. 7773 if (SavedPreHeader != LoopVectorPreHeader) 7774 EPI.MemSafetyCheck = SavedPreHeader; 7775 7776 // Generate the iteration count check for the main loop, *after* the check 7777 // for the epilogue loop, so that the path-length is shorter for the case 7778 // that goes directly through the vector epilogue. The longer-path length for 7779 // the main loop is compensated for, by the gain from vectorizing the larger 7780 // trip count. Note: the branch will get updated later on when we vectorize 7781 // the epilogue. 7782 EPI.MainLoopIterationCountCheck = 7783 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7784 7785 // Generate the induction variable. 7786 OldInduction = Legal->getPrimaryInduction(); 7787 Type *IdxTy = Legal->getWidestInductionType(); 7788 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7789 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7790 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7791 EPI.VectorTripCount = CountRoundDown; 7792 Induction = 7793 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7794 getDebugLocFromInstOrOperands(OldInduction)); 7795 7796 // Skip induction resume value creation here because they will be created in 7797 // the second pass. If we created them here, they wouldn't be used anyway, 7798 // because the vplan in the second pass still contains the inductions from the 7799 // original loop. 7800 7801 return completeLoopSkeleton(Lp, OrigLoopID); 7802 } 7803 7804 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7805 LLVM_DEBUG({ 7806 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7807 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7808 << ", Main Loop UF:" << EPI.MainLoopUF 7809 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7810 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7811 }); 7812 } 7813 7814 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7815 DEBUG_WITH_TYPE(VerboseDebug, { 7816 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7817 }); 7818 } 7819 7820 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7821 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7822 assert(L && "Expected valid Loop."); 7823 assert(Bypass && "Expected valid bypass basic block."); 7824 unsigned VFactor = 7825 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7826 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7827 Value *Count = getOrCreateTripCount(L); 7828 // Reuse existing vector loop preheader for TC checks. 7829 // Note that new preheader block is generated for vector loop. 7830 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7831 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7832 7833 // Generate code to check if the loop's trip count is less than VF * UF of the 7834 // main vector loop. 7835 auto P = 7836 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7837 7838 Value *CheckMinIters = Builder.CreateICmp( 7839 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 7840 "min.iters.check"); 7841 7842 if (!ForEpilogue) 7843 TCCheckBlock->setName("vector.main.loop.iter.check"); 7844 7845 // Create new preheader for vector loop. 7846 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7847 DT, LI, nullptr, "vector.ph"); 7848 7849 if (ForEpilogue) { 7850 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7851 DT->getNode(Bypass)->getIDom()) && 7852 "TC check is expected to dominate Bypass"); 7853 7854 // Update dominator for Bypass & LoopExit. 7855 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7856 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7857 7858 LoopBypassBlocks.push_back(TCCheckBlock); 7859 7860 // Save the trip count so we don't have to regenerate it in the 7861 // vec.epilog.iter.check. This is safe to do because the trip count 7862 // generated here dominates the vector epilog iter check. 7863 EPI.TripCount = Count; 7864 } 7865 7866 ReplaceInstWithInst( 7867 TCCheckBlock->getTerminator(), 7868 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7869 7870 return TCCheckBlock; 7871 } 7872 7873 //===--------------------------------------------------------------------===// 7874 // EpilogueVectorizerEpilogueLoop 7875 //===--------------------------------------------------------------------===// 7876 7877 /// This function is partially responsible for generating the control flow 7878 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7879 BasicBlock * 7880 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7881 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7882 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7883 7884 // Now, compare the remaining count and if there aren't enough iterations to 7885 // execute the vectorized epilogue skip to the scalar part. 7886 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7887 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7888 LoopVectorPreHeader = 7889 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7890 LI, nullptr, "vec.epilog.ph"); 7891 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 7892 VecEpilogueIterationCountCheck); 7893 7894 // Adjust the control flow taking the state info from the main loop 7895 // vectorization into account. 7896 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7897 "expected this to be saved from the previous pass."); 7898 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7899 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7900 7901 DT->changeImmediateDominator(LoopVectorPreHeader, 7902 EPI.MainLoopIterationCountCheck); 7903 7904 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7905 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7906 7907 if (EPI.SCEVSafetyCheck) 7908 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7909 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7910 if (EPI.MemSafetyCheck) 7911 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7912 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7913 7914 DT->changeImmediateDominator( 7915 VecEpilogueIterationCountCheck, 7916 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7917 7918 DT->changeImmediateDominator(LoopScalarPreHeader, 7919 EPI.EpilogueIterationCountCheck); 7920 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 7921 7922 // Keep track of bypass blocks, as they feed start values to the induction 7923 // phis in the scalar loop preheader. 7924 if (EPI.SCEVSafetyCheck) 7925 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7926 if (EPI.MemSafetyCheck) 7927 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7928 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7929 7930 // Generate a resume induction for the vector epilogue and put it in the 7931 // vector epilogue preheader 7932 Type *IdxTy = Legal->getWidestInductionType(); 7933 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7934 LoopVectorPreHeader->getFirstNonPHI()); 7935 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7936 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7937 EPI.MainLoopIterationCountCheck); 7938 7939 // Generate the induction variable. 7940 OldInduction = Legal->getPrimaryInduction(); 7941 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7942 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7943 Value *StartIdx = EPResumeVal; 7944 Induction = 7945 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7946 getDebugLocFromInstOrOperands(OldInduction)); 7947 7948 // Generate induction resume values. These variables save the new starting 7949 // indexes for the scalar loop. They are used to test if there are any tail 7950 // iterations left once the vector loop has completed. 7951 // Note that when the vectorized epilogue is skipped due to iteration count 7952 // check, then the resume value for the induction variable comes from 7953 // the trip count of the main vector loop, hence passing the AdditionalBypass 7954 // argument. 7955 createInductionResumeValues(Lp, CountRoundDown, 7956 {VecEpilogueIterationCountCheck, 7957 EPI.VectorTripCount} /* AdditionalBypass */); 7958 7959 AddRuntimeUnrollDisableMetaData(Lp); 7960 return completeLoopSkeleton(Lp, OrigLoopID); 7961 } 7962 7963 BasicBlock * 7964 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7965 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 7966 7967 assert(EPI.TripCount && 7968 "Expected trip count to have been safed in the first pass."); 7969 assert( 7970 (!isa<Instruction>(EPI.TripCount) || 7971 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7972 "saved trip count does not dominate insertion point."); 7973 Value *TC = EPI.TripCount; 7974 IRBuilder<> Builder(Insert->getTerminator()); 7975 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7976 7977 // Generate code to check if the loop's trip count is less than VF * UF of the 7978 // vector epilogue loop. 7979 auto P = 7980 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7981 7982 Value *CheckMinIters = Builder.CreateICmp( 7983 P, Count, 7984 ConstantInt::get(Count->getType(), 7985 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 7986 "min.epilog.iters.check"); 7987 7988 ReplaceInstWithInst( 7989 Insert->getTerminator(), 7990 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7991 7992 LoopBypassBlocks.push_back(Insert); 7993 return Insert; 7994 } 7995 7996 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7997 LLVM_DEBUG({ 7998 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7999 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8000 << ", Main Loop UF:" << EPI.MainLoopUF 8001 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8002 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8003 }); 8004 } 8005 8006 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8007 DEBUG_WITH_TYPE(VerboseDebug, { 8008 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8009 }); 8010 } 8011 8012 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8013 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8014 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8015 bool PredicateAtRangeStart = Predicate(Range.Start); 8016 8017 for (ElementCount TmpVF = Range.Start * 2; 8018 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8019 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8020 Range.End = TmpVF; 8021 break; 8022 } 8023 8024 return PredicateAtRangeStart; 8025 } 8026 8027 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8028 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8029 /// of VF's starting at a given VF and extending it as much as possible. Each 8030 /// vectorization decision can potentially shorten this sub-range during 8031 /// buildVPlan(). 8032 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8033 ElementCount MaxVF) { 8034 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8035 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8036 VFRange SubRange = {VF, MaxVFPlusOne}; 8037 VPlans.push_back(buildVPlan(SubRange)); 8038 VF = SubRange.End; 8039 } 8040 } 8041 8042 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8043 VPlanPtr &Plan) { 8044 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8045 8046 // Look for cached value. 8047 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8048 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8049 if (ECEntryIt != EdgeMaskCache.end()) 8050 return ECEntryIt->second; 8051 8052 VPValue *SrcMask = createBlockInMask(Src, Plan); 8053 8054 // The terminator has to be a branch inst! 8055 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8056 assert(BI && "Unexpected terminator found"); 8057 8058 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8059 return EdgeMaskCache[Edge] = SrcMask; 8060 8061 // If source is an exiting block, we know the exit edge is dynamically dead 8062 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8063 // adding uses of an otherwise potentially dead instruction. 8064 if (OrigLoop->isLoopExiting(Src)) 8065 return EdgeMaskCache[Edge] = SrcMask; 8066 8067 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8068 assert(EdgeMask && "No Edge Mask found for condition"); 8069 8070 if (BI->getSuccessor(0) != Dst) 8071 EdgeMask = Builder.createNot(EdgeMask); 8072 8073 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8074 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8075 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8076 // The select version does not introduce new UB if SrcMask is false and 8077 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8078 VPValue *False = Plan->getOrAddVPValue( 8079 ConstantInt::getFalse(BI->getCondition()->getType())); 8080 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8081 } 8082 8083 return EdgeMaskCache[Edge] = EdgeMask; 8084 } 8085 8086 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8087 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8088 8089 // Look for cached value. 8090 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8091 if (BCEntryIt != BlockMaskCache.end()) 8092 return BCEntryIt->second; 8093 8094 // All-one mask is modelled as no-mask following the convention for masked 8095 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8096 VPValue *BlockMask = nullptr; 8097 8098 if (OrigLoop->getHeader() == BB) { 8099 if (!CM.blockNeedsPredication(BB)) 8100 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8101 8102 // Create the block in mask as the first non-phi instruction in the block. 8103 VPBuilder::InsertPointGuard Guard(Builder); 8104 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8105 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8106 8107 // Introduce the early-exit compare IV <= BTC to form header block mask. 8108 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8109 // Start by constructing the desired canonical IV. 8110 VPValue *IV = nullptr; 8111 if (Legal->getPrimaryInduction()) 8112 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8113 else { 8114 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8115 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8116 IV = IVRecipe->getVPValue(); 8117 } 8118 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8119 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8120 8121 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8122 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8123 // as a second argument, we only pass the IV here and extract the 8124 // tripcount from the transform state where codegen of the VP instructions 8125 // happen. 8126 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8127 } else { 8128 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8129 } 8130 return BlockMaskCache[BB] = BlockMask; 8131 } 8132 8133 // This is the block mask. We OR all incoming edges. 8134 for (auto *Predecessor : predecessors(BB)) { 8135 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8136 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8137 return BlockMaskCache[BB] = EdgeMask; 8138 8139 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8140 BlockMask = EdgeMask; 8141 continue; 8142 } 8143 8144 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8145 } 8146 8147 return BlockMaskCache[BB] = BlockMask; 8148 } 8149 8150 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8151 VPlanPtr &Plan) { 8152 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8153 "Must be called with either a load or store"); 8154 8155 auto willWiden = [&](ElementCount VF) -> bool { 8156 if (VF.isScalar()) 8157 return false; 8158 LoopVectorizationCostModel::InstWidening Decision = 8159 CM.getWideningDecision(I, VF); 8160 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8161 "CM decision should be taken at this point."); 8162 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8163 return true; 8164 if (CM.isScalarAfterVectorization(I, VF) || 8165 CM.isProfitableToScalarize(I, VF)) 8166 return false; 8167 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8168 }; 8169 8170 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8171 return nullptr; 8172 8173 VPValue *Mask = nullptr; 8174 if (Legal->isMaskRequired(I)) 8175 Mask = createBlockInMask(I->getParent(), Plan); 8176 8177 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8178 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8179 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8180 8181 StoreInst *Store = cast<StoreInst>(I); 8182 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8183 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8184 } 8185 8186 VPWidenIntOrFpInductionRecipe * 8187 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8188 // Check if this is an integer or fp induction. If so, build the recipe that 8189 // produces its scalar and vector values. 8190 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8191 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8192 II.getKind() == InductionDescriptor::IK_FpInduction) { 8193 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8194 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8195 return new VPWidenIntOrFpInductionRecipe( 8196 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8197 } 8198 8199 return nullptr; 8200 } 8201 8202 VPWidenIntOrFpInductionRecipe * 8203 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8204 VPlan &Plan) const { 8205 // Optimize the special case where the source is a constant integer 8206 // induction variable. Notice that we can only optimize the 'trunc' case 8207 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8208 // (c) other casts depend on pointer size. 8209 8210 // Determine whether \p K is a truncation based on an induction variable that 8211 // can be optimized. 8212 auto isOptimizableIVTruncate = 8213 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8214 return [=](ElementCount VF) -> bool { 8215 return CM.isOptimizableIVTruncate(K, VF); 8216 }; 8217 }; 8218 8219 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8220 isOptimizableIVTruncate(I), Range)) { 8221 8222 InductionDescriptor II = 8223 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8224 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8225 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8226 Start, nullptr, I); 8227 } 8228 return nullptr; 8229 } 8230 8231 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8232 // We know that all PHIs in non-header blocks are converted into selects, so 8233 // we don't have to worry about the insertion order and we can just use the 8234 // builder. At this point we generate the predication tree. There may be 8235 // duplications since this is a simple recursive scan, but future 8236 // optimizations will clean it up. 8237 8238 SmallVector<VPValue *, 2> Operands; 8239 unsigned NumIncoming = Phi->getNumIncomingValues(); 8240 for (unsigned In = 0; In < NumIncoming; In++) { 8241 VPValue *EdgeMask = 8242 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8243 assert((EdgeMask || NumIncoming == 1) && 8244 "Multiple predecessors with one having a full mask"); 8245 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8246 if (EdgeMask) 8247 Operands.push_back(EdgeMask); 8248 } 8249 return new VPBlendRecipe(Phi, Operands); 8250 } 8251 8252 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8253 VPlan &Plan) const { 8254 8255 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8256 [this, CI](ElementCount VF) { 8257 return CM.isScalarWithPredication(CI, VF); 8258 }, 8259 Range); 8260 8261 if (IsPredicated) 8262 return nullptr; 8263 8264 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8265 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8266 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8267 ID == Intrinsic::pseudoprobe || 8268 ID == Intrinsic::experimental_noalias_scope_decl)) 8269 return nullptr; 8270 8271 auto willWiden = [&](ElementCount VF) -> bool { 8272 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8273 // The following case may be scalarized depending on the VF. 8274 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8275 // version of the instruction. 8276 // Is it beneficial to perform intrinsic call compared to lib call? 8277 bool NeedToScalarize = false; 8278 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8279 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8280 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8281 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8282 "Cannot have invalid costs while widening"); 8283 return UseVectorIntrinsic || !NeedToScalarize; 8284 }; 8285 8286 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8287 return nullptr; 8288 8289 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8290 } 8291 8292 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8293 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8294 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8295 // Instruction should be widened, unless it is scalar after vectorization, 8296 // scalarization is profitable or it is predicated. 8297 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8298 return CM.isScalarAfterVectorization(I, VF) || 8299 CM.isProfitableToScalarize(I, VF) || 8300 CM.isScalarWithPredication(I, VF); 8301 }; 8302 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8303 Range); 8304 } 8305 8306 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8307 auto IsVectorizableOpcode = [](unsigned Opcode) { 8308 switch (Opcode) { 8309 case Instruction::Add: 8310 case Instruction::And: 8311 case Instruction::AShr: 8312 case Instruction::BitCast: 8313 case Instruction::FAdd: 8314 case Instruction::FCmp: 8315 case Instruction::FDiv: 8316 case Instruction::FMul: 8317 case Instruction::FNeg: 8318 case Instruction::FPExt: 8319 case Instruction::FPToSI: 8320 case Instruction::FPToUI: 8321 case Instruction::FPTrunc: 8322 case Instruction::FRem: 8323 case Instruction::FSub: 8324 case Instruction::ICmp: 8325 case Instruction::IntToPtr: 8326 case Instruction::LShr: 8327 case Instruction::Mul: 8328 case Instruction::Or: 8329 case Instruction::PtrToInt: 8330 case Instruction::SDiv: 8331 case Instruction::Select: 8332 case Instruction::SExt: 8333 case Instruction::Shl: 8334 case Instruction::SIToFP: 8335 case Instruction::SRem: 8336 case Instruction::Sub: 8337 case Instruction::Trunc: 8338 case Instruction::UDiv: 8339 case Instruction::UIToFP: 8340 case Instruction::URem: 8341 case Instruction::Xor: 8342 case Instruction::ZExt: 8343 return true; 8344 } 8345 return false; 8346 }; 8347 8348 if (!IsVectorizableOpcode(I->getOpcode())) 8349 return nullptr; 8350 8351 // Success: widen this instruction. 8352 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8353 } 8354 8355 VPBasicBlock *VPRecipeBuilder::handleReplication( 8356 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8357 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8358 VPlanPtr &Plan) { 8359 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8360 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8361 Range); 8362 8363 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8364 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8365 Range); 8366 8367 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8368 IsUniform, IsPredicated); 8369 setRecipe(I, Recipe); 8370 Plan->addVPValue(I, Recipe); 8371 8372 // Find if I uses a predicated instruction. If so, it will use its scalar 8373 // value. Avoid hoisting the insert-element which packs the scalar value into 8374 // a vector value, as that happens iff all users use the vector value. 8375 for (auto &Op : I->operands()) 8376 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8377 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8378 PredInst2Recipe[PredInst]->setAlsoPack(false); 8379 8380 // Finalize the recipe for Instr, first if it is not predicated. 8381 if (!IsPredicated) { 8382 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8383 VPBB->appendRecipe(Recipe); 8384 return VPBB; 8385 } 8386 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8387 assert(VPBB->getSuccessors().empty() && 8388 "VPBB has successors when handling predicated replication."); 8389 // Record predicated instructions for above packing optimizations. 8390 PredInst2Recipe[I] = Recipe; 8391 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8392 VPBlockUtils::insertBlockAfter(Region, VPBB); 8393 auto *RegSucc = new VPBasicBlock(); 8394 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8395 return RegSucc; 8396 } 8397 8398 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8399 VPRecipeBase *PredRecipe, 8400 VPlanPtr &Plan) { 8401 // Instructions marked for predication are replicated and placed under an 8402 // if-then construct to prevent side-effects. 8403 8404 // Generate recipes to compute the block mask for this region. 8405 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8406 8407 // Build the triangular if-then region. 8408 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8409 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8410 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8411 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8412 auto *PHIRecipe = Instr->getType()->isVoidTy() 8413 ? nullptr 8414 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8415 if (PHIRecipe) { 8416 Plan->removeVPValueFor(Instr); 8417 Plan->addVPValue(Instr, PHIRecipe); 8418 } 8419 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8420 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8421 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8422 8423 // Note: first set Entry as region entry and then connect successors starting 8424 // from it in order, to propagate the "parent" of each VPBasicBlock. 8425 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8426 VPBlockUtils::connectBlocks(Pred, Exit); 8427 8428 return Region; 8429 } 8430 8431 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8432 VFRange &Range, 8433 VPlanPtr &Plan) { 8434 // First, check for specific widening recipes that deal with calls, memory 8435 // operations, inductions and Phi nodes. 8436 if (auto *CI = dyn_cast<CallInst>(Instr)) 8437 return tryToWidenCall(CI, Range, *Plan); 8438 8439 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8440 return tryToWidenMemory(Instr, Range, Plan); 8441 8442 VPRecipeBase *Recipe; 8443 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8444 if (Phi->getParent() != OrigLoop->getHeader()) 8445 return tryToBlend(Phi, Plan); 8446 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8447 return Recipe; 8448 8449 if (Legal->isReductionVariable(Phi)) { 8450 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8451 VPValue *StartV = 8452 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8453 return new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8454 } 8455 8456 return new VPWidenPHIRecipe(Phi); 8457 } 8458 8459 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8460 cast<TruncInst>(Instr), Range, *Plan))) 8461 return Recipe; 8462 8463 if (!shouldWiden(Instr, Range)) 8464 return nullptr; 8465 8466 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8467 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8468 OrigLoop); 8469 8470 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8471 bool InvariantCond = 8472 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8473 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8474 InvariantCond); 8475 } 8476 8477 return tryToWiden(Instr, *Plan); 8478 } 8479 8480 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8481 ElementCount MaxVF) { 8482 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8483 8484 // Collect instructions from the original loop that will become trivially dead 8485 // in the vectorized loop. We don't need to vectorize these instructions. For 8486 // example, original induction update instructions can become dead because we 8487 // separately emit induction "steps" when generating code for the new loop. 8488 // Similarly, we create a new latch condition when setting up the structure 8489 // of the new loop, so the old one can become dead. 8490 SmallPtrSet<Instruction *, 4> DeadInstructions; 8491 collectTriviallyDeadInstructions(DeadInstructions); 8492 8493 // Add assume instructions we need to drop to DeadInstructions, to prevent 8494 // them from being added to the VPlan. 8495 // TODO: We only need to drop assumes in blocks that get flattend. If the 8496 // control flow is preserved, we should keep them. 8497 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8498 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8499 8500 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8501 // Dead instructions do not need sinking. Remove them from SinkAfter. 8502 for (Instruction *I : DeadInstructions) 8503 SinkAfter.erase(I); 8504 8505 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8506 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8507 VFRange SubRange = {VF, MaxVFPlusOne}; 8508 VPlans.push_back( 8509 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8510 VF = SubRange.End; 8511 } 8512 } 8513 8514 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8515 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8516 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8517 8518 // Hold a mapping from predicated instructions to their recipes, in order to 8519 // fix their AlsoPack behavior if a user is determined to replicate and use a 8520 // scalar instead of vector value. 8521 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8522 8523 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8524 8525 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8526 8527 // --------------------------------------------------------------------------- 8528 // Pre-construction: record ingredients whose recipes we'll need to further 8529 // process after constructing the initial VPlan. 8530 // --------------------------------------------------------------------------- 8531 8532 // Mark instructions we'll need to sink later and their targets as 8533 // ingredients whose recipe we'll need to record. 8534 for (auto &Entry : SinkAfter) { 8535 RecipeBuilder.recordRecipeOf(Entry.first); 8536 RecipeBuilder.recordRecipeOf(Entry.second); 8537 } 8538 for (auto &Reduction : CM.getInLoopReductionChains()) { 8539 PHINode *Phi = Reduction.first; 8540 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8541 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8542 8543 RecipeBuilder.recordRecipeOf(Phi); 8544 for (auto &R : ReductionOperations) { 8545 RecipeBuilder.recordRecipeOf(R); 8546 // For min/max reducitons, where we have a pair of icmp/select, we also 8547 // need to record the ICmp recipe, so it can be removed later. 8548 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8549 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8550 } 8551 } 8552 8553 // For each interleave group which is relevant for this (possibly trimmed) 8554 // Range, add it to the set of groups to be later applied to the VPlan and add 8555 // placeholders for its members' Recipes which we'll be replacing with a 8556 // single VPInterleaveRecipe. 8557 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8558 auto applyIG = [IG, this](ElementCount VF) -> bool { 8559 return (VF.isVector() && // Query is illegal for VF == 1 8560 CM.getWideningDecision(IG->getInsertPos(), VF) == 8561 LoopVectorizationCostModel::CM_Interleave); 8562 }; 8563 if (!getDecisionAndClampRange(applyIG, Range)) 8564 continue; 8565 InterleaveGroups.insert(IG); 8566 for (unsigned i = 0; i < IG->getFactor(); i++) 8567 if (Instruction *Member = IG->getMember(i)) 8568 RecipeBuilder.recordRecipeOf(Member); 8569 }; 8570 8571 // --------------------------------------------------------------------------- 8572 // Build initial VPlan: Scan the body of the loop in a topological order to 8573 // visit each basic block after having visited its predecessor basic blocks. 8574 // --------------------------------------------------------------------------- 8575 8576 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8577 auto Plan = std::make_unique<VPlan>(); 8578 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8579 Plan->setEntry(VPBB); 8580 8581 // Scan the body of the loop in a topological order to visit each basic block 8582 // after having visited its predecessor basic blocks. 8583 LoopBlocksDFS DFS(OrigLoop); 8584 DFS.perform(LI); 8585 8586 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8587 // Relevant instructions from basic block BB will be grouped into VPRecipe 8588 // ingredients and fill a new VPBasicBlock. 8589 unsigned VPBBsForBB = 0; 8590 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8591 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8592 VPBB = FirstVPBBForBB; 8593 Builder.setInsertPoint(VPBB); 8594 8595 // Introduce each ingredient into VPlan. 8596 // TODO: Model and preserve debug instrinsics in VPlan. 8597 for (Instruction &I : BB->instructionsWithoutDebug()) { 8598 Instruction *Instr = &I; 8599 8600 // First filter out irrelevant instructions, to ensure no recipes are 8601 // built for them. 8602 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8603 continue; 8604 8605 if (auto Recipe = 8606 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8607 8608 // VPBlendRecipes with a single incoming (value, mask) pair are no-ops. 8609 // Use the incoming value directly. 8610 if (isa<VPBlendRecipe>(Recipe) && Recipe->getNumOperands() <= 2) { 8611 Plan->removeVPValueFor(Instr); 8612 Plan->addVPValue(Instr, Recipe->getOperand(0)); 8613 delete Recipe; 8614 continue; 8615 } 8616 for (auto *Def : Recipe->definedValues()) { 8617 auto *UV = Def->getUnderlyingValue(); 8618 Plan->addVPValue(UV, Def); 8619 } 8620 8621 RecipeBuilder.setRecipe(Instr, Recipe); 8622 VPBB->appendRecipe(Recipe); 8623 continue; 8624 } 8625 8626 // Otherwise, if all widening options failed, Instruction is to be 8627 // replicated. This may create a successor for VPBB. 8628 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8629 Instr, Range, VPBB, PredInst2Recipe, Plan); 8630 if (NextVPBB != VPBB) { 8631 VPBB = NextVPBB; 8632 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8633 : ""); 8634 } 8635 } 8636 } 8637 8638 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8639 // may also be empty, such as the last one VPBB, reflecting original 8640 // basic-blocks with no recipes. 8641 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8642 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8643 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8644 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8645 delete PreEntry; 8646 8647 // --------------------------------------------------------------------------- 8648 // Transform initial VPlan: Apply previously taken decisions, in order, to 8649 // bring the VPlan to its final state. 8650 // --------------------------------------------------------------------------- 8651 8652 // Apply Sink-After legal constraints. 8653 for (auto &Entry : SinkAfter) { 8654 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8655 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8656 // If the target is in a replication region, make sure to move Sink to the 8657 // block after it, not into the replication region itself. 8658 if (auto *Region = 8659 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8660 if (Region->isReplicator()) { 8661 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8662 VPBasicBlock *NextBlock = 8663 cast<VPBasicBlock>(Region->getSuccessors().front()); 8664 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8665 continue; 8666 } 8667 } 8668 Sink->moveAfter(Target); 8669 } 8670 8671 // Interleave memory: for each Interleave Group we marked earlier as relevant 8672 // for this VPlan, replace the Recipes widening its memory instructions with a 8673 // single VPInterleaveRecipe at its insertion point. 8674 for (auto IG : InterleaveGroups) { 8675 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8676 RecipeBuilder.getRecipe(IG->getInsertPos())); 8677 SmallVector<VPValue *, 4> StoredValues; 8678 for (unsigned i = 0; i < IG->getFactor(); ++i) 8679 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8680 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8681 8682 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8683 Recipe->getMask()); 8684 VPIG->insertBefore(Recipe); 8685 unsigned J = 0; 8686 for (unsigned i = 0; i < IG->getFactor(); ++i) 8687 if (Instruction *Member = IG->getMember(i)) { 8688 if (!Member->getType()->isVoidTy()) { 8689 VPValue *OriginalV = Plan->getVPValue(Member); 8690 Plan->removeVPValueFor(Member); 8691 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8692 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8693 J++; 8694 } 8695 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8696 } 8697 } 8698 8699 // Adjust the recipes for any inloop reductions. 8700 if (Range.Start.isVector()) 8701 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8702 8703 // Finally, if tail is folded by masking, introduce selects between the phi 8704 // and the live-out instruction of each reduction, at the end of the latch. 8705 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8706 Builder.setInsertPoint(VPBB); 8707 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8708 for (auto &Reduction : Legal->getReductionVars()) { 8709 if (CM.isInLoopReduction(Reduction.first)) 8710 continue; 8711 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8712 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8713 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8714 } 8715 } 8716 8717 std::string PlanName; 8718 raw_string_ostream RSO(PlanName); 8719 ElementCount VF = Range.Start; 8720 Plan->addVF(VF); 8721 RSO << "Initial VPlan for VF={" << VF; 8722 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8723 Plan->addVF(VF); 8724 RSO << "," << VF; 8725 } 8726 RSO << "},UF>=1"; 8727 RSO.flush(); 8728 Plan->setName(PlanName); 8729 8730 return Plan; 8731 } 8732 8733 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8734 // Outer loop handling: They may require CFG and instruction level 8735 // transformations before even evaluating whether vectorization is profitable. 8736 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8737 // the vectorization pipeline. 8738 assert(!OrigLoop->isInnermost()); 8739 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8740 8741 // Create new empty VPlan 8742 auto Plan = std::make_unique<VPlan>(); 8743 8744 // Build hierarchical CFG 8745 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8746 HCFGBuilder.buildHierarchicalCFG(); 8747 8748 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8749 VF *= 2) 8750 Plan->addVF(VF); 8751 8752 if (EnableVPlanPredication) { 8753 VPlanPredicator VPP(*Plan); 8754 VPP.predicate(); 8755 8756 // Avoid running transformation to recipes until masked code generation in 8757 // VPlan-native path is in place. 8758 return Plan; 8759 } 8760 8761 SmallPtrSet<Instruction *, 1> DeadInstructions; 8762 VPlanTransforms::VPInstructionsToVPRecipes( 8763 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8764 return Plan; 8765 } 8766 8767 // Adjust the recipes for any inloop reductions. The chain of instructions 8768 // leading from the loop exit instr to the phi need to be converted to 8769 // reductions, with one operand being vector and the other being the scalar 8770 // reduction chain. 8771 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8772 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8773 for (auto &Reduction : CM.getInLoopReductionChains()) { 8774 PHINode *Phi = Reduction.first; 8775 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8776 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8777 8778 // ReductionOperations are orders top-down from the phi's use to the 8779 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8780 // which of the two operands will remain scalar and which will be reduced. 8781 // For minmax the chain will be the select instructions. 8782 Instruction *Chain = Phi; 8783 for (Instruction *R : ReductionOperations) { 8784 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8785 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8786 8787 VPValue *ChainOp = Plan->getVPValue(Chain); 8788 unsigned FirstOpId; 8789 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8790 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8791 "Expected to replace a VPWidenSelectSC"); 8792 FirstOpId = 1; 8793 } else { 8794 assert(isa<VPWidenRecipe>(WidenRecipe) && 8795 "Expected to replace a VPWidenSC"); 8796 FirstOpId = 0; 8797 } 8798 unsigned VecOpId = 8799 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8800 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8801 8802 auto *CondOp = CM.foldTailByMasking() 8803 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8804 : nullptr; 8805 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8806 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8807 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8808 Plan->removeVPValueFor(R); 8809 Plan->addVPValue(R, RedRecipe); 8810 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8811 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8812 WidenRecipe->eraseFromParent(); 8813 8814 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8815 VPRecipeBase *CompareRecipe = 8816 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8817 assert(isa<VPWidenRecipe>(CompareRecipe) && 8818 "Expected to replace a VPWidenSC"); 8819 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8820 "Expected no remaining users"); 8821 CompareRecipe->eraseFromParent(); 8822 } 8823 Chain = R; 8824 } 8825 } 8826 } 8827 8828 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8829 VPSlotTracker &SlotTracker) const { 8830 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8831 IG->getInsertPos()->printAsOperand(O, false); 8832 O << ", "; 8833 getAddr()->printAsOperand(O, SlotTracker); 8834 VPValue *Mask = getMask(); 8835 if (Mask) { 8836 O << ", "; 8837 Mask->printAsOperand(O, SlotTracker); 8838 } 8839 for (unsigned i = 0; i < IG->getFactor(); ++i) 8840 if (Instruction *I = IG->getMember(i)) 8841 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8842 } 8843 8844 void VPWidenCallRecipe::execute(VPTransformState &State) { 8845 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8846 *this, State); 8847 } 8848 8849 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8850 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8851 this, *this, InvariantCond, State); 8852 } 8853 8854 void VPWidenRecipe::execute(VPTransformState &State) { 8855 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8856 } 8857 8858 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8859 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8860 *this, State.UF, State.VF, IsPtrLoopInvariant, 8861 IsIndexLoopInvariant, State); 8862 } 8863 8864 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8865 assert(!State.Instance && "Int or FP induction being replicated."); 8866 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 8867 getTruncInst(), getVPValue(0), 8868 getCastValue(), State); 8869 } 8870 8871 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8872 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 8873 getStartValue(), this, State); 8874 } 8875 8876 void VPBlendRecipe::execute(VPTransformState &State) { 8877 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8878 // We know that all PHIs in non-header blocks are converted into 8879 // selects, so we don't have to worry about the insertion order and we 8880 // can just use the builder. 8881 // At this point we generate the predication tree. There may be 8882 // duplications since this is a simple recursive scan, but future 8883 // optimizations will clean it up. 8884 8885 unsigned NumIncoming = getNumIncomingValues(); 8886 8887 // Generate a sequence of selects of the form: 8888 // SELECT(Mask3, In3, 8889 // SELECT(Mask2, In2, 8890 // SELECT(Mask1, In1, 8891 // In0))) 8892 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8893 // are essentially undef are taken from In0. 8894 InnerLoopVectorizer::VectorParts Entry(State.UF); 8895 for (unsigned In = 0; In < NumIncoming; ++In) { 8896 for (unsigned Part = 0; Part < State.UF; ++Part) { 8897 // We might have single edge PHIs (blocks) - use an identity 8898 // 'select' for the first PHI operand. 8899 Value *In0 = State.get(getIncomingValue(In), Part); 8900 if (In == 0) 8901 Entry[Part] = In0; // Initialize with the first incoming value. 8902 else { 8903 // Select between the current value and the previous incoming edge 8904 // based on the incoming mask. 8905 Value *Cond = State.get(getMask(In), Part); 8906 Entry[Part] = 8907 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8908 } 8909 } 8910 } 8911 for (unsigned Part = 0; Part < State.UF; ++Part) 8912 State.set(this, Entry[Part], Part); 8913 } 8914 8915 void VPInterleaveRecipe::execute(VPTransformState &State) { 8916 assert(!State.Instance && "Interleave group being replicated."); 8917 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 8918 getStoredValues(), getMask()); 8919 } 8920 8921 void VPReductionRecipe::execute(VPTransformState &State) { 8922 assert(!State.Instance && "Reduction being replicated."); 8923 for (unsigned Part = 0; Part < State.UF; ++Part) { 8924 RecurKind Kind = RdxDesc->getRecurrenceKind(); 8925 Value *NewVecOp = State.get(getVecOp(), Part); 8926 if (VPValue *Cond = getCondOp()) { 8927 Value *NewCond = State.get(Cond, Part); 8928 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8929 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8930 Kind, VecTy->getElementType()); 8931 Constant *IdenVec = 8932 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8933 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8934 NewVecOp = Select; 8935 } 8936 Value *NewRed = 8937 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 8938 Value *PrevInChain = State.get(getChainOp(), Part); 8939 Value *NextInChain; 8940 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8941 NextInChain = 8942 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 8943 NewRed, PrevInChain); 8944 } else { 8945 NextInChain = State.Builder.CreateBinOp( 8946 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8947 PrevInChain); 8948 } 8949 State.set(this, NextInChain, Part); 8950 } 8951 } 8952 8953 void VPReplicateRecipe::execute(VPTransformState &State) { 8954 if (State.Instance) { // Generate a single instance. 8955 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 8956 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 8957 *State.Instance, IsPredicated, State); 8958 // Insert scalar instance packing it into a vector. 8959 if (AlsoPack && State.VF.isVector()) { 8960 // If we're constructing lane 0, initialize to start from poison. 8961 if (State.Instance->Lane == 0) { 8962 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8963 Value *Poison = PoisonValue::get( 8964 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8965 State.set(this, Poison, State.Instance->Part); 8966 } 8967 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 8968 } 8969 return; 8970 } 8971 8972 // Generate scalar instances for all VF lanes of all UF parts, unless the 8973 // instruction is uniform inwhich case generate only the first lane for each 8974 // of the UF parts. 8975 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8976 assert((!State.VF.isScalable() || IsUniform) && 8977 "Can't scalarize a scalable vector"); 8978 for (unsigned Part = 0; Part < State.UF; ++Part) 8979 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8980 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 8981 VPIteration(Part, Lane), IsPredicated, 8982 State); 8983 } 8984 8985 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8986 assert(State.Instance && "Branch on Mask works only on single instance."); 8987 8988 unsigned Part = State.Instance->Part; 8989 unsigned Lane = State.Instance->Lane; 8990 8991 Value *ConditionBit = nullptr; 8992 VPValue *BlockInMask = getMask(); 8993 if (BlockInMask) { 8994 ConditionBit = State.get(BlockInMask, Part); 8995 if (ConditionBit->getType()->isVectorTy()) 8996 ConditionBit = State.Builder.CreateExtractElement( 8997 ConditionBit, State.Builder.getInt32(Lane)); 8998 } else // Block in mask is all-one. 8999 ConditionBit = State.Builder.getTrue(); 9000 9001 // Replace the temporary unreachable terminator with a new conditional branch, 9002 // whose two destinations will be set later when they are created. 9003 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9004 assert(isa<UnreachableInst>(CurrentTerminator) && 9005 "Expected to replace unreachable terminator with conditional branch."); 9006 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9007 CondBr->setSuccessor(0, nullptr); 9008 ReplaceInstWithInst(CurrentTerminator, CondBr); 9009 } 9010 9011 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9012 assert(State.Instance && "Predicated instruction PHI works per instance."); 9013 Instruction *ScalarPredInst = 9014 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9015 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9016 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9017 assert(PredicatingBB && "Predicated block has no single predecessor."); 9018 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9019 "operand must be VPReplicateRecipe"); 9020 9021 // By current pack/unpack logic we need to generate only a single phi node: if 9022 // a vector value for the predicated instruction exists at this point it means 9023 // the instruction has vector users only, and a phi for the vector value is 9024 // needed. In this case the recipe of the predicated instruction is marked to 9025 // also do that packing, thereby "hoisting" the insert-element sequence. 9026 // Otherwise, a phi node for the scalar value is needed. 9027 unsigned Part = State.Instance->Part; 9028 if (State.hasVectorValue(getOperand(0), Part)) { 9029 Value *VectorValue = State.get(getOperand(0), Part); 9030 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9031 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9032 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9033 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9034 if (State.hasVectorValue(this, Part)) 9035 State.reset(this, VPhi, Part); 9036 else 9037 State.set(this, VPhi, Part); 9038 // NOTE: Currently we need to update the value of the operand, so the next 9039 // predicated iteration inserts its generated value in the correct vector. 9040 State.reset(getOperand(0), VPhi, Part); 9041 } else { 9042 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9043 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9044 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9045 PredicatingBB); 9046 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9047 if (State.hasScalarValue(this, *State.Instance)) 9048 State.reset(this, Phi, *State.Instance); 9049 else 9050 State.set(this, Phi, *State.Instance); 9051 // NOTE: Currently we need to update the value of the operand, so the next 9052 // predicated iteration inserts its generated value in the correct vector. 9053 State.reset(getOperand(0), Phi, *State.Instance); 9054 } 9055 } 9056 9057 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9058 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9059 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9060 StoredValue ? nullptr : getVPValue(), 9061 getAddr(), StoredValue, getMask()); 9062 } 9063 9064 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9065 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9066 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9067 // for predication. 9068 static ScalarEpilogueLowering getScalarEpilogueLowering( 9069 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9070 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9071 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9072 LoopVectorizationLegality &LVL) { 9073 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9074 // don't look at hints or options, and don't request a scalar epilogue. 9075 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9076 // LoopAccessInfo (due to code dependency and not being able to reliably get 9077 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9078 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9079 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9080 // back to the old way and vectorize with versioning when forced. See D81345.) 9081 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9082 PGSOQueryType::IRPass) && 9083 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9084 return CM_ScalarEpilogueNotAllowedOptSize; 9085 9086 // 2) If set, obey the directives 9087 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9088 switch (PreferPredicateOverEpilogue) { 9089 case PreferPredicateTy::ScalarEpilogue: 9090 return CM_ScalarEpilogueAllowed; 9091 case PreferPredicateTy::PredicateElseScalarEpilogue: 9092 return CM_ScalarEpilogueNotNeededUsePredicate; 9093 case PreferPredicateTy::PredicateOrDontVectorize: 9094 return CM_ScalarEpilogueNotAllowedUsePredicate; 9095 }; 9096 } 9097 9098 // 3) If set, obey the hints 9099 switch (Hints.getPredicate()) { 9100 case LoopVectorizeHints::FK_Enabled: 9101 return CM_ScalarEpilogueNotNeededUsePredicate; 9102 case LoopVectorizeHints::FK_Disabled: 9103 return CM_ScalarEpilogueAllowed; 9104 }; 9105 9106 // 4) if the TTI hook indicates this is profitable, request predication. 9107 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9108 LVL.getLAI())) 9109 return CM_ScalarEpilogueNotNeededUsePredicate; 9110 9111 return CM_ScalarEpilogueAllowed; 9112 } 9113 9114 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9115 // If Values have been set for this Def return the one relevant for \p Part. 9116 if (hasVectorValue(Def, Part)) 9117 return Data.PerPartOutput[Def][Part]; 9118 9119 if (!hasScalarValue(Def, {Part, 0})) { 9120 Value *IRV = Def->getLiveInIRValue(); 9121 Value *B = ILV->getBroadcastInstrs(IRV); 9122 set(Def, B, Part); 9123 return B; 9124 } 9125 9126 Value *ScalarValue = get(Def, {Part, 0}); 9127 // If we aren't vectorizing, we can just copy the scalar map values over 9128 // to the vector map. 9129 if (VF.isScalar()) { 9130 set(Def, ScalarValue, Part); 9131 return ScalarValue; 9132 } 9133 9134 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9135 bool IsUniform = RepR && RepR->isUniform(); 9136 9137 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9138 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9139 9140 // Set the insert point after the last scalarized instruction. This 9141 // ensures the insertelement sequence will directly follow the scalar 9142 // definitions. 9143 auto OldIP = Builder.saveIP(); 9144 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9145 Builder.SetInsertPoint(&*NewIP); 9146 9147 // However, if we are vectorizing, we need to construct the vector values. 9148 // If the value is known to be uniform after vectorization, we can just 9149 // broadcast the scalar value corresponding to lane zero for each unroll 9150 // iteration. Otherwise, we construct the vector values using 9151 // insertelement instructions. Since the resulting vectors are stored in 9152 // State, we will only generate the insertelements once. 9153 Value *VectorValue = nullptr; 9154 if (IsUniform) { 9155 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9156 set(Def, VectorValue, Part); 9157 } else { 9158 // Initialize packing with insertelements to start from undef. 9159 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9160 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9161 set(Def, Undef, Part); 9162 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9163 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9164 VectorValue = get(Def, Part); 9165 } 9166 Builder.restoreIP(OldIP); 9167 return VectorValue; 9168 } 9169 9170 // Process the loop in the VPlan-native vectorization path. This path builds 9171 // VPlan upfront in the vectorization pipeline, which allows to apply 9172 // VPlan-to-VPlan transformations from the very beginning without modifying the 9173 // input LLVM IR. 9174 static bool processLoopInVPlanNativePath( 9175 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9176 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9177 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9178 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9179 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9180 9181 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9182 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9183 return false; 9184 } 9185 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9186 Function *F = L->getHeader()->getParent(); 9187 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9188 9189 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9190 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9191 9192 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9193 &Hints, IAI); 9194 // Use the planner for outer loop vectorization. 9195 // TODO: CM is not used at this point inside the planner. Turn CM into an 9196 // optional argument if we don't need it in the future. 9197 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9198 9199 // Get user vectorization factor. 9200 ElementCount UserVF = Hints.getWidth(); 9201 9202 // Plan how to best vectorize, return the best VF and its cost. 9203 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9204 9205 // If we are stress testing VPlan builds, do not attempt to generate vector 9206 // code. Masked vector code generation support will follow soon. 9207 // Also, do not attempt to vectorize if no vector code will be produced. 9208 if (VPlanBuildStressTest || EnableVPlanPredication || 9209 VectorizationFactor::Disabled() == VF) 9210 return false; 9211 9212 LVP.setBestPlan(VF.Width, 1); 9213 9214 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9215 &CM, BFI, PSI); 9216 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9217 << L->getHeader()->getParent()->getName() << "\"\n"); 9218 LVP.executePlan(LB, DT); 9219 9220 // Mark the loop as already vectorized to avoid vectorizing again. 9221 Hints.setAlreadyVectorized(); 9222 9223 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9224 return true; 9225 } 9226 9227 // Emit a remark if there are stores to floats that required a floating point 9228 // extension. If the vectorized loop was generated with floating point there 9229 // will be a performance penalty from the conversion overhead and the change in 9230 // the vector width. 9231 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9232 SmallVector<Instruction *, 4> Worklist; 9233 for (BasicBlock *BB : L->getBlocks()) { 9234 for (Instruction &Inst : *BB) { 9235 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9236 if (S->getValueOperand()->getType()->isFloatTy()) 9237 Worklist.push_back(S); 9238 } 9239 } 9240 } 9241 9242 // Traverse the floating point stores upwards searching, for floating point 9243 // conversions. 9244 SmallPtrSet<const Instruction *, 4> Visited; 9245 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9246 while (!Worklist.empty()) { 9247 auto *I = Worklist.pop_back_val(); 9248 if (!L->contains(I)) 9249 continue; 9250 if (!Visited.insert(I).second) 9251 continue; 9252 9253 // Emit a remark if the floating point store required a floating 9254 // point conversion. 9255 // TODO: More work could be done to identify the root cause such as a 9256 // constant or a function return type and point the user to it. 9257 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9258 ORE->emit([&]() { 9259 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9260 I->getDebugLoc(), L->getHeader()) 9261 << "floating point conversion changes vector width. " 9262 << "Mixed floating point precision requires an up/down " 9263 << "cast that will negatively impact performance."; 9264 }); 9265 9266 for (Use &Op : I->operands()) 9267 if (auto *OpI = dyn_cast<Instruction>(Op)) 9268 Worklist.push_back(OpI); 9269 } 9270 } 9271 9272 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9273 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9274 !EnableLoopInterleaving), 9275 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9276 !EnableLoopVectorization) {} 9277 9278 bool LoopVectorizePass::processLoop(Loop *L) { 9279 assert((EnableVPlanNativePath || L->isInnermost()) && 9280 "VPlan-native path is not enabled. Only process inner loops."); 9281 9282 #ifndef NDEBUG 9283 const std::string DebugLocStr = getDebugLocString(L); 9284 #endif /* NDEBUG */ 9285 9286 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9287 << L->getHeader()->getParent()->getName() << "\" from " 9288 << DebugLocStr << "\n"); 9289 9290 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9291 9292 LLVM_DEBUG( 9293 dbgs() << "LV: Loop hints:" 9294 << " force=" 9295 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9296 ? "disabled" 9297 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9298 ? "enabled" 9299 : "?")) 9300 << " width=" << Hints.getWidth() 9301 << " unroll=" << Hints.getInterleave() << "\n"); 9302 9303 // Function containing loop 9304 Function *F = L->getHeader()->getParent(); 9305 9306 // Looking at the diagnostic output is the only way to determine if a loop 9307 // was vectorized (other than looking at the IR or machine code), so it 9308 // is important to generate an optimization remark for each loop. Most of 9309 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9310 // generated as OptimizationRemark and OptimizationRemarkMissed are 9311 // less verbose reporting vectorized loops and unvectorized loops that may 9312 // benefit from vectorization, respectively. 9313 9314 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9315 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9316 return false; 9317 } 9318 9319 PredicatedScalarEvolution PSE(*SE, *L); 9320 9321 // Check if it is legal to vectorize the loop. 9322 LoopVectorizationRequirements Requirements(*ORE); 9323 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9324 &Requirements, &Hints, DB, AC, BFI, PSI); 9325 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9326 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9327 Hints.emitRemarkWithHints(); 9328 return false; 9329 } 9330 9331 // Check the function attributes and profiles to find out if this function 9332 // should be optimized for size. 9333 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9334 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9335 9336 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9337 // here. They may require CFG and instruction level transformations before 9338 // even evaluating whether vectorization is profitable. Since we cannot modify 9339 // the incoming IR, we need to build VPlan upfront in the vectorization 9340 // pipeline. 9341 if (!L->isInnermost()) 9342 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9343 ORE, BFI, PSI, Hints); 9344 9345 assert(L->isInnermost() && "Inner loop expected."); 9346 9347 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9348 // count by optimizing for size, to minimize overheads. 9349 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9350 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9351 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9352 << "This loop is worth vectorizing only if no scalar " 9353 << "iteration overheads are incurred."); 9354 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9355 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9356 else { 9357 LLVM_DEBUG(dbgs() << "\n"); 9358 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9359 } 9360 } 9361 9362 // Check the function attributes to see if implicit floats are allowed. 9363 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9364 // an integer loop and the vector instructions selected are purely integer 9365 // vector instructions? 9366 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9367 reportVectorizationFailure( 9368 "Can't vectorize when the NoImplicitFloat attribute is used", 9369 "loop not vectorized due to NoImplicitFloat attribute", 9370 "NoImplicitFloat", ORE, L); 9371 Hints.emitRemarkWithHints(); 9372 return false; 9373 } 9374 9375 // Check if the target supports potentially unsafe FP vectorization. 9376 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9377 // for the target we're vectorizing for, to make sure none of the 9378 // additional fp-math flags can help. 9379 if (Hints.isPotentiallyUnsafe() && 9380 TTI->isFPVectorizationPotentiallyUnsafe()) { 9381 reportVectorizationFailure( 9382 "Potentially unsafe FP op prevents vectorization", 9383 "loop not vectorized due to unsafe FP support.", 9384 "UnsafeFP", ORE, L); 9385 Hints.emitRemarkWithHints(); 9386 return false; 9387 } 9388 9389 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9390 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9391 9392 // If an override option has been passed in for interleaved accesses, use it. 9393 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9394 UseInterleaved = EnableInterleavedMemAccesses; 9395 9396 // Analyze interleaved memory accesses. 9397 if (UseInterleaved) { 9398 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9399 } 9400 9401 // Use the cost model. 9402 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9403 F, &Hints, IAI); 9404 CM.collectValuesToIgnore(); 9405 9406 // Use the planner for vectorization. 9407 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9408 9409 // Get user vectorization factor and interleave count. 9410 ElementCount UserVF = Hints.getWidth(); 9411 unsigned UserIC = Hints.getInterleave(); 9412 9413 // Plan how to best vectorize, return the best VF and its cost. 9414 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9415 9416 VectorizationFactor VF = VectorizationFactor::Disabled(); 9417 unsigned IC = 1; 9418 9419 if (MaybeVF) { 9420 VF = *MaybeVF; 9421 // Select the interleave count. 9422 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9423 } 9424 9425 // Identify the diagnostic messages that should be produced. 9426 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9427 bool VectorizeLoop = true, InterleaveLoop = true; 9428 if (Requirements.doesNotMeet(F, L, Hints)) { 9429 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9430 "requirements.\n"); 9431 Hints.emitRemarkWithHints(); 9432 return false; 9433 } 9434 9435 if (VF.Width.isScalar()) { 9436 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9437 VecDiagMsg = std::make_pair( 9438 "VectorizationNotBeneficial", 9439 "the cost-model indicates that vectorization is not beneficial"); 9440 VectorizeLoop = false; 9441 } 9442 9443 if (!MaybeVF && UserIC > 1) { 9444 // Tell the user interleaving was avoided up-front, despite being explicitly 9445 // requested. 9446 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9447 "interleaving should be avoided up front\n"); 9448 IntDiagMsg = std::make_pair( 9449 "InterleavingAvoided", 9450 "Ignoring UserIC, because interleaving was avoided up front"); 9451 InterleaveLoop = false; 9452 } else if (IC == 1 && UserIC <= 1) { 9453 // Tell the user interleaving is not beneficial. 9454 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9455 IntDiagMsg = std::make_pair( 9456 "InterleavingNotBeneficial", 9457 "the cost-model indicates that interleaving is not beneficial"); 9458 InterleaveLoop = false; 9459 if (UserIC == 1) { 9460 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9461 IntDiagMsg.second += 9462 " and is explicitly disabled or interleave count is set to 1"; 9463 } 9464 } else if (IC > 1 && UserIC == 1) { 9465 // Tell the user interleaving is beneficial, but it explicitly disabled. 9466 LLVM_DEBUG( 9467 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9468 IntDiagMsg = std::make_pair( 9469 "InterleavingBeneficialButDisabled", 9470 "the cost-model indicates that interleaving is beneficial " 9471 "but is explicitly disabled or interleave count is set to 1"); 9472 InterleaveLoop = false; 9473 } 9474 9475 // Override IC if user provided an interleave count. 9476 IC = UserIC > 0 ? UserIC : IC; 9477 9478 // Emit diagnostic messages, if any. 9479 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9480 if (!VectorizeLoop && !InterleaveLoop) { 9481 // Do not vectorize or interleaving the loop. 9482 ORE->emit([&]() { 9483 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9484 L->getStartLoc(), L->getHeader()) 9485 << VecDiagMsg.second; 9486 }); 9487 ORE->emit([&]() { 9488 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9489 L->getStartLoc(), L->getHeader()) 9490 << IntDiagMsg.second; 9491 }); 9492 return false; 9493 } else if (!VectorizeLoop && InterleaveLoop) { 9494 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9495 ORE->emit([&]() { 9496 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9497 L->getStartLoc(), L->getHeader()) 9498 << VecDiagMsg.second; 9499 }); 9500 } else if (VectorizeLoop && !InterleaveLoop) { 9501 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9502 << ") in " << DebugLocStr << '\n'); 9503 ORE->emit([&]() { 9504 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9505 L->getStartLoc(), L->getHeader()) 9506 << IntDiagMsg.second; 9507 }); 9508 } else if (VectorizeLoop && InterleaveLoop) { 9509 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9510 << ") in " << DebugLocStr << '\n'); 9511 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9512 } 9513 9514 LVP.setBestPlan(VF.Width, IC); 9515 9516 using namespace ore; 9517 bool DisableRuntimeUnroll = false; 9518 MDNode *OrigLoopID = L->getLoopID(); 9519 9520 if (!VectorizeLoop) { 9521 assert(IC > 1 && "interleave count should not be 1 or 0"); 9522 // If we decided that it is not legal to vectorize the loop, then 9523 // interleave it. 9524 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9525 BFI, PSI); 9526 LVP.executePlan(Unroller, DT); 9527 9528 ORE->emit([&]() { 9529 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9530 L->getHeader()) 9531 << "interleaved loop (interleaved count: " 9532 << NV("InterleaveCount", IC) << ")"; 9533 }); 9534 } else { 9535 // If we decided that it is *legal* to vectorize the loop, then do it. 9536 9537 // Consider vectorizing the epilogue too if it's profitable. 9538 VectorizationFactor EpilogueVF = 9539 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9540 if (EpilogueVF.Width.isVector()) { 9541 9542 // The first pass vectorizes the main loop and creates a scalar epilogue 9543 // to be vectorized by executing the plan (potentially with a different 9544 // factor) again shortly afterwards. 9545 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9546 EpilogueVF.Width.getKnownMinValue(), 1); 9547 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9548 &LVL, &CM, BFI, PSI); 9549 9550 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9551 LVP.executePlan(MainILV, DT); 9552 ++LoopsVectorized; 9553 9554 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9555 formLCSSARecursively(*L, *DT, LI, SE); 9556 9557 // Second pass vectorizes the epilogue and adjusts the control flow 9558 // edges from the first pass. 9559 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9560 EPI.MainLoopVF = EPI.EpilogueVF; 9561 EPI.MainLoopUF = EPI.EpilogueUF; 9562 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9563 ORE, EPI, &LVL, &CM, BFI, PSI); 9564 LVP.executePlan(EpilogILV, DT); 9565 ++LoopsEpilogueVectorized; 9566 9567 if (!MainILV.areSafetyChecksAdded()) 9568 DisableRuntimeUnroll = true; 9569 } else { 9570 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9571 &LVL, &CM, BFI, PSI); 9572 LVP.executePlan(LB, DT); 9573 ++LoopsVectorized; 9574 9575 // Add metadata to disable runtime unrolling a scalar loop when there are 9576 // no runtime checks about strides and memory. A scalar loop that is 9577 // rarely used is not worth unrolling. 9578 if (!LB.areSafetyChecksAdded()) 9579 DisableRuntimeUnroll = true; 9580 } 9581 9582 // Report the vectorization decision. 9583 ORE->emit([&]() { 9584 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9585 L->getHeader()) 9586 << "vectorized loop (vectorization width: " 9587 << NV("VectorizationFactor", VF.Width) 9588 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9589 }); 9590 9591 if (ORE->allowExtraAnalysis(LV_NAME)) 9592 checkMixedPrecision(L, ORE); 9593 } 9594 9595 Optional<MDNode *> RemainderLoopID = 9596 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9597 LLVMLoopVectorizeFollowupEpilogue}); 9598 if (RemainderLoopID.hasValue()) { 9599 L->setLoopID(RemainderLoopID.getValue()); 9600 } else { 9601 if (DisableRuntimeUnroll) 9602 AddRuntimeUnrollDisableMetaData(L); 9603 9604 // Mark the loop as already vectorized to avoid vectorizing again. 9605 Hints.setAlreadyVectorized(); 9606 } 9607 9608 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9609 return true; 9610 } 9611 9612 LoopVectorizeResult LoopVectorizePass::runImpl( 9613 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9614 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9615 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9616 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9617 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9618 SE = &SE_; 9619 LI = &LI_; 9620 TTI = &TTI_; 9621 DT = &DT_; 9622 BFI = &BFI_; 9623 TLI = TLI_; 9624 AA = &AA_; 9625 AC = &AC_; 9626 GetLAA = &GetLAA_; 9627 DB = &DB_; 9628 ORE = &ORE_; 9629 PSI = PSI_; 9630 9631 // Don't attempt if 9632 // 1. the target claims to have no vector registers, and 9633 // 2. interleaving won't help ILP. 9634 // 9635 // The second condition is necessary because, even if the target has no 9636 // vector registers, loop vectorization may still enable scalar 9637 // interleaving. 9638 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9639 TTI->getMaxInterleaveFactor(1) < 2) 9640 return LoopVectorizeResult(false, false); 9641 9642 bool Changed = false, CFGChanged = false; 9643 9644 // The vectorizer requires loops to be in simplified form. 9645 // Since simplification may add new inner loops, it has to run before the 9646 // legality and profitability checks. This means running the loop vectorizer 9647 // will simplify all loops, regardless of whether anything end up being 9648 // vectorized. 9649 for (auto &L : *LI) 9650 Changed |= CFGChanged |= 9651 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9652 9653 // Build up a worklist of inner-loops to vectorize. This is necessary as 9654 // the act of vectorizing or partially unrolling a loop creates new loops 9655 // and can invalidate iterators across the loops. 9656 SmallVector<Loop *, 8> Worklist; 9657 9658 for (Loop *L : *LI) 9659 collectSupportedLoops(*L, LI, ORE, Worklist); 9660 9661 LoopsAnalyzed += Worklist.size(); 9662 9663 // Now walk the identified inner loops. 9664 while (!Worklist.empty()) { 9665 Loop *L = Worklist.pop_back_val(); 9666 9667 // For the inner loops we actually process, form LCSSA to simplify the 9668 // transform. 9669 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9670 9671 Changed |= CFGChanged |= processLoop(L); 9672 } 9673 9674 // Process each loop nest in the function. 9675 return LoopVectorizeResult(Changed, CFGChanged); 9676 } 9677 9678 PreservedAnalyses LoopVectorizePass::run(Function &F, 9679 FunctionAnalysisManager &AM) { 9680 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9681 auto &LI = AM.getResult<LoopAnalysis>(F); 9682 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9683 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9684 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9685 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9686 auto &AA = AM.getResult<AAManager>(F); 9687 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9688 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9689 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9690 MemorySSA *MSSA = EnableMSSALoopDependency 9691 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9692 : nullptr; 9693 9694 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9695 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9696 [&](Loop &L) -> const LoopAccessInfo & { 9697 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9698 TLI, TTI, nullptr, MSSA}; 9699 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9700 }; 9701 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9702 ProfileSummaryInfo *PSI = 9703 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9704 LoopVectorizeResult Result = 9705 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9706 if (!Result.MadeAnyChange) 9707 return PreservedAnalyses::all(); 9708 PreservedAnalyses PA; 9709 9710 // We currently do not preserve loopinfo/dominator analyses with outer loop 9711 // vectorization. Until this is addressed, mark these analyses as preserved 9712 // only for non-VPlan-native path. 9713 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9714 if (!EnableVPlanNativePath) { 9715 PA.preserve<LoopAnalysis>(); 9716 PA.preserve<DominatorTreeAnalysis>(); 9717 } 9718 PA.preserve<BasicAA>(); 9719 PA.preserve<GlobalsAA>(); 9720 if (!Result.MadeCFGChange) 9721 PA.preserveSet<CFGAnalyses>(); 9722 return PA; 9723 } 9724