1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlanHCFGBuilder.h" 60 #include "VPlanHCFGTransforms.h" 61 #include "VPlanPredicator.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpander.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/LoopSimplify.h" 136 #include "llvm/Transforms/Utils/LoopUtils.h" 137 #include "llvm/Transforms/Utils/LoopVersioning.h" 138 #include "llvm/Transforms/Utils/SizeOpts.h" 139 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 140 #include <algorithm> 141 #include <cassert> 142 #include <cstdint> 143 #include <cstdlib> 144 #include <functional> 145 #include <iterator> 146 #include <limits> 147 #include <memory> 148 #include <string> 149 #include <tuple> 150 #include <utility> 151 #include <vector> 152 153 using namespace llvm; 154 155 #define LV_NAME "loop-vectorize" 156 #define DEBUG_TYPE LV_NAME 157 158 /// @{ 159 /// Metadata attribute names 160 static const char *const LLVMLoopVectorizeFollowupAll = 161 "llvm.loop.vectorize.followup_all"; 162 static const char *const LLVMLoopVectorizeFollowupVectorized = 163 "llvm.loop.vectorize.followup_vectorized"; 164 static const char *const LLVMLoopVectorizeFollowupEpilogue = 165 "llvm.loop.vectorize.followup_epilogue"; 166 /// @} 167 168 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 169 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 170 171 /// Loops with a known constant trip count below this number are vectorized only 172 /// if no scalar iteration overheads are incurred. 173 static cl::opt<unsigned> TinyTripCountVectorThreshold( 174 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 175 cl::desc("Loops with a constant trip count that is smaller than this " 176 "value are vectorized only if no scalar iteration overheads " 177 "are incurred.")); 178 179 static cl::opt<bool> MaximizeBandwidth( 180 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 181 cl::desc("Maximize bandwidth when selecting vectorization factor which " 182 "will be determined by the smallest type in loop.")); 183 184 static cl::opt<bool> EnableInterleavedMemAccesses( 185 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 186 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 187 188 /// An interleave-group may need masking if it resides in a block that needs 189 /// predication, or in order to mask away gaps. 190 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 191 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 192 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 193 194 /// We don't interleave loops with a known constant trip count below this 195 /// number. 196 static const unsigned TinyTripCountInterleaveThreshold = 128; 197 198 static cl::opt<unsigned> ForceTargetNumScalarRegs( 199 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 200 cl::desc("A flag that overrides the target's number of scalar registers.")); 201 202 static cl::opt<unsigned> ForceTargetNumVectorRegs( 203 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's number of vector registers.")); 205 206 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 207 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 208 cl::desc("A flag that overrides the target's max interleave factor for " 209 "scalar loops.")); 210 211 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 212 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 213 cl::desc("A flag that overrides the target's max interleave factor for " 214 "vectorized loops.")); 215 216 static cl::opt<unsigned> ForceTargetInstructionCost( 217 "force-target-instruction-cost", cl::init(0), cl::Hidden, 218 cl::desc("A flag that overrides the target's expected cost for " 219 "an instruction to a single constant value. Mostly " 220 "useful for getting consistent testing.")); 221 222 static cl::opt<unsigned> SmallLoopCost( 223 "small-loop-cost", cl::init(20), cl::Hidden, 224 cl::desc( 225 "The cost of a loop that is considered 'small' by the interleaver.")); 226 227 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 228 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 229 cl::desc("Enable the use of the block frequency analysis to access PGO " 230 "heuristics minimizing code growth in cold regions and being more " 231 "aggressive in hot regions.")); 232 233 // Runtime interleave loops for load/store throughput. 234 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 235 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 236 cl::desc( 237 "Enable runtime interleaving until load/store ports are saturated")); 238 239 /// The number of stores in a loop that are allowed to need predication. 240 static cl::opt<unsigned> NumberOfStoresToPredicate( 241 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 242 cl::desc("Max number of stores to be predicated behind an if.")); 243 244 static cl::opt<bool> EnableIndVarRegisterHeur( 245 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 246 cl::desc("Count the induction variable only once when interleaving")); 247 248 static cl::opt<bool> EnableCondStoresVectorization( 249 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 250 cl::desc("Enable if predication of stores during vectorization.")); 251 252 static cl::opt<unsigned> MaxNestedScalarReductionIC( 253 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 254 cl::desc("The maximum interleave count to use when interleaving a scalar " 255 "reduction in a nested loop.")); 256 257 cl::opt<bool> EnableVPlanNativePath( 258 "enable-vplan-native-path", cl::init(false), cl::Hidden, 259 cl::desc("Enable VPlan-native vectorization path with " 260 "support for outer loop vectorization.")); 261 262 // FIXME: Remove this switch once we have divergence analysis. Currently we 263 // assume divergent non-backedge branches when this switch is true. 264 cl::opt<bool> EnableVPlanPredication( 265 "enable-vplan-predication", cl::init(false), cl::Hidden, 266 cl::desc("Enable VPlan-native vectorization path predicator with " 267 "support for outer loop vectorization.")); 268 269 // This flag enables the stress testing of the VPlan H-CFG construction in the 270 // VPlan-native vectorization path. It must be used in conjuction with 271 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 272 // verification of the H-CFGs built. 273 static cl::opt<bool> VPlanBuildStressTest( 274 "vplan-build-stress-test", cl::init(false), cl::Hidden, 275 cl::desc( 276 "Build VPlan for every supported loop nest in the function and bail " 277 "out right after the build (stress test the VPlan H-CFG construction " 278 "in the VPlan-native vectorization path).")); 279 280 cl::opt<bool> llvm::EnableLoopInterleaving( 281 "interleave-loops", cl::init(true), cl::Hidden, 282 cl::desc("Enable loop interleaving in Loop vectorization passes")); 283 cl::opt<bool> llvm::EnableLoopVectorization( 284 "vectorize-loops", cl::init(true), cl::Hidden, 285 cl::desc("Run the Loop vectorization passes")); 286 287 /// A helper function for converting Scalar types to vector types. 288 /// If the incoming type is void, we return void. If the VF is 1, we return 289 /// the scalar type. 290 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 291 if (Scalar->isVoidTy() || VF == 1) 292 return Scalar; 293 return VectorType::get(Scalar, VF); 294 } 295 296 /// A helper function that returns the type of loaded or stored value. 297 static Type *getMemInstValueType(Value *I) { 298 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 299 "Expected Load or Store instruction"); 300 if (auto *LI = dyn_cast<LoadInst>(I)) 301 return LI->getType(); 302 return cast<StoreInst>(I)->getValueOperand()->getType(); 303 } 304 305 /// A helper function that returns true if the given type is irregular. The 306 /// type is irregular if its allocated size doesn't equal the store size of an 307 /// element of the corresponding vector type at the given vectorization factor. 308 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 309 // Determine if an array of VF elements of type Ty is "bitcast compatible" 310 // with a <VF x Ty> vector. 311 if (VF > 1) { 312 auto *VectorTy = VectorType::get(Ty, VF); 313 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 314 } 315 316 // If the vectorization factor is one, we just check if an array of type Ty 317 // requires padding between elements. 318 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 319 } 320 321 /// A helper function that returns the reciprocal of the block probability of 322 /// predicated blocks. If we return X, we are assuming the predicated block 323 /// will execute once for every X iterations of the loop header. 324 /// 325 /// TODO: We should use actual block probability here, if available. Currently, 326 /// we always assume predicated blocks have a 50% chance of executing. 327 static unsigned getReciprocalPredBlockProb() { return 2; } 328 329 /// A helper function that adds a 'fast' flag to floating-point operations. 330 static Value *addFastMathFlag(Value *V) { 331 if (isa<FPMathOperator>(V)) 332 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 333 return V; 334 } 335 336 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 337 if (isa<FPMathOperator>(V)) 338 cast<Instruction>(V)->setFastMathFlags(FMF); 339 return V; 340 } 341 342 /// A helper function that returns an integer or floating-point constant with 343 /// value C. 344 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 345 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 346 : ConstantFP::get(Ty, C); 347 } 348 349 namespace llvm { 350 351 /// InnerLoopVectorizer vectorizes loops which contain only one basic 352 /// block to a specified vectorization factor (VF). 353 /// This class performs the widening of scalars into vectors, or multiple 354 /// scalars. This class also implements the following features: 355 /// * It inserts an epilogue loop for handling loops that don't have iteration 356 /// counts that are known to be a multiple of the vectorization factor. 357 /// * It handles the code generation for reduction variables. 358 /// * Scalarization (implementation using scalars) of un-vectorizable 359 /// instructions. 360 /// InnerLoopVectorizer does not perform any vectorization-legality 361 /// checks, and relies on the caller to check for the different legality 362 /// aspects. The InnerLoopVectorizer relies on the 363 /// LoopVectorizationLegality class to provide information about the induction 364 /// and reduction variables that were found to a given vectorization factor. 365 class InnerLoopVectorizer { 366 public: 367 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 368 LoopInfo *LI, DominatorTree *DT, 369 const TargetLibraryInfo *TLI, 370 const TargetTransformInfo *TTI, AssumptionCache *AC, 371 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 372 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 373 LoopVectorizationCostModel *CM) 374 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 375 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 376 Builder(PSE.getSE()->getContext()), 377 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 378 virtual ~InnerLoopVectorizer() = default; 379 380 /// Create a new empty loop. Unlink the old loop and connect the new one. 381 /// Return the pre-header block of the new loop. 382 BasicBlock *createVectorizedLoopSkeleton(); 383 384 /// Widen a single instruction within the innermost loop. 385 void widenInstruction(Instruction &I); 386 387 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 388 void fixVectorizedLoop(); 389 390 // Return true if any runtime check is added. 391 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 392 393 /// A type for vectorized values in the new loop. Each value from the 394 /// original loop, when vectorized, is represented by UF vector values in the 395 /// new unrolled loop, where UF is the unroll factor. 396 using VectorParts = SmallVector<Value *, 2>; 397 398 /// Vectorize a single PHINode in a block. This method handles the induction 399 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 400 /// arbitrary length vectors. 401 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 402 403 /// A helper function to scalarize a single Instruction in the innermost loop. 404 /// Generates a sequence of scalar instances for each lane between \p MinLane 405 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 406 /// inclusive.. 407 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 408 bool IfPredicateInstr); 409 410 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 411 /// is provided, the integer induction variable will first be truncated to 412 /// the corresponding type. 413 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 414 415 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 416 /// vector or scalar value on-demand if one is not yet available. When 417 /// vectorizing a loop, we visit the definition of an instruction before its 418 /// uses. When visiting the definition, we either vectorize or scalarize the 419 /// instruction, creating an entry for it in the corresponding map. (In some 420 /// cases, such as induction variables, we will create both vector and scalar 421 /// entries.) Then, as we encounter uses of the definition, we derive values 422 /// for each scalar or vector use unless such a value is already available. 423 /// For example, if we scalarize a definition and one of its uses is vector, 424 /// we build the required vector on-demand with an insertelement sequence 425 /// when visiting the use. Otherwise, if the use is scalar, we can use the 426 /// existing scalar definition. 427 /// 428 /// Return a value in the new loop corresponding to \p V from the original 429 /// loop at unroll index \p Part. If the value has already been vectorized, 430 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 431 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 432 /// a new vector value on-demand by inserting the scalar values into a vector 433 /// with an insertelement sequence. If the value has been neither vectorized 434 /// nor scalarized, it must be loop invariant, so we simply broadcast the 435 /// value into a vector. 436 Value *getOrCreateVectorValue(Value *V, unsigned Part); 437 438 /// Return a value in the new loop corresponding to \p V from the original 439 /// loop at unroll and vector indices \p Instance. If the value has been 440 /// vectorized but not scalarized, the necessary extractelement instruction 441 /// will be generated. 442 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 443 444 /// Construct the vector value of a scalarized value \p V one lane at a time. 445 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 446 447 /// Try to vectorize the interleaved access group that \p Instr belongs to, 448 /// optionally masking the vector operations if \p BlockInMask is non-null. 449 void vectorizeInterleaveGroup(Instruction *Instr, 450 VectorParts *BlockInMask = nullptr); 451 452 /// Vectorize Load and Store instructions, optionally masking the vector 453 /// operations if \p BlockInMask is non-null. 454 void vectorizeMemoryInstruction(Instruction *Instr, 455 VectorParts *BlockInMask = nullptr); 456 457 /// Set the debug location in the builder using the debug location in 458 /// the instruction. 459 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 460 461 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 462 void fixNonInductionPHIs(void); 463 464 protected: 465 friend class LoopVectorizationPlanner; 466 467 /// A small list of PHINodes. 468 using PhiVector = SmallVector<PHINode *, 4>; 469 470 /// A type for scalarized values in the new loop. Each value from the 471 /// original loop, when scalarized, is represented by UF x VF scalar values 472 /// in the new unrolled loop, where UF is the unroll factor and VF is the 473 /// vectorization factor. 474 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 475 476 /// Set up the values of the IVs correctly when exiting the vector loop. 477 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 478 Value *CountRoundDown, Value *EndValue, 479 BasicBlock *MiddleBlock); 480 481 /// Create a new induction variable inside L. 482 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 483 Value *Step, Instruction *DL); 484 485 /// Handle all cross-iteration phis in the header. 486 void fixCrossIterationPHIs(); 487 488 /// Fix a first-order recurrence. This is the second phase of vectorizing 489 /// this phi node. 490 void fixFirstOrderRecurrence(PHINode *Phi); 491 492 /// Fix a reduction cross-iteration phi. This is the second phase of 493 /// vectorizing this phi node. 494 void fixReduction(PHINode *Phi); 495 496 /// The Loop exit block may have single value PHI nodes with some 497 /// incoming value. While vectorizing we only handled real values 498 /// that were defined inside the loop and we should have one value for 499 /// each predecessor of its parent basic block. See PR14725. 500 void fixLCSSAPHIs(); 501 502 /// Iteratively sink the scalarized operands of a predicated instruction into 503 /// the block that was created for it. 504 void sinkScalarOperands(Instruction *PredInst); 505 506 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 507 /// represented as. 508 void truncateToMinimalBitwidths(); 509 510 /// Insert the new loop to the loop hierarchy and pass manager 511 /// and update the analysis passes. 512 void updateAnalysis(); 513 514 /// Create a broadcast instruction. This method generates a broadcast 515 /// instruction (shuffle) for loop invariant values and for the induction 516 /// value. If this is the induction variable then we extend it to N, N+1, ... 517 /// this is needed because each iteration in the loop corresponds to a SIMD 518 /// element. 519 virtual Value *getBroadcastInstrs(Value *V); 520 521 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 522 /// to each vector element of Val. The sequence starts at StartIndex. 523 /// \p Opcode is relevant for FP induction variable. 524 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 525 Instruction::BinaryOps Opcode = 526 Instruction::BinaryOpsEnd); 527 528 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 529 /// variable on which to base the steps, \p Step is the size of the step, and 530 /// \p EntryVal is the value from the original loop that maps to the steps. 531 /// Note that \p EntryVal doesn't have to be an induction variable - it 532 /// can also be a truncate instruction. 533 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 534 const InductionDescriptor &ID); 535 536 /// Create a vector induction phi node based on an existing scalar one. \p 537 /// EntryVal is the value from the original loop that maps to the vector phi 538 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 539 /// truncate instruction, instead of widening the original IV, we widen a 540 /// version of the IV truncated to \p EntryVal's type. 541 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 542 Value *Step, Instruction *EntryVal); 543 544 /// Returns true if an instruction \p I should be scalarized instead of 545 /// vectorized for the chosen vectorization factor. 546 bool shouldScalarizeInstruction(Instruction *I) const; 547 548 /// Returns true if we should generate a scalar version of \p IV. 549 bool needsScalarInduction(Instruction *IV) const; 550 551 /// If there is a cast involved in the induction variable \p ID, which should 552 /// be ignored in the vectorized loop body, this function records the 553 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 554 /// cast. We had already proved that the casted Phi is equal to the uncasted 555 /// Phi in the vectorized loop (under a runtime guard), and therefore 556 /// there is no need to vectorize the cast - the same value can be used in the 557 /// vector loop for both the Phi and the cast. 558 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 559 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 560 /// 561 /// \p EntryVal is the value from the original loop that maps to the vector 562 /// phi node and is used to distinguish what is the IV currently being 563 /// processed - original one (if \p EntryVal is a phi corresponding to the 564 /// original IV) or the "newly-created" one based on the proof mentioned above 565 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 566 /// latter case \p EntryVal is a TruncInst and we must not record anything for 567 /// that IV, but it's error-prone to expect callers of this routine to care 568 /// about that, hence this explicit parameter. 569 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 570 const Instruction *EntryVal, 571 Value *VectorLoopValue, 572 unsigned Part, 573 unsigned Lane = UINT_MAX); 574 575 /// Generate a shuffle sequence that will reverse the vector Vec. 576 virtual Value *reverseVector(Value *Vec); 577 578 /// Returns (and creates if needed) the original loop trip count. 579 Value *getOrCreateTripCount(Loop *NewLoop); 580 581 /// Returns (and creates if needed) the trip count of the widened loop. 582 Value *getOrCreateVectorTripCount(Loop *NewLoop); 583 584 /// Returns a bitcasted value to the requested vector type. 585 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 586 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 587 const DataLayout &DL); 588 589 /// Emit a bypass check to see if the vector trip count is zero, including if 590 /// it overflows. 591 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 592 593 /// Emit a bypass check to see if all of the SCEV assumptions we've 594 /// had to make are correct. 595 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 596 597 /// Emit bypass checks to check any memory assumptions we may have made. 598 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 599 600 /// Compute the transformed value of Index at offset StartValue using step 601 /// StepValue. 602 /// For integer induction, returns StartValue + Index * StepValue. 603 /// For pointer induction, returns StartValue[Index * StepValue]. 604 /// FIXME: The newly created binary instructions should contain nsw/nuw 605 /// flags, which can be found from the original scalar operations. 606 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 607 const DataLayout &DL, 608 const InductionDescriptor &ID) const; 609 610 /// Add additional metadata to \p To that was not present on \p Orig. 611 /// 612 /// Currently this is used to add the noalias annotations based on the 613 /// inserted memchecks. Use this for instructions that are *cloned* into the 614 /// vector loop. 615 void addNewMetadata(Instruction *To, const Instruction *Orig); 616 617 /// Add metadata from one instruction to another. 618 /// 619 /// This includes both the original MDs from \p From and additional ones (\see 620 /// addNewMetadata). Use this for *newly created* instructions in the vector 621 /// loop. 622 void addMetadata(Instruction *To, Instruction *From); 623 624 /// Similar to the previous function but it adds the metadata to a 625 /// vector of instructions. 626 void addMetadata(ArrayRef<Value *> To, Instruction *From); 627 628 /// The original loop. 629 Loop *OrigLoop; 630 631 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 632 /// dynamic knowledge to simplify SCEV expressions and converts them to a 633 /// more usable form. 634 PredicatedScalarEvolution &PSE; 635 636 /// Loop Info. 637 LoopInfo *LI; 638 639 /// Dominator Tree. 640 DominatorTree *DT; 641 642 /// Alias Analysis. 643 AliasAnalysis *AA; 644 645 /// Target Library Info. 646 const TargetLibraryInfo *TLI; 647 648 /// Target Transform Info. 649 const TargetTransformInfo *TTI; 650 651 /// Assumption Cache. 652 AssumptionCache *AC; 653 654 /// Interface to emit optimization remarks. 655 OptimizationRemarkEmitter *ORE; 656 657 /// LoopVersioning. It's only set up (non-null) if memchecks were 658 /// used. 659 /// 660 /// This is currently only used to add no-alias metadata based on the 661 /// memchecks. The actually versioning is performed manually. 662 std::unique_ptr<LoopVersioning> LVer; 663 664 /// The vectorization SIMD factor to use. Each vector will have this many 665 /// vector elements. 666 unsigned VF; 667 668 /// The vectorization unroll factor to use. Each scalar is vectorized to this 669 /// many different vector instructions. 670 unsigned UF; 671 672 /// The builder that we use 673 IRBuilder<> Builder; 674 675 // --- Vectorization state --- 676 677 /// The vector-loop preheader. 678 BasicBlock *LoopVectorPreHeader; 679 680 /// The scalar-loop preheader. 681 BasicBlock *LoopScalarPreHeader; 682 683 /// Middle Block between the vector and the scalar. 684 BasicBlock *LoopMiddleBlock; 685 686 /// The ExitBlock of the scalar loop. 687 BasicBlock *LoopExitBlock; 688 689 /// The vector loop body. 690 BasicBlock *LoopVectorBody; 691 692 /// The scalar loop body. 693 BasicBlock *LoopScalarBody; 694 695 /// A list of all bypass blocks. The first block is the entry of the loop. 696 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 697 698 /// The new Induction variable which was added to the new block. 699 PHINode *Induction = nullptr; 700 701 /// The induction variable of the old basic block. 702 PHINode *OldInduction = nullptr; 703 704 /// Maps values from the original loop to their corresponding values in the 705 /// vectorized loop. A key value can map to either vector values, scalar 706 /// values or both kinds of values, depending on whether the key was 707 /// vectorized and scalarized. 708 VectorizerValueMap VectorLoopValueMap; 709 710 /// Store instructions that were predicated. 711 SmallVector<Instruction *, 4> PredicatedInstructions; 712 713 /// Trip count of the original loop. 714 Value *TripCount = nullptr; 715 716 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 717 Value *VectorTripCount = nullptr; 718 719 /// The legality analysis. 720 LoopVectorizationLegality *Legal; 721 722 /// The profitablity analysis. 723 LoopVectorizationCostModel *Cost; 724 725 // Record whether runtime checks are added. 726 bool AddedSafetyChecks = false; 727 728 // Holds the end values for each induction variable. We save the end values 729 // so we can later fix-up the external users of the induction variables. 730 DenseMap<PHINode *, Value *> IVEndValues; 731 732 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 733 // fixed up at the end of vector code generation. 734 SmallVector<PHINode *, 8> OrigPHIsToFix; 735 }; 736 737 class InnerLoopUnroller : public InnerLoopVectorizer { 738 public: 739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 740 LoopInfo *LI, DominatorTree *DT, 741 const TargetLibraryInfo *TLI, 742 const TargetTransformInfo *TTI, AssumptionCache *AC, 743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 744 LoopVectorizationLegality *LVL, 745 LoopVectorizationCostModel *CM) 746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 747 UnrollFactor, LVL, CM) {} 748 749 private: 750 Value *getBroadcastInstrs(Value *V) override; 751 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 752 Instruction::BinaryOps Opcode = 753 Instruction::BinaryOpsEnd) override; 754 Value *reverseVector(Value *Vec) override; 755 }; 756 757 } // end namespace llvm 758 759 /// Look for a meaningful debug location on the instruction or it's 760 /// operands. 761 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 762 if (!I) 763 return I; 764 765 DebugLoc Empty; 766 if (I->getDebugLoc() != Empty) 767 return I; 768 769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 771 if (OpInst->getDebugLoc() != Empty) 772 return OpInst; 773 } 774 775 return I; 776 } 777 778 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 780 const DILocation *DIL = Inst->getDebugLoc(); 781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 782 !isa<DbgInfoIntrinsic>(Inst)) { 783 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 784 if (NewDIL) 785 B.SetCurrentDebugLocation(NewDIL.getValue()); 786 else 787 LLVM_DEBUG(dbgs() 788 << "Failed to create new discriminator: " 789 << DIL->getFilename() << " Line: " << DIL->getLine()); 790 } 791 else 792 B.SetCurrentDebugLocation(DIL); 793 } else 794 B.SetCurrentDebugLocation(DebugLoc()); 795 } 796 797 #ifndef NDEBUG 798 /// \return string containing a file name and a line # for the given loop. 799 static std::string getDebugLocString(const Loop *L) { 800 std::string Result; 801 if (L) { 802 raw_string_ostream OS(Result); 803 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 804 LoopDbgLoc.print(OS); 805 else 806 // Just print the module name. 807 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 808 OS.flush(); 809 } 810 return Result; 811 } 812 #endif 813 814 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 815 const Instruction *Orig) { 816 // If the loop was versioned with memchecks, add the corresponding no-alias 817 // metadata. 818 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 819 LVer->annotateInstWithNoAlias(To, Orig); 820 } 821 822 void InnerLoopVectorizer::addMetadata(Instruction *To, 823 Instruction *From) { 824 propagateMetadata(To, From); 825 addNewMetadata(To, From); 826 } 827 828 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 829 Instruction *From) { 830 for (Value *V : To) { 831 if (Instruction *I = dyn_cast<Instruction>(V)) 832 addMetadata(I, From); 833 } 834 } 835 836 namespace llvm { 837 838 /// LoopVectorizationCostModel - estimates the expected speedups due to 839 /// vectorization. 840 /// In many cases vectorization is not profitable. This can happen because of 841 /// a number of reasons. In this class we mainly attempt to predict the 842 /// expected speedup/slowdowns due to the supported instruction set. We use the 843 /// TargetTransformInfo to query the different backends for the cost of 844 /// different operations. 845 class LoopVectorizationCostModel { 846 public: 847 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 848 LoopInfo *LI, LoopVectorizationLegality *Legal, 849 const TargetTransformInfo &TTI, 850 const TargetLibraryInfo *TLI, DemandedBits *DB, 851 AssumptionCache *AC, 852 OptimizationRemarkEmitter *ORE, const Function *F, 853 const LoopVectorizeHints *Hints, 854 InterleavedAccessInfo &IAI) 855 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 856 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 857 858 /// \return An upper bound for the vectorization factor, or None if 859 /// vectorization and interleaving should be avoided up front. 860 Optional<unsigned> computeMaxVF(bool OptForSize); 861 862 /// \return The most profitable vectorization factor and the cost of that VF. 863 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 864 /// then this vectorization factor will be selected if vectorization is 865 /// possible. 866 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 867 868 /// Setup cost-based decisions for user vectorization factor. 869 void selectUserVectorizationFactor(unsigned UserVF) { 870 collectUniformsAndScalars(UserVF); 871 collectInstsToScalarize(UserVF); 872 } 873 874 /// \return The size (in bits) of the smallest and widest types in the code 875 /// that needs to be vectorized. We ignore values that remain scalar such as 876 /// 64 bit loop indices. 877 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 878 879 /// \return The desired interleave count. 880 /// If interleave count has been specified by metadata it will be returned. 881 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 882 /// are the selected vectorization factor and the cost of the selected VF. 883 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 884 unsigned LoopCost); 885 886 /// Memory access instruction may be vectorized in more than one way. 887 /// Form of instruction after vectorization depends on cost. 888 /// This function takes cost-based decisions for Load/Store instructions 889 /// and collects them in a map. This decisions map is used for building 890 /// the lists of loop-uniform and loop-scalar instructions. 891 /// The calculated cost is saved with widening decision in order to 892 /// avoid redundant calculations. 893 void setCostBasedWideningDecision(unsigned VF); 894 895 /// A struct that represents some properties of the register usage 896 /// of a loop. 897 struct RegisterUsage { 898 /// Holds the number of loop invariant values that are used in the loop. 899 unsigned LoopInvariantRegs; 900 901 /// Holds the maximum number of concurrent live intervals in the loop. 902 unsigned MaxLocalUsers; 903 }; 904 905 /// \return Returns information about the register usages of the loop for the 906 /// given vectorization factors. 907 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 908 909 /// Collect values we want to ignore in the cost model. 910 void collectValuesToIgnore(); 911 912 /// \returns The smallest bitwidth each instruction can be represented with. 913 /// The vector equivalents of these instructions should be truncated to this 914 /// type. 915 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 916 return MinBWs; 917 } 918 919 /// \returns True if it is more profitable to scalarize instruction \p I for 920 /// vectorization factor \p VF. 921 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 922 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 923 924 // Cost model is not run in the VPlan-native path - return conservative 925 // result until this changes. 926 if (EnableVPlanNativePath) 927 return false; 928 929 auto Scalars = InstsToScalarize.find(VF); 930 assert(Scalars != InstsToScalarize.end() && 931 "VF not yet analyzed for scalarization profitability"); 932 return Scalars->second.find(I) != Scalars->second.end(); 933 } 934 935 /// Returns true if \p I is known to be uniform after vectorization. 936 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 937 if (VF == 1) 938 return true; 939 940 // Cost model is not run in the VPlan-native path - return conservative 941 // result until this changes. 942 if (EnableVPlanNativePath) 943 return false; 944 945 auto UniformsPerVF = Uniforms.find(VF); 946 assert(UniformsPerVF != Uniforms.end() && 947 "VF not yet analyzed for uniformity"); 948 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 949 } 950 951 /// Returns true if \p I is known to be scalar after vectorization. 952 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 953 if (VF == 1) 954 return true; 955 956 // Cost model is not run in the VPlan-native path - return conservative 957 // result until this changes. 958 if (EnableVPlanNativePath) 959 return false; 960 961 auto ScalarsPerVF = Scalars.find(VF); 962 assert(ScalarsPerVF != Scalars.end() && 963 "Scalar values are not calculated for VF"); 964 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 965 } 966 967 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 968 /// for vectorization factor \p VF. 969 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 970 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 971 !isProfitableToScalarize(I, VF) && 972 !isScalarAfterVectorization(I, VF); 973 } 974 975 /// Decision that was taken during cost calculation for memory instruction. 976 enum InstWidening { 977 CM_Unknown, 978 CM_Widen, // For consecutive accesses with stride +1. 979 CM_Widen_Reverse, // For consecutive accesses with stride -1. 980 CM_Interleave, 981 CM_GatherScatter, 982 CM_Scalarize 983 }; 984 985 /// Save vectorization decision \p W and \p Cost taken by the cost model for 986 /// instruction \p I and vector width \p VF. 987 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 988 unsigned Cost) { 989 assert(VF >= 2 && "Expected VF >=2"); 990 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 991 } 992 993 /// Save vectorization decision \p W and \p Cost taken by the cost model for 994 /// interleaving group \p Grp and vector width \p VF. 995 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 996 InstWidening W, unsigned Cost) { 997 assert(VF >= 2 && "Expected VF >=2"); 998 /// Broadcast this decicion to all instructions inside the group. 999 /// But the cost will be assigned to one instruction only. 1000 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1001 if (auto *I = Grp->getMember(i)) { 1002 if (Grp->getInsertPos() == I) 1003 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1004 else 1005 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1006 } 1007 } 1008 } 1009 1010 /// Return the cost model decision for the given instruction \p I and vector 1011 /// width \p VF. Return CM_Unknown if this instruction did not pass 1012 /// through the cost modeling. 1013 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1014 assert(VF >= 2 && "Expected VF >=2"); 1015 1016 // Cost model is not run in the VPlan-native path - return conservative 1017 // result until this changes. 1018 if (EnableVPlanNativePath) 1019 return CM_GatherScatter; 1020 1021 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1022 auto Itr = WideningDecisions.find(InstOnVF); 1023 if (Itr == WideningDecisions.end()) 1024 return CM_Unknown; 1025 return Itr->second.first; 1026 } 1027 1028 /// Return the vectorization cost for the given instruction \p I and vector 1029 /// width \p VF. 1030 unsigned getWideningCost(Instruction *I, unsigned VF) { 1031 assert(VF >= 2 && "Expected VF >=2"); 1032 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1033 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1034 "The cost is not calculated"); 1035 return WideningDecisions[InstOnVF].second; 1036 } 1037 1038 /// Return True if instruction \p I is an optimizable truncate whose operand 1039 /// is an induction variable. Such a truncate will be removed by adding a new 1040 /// induction variable with the destination type. 1041 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1042 // If the instruction is not a truncate, return false. 1043 auto *Trunc = dyn_cast<TruncInst>(I); 1044 if (!Trunc) 1045 return false; 1046 1047 // Get the source and destination types of the truncate. 1048 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1049 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1050 1051 // If the truncate is free for the given types, return false. Replacing a 1052 // free truncate with an induction variable would add an induction variable 1053 // update instruction to each iteration of the loop. We exclude from this 1054 // check the primary induction variable since it will need an update 1055 // instruction regardless. 1056 Value *Op = Trunc->getOperand(0); 1057 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1058 return false; 1059 1060 // If the truncated value is not an induction variable, return false. 1061 return Legal->isInductionPhi(Op); 1062 } 1063 1064 /// Collects the instructions to scalarize for each predicated instruction in 1065 /// the loop. 1066 void collectInstsToScalarize(unsigned VF); 1067 1068 /// Collect Uniform and Scalar values for the given \p VF. 1069 /// The sets depend on CM decision for Load/Store instructions 1070 /// that may be vectorized as interleave, gather-scatter or scalarized. 1071 void collectUniformsAndScalars(unsigned VF) { 1072 // Do the analysis once. 1073 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1074 return; 1075 setCostBasedWideningDecision(VF); 1076 collectLoopUniforms(VF); 1077 collectLoopScalars(VF); 1078 } 1079 1080 /// Returns true if the target machine supports masked store operation 1081 /// for the given \p DataType and kind of access to \p Ptr. 1082 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1083 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1084 } 1085 1086 /// Returns true if the target machine supports masked load operation 1087 /// for the given \p DataType and kind of access to \p Ptr. 1088 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1089 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1090 } 1091 1092 /// Returns true if the target machine supports masked scatter operation 1093 /// for the given \p DataType. 1094 bool isLegalMaskedScatter(Type *DataType) { 1095 return TTI.isLegalMaskedScatter(DataType); 1096 } 1097 1098 /// Returns true if the target machine supports masked gather operation 1099 /// for the given \p DataType. 1100 bool isLegalMaskedGather(Type *DataType) { 1101 return TTI.isLegalMaskedGather(DataType); 1102 } 1103 1104 /// Returns true if the target machine can represent \p V as a masked gather 1105 /// or scatter operation. 1106 bool isLegalGatherOrScatter(Value *V) { 1107 bool LI = isa<LoadInst>(V); 1108 bool SI = isa<StoreInst>(V); 1109 if (!LI && !SI) 1110 return false; 1111 auto *Ty = getMemInstValueType(V); 1112 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1113 } 1114 1115 /// Returns true if \p I is an instruction that will be scalarized with 1116 /// predication. Such instructions include conditional stores and 1117 /// instructions that may divide by zero. 1118 /// If a non-zero VF has been calculated, we check if I will be scalarized 1119 /// predication for that VF. 1120 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1121 1122 // Returns true if \p I is an instruction that will be predicated either 1123 // through scalar predication or masked load/store or masked gather/scatter. 1124 // Superset of instructions that return true for isScalarWithPredication. 1125 bool isPredicatedInst(Instruction *I) { 1126 if (!blockNeedsPredication(I->getParent())) 1127 return false; 1128 // Loads and stores that need some form of masked operation are predicated 1129 // instructions. 1130 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1131 return Legal->isMaskRequired(I); 1132 return isScalarWithPredication(I); 1133 } 1134 1135 /// Returns true if \p I is a memory instruction with consecutive memory 1136 /// access that can be widened. 1137 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1138 1139 /// Returns true if \p I is a memory instruction in an interleaved-group 1140 /// of memory accesses that can be vectorized with wide vector loads/stores 1141 /// and shuffles. 1142 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1143 1144 /// Check if \p Instr belongs to any interleaved access group. 1145 bool isAccessInterleaved(Instruction *Instr) { 1146 return InterleaveInfo.isInterleaved(Instr); 1147 } 1148 1149 /// Get the interleaved access group that \p Instr belongs to. 1150 const InterleaveGroup<Instruction> * 1151 getInterleavedAccessGroup(Instruction *Instr) { 1152 return InterleaveInfo.getInterleaveGroup(Instr); 1153 } 1154 1155 /// Returns true if an interleaved group requires a scalar iteration 1156 /// to handle accesses with gaps, and there is nothing preventing us from 1157 /// creating a scalar epilogue. 1158 bool requiresScalarEpilogue() const { 1159 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1160 } 1161 1162 /// Returns true if a scalar epilogue is not allowed due to optsize. 1163 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1164 1165 /// Returns true if all loop blocks should be masked to fold tail loop. 1166 bool foldTailByMasking() const { return FoldTailByMasking; } 1167 1168 bool blockNeedsPredication(BasicBlock *BB) { 1169 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1170 } 1171 1172 private: 1173 unsigned NumPredStores = 0; 1174 1175 /// \return An upper bound for the vectorization factor, larger than zero. 1176 /// One is returned if vectorization should best be avoided due to cost. 1177 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1178 1179 /// The vectorization cost is a combination of the cost itself and a boolean 1180 /// indicating whether any of the contributing operations will actually 1181 /// operate on 1182 /// vector values after type legalization in the backend. If this latter value 1183 /// is 1184 /// false, then all operations will be scalarized (i.e. no vectorization has 1185 /// actually taken place). 1186 using VectorizationCostTy = std::pair<unsigned, bool>; 1187 1188 /// Returns the expected execution cost. The unit of the cost does 1189 /// not matter because we use the 'cost' units to compare different 1190 /// vector widths. The cost that is returned is *not* normalized by 1191 /// the factor width. 1192 VectorizationCostTy expectedCost(unsigned VF); 1193 1194 /// Returns the execution time cost of an instruction for a given vector 1195 /// width. Vector width of one means scalar. 1196 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1197 1198 /// The cost-computation logic from getInstructionCost which provides 1199 /// the vector type as an output parameter. 1200 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1201 1202 /// Calculate vectorization cost of memory instruction \p I. 1203 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1204 1205 /// The cost computation for scalarized memory instruction. 1206 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1207 1208 /// The cost computation for interleaving group of memory instructions. 1209 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1210 1211 /// The cost computation for Gather/Scatter instruction. 1212 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1213 1214 /// The cost computation for widening instruction \p I with consecutive 1215 /// memory access. 1216 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1217 1218 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1219 /// Load: scalar load + broadcast. 1220 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1221 /// element) 1222 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1223 1224 /// Returns whether the instruction is a load or store and will be a emitted 1225 /// as a vector operation. 1226 bool isConsecutiveLoadOrStore(Instruction *I); 1227 1228 /// Returns true if an artificially high cost for emulated masked memrefs 1229 /// should be used. 1230 bool useEmulatedMaskMemRefHack(Instruction *I); 1231 1232 /// Create an analysis remark that explains why vectorization failed 1233 /// 1234 /// \p RemarkName is the identifier for the remark. \return the remark object 1235 /// that can be streamed to. 1236 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1237 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1238 RemarkName, TheLoop); 1239 } 1240 1241 /// Map of scalar integer values to the smallest bitwidth they can be legally 1242 /// represented as. The vector equivalents of these values should be truncated 1243 /// to this type. 1244 MapVector<Instruction *, uint64_t> MinBWs; 1245 1246 /// A type representing the costs for instructions if they were to be 1247 /// scalarized rather than vectorized. The entries are Instruction-Cost 1248 /// pairs. 1249 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1250 1251 /// A set containing all BasicBlocks that are known to present after 1252 /// vectorization as a predicated block. 1253 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1254 1255 /// Records whether it is allowed to have the original scalar loop execute at 1256 /// least once. This may be needed as a fallback loop in case runtime 1257 /// aliasing/dependence checks fail, or to handle the tail/remainder 1258 /// iterations when the trip count is unknown or doesn't divide by the VF, 1259 /// or as a peel-loop to handle gaps in interleave-groups. 1260 /// Under optsize and when the trip count is very small we don't allow any 1261 /// iterations to execute in the scalar loop. 1262 bool IsScalarEpilogueAllowed = true; 1263 1264 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1265 bool FoldTailByMasking = false; 1266 1267 /// A map holding scalar costs for different vectorization factors. The 1268 /// presence of a cost for an instruction in the mapping indicates that the 1269 /// instruction will be scalarized when vectorizing with the associated 1270 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1271 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1272 1273 /// Holds the instructions known to be uniform after vectorization. 1274 /// The data is collected per VF. 1275 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1276 1277 /// Holds the instructions known to be scalar after vectorization. 1278 /// The data is collected per VF. 1279 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1280 1281 /// Holds the instructions (address computations) that are forced to be 1282 /// scalarized. 1283 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1284 1285 /// Returns the expected difference in cost from scalarizing the expression 1286 /// feeding a predicated instruction \p PredInst. The instructions to 1287 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1288 /// non-negative return value implies the expression will be scalarized. 1289 /// Currently, only single-use chains are considered for scalarization. 1290 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1291 unsigned VF); 1292 1293 /// Collect the instructions that are uniform after vectorization. An 1294 /// instruction is uniform if we represent it with a single scalar value in 1295 /// the vectorized loop corresponding to each vector iteration. Examples of 1296 /// uniform instructions include pointer operands of consecutive or 1297 /// interleaved memory accesses. Note that although uniformity implies an 1298 /// instruction will be scalar, the reverse is not true. In general, a 1299 /// scalarized instruction will be represented by VF scalar values in the 1300 /// vectorized loop, each corresponding to an iteration of the original 1301 /// scalar loop. 1302 void collectLoopUniforms(unsigned VF); 1303 1304 /// Collect the instructions that are scalar after vectorization. An 1305 /// instruction is scalar if it is known to be uniform or will be scalarized 1306 /// during vectorization. Non-uniform scalarized instructions will be 1307 /// represented by VF values in the vectorized loop, each corresponding to an 1308 /// iteration of the original scalar loop. 1309 void collectLoopScalars(unsigned VF); 1310 1311 /// Keeps cost model vectorization decision and cost for instructions. 1312 /// Right now it is used for memory instructions only. 1313 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1314 std::pair<InstWidening, unsigned>>; 1315 1316 DecisionList WideningDecisions; 1317 1318 public: 1319 /// The loop that we evaluate. 1320 Loop *TheLoop; 1321 1322 /// Predicated scalar evolution analysis. 1323 PredicatedScalarEvolution &PSE; 1324 1325 /// Loop Info analysis. 1326 LoopInfo *LI; 1327 1328 /// Vectorization legality. 1329 LoopVectorizationLegality *Legal; 1330 1331 /// Vector target information. 1332 const TargetTransformInfo &TTI; 1333 1334 /// Target Library Info. 1335 const TargetLibraryInfo *TLI; 1336 1337 /// Demanded bits analysis. 1338 DemandedBits *DB; 1339 1340 /// Assumption cache. 1341 AssumptionCache *AC; 1342 1343 /// Interface to emit optimization remarks. 1344 OptimizationRemarkEmitter *ORE; 1345 1346 const Function *TheFunction; 1347 1348 /// Loop Vectorize Hint. 1349 const LoopVectorizeHints *Hints; 1350 1351 /// The interleave access information contains groups of interleaved accesses 1352 /// with the same stride and close to each other. 1353 InterleavedAccessInfo &InterleaveInfo; 1354 1355 /// Values to ignore in the cost model. 1356 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1357 1358 /// Values to ignore in the cost model when VF > 1. 1359 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1360 }; 1361 1362 } // end namespace llvm 1363 1364 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1365 // vectorization. The loop needs to be annotated with #pragma omp simd 1366 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1367 // vector length information is not provided, vectorization is not considered 1368 // explicit. Interleave hints are not allowed either. These limitations will be 1369 // relaxed in the future. 1370 // Please, note that we are currently forced to abuse the pragma 'clang 1371 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1372 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1373 // provides *explicit vectorization hints* (LV can bypass legal checks and 1374 // assume that vectorization is legal). However, both hints are implemented 1375 // using the same metadata (llvm.loop.vectorize, processed by 1376 // LoopVectorizeHints). This will be fixed in the future when the native IR 1377 // representation for pragma 'omp simd' is introduced. 1378 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1379 OptimizationRemarkEmitter *ORE) { 1380 assert(!OuterLp->empty() && "This is not an outer loop"); 1381 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1382 1383 // Only outer loops with an explicit vectorization hint are supported. 1384 // Unannotated outer loops are ignored. 1385 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1386 return false; 1387 1388 Function *Fn = OuterLp->getHeader()->getParent(); 1389 if (!Hints.allowVectorization(Fn, OuterLp, 1390 true /*VectorizeOnlyWhenForced*/)) { 1391 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1392 return false; 1393 } 1394 1395 if (Hints.getInterleave() > 1) { 1396 // TODO: Interleave support is future work. 1397 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1398 "outer loops.\n"); 1399 Hints.emitRemarkWithHints(); 1400 return false; 1401 } 1402 1403 return true; 1404 } 1405 1406 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1407 OptimizationRemarkEmitter *ORE, 1408 SmallVectorImpl<Loop *> &V) { 1409 // Collect inner loops and outer loops without irreducible control flow. For 1410 // now, only collect outer loops that have explicit vectorization hints. If we 1411 // are stress testing the VPlan H-CFG construction, we collect the outermost 1412 // loop of every loop nest. 1413 if (L.empty() || VPlanBuildStressTest || 1414 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1415 LoopBlocksRPO RPOT(&L); 1416 RPOT.perform(LI); 1417 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1418 V.push_back(&L); 1419 // TODO: Collect inner loops inside marked outer loops in case 1420 // vectorization fails for the outer loop. Do not invoke 1421 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1422 // already known to be reducible. We can use an inherited attribute for 1423 // that. 1424 return; 1425 } 1426 } 1427 for (Loop *InnerL : L) 1428 collectSupportedLoops(*InnerL, LI, ORE, V); 1429 } 1430 1431 namespace { 1432 1433 /// The LoopVectorize Pass. 1434 struct LoopVectorize : public FunctionPass { 1435 /// Pass identification, replacement for typeid 1436 static char ID; 1437 1438 LoopVectorizePass Impl; 1439 1440 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1441 bool VectorizeOnlyWhenForced = false) 1442 : FunctionPass(ID) { 1443 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1444 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1445 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1446 } 1447 1448 bool runOnFunction(Function &F) override { 1449 if (skipFunction(F)) 1450 return false; 1451 1452 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1453 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1454 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1455 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1456 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1457 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1458 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1459 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1460 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1461 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1462 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1463 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1464 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1465 1466 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1467 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1468 1469 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1470 GetLAA, *ORE, PSI); 1471 } 1472 1473 void getAnalysisUsage(AnalysisUsage &AU) const override { 1474 AU.addRequired<AssumptionCacheTracker>(); 1475 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1476 AU.addRequired<DominatorTreeWrapperPass>(); 1477 AU.addRequired<LoopInfoWrapperPass>(); 1478 AU.addRequired<ScalarEvolutionWrapperPass>(); 1479 AU.addRequired<TargetTransformInfoWrapperPass>(); 1480 AU.addRequired<AAResultsWrapperPass>(); 1481 AU.addRequired<LoopAccessLegacyAnalysis>(); 1482 AU.addRequired<DemandedBitsWrapperPass>(); 1483 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1484 1485 // We currently do not preserve loopinfo/dominator analyses with outer loop 1486 // vectorization. Until this is addressed, mark these analyses as preserved 1487 // only for non-VPlan-native path. 1488 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1489 if (!EnableVPlanNativePath) { 1490 AU.addPreserved<LoopInfoWrapperPass>(); 1491 AU.addPreserved<DominatorTreeWrapperPass>(); 1492 } 1493 1494 AU.addPreserved<BasicAAWrapperPass>(); 1495 AU.addPreserved<GlobalsAAWrapperPass>(); 1496 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1497 } 1498 }; 1499 1500 } // end anonymous namespace 1501 1502 //===----------------------------------------------------------------------===// 1503 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1504 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1505 //===----------------------------------------------------------------------===// 1506 1507 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1508 // We need to place the broadcast of invariant variables outside the loop, 1509 // but only if it's proven safe to do so. Else, broadcast will be inside 1510 // vector loop body. 1511 Instruction *Instr = dyn_cast<Instruction>(V); 1512 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1513 (!Instr || 1514 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1515 // Place the code for broadcasting invariant variables in the new preheader. 1516 IRBuilder<>::InsertPointGuard Guard(Builder); 1517 if (SafeToHoist) 1518 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1519 1520 // Broadcast the scalar into all locations in the vector. 1521 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1522 1523 return Shuf; 1524 } 1525 1526 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1527 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1528 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1529 "Expected either an induction phi-node or a truncate of it!"); 1530 Value *Start = II.getStartValue(); 1531 1532 // Construct the initial value of the vector IV in the vector loop preheader 1533 auto CurrIP = Builder.saveIP(); 1534 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1535 if (isa<TruncInst>(EntryVal)) { 1536 assert(Start->getType()->isIntegerTy() && 1537 "Truncation requires an integer type"); 1538 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1539 Step = Builder.CreateTrunc(Step, TruncType); 1540 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1541 } 1542 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1543 Value *SteppedStart = 1544 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1545 1546 // We create vector phi nodes for both integer and floating-point induction 1547 // variables. Here, we determine the kind of arithmetic we will perform. 1548 Instruction::BinaryOps AddOp; 1549 Instruction::BinaryOps MulOp; 1550 if (Step->getType()->isIntegerTy()) { 1551 AddOp = Instruction::Add; 1552 MulOp = Instruction::Mul; 1553 } else { 1554 AddOp = II.getInductionOpcode(); 1555 MulOp = Instruction::FMul; 1556 } 1557 1558 // Multiply the vectorization factor by the step using integer or 1559 // floating-point arithmetic as appropriate. 1560 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1561 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1562 1563 // Create a vector splat to use in the induction update. 1564 // 1565 // FIXME: If the step is non-constant, we create the vector splat with 1566 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1567 // handle a constant vector splat. 1568 Value *SplatVF = isa<Constant>(Mul) 1569 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1570 : Builder.CreateVectorSplat(VF, Mul); 1571 Builder.restoreIP(CurrIP); 1572 1573 // We may need to add the step a number of times, depending on the unroll 1574 // factor. The last of those goes into the PHI. 1575 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1576 &*LoopVectorBody->getFirstInsertionPt()); 1577 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1578 Instruction *LastInduction = VecInd; 1579 for (unsigned Part = 0; Part < UF; ++Part) { 1580 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1581 1582 if (isa<TruncInst>(EntryVal)) 1583 addMetadata(LastInduction, EntryVal); 1584 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1585 1586 LastInduction = cast<Instruction>(addFastMathFlag( 1587 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1588 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1589 } 1590 1591 // Move the last step to the end of the latch block. This ensures consistent 1592 // placement of all induction updates. 1593 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1594 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1595 auto *ICmp = cast<Instruction>(Br->getCondition()); 1596 LastInduction->moveBefore(ICmp); 1597 LastInduction->setName("vec.ind.next"); 1598 1599 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1600 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1601 } 1602 1603 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1604 return Cost->isScalarAfterVectorization(I, VF) || 1605 Cost->isProfitableToScalarize(I, VF); 1606 } 1607 1608 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1609 if (shouldScalarizeInstruction(IV)) 1610 return true; 1611 auto isScalarInst = [&](User *U) -> bool { 1612 auto *I = cast<Instruction>(U); 1613 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1614 }; 1615 return llvm::any_of(IV->users(), isScalarInst); 1616 } 1617 1618 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1619 const InductionDescriptor &ID, const Instruction *EntryVal, 1620 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1621 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1622 "Expected either an induction phi-node or a truncate of it!"); 1623 1624 // This induction variable is not the phi from the original loop but the 1625 // newly-created IV based on the proof that casted Phi is equal to the 1626 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1627 // re-uses the same InductionDescriptor that original IV uses but we don't 1628 // have to do any recording in this case - that is done when original IV is 1629 // processed. 1630 if (isa<TruncInst>(EntryVal)) 1631 return; 1632 1633 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1634 if (Casts.empty()) 1635 return; 1636 // Only the first Cast instruction in the Casts vector is of interest. 1637 // The rest of the Casts (if exist) have no uses outside the 1638 // induction update chain itself. 1639 Instruction *CastInst = *Casts.begin(); 1640 if (Lane < UINT_MAX) 1641 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1642 else 1643 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1644 } 1645 1646 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1647 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1648 "Primary induction variable must have an integer type"); 1649 1650 auto II = Legal->getInductionVars()->find(IV); 1651 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1652 1653 auto ID = II->second; 1654 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1655 1656 // The scalar value to broadcast. This will be derived from the canonical 1657 // induction variable. 1658 Value *ScalarIV = nullptr; 1659 1660 // The value from the original loop to which we are mapping the new induction 1661 // variable. 1662 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1663 1664 // True if we have vectorized the induction variable. 1665 auto VectorizedIV = false; 1666 1667 // Determine if we want a scalar version of the induction variable. This is 1668 // true if the induction variable itself is not widened, or if it has at 1669 // least one user in the loop that is not widened. 1670 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1671 1672 // Generate code for the induction step. Note that induction steps are 1673 // required to be loop-invariant 1674 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1675 "Induction step should be loop invariant"); 1676 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1677 Value *Step = nullptr; 1678 if (PSE.getSE()->isSCEVable(IV->getType())) { 1679 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1680 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1681 LoopVectorPreHeader->getTerminator()); 1682 } else { 1683 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1684 } 1685 1686 // Try to create a new independent vector induction variable. If we can't 1687 // create the phi node, we will splat the scalar induction variable in each 1688 // loop iteration. 1689 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1690 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1691 VectorizedIV = true; 1692 } 1693 1694 // If we haven't yet vectorized the induction variable, or if we will create 1695 // a scalar one, we need to define the scalar induction variable and step 1696 // values. If we were given a truncation type, truncate the canonical 1697 // induction variable and step. Otherwise, derive these values from the 1698 // induction descriptor. 1699 if (!VectorizedIV || NeedsScalarIV) { 1700 ScalarIV = Induction; 1701 if (IV != OldInduction) { 1702 ScalarIV = IV->getType()->isIntegerTy() 1703 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1704 : Builder.CreateCast(Instruction::SIToFP, Induction, 1705 IV->getType()); 1706 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1707 ScalarIV->setName("offset.idx"); 1708 } 1709 if (Trunc) { 1710 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1711 assert(Step->getType()->isIntegerTy() && 1712 "Truncation requires an integer step"); 1713 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1714 Step = Builder.CreateTrunc(Step, TruncType); 1715 } 1716 } 1717 1718 // If we haven't yet vectorized the induction variable, splat the scalar 1719 // induction variable, and build the necessary step vectors. 1720 // TODO: Don't do it unless the vectorized IV is really required. 1721 if (!VectorizedIV) { 1722 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1723 for (unsigned Part = 0; Part < UF; ++Part) { 1724 Value *EntryPart = 1725 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1726 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1727 if (Trunc) 1728 addMetadata(EntryPart, Trunc); 1729 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1730 } 1731 } 1732 1733 // If an induction variable is only used for counting loop iterations or 1734 // calculating addresses, it doesn't need to be widened. Create scalar steps 1735 // that can be used by instructions we will later scalarize. Note that the 1736 // addition of the scalar steps will not increase the number of instructions 1737 // in the loop in the common case prior to InstCombine. We will be trading 1738 // one vector extract for each scalar step. 1739 if (NeedsScalarIV) 1740 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1741 } 1742 1743 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1744 Instruction::BinaryOps BinOp) { 1745 // Create and check the types. 1746 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1747 int VLen = Val->getType()->getVectorNumElements(); 1748 1749 Type *STy = Val->getType()->getScalarType(); 1750 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1751 "Induction Step must be an integer or FP"); 1752 assert(Step->getType() == STy && "Step has wrong type"); 1753 1754 SmallVector<Constant *, 8> Indices; 1755 1756 if (STy->isIntegerTy()) { 1757 // Create a vector of consecutive numbers from zero to VF. 1758 for (int i = 0; i < VLen; ++i) 1759 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1760 1761 // Add the consecutive indices to the vector value. 1762 Constant *Cv = ConstantVector::get(Indices); 1763 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1764 Step = Builder.CreateVectorSplat(VLen, Step); 1765 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1766 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1767 // which can be found from the original scalar operations. 1768 Step = Builder.CreateMul(Cv, Step); 1769 return Builder.CreateAdd(Val, Step, "induction"); 1770 } 1771 1772 // Floating point induction. 1773 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1774 "Binary Opcode should be specified for FP induction"); 1775 // Create a vector of consecutive numbers from zero to VF. 1776 for (int i = 0; i < VLen; ++i) 1777 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1778 1779 // Add the consecutive indices to the vector value. 1780 Constant *Cv = ConstantVector::get(Indices); 1781 1782 Step = Builder.CreateVectorSplat(VLen, Step); 1783 1784 // Floating point operations had to be 'fast' to enable the induction. 1785 FastMathFlags Flags; 1786 Flags.setFast(); 1787 1788 Value *MulOp = Builder.CreateFMul(Cv, Step); 1789 if (isa<Instruction>(MulOp)) 1790 // Have to check, MulOp may be a constant 1791 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1792 1793 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1794 if (isa<Instruction>(BOp)) 1795 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1796 return BOp; 1797 } 1798 1799 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1800 Instruction *EntryVal, 1801 const InductionDescriptor &ID) { 1802 // We shouldn't have to build scalar steps if we aren't vectorizing. 1803 assert(VF > 1 && "VF should be greater than one"); 1804 1805 // Get the value type and ensure it and the step have the same integer type. 1806 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1807 assert(ScalarIVTy == Step->getType() && 1808 "Val and Step should have the same type"); 1809 1810 // We build scalar steps for both integer and floating-point induction 1811 // variables. Here, we determine the kind of arithmetic we will perform. 1812 Instruction::BinaryOps AddOp; 1813 Instruction::BinaryOps MulOp; 1814 if (ScalarIVTy->isIntegerTy()) { 1815 AddOp = Instruction::Add; 1816 MulOp = Instruction::Mul; 1817 } else { 1818 AddOp = ID.getInductionOpcode(); 1819 MulOp = Instruction::FMul; 1820 } 1821 1822 // Determine the number of scalars we need to generate for each unroll 1823 // iteration. If EntryVal is uniform, we only need to generate the first 1824 // lane. Otherwise, we generate all VF values. 1825 unsigned Lanes = 1826 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1827 : VF; 1828 // Compute the scalar steps and save the results in VectorLoopValueMap. 1829 for (unsigned Part = 0; Part < UF; ++Part) { 1830 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1831 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1832 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1833 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1834 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1835 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1836 } 1837 } 1838 } 1839 1840 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1841 assert(V != Induction && "The new induction variable should not be used."); 1842 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1843 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1844 1845 // If we have a stride that is replaced by one, do it here. Defer this for 1846 // the VPlan-native path until we start running Legal checks in that path. 1847 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1848 V = ConstantInt::get(V->getType(), 1); 1849 1850 // If we have a vector mapped to this value, return it. 1851 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1852 return VectorLoopValueMap.getVectorValue(V, Part); 1853 1854 // If the value has not been vectorized, check if it has been scalarized 1855 // instead. If it has been scalarized, and we actually need the value in 1856 // vector form, we will construct the vector values on demand. 1857 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1858 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1859 1860 // If we've scalarized a value, that value should be an instruction. 1861 auto *I = cast<Instruction>(V); 1862 1863 // If we aren't vectorizing, we can just copy the scalar map values over to 1864 // the vector map. 1865 if (VF == 1) { 1866 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1867 return ScalarValue; 1868 } 1869 1870 // Get the last scalar instruction we generated for V and Part. If the value 1871 // is known to be uniform after vectorization, this corresponds to lane zero 1872 // of the Part unroll iteration. Otherwise, the last instruction is the one 1873 // we created for the last vector lane of the Part unroll iteration. 1874 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1875 auto *LastInst = cast<Instruction>( 1876 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1877 1878 // Set the insert point after the last scalarized instruction. This ensures 1879 // the insertelement sequence will directly follow the scalar definitions. 1880 auto OldIP = Builder.saveIP(); 1881 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1882 Builder.SetInsertPoint(&*NewIP); 1883 1884 // However, if we are vectorizing, we need to construct the vector values. 1885 // If the value is known to be uniform after vectorization, we can just 1886 // broadcast the scalar value corresponding to lane zero for each unroll 1887 // iteration. Otherwise, we construct the vector values using insertelement 1888 // instructions. Since the resulting vectors are stored in 1889 // VectorLoopValueMap, we will only generate the insertelements once. 1890 Value *VectorValue = nullptr; 1891 if (Cost->isUniformAfterVectorization(I, VF)) { 1892 VectorValue = getBroadcastInstrs(ScalarValue); 1893 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1894 } else { 1895 // Initialize packing with insertelements to start from undef. 1896 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1897 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1898 for (unsigned Lane = 0; Lane < VF; ++Lane) 1899 packScalarIntoVectorValue(V, {Part, Lane}); 1900 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1901 } 1902 Builder.restoreIP(OldIP); 1903 return VectorValue; 1904 } 1905 1906 // If this scalar is unknown, assume that it is a constant or that it is 1907 // loop invariant. Broadcast V and save the value for future uses. 1908 Value *B = getBroadcastInstrs(V); 1909 VectorLoopValueMap.setVectorValue(V, Part, B); 1910 return B; 1911 } 1912 1913 Value * 1914 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1915 const VPIteration &Instance) { 1916 // If the value is not an instruction contained in the loop, it should 1917 // already be scalar. 1918 if (OrigLoop->isLoopInvariant(V)) 1919 return V; 1920 1921 assert(Instance.Lane > 0 1922 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1923 : true && "Uniform values only have lane zero"); 1924 1925 // If the value from the original loop has not been vectorized, it is 1926 // represented by UF x VF scalar values in the new loop. Return the requested 1927 // scalar value. 1928 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1929 return VectorLoopValueMap.getScalarValue(V, Instance); 1930 1931 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1932 // for the given unroll part. If this entry is not a vector type (i.e., the 1933 // vectorization factor is one), there is no need to generate an 1934 // extractelement instruction. 1935 auto *U = getOrCreateVectorValue(V, Instance.Part); 1936 if (!U->getType()->isVectorTy()) { 1937 assert(VF == 1 && "Value not scalarized has non-vector type"); 1938 return U; 1939 } 1940 1941 // Otherwise, the value from the original loop has been vectorized and is 1942 // represented by UF vector values. Extract and return the requested scalar 1943 // value from the appropriate vector lane. 1944 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1945 } 1946 1947 void InnerLoopVectorizer::packScalarIntoVectorValue( 1948 Value *V, const VPIteration &Instance) { 1949 assert(V != Induction && "The new induction variable should not be used."); 1950 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1951 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1952 1953 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1954 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1955 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1956 Builder.getInt32(Instance.Lane)); 1957 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1958 } 1959 1960 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1961 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1962 SmallVector<Constant *, 8> ShuffleMask; 1963 for (unsigned i = 0; i < VF; ++i) 1964 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1965 1966 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1967 ConstantVector::get(ShuffleMask), 1968 "reverse"); 1969 } 1970 1971 // Return whether we allow using masked interleave-groups (for dealing with 1972 // strided loads/stores that reside in predicated blocks, or for dealing 1973 // with gaps). 1974 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1975 // If an override option has been passed in for interleaved accesses, use it. 1976 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1977 return EnableMaskedInterleavedMemAccesses; 1978 1979 return TTI.enableMaskedInterleavedAccessVectorization(); 1980 } 1981 1982 // Try to vectorize the interleave group that \p Instr belongs to. 1983 // 1984 // E.g. Translate following interleaved load group (factor = 3): 1985 // for (i = 0; i < N; i+=3) { 1986 // R = Pic[i]; // Member of index 0 1987 // G = Pic[i+1]; // Member of index 1 1988 // B = Pic[i+2]; // Member of index 2 1989 // ... // do something to R, G, B 1990 // } 1991 // To: 1992 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1993 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1994 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1995 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1996 // 1997 // Or translate following interleaved store group (factor = 3): 1998 // for (i = 0; i < N; i+=3) { 1999 // ... do something to R, G, B 2000 // Pic[i] = R; // Member of index 0 2001 // Pic[i+1] = G; // Member of index 1 2002 // Pic[i+2] = B; // Member of index 2 2003 // } 2004 // To: 2005 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2006 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2007 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2008 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2009 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2010 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2011 VectorParts *BlockInMask) { 2012 const InterleaveGroup<Instruction> *Group = 2013 Cost->getInterleavedAccessGroup(Instr); 2014 assert(Group && "Fail to get an interleaved access group."); 2015 2016 // Skip if current instruction is not the insert position. 2017 if (Instr != Group->getInsertPos()) 2018 return; 2019 2020 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2021 Value *Ptr = getLoadStorePointerOperand(Instr); 2022 2023 // Prepare for the vector type of the interleaved load/store. 2024 Type *ScalarTy = getMemInstValueType(Instr); 2025 unsigned InterleaveFactor = Group->getFactor(); 2026 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2027 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2028 2029 // Prepare for the new pointers. 2030 setDebugLocFromInst(Builder, Ptr); 2031 SmallVector<Value *, 2> NewPtrs; 2032 unsigned Index = Group->getIndex(Instr); 2033 2034 VectorParts Mask; 2035 bool IsMaskForCondRequired = BlockInMask; 2036 if (IsMaskForCondRequired) { 2037 Mask = *BlockInMask; 2038 // TODO: extend the masked interleaved-group support to reversed access. 2039 assert(!Group->isReverse() && "Reversed masked interleave-group " 2040 "not supported."); 2041 } 2042 2043 // If the group is reverse, adjust the index to refer to the last vector lane 2044 // instead of the first. We adjust the index from the first vector lane, 2045 // rather than directly getting the pointer for lane VF - 1, because the 2046 // pointer operand of the interleaved access is supposed to be uniform. For 2047 // uniform instructions, we're only required to generate a value for the 2048 // first vector lane in each unroll iteration. 2049 if (Group->isReverse()) 2050 Index += (VF - 1) * Group->getFactor(); 2051 2052 bool InBounds = false; 2053 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2054 InBounds = gep->isInBounds(); 2055 2056 for (unsigned Part = 0; Part < UF; Part++) { 2057 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2058 2059 // Notice current instruction could be any index. Need to adjust the address 2060 // to the member of index 0. 2061 // 2062 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2063 // b = A[i]; // Member of index 0 2064 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2065 // 2066 // E.g. A[i+1] = a; // Member of index 1 2067 // A[i] = b; // Member of index 0 2068 // A[i+2] = c; // Member of index 2 (Current instruction) 2069 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2070 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2071 if (InBounds) 2072 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2073 2074 // Cast to the vector pointer type. 2075 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2076 } 2077 2078 setDebugLocFromInst(Builder, Instr); 2079 Value *UndefVec = UndefValue::get(VecTy); 2080 2081 Value *MaskForGaps = nullptr; 2082 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2083 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2084 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2085 } 2086 2087 // Vectorize the interleaved load group. 2088 if (isa<LoadInst>(Instr)) { 2089 // For each unroll part, create a wide load for the group. 2090 SmallVector<Value *, 2> NewLoads; 2091 for (unsigned Part = 0; Part < UF; Part++) { 2092 Instruction *NewLoad; 2093 if (IsMaskForCondRequired || MaskForGaps) { 2094 assert(useMaskedInterleavedAccesses(*TTI) && 2095 "masked interleaved groups are not allowed."); 2096 Value *GroupMask = MaskForGaps; 2097 if (IsMaskForCondRequired) { 2098 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2099 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2100 Value *ShuffledMask = Builder.CreateShuffleVector( 2101 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2102 GroupMask = MaskForGaps 2103 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2104 MaskForGaps) 2105 : ShuffledMask; 2106 } 2107 NewLoad = 2108 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2109 GroupMask, UndefVec, "wide.masked.vec"); 2110 } 2111 else 2112 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2113 Group->getAlignment(), "wide.vec"); 2114 Group->addMetadata(NewLoad); 2115 NewLoads.push_back(NewLoad); 2116 } 2117 2118 // For each member in the group, shuffle out the appropriate data from the 2119 // wide loads. 2120 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2121 Instruction *Member = Group->getMember(I); 2122 2123 // Skip the gaps in the group. 2124 if (!Member) 2125 continue; 2126 2127 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2128 for (unsigned Part = 0; Part < UF; Part++) { 2129 Value *StridedVec = Builder.CreateShuffleVector( 2130 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2131 2132 // If this member has different type, cast the result type. 2133 if (Member->getType() != ScalarTy) { 2134 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2135 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2136 } 2137 2138 if (Group->isReverse()) 2139 StridedVec = reverseVector(StridedVec); 2140 2141 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2142 } 2143 } 2144 return; 2145 } 2146 2147 // The sub vector type for current instruction. 2148 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2149 2150 // Vectorize the interleaved store group. 2151 for (unsigned Part = 0; Part < UF; Part++) { 2152 // Collect the stored vector from each member. 2153 SmallVector<Value *, 4> StoredVecs; 2154 for (unsigned i = 0; i < InterleaveFactor; i++) { 2155 // Interleaved store group doesn't allow a gap, so each index has a member 2156 Instruction *Member = Group->getMember(i); 2157 assert(Member && "Fail to get a member from an interleaved store group"); 2158 2159 Value *StoredVec = getOrCreateVectorValue( 2160 cast<StoreInst>(Member)->getValueOperand(), Part); 2161 if (Group->isReverse()) 2162 StoredVec = reverseVector(StoredVec); 2163 2164 // If this member has different type, cast it to a unified type. 2165 2166 if (StoredVec->getType() != SubVT) 2167 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2168 2169 StoredVecs.push_back(StoredVec); 2170 } 2171 2172 // Concatenate all vectors into a wide vector. 2173 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2174 2175 // Interleave the elements in the wide vector. 2176 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2177 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2178 "interleaved.vec"); 2179 2180 Instruction *NewStoreInstr; 2181 if (IsMaskForCondRequired) { 2182 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2183 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2184 Value *ShuffledMask = Builder.CreateShuffleVector( 2185 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2186 NewStoreInstr = Builder.CreateMaskedStore( 2187 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2188 } 2189 else 2190 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2191 Group->getAlignment()); 2192 2193 Group->addMetadata(NewStoreInstr); 2194 } 2195 } 2196 2197 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2198 VectorParts *BlockInMask) { 2199 // Attempt to issue a wide load. 2200 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2201 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2202 2203 assert((LI || SI) && "Invalid Load/Store instruction"); 2204 2205 LoopVectorizationCostModel::InstWidening Decision = 2206 Cost->getWideningDecision(Instr, VF); 2207 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2208 "CM decision should be taken at this point"); 2209 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2210 return vectorizeInterleaveGroup(Instr); 2211 2212 Type *ScalarDataTy = getMemInstValueType(Instr); 2213 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2214 Value *Ptr = getLoadStorePointerOperand(Instr); 2215 unsigned Alignment = getLoadStoreAlignment(Instr); 2216 // An alignment of 0 means target abi alignment. We need to use the scalar's 2217 // target abi alignment in such a case. 2218 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2219 if (!Alignment) 2220 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2221 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2222 2223 // Determine if the pointer operand of the access is either consecutive or 2224 // reverse consecutive. 2225 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2226 bool ConsecutiveStride = 2227 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2228 bool CreateGatherScatter = 2229 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2230 2231 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2232 // gather/scatter. Otherwise Decision should have been to Scalarize. 2233 assert((ConsecutiveStride || CreateGatherScatter) && 2234 "The instruction should be scalarized"); 2235 2236 // Handle consecutive loads/stores. 2237 if (ConsecutiveStride) 2238 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2239 2240 VectorParts Mask; 2241 bool isMaskRequired = BlockInMask; 2242 if (isMaskRequired) 2243 Mask = *BlockInMask; 2244 2245 bool InBounds = false; 2246 if (auto *gep = dyn_cast<GetElementPtrInst>( 2247 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2248 InBounds = gep->isInBounds(); 2249 2250 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2251 // Calculate the pointer for the specific unroll-part. 2252 GetElementPtrInst *PartPtr = nullptr; 2253 2254 if (Reverse) { 2255 // If the address is consecutive but reversed, then the 2256 // wide store needs to start at the last vector element. 2257 PartPtr = cast<GetElementPtrInst>( 2258 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2259 PartPtr->setIsInBounds(InBounds); 2260 PartPtr = cast<GetElementPtrInst>( 2261 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2262 PartPtr->setIsInBounds(InBounds); 2263 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2264 Mask[Part] = reverseVector(Mask[Part]); 2265 } else { 2266 PartPtr = cast<GetElementPtrInst>( 2267 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2268 PartPtr->setIsInBounds(InBounds); 2269 } 2270 2271 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2272 }; 2273 2274 // Handle Stores: 2275 if (SI) { 2276 setDebugLocFromInst(Builder, SI); 2277 2278 for (unsigned Part = 0; Part < UF; ++Part) { 2279 Instruction *NewSI = nullptr; 2280 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2281 if (CreateGatherScatter) { 2282 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2283 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2284 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2285 MaskPart); 2286 } else { 2287 if (Reverse) { 2288 // If we store to reverse consecutive memory locations, then we need 2289 // to reverse the order of elements in the stored value. 2290 StoredVal = reverseVector(StoredVal); 2291 // We don't want to update the value in the map as it might be used in 2292 // another expression. So don't call resetVectorValue(StoredVal). 2293 } 2294 auto *VecPtr = CreateVecPtr(Part, Ptr); 2295 if (isMaskRequired) 2296 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2297 Mask[Part]); 2298 else 2299 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2300 } 2301 addMetadata(NewSI, SI); 2302 } 2303 return; 2304 } 2305 2306 // Handle loads. 2307 assert(LI && "Must have a load instruction"); 2308 setDebugLocFromInst(Builder, LI); 2309 for (unsigned Part = 0; Part < UF; ++Part) { 2310 Value *NewLI; 2311 if (CreateGatherScatter) { 2312 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2313 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2314 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2315 nullptr, "wide.masked.gather"); 2316 addMetadata(NewLI, LI); 2317 } else { 2318 auto *VecPtr = CreateVecPtr(Part, Ptr); 2319 if (isMaskRequired) 2320 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2321 UndefValue::get(DataTy), 2322 "wide.masked.load"); 2323 else 2324 NewLI = 2325 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2326 2327 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2328 addMetadata(NewLI, LI); 2329 if (Reverse) 2330 NewLI = reverseVector(NewLI); 2331 } 2332 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2333 } 2334 } 2335 2336 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2337 const VPIteration &Instance, 2338 bool IfPredicateInstr) { 2339 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2340 2341 setDebugLocFromInst(Builder, Instr); 2342 2343 // Does this instruction return a value ? 2344 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2345 2346 Instruction *Cloned = Instr->clone(); 2347 if (!IsVoidRetTy) 2348 Cloned->setName(Instr->getName() + ".cloned"); 2349 2350 // Replace the operands of the cloned instructions with their scalar 2351 // equivalents in the new loop. 2352 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2353 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2354 Cloned->setOperand(op, NewOp); 2355 } 2356 addNewMetadata(Cloned, Instr); 2357 2358 // Place the cloned scalar in the new loop. 2359 Builder.Insert(Cloned); 2360 2361 // Add the cloned scalar to the scalar map entry. 2362 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2363 2364 // If we just cloned a new assumption, add it the assumption cache. 2365 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2366 if (II->getIntrinsicID() == Intrinsic::assume) 2367 AC->registerAssumption(II); 2368 2369 // End if-block. 2370 if (IfPredicateInstr) 2371 PredicatedInstructions.push_back(Cloned); 2372 } 2373 2374 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2375 Value *End, Value *Step, 2376 Instruction *DL) { 2377 BasicBlock *Header = L->getHeader(); 2378 BasicBlock *Latch = L->getLoopLatch(); 2379 // As we're just creating this loop, it's possible no latch exists 2380 // yet. If so, use the header as this will be a single block loop. 2381 if (!Latch) 2382 Latch = Header; 2383 2384 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2385 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2386 setDebugLocFromInst(Builder, OldInst); 2387 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2388 2389 Builder.SetInsertPoint(Latch->getTerminator()); 2390 setDebugLocFromInst(Builder, OldInst); 2391 2392 // Create i+1 and fill the PHINode. 2393 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2394 Induction->addIncoming(Start, L->getLoopPreheader()); 2395 Induction->addIncoming(Next, Latch); 2396 // Create the compare. 2397 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2398 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2399 2400 // Now we have two terminators. Remove the old one from the block. 2401 Latch->getTerminator()->eraseFromParent(); 2402 2403 return Induction; 2404 } 2405 2406 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2407 if (TripCount) 2408 return TripCount; 2409 2410 assert(L && "Create Trip Count for null loop."); 2411 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2412 // Find the loop boundaries. 2413 ScalarEvolution *SE = PSE.getSE(); 2414 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2415 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2416 "Invalid loop count"); 2417 2418 Type *IdxTy = Legal->getWidestInductionType(); 2419 assert(IdxTy && "No type for induction"); 2420 2421 // The exit count might have the type of i64 while the phi is i32. This can 2422 // happen if we have an induction variable that is sign extended before the 2423 // compare. The only way that we get a backedge taken count is that the 2424 // induction variable was signed and as such will not overflow. In such a case 2425 // truncation is legal. 2426 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2427 IdxTy->getPrimitiveSizeInBits()) 2428 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2429 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2430 2431 // Get the total trip count from the count by adding 1. 2432 const SCEV *ExitCount = SE->getAddExpr( 2433 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2434 2435 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2436 2437 // Expand the trip count and place the new instructions in the preheader. 2438 // Notice that the pre-header does not change, only the loop body. 2439 SCEVExpander Exp(*SE, DL, "induction"); 2440 2441 // Count holds the overall loop count (N). 2442 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2443 L->getLoopPreheader()->getTerminator()); 2444 2445 if (TripCount->getType()->isPointerTy()) 2446 TripCount = 2447 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2448 L->getLoopPreheader()->getTerminator()); 2449 2450 return TripCount; 2451 } 2452 2453 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2454 if (VectorTripCount) 2455 return VectorTripCount; 2456 2457 Value *TC = getOrCreateTripCount(L); 2458 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2459 2460 Type *Ty = TC->getType(); 2461 Constant *Step = ConstantInt::get(Ty, VF * UF); 2462 2463 // If the tail is to be folded by masking, round the number of iterations N 2464 // up to a multiple of Step instead of rounding down. This is done by first 2465 // adding Step-1 and then rounding down. Note that it's ok if this addition 2466 // overflows: the vector induction variable will eventually wrap to zero given 2467 // that it starts at zero and its Step is a power of two; the loop will then 2468 // exit, with the last early-exit vector comparison also producing all-true. 2469 if (Cost->foldTailByMasking()) { 2470 assert(isPowerOf2_32(VF * UF) && 2471 "VF*UF must be a power of 2 when folding tail by masking"); 2472 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2473 } 2474 2475 // Now we need to generate the expression for the part of the loop that the 2476 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2477 // iterations are not required for correctness, or N - Step, otherwise. Step 2478 // is equal to the vectorization factor (number of SIMD elements) times the 2479 // unroll factor (number of SIMD instructions). 2480 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2481 2482 // If there is a non-reversed interleaved group that may speculatively access 2483 // memory out-of-bounds, we need to ensure that there will be at least one 2484 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2485 // the trip count, we set the remainder to be equal to the step. If the step 2486 // does not evenly divide the trip count, no adjustment is necessary since 2487 // there will already be scalar iterations. Note that the minimum iterations 2488 // check ensures that N >= Step. 2489 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2490 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2491 R = Builder.CreateSelect(IsZero, Step, R); 2492 } 2493 2494 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2495 2496 return VectorTripCount; 2497 } 2498 2499 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2500 const DataLayout &DL) { 2501 // Verify that V is a vector type with same number of elements as DstVTy. 2502 unsigned VF = DstVTy->getNumElements(); 2503 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2504 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2505 Type *SrcElemTy = SrcVecTy->getElementType(); 2506 Type *DstElemTy = DstVTy->getElementType(); 2507 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2508 "Vector elements must have same size"); 2509 2510 // Do a direct cast if element types are castable. 2511 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2512 return Builder.CreateBitOrPointerCast(V, DstVTy); 2513 } 2514 // V cannot be directly casted to desired vector type. 2515 // May happen when V is a floating point vector but DstVTy is a vector of 2516 // pointers or vice-versa. Handle this using a two-step bitcast using an 2517 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2518 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2519 "Only one type should be a pointer type"); 2520 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2521 "Only one type should be a floating point type"); 2522 Type *IntTy = 2523 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2524 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2525 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2526 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2527 } 2528 2529 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2530 BasicBlock *Bypass) { 2531 Value *Count = getOrCreateTripCount(L); 2532 BasicBlock *BB = L->getLoopPreheader(); 2533 IRBuilder<> Builder(BB->getTerminator()); 2534 2535 // Generate code to check if the loop's trip count is less than VF * UF, or 2536 // equal to it in case a scalar epilogue is required; this implies that the 2537 // vector trip count is zero. This check also covers the case where adding one 2538 // to the backedge-taken count overflowed leading to an incorrect trip count 2539 // of zero. In this case we will also jump to the scalar loop. 2540 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2541 : ICmpInst::ICMP_ULT; 2542 2543 // If tail is to be folded, vector loop takes care of all iterations. 2544 Value *CheckMinIters = Builder.getFalse(); 2545 if (!Cost->foldTailByMasking()) 2546 CheckMinIters = Builder.CreateICmp( 2547 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2548 "min.iters.check"); 2549 2550 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2551 // Update dominator tree immediately if the generated block is a 2552 // LoopBypassBlock because SCEV expansions to generate loop bypass 2553 // checks may query it before the current function is finished. 2554 DT->addNewBlock(NewBB, BB); 2555 if (L->getParentLoop()) 2556 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2557 ReplaceInstWithInst(BB->getTerminator(), 2558 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2559 LoopBypassBlocks.push_back(BB); 2560 } 2561 2562 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2563 BasicBlock *BB = L->getLoopPreheader(); 2564 2565 // Generate the code to check that the SCEV assumptions that we made. 2566 // We want the new basic block to start at the first instruction in a 2567 // sequence of instructions that form a check. 2568 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2569 "scev.check"); 2570 Value *SCEVCheck = 2571 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2572 2573 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2574 if (C->isZero()) 2575 return; 2576 2577 assert(!Cost->foldTailByMasking() && 2578 "Cannot SCEV check stride or overflow when folding tail"); 2579 // Create a new block containing the stride check. 2580 BB->setName("vector.scevcheck"); 2581 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2582 // Update dominator tree immediately if the generated block is a 2583 // LoopBypassBlock because SCEV expansions to generate loop bypass 2584 // checks may query it before the current function is finished. 2585 DT->addNewBlock(NewBB, BB); 2586 if (L->getParentLoop()) 2587 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2588 ReplaceInstWithInst(BB->getTerminator(), 2589 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2590 LoopBypassBlocks.push_back(BB); 2591 AddedSafetyChecks = true; 2592 } 2593 2594 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2595 // VPlan-native path does not do any analysis for runtime checks currently. 2596 if (EnableVPlanNativePath) 2597 return; 2598 2599 BasicBlock *BB = L->getLoopPreheader(); 2600 2601 // Generate the code that checks in runtime if arrays overlap. We put the 2602 // checks into a separate block to make the more common case of few elements 2603 // faster. 2604 Instruction *FirstCheckInst; 2605 Instruction *MemRuntimeCheck; 2606 std::tie(FirstCheckInst, MemRuntimeCheck) = 2607 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2608 if (!MemRuntimeCheck) 2609 return; 2610 2611 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2612 // Create a new block containing the memory check. 2613 BB->setName("vector.memcheck"); 2614 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2615 // Update dominator tree immediately if the generated block is a 2616 // LoopBypassBlock because SCEV expansions to generate loop bypass 2617 // checks may query it before the current function is finished. 2618 DT->addNewBlock(NewBB, BB); 2619 if (L->getParentLoop()) 2620 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2621 ReplaceInstWithInst(BB->getTerminator(), 2622 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2623 LoopBypassBlocks.push_back(BB); 2624 AddedSafetyChecks = true; 2625 2626 // We currently don't use LoopVersioning for the actual loop cloning but we 2627 // still use it to add the noalias metadata. 2628 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2629 PSE.getSE()); 2630 LVer->prepareNoAliasMetadata(); 2631 } 2632 2633 Value *InnerLoopVectorizer::emitTransformedIndex( 2634 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2635 const InductionDescriptor &ID) const { 2636 2637 SCEVExpander Exp(*SE, DL, "induction"); 2638 auto Step = ID.getStep(); 2639 auto StartValue = ID.getStartValue(); 2640 assert(Index->getType() == Step->getType() && 2641 "Index type does not match StepValue type"); 2642 2643 // Note: the IR at this point is broken. We cannot use SE to create any new 2644 // SCEV and then expand it, hoping that SCEV's simplification will give us 2645 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2646 // lead to various SCEV crashes. So all we can do is to use builder and rely 2647 // on InstCombine for future simplifications. Here we handle some trivial 2648 // cases only. 2649 auto CreateAdd = [&B](Value *X, Value *Y) { 2650 assert(X->getType() == Y->getType() && "Types don't match!"); 2651 if (auto *CX = dyn_cast<ConstantInt>(X)) 2652 if (CX->isZero()) 2653 return Y; 2654 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2655 if (CY->isZero()) 2656 return X; 2657 return B.CreateAdd(X, Y); 2658 }; 2659 2660 auto CreateMul = [&B](Value *X, Value *Y) { 2661 assert(X->getType() == Y->getType() && "Types don't match!"); 2662 if (auto *CX = dyn_cast<ConstantInt>(X)) 2663 if (CX->isOne()) 2664 return Y; 2665 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2666 if (CY->isOne()) 2667 return X; 2668 return B.CreateMul(X, Y); 2669 }; 2670 2671 switch (ID.getKind()) { 2672 case InductionDescriptor::IK_IntInduction: { 2673 assert(Index->getType() == StartValue->getType() && 2674 "Index type does not match StartValue type"); 2675 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2676 return B.CreateSub(StartValue, Index); 2677 auto *Offset = CreateMul( 2678 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2679 return CreateAdd(StartValue, Offset); 2680 } 2681 case InductionDescriptor::IK_PtrInduction: { 2682 assert(isa<SCEVConstant>(Step) && 2683 "Expected constant step for pointer induction"); 2684 return B.CreateGEP( 2685 StartValue->getType()->getPointerElementType(), StartValue, 2686 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2687 &*B.GetInsertPoint()))); 2688 } 2689 case InductionDescriptor::IK_FpInduction: { 2690 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2691 auto InductionBinOp = ID.getInductionBinOp(); 2692 assert(InductionBinOp && 2693 (InductionBinOp->getOpcode() == Instruction::FAdd || 2694 InductionBinOp->getOpcode() == Instruction::FSub) && 2695 "Original bin op should be defined for FP induction"); 2696 2697 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2698 2699 // Floating point operations had to be 'fast' to enable the induction. 2700 FastMathFlags Flags; 2701 Flags.setFast(); 2702 2703 Value *MulExp = B.CreateFMul(StepValue, Index); 2704 if (isa<Instruction>(MulExp)) 2705 // We have to check, the MulExp may be a constant. 2706 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2707 2708 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2709 "induction"); 2710 if (isa<Instruction>(BOp)) 2711 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2712 2713 return BOp; 2714 } 2715 case InductionDescriptor::IK_NoInduction: 2716 return nullptr; 2717 } 2718 llvm_unreachable("invalid enum"); 2719 } 2720 2721 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2722 /* 2723 In this function we generate a new loop. The new loop will contain 2724 the vectorized instructions while the old loop will continue to run the 2725 scalar remainder. 2726 2727 [ ] <-- loop iteration number check. 2728 / | 2729 / v 2730 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2731 | / | 2732 | / v 2733 || [ ] <-- vector pre header. 2734 |/ | 2735 | v 2736 | [ ] \ 2737 | [ ]_| <-- vector loop. 2738 | | 2739 | v 2740 | -[ ] <--- middle-block. 2741 | / | 2742 | / v 2743 -|- >[ ] <--- new preheader. 2744 | | 2745 | v 2746 | [ ] \ 2747 | [ ]_| <-- old scalar loop to handle remainder. 2748 \ | 2749 \ v 2750 >[ ] <-- exit block. 2751 ... 2752 */ 2753 2754 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2755 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2756 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2757 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2758 assert(VectorPH && "Invalid loop structure"); 2759 assert(ExitBlock && "Must have an exit block"); 2760 2761 // Some loops have a single integer induction variable, while other loops 2762 // don't. One example is c++ iterators that often have multiple pointer 2763 // induction variables. In the code below we also support a case where we 2764 // don't have a single induction variable. 2765 // 2766 // We try to obtain an induction variable from the original loop as hard 2767 // as possible. However if we don't find one that: 2768 // - is an integer 2769 // - counts from zero, stepping by one 2770 // - is the size of the widest induction variable type 2771 // then we create a new one. 2772 OldInduction = Legal->getPrimaryInduction(); 2773 Type *IdxTy = Legal->getWidestInductionType(); 2774 2775 // Split the single block loop into the two loop structure described above. 2776 BasicBlock *VecBody = 2777 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2778 BasicBlock *MiddleBlock = 2779 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2780 BasicBlock *ScalarPH = 2781 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2782 2783 // Create and register the new vector loop. 2784 Loop *Lp = LI->AllocateLoop(); 2785 Loop *ParentLoop = OrigLoop->getParentLoop(); 2786 2787 // Insert the new loop into the loop nest and register the new basic blocks 2788 // before calling any utilities such as SCEV that require valid LoopInfo. 2789 if (ParentLoop) { 2790 ParentLoop->addChildLoop(Lp); 2791 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2792 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2793 } else { 2794 LI->addTopLevelLoop(Lp); 2795 } 2796 Lp->addBasicBlockToLoop(VecBody, *LI); 2797 2798 // Find the loop boundaries. 2799 Value *Count = getOrCreateTripCount(Lp); 2800 2801 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2802 2803 // Now, compare the new count to zero. If it is zero skip the vector loop and 2804 // jump to the scalar loop. This check also covers the case where the 2805 // backedge-taken count is uint##_max: adding one to it will overflow leading 2806 // to an incorrect trip count of zero. In this (rare) case we will also jump 2807 // to the scalar loop. 2808 emitMinimumIterationCountCheck(Lp, ScalarPH); 2809 2810 // Generate the code to check any assumptions that we've made for SCEV 2811 // expressions. 2812 emitSCEVChecks(Lp, ScalarPH); 2813 2814 // Generate the code that checks in runtime if arrays overlap. We put the 2815 // checks into a separate block to make the more common case of few elements 2816 // faster. 2817 emitMemRuntimeChecks(Lp, ScalarPH); 2818 2819 // Generate the induction variable. 2820 // The loop step is equal to the vectorization factor (num of SIMD elements) 2821 // times the unroll factor (num of SIMD instructions). 2822 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2823 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2824 Induction = 2825 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2826 getDebugLocFromInstOrOperands(OldInduction)); 2827 2828 // We are going to resume the execution of the scalar loop. 2829 // Go over all of the induction variables that we found and fix the 2830 // PHIs that are left in the scalar version of the loop. 2831 // The starting values of PHI nodes depend on the counter of the last 2832 // iteration in the vectorized loop. 2833 // If we come from a bypass edge then we need to start from the original 2834 // start value. 2835 2836 // This variable saves the new starting index for the scalar loop. It is used 2837 // to test if there are any tail iterations left once the vector loop has 2838 // completed. 2839 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2840 for (auto &InductionEntry : *List) { 2841 PHINode *OrigPhi = InductionEntry.first; 2842 InductionDescriptor II = InductionEntry.second; 2843 2844 // Create phi nodes to merge from the backedge-taken check block. 2845 PHINode *BCResumeVal = PHINode::Create( 2846 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2847 // Copy original phi DL over to the new one. 2848 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2849 Value *&EndValue = IVEndValues[OrigPhi]; 2850 if (OrigPhi == OldInduction) { 2851 // We know what the end value is. 2852 EndValue = CountRoundDown; 2853 } else { 2854 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2855 Type *StepType = II.getStep()->getType(); 2856 Instruction::CastOps CastOp = 2857 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2858 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2859 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2860 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2861 EndValue->setName("ind.end"); 2862 } 2863 2864 // The new PHI merges the original incoming value, in case of a bypass, 2865 // or the value at the end of the vectorized loop. 2866 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2867 2868 // Fix the scalar body counter (PHI node). 2869 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2870 2871 // The old induction's phi node in the scalar body needs the truncated 2872 // value. 2873 for (BasicBlock *BB : LoopBypassBlocks) 2874 BCResumeVal->addIncoming(II.getStartValue(), BB); 2875 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2876 } 2877 2878 // We need the OrigLoop (scalar loop part) latch terminator to help 2879 // produce correct debug info for the middle block BB instructions. 2880 // The legality check stage guarantees that the loop will have a single 2881 // latch. 2882 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2883 "Scalar loop latch terminator isn't a branch"); 2884 BranchInst *ScalarLatchBr = 2885 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2886 2887 // Add a check in the middle block to see if we have completed 2888 // all of the iterations in the first vector loop. 2889 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2890 // If tail is to be folded, we know we don't need to run the remainder. 2891 Value *CmpN = Builder.getTrue(); 2892 if (!Cost->foldTailByMasking()) { 2893 CmpN = 2894 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2895 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2896 2897 // Provide correct stepping behaviour by using the same DebugLoc as the 2898 // scalar loop latch branch cmp if it exists. 2899 if (CmpInst *ScalarLatchCmp = 2900 dyn_cast_or_null<CmpInst>(ScalarLatchBr->getCondition())) 2901 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchCmp->getDebugLoc()); 2902 } 2903 2904 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2905 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2906 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2907 2908 // Get ready to start creating new instructions into the vectorized body. 2909 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2910 2911 // Save the state. 2912 LoopVectorPreHeader = Lp->getLoopPreheader(); 2913 LoopScalarPreHeader = ScalarPH; 2914 LoopMiddleBlock = MiddleBlock; 2915 LoopExitBlock = ExitBlock; 2916 LoopVectorBody = VecBody; 2917 LoopScalarBody = OldBasicBlock; 2918 2919 Optional<MDNode *> VectorizedLoopID = 2920 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2921 LLVMLoopVectorizeFollowupVectorized}); 2922 if (VectorizedLoopID.hasValue()) { 2923 Lp->setLoopID(VectorizedLoopID.getValue()); 2924 2925 // Do not setAlreadyVectorized if loop attributes have been defined 2926 // explicitly. 2927 return LoopVectorPreHeader; 2928 } 2929 2930 // Keep all loop hints from the original loop on the vector loop (we'll 2931 // replace the vectorizer-specific hints below). 2932 if (MDNode *LID = OrigLoop->getLoopID()) 2933 Lp->setLoopID(LID); 2934 2935 LoopVectorizeHints Hints(Lp, true, *ORE); 2936 Hints.setAlreadyVectorized(); 2937 2938 return LoopVectorPreHeader; 2939 } 2940 2941 // Fix up external users of the induction variable. At this point, we are 2942 // in LCSSA form, with all external PHIs that use the IV having one input value, 2943 // coming from the remainder loop. We need those PHIs to also have a correct 2944 // value for the IV when arriving directly from the middle block. 2945 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2946 const InductionDescriptor &II, 2947 Value *CountRoundDown, Value *EndValue, 2948 BasicBlock *MiddleBlock) { 2949 // There are two kinds of external IV usages - those that use the value 2950 // computed in the last iteration (the PHI) and those that use the penultimate 2951 // value (the value that feeds into the phi from the loop latch). 2952 // We allow both, but they, obviously, have different values. 2953 2954 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2955 2956 DenseMap<Value *, Value *> MissingVals; 2957 2958 // An external user of the last iteration's value should see the value that 2959 // the remainder loop uses to initialize its own IV. 2960 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2961 for (User *U : PostInc->users()) { 2962 Instruction *UI = cast<Instruction>(U); 2963 if (!OrigLoop->contains(UI)) { 2964 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2965 MissingVals[UI] = EndValue; 2966 } 2967 } 2968 2969 // An external user of the penultimate value need to see EndValue - Step. 2970 // The simplest way to get this is to recompute it from the constituent SCEVs, 2971 // that is Start + (Step * (CRD - 1)). 2972 for (User *U : OrigPhi->users()) { 2973 auto *UI = cast<Instruction>(U); 2974 if (!OrigLoop->contains(UI)) { 2975 const DataLayout &DL = 2976 OrigLoop->getHeader()->getModule()->getDataLayout(); 2977 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2978 2979 IRBuilder<> B(MiddleBlock->getTerminator()); 2980 Value *CountMinusOne = B.CreateSub( 2981 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2982 Value *CMO = 2983 !II.getStep()->getType()->isIntegerTy() 2984 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2985 II.getStep()->getType()) 2986 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2987 CMO->setName("cast.cmo"); 2988 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2989 Escape->setName("ind.escape"); 2990 MissingVals[UI] = Escape; 2991 } 2992 } 2993 2994 for (auto &I : MissingVals) { 2995 PHINode *PHI = cast<PHINode>(I.first); 2996 // One corner case we have to handle is two IVs "chasing" each-other, 2997 // that is %IV2 = phi [...], [ %IV1, %latch ] 2998 // In this case, if IV1 has an external use, we need to avoid adding both 2999 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3000 // don't already have an incoming value for the middle block. 3001 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3002 PHI->addIncoming(I.second, MiddleBlock); 3003 } 3004 } 3005 3006 namespace { 3007 3008 struct CSEDenseMapInfo { 3009 static bool canHandle(const Instruction *I) { 3010 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3011 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3012 } 3013 3014 static inline Instruction *getEmptyKey() { 3015 return DenseMapInfo<Instruction *>::getEmptyKey(); 3016 } 3017 3018 static inline Instruction *getTombstoneKey() { 3019 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3020 } 3021 3022 static unsigned getHashValue(const Instruction *I) { 3023 assert(canHandle(I) && "Unknown instruction!"); 3024 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3025 I->value_op_end())); 3026 } 3027 3028 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3029 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3030 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3031 return LHS == RHS; 3032 return LHS->isIdenticalTo(RHS); 3033 } 3034 }; 3035 3036 } // end anonymous namespace 3037 3038 ///Perform cse of induction variable instructions. 3039 static void cse(BasicBlock *BB) { 3040 // Perform simple cse. 3041 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3042 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3043 Instruction *In = &*I++; 3044 3045 if (!CSEDenseMapInfo::canHandle(In)) 3046 continue; 3047 3048 // Check if we can replace this instruction with any of the 3049 // visited instructions. 3050 if (Instruction *V = CSEMap.lookup(In)) { 3051 In->replaceAllUsesWith(V); 3052 In->eraseFromParent(); 3053 continue; 3054 } 3055 3056 CSEMap[In] = In; 3057 } 3058 } 3059 3060 /// Estimate the overhead of scalarizing an instruction. This is a 3061 /// convenience wrapper for the type-based getScalarizationOverhead API. 3062 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3063 const TargetTransformInfo &TTI) { 3064 if (VF == 1) 3065 return 0; 3066 3067 unsigned Cost = 0; 3068 Type *RetTy = ToVectorTy(I->getType(), VF); 3069 if (!RetTy->isVoidTy() && 3070 (!isa<LoadInst>(I) || 3071 !TTI.supportsEfficientVectorElementLoadStore())) 3072 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3073 3074 // Some targets keep addresses scalar. 3075 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 3076 return Cost; 3077 3078 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3079 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3080 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3081 } 3082 else if (!isa<StoreInst>(I) || 3083 !TTI.supportsEfficientVectorElementLoadStore()) { 3084 SmallVector<const Value *, 4> Operands(I->operand_values()); 3085 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3086 } 3087 3088 return Cost; 3089 } 3090 3091 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3092 // Return the cost of the instruction, including scalarization overhead if it's 3093 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3094 // i.e. either vector version isn't available, or is too expensive. 3095 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3096 const TargetTransformInfo &TTI, 3097 const TargetLibraryInfo *TLI, 3098 bool &NeedToScalarize) { 3099 Function *F = CI->getCalledFunction(); 3100 StringRef FnName = CI->getCalledFunction()->getName(); 3101 Type *ScalarRetTy = CI->getType(); 3102 SmallVector<Type *, 4> Tys, ScalarTys; 3103 for (auto &ArgOp : CI->arg_operands()) 3104 ScalarTys.push_back(ArgOp->getType()); 3105 3106 // Estimate cost of scalarized vector call. The source operands are assumed 3107 // to be vectors, so we need to extract individual elements from there, 3108 // execute VF scalar calls, and then gather the result into the vector return 3109 // value. 3110 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3111 if (VF == 1) 3112 return ScalarCallCost; 3113 3114 // Compute corresponding vector type for return value and arguments. 3115 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3116 for (Type *ScalarTy : ScalarTys) 3117 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3118 3119 // Compute costs of unpacking argument values for the scalar calls and 3120 // packing the return values to a vector. 3121 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3122 3123 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3124 3125 // If we can't emit a vector call for this function, then the currently found 3126 // cost is the cost we need to return. 3127 NeedToScalarize = true; 3128 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3129 return Cost; 3130 3131 // If the corresponding vector cost is cheaper, return its cost. 3132 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3133 if (VectorCallCost < Cost) { 3134 NeedToScalarize = false; 3135 return VectorCallCost; 3136 } 3137 return Cost; 3138 } 3139 3140 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3141 // factor VF. Return the cost of the instruction, including scalarization 3142 // overhead if it's needed. 3143 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3144 const TargetTransformInfo &TTI, 3145 const TargetLibraryInfo *TLI) { 3146 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3147 assert(ID && "Expected intrinsic call!"); 3148 3149 FastMathFlags FMF; 3150 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3151 FMF = FPMO->getFastMathFlags(); 3152 3153 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3154 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3155 } 3156 3157 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3158 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3159 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3160 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3161 } 3162 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3163 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3164 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3165 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3166 } 3167 3168 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3169 // For every instruction `I` in MinBWs, truncate the operands, create a 3170 // truncated version of `I` and reextend its result. InstCombine runs 3171 // later and will remove any ext/trunc pairs. 3172 SmallPtrSet<Value *, 4> Erased; 3173 for (const auto &KV : Cost->getMinimalBitwidths()) { 3174 // If the value wasn't vectorized, we must maintain the original scalar 3175 // type. The absence of the value from VectorLoopValueMap indicates that it 3176 // wasn't vectorized. 3177 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3178 continue; 3179 for (unsigned Part = 0; Part < UF; ++Part) { 3180 Value *I = getOrCreateVectorValue(KV.first, Part); 3181 if (Erased.find(I) != Erased.end() || I->use_empty() || 3182 !isa<Instruction>(I)) 3183 continue; 3184 Type *OriginalTy = I->getType(); 3185 Type *ScalarTruncatedTy = 3186 IntegerType::get(OriginalTy->getContext(), KV.second); 3187 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3188 OriginalTy->getVectorNumElements()); 3189 if (TruncatedTy == OriginalTy) 3190 continue; 3191 3192 IRBuilder<> B(cast<Instruction>(I)); 3193 auto ShrinkOperand = [&](Value *V) -> Value * { 3194 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3195 if (ZI->getSrcTy() == TruncatedTy) 3196 return ZI->getOperand(0); 3197 return B.CreateZExtOrTrunc(V, TruncatedTy); 3198 }; 3199 3200 // The actual instruction modification depends on the instruction type, 3201 // unfortunately. 3202 Value *NewI = nullptr; 3203 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3204 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3205 ShrinkOperand(BO->getOperand(1))); 3206 3207 // Any wrapping introduced by shrinking this operation shouldn't be 3208 // considered undefined behavior. So, we can't unconditionally copy 3209 // arithmetic wrapping flags to NewI. 3210 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3211 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3212 NewI = 3213 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3214 ShrinkOperand(CI->getOperand(1))); 3215 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3216 NewI = B.CreateSelect(SI->getCondition(), 3217 ShrinkOperand(SI->getTrueValue()), 3218 ShrinkOperand(SI->getFalseValue())); 3219 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3220 switch (CI->getOpcode()) { 3221 default: 3222 llvm_unreachable("Unhandled cast!"); 3223 case Instruction::Trunc: 3224 NewI = ShrinkOperand(CI->getOperand(0)); 3225 break; 3226 case Instruction::SExt: 3227 NewI = B.CreateSExtOrTrunc( 3228 CI->getOperand(0), 3229 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3230 break; 3231 case Instruction::ZExt: 3232 NewI = B.CreateZExtOrTrunc( 3233 CI->getOperand(0), 3234 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3235 break; 3236 } 3237 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3238 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3239 auto *O0 = B.CreateZExtOrTrunc( 3240 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3241 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3242 auto *O1 = B.CreateZExtOrTrunc( 3243 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3244 3245 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3246 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3247 // Don't do anything with the operands, just extend the result. 3248 continue; 3249 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3250 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3251 auto *O0 = B.CreateZExtOrTrunc( 3252 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3253 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3254 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3255 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3256 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3257 auto *O0 = B.CreateZExtOrTrunc( 3258 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3259 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3260 } else { 3261 // If we don't know what to do, be conservative and don't do anything. 3262 continue; 3263 } 3264 3265 // Lastly, extend the result. 3266 NewI->takeName(cast<Instruction>(I)); 3267 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3268 I->replaceAllUsesWith(Res); 3269 cast<Instruction>(I)->eraseFromParent(); 3270 Erased.insert(I); 3271 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3272 } 3273 } 3274 3275 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3276 for (const auto &KV : Cost->getMinimalBitwidths()) { 3277 // If the value wasn't vectorized, we must maintain the original scalar 3278 // type. The absence of the value from VectorLoopValueMap indicates that it 3279 // wasn't vectorized. 3280 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3281 continue; 3282 for (unsigned Part = 0; Part < UF; ++Part) { 3283 Value *I = getOrCreateVectorValue(KV.first, Part); 3284 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3285 if (Inst && Inst->use_empty()) { 3286 Value *NewI = Inst->getOperand(0); 3287 Inst->eraseFromParent(); 3288 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3289 } 3290 } 3291 } 3292 } 3293 3294 void InnerLoopVectorizer::fixVectorizedLoop() { 3295 // Insert truncates and extends for any truncated instructions as hints to 3296 // InstCombine. 3297 if (VF > 1) 3298 truncateToMinimalBitwidths(); 3299 3300 // Fix widened non-induction PHIs by setting up the PHI operands. 3301 if (OrigPHIsToFix.size()) { 3302 assert(EnableVPlanNativePath && 3303 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3304 fixNonInductionPHIs(); 3305 } 3306 3307 // At this point every instruction in the original loop is widened to a 3308 // vector form. Now we need to fix the recurrences in the loop. These PHI 3309 // nodes are currently empty because we did not want to introduce cycles. 3310 // This is the second stage of vectorizing recurrences. 3311 fixCrossIterationPHIs(); 3312 3313 // Update the dominator tree. 3314 // 3315 // FIXME: After creating the structure of the new loop, the dominator tree is 3316 // no longer up-to-date, and it remains that way until we update it 3317 // here. An out-of-date dominator tree is problematic for SCEV, 3318 // because SCEVExpander uses it to guide code generation. The 3319 // vectorizer use SCEVExpanders in several places. Instead, we should 3320 // keep the dominator tree up-to-date as we go. 3321 updateAnalysis(); 3322 3323 // Fix-up external users of the induction variables. 3324 for (auto &Entry : *Legal->getInductionVars()) 3325 fixupIVUsers(Entry.first, Entry.second, 3326 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3327 IVEndValues[Entry.first], LoopMiddleBlock); 3328 3329 fixLCSSAPHIs(); 3330 for (Instruction *PI : PredicatedInstructions) 3331 sinkScalarOperands(&*PI); 3332 3333 // Remove redundant induction instructions. 3334 cse(LoopVectorBody); 3335 } 3336 3337 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3338 // In order to support recurrences we need to be able to vectorize Phi nodes. 3339 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3340 // stage #2: We now need to fix the recurrences by adding incoming edges to 3341 // the currently empty PHI nodes. At this point every instruction in the 3342 // original loop is widened to a vector form so we can use them to construct 3343 // the incoming edges. 3344 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3345 // Handle first-order recurrences and reductions that need to be fixed. 3346 if (Legal->isFirstOrderRecurrence(&Phi)) 3347 fixFirstOrderRecurrence(&Phi); 3348 else if (Legal->isReductionVariable(&Phi)) 3349 fixReduction(&Phi); 3350 } 3351 } 3352 3353 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3354 // This is the second phase of vectorizing first-order recurrences. An 3355 // overview of the transformation is described below. Suppose we have the 3356 // following loop. 3357 // 3358 // for (int i = 0; i < n; ++i) 3359 // b[i] = a[i] - a[i - 1]; 3360 // 3361 // There is a first-order recurrence on "a". For this loop, the shorthand 3362 // scalar IR looks like: 3363 // 3364 // scalar.ph: 3365 // s_init = a[-1] 3366 // br scalar.body 3367 // 3368 // scalar.body: 3369 // i = phi [0, scalar.ph], [i+1, scalar.body] 3370 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3371 // s2 = a[i] 3372 // b[i] = s2 - s1 3373 // br cond, scalar.body, ... 3374 // 3375 // In this example, s1 is a recurrence because it's value depends on the 3376 // previous iteration. In the first phase of vectorization, we created a 3377 // temporary value for s1. We now complete the vectorization and produce the 3378 // shorthand vector IR shown below (for VF = 4, UF = 1). 3379 // 3380 // vector.ph: 3381 // v_init = vector(..., ..., ..., a[-1]) 3382 // br vector.body 3383 // 3384 // vector.body 3385 // i = phi [0, vector.ph], [i+4, vector.body] 3386 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3387 // v2 = a[i, i+1, i+2, i+3]; 3388 // v3 = vector(v1(3), v2(0, 1, 2)) 3389 // b[i, i+1, i+2, i+3] = v2 - v3 3390 // br cond, vector.body, middle.block 3391 // 3392 // middle.block: 3393 // x = v2(3) 3394 // br scalar.ph 3395 // 3396 // scalar.ph: 3397 // s_init = phi [x, middle.block], [a[-1], otherwise] 3398 // br scalar.body 3399 // 3400 // After execution completes the vector loop, we extract the next value of 3401 // the recurrence (x) to use as the initial value in the scalar loop. 3402 3403 // Get the original loop preheader and single loop latch. 3404 auto *Preheader = OrigLoop->getLoopPreheader(); 3405 auto *Latch = OrigLoop->getLoopLatch(); 3406 3407 // Get the initial and previous values of the scalar recurrence. 3408 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3409 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3410 3411 // Create a vector from the initial value. 3412 auto *VectorInit = ScalarInit; 3413 if (VF > 1) { 3414 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3415 VectorInit = Builder.CreateInsertElement( 3416 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3417 Builder.getInt32(VF - 1), "vector.recur.init"); 3418 } 3419 3420 // We constructed a temporary phi node in the first phase of vectorization. 3421 // This phi node will eventually be deleted. 3422 Builder.SetInsertPoint( 3423 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3424 3425 // Create a phi node for the new recurrence. The current value will either be 3426 // the initial value inserted into a vector or loop-varying vector value. 3427 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3428 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3429 3430 // Get the vectorized previous value of the last part UF - 1. It appears last 3431 // among all unrolled iterations, due to the order of their construction. 3432 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3433 3434 // Set the insertion point after the previous value if it is an instruction. 3435 // Note that the previous value may have been constant-folded so it is not 3436 // guaranteed to be an instruction in the vector loop. Also, if the previous 3437 // value is a phi node, we should insert after all the phi nodes to avoid 3438 // breaking basic block verification. 3439 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3440 isa<PHINode>(PreviousLastPart)) 3441 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3442 else 3443 Builder.SetInsertPoint( 3444 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3445 3446 // We will construct a vector for the recurrence by combining the values for 3447 // the current and previous iterations. This is the required shuffle mask. 3448 SmallVector<Constant *, 8> ShuffleMask(VF); 3449 ShuffleMask[0] = Builder.getInt32(VF - 1); 3450 for (unsigned I = 1; I < VF; ++I) 3451 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3452 3453 // The vector from which to take the initial value for the current iteration 3454 // (actual or unrolled). Initially, this is the vector phi node. 3455 Value *Incoming = VecPhi; 3456 3457 // Shuffle the current and previous vector and update the vector parts. 3458 for (unsigned Part = 0; Part < UF; ++Part) { 3459 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3460 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3461 auto *Shuffle = 3462 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3463 ConstantVector::get(ShuffleMask)) 3464 : Incoming; 3465 PhiPart->replaceAllUsesWith(Shuffle); 3466 cast<Instruction>(PhiPart)->eraseFromParent(); 3467 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3468 Incoming = PreviousPart; 3469 } 3470 3471 // Fix the latch value of the new recurrence in the vector loop. 3472 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3473 3474 // Extract the last vector element in the middle block. This will be the 3475 // initial value for the recurrence when jumping to the scalar loop. 3476 auto *ExtractForScalar = Incoming; 3477 if (VF > 1) { 3478 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3479 ExtractForScalar = Builder.CreateExtractElement( 3480 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3481 } 3482 // Extract the second last element in the middle block if the 3483 // Phi is used outside the loop. We need to extract the phi itself 3484 // and not the last element (the phi update in the current iteration). This 3485 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3486 // when the scalar loop is not run at all. 3487 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3488 if (VF > 1) 3489 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3490 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3491 // When loop is unrolled without vectorizing, initialize 3492 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3493 // `Incoming`. This is analogous to the vectorized case above: extracting the 3494 // second last element when VF > 1. 3495 else if (UF > 1) 3496 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3497 3498 // Fix the initial value of the original recurrence in the scalar loop. 3499 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3500 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3501 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3502 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3503 Start->addIncoming(Incoming, BB); 3504 } 3505 3506 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3507 Phi->setName("scalar.recur"); 3508 3509 // Finally, fix users of the recurrence outside the loop. The users will need 3510 // either the last value of the scalar recurrence or the last value of the 3511 // vector recurrence we extracted in the middle block. Since the loop is in 3512 // LCSSA form, we just need to find all the phi nodes for the original scalar 3513 // recurrence in the exit block, and then add an edge for the middle block. 3514 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3515 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3516 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3517 } 3518 } 3519 } 3520 3521 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3522 Constant *Zero = Builder.getInt32(0); 3523 3524 // Get it's reduction variable descriptor. 3525 assert(Legal->isReductionVariable(Phi) && 3526 "Unable to find the reduction variable"); 3527 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3528 3529 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3530 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3531 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3532 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3533 RdxDesc.getMinMaxRecurrenceKind(); 3534 setDebugLocFromInst(Builder, ReductionStartValue); 3535 3536 // We need to generate a reduction vector from the incoming scalar. 3537 // To do so, we need to generate the 'identity' vector and override 3538 // one of the elements with the incoming scalar reduction. We need 3539 // to do it in the vector-loop preheader. 3540 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3541 3542 // This is the vector-clone of the value that leaves the loop. 3543 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3544 3545 // Find the reduction identity variable. Zero for addition, or, xor, 3546 // one for multiplication, -1 for And. 3547 Value *Identity; 3548 Value *VectorStart; 3549 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3550 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3551 // MinMax reduction have the start value as their identify. 3552 if (VF == 1) { 3553 VectorStart = Identity = ReductionStartValue; 3554 } else { 3555 VectorStart = Identity = 3556 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3557 } 3558 } else { 3559 // Handle other reduction kinds: 3560 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3561 RK, VecTy->getScalarType()); 3562 if (VF == 1) { 3563 Identity = Iden; 3564 // This vector is the Identity vector where the first element is the 3565 // incoming scalar reduction. 3566 VectorStart = ReductionStartValue; 3567 } else { 3568 Identity = ConstantVector::getSplat(VF, Iden); 3569 3570 // This vector is the Identity vector where the first element is the 3571 // incoming scalar reduction. 3572 VectorStart = 3573 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3574 } 3575 } 3576 3577 // Fix the vector-loop phi. 3578 3579 // Reductions do not have to start at zero. They can start with 3580 // any loop invariant values. 3581 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3582 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3583 for (unsigned Part = 0; Part < UF; ++Part) { 3584 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3585 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3586 // Make sure to add the reduction stat value only to the 3587 // first unroll part. 3588 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3589 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3590 cast<PHINode>(VecRdxPhi) 3591 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3592 } 3593 3594 // Before each round, move the insertion point right between 3595 // the PHIs and the values we are going to write. 3596 // This allows us to write both PHINodes and the extractelement 3597 // instructions. 3598 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3599 3600 setDebugLocFromInst(Builder, LoopExitInst); 3601 3602 // If the vector reduction can be performed in a smaller type, we truncate 3603 // then extend the loop exit value to enable InstCombine to evaluate the 3604 // entire expression in the smaller type. 3605 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3606 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3607 Builder.SetInsertPoint( 3608 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3609 VectorParts RdxParts(UF); 3610 for (unsigned Part = 0; Part < UF; ++Part) { 3611 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3612 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3613 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3614 : Builder.CreateZExt(Trunc, VecTy); 3615 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3616 UI != RdxParts[Part]->user_end();) 3617 if (*UI != Trunc) { 3618 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3619 RdxParts[Part] = Extnd; 3620 } else { 3621 ++UI; 3622 } 3623 } 3624 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3625 for (unsigned Part = 0; Part < UF; ++Part) { 3626 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3627 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3628 } 3629 } 3630 3631 // Reduce all of the unrolled parts into a single vector. 3632 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3633 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3634 setDebugLocFromInst(Builder, ReducedPartRdx); 3635 for (unsigned Part = 1; Part < UF; ++Part) { 3636 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3637 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3638 // Floating point operations had to be 'fast' to enable the reduction. 3639 ReducedPartRdx = addFastMathFlag( 3640 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3641 ReducedPartRdx, "bin.rdx"), 3642 RdxDesc.getFastMathFlags()); 3643 else 3644 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3645 RdxPart); 3646 } 3647 3648 if (VF > 1) { 3649 bool NoNaN = Legal->hasFunNoNaNAttr(); 3650 ReducedPartRdx = 3651 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3652 // If the reduction can be performed in a smaller type, we need to extend 3653 // the reduction to the wider type before we branch to the original loop. 3654 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3655 ReducedPartRdx = 3656 RdxDesc.isSigned() 3657 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3658 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3659 } 3660 3661 // Create a phi node that merges control-flow from the backedge-taken check 3662 // block and the middle block. 3663 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3664 LoopScalarPreHeader->getTerminator()); 3665 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3666 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3667 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3668 3669 // Now, we need to fix the users of the reduction variable 3670 // inside and outside of the scalar remainder loop. 3671 // We know that the loop is in LCSSA form. We need to update the 3672 // PHI nodes in the exit blocks. 3673 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3674 // All PHINodes need to have a single entry edge, or two if 3675 // we already fixed them. 3676 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3677 3678 // We found a reduction value exit-PHI. Update it with the 3679 // incoming bypass edge. 3680 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3681 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3682 } // end of the LCSSA phi scan. 3683 3684 // Fix the scalar loop reduction variable with the incoming reduction sum 3685 // from the vector body and from the backedge value. 3686 int IncomingEdgeBlockIdx = 3687 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3688 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3689 // Pick the other block. 3690 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3691 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3692 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3693 } 3694 3695 void InnerLoopVectorizer::fixLCSSAPHIs() { 3696 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3697 if (LCSSAPhi.getNumIncomingValues() == 1) { 3698 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3699 // Non-instruction incoming values will have only one value. 3700 unsigned LastLane = 0; 3701 if (isa<Instruction>(IncomingValue)) 3702 LastLane = Cost->isUniformAfterVectorization( 3703 cast<Instruction>(IncomingValue), VF) 3704 ? 0 3705 : VF - 1; 3706 // Can be a loop invariant incoming value or the last scalar value to be 3707 // extracted from the vectorized loop. 3708 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3709 Value *lastIncomingValue = 3710 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3711 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3712 } 3713 } 3714 } 3715 3716 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3717 // The basic block and loop containing the predicated instruction. 3718 auto *PredBB = PredInst->getParent(); 3719 auto *VectorLoop = LI->getLoopFor(PredBB); 3720 3721 // Initialize a worklist with the operands of the predicated instruction. 3722 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3723 3724 // Holds instructions that we need to analyze again. An instruction may be 3725 // reanalyzed if we don't yet know if we can sink it or not. 3726 SmallVector<Instruction *, 8> InstsToReanalyze; 3727 3728 // Returns true if a given use occurs in the predicated block. Phi nodes use 3729 // their operands in their corresponding predecessor blocks. 3730 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3731 auto *I = cast<Instruction>(U.getUser()); 3732 BasicBlock *BB = I->getParent(); 3733 if (auto *Phi = dyn_cast<PHINode>(I)) 3734 BB = Phi->getIncomingBlock( 3735 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3736 return BB == PredBB; 3737 }; 3738 3739 // Iteratively sink the scalarized operands of the predicated instruction 3740 // into the block we created for it. When an instruction is sunk, it's 3741 // operands are then added to the worklist. The algorithm ends after one pass 3742 // through the worklist doesn't sink a single instruction. 3743 bool Changed; 3744 do { 3745 // Add the instructions that need to be reanalyzed to the worklist, and 3746 // reset the changed indicator. 3747 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3748 InstsToReanalyze.clear(); 3749 Changed = false; 3750 3751 while (!Worklist.empty()) { 3752 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3753 3754 // We can't sink an instruction if it is a phi node, is already in the 3755 // predicated block, is not in the loop, or may have side effects. 3756 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3757 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3758 continue; 3759 3760 // It's legal to sink the instruction if all its uses occur in the 3761 // predicated block. Otherwise, there's nothing to do yet, and we may 3762 // need to reanalyze the instruction. 3763 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3764 InstsToReanalyze.push_back(I); 3765 continue; 3766 } 3767 3768 // Move the instruction to the beginning of the predicated block, and add 3769 // it's operands to the worklist. 3770 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3771 Worklist.insert(I->op_begin(), I->op_end()); 3772 3773 // The sinking may have enabled other instructions to be sunk, so we will 3774 // need to iterate. 3775 Changed = true; 3776 } 3777 } while (Changed); 3778 } 3779 3780 void InnerLoopVectorizer::fixNonInductionPHIs() { 3781 for (PHINode *OrigPhi : OrigPHIsToFix) { 3782 PHINode *NewPhi = 3783 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3784 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3785 3786 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3787 predecessors(OrigPhi->getParent())); 3788 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3789 predecessors(NewPhi->getParent())); 3790 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3791 "Scalar and Vector BB should have the same number of predecessors"); 3792 3793 // The insertion point in Builder may be invalidated by the time we get 3794 // here. Force the Builder insertion point to something valid so that we do 3795 // not run into issues during insertion point restore in 3796 // getOrCreateVectorValue calls below. 3797 Builder.SetInsertPoint(NewPhi); 3798 3799 // The predecessor order is preserved and we can rely on mapping between 3800 // scalar and vector block predecessors. 3801 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3802 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3803 3804 // When looking up the new scalar/vector values to fix up, use incoming 3805 // values from original phi. 3806 Value *ScIncV = 3807 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3808 3809 // Scalar incoming value may need a broadcast 3810 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3811 NewPhi->addIncoming(NewIncV, NewPredBB); 3812 } 3813 } 3814 } 3815 3816 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3817 unsigned VF) { 3818 PHINode *P = cast<PHINode>(PN); 3819 if (EnableVPlanNativePath) { 3820 // Currently we enter here in the VPlan-native path for non-induction 3821 // PHIs where all control flow is uniform. We simply widen these PHIs. 3822 // Create a vector phi with no operands - the vector phi operands will be 3823 // set at the end of vector code generation. 3824 Type *VecTy = 3825 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3826 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3827 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3828 OrigPHIsToFix.push_back(P); 3829 3830 return; 3831 } 3832 3833 assert(PN->getParent() == OrigLoop->getHeader() && 3834 "Non-header phis should have been handled elsewhere"); 3835 3836 // In order to support recurrences we need to be able to vectorize Phi nodes. 3837 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3838 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3839 // this value when we vectorize all of the instructions that use the PHI. 3840 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3841 for (unsigned Part = 0; Part < UF; ++Part) { 3842 // This is phase one of vectorizing PHIs. 3843 Type *VecTy = 3844 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3845 Value *EntryPart = PHINode::Create( 3846 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3847 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3848 } 3849 return; 3850 } 3851 3852 setDebugLocFromInst(Builder, P); 3853 3854 // This PHINode must be an induction variable. 3855 // Make sure that we know about it. 3856 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3857 3858 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3859 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3860 3861 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3862 // which can be found from the original scalar operations. 3863 switch (II.getKind()) { 3864 case InductionDescriptor::IK_NoInduction: 3865 llvm_unreachable("Unknown induction"); 3866 case InductionDescriptor::IK_IntInduction: 3867 case InductionDescriptor::IK_FpInduction: 3868 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3869 case InductionDescriptor::IK_PtrInduction: { 3870 // Handle the pointer induction variable case. 3871 assert(P->getType()->isPointerTy() && "Unexpected type."); 3872 // This is the normalized GEP that starts counting at zero. 3873 Value *PtrInd = Induction; 3874 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3875 // Determine the number of scalars we need to generate for each unroll 3876 // iteration. If the instruction is uniform, we only need to generate the 3877 // first lane. Otherwise, we generate all VF values. 3878 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3879 // These are the scalar results. Notice that we don't generate vector GEPs 3880 // because scalar GEPs result in better code. 3881 for (unsigned Part = 0; Part < UF; ++Part) { 3882 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3883 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3884 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3885 Value *SclrGep = 3886 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3887 SclrGep->setName("next.gep"); 3888 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3889 } 3890 } 3891 return; 3892 } 3893 } 3894 } 3895 3896 /// A helper function for checking whether an integer division-related 3897 /// instruction may divide by zero (in which case it must be predicated if 3898 /// executed conditionally in the scalar code). 3899 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3900 /// Non-zero divisors that are non compile-time constants will not be 3901 /// converted into multiplication, so we will still end up scalarizing 3902 /// the division, but can do so w/o predication. 3903 static bool mayDivideByZero(Instruction &I) { 3904 assert((I.getOpcode() == Instruction::UDiv || 3905 I.getOpcode() == Instruction::SDiv || 3906 I.getOpcode() == Instruction::URem || 3907 I.getOpcode() == Instruction::SRem) && 3908 "Unexpected instruction"); 3909 Value *Divisor = I.getOperand(1); 3910 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3911 return !CInt || CInt->isZero(); 3912 } 3913 3914 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3915 switch (I.getOpcode()) { 3916 case Instruction::Br: 3917 case Instruction::PHI: 3918 llvm_unreachable("This instruction is handled by a different recipe."); 3919 case Instruction::GetElementPtr: { 3920 // Construct a vector GEP by widening the operands of the scalar GEP as 3921 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3922 // results in a vector of pointers when at least one operand of the GEP 3923 // is vector-typed. Thus, to keep the representation compact, we only use 3924 // vector-typed operands for loop-varying values. 3925 auto *GEP = cast<GetElementPtrInst>(&I); 3926 3927 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3928 // If we are vectorizing, but the GEP has only loop-invariant operands, 3929 // the GEP we build (by only using vector-typed operands for 3930 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3931 // produce a vector of pointers, we need to either arbitrarily pick an 3932 // operand to broadcast, or broadcast a clone of the original GEP. 3933 // Here, we broadcast a clone of the original. 3934 // 3935 // TODO: If at some point we decide to scalarize instructions having 3936 // loop-invariant operands, this special case will no longer be 3937 // required. We would add the scalarization decision to 3938 // collectLoopScalars() and teach getVectorValue() to broadcast 3939 // the lane-zero scalar value. 3940 auto *Clone = Builder.Insert(GEP->clone()); 3941 for (unsigned Part = 0; Part < UF; ++Part) { 3942 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3943 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3944 addMetadata(EntryPart, GEP); 3945 } 3946 } else { 3947 // If the GEP has at least one loop-varying operand, we are sure to 3948 // produce a vector of pointers. But if we are only unrolling, we want 3949 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3950 // produce with the code below will be scalar (if VF == 1) or vector 3951 // (otherwise). Note that for the unroll-only case, we still maintain 3952 // values in the vector mapping with initVector, as we do for other 3953 // instructions. 3954 for (unsigned Part = 0; Part < UF; ++Part) { 3955 // The pointer operand of the new GEP. If it's loop-invariant, we 3956 // won't broadcast it. 3957 auto *Ptr = 3958 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3959 ? GEP->getPointerOperand() 3960 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3961 3962 // Collect all the indices for the new GEP. If any index is 3963 // loop-invariant, we won't broadcast it. 3964 SmallVector<Value *, 4> Indices; 3965 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3966 if (OrigLoop->isLoopInvariant(U.get())) 3967 Indices.push_back(U.get()); 3968 else 3969 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3970 } 3971 3972 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3973 // but it should be a vector, otherwise. 3974 auto *NewGEP = 3975 GEP->isInBounds() 3976 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3977 Indices) 3978 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3979 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3980 "NewGEP is not a pointer vector"); 3981 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3982 addMetadata(NewGEP, GEP); 3983 } 3984 } 3985 3986 break; 3987 } 3988 case Instruction::UDiv: 3989 case Instruction::SDiv: 3990 case Instruction::SRem: 3991 case Instruction::URem: 3992 case Instruction::Add: 3993 case Instruction::FAdd: 3994 case Instruction::Sub: 3995 case Instruction::FSub: 3996 case Instruction::Mul: 3997 case Instruction::FMul: 3998 case Instruction::FDiv: 3999 case Instruction::FRem: 4000 case Instruction::Shl: 4001 case Instruction::LShr: 4002 case Instruction::AShr: 4003 case Instruction::And: 4004 case Instruction::Or: 4005 case Instruction::Xor: { 4006 // Just widen binops. 4007 auto *BinOp = cast<BinaryOperator>(&I); 4008 setDebugLocFromInst(Builder, BinOp); 4009 4010 for (unsigned Part = 0; Part < UF; ++Part) { 4011 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4012 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4013 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4014 4015 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4016 VecOp->copyIRFlags(BinOp); 4017 4018 // Use this vector value for all users of the original instruction. 4019 VectorLoopValueMap.setVectorValue(&I, Part, V); 4020 addMetadata(V, BinOp); 4021 } 4022 4023 break; 4024 } 4025 case Instruction::Select: { 4026 // Widen selects. 4027 // If the selector is loop invariant we can create a select 4028 // instruction with a scalar condition. Otherwise, use vector-select. 4029 auto *SE = PSE.getSE(); 4030 bool InvariantCond = 4031 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4032 setDebugLocFromInst(Builder, &I); 4033 4034 // The condition can be loop invariant but still defined inside the 4035 // loop. This means that we can't just use the original 'cond' value. 4036 // We have to take the 'vectorized' value and pick the first lane. 4037 // Instcombine will make this a no-op. 4038 4039 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4040 4041 for (unsigned Part = 0; Part < UF; ++Part) { 4042 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4043 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4044 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4045 Value *Sel = 4046 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4047 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4048 addMetadata(Sel, &I); 4049 } 4050 4051 break; 4052 } 4053 4054 case Instruction::ICmp: 4055 case Instruction::FCmp: { 4056 // Widen compares. Generate vector compares. 4057 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4058 auto *Cmp = dyn_cast<CmpInst>(&I); 4059 setDebugLocFromInst(Builder, Cmp); 4060 for (unsigned Part = 0; Part < UF; ++Part) { 4061 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4062 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4063 Value *C = nullptr; 4064 if (FCmp) { 4065 // Propagate fast math flags. 4066 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4067 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4068 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4069 } else { 4070 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4071 } 4072 VectorLoopValueMap.setVectorValue(&I, Part, C); 4073 addMetadata(C, &I); 4074 } 4075 4076 break; 4077 } 4078 4079 case Instruction::ZExt: 4080 case Instruction::SExt: 4081 case Instruction::FPToUI: 4082 case Instruction::FPToSI: 4083 case Instruction::FPExt: 4084 case Instruction::PtrToInt: 4085 case Instruction::IntToPtr: 4086 case Instruction::SIToFP: 4087 case Instruction::UIToFP: 4088 case Instruction::Trunc: 4089 case Instruction::FPTrunc: 4090 case Instruction::BitCast: { 4091 auto *CI = dyn_cast<CastInst>(&I); 4092 setDebugLocFromInst(Builder, CI); 4093 4094 /// Vectorize casts. 4095 Type *DestTy = 4096 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4097 4098 for (unsigned Part = 0; Part < UF; ++Part) { 4099 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4100 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4101 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4102 addMetadata(Cast, &I); 4103 } 4104 break; 4105 } 4106 4107 case Instruction::Call: { 4108 // Ignore dbg intrinsics. 4109 if (isa<DbgInfoIntrinsic>(I)) 4110 break; 4111 setDebugLocFromInst(Builder, &I); 4112 4113 Module *M = I.getParent()->getParent()->getParent(); 4114 auto *CI = cast<CallInst>(&I); 4115 4116 StringRef FnName = CI->getCalledFunction()->getName(); 4117 Function *F = CI->getCalledFunction(); 4118 Type *RetTy = ToVectorTy(CI->getType(), VF); 4119 SmallVector<Type *, 4> Tys; 4120 for (Value *ArgOperand : CI->arg_operands()) 4121 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4122 4123 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4124 4125 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4126 // version of the instruction. 4127 // Is it beneficial to perform intrinsic call compared to lib call? 4128 bool NeedToScalarize; 4129 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4130 bool UseVectorIntrinsic = 4131 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4132 assert((UseVectorIntrinsic || !NeedToScalarize) && 4133 "Instruction should be scalarized elsewhere."); 4134 4135 for (unsigned Part = 0; Part < UF; ++Part) { 4136 SmallVector<Value *, 4> Args; 4137 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4138 Value *Arg = CI->getArgOperand(i); 4139 // Some intrinsics have a scalar argument - don't replace it with a 4140 // vector. 4141 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4142 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4143 Args.push_back(Arg); 4144 } 4145 4146 Function *VectorF; 4147 if (UseVectorIntrinsic) { 4148 // Use vector version of the intrinsic. 4149 Type *TysForDecl[] = {CI->getType()}; 4150 if (VF > 1) 4151 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4152 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4153 } else { 4154 // Use vector version of the library call. 4155 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4156 assert(!VFnName.empty() && "Vector function name is empty."); 4157 VectorF = M->getFunction(VFnName); 4158 if (!VectorF) { 4159 // Generate a declaration 4160 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4161 VectorF = 4162 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4163 VectorF->copyAttributesFrom(F); 4164 } 4165 } 4166 assert(VectorF && "Can't create vector function."); 4167 4168 SmallVector<OperandBundleDef, 1> OpBundles; 4169 CI->getOperandBundlesAsDefs(OpBundles); 4170 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4171 4172 if (isa<FPMathOperator>(V)) 4173 V->copyFastMathFlags(CI); 4174 4175 VectorLoopValueMap.setVectorValue(&I, Part, V); 4176 addMetadata(V, &I); 4177 } 4178 4179 break; 4180 } 4181 4182 default: 4183 // This instruction is not vectorized by simple widening. 4184 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4185 llvm_unreachable("Unhandled instruction!"); 4186 } // end of switch. 4187 } 4188 4189 void InnerLoopVectorizer::updateAnalysis() { 4190 // Forget the original basic block. 4191 PSE.getSE()->forgetLoop(OrigLoop); 4192 4193 // DT is not kept up-to-date for outer loop vectorization 4194 if (EnableVPlanNativePath) 4195 return; 4196 4197 // Update the dominator tree information. 4198 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4199 "Entry does not dominate exit."); 4200 4201 DT->addNewBlock(LoopMiddleBlock, 4202 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4203 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4204 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4205 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4206 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4207 } 4208 4209 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4210 // We should not collect Scalars more than once per VF. Right now, this 4211 // function is called from collectUniformsAndScalars(), which already does 4212 // this check. Collecting Scalars for VF=1 does not make any sense. 4213 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4214 "This function should not be visited twice for the same VF"); 4215 4216 SmallSetVector<Instruction *, 8> Worklist; 4217 4218 // These sets are used to seed the analysis with pointers used by memory 4219 // accesses that will remain scalar. 4220 SmallSetVector<Instruction *, 8> ScalarPtrs; 4221 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4222 4223 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4224 // The pointer operands of loads and stores will be scalar as long as the 4225 // memory access is not a gather or scatter operation. The value operand of a 4226 // store will remain scalar if the store is scalarized. 4227 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4228 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4229 assert(WideningDecision != CM_Unknown && 4230 "Widening decision should be ready at this moment"); 4231 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4232 if (Ptr == Store->getValueOperand()) 4233 return WideningDecision == CM_Scalarize; 4234 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4235 "Ptr is neither a value or pointer operand"); 4236 return WideningDecision != CM_GatherScatter; 4237 }; 4238 4239 // A helper that returns true if the given value is a bitcast or 4240 // getelementptr instruction contained in the loop. 4241 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4242 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4243 isa<GetElementPtrInst>(V)) && 4244 !TheLoop->isLoopInvariant(V); 4245 }; 4246 4247 // A helper that evaluates a memory access's use of a pointer. If the use 4248 // will be a scalar use, and the pointer is only used by memory accesses, we 4249 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4250 // PossibleNonScalarPtrs. 4251 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4252 // We only care about bitcast and getelementptr instructions contained in 4253 // the loop. 4254 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4255 return; 4256 4257 // If the pointer has already been identified as scalar (e.g., if it was 4258 // also identified as uniform), there's nothing to do. 4259 auto *I = cast<Instruction>(Ptr); 4260 if (Worklist.count(I)) 4261 return; 4262 4263 // If the use of the pointer will be a scalar use, and all users of the 4264 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4265 // place the pointer in PossibleNonScalarPtrs. 4266 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4267 return isa<LoadInst>(U) || isa<StoreInst>(U); 4268 })) 4269 ScalarPtrs.insert(I); 4270 else 4271 PossibleNonScalarPtrs.insert(I); 4272 }; 4273 4274 // We seed the scalars analysis with three classes of instructions: (1) 4275 // instructions marked uniform-after-vectorization, (2) bitcast and 4276 // getelementptr instructions used by memory accesses requiring a scalar use, 4277 // and (3) pointer induction variables and their update instructions (we 4278 // currently only scalarize these). 4279 // 4280 // (1) Add to the worklist all instructions that have been identified as 4281 // uniform-after-vectorization. 4282 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4283 4284 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4285 // memory accesses requiring a scalar use. The pointer operands of loads and 4286 // stores will be scalar as long as the memory accesses is not a gather or 4287 // scatter operation. The value operand of a store will remain scalar if the 4288 // store is scalarized. 4289 for (auto *BB : TheLoop->blocks()) 4290 for (auto &I : *BB) { 4291 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4292 evaluatePtrUse(Load, Load->getPointerOperand()); 4293 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4294 evaluatePtrUse(Store, Store->getPointerOperand()); 4295 evaluatePtrUse(Store, Store->getValueOperand()); 4296 } 4297 } 4298 for (auto *I : ScalarPtrs) 4299 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4300 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4301 Worklist.insert(I); 4302 } 4303 4304 // (3) Add to the worklist all pointer induction variables and their update 4305 // instructions. 4306 // 4307 // TODO: Once we are able to vectorize pointer induction variables we should 4308 // no longer insert them into the worklist here. 4309 auto *Latch = TheLoop->getLoopLatch(); 4310 for (auto &Induction : *Legal->getInductionVars()) { 4311 auto *Ind = Induction.first; 4312 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4313 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4314 continue; 4315 Worklist.insert(Ind); 4316 Worklist.insert(IndUpdate); 4317 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4318 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4319 << "\n"); 4320 } 4321 4322 // Insert the forced scalars. 4323 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4324 // induction variable when the PHI user is scalarized. 4325 auto ForcedScalar = ForcedScalars.find(VF); 4326 if (ForcedScalar != ForcedScalars.end()) 4327 for (auto *I : ForcedScalar->second) 4328 Worklist.insert(I); 4329 4330 // Expand the worklist by looking through any bitcasts and getelementptr 4331 // instructions we've already identified as scalar. This is similar to the 4332 // expansion step in collectLoopUniforms(); however, here we're only 4333 // expanding to include additional bitcasts and getelementptr instructions. 4334 unsigned Idx = 0; 4335 while (Idx != Worklist.size()) { 4336 Instruction *Dst = Worklist[Idx++]; 4337 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4338 continue; 4339 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4340 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4341 auto *J = cast<Instruction>(U); 4342 return !TheLoop->contains(J) || Worklist.count(J) || 4343 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4344 isScalarUse(J, Src)); 4345 })) { 4346 Worklist.insert(Src); 4347 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4348 } 4349 } 4350 4351 // An induction variable will remain scalar if all users of the induction 4352 // variable and induction variable update remain scalar. 4353 for (auto &Induction : *Legal->getInductionVars()) { 4354 auto *Ind = Induction.first; 4355 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4356 4357 // We already considered pointer induction variables, so there's no reason 4358 // to look at their users again. 4359 // 4360 // TODO: Once we are able to vectorize pointer induction variables we 4361 // should no longer skip over them here. 4362 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4363 continue; 4364 4365 // Determine if all users of the induction variable are scalar after 4366 // vectorization. 4367 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4368 auto *I = cast<Instruction>(U); 4369 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4370 }); 4371 if (!ScalarInd) 4372 continue; 4373 4374 // Determine if all users of the induction variable update instruction are 4375 // scalar after vectorization. 4376 auto ScalarIndUpdate = 4377 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4378 auto *I = cast<Instruction>(U); 4379 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4380 }); 4381 if (!ScalarIndUpdate) 4382 continue; 4383 4384 // The induction variable and its update instruction will remain scalar. 4385 Worklist.insert(Ind); 4386 Worklist.insert(IndUpdate); 4387 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4388 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4389 << "\n"); 4390 } 4391 4392 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4393 } 4394 4395 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4396 if (!blockNeedsPredication(I->getParent())) 4397 return false; 4398 switch(I->getOpcode()) { 4399 default: 4400 break; 4401 case Instruction::Load: 4402 case Instruction::Store: { 4403 if (!Legal->isMaskRequired(I)) 4404 return false; 4405 auto *Ptr = getLoadStorePointerOperand(I); 4406 auto *Ty = getMemInstValueType(I); 4407 // We have already decided how to vectorize this instruction, get that 4408 // result. 4409 if (VF > 1) { 4410 InstWidening WideningDecision = getWideningDecision(I, VF); 4411 assert(WideningDecision != CM_Unknown && 4412 "Widening decision should be ready at this moment"); 4413 return WideningDecision == CM_Scalarize; 4414 } 4415 return isa<LoadInst>(I) ? 4416 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4417 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4418 } 4419 case Instruction::UDiv: 4420 case Instruction::SDiv: 4421 case Instruction::SRem: 4422 case Instruction::URem: 4423 return mayDivideByZero(*I); 4424 } 4425 return false; 4426 } 4427 4428 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4429 unsigned VF) { 4430 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4431 assert(getWideningDecision(I, VF) == CM_Unknown && 4432 "Decision should not be set yet."); 4433 auto *Group = getInterleavedAccessGroup(I); 4434 assert(Group && "Must have a group."); 4435 4436 // Check if masking is required. 4437 // A Group may need masking for one of two reasons: it resides in a block that 4438 // needs predication, or it was decided to use masking to deal with gaps. 4439 bool PredicatedAccessRequiresMasking = 4440 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4441 bool AccessWithGapsRequiresMasking = 4442 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4443 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4444 return true; 4445 4446 // If masked interleaving is required, we expect that the user/target had 4447 // enabled it, because otherwise it either wouldn't have been created or 4448 // it should have been invalidated by the CostModel. 4449 assert(useMaskedInterleavedAccesses(TTI) && 4450 "Masked interleave-groups for predicated accesses are not enabled."); 4451 4452 auto *Ty = getMemInstValueType(I); 4453 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4454 : TTI.isLegalMaskedStore(Ty); 4455 } 4456 4457 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4458 unsigned VF) { 4459 // Get and ensure we have a valid memory instruction. 4460 LoadInst *LI = dyn_cast<LoadInst>(I); 4461 StoreInst *SI = dyn_cast<StoreInst>(I); 4462 assert((LI || SI) && "Invalid memory instruction"); 4463 4464 auto *Ptr = getLoadStorePointerOperand(I); 4465 4466 // In order to be widened, the pointer should be consecutive, first of all. 4467 if (!Legal->isConsecutivePtr(Ptr)) 4468 return false; 4469 4470 // If the instruction is a store located in a predicated block, it will be 4471 // scalarized. 4472 if (isScalarWithPredication(I)) 4473 return false; 4474 4475 // If the instruction's allocated size doesn't equal it's type size, it 4476 // requires padding and will be scalarized. 4477 auto &DL = I->getModule()->getDataLayout(); 4478 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4479 if (hasIrregularType(ScalarTy, DL, VF)) 4480 return false; 4481 4482 return true; 4483 } 4484 4485 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4486 // We should not collect Uniforms more than once per VF. Right now, 4487 // this function is called from collectUniformsAndScalars(), which 4488 // already does this check. Collecting Uniforms for VF=1 does not make any 4489 // sense. 4490 4491 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4492 "This function should not be visited twice for the same VF"); 4493 4494 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4495 // not analyze again. Uniforms.count(VF) will return 1. 4496 Uniforms[VF].clear(); 4497 4498 // We now know that the loop is vectorizable! 4499 // Collect instructions inside the loop that will remain uniform after 4500 // vectorization. 4501 4502 // Global values, params and instructions outside of current loop are out of 4503 // scope. 4504 auto isOutOfScope = [&](Value *V) -> bool { 4505 Instruction *I = dyn_cast<Instruction>(V); 4506 return (!I || !TheLoop->contains(I)); 4507 }; 4508 4509 SetVector<Instruction *> Worklist; 4510 BasicBlock *Latch = TheLoop->getLoopLatch(); 4511 4512 // Start with the conditional branch. If the branch condition is an 4513 // instruction contained in the loop that is only used by the branch, it is 4514 // uniform. 4515 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4516 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4517 Worklist.insert(Cmp); 4518 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4519 } 4520 4521 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4522 // are pointers that are treated like consecutive pointers during 4523 // vectorization. The pointer operands of interleaved accesses are an 4524 // example. 4525 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4526 4527 // Holds pointer operands of instructions that are possibly non-uniform. 4528 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4529 4530 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4531 InstWidening WideningDecision = getWideningDecision(I, VF); 4532 assert(WideningDecision != CM_Unknown && 4533 "Widening decision should be ready at this moment"); 4534 4535 return (WideningDecision == CM_Widen || 4536 WideningDecision == CM_Widen_Reverse || 4537 WideningDecision == CM_Interleave); 4538 }; 4539 // Iterate over the instructions in the loop, and collect all 4540 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4541 // that a consecutive-like pointer operand will be scalarized, we collect it 4542 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4543 // getelementptr instruction can be used by both vectorized and scalarized 4544 // memory instructions. For example, if a loop loads and stores from the same 4545 // location, but the store is conditional, the store will be scalarized, and 4546 // the getelementptr won't remain uniform. 4547 for (auto *BB : TheLoop->blocks()) 4548 for (auto &I : *BB) { 4549 // If there's no pointer operand, there's nothing to do. 4550 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4551 if (!Ptr) 4552 continue; 4553 4554 // True if all users of Ptr are memory accesses that have Ptr as their 4555 // pointer operand. 4556 auto UsersAreMemAccesses = 4557 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4558 return getLoadStorePointerOperand(U) == Ptr; 4559 }); 4560 4561 // Ensure the memory instruction will not be scalarized or used by 4562 // gather/scatter, making its pointer operand non-uniform. If the pointer 4563 // operand is used by any instruction other than a memory access, we 4564 // conservatively assume the pointer operand may be non-uniform. 4565 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4566 PossibleNonUniformPtrs.insert(Ptr); 4567 4568 // If the memory instruction will be vectorized and its pointer operand 4569 // is consecutive-like, or interleaving - the pointer operand should 4570 // remain uniform. 4571 else 4572 ConsecutiveLikePtrs.insert(Ptr); 4573 } 4574 4575 // Add to the Worklist all consecutive and consecutive-like pointers that 4576 // aren't also identified as possibly non-uniform. 4577 for (auto *V : ConsecutiveLikePtrs) 4578 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4579 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4580 Worklist.insert(V); 4581 } 4582 4583 // Expand Worklist in topological order: whenever a new instruction 4584 // is added , its users should be already inside Worklist. It ensures 4585 // a uniform instruction will only be used by uniform instructions. 4586 unsigned idx = 0; 4587 while (idx != Worklist.size()) { 4588 Instruction *I = Worklist[idx++]; 4589 4590 for (auto OV : I->operand_values()) { 4591 // isOutOfScope operands cannot be uniform instructions. 4592 if (isOutOfScope(OV)) 4593 continue; 4594 // First order recurrence Phi's should typically be considered 4595 // non-uniform. 4596 auto *OP = dyn_cast<PHINode>(OV); 4597 if (OP && Legal->isFirstOrderRecurrence(OP)) 4598 continue; 4599 // If all the users of the operand are uniform, then add the 4600 // operand into the uniform worklist. 4601 auto *OI = cast<Instruction>(OV); 4602 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4603 auto *J = cast<Instruction>(U); 4604 return Worklist.count(J) || 4605 (OI == getLoadStorePointerOperand(J) && 4606 isUniformDecision(J, VF)); 4607 })) { 4608 Worklist.insert(OI); 4609 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4610 } 4611 } 4612 } 4613 4614 // Returns true if Ptr is the pointer operand of a memory access instruction 4615 // I, and I is known to not require scalarization. 4616 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4617 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4618 }; 4619 4620 // For an instruction to be added into Worklist above, all its users inside 4621 // the loop should also be in Worklist. However, this condition cannot be 4622 // true for phi nodes that form a cyclic dependence. We must process phi 4623 // nodes separately. An induction variable will remain uniform if all users 4624 // of the induction variable and induction variable update remain uniform. 4625 // The code below handles both pointer and non-pointer induction variables. 4626 for (auto &Induction : *Legal->getInductionVars()) { 4627 auto *Ind = Induction.first; 4628 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4629 4630 // Determine if all users of the induction variable are uniform after 4631 // vectorization. 4632 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4633 auto *I = cast<Instruction>(U); 4634 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4635 isVectorizedMemAccessUse(I, Ind); 4636 }); 4637 if (!UniformInd) 4638 continue; 4639 4640 // Determine if all users of the induction variable update instruction are 4641 // uniform after vectorization. 4642 auto UniformIndUpdate = 4643 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4644 auto *I = cast<Instruction>(U); 4645 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4646 isVectorizedMemAccessUse(I, IndUpdate); 4647 }); 4648 if (!UniformIndUpdate) 4649 continue; 4650 4651 // The induction variable and its update instruction will remain uniform. 4652 Worklist.insert(Ind); 4653 Worklist.insert(IndUpdate); 4654 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4655 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4656 << "\n"); 4657 } 4658 4659 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4660 } 4661 4662 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4663 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4664 // TODO: It may by useful to do since it's still likely to be dynamically 4665 // uniform if the target can skip. 4666 LLVM_DEBUG( 4667 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4668 4669 ORE->emit( 4670 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4671 << "runtime pointer checks needed. Not enabled for divergent target"); 4672 4673 return None; 4674 } 4675 4676 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4677 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4678 return computeFeasibleMaxVF(OptForSize, TC); 4679 4680 if (Legal->getRuntimePointerChecking()->Need) { 4681 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4682 << "runtime pointer checks needed. Enable vectorization of this " 4683 "loop with '#pragma clang loop vectorize(enable)' when " 4684 "compiling with -Os/-Oz"); 4685 LLVM_DEBUG( 4686 dbgs() 4687 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4688 return None; 4689 } 4690 4691 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4692 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4693 << "runtime SCEV checks needed. Enable vectorization of this " 4694 "loop with '#pragma clang loop vectorize(enable)' when " 4695 "compiling with -Os/-Oz"); 4696 LLVM_DEBUG( 4697 dbgs() 4698 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4699 return None; 4700 } 4701 4702 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4703 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4704 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4705 << "runtime stride == 1 checks needed. Enable vectorization of " 4706 "this loop with '#pragma clang loop vectorize(enable)' when " 4707 "compiling with -Os/-Oz"); 4708 LLVM_DEBUG( 4709 dbgs() 4710 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4711 return None; 4712 } 4713 4714 // If we optimize the program for size, avoid creating the tail loop. 4715 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4716 4717 if (TC == 1) { 4718 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4719 << "loop trip count is one, irrelevant for vectorization"); 4720 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4721 return None; 4722 } 4723 4724 // Record that scalar epilogue is not allowed. 4725 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4726 4727 IsScalarEpilogueAllowed = !OptForSize; 4728 4729 // We don't create an epilogue when optimizing for size. 4730 // Invalidate interleave groups that require an epilogue if we can't mask 4731 // the interleave-group. 4732 if (!useMaskedInterleavedAccesses(TTI)) 4733 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4734 4735 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4736 4737 if (TC > 0 && TC % MaxVF == 0) { 4738 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4739 return MaxVF; 4740 } 4741 4742 // If we don't know the precise trip count, or if the trip count that we 4743 // found modulo the vectorization factor is not zero, try to fold the tail 4744 // by masking. 4745 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4746 if (Legal->canFoldTailByMasking()) { 4747 FoldTailByMasking = true; 4748 return MaxVF; 4749 } 4750 4751 if (TC == 0) { 4752 ORE->emit( 4753 createMissedAnalysis("UnknownLoopCountComplexCFG") 4754 << "unable to calculate the loop count due to complex control flow"); 4755 return None; 4756 } 4757 4758 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4759 << "cannot optimize for size and vectorize at the same time. " 4760 "Enable vectorization of this loop with '#pragma clang loop " 4761 "vectorize(enable)' when compiling with -Os/-Oz"); 4762 return None; 4763 } 4764 4765 unsigned 4766 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4767 unsigned ConstTripCount) { 4768 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4769 unsigned SmallestType, WidestType; 4770 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4771 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4772 4773 // Get the maximum safe dependence distance in bits computed by LAA. 4774 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4775 // the memory accesses that is most restrictive (involved in the smallest 4776 // dependence distance). 4777 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4778 4779 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4780 4781 unsigned MaxVectorSize = WidestRegister / WidestType; 4782 4783 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4784 << " / " << WidestType << " bits.\n"); 4785 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4786 << WidestRegister << " bits.\n"); 4787 4788 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4789 " into one vector!"); 4790 if (MaxVectorSize == 0) { 4791 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4792 MaxVectorSize = 1; 4793 return MaxVectorSize; 4794 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4795 isPowerOf2_32(ConstTripCount)) { 4796 // We need to clamp the VF to be the ConstTripCount. There is no point in 4797 // choosing a higher viable VF as done in the loop below. 4798 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4799 << ConstTripCount << "\n"); 4800 MaxVectorSize = ConstTripCount; 4801 return MaxVectorSize; 4802 } 4803 4804 unsigned MaxVF = MaxVectorSize; 4805 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4806 (MaximizeBandwidth && !OptForSize)) { 4807 // Collect all viable vectorization factors larger than the default MaxVF 4808 // (i.e. MaxVectorSize). 4809 SmallVector<unsigned, 8> VFs; 4810 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4811 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4812 VFs.push_back(VS); 4813 4814 // For each VF calculate its register usage. 4815 auto RUs = calculateRegisterUsage(VFs); 4816 4817 // Select the largest VF which doesn't require more registers than existing 4818 // ones. 4819 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4820 for (int i = RUs.size() - 1; i >= 0; --i) { 4821 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4822 MaxVF = VFs[i]; 4823 break; 4824 } 4825 } 4826 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4827 if (MaxVF < MinVF) { 4828 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4829 << ") with target's minimum: " << MinVF << '\n'); 4830 MaxVF = MinVF; 4831 } 4832 } 4833 } 4834 return MaxVF; 4835 } 4836 4837 VectorizationFactor 4838 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4839 float Cost = expectedCost(1).first; 4840 const float ScalarCost = Cost; 4841 unsigned Width = 1; 4842 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4843 4844 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4845 if (ForceVectorization && MaxVF > 1) { 4846 // Ignore scalar width, because the user explicitly wants vectorization. 4847 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4848 // evaluation. 4849 Cost = std::numeric_limits<float>::max(); 4850 } 4851 4852 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4853 // Notice that the vector loop needs to be executed less times, so 4854 // we need to divide the cost of the vector loops by the width of 4855 // the vector elements. 4856 VectorizationCostTy C = expectedCost(i); 4857 float VectorCost = C.first / (float)i; 4858 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4859 << " costs: " << (int)VectorCost << ".\n"); 4860 if (!C.second && !ForceVectorization) { 4861 LLVM_DEBUG( 4862 dbgs() << "LV: Not considering vector loop of width " << i 4863 << " because it will not generate any vector instructions.\n"); 4864 continue; 4865 } 4866 if (VectorCost < Cost) { 4867 Cost = VectorCost; 4868 Width = i; 4869 } 4870 } 4871 4872 if (!EnableCondStoresVectorization && NumPredStores) { 4873 ORE->emit(createMissedAnalysis("ConditionalStore") 4874 << "store that is conditionally executed prevents vectorization"); 4875 LLVM_DEBUG( 4876 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4877 Width = 1; 4878 Cost = ScalarCost; 4879 } 4880 4881 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4882 << "LV: Vectorization seems to be not beneficial, " 4883 << "but was forced by a user.\n"); 4884 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4885 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4886 return Factor; 4887 } 4888 4889 std::pair<unsigned, unsigned> 4890 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4891 unsigned MinWidth = -1U; 4892 unsigned MaxWidth = 8; 4893 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4894 4895 // For each block. 4896 for (BasicBlock *BB : TheLoop->blocks()) { 4897 // For each instruction in the loop. 4898 for (Instruction &I : BB->instructionsWithoutDebug()) { 4899 Type *T = I.getType(); 4900 4901 // Skip ignored values. 4902 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4903 continue; 4904 4905 // Only examine Loads, Stores and PHINodes. 4906 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4907 continue; 4908 4909 // Examine PHI nodes that are reduction variables. Update the type to 4910 // account for the recurrence type. 4911 if (auto *PN = dyn_cast<PHINode>(&I)) { 4912 if (!Legal->isReductionVariable(PN)) 4913 continue; 4914 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4915 T = RdxDesc.getRecurrenceType(); 4916 } 4917 4918 // Examine the stored values. 4919 if (auto *ST = dyn_cast<StoreInst>(&I)) 4920 T = ST->getValueOperand()->getType(); 4921 4922 // Ignore loaded pointer types and stored pointer types that are not 4923 // vectorizable. 4924 // 4925 // FIXME: The check here attempts to predict whether a load or store will 4926 // be vectorized. We only know this for certain after a VF has 4927 // been selected. Here, we assume that if an access can be 4928 // vectorized, it will be. We should also look at extending this 4929 // optimization to non-pointer types. 4930 // 4931 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4932 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4933 continue; 4934 4935 MinWidth = std::min(MinWidth, 4936 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4937 MaxWidth = std::max(MaxWidth, 4938 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4939 } 4940 } 4941 4942 return {MinWidth, MaxWidth}; 4943 } 4944 4945 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4946 unsigned VF, 4947 unsigned LoopCost) { 4948 // -- The interleave heuristics -- 4949 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4950 // There are many micro-architectural considerations that we can't predict 4951 // at this level. For example, frontend pressure (on decode or fetch) due to 4952 // code size, or the number and capabilities of the execution ports. 4953 // 4954 // We use the following heuristics to select the interleave count: 4955 // 1. If the code has reductions, then we interleave to break the cross 4956 // iteration dependency. 4957 // 2. If the loop is really small, then we interleave to reduce the loop 4958 // overhead. 4959 // 3. We don't interleave if we think that we will spill registers to memory 4960 // due to the increased register pressure. 4961 4962 // When we optimize for size, we don't interleave. 4963 if (OptForSize) 4964 return 1; 4965 4966 // We used the distance for the interleave count. 4967 if (Legal->getMaxSafeDepDistBytes() != -1U) 4968 return 1; 4969 4970 // Do not interleave loops with a relatively small trip count. 4971 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4972 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4973 return 1; 4974 4975 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4976 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4977 << " registers\n"); 4978 4979 if (VF == 1) { 4980 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4981 TargetNumRegisters = ForceTargetNumScalarRegs; 4982 } else { 4983 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4984 TargetNumRegisters = ForceTargetNumVectorRegs; 4985 } 4986 4987 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4988 // We divide by these constants so assume that we have at least one 4989 // instruction that uses at least one register. 4990 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4991 4992 // We calculate the interleave count using the following formula. 4993 // Subtract the number of loop invariants from the number of available 4994 // registers. These registers are used by all of the interleaved instances. 4995 // Next, divide the remaining registers by the number of registers that is 4996 // required by the loop, in order to estimate how many parallel instances 4997 // fit without causing spills. All of this is rounded down if necessary to be 4998 // a power of two. We want power of two interleave count to simplify any 4999 // addressing operations or alignment considerations. 5000 // We also want power of two interleave counts to ensure that the induction 5001 // variable of the vector loop wraps to zero, when tail is folded by masking; 5002 // this currently happens when OptForSize, in which case IC is set to 1 above. 5003 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5004 R.MaxLocalUsers); 5005 5006 // Don't count the induction variable as interleaved. 5007 if (EnableIndVarRegisterHeur) 5008 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5009 std::max(1U, (R.MaxLocalUsers - 1))); 5010 5011 // Clamp the interleave ranges to reasonable counts. 5012 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5013 5014 // Check if the user has overridden the max. 5015 if (VF == 1) { 5016 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5017 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5018 } else { 5019 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5020 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5021 } 5022 5023 // If we did not calculate the cost for VF (because the user selected the VF) 5024 // then we calculate the cost of VF here. 5025 if (LoopCost == 0) 5026 LoopCost = expectedCost(VF).first; 5027 5028 // Clamp the calculated IC to be between the 1 and the max interleave count 5029 // that the target allows. 5030 if (IC > MaxInterleaveCount) 5031 IC = MaxInterleaveCount; 5032 else if (IC < 1) 5033 IC = 1; 5034 5035 // Interleave if we vectorized this loop and there is a reduction that could 5036 // benefit from interleaving. 5037 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5038 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5039 return IC; 5040 } 5041 5042 // Note that if we've already vectorized the loop we will have done the 5043 // runtime check and so interleaving won't require further checks. 5044 bool InterleavingRequiresRuntimePointerCheck = 5045 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5046 5047 // We want to interleave small loops in order to reduce the loop overhead and 5048 // potentially expose ILP opportunities. 5049 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5050 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5051 // We assume that the cost overhead is 1 and we use the cost model 5052 // to estimate the cost of the loop and interleave until the cost of the 5053 // loop overhead is about 5% of the cost of the loop. 5054 unsigned SmallIC = 5055 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5056 5057 // Interleave until store/load ports (estimated by max interleave count) are 5058 // saturated. 5059 unsigned NumStores = Legal->getNumStores(); 5060 unsigned NumLoads = Legal->getNumLoads(); 5061 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5062 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5063 5064 // If we have a scalar reduction (vector reductions are already dealt with 5065 // by this point), we can increase the critical path length if the loop 5066 // we're interleaving is inside another loop. Limit, by default to 2, so the 5067 // critical path only gets increased by one reduction operation. 5068 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5069 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5070 SmallIC = std::min(SmallIC, F); 5071 StoresIC = std::min(StoresIC, F); 5072 LoadsIC = std::min(LoadsIC, F); 5073 } 5074 5075 if (EnableLoadStoreRuntimeInterleave && 5076 std::max(StoresIC, LoadsIC) > SmallIC) { 5077 LLVM_DEBUG( 5078 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5079 return std::max(StoresIC, LoadsIC); 5080 } 5081 5082 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5083 return SmallIC; 5084 } 5085 5086 // Interleave if this is a large loop (small loops are already dealt with by 5087 // this point) that could benefit from interleaving. 5088 bool HasReductions = !Legal->getReductionVars()->empty(); 5089 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5090 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5091 return IC; 5092 } 5093 5094 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5095 return 1; 5096 } 5097 5098 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5099 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5100 // This function calculates the register usage by measuring the highest number 5101 // of values that are alive at a single location. Obviously, this is a very 5102 // rough estimation. We scan the loop in a topological order in order and 5103 // assign a number to each instruction. We use RPO to ensure that defs are 5104 // met before their users. We assume that each instruction that has in-loop 5105 // users starts an interval. We record every time that an in-loop value is 5106 // used, so we have a list of the first and last occurrences of each 5107 // instruction. Next, we transpose this data structure into a multi map that 5108 // holds the list of intervals that *end* at a specific location. This multi 5109 // map allows us to perform a linear search. We scan the instructions linearly 5110 // and record each time that a new interval starts, by placing it in a set. 5111 // If we find this value in the multi-map then we remove it from the set. 5112 // The max register usage is the maximum size of the set. 5113 // We also search for instructions that are defined outside the loop, but are 5114 // used inside the loop. We need this number separately from the max-interval 5115 // usage number because when we unroll, loop-invariant values do not take 5116 // more register. 5117 LoopBlocksDFS DFS(TheLoop); 5118 DFS.perform(LI); 5119 5120 RegisterUsage RU; 5121 5122 // Each 'key' in the map opens a new interval. The values 5123 // of the map are the index of the 'last seen' usage of the 5124 // instruction that is the key. 5125 using IntervalMap = DenseMap<Instruction *, unsigned>; 5126 5127 // Maps instruction to its index. 5128 SmallVector<Instruction *, 64> IdxToInstr; 5129 // Marks the end of each interval. 5130 IntervalMap EndPoint; 5131 // Saves the list of instruction indices that are used in the loop. 5132 SmallPtrSet<Instruction *, 8> Ends; 5133 // Saves the list of values that are used in the loop but are 5134 // defined outside the loop, such as arguments and constants. 5135 SmallPtrSet<Value *, 8> LoopInvariants; 5136 5137 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5138 for (Instruction &I : BB->instructionsWithoutDebug()) { 5139 IdxToInstr.push_back(&I); 5140 5141 // Save the end location of each USE. 5142 for (Value *U : I.operands()) { 5143 auto *Instr = dyn_cast<Instruction>(U); 5144 5145 // Ignore non-instruction values such as arguments, constants, etc. 5146 if (!Instr) 5147 continue; 5148 5149 // If this instruction is outside the loop then record it and continue. 5150 if (!TheLoop->contains(Instr)) { 5151 LoopInvariants.insert(Instr); 5152 continue; 5153 } 5154 5155 // Overwrite previous end points. 5156 EndPoint[Instr] = IdxToInstr.size(); 5157 Ends.insert(Instr); 5158 } 5159 } 5160 } 5161 5162 // Saves the list of intervals that end with the index in 'key'. 5163 using InstrList = SmallVector<Instruction *, 2>; 5164 DenseMap<unsigned, InstrList> TransposeEnds; 5165 5166 // Transpose the EndPoints to a list of values that end at each index. 5167 for (auto &Interval : EndPoint) 5168 TransposeEnds[Interval.second].push_back(Interval.first); 5169 5170 SmallPtrSet<Instruction *, 8> OpenIntervals; 5171 5172 // Get the size of the widest register. 5173 unsigned MaxSafeDepDist = -1U; 5174 if (Legal->getMaxSafeDepDistBytes() != -1U) 5175 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5176 unsigned WidestRegister = 5177 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5178 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5179 5180 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5181 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5182 5183 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5184 5185 // A lambda that gets the register usage for the given type and VF. 5186 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5187 if (Ty->isTokenTy()) 5188 return 0U; 5189 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5190 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5191 }; 5192 5193 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5194 Instruction *I = IdxToInstr[i]; 5195 5196 // Remove all of the instructions that end at this location. 5197 InstrList &List = TransposeEnds[i]; 5198 for (Instruction *ToRemove : List) 5199 OpenIntervals.erase(ToRemove); 5200 5201 // Ignore instructions that are never used within the loop. 5202 if (Ends.find(I) == Ends.end()) 5203 continue; 5204 5205 // Skip ignored values. 5206 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5207 continue; 5208 5209 // For each VF find the maximum usage of registers. 5210 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5211 if (VFs[j] == 1) { 5212 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5213 continue; 5214 } 5215 collectUniformsAndScalars(VFs[j]); 5216 // Count the number of live intervals. 5217 unsigned RegUsage = 0; 5218 for (auto Inst : OpenIntervals) { 5219 // Skip ignored values for VF > 1. 5220 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5221 isScalarAfterVectorization(Inst, VFs[j])) 5222 continue; 5223 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5224 } 5225 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5226 } 5227 5228 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5229 << OpenIntervals.size() << '\n'); 5230 5231 // Add the current instruction to the list of open intervals. 5232 OpenIntervals.insert(I); 5233 } 5234 5235 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5236 unsigned Invariant = 0; 5237 if (VFs[i] == 1) 5238 Invariant = LoopInvariants.size(); 5239 else { 5240 for (auto Inst : LoopInvariants) 5241 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5242 } 5243 5244 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5245 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5246 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5247 << '\n'); 5248 5249 RU.LoopInvariantRegs = Invariant; 5250 RU.MaxLocalUsers = MaxUsages[i]; 5251 RUs[i] = RU; 5252 } 5253 5254 return RUs; 5255 } 5256 5257 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5258 // TODO: Cost model for emulated masked load/store is completely 5259 // broken. This hack guides the cost model to use an artificially 5260 // high enough value to practically disable vectorization with such 5261 // operations, except where previously deployed legality hack allowed 5262 // using very low cost values. This is to avoid regressions coming simply 5263 // from moving "masked load/store" check from legality to cost model. 5264 // Masked Load/Gather emulation was previously never allowed. 5265 // Limited number of Masked Store/Scatter emulation was allowed. 5266 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5267 return isa<LoadInst>(I) || 5268 (isa<StoreInst>(I) && 5269 NumPredStores > NumberOfStoresToPredicate); 5270 } 5271 5272 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5273 // If we aren't vectorizing the loop, or if we've already collected the 5274 // instructions to scalarize, there's nothing to do. Collection may already 5275 // have occurred if we have a user-selected VF and are now computing the 5276 // expected cost for interleaving. 5277 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5278 return; 5279 5280 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5281 // not profitable to scalarize any instructions, the presence of VF in the 5282 // map will indicate that we've analyzed it already. 5283 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5284 5285 // Find all the instructions that are scalar with predication in the loop and 5286 // determine if it would be better to not if-convert the blocks they are in. 5287 // If so, we also record the instructions to scalarize. 5288 for (BasicBlock *BB : TheLoop->blocks()) { 5289 if (!blockNeedsPredication(BB)) 5290 continue; 5291 for (Instruction &I : *BB) 5292 if (isScalarWithPredication(&I)) { 5293 ScalarCostsTy ScalarCosts; 5294 // Do not apply discount logic if hacked cost is needed 5295 // for emulated masked memrefs. 5296 if (!useEmulatedMaskMemRefHack(&I) && 5297 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5298 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5299 // Remember that BB will remain after vectorization. 5300 PredicatedBBsAfterVectorization.insert(BB); 5301 } 5302 } 5303 } 5304 5305 int LoopVectorizationCostModel::computePredInstDiscount( 5306 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5307 unsigned VF) { 5308 assert(!isUniformAfterVectorization(PredInst, VF) && 5309 "Instruction marked uniform-after-vectorization will be predicated"); 5310 5311 // Initialize the discount to zero, meaning that the scalar version and the 5312 // vector version cost the same. 5313 int Discount = 0; 5314 5315 // Holds instructions to analyze. The instructions we visit are mapped in 5316 // ScalarCosts. Those instructions are the ones that would be scalarized if 5317 // we find that the scalar version costs less. 5318 SmallVector<Instruction *, 8> Worklist; 5319 5320 // Returns true if the given instruction can be scalarized. 5321 auto canBeScalarized = [&](Instruction *I) -> bool { 5322 // We only attempt to scalarize instructions forming a single-use chain 5323 // from the original predicated block that would otherwise be vectorized. 5324 // Although not strictly necessary, we give up on instructions we know will 5325 // already be scalar to avoid traversing chains that are unlikely to be 5326 // beneficial. 5327 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5328 isScalarAfterVectorization(I, VF)) 5329 return false; 5330 5331 // If the instruction is scalar with predication, it will be analyzed 5332 // separately. We ignore it within the context of PredInst. 5333 if (isScalarWithPredication(I)) 5334 return false; 5335 5336 // If any of the instruction's operands are uniform after vectorization, 5337 // the instruction cannot be scalarized. This prevents, for example, a 5338 // masked load from being scalarized. 5339 // 5340 // We assume we will only emit a value for lane zero of an instruction 5341 // marked uniform after vectorization, rather than VF identical values. 5342 // Thus, if we scalarize an instruction that uses a uniform, we would 5343 // create uses of values corresponding to the lanes we aren't emitting code 5344 // for. This behavior can be changed by allowing getScalarValue to clone 5345 // the lane zero values for uniforms rather than asserting. 5346 for (Use &U : I->operands()) 5347 if (auto *J = dyn_cast<Instruction>(U.get())) 5348 if (isUniformAfterVectorization(J, VF)) 5349 return false; 5350 5351 // Otherwise, we can scalarize the instruction. 5352 return true; 5353 }; 5354 5355 // Returns true if an operand that cannot be scalarized must be extracted 5356 // from a vector. We will account for this scalarization overhead below. Note 5357 // that the non-void predicated instructions are placed in their own blocks, 5358 // and their return values are inserted into vectors. Thus, an extract would 5359 // still be required. 5360 auto needsExtract = [&](Instruction *I) -> bool { 5361 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5362 }; 5363 5364 // Compute the expected cost discount from scalarizing the entire expression 5365 // feeding the predicated instruction. We currently only consider expressions 5366 // that are single-use instruction chains. 5367 Worklist.push_back(PredInst); 5368 while (!Worklist.empty()) { 5369 Instruction *I = Worklist.pop_back_val(); 5370 5371 // If we've already analyzed the instruction, there's nothing to do. 5372 if (ScalarCosts.find(I) != ScalarCosts.end()) 5373 continue; 5374 5375 // Compute the cost of the vector instruction. Note that this cost already 5376 // includes the scalarization overhead of the predicated instruction. 5377 unsigned VectorCost = getInstructionCost(I, VF).first; 5378 5379 // Compute the cost of the scalarized instruction. This cost is the cost of 5380 // the instruction as if it wasn't if-converted and instead remained in the 5381 // predicated block. We will scale this cost by block probability after 5382 // computing the scalarization overhead. 5383 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5384 5385 // Compute the scalarization overhead of needed insertelement instructions 5386 // and phi nodes. 5387 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5388 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5389 true, false); 5390 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5391 } 5392 5393 // Compute the scalarization overhead of needed extractelement 5394 // instructions. For each of the instruction's operands, if the operand can 5395 // be scalarized, add it to the worklist; otherwise, account for the 5396 // overhead. 5397 for (Use &U : I->operands()) 5398 if (auto *J = dyn_cast<Instruction>(U.get())) { 5399 assert(VectorType::isValidElementType(J->getType()) && 5400 "Instruction has non-scalar type"); 5401 if (canBeScalarized(J)) 5402 Worklist.push_back(J); 5403 else if (needsExtract(J)) 5404 ScalarCost += TTI.getScalarizationOverhead( 5405 ToVectorTy(J->getType(),VF), false, true); 5406 } 5407 5408 // Scale the total scalar cost by block probability. 5409 ScalarCost /= getReciprocalPredBlockProb(); 5410 5411 // Compute the discount. A non-negative discount means the vector version 5412 // of the instruction costs more, and scalarizing would be beneficial. 5413 Discount += VectorCost - ScalarCost; 5414 ScalarCosts[I] = ScalarCost; 5415 } 5416 5417 return Discount; 5418 } 5419 5420 LoopVectorizationCostModel::VectorizationCostTy 5421 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5422 VectorizationCostTy Cost; 5423 5424 // For each block. 5425 for (BasicBlock *BB : TheLoop->blocks()) { 5426 VectorizationCostTy BlockCost; 5427 5428 // For each instruction in the old loop. 5429 for (Instruction &I : BB->instructionsWithoutDebug()) { 5430 // Skip ignored values. 5431 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5432 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5433 continue; 5434 5435 VectorizationCostTy C = getInstructionCost(&I, VF); 5436 5437 // Check if we should override the cost. 5438 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5439 C.first = ForceTargetInstructionCost; 5440 5441 BlockCost.first += C.first; 5442 BlockCost.second |= C.second; 5443 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5444 << " for VF " << VF << " For instruction: " << I 5445 << '\n'); 5446 } 5447 5448 // If we are vectorizing a predicated block, it will have been 5449 // if-converted. This means that the block's instructions (aside from 5450 // stores and instructions that may divide by zero) will now be 5451 // unconditionally executed. For the scalar case, we may not always execute 5452 // the predicated block. Thus, scale the block's cost by the probability of 5453 // executing it. 5454 if (VF == 1 && blockNeedsPredication(BB)) 5455 BlockCost.first /= getReciprocalPredBlockProb(); 5456 5457 Cost.first += BlockCost.first; 5458 Cost.second |= BlockCost.second; 5459 } 5460 5461 return Cost; 5462 } 5463 5464 /// Gets Address Access SCEV after verifying that the access pattern 5465 /// is loop invariant except the induction variable dependence. 5466 /// 5467 /// This SCEV can be sent to the Target in order to estimate the address 5468 /// calculation cost. 5469 static const SCEV *getAddressAccessSCEV( 5470 Value *Ptr, 5471 LoopVectorizationLegality *Legal, 5472 PredicatedScalarEvolution &PSE, 5473 const Loop *TheLoop) { 5474 5475 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5476 if (!Gep) 5477 return nullptr; 5478 5479 // We are looking for a gep with all loop invariant indices except for one 5480 // which should be an induction variable. 5481 auto SE = PSE.getSE(); 5482 unsigned NumOperands = Gep->getNumOperands(); 5483 for (unsigned i = 1; i < NumOperands; ++i) { 5484 Value *Opd = Gep->getOperand(i); 5485 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5486 !Legal->isInductionVariable(Opd)) 5487 return nullptr; 5488 } 5489 5490 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5491 return PSE.getSCEV(Ptr); 5492 } 5493 5494 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5495 return Legal->hasStride(I->getOperand(0)) || 5496 Legal->hasStride(I->getOperand(1)); 5497 } 5498 5499 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5500 unsigned VF) { 5501 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5502 Type *ValTy = getMemInstValueType(I); 5503 auto SE = PSE.getSE(); 5504 5505 unsigned Alignment = getLoadStoreAlignment(I); 5506 unsigned AS = getLoadStoreAddressSpace(I); 5507 Value *Ptr = getLoadStorePointerOperand(I); 5508 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5509 5510 // Figure out whether the access is strided and get the stride value 5511 // if it's known in compile time 5512 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5513 5514 // Get the cost of the scalar memory instruction and address computation. 5515 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5516 5517 // Don't pass *I here, since it is scalar but will actually be part of a 5518 // vectorized loop where the user of it is a vectorized instruction. 5519 Cost += VF * 5520 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5521 AS); 5522 5523 // Get the overhead of the extractelement and insertelement instructions 5524 // we might create due to scalarization. 5525 Cost += getScalarizationOverhead(I, VF, TTI); 5526 5527 // If we have a predicated store, it may not be executed for each vector 5528 // lane. Scale the cost by the probability of executing the predicated 5529 // block. 5530 if (isPredicatedInst(I)) { 5531 Cost /= getReciprocalPredBlockProb(); 5532 5533 if (useEmulatedMaskMemRefHack(I)) 5534 // Artificially setting to a high enough value to practically disable 5535 // vectorization with such operations. 5536 Cost = 3000000; 5537 } 5538 5539 return Cost; 5540 } 5541 5542 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5543 unsigned VF) { 5544 Type *ValTy = getMemInstValueType(I); 5545 Type *VectorTy = ToVectorTy(ValTy, VF); 5546 unsigned Alignment = getLoadStoreAlignment(I); 5547 Value *Ptr = getLoadStorePointerOperand(I); 5548 unsigned AS = getLoadStoreAddressSpace(I); 5549 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5550 5551 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5552 "Stride should be 1 or -1 for consecutive memory access"); 5553 unsigned Cost = 0; 5554 if (Legal->isMaskRequired(I)) 5555 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5556 else 5557 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5558 5559 bool Reverse = ConsecutiveStride < 0; 5560 if (Reverse) 5561 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5562 return Cost; 5563 } 5564 5565 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5566 unsigned VF) { 5567 Type *ValTy = getMemInstValueType(I); 5568 Type *VectorTy = ToVectorTy(ValTy, VF); 5569 unsigned Alignment = getLoadStoreAlignment(I); 5570 unsigned AS = getLoadStoreAddressSpace(I); 5571 if (isa<LoadInst>(I)) { 5572 return TTI.getAddressComputationCost(ValTy) + 5573 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5574 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5575 } 5576 StoreInst *SI = cast<StoreInst>(I); 5577 5578 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5579 return TTI.getAddressComputationCost(ValTy) + 5580 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5581 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5582 Instruction::ExtractElement, 5583 VectorTy, VF - 1)); 5584 } 5585 5586 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5587 unsigned VF) { 5588 Type *ValTy = getMemInstValueType(I); 5589 Type *VectorTy = ToVectorTy(ValTy, VF); 5590 unsigned Alignment = getLoadStoreAlignment(I); 5591 Value *Ptr = getLoadStorePointerOperand(I); 5592 5593 return TTI.getAddressComputationCost(VectorTy) + 5594 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5595 Legal->isMaskRequired(I), Alignment); 5596 } 5597 5598 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5599 unsigned VF) { 5600 Type *ValTy = getMemInstValueType(I); 5601 Type *VectorTy = ToVectorTy(ValTy, VF); 5602 unsigned AS = getLoadStoreAddressSpace(I); 5603 5604 auto Group = getInterleavedAccessGroup(I); 5605 assert(Group && "Fail to get an interleaved access group."); 5606 5607 unsigned InterleaveFactor = Group->getFactor(); 5608 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5609 5610 // Holds the indices of existing members in an interleaved load group. 5611 // An interleaved store group doesn't need this as it doesn't allow gaps. 5612 SmallVector<unsigned, 4> Indices; 5613 if (isa<LoadInst>(I)) { 5614 for (unsigned i = 0; i < InterleaveFactor; i++) 5615 if (Group->getMember(i)) 5616 Indices.push_back(i); 5617 } 5618 5619 // Calculate the cost of the whole interleaved group. 5620 bool UseMaskForGaps = 5621 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5622 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5623 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5624 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5625 5626 if (Group->isReverse()) { 5627 // TODO: Add support for reversed masked interleaved access. 5628 assert(!Legal->isMaskRequired(I) && 5629 "Reverse masked interleaved access not supported."); 5630 Cost += Group->getNumMembers() * 5631 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5632 } 5633 return Cost; 5634 } 5635 5636 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5637 unsigned VF) { 5638 // Calculate scalar cost only. Vectorization cost should be ready at this 5639 // moment. 5640 if (VF == 1) { 5641 Type *ValTy = getMemInstValueType(I); 5642 unsigned Alignment = getLoadStoreAlignment(I); 5643 unsigned AS = getLoadStoreAddressSpace(I); 5644 5645 return TTI.getAddressComputationCost(ValTy) + 5646 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5647 } 5648 return getWideningCost(I, VF); 5649 } 5650 5651 LoopVectorizationCostModel::VectorizationCostTy 5652 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5653 // If we know that this instruction will remain uniform, check the cost of 5654 // the scalar version. 5655 if (isUniformAfterVectorization(I, VF)) 5656 VF = 1; 5657 5658 if (VF > 1 && isProfitableToScalarize(I, VF)) 5659 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5660 5661 // Forced scalars do not have any scalarization overhead. 5662 auto ForcedScalar = ForcedScalars.find(VF); 5663 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5664 auto InstSet = ForcedScalar->second; 5665 if (InstSet.find(I) != InstSet.end()) 5666 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5667 } 5668 5669 Type *VectorTy; 5670 unsigned C = getInstructionCost(I, VF, VectorTy); 5671 5672 bool TypeNotScalarized = 5673 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5674 return VectorizationCostTy(C, TypeNotScalarized); 5675 } 5676 5677 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5678 if (VF == 1) 5679 return; 5680 NumPredStores = 0; 5681 for (BasicBlock *BB : TheLoop->blocks()) { 5682 // For each instruction in the old loop. 5683 for (Instruction &I : *BB) { 5684 Value *Ptr = getLoadStorePointerOperand(&I); 5685 if (!Ptr) 5686 continue; 5687 5688 // TODO: We should generate better code and update the cost model for 5689 // predicated uniform stores. Today they are treated as any other 5690 // predicated store (see added test cases in 5691 // invariant-store-vectorization.ll). 5692 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5693 NumPredStores++; 5694 5695 if (Legal->isUniform(Ptr) && 5696 // Conditional loads and stores should be scalarized and predicated. 5697 // isScalarWithPredication cannot be used here since masked 5698 // gather/scatters are not considered scalar with predication. 5699 !Legal->blockNeedsPredication(I.getParent())) { 5700 // TODO: Avoid replicating loads and stores instead of 5701 // relying on instcombine to remove them. 5702 // Load: Scalar load + broadcast 5703 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5704 unsigned Cost = getUniformMemOpCost(&I, VF); 5705 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5706 continue; 5707 } 5708 5709 // We assume that widening is the best solution when possible. 5710 if (memoryInstructionCanBeWidened(&I, VF)) { 5711 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5712 int ConsecutiveStride = 5713 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5714 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5715 "Expected consecutive stride."); 5716 InstWidening Decision = 5717 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5718 setWideningDecision(&I, VF, Decision, Cost); 5719 continue; 5720 } 5721 5722 // Choose between Interleaving, Gather/Scatter or Scalarization. 5723 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5724 unsigned NumAccesses = 1; 5725 if (isAccessInterleaved(&I)) { 5726 auto Group = getInterleavedAccessGroup(&I); 5727 assert(Group && "Fail to get an interleaved access group."); 5728 5729 // Make one decision for the whole group. 5730 if (getWideningDecision(&I, VF) != CM_Unknown) 5731 continue; 5732 5733 NumAccesses = Group->getNumMembers(); 5734 if (interleavedAccessCanBeWidened(&I, VF)) 5735 InterleaveCost = getInterleaveGroupCost(&I, VF); 5736 } 5737 5738 unsigned GatherScatterCost = 5739 isLegalGatherOrScatter(&I) 5740 ? getGatherScatterCost(&I, VF) * NumAccesses 5741 : std::numeric_limits<unsigned>::max(); 5742 5743 unsigned ScalarizationCost = 5744 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5745 5746 // Choose better solution for the current VF, 5747 // write down this decision and use it during vectorization. 5748 unsigned Cost; 5749 InstWidening Decision; 5750 if (InterleaveCost <= GatherScatterCost && 5751 InterleaveCost < ScalarizationCost) { 5752 Decision = CM_Interleave; 5753 Cost = InterleaveCost; 5754 } else if (GatherScatterCost < ScalarizationCost) { 5755 Decision = CM_GatherScatter; 5756 Cost = GatherScatterCost; 5757 } else { 5758 Decision = CM_Scalarize; 5759 Cost = ScalarizationCost; 5760 } 5761 // If the instructions belongs to an interleave group, the whole group 5762 // receives the same decision. The whole group receives the cost, but 5763 // the cost will actually be assigned to one instruction. 5764 if (auto Group = getInterleavedAccessGroup(&I)) 5765 setWideningDecision(Group, VF, Decision, Cost); 5766 else 5767 setWideningDecision(&I, VF, Decision, Cost); 5768 } 5769 } 5770 5771 // Make sure that any load of address and any other address computation 5772 // remains scalar unless there is gather/scatter support. This avoids 5773 // inevitable extracts into address registers, and also has the benefit of 5774 // activating LSR more, since that pass can't optimize vectorized 5775 // addresses. 5776 if (TTI.prefersVectorizedAddressing()) 5777 return; 5778 5779 // Start with all scalar pointer uses. 5780 SmallPtrSet<Instruction *, 8> AddrDefs; 5781 for (BasicBlock *BB : TheLoop->blocks()) 5782 for (Instruction &I : *BB) { 5783 Instruction *PtrDef = 5784 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5785 if (PtrDef && TheLoop->contains(PtrDef) && 5786 getWideningDecision(&I, VF) != CM_GatherScatter) 5787 AddrDefs.insert(PtrDef); 5788 } 5789 5790 // Add all instructions used to generate the addresses. 5791 SmallVector<Instruction *, 4> Worklist; 5792 for (auto *I : AddrDefs) 5793 Worklist.push_back(I); 5794 while (!Worklist.empty()) { 5795 Instruction *I = Worklist.pop_back_val(); 5796 for (auto &Op : I->operands()) 5797 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5798 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5799 AddrDefs.insert(InstOp).second) 5800 Worklist.push_back(InstOp); 5801 } 5802 5803 for (auto *I : AddrDefs) { 5804 if (isa<LoadInst>(I)) { 5805 // Setting the desired widening decision should ideally be handled in 5806 // by cost functions, but since this involves the task of finding out 5807 // if the loaded register is involved in an address computation, it is 5808 // instead changed here when we know this is the case. 5809 InstWidening Decision = getWideningDecision(I, VF); 5810 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5811 // Scalarize a widened load of address. 5812 setWideningDecision(I, VF, CM_Scalarize, 5813 (VF * getMemoryInstructionCost(I, 1))); 5814 else if (auto Group = getInterleavedAccessGroup(I)) { 5815 // Scalarize an interleave group of address loads. 5816 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5817 if (Instruction *Member = Group->getMember(I)) 5818 setWideningDecision(Member, VF, CM_Scalarize, 5819 (VF * getMemoryInstructionCost(Member, 1))); 5820 } 5821 } 5822 } else 5823 // Make sure I gets scalarized and a cost estimate without 5824 // scalarization overhead. 5825 ForcedScalars[VF].insert(I); 5826 } 5827 } 5828 5829 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5830 unsigned VF, 5831 Type *&VectorTy) { 5832 Type *RetTy = I->getType(); 5833 if (canTruncateToMinimalBitwidth(I, VF)) 5834 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5835 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5836 auto SE = PSE.getSE(); 5837 5838 // TODO: We need to estimate the cost of intrinsic calls. 5839 switch (I->getOpcode()) { 5840 case Instruction::GetElementPtr: 5841 // We mark this instruction as zero-cost because the cost of GEPs in 5842 // vectorized code depends on whether the corresponding memory instruction 5843 // is scalarized or not. Therefore, we handle GEPs with the memory 5844 // instruction cost. 5845 return 0; 5846 case Instruction::Br: { 5847 // In cases of scalarized and predicated instructions, there will be VF 5848 // predicated blocks in the vectorized loop. Each branch around these 5849 // blocks requires also an extract of its vector compare i1 element. 5850 bool ScalarPredicatedBB = false; 5851 BranchInst *BI = cast<BranchInst>(I); 5852 if (VF > 1 && BI->isConditional() && 5853 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5854 PredicatedBBsAfterVectorization.end() || 5855 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5856 PredicatedBBsAfterVectorization.end())) 5857 ScalarPredicatedBB = true; 5858 5859 if (ScalarPredicatedBB) { 5860 // Return cost for branches around scalarized and predicated blocks. 5861 Type *Vec_i1Ty = 5862 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5863 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5864 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5865 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5866 // The back-edge branch will remain, as will all scalar branches. 5867 return TTI.getCFInstrCost(Instruction::Br); 5868 else 5869 // This branch will be eliminated by if-conversion. 5870 return 0; 5871 // Note: We currently assume zero cost for an unconditional branch inside 5872 // a predicated block since it will become a fall-through, although we 5873 // may decide in the future to call TTI for all branches. 5874 } 5875 case Instruction::PHI: { 5876 auto *Phi = cast<PHINode>(I); 5877 5878 // First-order recurrences are replaced by vector shuffles inside the loop. 5879 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5880 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5881 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5882 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5883 5884 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5885 // converted into select instructions. We require N - 1 selects per phi 5886 // node, where N is the number of incoming values. 5887 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5888 return (Phi->getNumIncomingValues() - 1) * 5889 TTI.getCmpSelInstrCost( 5890 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5891 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5892 5893 return TTI.getCFInstrCost(Instruction::PHI); 5894 } 5895 case Instruction::UDiv: 5896 case Instruction::SDiv: 5897 case Instruction::URem: 5898 case Instruction::SRem: 5899 // If we have a predicated instruction, it may not be executed for each 5900 // vector lane. Get the scalarization cost and scale this amount by the 5901 // probability of executing the predicated block. If the instruction is not 5902 // predicated, we fall through to the next case. 5903 if (VF > 1 && isScalarWithPredication(I)) { 5904 unsigned Cost = 0; 5905 5906 // These instructions have a non-void type, so account for the phi nodes 5907 // that we will create. This cost is likely to be zero. The phi node 5908 // cost, if any, should be scaled by the block probability because it 5909 // models a copy at the end of each predicated block. 5910 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5911 5912 // The cost of the non-predicated instruction. 5913 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5914 5915 // The cost of insertelement and extractelement instructions needed for 5916 // scalarization. 5917 Cost += getScalarizationOverhead(I, VF, TTI); 5918 5919 // Scale the cost by the probability of executing the predicated blocks. 5920 // This assumes the predicated block for each vector lane is equally 5921 // likely. 5922 return Cost / getReciprocalPredBlockProb(); 5923 } 5924 LLVM_FALLTHROUGH; 5925 case Instruction::Add: 5926 case Instruction::FAdd: 5927 case Instruction::Sub: 5928 case Instruction::FSub: 5929 case Instruction::Mul: 5930 case Instruction::FMul: 5931 case Instruction::FDiv: 5932 case Instruction::FRem: 5933 case Instruction::Shl: 5934 case Instruction::LShr: 5935 case Instruction::AShr: 5936 case Instruction::And: 5937 case Instruction::Or: 5938 case Instruction::Xor: { 5939 // Since we will replace the stride by 1 the multiplication should go away. 5940 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5941 return 0; 5942 // Certain instructions can be cheaper to vectorize if they have a constant 5943 // second vector operand. One example of this are shifts on x86. 5944 Value *Op2 = I->getOperand(1); 5945 TargetTransformInfo::OperandValueProperties Op2VP; 5946 TargetTransformInfo::OperandValueKind Op2VK = 5947 TTI.getOperandInfo(Op2, Op2VP); 5948 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5949 Op2VK = TargetTransformInfo::OK_UniformValue; 5950 5951 SmallVector<const Value *, 4> Operands(I->operand_values()); 5952 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5953 return N * TTI.getArithmeticInstrCost( 5954 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5955 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5956 } 5957 case Instruction::Select: { 5958 SelectInst *SI = cast<SelectInst>(I); 5959 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5960 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5961 Type *CondTy = SI->getCondition()->getType(); 5962 if (!ScalarCond) 5963 CondTy = VectorType::get(CondTy, VF); 5964 5965 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5966 } 5967 case Instruction::ICmp: 5968 case Instruction::FCmp: { 5969 Type *ValTy = I->getOperand(0)->getType(); 5970 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5971 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5972 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5973 VectorTy = ToVectorTy(ValTy, VF); 5974 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5975 } 5976 case Instruction::Store: 5977 case Instruction::Load: { 5978 unsigned Width = VF; 5979 if (Width > 1) { 5980 InstWidening Decision = getWideningDecision(I, Width); 5981 assert(Decision != CM_Unknown && 5982 "CM decision should be taken at this point"); 5983 if (Decision == CM_Scalarize) 5984 Width = 1; 5985 } 5986 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5987 return getMemoryInstructionCost(I, VF); 5988 } 5989 case Instruction::ZExt: 5990 case Instruction::SExt: 5991 case Instruction::FPToUI: 5992 case Instruction::FPToSI: 5993 case Instruction::FPExt: 5994 case Instruction::PtrToInt: 5995 case Instruction::IntToPtr: 5996 case Instruction::SIToFP: 5997 case Instruction::UIToFP: 5998 case Instruction::Trunc: 5999 case Instruction::FPTrunc: 6000 case Instruction::BitCast: { 6001 // We optimize the truncation of induction variables having constant 6002 // integer steps. The cost of these truncations is the same as the scalar 6003 // operation. 6004 if (isOptimizableIVTruncate(I, VF)) { 6005 auto *Trunc = cast<TruncInst>(I); 6006 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6007 Trunc->getSrcTy(), Trunc); 6008 } 6009 6010 Type *SrcScalarTy = I->getOperand(0)->getType(); 6011 Type *SrcVecTy = 6012 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6013 if (canTruncateToMinimalBitwidth(I, VF)) { 6014 // This cast is going to be shrunk. This may remove the cast or it might 6015 // turn it into slightly different cast. For example, if MinBW == 16, 6016 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6017 // 6018 // Calculate the modified src and dest types. 6019 Type *MinVecTy = VectorTy; 6020 if (I->getOpcode() == Instruction::Trunc) { 6021 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6022 VectorTy = 6023 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6024 } else if (I->getOpcode() == Instruction::ZExt || 6025 I->getOpcode() == Instruction::SExt) { 6026 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6027 VectorTy = 6028 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6029 } 6030 } 6031 6032 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6033 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6034 } 6035 case Instruction::Call: { 6036 bool NeedToScalarize; 6037 CallInst *CI = cast<CallInst>(I); 6038 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6039 if (getVectorIntrinsicIDForCall(CI, TLI)) 6040 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6041 return CallCost; 6042 } 6043 default: 6044 // The cost of executing VF copies of the scalar instruction. This opcode 6045 // is unknown. Assume that it is the same as 'mul'. 6046 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6047 getScalarizationOverhead(I, VF, TTI); 6048 } // end of switch. 6049 } 6050 6051 char LoopVectorize::ID = 0; 6052 6053 static const char lv_name[] = "Loop Vectorization"; 6054 6055 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6056 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6057 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6058 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6059 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6060 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6061 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6063 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6064 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6065 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6066 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6067 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6068 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6069 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6070 6071 namespace llvm { 6072 6073 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6074 6075 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6076 bool VectorizeOnlyWhenForced) { 6077 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6078 } 6079 6080 } // end namespace llvm 6081 6082 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6083 // Check if the pointer operand of a load or store instruction is 6084 // consecutive. 6085 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6086 return Legal->isConsecutivePtr(Ptr); 6087 return false; 6088 } 6089 6090 void LoopVectorizationCostModel::collectValuesToIgnore() { 6091 // Ignore ephemeral values. 6092 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6093 6094 // Ignore type-promoting instructions we identified during reduction 6095 // detection. 6096 for (auto &Reduction : *Legal->getReductionVars()) { 6097 RecurrenceDescriptor &RedDes = Reduction.second; 6098 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6099 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6100 } 6101 // Ignore type-casting instructions we identified during induction 6102 // detection. 6103 for (auto &Induction : *Legal->getInductionVars()) { 6104 InductionDescriptor &IndDes = Induction.second; 6105 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6106 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6107 } 6108 } 6109 6110 // TODO: we could return a pair of values that specify the max VF and 6111 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6112 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6113 // doesn't have a cost model that can choose which plan to execute if 6114 // more than one is generated. 6115 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6116 LoopVectorizationCostModel &CM) { 6117 unsigned WidestType; 6118 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6119 return WidestVectorRegBits / WidestType; 6120 } 6121 6122 VectorizationFactor 6123 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6124 unsigned UserVF) { 6125 unsigned VF = UserVF; 6126 // Outer loop handling: They may require CFG and instruction level 6127 // transformations before even evaluating whether vectorization is profitable. 6128 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6129 // the vectorization pipeline. 6130 if (!OrigLoop->empty()) { 6131 // If the user doesn't provide a vectorization factor, determine a 6132 // reasonable one. 6133 if (!UserVF) { 6134 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6135 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6136 6137 // Make sure we have a VF > 1 for stress testing. 6138 if (VPlanBuildStressTest && VF < 2) { 6139 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6140 << "overriding computed VF.\n"); 6141 VF = 4; 6142 } 6143 } 6144 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6145 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6146 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6147 << " to build VPlans.\n"); 6148 buildVPlans(VF, VF); 6149 6150 // For VPlan build stress testing, we bail out after VPlan construction. 6151 if (VPlanBuildStressTest) 6152 return VectorizationFactor::Disabled(); 6153 6154 return {VF, 0}; 6155 } 6156 6157 LLVM_DEBUG( 6158 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6159 "VPlan-native path.\n"); 6160 return VectorizationFactor::Disabled(); 6161 } 6162 6163 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6164 unsigned UserVF) { 6165 assert(OrigLoop->empty() && "Inner loop expected."); 6166 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6167 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6168 return None; 6169 6170 // Invalidate interleave groups if all blocks of loop will be predicated. 6171 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6172 !useMaskedInterleavedAccesses(*TTI)) { 6173 LLVM_DEBUG( 6174 dbgs() 6175 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6176 "which requires masked-interleaved support.\n"); 6177 CM.InterleaveInfo.reset(); 6178 } 6179 6180 if (UserVF) { 6181 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6182 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6183 // Collect the instructions (and their associated costs) that will be more 6184 // profitable to scalarize. 6185 CM.selectUserVectorizationFactor(UserVF); 6186 buildVPlansWithVPRecipes(UserVF, UserVF); 6187 LLVM_DEBUG(printPlans(dbgs())); 6188 return {{UserVF, 0}}; 6189 } 6190 6191 unsigned MaxVF = MaybeMaxVF.getValue(); 6192 assert(MaxVF != 0 && "MaxVF is zero."); 6193 6194 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6195 // Collect Uniform and Scalar instructions after vectorization with VF. 6196 CM.collectUniformsAndScalars(VF); 6197 6198 // Collect the instructions (and their associated costs) that will be more 6199 // profitable to scalarize. 6200 if (VF > 1) 6201 CM.collectInstsToScalarize(VF); 6202 } 6203 6204 buildVPlansWithVPRecipes(1, MaxVF); 6205 LLVM_DEBUG(printPlans(dbgs())); 6206 if (MaxVF == 1) 6207 return VectorizationFactor::Disabled(); 6208 6209 // Select the optimal vectorization factor. 6210 return CM.selectVectorizationFactor(MaxVF); 6211 } 6212 6213 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6214 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6215 << '\n'); 6216 BestVF = VF; 6217 BestUF = UF; 6218 6219 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6220 return !Plan->hasVF(VF); 6221 }); 6222 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6223 } 6224 6225 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6226 DominatorTree *DT) { 6227 // Perform the actual loop transformation. 6228 6229 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6230 VPCallbackILV CallbackILV(ILV); 6231 6232 VPTransformState State{BestVF, BestUF, LI, 6233 DT, ILV.Builder, ILV.VectorLoopValueMap, 6234 &ILV, CallbackILV}; 6235 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6236 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6237 6238 //===------------------------------------------------===// 6239 // 6240 // Notice: any optimization or new instruction that go 6241 // into the code below should also be implemented in 6242 // the cost-model. 6243 // 6244 //===------------------------------------------------===// 6245 6246 // 2. Copy and widen instructions from the old loop into the new loop. 6247 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6248 VPlans.front()->execute(&State); 6249 6250 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6251 // predication, updating analyses. 6252 ILV.fixVectorizedLoop(); 6253 } 6254 6255 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6256 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6257 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6258 6259 // We create new control-flow for the vectorized loop, so the original 6260 // condition will be dead after vectorization if it's only used by the 6261 // branch. 6262 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6263 if (Cmp && Cmp->hasOneUse()) 6264 DeadInstructions.insert(Cmp); 6265 6266 // We create new "steps" for induction variable updates to which the original 6267 // induction variables map. An original update instruction will be dead if 6268 // all its users except the induction variable are dead. 6269 for (auto &Induction : *Legal->getInductionVars()) { 6270 PHINode *Ind = Induction.first; 6271 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6272 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6273 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6274 DeadInstructions.end(); 6275 })) 6276 DeadInstructions.insert(IndUpdate); 6277 6278 // We record as "Dead" also the type-casting instructions we had identified 6279 // during induction analysis. We don't need any handling for them in the 6280 // vectorized loop because we have proven that, under a proper runtime 6281 // test guarding the vectorized loop, the value of the phi, and the casted 6282 // value of the phi, are the same. The last instruction in this casting chain 6283 // will get its scalar/vector/widened def from the scalar/vector/widened def 6284 // of the respective phi node. Any other casts in the induction def-use chain 6285 // have no other uses outside the phi update chain, and will be ignored. 6286 InductionDescriptor &IndDes = Induction.second; 6287 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6288 DeadInstructions.insert(Casts.begin(), Casts.end()); 6289 } 6290 } 6291 6292 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6293 6294 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6295 6296 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6297 Instruction::BinaryOps BinOp) { 6298 // When unrolling and the VF is 1, we only need to add a simple scalar. 6299 Type *Ty = Val->getType(); 6300 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6301 6302 if (Ty->isFloatingPointTy()) { 6303 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6304 6305 // Floating point operations had to be 'fast' to enable the unrolling. 6306 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6307 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6308 } 6309 Constant *C = ConstantInt::get(Ty, StartIdx); 6310 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6311 } 6312 6313 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6314 SmallVector<Metadata *, 4> MDs; 6315 // Reserve first location for self reference to the LoopID metadata node. 6316 MDs.push_back(nullptr); 6317 bool IsUnrollMetadata = false; 6318 MDNode *LoopID = L->getLoopID(); 6319 if (LoopID) { 6320 // First find existing loop unrolling disable metadata. 6321 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6322 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6323 if (MD) { 6324 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6325 IsUnrollMetadata = 6326 S && S->getString().startswith("llvm.loop.unroll.disable"); 6327 } 6328 MDs.push_back(LoopID->getOperand(i)); 6329 } 6330 } 6331 6332 if (!IsUnrollMetadata) { 6333 // Add runtime unroll disable metadata. 6334 LLVMContext &Context = L->getHeader()->getContext(); 6335 SmallVector<Metadata *, 1> DisableOperands; 6336 DisableOperands.push_back( 6337 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6338 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6339 MDs.push_back(DisableNode); 6340 MDNode *NewLoopID = MDNode::get(Context, MDs); 6341 // Set operand 0 to refer to the loop id itself. 6342 NewLoopID->replaceOperandWith(0, NewLoopID); 6343 L->setLoopID(NewLoopID); 6344 } 6345 } 6346 6347 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6348 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6349 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6350 bool PredicateAtRangeStart = Predicate(Range.Start); 6351 6352 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6353 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6354 Range.End = TmpVF; 6355 break; 6356 } 6357 6358 return PredicateAtRangeStart; 6359 } 6360 6361 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6362 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6363 /// of VF's starting at a given VF and extending it as much as possible. Each 6364 /// vectorization decision can potentially shorten this sub-range during 6365 /// buildVPlan(). 6366 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6367 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6368 VFRange SubRange = {VF, MaxVF + 1}; 6369 VPlans.push_back(buildVPlan(SubRange)); 6370 VF = SubRange.End; 6371 } 6372 } 6373 6374 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6375 VPlanPtr &Plan) { 6376 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6377 6378 // Look for cached value. 6379 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6380 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6381 if (ECEntryIt != EdgeMaskCache.end()) 6382 return ECEntryIt->second; 6383 6384 VPValue *SrcMask = createBlockInMask(Src, Plan); 6385 6386 // The terminator has to be a branch inst! 6387 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6388 assert(BI && "Unexpected terminator found"); 6389 6390 if (!BI->isConditional()) 6391 return EdgeMaskCache[Edge] = SrcMask; 6392 6393 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6394 assert(EdgeMask && "No Edge Mask found for condition"); 6395 6396 if (BI->getSuccessor(0) != Dst) 6397 EdgeMask = Builder.createNot(EdgeMask); 6398 6399 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6400 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6401 6402 return EdgeMaskCache[Edge] = EdgeMask; 6403 } 6404 6405 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6406 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6407 6408 // Look for cached value. 6409 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6410 if (BCEntryIt != BlockMaskCache.end()) 6411 return BCEntryIt->second; 6412 6413 // All-one mask is modelled as no-mask following the convention for masked 6414 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6415 VPValue *BlockMask = nullptr; 6416 6417 if (OrigLoop->getHeader() == BB) { 6418 if (!CM.blockNeedsPredication(BB)) 6419 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6420 6421 // Introduce the early-exit compare IV <= BTC to form header block mask. 6422 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6423 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6424 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6425 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6426 return BlockMaskCache[BB] = BlockMask; 6427 } 6428 6429 // This is the block mask. We OR all incoming edges. 6430 for (auto *Predecessor : predecessors(BB)) { 6431 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6432 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6433 return BlockMaskCache[BB] = EdgeMask; 6434 6435 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6436 BlockMask = EdgeMask; 6437 continue; 6438 } 6439 6440 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6441 } 6442 6443 return BlockMaskCache[BB] = BlockMask; 6444 } 6445 6446 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6447 VFRange &Range, 6448 VPlanPtr &Plan) { 6449 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6450 if (!IG) 6451 return nullptr; 6452 6453 // Now check if IG is relevant for VF's in the given range. 6454 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6455 return [=](unsigned VF) -> bool { 6456 return (VF >= 2 && // Query is illegal for VF == 1 6457 CM.getWideningDecision(I, VF) == 6458 LoopVectorizationCostModel::CM_Interleave); 6459 }; 6460 }; 6461 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6462 return nullptr; 6463 6464 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6465 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6466 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6467 assert(I == IG->getInsertPos() && 6468 "Generating a recipe for an adjunct member of an interleave group"); 6469 6470 VPValue *Mask = nullptr; 6471 if (Legal->isMaskRequired(I)) 6472 Mask = createBlockInMask(I->getParent(), Plan); 6473 6474 return new VPInterleaveRecipe(IG, Mask); 6475 } 6476 6477 VPWidenMemoryInstructionRecipe * 6478 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6479 VPlanPtr &Plan) { 6480 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6481 return nullptr; 6482 6483 auto willWiden = [&](unsigned VF) -> bool { 6484 if (VF == 1) 6485 return false; 6486 if (CM.isScalarAfterVectorization(I, VF) || 6487 CM.isProfitableToScalarize(I, VF)) 6488 return false; 6489 LoopVectorizationCostModel::InstWidening Decision = 6490 CM.getWideningDecision(I, VF); 6491 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6492 "CM decision should be taken at this point."); 6493 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6494 "Interleave memory opportunity should be caught earlier."); 6495 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6496 }; 6497 6498 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6499 return nullptr; 6500 6501 VPValue *Mask = nullptr; 6502 if (Legal->isMaskRequired(I)) 6503 Mask = createBlockInMask(I->getParent(), Plan); 6504 6505 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6506 } 6507 6508 VPWidenIntOrFpInductionRecipe * 6509 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6510 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6511 // Check if this is an integer or fp induction. If so, build the recipe that 6512 // produces its scalar and vector values. 6513 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6514 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6515 II.getKind() == InductionDescriptor::IK_FpInduction) 6516 return new VPWidenIntOrFpInductionRecipe(Phi); 6517 6518 return nullptr; 6519 } 6520 6521 // Optimize the special case where the source is a constant integer 6522 // induction variable. Notice that we can only optimize the 'trunc' case 6523 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6524 // (c) other casts depend on pointer size. 6525 6526 // Determine whether \p K is a truncation based on an induction variable that 6527 // can be optimized. 6528 auto isOptimizableIVTruncate = 6529 [&](Instruction *K) -> std::function<bool(unsigned)> { 6530 return 6531 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6532 }; 6533 6534 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6535 isOptimizableIVTruncate(I), Range)) 6536 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6537 cast<TruncInst>(I)); 6538 return nullptr; 6539 } 6540 6541 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6542 PHINode *Phi = dyn_cast<PHINode>(I); 6543 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6544 return nullptr; 6545 6546 // We know that all PHIs in non-header blocks are converted into selects, so 6547 // we don't have to worry about the insertion order and we can just use the 6548 // builder. At this point we generate the predication tree. There may be 6549 // duplications since this is a simple recursive scan, but future 6550 // optimizations will clean it up. 6551 6552 SmallVector<VPValue *, 2> Masks; 6553 unsigned NumIncoming = Phi->getNumIncomingValues(); 6554 for (unsigned In = 0; In < NumIncoming; In++) { 6555 VPValue *EdgeMask = 6556 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6557 assert((EdgeMask || NumIncoming == 1) && 6558 "Multiple predecessors with one having a full mask"); 6559 if (EdgeMask) 6560 Masks.push_back(EdgeMask); 6561 } 6562 return new VPBlendRecipe(Phi, Masks); 6563 } 6564 6565 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6566 VFRange &Range) { 6567 6568 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6569 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6570 6571 if (IsPredicated) 6572 return false; 6573 6574 auto IsVectorizableOpcode = [](unsigned Opcode) { 6575 switch (Opcode) { 6576 case Instruction::Add: 6577 case Instruction::And: 6578 case Instruction::AShr: 6579 case Instruction::BitCast: 6580 case Instruction::Br: 6581 case Instruction::Call: 6582 case Instruction::FAdd: 6583 case Instruction::FCmp: 6584 case Instruction::FDiv: 6585 case Instruction::FMul: 6586 case Instruction::FPExt: 6587 case Instruction::FPToSI: 6588 case Instruction::FPToUI: 6589 case Instruction::FPTrunc: 6590 case Instruction::FRem: 6591 case Instruction::FSub: 6592 case Instruction::GetElementPtr: 6593 case Instruction::ICmp: 6594 case Instruction::IntToPtr: 6595 case Instruction::Load: 6596 case Instruction::LShr: 6597 case Instruction::Mul: 6598 case Instruction::Or: 6599 case Instruction::PHI: 6600 case Instruction::PtrToInt: 6601 case Instruction::SDiv: 6602 case Instruction::Select: 6603 case Instruction::SExt: 6604 case Instruction::Shl: 6605 case Instruction::SIToFP: 6606 case Instruction::SRem: 6607 case Instruction::Store: 6608 case Instruction::Sub: 6609 case Instruction::Trunc: 6610 case Instruction::UDiv: 6611 case Instruction::UIToFP: 6612 case Instruction::URem: 6613 case Instruction::Xor: 6614 case Instruction::ZExt: 6615 return true; 6616 } 6617 return false; 6618 }; 6619 6620 if (!IsVectorizableOpcode(I->getOpcode())) 6621 return false; 6622 6623 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6624 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6625 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6626 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6627 return false; 6628 } 6629 6630 auto willWiden = [&](unsigned VF) -> bool { 6631 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6632 CM.isProfitableToScalarize(I, VF))) 6633 return false; 6634 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6635 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6636 // The following case may be scalarized depending on the VF. 6637 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6638 // version of the instruction. 6639 // Is it beneficial to perform intrinsic call compared to lib call? 6640 bool NeedToScalarize; 6641 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6642 bool UseVectorIntrinsic = 6643 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6644 return UseVectorIntrinsic || !NeedToScalarize; 6645 } 6646 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6647 assert(CM.getWideningDecision(I, VF) == 6648 LoopVectorizationCostModel::CM_Scalarize && 6649 "Memory widening decisions should have been taken care by now"); 6650 return false; 6651 } 6652 return true; 6653 }; 6654 6655 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6656 return false; 6657 6658 // Success: widen this instruction. We optimize the common case where 6659 // consecutive instructions can be represented by a single recipe. 6660 if (!VPBB->empty()) { 6661 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6662 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6663 return true; 6664 } 6665 6666 VPBB->appendRecipe(new VPWidenRecipe(I)); 6667 return true; 6668 } 6669 6670 VPBasicBlock *VPRecipeBuilder::handleReplication( 6671 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6672 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6673 VPlanPtr &Plan) { 6674 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6675 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6676 Range); 6677 6678 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6679 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6680 6681 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6682 6683 // Find if I uses a predicated instruction. If so, it will use its scalar 6684 // value. Avoid hoisting the insert-element which packs the scalar value into 6685 // a vector value, as that happens iff all users use the vector value. 6686 for (auto &Op : I->operands()) 6687 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6688 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6689 PredInst2Recipe[PredInst]->setAlsoPack(false); 6690 6691 // Finalize the recipe for Instr, first if it is not predicated. 6692 if (!IsPredicated) { 6693 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6694 VPBB->appendRecipe(Recipe); 6695 return VPBB; 6696 } 6697 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6698 assert(VPBB->getSuccessors().empty() && 6699 "VPBB has successors when handling predicated replication."); 6700 // Record predicated instructions for above packing optimizations. 6701 PredInst2Recipe[I] = Recipe; 6702 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6703 VPBlockUtils::insertBlockAfter(Region, VPBB); 6704 auto *RegSucc = new VPBasicBlock(); 6705 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6706 return RegSucc; 6707 } 6708 6709 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6710 VPRecipeBase *PredRecipe, 6711 VPlanPtr &Plan) { 6712 // Instructions marked for predication are replicated and placed under an 6713 // if-then construct to prevent side-effects. 6714 6715 // Generate recipes to compute the block mask for this region. 6716 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6717 6718 // Build the triangular if-then region. 6719 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6720 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6721 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6722 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6723 auto *PHIRecipe = 6724 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6725 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6726 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6727 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6728 6729 // Note: first set Entry as region entry and then connect successors starting 6730 // from it in order, to propagate the "parent" of each VPBasicBlock. 6731 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6732 VPBlockUtils::connectBlocks(Pred, Exit); 6733 6734 return Region; 6735 } 6736 6737 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6738 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6739 VPRecipeBase *Recipe = nullptr; 6740 // Check if Instr should belong to an interleave memory recipe, or already 6741 // does. In the latter case Instr is irrelevant. 6742 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6743 VPBB->appendRecipe(Recipe); 6744 return true; 6745 } 6746 6747 // Check if Instr is a memory operation that should be widened. 6748 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6749 VPBB->appendRecipe(Recipe); 6750 return true; 6751 } 6752 6753 // Check if Instr should form some PHI recipe. 6754 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6755 VPBB->appendRecipe(Recipe); 6756 return true; 6757 } 6758 if ((Recipe = tryToBlend(Instr, Plan))) { 6759 VPBB->appendRecipe(Recipe); 6760 return true; 6761 } 6762 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6763 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6764 return true; 6765 } 6766 6767 // Check if Instr is to be widened by a general VPWidenRecipe, after 6768 // having first checked for specific widening recipes that deal with 6769 // Interleave Groups, Inductions and Phi nodes. 6770 if (tryToWiden(Instr, VPBB, Range)) 6771 return true; 6772 6773 return false; 6774 } 6775 6776 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6777 unsigned MaxVF) { 6778 assert(OrigLoop->empty() && "Inner loop expected."); 6779 6780 // Collect conditions feeding internal conditional branches; they need to be 6781 // represented in VPlan for it to model masking. 6782 SmallPtrSet<Value *, 1> NeedDef; 6783 6784 auto *Latch = OrigLoop->getLoopLatch(); 6785 for (BasicBlock *BB : OrigLoop->blocks()) { 6786 if (BB == Latch) 6787 continue; 6788 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6789 if (Branch && Branch->isConditional()) 6790 NeedDef.insert(Branch->getCondition()); 6791 } 6792 6793 // If the tail is to be folded by masking, the primary induction variable 6794 // needs to be represented in VPlan for it to model early-exit masking. 6795 if (CM.foldTailByMasking()) 6796 NeedDef.insert(Legal->getPrimaryInduction()); 6797 6798 // Collect instructions from the original loop that will become trivially dead 6799 // in the vectorized loop. We don't need to vectorize these instructions. For 6800 // example, original induction update instructions can become dead because we 6801 // separately emit induction "steps" when generating code for the new loop. 6802 // Similarly, we create a new latch condition when setting up the structure 6803 // of the new loop, so the old one can become dead. 6804 SmallPtrSet<Instruction *, 4> DeadInstructions; 6805 collectTriviallyDeadInstructions(DeadInstructions); 6806 6807 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6808 VFRange SubRange = {VF, MaxVF + 1}; 6809 VPlans.push_back( 6810 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6811 VF = SubRange.End; 6812 } 6813 } 6814 6815 LoopVectorizationPlanner::VPlanPtr 6816 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6817 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6818 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6819 // Hold a mapping from predicated instructions to their recipes, in order to 6820 // fix their AlsoPack behavior if a user is determined to replicate and use a 6821 // scalar instead of vector value. 6822 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6823 6824 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6825 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6826 6827 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6828 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6829 auto Plan = llvm::make_unique<VPlan>(VPBB); 6830 6831 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6832 // Represent values that will have defs inside VPlan. 6833 for (Value *V : NeedDef) 6834 Plan->addVPValue(V); 6835 6836 // Scan the body of the loop in a topological order to visit each basic block 6837 // after having visited its predecessor basic blocks. 6838 LoopBlocksDFS DFS(OrigLoop); 6839 DFS.perform(LI); 6840 6841 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6842 // Relevant instructions from basic block BB will be grouped into VPRecipe 6843 // ingredients and fill a new VPBasicBlock. 6844 unsigned VPBBsForBB = 0; 6845 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6846 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6847 VPBB = FirstVPBBForBB; 6848 Builder.setInsertPoint(VPBB); 6849 6850 std::vector<Instruction *> Ingredients; 6851 6852 // Organize the ingredients to vectorize from current basic block in the 6853 // right order. 6854 for (Instruction &I : BB->instructionsWithoutDebug()) { 6855 Instruction *Instr = &I; 6856 6857 // First filter out irrelevant instructions, to ensure no recipes are 6858 // built for them. 6859 if (isa<BranchInst>(Instr) || 6860 DeadInstructions.find(Instr) != DeadInstructions.end()) 6861 continue; 6862 6863 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6864 // member of the IG, do not construct any Recipe for it. 6865 const InterleaveGroup<Instruction> *IG = 6866 CM.getInterleavedAccessGroup(Instr); 6867 if (IG && Instr != IG->getInsertPos() && 6868 Range.Start >= 2 && // Query is illegal for VF == 1 6869 CM.getWideningDecision(Instr, Range.Start) == 6870 LoopVectorizationCostModel::CM_Interleave) { 6871 auto SinkCandidate = SinkAfterInverse.find(Instr); 6872 if (SinkCandidate != SinkAfterInverse.end()) 6873 Ingredients.push_back(SinkCandidate->second); 6874 continue; 6875 } 6876 6877 // Move instructions to handle first-order recurrences, step 1: avoid 6878 // handling this instruction until after we've handled the instruction it 6879 // should follow. 6880 auto SAIt = SinkAfter.find(Instr); 6881 if (SAIt != SinkAfter.end()) { 6882 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6883 << *SAIt->second 6884 << " to vectorize a 1st order recurrence.\n"); 6885 SinkAfterInverse[SAIt->second] = Instr; 6886 continue; 6887 } 6888 6889 Ingredients.push_back(Instr); 6890 6891 // Move instructions to handle first-order recurrences, step 2: push the 6892 // instruction to be sunk at its insertion point. 6893 auto SAInvIt = SinkAfterInverse.find(Instr); 6894 if (SAInvIt != SinkAfterInverse.end()) 6895 Ingredients.push_back(SAInvIt->second); 6896 } 6897 6898 // Introduce each ingredient into VPlan. 6899 for (Instruction *Instr : Ingredients) { 6900 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6901 continue; 6902 6903 // Otherwise, if all widening options failed, Instruction is to be 6904 // replicated. This may create a successor for VPBB. 6905 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6906 Instr, Range, VPBB, PredInst2Recipe, Plan); 6907 if (NextVPBB != VPBB) { 6908 VPBB = NextVPBB; 6909 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6910 : ""); 6911 } 6912 } 6913 } 6914 6915 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6916 // may also be empty, such as the last one VPBB, reflecting original 6917 // basic-blocks with no recipes. 6918 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6919 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6920 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6921 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6922 delete PreEntry; 6923 6924 std::string PlanName; 6925 raw_string_ostream RSO(PlanName); 6926 unsigned VF = Range.Start; 6927 Plan->addVF(VF); 6928 RSO << "Initial VPlan for VF={" << VF; 6929 for (VF *= 2; VF < Range.End; VF *= 2) { 6930 Plan->addVF(VF); 6931 RSO << "," << VF; 6932 } 6933 RSO << "},UF>=1"; 6934 RSO.flush(); 6935 Plan->setName(PlanName); 6936 6937 return Plan; 6938 } 6939 6940 LoopVectorizationPlanner::VPlanPtr 6941 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6942 // Outer loop handling: They may require CFG and instruction level 6943 // transformations before even evaluating whether vectorization is profitable. 6944 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6945 // the vectorization pipeline. 6946 assert(!OrigLoop->empty()); 6947 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6948 6949 // Create new empty VPlan 6950 auto Plan = llvm::make_unique<VPlan>(); 6951 6952 // Build hierarchical CFG 6953 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6954 HCFGBuilder.buildHierarchicalCFG(); 6955 6956 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6957 Plan->addVF(VF); 6958 6959 if (EnableVPlanPredication) { 6960 VPlanPredicator VPP(*Plan); 6961 VPP.predicate(); 6962 6963 // Avoid running transformation to recipes until masked code generation in 6964 // VPlan-native path is in place. 6965 return Plan; 6966 } 6967 6968 SmallPtrSet<Instruction *, 1> DeadInstructions; 6969 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6970 Plan, Legal->getInductionVars(), DeadInstructions); 6971 6972 return Plan; 6973 } 6974 6975 Value* LoopVectorizationPlanner::VPCallbackILV:: 6976 getOrCreateVectorValues(Value *V, unsigned Part) { 6977 return ILV.getOrCreateVectorValue(V, Part); 6978 } 6979 6980 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6981 O << " +\n" 6982 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6983 IG->getInsertPos()->printAsOperand(O, false); 6984 if (User) { 6985 O << ", "; 6986 User->getOperand(0)->printAsOperand(O); 6987 } 6988 O << "\\l\""; 6989 for (unsigned i = 0; i < IG->getFactor(); ++i) 6990 if (Instruction *I = IG->getMember(i)) 6991 O << " +\n" 6992 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6993 } 6994 6995 void VPWidenRecipe::execute(VPTransformState &State) { 6996 for (auto &Instr : make_range(Begin, End)) 6997 State.ILV->widenInstruction(Instr); 6998 } 6999 7000 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7001 assert(!State.Instance && "Int or FP induction being replicated."); 7002 State.ILV->widenIntOrFpInduction(IV, Trunc); 7003 } 7004 7005 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7006 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7007 } 7008 7009 void VPBlendRecipe::execute(VPTransformState &State) { 7010 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7011 // We know that all PHIs in non-header blocks are converted into 7012 // selects, so we don't have to worry about the insertion order and we 7013 // can just use the builder. 7014 // At this point we generate the predication tree. There may be 7015 // duplications since this is a simple recursive scan, but future 7016 // optimizations will clean it up. 7017 7018 unsigned NumIncoming = Phi->getNumIncomingValues(); 7019 7020 assert((User || NumIncoming == 1) && 7021 "Multiple predecessors with predecessors having a full mask"); 7022 // Generate a sequence of selects of the form: 7023 // SELECT(Mask3, In3, 7024 // SELECT(Mask2, In2, 7025 // ( ...))) 7026 InnerLoopVectorizer::VectorParts Entry(State.UF); 7027 for (unsigned In = 0; In < NumIncoming; ++In) { 7028 for (unsigned Part = 0; Part < State.UF; ++Part) { 7029 // We might have single edge PHIs (blocks) - use an identity 7030 // 'select' for the first PHI operand. 7031 Value *In0 = 7032 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7033 if (In == 0) 7034 Entry[Part] = In0; // Initialize with the first incoming value. 7035 else { 7036 // Select between the current value and the previous incoming edge 7037 // based on the incoming mask. 7038 Value *Cond = State.get(User->getOperand(In), Part); 7039 Entry[Part] = 7040 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7041 } 7042 } 7043 } 7044 for (unsigned Part = 0; Part < State.UF; ++Part) 7045 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7046 } 7047 7048 void VPInterleaveRecipe::execute(VPTransformState &State) { 7049 assert(!State.Instance && "Interleave group being replicated."); 7050 if (!User) 7051 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7052 7053 // Last (and currently only) operand is a mask. 7054 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7055 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7056 for (unsigned Part = 0; Part < State.UF; ++Part) 7057 MaskValues[Part] = State.get(Mask, Part); 7058 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7059 } 7060 7061 void VPReplicateRecipe::execute(VPTransformState &State) { 7062 if (State.Instance) { // Generate a single instance. 7063 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7064 // Insert scalar instance packing it into a vector. 7065 if (AlsoPack && State.VF > 1) { 7066 // If we're constructing lane 0, initialize to start from undef. 7067 if (State.Instance->Lane == 0) { 7068 Value *Undef = 7069 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7070 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7071 } 7072 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7073 } 7074 return; 7075 } 7076 7077 // Generate scalar instances for all VF lanes of all UF parts, unless the 7078 // instruction is uniform inwhich case generate only the first lane for each 7079 // of the UF parts. 7080 unsigned EndLane = IsUniform ? 1 : State.VF; 7081 for (unsigned Part = 0; Part < State.UF; ++Part) 7082 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7083 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7084 } 7085 7086 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7087 assert(State.Instance && "Branch on Mask works only on single instance."); 7088 7089 unsigned Part = State.Instance->Part; 7090 unsigned Lane = State.Instance->Lane; 7091 7092 Value *ConditionBit = nullptr; 7093 if (!User) // Block in mask is all-one. 7094 ConditionBit = State.Builder.getTrue(); 7095 else { 7096 VPValue *BlockInMask = User->getOperand(0); 7097 ConditionBit = State.get(BlockInMask, Part); 7098 if (ConditionBit->getType()->isVectorTy()) 7099 ConditionBit = State.Builder.CreateExtractElement( 7100 ConditionBit, State.Builder.getInt32(Lane)); 7101 } 7102 7103 // Replace the temporary unreachable terminator with a new conditional branch, 7104 // whose two destinations will be set later when they are created. 7105 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7106 assert(isa<UnreachableInst>(CurrentTerminator) && 7107 "Expected to replace unreachable terminator with conditional branch."); 7108 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7109 CondBr->setSuccessor(0, nullptr); 7110 ReplaceInstWithInst(CurrentTerminator, CondBr); 7111 } 7112 7113 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7114 assert(State.Instance && "Predicated instruction PHI works per instance."); 7115 Instruction *ScalarPredInst = cast<Instruction>( 7116 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7117 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7118 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7119 assert(PredicatingBB && "Predicated block has no single predecessor."); 7120 7121 // By current pack/unpack logic we need to generate only a single phi node: if 7122 // a vector value for the predicated instruction exists at this point it means 7123 // the instruction has vector users only, and a phi for the vector value is 7124 // needed. In this case the recipe of the predicated instruction is marked to 7125 // also do that packing, thereby "hoisting" the insert-element sequence. 7126 // Otherwise, a phi node for the scalar value is needed. 7127 unsigned Part = State.Instance->Part; 7128 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7129 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7130 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7131 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7132 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7133 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7134 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7135 } else { 7136 Type *PredInstType = PredInst->getType(); 7137 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7138 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7139 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7140 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7141 } 7142 } 7143 7144 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7145 if (!User) 7146 return State.ILV->vectorizeMemoryInstruction(&Instr); 7147 7148 // Last (and currently only) operand is a mask. 7149 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7150 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7151 for (unsigned Part = 0; Part < State.UF; ++Part) 7152 MaskValues[Part] = State.get(Mask, Part); 7153 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7154 } 7155 7156 // Process the loop in the VPlan-native vectorization path. This path builds 7157 // VPlan upfront in the vectorization pipeline, which allows to apply 7158 // VPlan-to-VPlan transformations from the very beginning without modifying the 7159 // input LLVM IR. 7160 static bool processLoopInVPlanNativePath( 7161 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7162 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7163 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7164 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7165 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7166 7167 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7168 Function *F = L->getHeader()->getParent(); 7169 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7170 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7171 &Hints, IAI); 7172 // Use the planner for outer loop vectorization. 7173 // TODO: CM is not used at this point inside the planner. Turn CM into an 7174 // optional argument if we don't need it in the future. 7175 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7176 7177 // Get user vectorization factor. 7178 const unsigned UserVF = Hints.getWidth(); 7179 7180 // Check the function attributes and profiles to find out if this function 7181 // should be optimized for size. 7182 bool OptForSize = 7183 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7184 (F->hasOptSize() || 7185 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7186 7187 // Plan how to best vectorize, return the best VF and its cost. 7188 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7189 7190 // If we are stress testing VPlan builds, do not attempt to generate vector 7191 // code. Masked vector code generation support will follow soon. 7192 // Also, do not attempt to vectorize if no vector code will be produced. 7193 if (VPlanBuildStressTest || EnableVPlanPredication || 7194 VectorizationFactor::Disabled() == VF) 7195 return false; 7196 7197 LVP.setBestPlan(VF.Width, 1); 7198 7199 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7200 &CM); 7201 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7202 << L->getHeader()->getParent()->getName() << "\"\n"); 7203 LVP.executePlan(LB, DT); 7204 7205 // Mark the loop as already vectorized to avoid vectorizing again. 7206 Hints.setAlreadyVectorized(); 7207 7208 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7209 return true; 7210 } 7211 7212 bool LoopVectorizePass::processLoop(Loop *L) { 7213 assert((EnableVPlanNativePath || L->empty()) && 7214 "VPlan-native path is not enabled. Only process inner loops."); 7215 7216 #ifndef NDEBUG 7217 const std::string DebugLocStr = getDebugLocString(L); 7218 #endif /* NDEBUG */ 7219 7220 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7221 << L->getHeader()->getParent()->getName() << "\" from " 7222 << DebugLocStr << "\n"); 7223 7224 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7225 7226 LLVM_DEBUG( 7227 dbgs() << "LV: Loop hints:" 7228 << " force=" 7229 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7230 ? "disabled" 7231 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7232 ? "enabled" 7233 : "?")) 7234 << " width=" << Hints.getWidth() 7235 << " unroll=" << Hints.getInterleave() << "\n"); 7236 7237 // Function containing loop 7238 Function *F = L->getHeader()->getParent(); 7239 7240 // Looking at the diagnostic output is the only way to determine if a loop 7241 // was vectorized (other than looking at the IR or machine code), so it 7242 // is important to generate an optimization remark for each loop. Most of 7243 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7244 // generated as OptimizationRemark and OptimizationRemarkMissed are 7245 // less verbose reporting vectorized loops and unvectorized loops that may 7246 // benefit from vectorization, respectively. 7247 7248 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7249 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7250 return false; 7251 } 7252 7253 PredicatedScalarEvolution PSE(*SE, *L); 7254 7255 // Check if it is legal to vectorize the loop. 7256 LoopVectorizationRequirements Requirements(*ORE); 7257 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7258 &Requirements, &Hints, DB, AC); 7259 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7260 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7261 Hints.emitRemarkWithHints(); 7262 return false; 7263 } 7264 7265 // Check the function attributes and profiles to find out if this function 7266 // should be optimized for size. 7267 bool OptForSize = 7268 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7269 (F->hasOptSize() || 7270 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7271 7272 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7273 // here. They may require CFG and instruction level transformations before 7274 // even evaluating whether vectorization is profitable. Since we cannot modify 7275 // the incoming IR, we need to build VPlan upfront in the vectorization 7276 // pipeline. 7277 if (!L->empty()) 7278 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7279 ORE, BFI, PSI, Hints); 7280 7281 assert(L->empty() && "Inner loop expected."); 7282 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7283 // count by optimizing for size, to minimize overheads. 7284 // Prefer constant trip counts over profile data, over upper bound estimate. 7285 unsigned ExpectedTC = 0; 7286 bool HasExpectedTC = false; 7287 if (const SCEVConstant *ConstExits = 7288 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7289 const APInt &ExitsCount = ConstExits->getAPInt(); 7290 // We are interested in small values for ExpectedTC. Skip over those that 7291 // can't fit an unsigned. 7292 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7293 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7294 HasExpectedTC = true; 7295 } 7296 } 7297 // ExpectedTC may be large because it's bound by a variable. Check 7298 // profiling information to validate we should vectorize. 7299 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7300 auto EstimatedTC = getLoopEstimatedTripCount(L); 7301 if (EstimatedTC) { 7302 ExpectedTC = *EstimatedTC; 7303 HasExpectedTC = true; 7304 } 7305 } 7306 if (!HasExpectedTC) { 7307 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7308 HasExpectedTC = (ExpectedTC > 0); 7309 } 7310 7311 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7312 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7313 << "This loop is worth vectorizing only if no scalar " 7314 << "iteration overheads are incurred."); 7315 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7316 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7317 else { 7318 LLVM_DEBUG(dbgs() << "\n"); 7319 // Loops with a very small trip count are considered for vectorization 7320 // under OptForSize, thereby making sure the cost of their loop body is 7321 // dominant, free of runtime guards and scalar iteration overheads. 7322 OptForSize = true; 7323 } 7324 } 7325 7326 // Check the function attributes to see if implicit floats are allowed. 7327 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7328 // an integer loop and the vector instructions selected are purely integer 7329 // vector instructions? 7330 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7331 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7332 "attribute is used.\n"); 7333 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7334 "NoImplicitFloat", L) 7335 << "loop not vectorized due to NoImplicitFloat attribute"); 7336 Hints.emitRemarkWithHints(); 7337 return false; 7338 } 7339 7340 // Check if the target supports potentially unsafe FP vectorization. 7341 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7342 // for the target we're vectorizing for, to make sure none of the 7343 // additional fp-math flags can help. 7344 if (Hints.isPotentiallyUnsafe() && 7345 TTI->isFPVectorizationPotentiallyUnsafe()) { 7346 LLVM_DEBUG( 7347 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7348 ORE->emit( 7349 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7350 << "loop not vectorized due to unsafe FP support."); 7351 Hints.emitRemarkWithHints(); 7352 return false; 7353 } 7354 7355 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7356 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7357 7358 // If an override option has been passed in for interleaved accesses, use it. 7359 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7360 UseInterleaved = EnableInterleavedMemAccesses; 7361 7362 // Analyze interleaved memory accesses. 7363 if (UseInterleaved) { 7364 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7365 } 7366 7367 // Use the cost model. 7368 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7369 &Hints, IAI); 7370 CM.collectValuesToIgnore(); 7371 7372 // Use the planner for vectorization. 7373 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7374 7375 // Get user vectorization factor. 7376 unsigned UserVF = Hints.getWidth(); 7377 7378 // Plan how to best vectorize, return the best VF and its cost. 7379 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7380 7381 VectorizationFactor VF = VectorizationFactor::Disabled(); 7382 unsigned IC = 1; 7383 unsigned UserIC = Hints.getInterleave(); 7384 7385 if (MaybeVF) { 7386 VF = *MaybeVF; 7387 // Select the interleave count. 7388 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7389 } 7390 7391 // Identify the diagnostic messages that should be produced. 7392 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7393 bool VectorizeLoop = true, InterleaveLoop = true; 7394 if (Requirements.doesNotMeet(F, L, Hints)) { 7395 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7396 "requirements.\n"); 7397 Hints.emitRemarkWithHints(); 7398 return false; 7399 } 7400 7401 if (VF.Width == 1) { 7402 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7403 VecDiagMsg = std::make_pair( 7404 "VectorizationNotBeneficial", 7405 "the cost-model indicates that vectorization is not beneficial"); 7406 VectorizeLoop = false; 7407 } 7408 7409 if (!MaybeVF && UserIC > 1) { 7410 // Tell the user interleaving was avoided up-front, despite being explicitly 7411 // requested. 7412 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7413 "interleaving should be avoided up front\n"); 7414 IntDiagMsg = std::make_pair( 7415 "InterleavingAvoided", 7416 "Ignoring UserIC, because interleaving was avoided up front"); 7417 InterleaveLoop = false; 7418 } else if (IC == 1 && UserIC <= 1) { 7419 // Tell the user interleaving is not beneficial. 7420 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7421 IntDiagMsg = std::make_pair( 7422 "InterleavingNotBeneficial", 7423 "the cost-model indicates that interleaving is not beneficial"); 7424 InterleaveLoop = false; 7425 if (UserIC == 1) { 7426 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7427 IntDiagMsg.second += 7428 " and is explicitly disabled or interleave count is set to 1"; 7429 } 7430 } else if (IC > 1 && UserIC == 1) { 7431 // Tell the user interleaving is beneficial, but it explicitly disabled. 7432 LLVM_DEBUG( 7433 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7434 IntDiagMsg = std::make_pair( 7435 "InterleavingBeneficialButDisabled", 7436 "the cost-model indicates that interleaving is beneficial " 7437 "but is explicitly disabled or interleave count is set to 1"); 7438 InterleaveLoop = false; 7439 } 7440 7441 // Override IC if user provided an interleave count. 7442 IC = UserIC > 0 ? UserIC : IC; 7443 7444 // Emit diagnostic messages, if any. 7445 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7446 if (!VectorizeLoop && !InterleaveLoop) { 7447 // Do not vectorize or interleaving the loop. 7448 ORE->emit([&]() { 7449 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7450 L->getStartLoc(), L->getHeader()) 7451 << VecDiagMsg.second; 7452 }); 7453 ORE->emit([&]() { 7454 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7455 L->getStartLoc(), L->getHeader()) 7456 << IntDiagMsg.second; 7457 }); 7458 return false; 7459 } else if (!VectorizeLoop && InterleaveLoop) { 7460 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7461 ORE->emit([&]() { 7462 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7463 L->getStartLoc(), L->getHeader()) 7464 << VecDiagMsg.second; 7465 }); 7466 } else if (VectorizeLoop && !InterleaveLoop) { 7467 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7468 << ") in " << DebugLocStr << '\n'); 7469 ORE->emit([&]() { 7470 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7471 L->getStartLoc(), L->getHeader()) 7472 << IntDiagMsg.second; 7473 }); 7474 } else if (VectorizeLoop && InterleaveLoop) { 7475 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7476 << ") in " << DebugLocStr << '\n'); 7477 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7478 } 7479 7480 LVP.setBestPlan(VF.Width, IC); 7481 7482 using namespace ore; 7483 bool DisableRuntimeUnroll = false; 7484 MDNode *OrigLoopID = L->getLoopID(); 7485 7486 if (!VectorizeLoop) { 7487 assert(IC > 1 && "interleave count should not be 1 or 0"); 7488 // If we decided that it is not legal to vectorize the loop, then 7489 // interleave it. 7490 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7491 &CM); 7492 LVP.executePlan(Unroller, DT); 7493 7494 ORE->emit([&]() { 7495 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7496 L->getHeader()) 7497 << "interleaved loop (interleaved count: " 7498 << NV("InterleaveCount", IC) << ")"; 7499 }); 7500 } else { 7501 // If we decided that it is *legal* to vectorize the loop, then do it. 7502 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7503 &LVL, &CM); 7504 LVP.executePlan(LB, DT); 7505 ++LoopsVectorized; 7506 7507 // Add metadata to disable runtime unrolling a scalar loop when there are 7508 // no runtime checks about strides and memory. A scalar loop that is 7509 // rarely used is not worth unrolling. 7510 if (!LB.areSafetyChecksAdded()) 7511 DisableRuntimeUnroll = true; 7512 7513 // Report the vectorization decision. 7514 ORE->emit([&]() { 7515 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7516 L->getHeader()) 7517 << "vectorized loop (vectorization width: " 7518 << NV("VectorizationFactor", VF.Width) 7519 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7520 }); 7521 } 7522 7523 Optional<MDNode *> RemainderLoopID = 7524 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7525 LLVMLoopVectorizeFollowupEpilogue}); 7526 if (RemainderLoopID.hasValue()) { 7527 L->setLoopID(RemainderLoopID.getValue()); 7528 } else { 7529 if (DisableRuntimeUnroll) 7530 AddRuntimeUnrollDisableMetaData(L); 7531 7532 // Mark the loop as already vectorized to avoid vectorizing again. 7533 Hints.setAlreadyVectorized(); 7534 } 7535 7536 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7537 return true; 7538 } 7539 7540 bool LoopVectorizePass::runImpl( 7541 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7542 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7543 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7544 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7545 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7546 SE = &SE_; 7547 LI = &LI_; 7548 TTI = &TTI_; 7549 DT = &DT_; 7550 BFI = &BFI_; 7551 TLI = TLI_; 7552 AA = &AA_; 7553 AC = &AC_; 7554 GetLAA = &GetLAA_; 7555 DB = &DB_; 7556 ORE = &ORE_; 7557 PSI = PSI_; 7558 7559 // Don't attempt if 7560 // 1. the target claims to have no vector registers, and 7561 // 2. interleaving won't help ILP. 7562 // 7563 // The second condition is necessary because, even if the target has no 7564 // vector registers, loop vectorization may still enable scalar 7565 // interleaving. 7566 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7567 return false; 7568 7569 bool Changed = false; 7570 7571 // The vectorizer requires loops to be in simplified form. 7572 // Since simplification may add new inner loops, it has to run before the 7573 // legality and profitability checks. This means running the loop vectorizer 7574 // will simplify all loops, regardless of whether anything end up being 7575 // vectorized. 7576 for (auto &L : *LI) 7577 Changed |= 7578 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7579 7580 // Build up a worklist of inner-loops to vectorize. This is necessary as 7581 // the act of vectorizing or partially unrolling a loop creates new loops 7582 // and can invalidate iterators across the loops. 7583 SmallVector<Loop *, 8> Worklist; 7584 7585 for (Loop *L : *LI) 7586 collectSupportedLoops(*L, LI, ORE, Worklist); 7587 7588 LoopsAnalyzed += Worklist.size(); 7589 7590 // Now walk the identified inner loops. 7591 while (!Worklist.empty()) { 7592 Loop *L = Worklist.pop_back_val(); 7593 7594 // For the inner loops we actually process, form LCSSA to simplify the 7595 // transform. 7596 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7597 7598 Changed |= processLoop(L); 7599 } 7600 7601 // Process each loop nest in the function. 7602 return Changed; 7603 } 7604 7605 PreservedAnalyses LoopVectorizePass::run(Function &F, 7606 FunctionAnalysisManager &AM) { 7607 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7608 auto &LI = AM.getResult<LoopAnalysis>(F); 7609 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7610 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7611 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7612 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7613 auto &AA = AM.getResult<AAManager>(F); 7614 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7615 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7616 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7617 MemorySSA *MSSA = EnableMSSALoopDependency 7618 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7619 : nullptr; 7620 7621 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7622 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7623 [&](Loop &L) -> const LoopAccessInfo & { 7624 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7625 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7626 }; 7627 const ModuleAnalysisManager &MAM = 7628 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7629 ProfileSummaryInfo *PSI = 7630 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7631 bool Changed = 7632 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7633 if (!Changed) 7634 return PreservedAnalyses::all(); 7635 PreservedAnalyses PA; 7636 7637 // We currently do not preserve loopinfo/dominator analyses with outer loop 7638 // vectorization. Until this is addressed, mark these analyses as preserved 7639 // only for non-VPlan-native path. 7640 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7641 if (!EnableVPlanNativePath) { 7642 PA.preserve<LoopAnalysis>(); 7643 PA.preserve<DominatorTreeAnalysis>(); 7644 } 7645 PA.preserve<BasicAA>(); 7646 PA.preserve<GlobalsAA>(); 7647 return PA; 7648 } 7649